
Central Lancashire Online Knowledge (CLoK)

Title A critical review of adverse effects to the kidney: mechanisms, data sources
and in silico tools to assist prediction

Type Article
URL https://clok.uclan.ac.uk/id/eprint/24644/
DOI
Date 2018
Citation Pletz, J, Enoch, S.J, Jais, D.M, Mellor, Claire, Pawar, G, Madden, J.C, Webb, 

S.D, Tagliati, C and Cronin, M.T.D (2018) A critical review of adverse effects 
to the kidney: mechanisms, data sources and in silico tools to assist 
prediction. Expert Opinion on Drug Metabolism & Toxicology. ISSN 1742-
5255 

Creators Pletz, J, Enoch, S.J, Jais, D.M, Mellor, Claire, Pawar, G, Madden, J.C, Webb, 
S.D, Tagliati, C and Cronin, M.T.D

It is advisable to refer to the publisher’s version if you intend to cite from the work. 

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/


1 
 

A CRITICAL REVIEW OF ADVERSE EFFECTS TO THE KIDNEY: MECHANISMS, DATA SOURCES 

AND IN SILICO TOOLS TO ASSIST PREDICTION 

 

 

J. Pletz1, S.J. Enoch1, D.M. Jais1, C.L. Mellor1, G. Pawar1, J.C. Madden1, S. D. Webb2, C. 

Tagliati3, M.T.D. Cronin*1 

1School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom 

Street, Liverpool L3 3AF, England 2Department of Applied Mathematics, Liverpool John 

Moores University, Liverpool, England 3Departamento de Análises Clínicas e Toxicológicas, 

Universidade Federal de Minas Gerais, Belo Horizonte, Brazil 

 

*Corresponding author: Tel. +44 151 231 2402; e-mail address: M.T.Cronin@ljmu.ac.uk 

(Mark Cronin) 

 

  



2 
 

ABSTRACT 

Introduction: The kidney is a major target for toxicity elicited by pharmaceuticals and environmental 

pollutants. Standard testing which often does not investigate underlying mechanisms has proven not 

to be an adequate hazard assessment approach. As such, there is an opportunity for the application 

of computational approaches that utilise multi-scale data based on the Adverse Outcome Pathway 

(AOP) paradigm, coupled with an understanding of the chemistry underpinning the molecular 

initiating event (MIE) to provide a deep understanding of how structural fragments of molecules 

relate to specific mechanisms of nephrotoxicity.  

The aim of this investigation was to review the current scientific landscape related to computational 

methods, including mechanistic data, AOPs, publicly available knowledge bases and current in silico 

models, for the assessment of pharmaceuticals and other chemicals with regard to their potential to 

elicit nephrotoxicity. A list of over 250 nephrotoxicants enriched with, where possible, mechanistic 

and AOP-derived understanding was compiled.  

Expert opinion: Whilst little mechanistic evidence has been translated into AOPs, this review 

identified a number of data sources of in vitro, in vivo and human data that may assist in the 

development of in silico models which in turn may shed light on the inter-relationships between 

nephrotoxicity mechanisms. 

Key words: kidney, nephrotoxicity, in silico, computational models, (Q)SAR, mechanisms 
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1.0 INTRODUCTION 

Acute renal failure in critically ill patients, as well as those with chronic kidney disease, was related 

to drug therapy in about 20% and 35% of cases reported respectively [1–3]. As a result of such 

toxicity, six prescription drugs (beta-ethoxy-lacetanilanide, bucetin, phenacetin, suprofen, 

thiobutabarbitone and zomepirac) were withdrawn from the market between 1983 and 1993, at 

great cost, due to renal adverse events, solely or in combination with other adverse effects [4]. 

Therefore, eliminating drug candidates which cause these adverse effects at early stages of drug 

design is extremely important to ensure patient safety. However, despite its importance for drug 

development and for many other industrial sectors, nephrotoxicity is a complex endpoint and often 

occurs gradually or as a complication related to other pathologies such as diabetes [5] and 

hypertension [6], thus making it difficult to identify even with sophisticated toxicity testing or clinical 

trials.  

 

Established approaches to identify kidney toxicants have traditionally relied on extensive animal 

testing. However, the “Toxicity Testing in the 21st Century” paradigm calls for use of alternative 

testing strategies [7]. Computational approaches such as (quantitative) structure-activity 

relationships ((Q)SARs)1 and structural alerts (SAs) are currently used to predict a variety of organ 

toxicities e.g. for hepatic toxicity [8]. In recent years, much emphasis has been placed on 

understanding the underlying mechanisms of liver toxicity which have led to the development of 

several Adverse Outcome Pathways (AOPs), many SAs and QSARs [8–10]. The relative successes with 

the development of alternatives for identifying liver toxicants has demonstrated that success can be 

achieved and it is possible to address other organ level toxicity in a similar manner. Thus, there is a 

growing movement to other important organs in the body in order to reach the ultimate goal of 

mapping the toxicological pathways of pharmaceuticals, cosmetics and other chemicals within 

humans [11].  

 

The kidney is a major target for toxicity elicited by pharmaceuticals and environmental pollutants. 

Approximately 20% of acquired acute kidney injury (AKI) cases are associated with the use of drugs 

[12]. Being burdened with multiple comorbidities, the average patient tends to take several 

medications which may cause kidney injury [13]. Environmental chemicals including certain heavy 

metals, trichloroethylene, and bromobenzene have been known to cause nephrotoxic effects [14]. 

One of the reasons for the kidney being a key target of toxicity may be related to the kinetics of 

                                                            
1In this paper, (Q)SAR will be mentioned if both SAR and QSAR are referred to while SAR and QSAR are stated 
to refer to either approach specifically. 
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many xenobiotic substances. High exposures are reached because of a high blood flow in the kidneys 

and extensive reabsorption, predominantly in the proximal tubule.  

 

Considering that renal toxicity is a major drug safety issue, standard testing which often does not 

investigate underlying mechanisms has proven not to be an adequate assessment approach. As 

such, this is an opportunity for the application of computational approaches that utilise the AOP 

paradigm coupled with an understanding of the chemistry underpinning the MIE [10,15] to provide a 

deep understanding of how structural fragments of molecules relate to specific mechanisms of 

nephrotoxicity. In addition in silico approaches using multi-scale data have been demonstrated to 

provide valuable insight into hepatotoxicity pathways and the assessment of inter-individual 

variability [16,17]. Multi-scale models incorporate data which span various biological scales, i.e. 

population, individual whole body, tissue and multi-cellular, and sub-cellular metabolic and signalling 

pathways [18]. As multi-scale modelling answered some of the pressing questions regarding adverse 

events in the liver, it is likely to hold the same potential for kidney and bladder related toxicity.  

 

The aim of this investigation was to review the current scientific landscape related to computational 

methods for the assessment of pharmaceuticals and other chemicals with regard to their potential 

to elicit nephrotoxicity and to provide a future perspective for this field of research. Here, the term 

‘’nephrotoxicity’’ includes both kidney toxicity and bladder disorders. To achieve the aim, the 

current data relating to this endpoint, which are accessible in publicly available knowledge bases and 

could aid the development of computational methods for this toxicity endpoint, were also reviewed. 

In addition, current in silico models (SAs, QSARS, mechanistic models) related to nephrotoxicity were 

examined and existing knowledge of relevant toxic mechanisms assessed in order to understand to 

which extent these have already been covered by existing approaches, including AOPs. Clinical 

manifestations of renal disease including oedema, uraemia, hyperphosphatemia, hyperkalaemia, 

hypocalcaemia, acidosis, hyperparathyroidism, and anaemia [19] go beyond the scope of this study 

and, therefore, were not considered. As uses of in silico toxicology approaches are ever increasing, 

this investigation also attempted to assess to what extent future models may inform hazard 

assessments and drug design, and what is needed to drive this field forward.  

 

2.0 MECHANISMS OF KIDNEY AND BLADDER TOXICITY 
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In order to understand the highly specific adverse effects that may take place in the kidney and 

associated organs, it is essential to appreciate its function and physiology. The key function of the 

kidney is to eliminate endogenous waste products, control and maintain volume levels, endocrine 

function, electrolyte content and acid-base balance [20,21]. As major site of elimination of drugs and 

other chemical compounds, the kidney is a common target for toxicity. Since the kidney is highly 

vascularised, receiving about 25% of the resting cardiac output, it is exposed to exogenous 

compounds in large quantities through systemic circulation [20,22]. The functional units of the 

kidney are nephrons - each kidney contains around one million nephrons, which consist of the 

glomerulus – a ball of capillaries –, Bowman’s capsule, and the tubular element (proximal tubule, 

Loop of Henle, distal tubule and collecting duct). When a substance reaches the glomerulus through 

the afferent arteriole it is likely to be filtered into the proximal tubules where the vast majority is 

reabsorbed back into the blood [23]. Compound accumulation and “local” toxic metabolite 

formation may occur, making the kidney vulnerable to toxicity via various and simultaneously 

occurring mechanisms [12,20,22]. 

 

As a result of the physiology, there are four main mechanisms of drug-induced renal toxicity which 

are most commonly manifested as acute kidney injury, namely haemodynamic alteration, (proximal 

and distal) tubular cell toxicity, (tubular, interstitial, tubulo-interstitial and glomerular) nephritis and 

tubular obstruction [24,25]. Comparatively little is known about bladder toxicity as a whole and less 

about its underlying mechanisms. However, an understanding of mechanisms, such as it is, will assist 

in the development of in silico models as well as the organisation of the associated data. Figure 1 

shows the sites of the main mechanisms of chemical-induced kidney toxicity. 

 

A consideration of mechanistic toxicology also provides the opportunity to link to relevant Adverse 

Outcome Pathways (AOPs). The AOP framework facilitates the organisation of mechanistic 

knowledge and grants validity and robustness to data included in the OECD-sponsored AOP 

Knowledge Base (AOP-KB), [26, http://aopkb.org]. Mechanistic data gathered and organised in the 

form of AOPs serve as a robust basis for the development of computational toxicology models 

[10,27]. If an MIE and/or Key Events (KEs) have been defined and respective data are available, a 

prediction approach to estimate a substance’s potential to elicit one of more of these may be 

achieved using the knowledge in the AOP-KB and the public literature. Table 1 provides a starting 

point for in silico analyses based around the MIE in particular. The individual endpoints and apical 

effects are described in more detail in the remainder of Section 2. Additionally, AOPs may aid the 

grouping of chemicals for read-across [10]. Only a handful of kidney and bladder related AOPs have 

http://aopkb.org/
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been developed and proposed so far which implies that only a small amount of MIEs and KEs have 

been defined. Table 1 provides an overview of relevant AOPs that exist at the time of manuscript 

preparation, as sourced from the AOP Wiki [28, https://aopwiki.org], which is one key resource.  

 

https://aopwiki.org/
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Figure 1: Sites and mechanisms of chemical-induced renal toxicity and respective substances 

potentially causing an effect at each [adapted from 25].  
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Table 1: Mechanisms of kidney toxicity, related (groups of) substances, and established and proposed MIEs and AOPs directly or indirectly associated with 

kidney toxicity   

Mechanism Overview MIE AOP Compounds Biomarkers 

Haemodynamic 

alteration 

 

 

Impaired 

autoregulatory 

capacity of the renal 

vasculature to 

vasodilate or 

vasoconstrict 

leading to a reduced 

GFR 

 

 

 

 

 

 

 

 

COX-1 and/or COX-2 inhibition leading to reduced 

prostaglandin synthesis and uncontrolled renal 

vasoconstriction (aspirin, other NSAIDs, calcineurin 

inhibitors) [29,30] 

AOP proposed by Lhasa Ltd. [29] 

ACE inhibitors, ARBs, 

NSAIDs (e.g. aspirin), 

amphotericin B, tacrolimus, 

radiocontrast agents, 

calcineurin inhibitors 

(cyclosporine, tacrolimus) 

[12,25] 

IL-18I), lipocalin 2 

(LCN-2 aka NGAL)II) 

[31] 

Prevention of formation of angiotensin II (ACE 

inhibitors) [32] 
No AOP found 

Blockage of angiotensin II type 1 (AT1) receptors 

(ARBs) [33] 
No AOP found 

Increase endothelin and thromboxane and activation 

of the renin-angiotensin system (RAS) 

(vasoconstriction), and reduction prostacyclin, 

prostaglandin E2 and nitric oxide (NO) (vasodilation) 

(calcineurin inhibitors) [30] 

No AOP found 

Changing vascular smooth muscle cell permeability, 

cell depolarization with resultant opening of voltage-

dependent calcium channels and muscle cell 

contraction (potential mechanism for amphotericin B) 

[34,35] 

No AOP found 

 

 

 

 

 

 

 

 

 

 

Metabolisation by oxidase in hepatocyte to 

benzoquinoneimine, followed by formation of GSH S-

conjugates (4-aminophenol) [36] 

OECD ENV/JM/MONO(2011)8: 

Nephrotoxicity induced by 4-

aminophenols [36] 

 

 

 

 

 

 
 
 
 
 
 
clusterinIII) , β2-

Mitochondrial toxicity pathways:  

a) Mitochondrial DNA incorporation (stavudine, 

AOP proposed by Lhasa Ltd. 

(stavudine, cidofovir) [37] 
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Proximal and 

distal tubular 

cell toxicity 

Extensive cellular 

uptake and intra-

cellular 

accumulation 

inducing 

compromised 

mitochondrial 

respiration, 

oxidative stress, and 

the activation of 

intrinsic apoptotic 

and necrotic 

pathways 

cidofovir) [37] 

b) Mitochondrial DNA polymerase gamma inhibition 

(stavudine, cidofovir) [37] 

c) Depletion of SH-groups leading to ROS induction 

(cisplatin) [44] 

 

aminoglycoside antibiotics, 

amphotericin B, 4-

aminophenols, cisplatin, 

nucleotide and nucleoside 

antivirals (stavudine, 

cidofovir) [25,36,37] 

microglobulinIV) , 

cystatin CV) , heme 

oxygenase-1VI) , IL-

18I) , lipocalin 2 

(LCN-2 aka NGAL)II) , 

KIM-1VII) , miR-34aIX) 

[31,38–43] 

Accumulation-induced lysosomal effects:  

a) accumulation induced lysosomal leakage leading to 

tubular dysfunction (aminoglycosides) [45] 

b) fusion of compound-containing pinocytic vacuoles 

and lysosomes causing osmotic nephrosis (contrast 

agents) [46] 

No AOP found 

After moving through cellular membrane, 

polyunsaturated region participates in auto-oxidation, 

lipid peroxidation and cell membrane damage; forming 

pores (amphotericin B) [34,35] 

No AOP found 

 

 

 

 

 

Tubular, 

interstitial, 

tubulo-

interstitial and 

glomerular 

nephritis  

 

 

 

 

Inflammatory 

changes in the 

glomerulus, 

interstitial and 

tubular cells 

predominantly 

caused by immune 

Interaction with hOAT1 and 3, accumulation within 

proximal tubule cells, followed by 

uncoupling/inhibition of mitochondrial oxidative 

phosphorylation and tubular/papillary necrosis 

(aspirin)* [29] 

AOP proposed by Lhasa Ltd. [29] 

NSAIDs (indomethacin, 

phenylbutazone, 

mefenamic acid, aspirin); 

antibiotics (cephalosporins, 

ciprofloxacin, ethambutol, 

isoniazid, macrolides, 

penicillins, rifampicin, 

tetracycline); loop 

(furosemide), potassium-

sparing (triamterene) and 

thiazide diuretics; proton 

 

 

 

 

 

 

 

 

 

IL-18I); lipocalin 2 

(LCN-2 aka NGAL)II); 

Production of inflammatory response triggering TNF-α 

(cisplatin) [44,53] 
No AOP found 

Formation of immune complex deposits (methicillin, 

rifampin, allopurinol, phenytoin) [47] 
No AOP found 

Formation of drug-protein hapten conjugates in renal 

tissue which elicit an immunogenic response 
No AOP found 
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mechanisms 

resulting in fibrosis 

and renal scarring  

(sulfamethoxazole metabolite = 

nitrososulfamethoxazole, methicillin) [47] 

pump inhibitors 

(omeprazole); allopurinol, 

lithium, aristolochic acid, 

phenytoin, propylthiouracil, 

ranitidine [12,25,29,47–49] 

osteopontinVIII) 

[42,50–52] 

(Event 244 (AOP 38):Protein alkylation)** [28] 
(AOP 38: Protein alkylation 

leading to liver fibrosis)** [28] 

Tubular 

obstruction 

Crystal precipitation 

within the renal 

tubule depending 

on urinary pH and 

favoured by high 

concentrations in 

the urine 

OAT interaction causing secretion via proximal tubule 

cells, accumulation and crystal formation in urine 

leading to concentration in renal tissue/tubule and 

obstructive nephropathy (acyclovir) [37] 

AOP proposed by Lhasa Ltd. [37] 

antibiotics (e.g. ampicillin, 

ciprofloxacin, vancomycin 

and sulphonamides), 

antivirals (e.g. indinavir and 

acyclovir), methotrexate 

[12,37,54] 

ClusterinIII), lipocalin 

2 (LCN-2 aka 

NGAL)II), IL-18I), 

KIM-1VII) [52,55] 
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* Interstitial nephritis is not the adverse outcome of these AOPs. However, as NSAIDs have been associated with this mechanism of nephrotoxicity, and KEs, e.g. ROS production and necrosis, 

are part of this pathway, these AOPs were allocated here. 

** This AOP is not directly related to nephrotoxicity but may be relevant for these pathways. 

I) IL-18: inflammatory response, activating NFκB in response to ischemia-reperfusion injury of renal tubules (e.g. after contrast agent exposure) 

II) LCN-2, NGAL: maximally expressed in kidney after early ischemic injury, in response to contrast agents; important mediator of innate immune responses 

III) Clusterin: associated with membrane recycling, cell repair, ischemic injury in proximal and distal tubule 

IV) β2-microglobulin: early marker of tubular injury 

V) Cystatin C: related to ischemic injury in proximal tubule 

VI) Heme oxygenase-1: changes in response to ischemic and cisplatin-induced injury 

VII) KIM-1: found in urine after proximal tubular cell injury 

VIII) Osteopontin: associated with accumulation of macrophages, expressed in the distal convoluted tubules, the thick ascending limbs of the loop of Henle  and the proximal tubule 

IX) miR-34: was upregulated following cisplatin induced acute kidney injury, may play a cytoprotective role for cell survival 

Abbreviations:  

ACE (angiotensin-converting enzyme) inhibitors; ARBs (angiotensin receptor blockers);  
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2.1 Haemodynamic alteration 

The kidney auto-regulates the pressure within the glomerulus by adjusting the afferent and efferent 

arterial tone to maintain the glomerular filtration rate (GFR) and urine output [12]. GFR is one of the 

key parameters to assess intraglomerular haemodynamics as it estimates the volume of blood 

filtered through the glomeruli per minute [19]. The GFR value considered normal in a healthy adult – 

standardised for a body surface area of 1.73m2 – is around 100-120 mL per minute [19,56].  

 

Patients with normal renal function who are being treated for hypertension generally do not 

encounter an increase in serum creatinine levels [33]. However, patients with chronic renal 

insufficiency and hypertension do when using antihypertensive drugs. A combination of factors 

related to chronic hypertension, such as structural and functional changes in small vessels of the 

kidney, contribute to a decrease in autoregulatory capacity of the renal vasculature leading to a 

reduced GFR and an increase in serum creatinine concentrations [33].  

 

An excessive lowering of blood pressure through the use of medication may cause a decrease in 

intraglomerular pressure which may be exacerbated by a decline of efferent arteriole resistance due 

to vasodilation and/or afferent vasoconstriction [33,57]. The use of angiotensin-converting-enzyme 

(ACE) inhibitors and angiotensin receptor blockers (ARBs) is associated with such effects, in 

particular with reducing efferent arteriolar tone. However, in patients with chronic kidney disease 

hypertension is common and a risk factor for the progression of renal damage [58]. Both, ACE 

inhibitors and ARBs are prescribed for their renoprotective effects in anti-hypertensive therapy, in 

combination to treat heart failure and CKD with proteinuria [59–62] even though this practice has 

been debated particularly for CKD patients aged 65 and older [63,64]. Also, careful dose titration is 

judged essential for ACE inhibitors [65] which indicates a narrow therapeutic index. ACE inhibitors 

prevent the formation of angiotensin II, a potent vasoconstrictor, which acts on vascular smooth 

muscle cells, with salt- and fluid-retentive properties [32].  

 

Intravascular volume depletion may induce adverse effects of ACE inhibitors on the kidney [33]. 

ARBs also target the angiotensin II pathway by blocking angiotensin II type 1 (AT1) receptors while 

not acting on angiotensin II type 2 (AT2) receptors which are stimulated to a higher extent as a result 

of higher circulating angiotensin II concentrations [33]. AT1 receptors are primarily on efferent 

vessels increasing vasoconstriction if activated while AT2 receptors are predominantly found on 

afferent vessels [33,66–68]. AT2 receptor binding has been associated with antagonised renal 

vasoconstrictor response and natriuresis [69,70]. 
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Even though ACE inhibitors and ARBs are considered renoprotective administered on their own and 

to counteract hypertension, they may aggravate nephrotoxic effects in combination with other drugs 

such as non-steroidal anti-inflammatory drugs (NSAIDs) and diuretics [71]. NSAIDs are known to 

cause alterations to intraglomerular haemodynamics by inhibiting either one or both isoenzymes of 

cyclooxygenase (COX-1 and COX-2) and, as a result, suppressing prostaglandin synthesis [24]. 

Prostaglandins mediate arteriolar vasodilation [72]. In certain conditions of decreased renal 

perfusion, e.g. cirrhosis and congestive heart failure, or volume depletion, renal function is 

increasingly dependent on prostaglandins [72,73]. In these instances, (selective and non-selective) 

NSAIDs used at high doses are associated with an increased risk of acute kidney failure [24]. An AOP 

was proposed describing this pathway [29]. 

 

A number of drugs induce renal dysfunction via more than one pathway. In the case of amphotericin 

B both haemodynamic and tubular adverse effects have been observed. The compound causes 

vasoconstriction of the renal arteriae, a subsequent decrease in renal blood flow and GFR, and 

polyuria [74]. On a cellular level, amphotericin B causes modifications in cell membrane integrity and 

increased influx of Ca2+ into the cytoplasm via newly formed pores [74–76]. These may lead to 

tubular cell toxicity as further described below.  

 

2.2 Proximal and distal tubular cell toxicity  

Renal tubular cells, especially proximal tubule cells, are vulnerable to the toxic effects of drugs. This 

is because their apical and basolateral transport systems facilitate extensive cellular uptake in their 

function of re-absorbing glomerular filtrate [20,23]. Thereby, proximal tubular cells are exposed to a 

high amount of circulating endogenous and exogenous compounds, including potential 

nephrotoxicants [12,20,23].  

 

Tubular cell toxicity may be elicited via different pathways which are induced by therapeutic agents 

such as aminoglycoside antibiotics, cisplatin and amphotericin B [12,25]. For instance, 

aminoglycosides are cationically charged and therefore attracted to the anionic phospholipid-rich 

brush border located at the proximal tubular apical membrane [76]. Accumulation of the 

aminoglycosides in tubular cells leads to the disruption of endosomal and lysosomal membrane and 

activation of intrinsic apoptotic pathway [45,75,77]. This includes impaired mitochondrial respiration 

and induction of oxidative stress through increased free radical levels within the cell. The kidney is 

particularly vulnerable to reactive oxygen species (ROS) damage [78]. Several nephrotoxic 
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compounds, e.g. cisplatin, immunosuppressant drugs, NSAIDS and aminoglycosides, exert their toxic 

effects due to excess ROS production, and depletion of the antioxidant defence mechanism [78]. 

 

Oxidative injury, inflammation, apoptosis, acute tubular necrosis as well as vasoconstriction have 

been associated with aminoglycosides as well as exposure to cisplatin [53,75]. The extent of 

exposure is suggested to determine whether apoptotic or necrotic cell death is induced. High 

concentrations of cisplatin in the millimolar range were reported to result in necrosis while 

concentrations in the micromolar range provoked apoptosis – via the intrinsic mitochondrial, 

extrinsic death receptor and ER-stress pathways [53].  

 

Experimental data suggested the intrinsic mitochondrial pathway to be the major pathway of 

cisplatin-induced apoptosis, likely to be induced by sulfhydryl group and mitochondrial glutathione 

(GSH) depletion [44]. Basolateral uptake by the organic cation transporter OCT2 has been 

demonstrated to be critical for cisplatin’s toxic response to be elicited in the kidney [53]. Also, 

different segments of the nephron demonstrate diverse sensitivities to cisplatin which did not 

appear to be due to differences in uptake characteristics but intracellular effects [79]. S1 cells 

derived from the early portion of the proximal tubule expressed a considerably lower amount of the 

anti-apoptotic protein BCL-XL than S3 cells derived from the late portion of the proximal tubule and 

distal convoluted tubular cells [79].  

 

The mitochondria of proximal tubular cells also appear to be key targets of nucleotide and 

nucleoside antiviral drugs stavudine and cidofovir [37]. Mitochondrial toxicity induced via 

mitochondrial DNA incorporation or mitochondrial DNA polymerase gamma inhibition may lead to 

tubular cell necrosis and acute renal failure [37]. 

 

Amphotericin B is also commonly associated with acute tubular necrosis which may be secondary to 

changes in haemodynamics and cell membrane permeability as described above, and resulting renal 

tubular acidosis and hypokalemia [74,75,80]. Unlike aminoglycosides and cisplatin, amphotericin B 

appears to elicit cellular toxicity predominantly in distal tubular regions as opposed to the proximal 

tubules [24,25,53].  

 

Another pathway leading to renal tubular necrosis is documented in an AOP related to 4-

aminophenol exposure whereby 4-aminophenol cysteine S-conjugates reach and get concentrated in 
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proximal tubules [36]. There, cysteine S-conjugates are metabolized to benzoquinoneimines which 

cause oxidative stress and necrotic tubular cell death [36]. 

 

2.3 Tubular, interstitial, tubulo-interstitial and glomerular nephritis  

Certain drugs, e.g. NSAIDs, antibiotics, loop and thiazide diuretics and proton pump inhibitors, 

induce kidney injury by producing inflammatory changes in the glomerulus, tubular cells and the 

interstitium, which can lead to fibrosis and renal scarring [12]. Many nephrologists consider these 

endpoints separately from each other due to differences in mechanisms leading to them. However, 

NSAID-induced nephritides may not be demarcated from each other but rather indicate a 

continuous spectrum of renal responses due to hypersensitivity against a drug influenced by the 

extent of drug exposure [81].  

 

Another study showed that in all forms of progressive glomerulonephritis, a major tubulo-interstitial 

infiltrate of immune-competent cells was present [82]. Moreover, the outcome of different forms of 

progressive glomerulonephritis was found to be determined by the presence and severity of tubulo-

interstitial changes rather than the degree of glomerular alteration [82]. For the purpose of this 

review, they will be discussed jointly.  

 

Drug-induced acute interstitial nephritis occurs as a result of dose-dependent renal tubular cell 

damage (including necrosis) or from an immune reaction directed against endogenous antigens in 

the kidney, and develops in an idiosyncratic, non-dose-dependent fashion [12,22,47,57,83]. In 

immune reaction induced cases, the usual symptoms of hypersensitivity, e.g. fever and rash, may be 

lacking [47,83]. An immunological response may be initiated through the deposition of a drug acting 

as a hapten or a circulating antibody-drug-based immune complex within the interstitium where it 

gets targeted by a, mostly cell-mediated, immune response [47,83]. As neutrophils and macrophages 

are attracted to the site, ROS and inflammation mediators are released leading to phagocytosis, 

tubular cell and glomerular injury [83,84]. Common drugs that induce acute interstitial nephritis 

include allopurinol, NSAIDs, antibiotics, loop and thiazide diuretics and proton pump inhibitors 

[12,22,25,75]. 

 

Chronic interstitial nephritis tends to be less drug-induced, however, has been reported with lithium, 

NSAIDs and aristolochic acid [12,20]. The main characteristics of this mechanism of nephrotoxicity 

are interstitial fibrosis and interstitial damage by far exceeding any glomerular effects, which may 
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include periglomerular fibrosis [22]. Also, tubular atrophy and an inflammatory infiltrate of 

lymphocytes, plasma cells and macrophages are observed [22].  

 

Glomerulonephritis has been reported to be induced by exposure to gold, interferon-α, 

cephalosporin, penicillin and pamidronate [12]. Its most common cause is IgA nephropathy, which is 

characterised by deposits of IgA-containing immune complexes in the kidney with proliferation of 

the glomerular mesangium [85]. Other forms of nephritis may be linked to autoimmune conditions, 

such as lupus nephritis. 

 

The AOP suggested for aspirin describes the pathway from the MIE of uncoupling/inhibiting 

mitochondrial oxidative phosphorylation to acute renal failure following acute tubular necrosis [29]. 

As adverse outcome or KE, interstitial nephritis is not included even though aspirin and other NSAIDs 

are recognised to induce this endpoint.  

 

2.4 Tubular obstruction 

Tubular obstruction may be caused through crystal deposition within the renal tubules. Certain 

drugs such as antibiotics (e.g. ampicillin, ciprofloxacin and sulphonamides), antivirals such as 

indinavir and acyclovir, light chain antibodies, methotrexate and polyethylene glycol produce 

insoluble crystals in the body [12,75,76,86]. These crystals may precipitate within the distal tubule, 

and obstruct urine flow. The likelihood of crystal precipitation depends on the amount of drug in the 

urine, the solubility of the drug and on the pH of the urine which is altered in conditions of renal 

tubular acidosis, metabolic acidosis or alkalosis [76,87]. With acidic urine (pH <5.5), crystal 

precipitation is increased for sulfonamides and methotrexate, and with alkaline urine (pH > 6.0), it 

increases for indinavir and ciprofloxacin [76].  

 

Renal hypoperfusion increases the chance of nephrotoxicity through this mechanism as renal 

tubules are exposed to high drug concentrations for longer than in a normally perfused kidney 

[20,87]. Low perfusion and a high intratubular drug concentration may lead to supersaturation 

within the distal tubules [88]. If the drug is administered at a high dose, mainly excreted via the 

kidney in its unchanged form and relatively insoluble in the urine, as in the case of acyclovir, crystal 

formation and intratubular precipitation is likely to occur [87].  

 

A recent report documented a new mode of cast formation induced by vancomycin [54] which had 

previously been associated with acute tubular necrosis and acute interstitial nephritis [12,48,89]. 



17 
 

These casts were described as atypical and non-crystalline consisting of vancomycin nanospheres 

entangled with uromodulin, an abundant protein in normal human urine, present in the tubular 

lumen and the Bowman's space suggesting tubular obstruction [54]. 

 

Little research appears to have been done to understand the formation of different shapes of 

crystals and their behaviour and pathomechanisms in different parts of the kidney [86]. 

 

2.5 Other mechanisms of nephrotoxicity  

Rhabdomyolysis and thrombotic microangiopathy have been discussed as additional mechanisms of 

nephrotoxicity elsewhere [12,57] but may also be regarded as systemic causes of nephrotoxicity. 

Rhabdomyolysis also causes tubular obstruction and refers to a syndrome where disintegration of 

striated muscle leads to release of muscular cell constituents, predominantly myoglobin and 

creatinine kinase, into the plasma [90,91]. Normally, myoglobin is loosely bound to plasma globulins 

and only small amounts reach urine. However, in rhabdomyolysis, large amounts of myoglobin are 

released; significantly more than can be bound by plasma globulins. Myoglobin is then filtered by 

glomeruli and reaches the tubules, leading to renal obstruction and renal dysfunction [90,91]. Drugs 

that cause rhabdomyolysis include certain statins, sedative hypnotics and antidepressants, alcohol 

and agents of abuse such as cocaine, heroin, ketamine, and methadone [90,91]. As nephrotoxicity is 

not primarily induced by these drugs this pathway is not considered as key mechanism. 

 

Thrombotic microangiopathy (TMA) is predominantly a vascular issue characterised by vessel wall 

thickening of arterioles or capillaries, and intraluminal platelet thrombosis, which leads to the 

obstruction of the vessel lumina. If these lesions prevail in the kidney, they are termed haemolytic 

uremic syndrome (HUS) and they are also, but less frequently, found in thrombotic 

thrombocytopenic purpura (TTP) which may be more associated with brain lesions [92,93]. Events 

leading to thrombotic microangiopathy are vascular injury - endothelial cells being the key target -, 

loss of endothelial thromboresistance, leukocyte adhesion to the damaged endothelium, 

complement consumption and enhanced vascular shear stress [92]. Drugs that cause nephrotoxicity 

through thrombotic microangiopathy include mitomycin C, clopidogrel, quinine, cyclosporine and 

tacrolimus [25,92,94,95]. The onset of general clinical manifestations such as microangiopathic 

haemolytic anaemia, and thrombocytopenia is often delayed [96]. TMA lesions have been reported 

in about 50 % of 128 patients diagnosed with IgA nephropathy [97], which is tightly linked to 

glomerulonephritis. 

  



18 
 

This, as well as a number of previously mentioned examples (e.g. tubular cell necrosis leading to 

interstitial nephritis in aspirin-induced nephrotoxicity) show very clearly that some of these 

mechanisms are interlinked as a number of substances elicit nephrotoxicity via more than one 

pathway. Mechanistic data describing molecular events initiating these toxicity pathways and effects 

further down the line are often lacking. Even fewer data are available which help to understand how 

these may be linked depending on dose and time. 

 

2.6 Site-Selective Nephrotoxic Injury  

Many drugs selectively cause nephrotoxicity through the above mechanisms on different segments 

of the nephron.   

 

2.6.1 Glomerular Injury  

The glomerulus is a primary site of chemical exposure and a number of drugs induce nephrotoxic 

effects there [74]. Glomerular ultrafiltration may be impaired by compounds acting on endothelial 

cells causing vasoconstriction of the renal arteriae (i.e. amphotericin B, gentamycin) or substances 

eliciting direct cytotoxic effect on glomerular epithelial cells (i.e. cyclosporine) [74]. By impairing 

GFR, the excretion of toxic metabolic waste is diminished. Glomerular injury may also result from 

circulating immune complexes getting trapped in the glomerulus and attracting neutrophils and 

macrophages which release ROS [74]. ROS greatly contribute to many glomerular diseases, including 

glomerulonephritis [98]. Heavy metals (e.g. HgCl2), volatile hydrocarbons and organic solvents cause 

glomerular injury via the above mechanism, and can also cause an increase in membrane 

permeability in the glomerulus. This will allow larger molecules e.g. albumin and γ-globulin, which 

are normally prevented from entry, to pass to the ultra-filtrate and be excreted along with the urine, 

thus causing proteinuria [74,84].  

 

 

2.6.2 Injury to Tubular Systems  

The most common site of drug-induced renal toxicity is the proximal tubule due to significant 

accumulation of chemicals in the tubule, contributed by the high reabsorption rates [74,84]. The 

proximal tubular cells have a leaky epithelium, which enhances the flux of compounds into proximal 

tubular cells, unlike the distant tubule characterised by a tight epithelium with high electrical 

resistance [74]. The proximal tubules are the critical, if not exclusive, site of transport for organic 

anions and cations, low-molecular-weight proteins and peptides, GSH conjugates, and heavy metals 

[74]. Drugs that preferentially affect the proximal tubules include aminoglycosides, β-lactams 
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(including cephalosporins), haloalkane-S-conjugates and α2μ-globulin bound chemicals i.e. cadmium, 

mercury and limonene [74,84,99]. For the cephalosporin antibiotic cephaloridine, the correlation 

between transport, accumulation, and nephrotoxicity is strong but this does not apply to other 

cephalosporins [74]. The intrinsic reactivity of the compound with molecular or subcellular targets 

within the proximal tubular cell is considered to be another decisive factor [74]. Chemical-induced 

injury is less common in the loop of Henle and the distal tubular system compared to the proximal 

tubules.  

 

2.6.3 Papillary Injury  

The renal papilla is also targeted for injury, mainly by excessive and abusive use of analgesics 

(analgesic nephropathy) [74,100]. This type of toxicity is characterised by renal papillary necrosis and 

chronic interstitial nephritis that leads to the onset of progressive kidney failure [100].  

 

2.7 Bladder Toxicity  

There is limited information on toxicity induced by compounds in the bladder. This could be because 

urine does not stay there for a long time. However, some carcinogenic compounds are known to 

target the bladder. One of the earliest examples of bladder cancer due to occupational exposure is 

2-napthylamine [74]. Other aromatic amines are also known to be carcinogenic to the bladder. 

Metabolism of these compounds in the kidney and bladder has been recognised to play a vital role in 

this toxicity pathway [74]. Similarly, a metabolite of both cytotoxic drugs cyclophosphamide  and 

ifosfamide, i.e. acrolein, is predominantly responsible for urothelial cell toxicity [101–104]. As stable 

urinary metabolite, acrolein reaches the bladder epithelial lining via the urine where toxicity is 

believed to be caused by ROS and nitric oxide (NO) production leading to lipid peroxidation, DNA 

damage and consequently necrotic cell death [103,104]. Other bladder related adverse events 

following drug exposure in humans include urolithiasis, blood in urine, and bladder disorders such as 

dysuria (i.e. painful urination), urinary incontinence, urinary retention  and polyuria [49]. However, 

these may be additional symptoms of systemic toxicity and not be adverse effects primarily 

observed in the bladder. 

 

Overall, each of these key mechanisms outlined above includes a number of sub-mechanisms which 

typically have not been defined conclusively on a molecular or level. An aspect which adds to the 

level of complexity already encountered when trying to establish models on these (sub-)mechanisms 

is the fact that some of these (sub-)mechanisms manifest jointly and therefore, appear to be 

interlinked, e.g. necrosis is part of the tubular cell toxicity mechanism but also appears to be present 
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in tubulo-interstitial nephritis. In Table 1, an AOP proposed by Lhasa Ltd. for the nephrotoxicity of 

NSAIDs is included, which denotes acute tubular necrosis and renal papillary necrosis as post-MIE 

KEs [29]. NSAIDs have been predominantly associated with interstitial nephritis and hemodynamic 

alteration [12,25] and not with tubular cell toxicity, which indicates that tubular necrosis is a pre-

stage of interstitial nephritis. 

 

In addition, the sensitivity and specificity of biomarkers, which have been used to a vast extent, e.g. 

serum creatinine and blood urea nitrogen, have been criticised over the last years [42,105,106]. In 

2008, the FDA designated seven biomarkers of nephrotoxicity for use in animals and, on a case-by-

case basis, in humans. These included urinary KIM-1, β2-microglobulin, cystatin C, clusterin, trefoil 

factor-3, albumin, and total protein. These markers and others (e.g., urinary NGAL, urinary IL-18, and 

the liver fatty acid binding protein (L-FABP)) have been studied in a range of conditions 

[31,39,42,106,107]. Certain biomarkers, which have been proposed, are specific to particular 

segments of the nephron but a signal in the proximal tubules may indicate various nephrotoxicity 

mechanisms. Knowledge is partly available suggesting that they may be attributed to a mechanism 

of toxicity [39,42,106] but a lot more research is needed to allow for a more refined mechanistic 

understanding.  

 

3.0 SOURCES OF DATA / INFORMATION ON KIDNEY TOXICITY SUITABLE FOR COMPUTATIONAL 

MODELLING 

Physiological, physico-chemical and toxicological data are the bedrock of the development of in silico 

models for toxicology. Some of the general issues related to data procurement for modelling 

purposes have been discussed elsewhere [108–113]. If the development of AOPs and multi-scale 

models is currently considered to be the panacea of 21st century toxicology, data spanning molecular 

to population levels are necessary to generate multi-scale models resembling the structure of AOPs. 

 

For the registration of many chemicals and pharmaceuticals, adverse effects to the kidney and 

bladder are currently assessed through traditional toxicological approaches, involving in vitro and in 

vivo animal studies [114]. However, a standardised test specifically designed to investigate a 

substance’s potential and mechanisms to elicit nephrotoxicity does not exist to date, as this would 

normally be assessed in repeat dose toxicity testing. In drug development, whilst safety 

pharmacology studies on the kidney are not part of the core required animal study battery, 

supplemental studies on the renal and urinary system may be performed if there is cause for 
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concern [115]. Furthermore, clinical studies of drug compounds in humans cover endpoints related 

to renal toxicity but their efficacy to assess this pathology adequately has been challenged by the 

high number of drug-induced acute renal failure cases in critically ill and chronic kidney disease 

patients.  

A list of over 250 potential nephrotoxicants has been compiled including, where available, 

information on a putative or confirmed MIE and AOP, using current knowledge from the literature 

[12,20,25,28–30,34–39,44–49,53,54,73,86,89,101–104,116–188]. This list can be accessed via the 

supplemental information and provides a comprehensive, publicly available compilation of 

nephrotoxicity data. For modelling purposes, this list needs to be enriched with chemistry-, activity- 

and toxicity-related data. There are over 400 databases available of which over 200 are publicly 

available geared towards chemistry, toxicology, Absorption, Distribution, Metabolism and Excretion 

(ADME) properties, as well as molecular biology (-omics) and pathways, which may be accessed for 

model generation. The following review of databases sheds some light on how well publicly available 

data may inform future nephrotoxicity modelling. This review is by no means complete but covers 

the most significant resources currently available for modelling. Searches were performed at 

timepoints recorded in the references’ section. 

 

In reviewing data sources, it must be remembered that several different types of data and data 

compilations are required and ideally these should be suitable for modelling. Traditional QSAR 

modelling requires datasets of consistent information for a group of compounds, this could include 

the presence or absence of nephrotoxicity or quantitative estimates of potency – providing the data 

have been measured in a consistent manner (i.e. the same test protocol). Read-across can be 

attempted on smaller data sets – even a one-to-one approach using a potentially wider variety of 

data – non-standard data from multiple and different sources can be used to build up a weight of 

evidence. However, physiologically based kinetic (PBK) and multiscale models focus on several 

parameters (clearance and absorption rates, volume of distribution, partition coefficient) for a single 

compound. Thus, there may be different uses of the data resources covered in this section.  

 

3.1 Chemical and biological data 

In order to relate adverse effects to structural components, properties such as solubility, receptor 

binding, or enzyme inhibition, data on chemical structures, physico-chemical and functional 

properties and potency are needed. 
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A reliable source of information on chemical structures is ChemIDplus Advanced [189, 

https://chem.nlm.nih.gov/chemidplus/]. A search in the toxicity field for “kidney, ureter, and 

bladder” effects revealed 139,289 records for 1,352 structures. However, for each record, it is not 

immediately obvious why a compound is associated with the above mentioned endpoint. 

ChemIDplus is based on more than 100 sources, including the Comparative Toxicogenomics 

Database (CTD), the Hazardous Substances Data Bank (HSDB®), the Integrated Risk Information 

System (IRIS), and the International Toxicity Estimates for Risk (ITER) [190,191] such that information 

– which is often replicated many times, may be drawn from any of these resources.  

 

Other reliable sources of chemical information include, but are not limited to, the following. 

Chemical structures and physico-chemical properties can be sourced per chemical and downloaded 

from the U.S. EPA Chemistry Dashboard [192, https://comptox.epa.gov/dashboard/]. Elsewhere, 

ChEMBL [193,194, https://www.ebi.ac.uk/chembl/] is a database of bioactive compounds which 

allows access to compound-specific ADME and bioactivity information (e.g. binding measurements, 

functional assay data) including specifics on the mechanism of action, and (non-)molecular targets. 

Pharmacological, biological and chemical data of pharmaceuticals and other substances can be 

found in DrugBank [195,196, https://www.drugbank.ca/]. ChEMBL and DrugBank data may be 

searched for jointly and in parallel to information from other databases through UniChem [197,198, 

https://www.ebi.ac.uk/unichem/]. Compound-specific physico-chemical properties may also be 

sourced from PubChem [199,200, https://pubchem.ncbi.nlm.nih.gov/]. The Online Chemical 

Modelling Environment [201,202, https://ochem.eu/home/show.do] offers pharmacological and 

physico-chemical data along with an interface for calculating and selecting a number of molecular 

descriptors.  

 

3.2 Molecular Biology (-Omics) Data 

High-throughput biology data including genomics, proteomics, transcriptomics and metabolomics in 

various tissues have been used to identify relevant molecular mechanisms, toxicity pathways, and 

biomarkers. A number of kidney tissue specific databases discussed below have been established to 

provide gene, peptide and protein expression data.  

 

The Renal Gene Expression Database (RGED) [203,204, http://rged.wall-eva.net/] and NephroseqTM 

[205, https://www.nephroseq.org/resource/login.html] are platforms providing free access to gene 

expression information in specific renal diseases. Within RGED, only searches by gene are possible 

https://chem.nlm.nih.gov/chemidplus/
https://comptox.epa.gov/dashboard/
https://www.ebi.ac.uk/chembl/
https://www.drugbank.ca/
https://www.ebi.ac.uk/unichem/
https://pubchem.ncbi.nlm.nih.gov/
https://ochem.eu/home/show.do
http://rged.wall-eva.net/
https://www.nephroseq.org/resource/login.html
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while on NephroseqTM a more refined analysis may be done on molecular characteristics of disease 

phenotypes, markers of disease progression and to a very limited extent treatment response.  

 

Data on protein expression in healthy and diseased kidney tissue and urine can be accessed through 

the Human Kidney & Urine Proteome Project (HKUPP) [206, http://www.hkupp.org/index.htm]. 

Search options for data established in the glomerulus, proximal and distal tubules and the collecting 

ducts from three samples of three kidney cancer patients (two males and one female, aged between 

71 and 77) are under construction at the time of this review.  

 

The Urinary Peptidomics and Peak-maps database (UPdb) [207,208, http://www.padb.org/updb/] 

gathers information on urinary peptides modified in disease. Of relevance to nephrotoxicity 

modelling are entries related to exposure to mixtures of arsenic and lead [sourced from 209], 

membranous glomerulonephritis [sourced from 210], IgA nephropathy [sourced from 211] and 

healthy volunteers as controls [various sources including 212,213]. 

 

Via the Kidney & Urinary Pathway Knowledge Base (KUPKB) [214,215, http://www.kupkb.org/#tab0], 

a collection of human and animal derived urine and kidney tissue based miRNA, mRNA, protein and 

metabolite expression data can be accessed. KUPKB can be searched for information related to 

specific locations, cells or fluids within the kidney and bladder or a specific condition or disease 

model. The extent of molecular expression is reported as ‘up’, ‘down’, ‘present’, ‘absent’, ‘medium’ 

and ‘strong’, which requires accessing the original data source if numerical measures are necessary 

for further analysis. 

 

Sources of genomics data with a clear focus on toxicity endpoints are the Comparative 

Toxicogenomics Database (CTD) [216,217, http://ctdbase.org/] and the ToxicoGenomics Project-

Genomics Assisted Toxicity Evaluation system (Open TG-GATEs) [218,219, 

http://toxico.nibiohn.go.jp/english/]. A search of the CTD for the keyword “kidney” in all sections 

shows matches with 3 chemicals, 291 genes, 68 gene ontologies, 51 diseases, but 0 pathways. The 

Open TG-GATEs may be browsed for chemicals or kidney pathologies, which may not be 

unambiguously assigned to one of the key toxicity mechanisms discussed in more detail below. 

 

3.3 In vitro 

In vitro data in this section include information from receptor binding and single cell assays up to the 

sophistication of 3D tissue cultures, bioreactors and organoids. The cheaper and more rapid the 

http://www.hkupp.org/index.htm
http://www.padb.org/updb/
http://www.kupkb.org/#tab0
http://ctdbase.org/
http://toxico.nibiohn.go.jp/english/
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assay, the greater is the likelihood of a proliferation of data for modelling. A major platform 

providing high-throughput in vitro screening data is the U.S. Environmental Protection Agency’s 

(EPA) ToxCastTM programme. On the ToxCastTM Dashboard website [220, 

https://actor.epa.gov/dashboard/], when the database was filtered for assays on the kidney, data 

for 70 assays are shown to be present (according to assay component endpoint names), 1 of which is 

based on rat kidney membranes, 2 on pig tissues, and 67 on human cell lines. These assays vary to a 

great extent, for instance in terms of their statistics (e.g. the total number of samples tested, and 

percent of active samples) or their biological process target (e.g. regulation of catalytic activity, 

receptor binding, or protein stabilisation). An overview of these assays can be found in Appendix A 

contained in the supplementary information. When assessing whether a substance is active in an 

assay, the effect concentrations need to be compared to the compound’s burst concentration which 

denotes a cytotoxic effect at that level [221]. The utility of in vitro ToxCastTM data has been widely 

debated [222–229], and a more detailed analysis is required to confirm to which extent these targets 

are related to currently known KEs of nephrotoxicity pathways. In addition to kidney tissue assays, 

the ToxCastTM database contains a broad variety of assays, which may be relevant to in silico models 

for nephrotoxicity, e.g. cytotoxicity or oxidative stress. Lin and Will [120] found that HepG2 

(hepatocellular carcinoma), H9c2 (embryonic myocardium), and NRK-52E (kidney proximal tubule) 

cells equally serve to screen for general, non-organ-specific cytotoxicity. Therefore, liver, heart or 

other tissue cells may be suitable for the prediction of nephrotoxicity endpoints. 

 

The Hazardous Substances Data Bank (HSDB®) [230, 

https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm] contains 393 records for the search term 

“nephrotoxic*” and 2865 records for “kidney”. When selecting “download records”, general, i.e. 

non-nephrotoxicity-specific, in vitro and in vivo animal toxicity, metabolism and pharmacokinetic 

data may be downloaded as txt file. Renal transporter expression levels, their localisation, substrates 

and inhibitors may be found on the UCSF-FDA TransPortal [231,232, 

http://transportal.compbio.ucsf.edu/]. In vitro models of particular interest due to their enhanced 

complexity and physiological relevance are spheroid and kidney slice assays. Whilst research with 

spheroids has been conducted to investigate kidney disease and treatment options [233–235], no or 

few relevant toxicological studies with kidney spheroids were identified. Conversely, toxicity and 

kinetic studies have been performed in animal and human kidney slices for years [236–239] but no 

database was identified, in which kidney slice data can specifically be searched for. 

 

  

https://actor.epa.gov/dashboard/
https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
http://transportal.compbio.ucsf.edu/
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3.4 In vivo  

In vivo data provide valuable insights into mechanistic pathways of kidney and bladder toxicants and 

the most meaningful are likely to be gained from long-term, repeated dose, low concentration tests. 

As with all endpoints, the relevance of inter-species differences must, however, be appreciated if 

there is an expectation to extrapolate animal data to humans. For instance, amongst many well 

known issues, rat data cannot be used to establish dose-response relationships of effects dependent 

on proximal tubular transporter activity as significant differences in transporter clearance between 

humans and rats exist [56,240]. 

 

From the U.S. EPA’s Toxicity Reference Database (ToxRefDB), lowest effect levels (LELs) can be 

retrieved on 30 kidney related toxicity endpoints and 13 urinary bladder related toxicity endpoints 

[126]. Appendix B contained in the supplementary information lists all these endpoints. However, 

only 12 compounds were identified with the lowest LEL associated with urinary or kidney endpoints. 

Other compounds, for which urinary or kidney related LELs were recorded, had LELs associated with 

other toxicity endpoints lower than those associated with nephrotoxicity. 

 

As mentioned above, in vitro and in vivo animal toxicity, metabolism and pharmacokinetic data may 

be downloaded in txt file format from the Hazardous Substances Data Bank (HSDB®). In addition, the 

COSMOS DB [241,242, http://www.cosmostox.eu/what/COSMOSdb/] contains in vivo toxicity data 

including highest no effect level (HNEL) and lowest effect level (LEL) information. When performing a 

database search with a toxicity query for the endpoint “chronic toxicity” and the site “kidney” for all 

species/strains, routes of exposure, effects, assays and both sexes, 68 hits, i.e. compounds inducing 

nephrotoxic effects in animals, are presented. For the vast majority of these substances, i.e. 53, one 

study was recorded; for 13 compounds, 2 studies were recorded and for two substances 4 and 5 

studies were presented. A toxicity query for the endpoints “special toxicology study” and 

“subchronic toxicity” and the site “kidney”, resulted in 202 hits with mostly 1 and up to 11 studies 

recorded. More specific sites can be queried for, e.g. “kidney > renal tubule > epithelial” or “kidney > 

interstitial cells” which facilitates the search for mechanism-specific toxicity information. 

 

Fraunhofer ITEM created a commercially accessible database on high-quality subacute to chronic 

toxicity studies called RepDose [243]. A subset of approximately 200 subacute studies is made 

available for free on http://fraunhofer-repdose.de/ [244]. The database query for “kidney” as 

organ/target parameter found 113 entries. However, these data were not displayed and query 

conditions needed to be restricted in order for results to be displayed. After specifying the effect 

http://www.cosmostox.eu/what/COSMOSdb/
http://fraunhofer-repdose.de/
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“nephropathy”, 8 entries were found and displayed, i.e. the CAS numbers and names of 8 

substances. 9 entries were identified for “kidney” and “necrosis”. These results indicate that 

RepDose may be used to identify potential nephrotoxicants but does not provide in vivo data for 

further analysis. 

 

A Urinary Protein Biomarker (UPB) database in Chinese language may be accessed via 

http://bmicc.cn/web/share/search/hupd [245]. 

 

3.5 Human data - clinical and post-marketing  

For known nephrotoxicants, clinical and post-marketing data as well as case reports in the public 

domain give insight into toxic effects observed in humans at a given dose. Most valuable are clinical 

data as doses and effects are clearly recorded. With the use of more refined biomarkers, more 

information will be gained from these studies in the future.  

 

From the Hazardous Substances Data Bank (HSDB®), epidemiological data and case reports can be 

retrieved in the form of a txt file. However, data gathered from post-marketing reports often do not 

include (reliable) information on the dose taken by the patient. If dosing information is available – as 

in the case of clinical studies –, it may be challenging to compare dose-response data of 

investigations which adhered to differing classifications as different definitions and criteria to classify 

the severity of certain nephropathy outcomes exist [24]. 

 

The U.S. National Library of Medicine provides clinical trial data on ClinicalTrials.gov [246, 

https://clinicaltrials.gov/]. Queries can be performed for substances, however, not for adverse 

events. Dosing information and adverse events are published for completed studies but these data 

do not appear in the downloadable record. 

 

The U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), formerly 

AERS, can be accessed via http://www.fdable.com/basic_query/aers [247] and was searched for 

kidney related specific event descriptions such as kidney fibrosis or focal glomerulonephritis, or renal 

failure in general. Among the information given are the primary suspect drug, patient outcome, age 

and gender of the patient. Adverse event data existing in FAERS may have been submitted to the 

FDA by drug and therapeutic biological product manufacturers, healthcare professionals or 

consumers. When using these data, their limitations need to be taken into account, i.e. no proof of a 

causal relationship between exposure to a drug and adverse event, duplicate reports and inherent 

http://bmicc.cn/web/share/search/hupd
https://clinicaltrials.gov/
http://www.fdable.com/basic_query/aers
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incompleteness of the database [248]. Ursem et al. [49] grouped adverse effects reported to FDA’s 

previously established Spontaneous Reporting System (SRS) and the AERS into a renal disorder 

cluster, a nephropathies cluster, a kidney function tests cluster and a bladder disorder cluster and 

through a weight of evidence approach identified substances most likely to induce these cluster 

endpoints.   

 

When accessing EudraVigilance, the European database of suspected adverse drug reaction reports 

[249, http://www.adrreports.eu/], the number of individual cases of adverse events following the 

administration of a drug can be queried . Searches are performed for drug products or substances, 

and occurrences on “Renal and urinary disorders” per age group may be retrieved on the section 

“Number of Individual Cases by Reaction Groups”. Displayed graphs clearly show whether renal and 

urinary disorders are predominant adverse events for a particular drug but no information are 

immediately evident on comorbidities of the patient population and exact doses administered. 

 

3.6 Relevance of existing sources to in silico modelling 

Section 3 demonstrates considerable resources for in silico modelling of nephrotoxicity. However, no 

comprehensive database exists with multi-scale information that can be used for in silico 

nephrotoxicity model development. Databases focussing on kidney tissue data (predominantly in the 

omics field) are principally geared towards the diagnostics, understanding pathological pathways 

and treatment of kidney disease as opposed to chemical induced kidney toxicity. In order to 

establish reliable dose-response relationships, in vivo data are highly desirable. The AOP paradigm 

and means of organising information provides a possible structure to multi-scale models. Table 2 

summarises which type of data informs the various parts of an AOP-structured multi-scale in silico 

model. The use of (novel and existing) data sources to support in silico modelling is taken up in more 

detail in Section 5 (Expert Opinion). 

 

Table 2: Data informing all stages of a multi-scale in silico model 

Level Mechanism Cellular Apical toxicity Human toxicity 

Examples of 

data and what 

they may be 

used for 

Molecular biology 

(-omics) data on 

MIEs or, if 

unavailable, other 

molecular 

mechanisms 

In vitro data on 

receptor binding, 

cellular toxicity, 

cellular uptake, 

enzymatic 

activity 

In vivo data on 

mechanistic 

pathways and 

their association 

with biomarkers 

Clinical trials / 

post-marketing 

data on human-

specific effects, 

dose-response-

relationships, 

http://www.adrreports.eu/
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sensitivity/ 

specificity of 

biomarkers 

Comparative 

databases 

RGED, 

NephroseqTM, 

HKUPP, UPdb, 

KUPKB, CTD 

ToxCastTM, 

HSDB®, UCSF-

FDA TransPortal 

ToxRefDB, 

COSMOS DB, 

RepDose, UPB 

HSDB®, 

ClinicalTrials.gov, 

FAERS, 

EudraVigilance 

 

 

 

4.0 (Q)SARs AND MATHEMATICAL MODELS TO SIMULATE KINETICS AND TOXICITY: CURRENT 

STATE-OF-THE-ART AND NEXT STEPS  

As noted above, as part of the hazard identification process it is important to be able to predict 

accurately human nephrotoxicity. The traditional approach for determining safety and toxicity of 

drug candidates is through histopathological observation from in vivo animal studies [42,250–252] 

or, more recently, from targeted in vitro testing. However, in recent decades, alternative methods 

for hazard assessment without the need for testing, such as in silico approaches, have been 

increasingly applied, particularly for the prioritisation of data requirements and identification of 

chemicals that may require more detailed risk assessment. Computational toxicology also allows for 

the possibility to link molecular pathways to cellular processes and a toxicity endpoint at the tissue 

level.  

 

In this review, two fundamentally different in silico toxicology methods are discussed, i.e. chemistry 

driven (Q)SARs and physiologically-based mathematical models. The former identify relationships 

between a structure of a molecule and its toxicity while the latter simulate the physiologically-based 

toxicokinetics of a compound which allows predictions of whether (and which) effects may be 

elicited. 

 

4.1 (Q)SAR models 

In silico methods include chemical structure driven SARs and physico-chemical property and 

molecular descriptor driven QSARs to predict and profile toxicities [253]. These provide a correlation 

between an effect, often a regulatory endpoint, and properties of a molecule. SARs are often 

developed into SAs which relate qualitatively a particular biological effect or toxicity endpoint to a 

specific fragment of a molecule [253,254]. SAs have been developed to aid identification of 
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chemicals that can bind to proteins [255,256] or induce mitochondrial toxicity [257]. These chemical-

biological interactions have been identified as potential mechanisms of eliciting renal (and other) 

toxicities. SAs associated with potential toxicity have been compiled and encoded into predictive 

software, for example ToxAlerts – a freely available screening tool available within the online 

chemical modelling environment (https://ochem.eu/home/show.do) and the alerts incorporated in 

DEREK Nexus (Lhasa Ltd, Leeds). For certain compounds, toxicity may be elicited via the formation of 

reactive metabolites, rather than inherent toxicity of the parent molecule. Claesson and Minidis 

[258] have collated and organised publicly available SAs that may be associated with reactive 

metabolite formation and idiosyncratic adverse drug reactions. QSARs provide a statistical 

relationship between the structure of a chemical, its physico-chemical properties and its effects 

[253]. QSAR models have demonstrated good predictive ability, especially for simple end points 

[250,259].  

 

The primary objective of (Q)SARs is to distinguish between toxicologically inactive or active 

compounds and, where possible, provide a quantitative estimate of potency or relative effect. 

Frequently, several mechanisms elicit the same toxicological endpoint. Thus, predictive models must 

be able to distinguish all fragments corresponding to all relevant mechanisms from inactive 

fragments. Two main types of commercial systems have been developed: knowledge-based systems 

(e.g, DEREK Nexus and OncoLogic) and statistically-based systems (e.g. TOPKAT and MultiCASE) [260] 

although there is a trend for hybrid systems which may link a quantitative estimate to an SA e.g. 

ChemTunes [261, https://www.mn-am.com/products/chemtunes]. Knowledge-based systems use 

rules derived from human expert opinion and interpretation of toxicology data to define the 

relationship between a structure and its activity. These rules are utilised to predict potential toxicity 

of known and novel chemical compounds. Statistically-based systems use calculated parameters and 

statistical methods to derive mathematical relationships for a training set of compounds [260].  

 

(Q)SAR models developed so far for nephrotoxicity, specifically, are summarised in Table 3 with 

details on the exact endpoint, number and type of molecules the model is based on, the method 

used, results, as well as strengths and weaknesses of the approach below.  

https://ochem.eu/home/show.do
https://www.mn-am.com/products/chemtunes
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Table 3: Summary of (Q)SAR models associated with kidney and bladder toxicity 

Endpoint 
Number and type 

of molecules 
Method  Results: QSAR / SAR Strengths Weaknesses 

Model 

reference 

Rat nephrotoxicity 

16 derivatives or 

1,2- and 1,4-

naphthoquinones 

SA 

Whilst preliminary SAs were 

presented, no definitive SAs 

were defined 

Changes in the extent of 

nephrotoxicity due to structural 

alterations of 2-hydroxy-1,4-

naphthoquinone and 4-amino-1,2,-

naphthoquinone were determined  

No SAs identified; mechanism of 

toxicity was not determined, small 

applicability domain 

Munday 

et al. 

[262] 

Toxicity to the kidney 

and urinary tract based 

on repeat-dose toxicity 

study-derived NOAELs 

and LOAELs in rats 

503 chemicals 

SAs based on 

likelihood ratio 

and percentage 

of true positives 

6 SAs 

 

Mechanistic information available 

for some SAs based on literature 

Mode of action data is generally 

basic and not available for all SAs 

Pizzo et 

al. [263] 

Nephrotoxicity 

Confidential 

database 

amalgamated from 

multiple industries 

Knowledge-based 

expert system 

using SARs 

SAs 
SAs are in some cases associated 

with mechanistic information 

Certain substances, e.g. inorganic 

compounds, cannot be analysed 

Derek 

Nexus 

[264] 

"Nephrotoxicity" (NT) 

and subcategory 

endpoints "kidney 

necrosis" (KN), "kidney 

relative weight gain" 

(KWG) and "nephron 

injury" (NI) 

Training set:  

NT: 847; KN: 221; 

KWG: 240; NI: 598; 

Test set: 

NT: 154; KN: 42; 

KWG: 49; NI: 109 

QSAR models and 

toxicophores 

192 SAs for all kidney-

related endpoints 

QSAR models demonstrate good 

performance overall; QSARs and 

toxicophores were based on the 

same compound sets; 

comparatively broad applicability 

domain 

Endpoints "kidney weight gain", 

"nephron injury" and 

"nephrotoxicity" cannot be 

specifically attributed to a 

nephrotoxicity mechanism 

Myshkin 

et al. 

[265] 

Competency of rat liver 

MGST1 to catalyse 

9 haloalkenes; as 

no or low GSH 
QSAR model 

Linear relationship between 

ELUMO values between -1.14 

Findings may be valuable for 

understanding and predicting the 

Small applicability domain; linear 

relationship does not exist for 

Jolivette 

and 
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bioactivation of 

molecules to toxic 

metabolites 

transferase activity 

was detected for 4 

molecules, QSAR 

was investigated 

for 5 haloalkenes 

to -0.73 eV and the natural 

logarithms of activities for 

GSH conjugation reaction 

route of metabolism of 

haloalkenes and their associated 

toxicities; haloalkenes are widely 

used, so results may help to make 

chemical design amendments for 

many applications 

ELUMO values outside of -1.14 to -

0.73 eV range 

Anders 

[266] 

α2μ-globulin 

nephropathy in male rats  

Not specifically 

known, dataset 

includes 43 43 

aliphatic and 

alicyclic 

hydrocarbon 

structures 

Combination of 

two QSARs based 

on multiple 

regression 

analysis and 

principal 

component 

analysis 

Incorporating electro-

negativity properties, size 

and shape dependent fit of 

binding site: log IC50 = 4.525 

(-ve charge density) - 0.044 

(Mol Vol) = 2.545; r2 = 

0.836; cross-validated r2 = 

0.601 

To identify whether kidney lesions 

observed in in vivo studies in male 

rats may be caused by this 

pathway 

Mechanism specific to male rats, not 

relevant to humans; applicability 

domain was not discussed 

Barratt 

[99] 

Tubular necrosis, 

interstitial nephritis and 

tubulo-interstitial 

nephritis in humans 

Parent compounds 

(251 

nephrotoxicants 

and 387 non-

nephrotoxicants) 

and their urinary 

metabolites (307 

nephrotoxicants 

and 233 non-

nephrotoxicants) 

Binary 

classification 

QSAR models 

Eight substructure 

fragments common to both 

datasets for all of the above 

three nephrotoxicity 

mechanisms 

Metabolism-dependent toxicity; 

may help to understand to which 

extent and how the three 

mechanisms are interlinked; 

consideration of metabolites; 

based on human data  

Model could not be accessed; data 

on molecules were not published 

Lee et al. 

[252] 

"Nephropathies", "acute 

renal disorders", 

"bladder disorders", 

Not specifically 

known 
QSAR models 

Four QSAR programmes 

were used, i.e. MC4PC, 

BioEpisteme, MDL QSAR 

Based on human data and four 

QSAR programmes with different 

prediction programmes; high 

Non-uniform reporting of adverse 

events post marketing approval; 

patient population with multi-drug 

Matthews 

et al. 

[267] 
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"blood in urine", 

"urolithiases" and 

"kidney function tests" in 

humans 

and Leadscope Predictive 

Data Miner 

applicability domain among 

pharmaceuticals 

exposure and co-morbidities; certain 

drugs (inorganic chemicals, high 

molecular weight substances (>5000 

Da), organometallic chemicals, gases) 

and industrial chemicals not covered; 

while specificity was set at > 80 %, 

sensitivity was in some cases very 

low (< 20 %) 

Pathways associated 

with renal tubular 

degeneration based on 

rat kidney data 

88 chemicals, 

including 22 

molecules inducing 

renal tubular 

degeneration 

QSAR linking 

physico-chemical 

features to 

transcriptional 

activity 

Nephrotoxic substances are 

associated with high 

polarisability, low 

electronegativity, and low 

symmetry 

Multi-scale modelling linking 

chemical data to gene expression 

and a nephropathological outcome 

Focus on agents which directly  act 

on proximal tubular cells; 

applicability domain is unclear 

Antczak 

et al. 

[268] 

Renal adverse drug 

reactions 

507 drugs (126 

active, 208 

inactive, 173 of 

undetermined 

activity) 

QSAR based on 

decision tree 

inference analysis 

using CART and 

CHAID 

CART model highlights 

influence of amine 

functions, sulphur, and 

carboaromatic ring 

structures. For substances 

less toxic to the kidney, 

CHAID model found few 

aromatic atoms (<19), a 

basic pKa <10.71, van der 

Waals surface area <1,014.5 

Å2, and logP values >2.43 

Both models performed well, with 

CART and CHAID model CCRs of 

88.6 and 84.7%, respectively; 

based on human data 

Only valid for drug-like molecules, 

not necessarily suitable for other 

compounds 

Hammann 

et al. 

[269] 

 

Urinary tract toxicity 

(LD50 in kidney, ureter, 

258 organic 

compounds 

Classification and 

regression QSAR 

models based on 

SVMBoost based on the RBF 

kernel accomplishes the 

best quantitative and 

 

Reliable prediction is achieved by 

both regression and classification 

Adequacy of mouse intraperitoneal 

LD50 values as endpoint is unclear 

Lei et al. 

[270] 
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and bladder) in mice eight machine 

learning 

approaches 

qualitative predictions for 

the test set (MCC of 0.787, 

AUC of 0.893, sensitivity of 

89.6%, specificity of 94.1%, 

and global accuracy of 

90.8%) 

models based on the SVMBoost 

approach; all tested chemicals are 

within the application domain 

coverage 

Abbreviations: CART = classification and regression tree; CHAID = chi-squared automatic interaction detector; CCRs = corrected classification rates; LD50 = dose which is lethal to half of total 

treated animals
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More detailed information on these QSAR models are provided in Appendix C [87,99,252,262–276] 

of the supplementary information. It is also noted that QSAR models have been developed to predict 

renal clearance, which were examined in more detail elsewhere [56]. 

 

4.2 Mathematical (mechanism-based) models 

In contrast to (Q)SAR methods, mathematical mechanistic and physiologically-based models can be 

used to simulate the kinetics of a compound through the body and at the site of toxicity. As a vast 

number and quantity of substances are moving through the kidney, and considering the key 

principle of toxicology – the dose makes the poison (Paracelsus) – an understanding of a 

compound’s movement and its potential for accumulation at specific sections of the kidney are 

considered critical. In section 2, accumulation is described to play an important role in certain 

nephrotoxicity pathways. 

 

Some of the early mechanistic models to predict renal clearance include passive reabsorption and 

urine flow [277], which are supplemented by protein binding and glomerular filtration [278–281] 

and active secretion [282–285]. Subsequently, Felmlee et al. [286] develop a hybrid physiological, 

mechanistic toxicokinetic (TK) model to simulate the saturable renal reabsorption and capacity-

limited metabolic clearance of γ-hydroxybutyric acid (GHB) with two ultrafiltrate compartments 

representing the proximal and distal tubules, and active renal reabsorption from the first ultrafiltrate 

compartment only. Two (fast and slow) tissue distribution compartments best described plasma 

GHB concentration. As in earlier models, urine flow and the glomerular filtration rate (GFR) are 

included, while passive reabsorption, active secretion and protein binding are not incorporated, as 

they do not seem to play a vital role in the renal elimination of GHB.  

 

Felmlee et al. [287] extended their work by adding active tubular secretion to their investigations 

into active tubular reabsorption. The authors evaluate previously published compartmental and 

semi-physiologically based models pharmacokinetic (PK) models of active tubular reabsorption and 

secretion. By merging some of these approaches, they establish a universal mechanistic model 

predicting renal clearance of substances being subject to active secretion, active reabsorption or 

both of these processes, for a broad applicability domain. Metabolism and passive reabsorption are 

not considered in this study. 
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Independent of models to predict the kinetics of therapeutic or other chemical compounds, Layton 

[288] review mathematical models to describe physiological and pathophysiological processes of the 

kidney. These processes include the regulation of glomerular filtration and renal blood flow by the 

tubulo-glomerular feedback and myogenic mechanism, epithelial and renal oxygen transport, and 

the urine concentrating mechanism. A mechanistic understanding of intrarenal oxygen transport and 

consumption may be a valuable component to add to a toxicokinetics related kidney model as renal 

tissue hypoxia has been argued to drive kidney disease [289,290]. 

 

One of the most detailed mechanistic kidney models is Mech KiM which predicts renal elimination 

by accounting for glomerular filtration, active and passive reabsorption, active and passive secretion, 

renal metabolism, bypass of parts of the renal blood flow, transporter scaling factors and population 

variability [56]. The nephron is divided into eight segments representing the glomerulus, proximal 

and distal tubules, Loop of Henle and collecting ducts. Each segment encompasses three 

compartments, illustrating the blood space, tubular fluid and cellular mass. While applying the law of 

conservation of mass, ordinary differential equations describe the movement of a compound 

between compartments. Limitations of this model revolve around missing data, e.g. on proximal 

tubular cells per gram of kidney (PTCPGK) and absolute renal transporter abundances at different 

parts of the nephron.  

 

Overall, there are limited computational toxicity methods available for more complex endpoints 

such as nephrotoxicity – likely to be due to the highly complex mechanisms of toxicity [250,252,262] 

or limitations of the availability of structured, high quality data. Most models presented above focus 

only on very small groups of compounds, meaning that the applicability domain is limited to the 

specific groups of compounds used to develop the model. Some models, i.e. Lee et al. [252], 

Myshkin et al. [265], Matthews et al. [267] and DEREK, have been generated on the basis of larger 

datasets or commercial software which are not publicly available. Mechanistic models to compute 

the biokinetics of compounds have limitations due to missing data and are in part not publically 

available either. To date, there is no multi-scale nephrotoxicity model available which may be due to 

the lack of high quality data connecting molecular and cellular mechanisms to tissue and organ 

processes leading to an adverse individual outcome while understanding uncertainties related to 

inter-individual variability. In the following section, knowledge of the main mechanisms of 

nephrotoxicity as well as missing information vital to modelling purposes will be summarised. 
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5.0 EXPERT OPINION 

As a major organ of elimination and therefore subject to high exposure of compounds, the kidney 

has been recognised as a significant target for drug and chemical induced toxicity. This, and the lack 

of comprehensive test data for many chemicals in sectors other than pharma, clearly show that 

screening for, and assessment of, nephrotoxicity is an important area for improvement. In silico 

methods have been evolving steadily and have the potential to contribute immensely to the field of 

toxicology in general. Although several in silico models currently exist for other organ-level toxicities 

e.g. hepatotoxicity, this review has found that in silico models associated with nephrotoxicity are 

very limited, and even fewer differentiate between key mechanisms or incorporate mechanistic 

data. 

 

In order to improve and expedite the development of in silico models for kidney toxicity, at least 

three – highly interrelated - problems have to be overcome. These are: 

 

i) The identification and definition of effects to the kidney that may be brought about by 

chemical exposure. 

ii) A full description of relevant mechanisms of toxic action relevant to kidney toxicity. 

iii) Access to appropriate data ranging from in vivo through to molecular responses.  

 

The identification of effects to the kidney requires an ontology to be developed that will unify 

existing knowledge. This may grow out of networked AOPs although would benefit from a 

systematic evaluation of current knowledge and effects. Once an ontology has been developed it 

would be the ideal starting point for a framework to underpin data and models. With regard to the 

data from which to develop the models, no assay exists which is specifically targeted towards renal 

toxicity endpoints and interspecies variability between rats and humans is known to be relevant for 

certain pathways (i.e. certain transporter-driven and α2μ-globulin related nephrotoxicity). 

Therefore, the usefulness of in vivo data in the area needs to be assessed carefully. Human and in 

vitro assay data are widely available but need to be utilised with care due to challenges related to 

relevance for one of the discussed nephrotoxicity mechanisms, comparability of studies, pre-existing 

comorbidities in patient populations and other factors related to data interpretation. A strategic for 

utilising existing data at different levels of AOPs is shown in Table 2. Such an approach to organising 

information, as defined within an appropriate ontology, may prove to be an extremely effective, and 

not requiring full testing of every compound, solution to model development. In addition, as the lack 
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of readily available data is considered to be a key limiting factor when it comes to the generation of 

future computational models in this field, therefore the following recommendations may help to 

drive future modelling efforts forward: 

 

(i) Improved understanding of how novel, recently proposed, biomarkers relate to the mechanisms 

of nephrotoxicity, discussed earlier, and how they are related quantitatively to each other. This may 

result in alternative sources of data and could be facilitated by statistical approaches.  

(ii) A global review of the quality of currently available kidney toxicity data is needed as well as an 

assessment of how these data relate to each other (e.g. cellular vs. tissue vs. organ-level effects). 

Information would be leveraged more readily if databases allowed for searches on both compounds 

and mechanistic data (including dosing information) enabling discrimination between the various 

nephrotoxicity endpoints.  

(iii) Generation of more AOPs for nephrotoxicity with MIE and KE related data being searchable in a 

central database linked to respective mechanistic toxicological data would also assist the 

development of more computational models.  

 

The linkages between in silico models have been defined clearly, with data related to the MIE being 

able to contribute to the development of a model [10]. While a binary interpretation of an MIE may 

be used to understand whether a substance has the potential to elicit such a molecular event, a 

more quantitative understanding of MIEs and KEs may also be achieved with predictive models 

[291]. For this, potency measurements, i.e. dose response relationships, of substances inducing MIEs 

and biological events further down the pathway are necessary in order to establish the relationship 

between these biological events [291]. Once more nephrotoxicity-related AOPs have been 

developed, an AOP-derived in silico framework would provide the robustness needed for a model to 

reliably inform screening of new drug candidates, and efforts to prioritise substances for further 

testing.  

With regard to developing better in silico modelling frameworks it is the development of SAs which 

is the logical starting point. These need to be refined and extended in order to facilitate the 

prediction of the hazard potential of a more comprehensive array of compounds. For instance, much 

existing knowledge on SAs has been compiled [292]. The existing knowledge needs to be rationalised 

such that a robust set of SAs can be established. Such an “in silico profiler” will assist in the 

designing-out of toxicity as well as grouping, allowing for read-across, especially to estimate the 

chronic toxicity of data-poor substances. A potentially rich source of information to develop further 

structural information are the data resultant from ToxCast. It has been shown that fingerprints using 
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available ToxCast data on kidney tissue cell lines may be developed [293]. Such fingerprints could 

consist of a defined number of in vitro assays reflecting the toxic mechanism of a specific group of 

known nephrotoxicants. If a new chemical is shown to generate hits according to one of the defined 

fingerprints, the likelihood of the chemical to cause nephrotoxic effects is considered to be high. 

Of the in silico models developed so far, there is always a place for QSARs, but only where suitable 

data allow. These may be based, for instance, around in vitro data for specific effects as opposed to 

the more ambitious modelling of whole organism toxicity. To facilitate better QSARs, besides 

incorporating data related to the toxicodynamics of a compound in the kidney, accounting for 

toxicokinetics and the potential of a substance to accumulate at a specific site within the kidney is 

considered to be equally important as an adverse effect may be caused due to supersaturation of 

parts of renal system. In vitro analyses indicate that many chemicals elicit toxicity via unspecific 

cytotoxicity [223,225,294]. Therefore, a mechanistic model simulating the toxicokinetics of 

compounds in the different parts of a nephron would help to understand whether a substance may 

be accumulating or not. Overall, it is clear that experimental and computational efforts have to go 

hand in hand, along with development of mechanistic knowledge, to achieve much-needed progress 

in this area. 

 

Methods: 

The scientific literature available via Google Scholar, ScienceDirect, PubMed, Web of Science and 

Scopus was reviewed for nephrotoxic substances, information related to mechanisms of 

nephrotoxicity and existing computational models to predict nephrotoxicity. Nephrotoxicants and 

mechanistic data were identified by searching the terms “drug-induced nephrotoxicity” OR “drug-

induced kidney toxicity” OR “drug-induced kidney injury” OR “drug-induced kidney damage” OR 

“drug-induced urinary tract toxicity”, and “chemical-induced nephrotoxicity” OR “chemical-induced 

kidney toxicity” OR “chemical-induced kidney injury” OR “chemical-induced kidney damage” OR 

“chemical-induced urinary tract toxicity”. Nephrotoxicants were also identified from the combined 

COSMOS and Munro dataset and the Toxicity Reference Database (ToxRefDB). The combined 

COSMOS and Munro dataset was exported from the COSMOS Database [118, 

https://cosmosdb.eu/cosmosdb.v2/accounts/login/?next=/cosmosdb.v2/ > Computational Methods 

> TTC Export], and only molecules for which “kidney” or “urinalysis parameters” are recorded first as 

critical effects were added to the list of nephrotoxicants. Besides information on critical effects 

stated in the combined COSMOS and Munro dataset, the species and, if available, kidney-related 

critical effect details were added. The ToxRefDB, which contains lowest effect levels (LELs) of over 

800 molecules for over 1’000 endpoints (e.g. 

https://cosmosdb.eu/cosmosdb.v2/accounts/login/?next=/cosmosdb.v2/
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SUB_rat_SystemicCarcinogenic_adult_Urinary_UrinaryBladder, where SUB stands for subchronic), 

was downloaded from the U.S. EPA Toxicity ForeCaster (ToxCastTM) Data website [126, 

https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data]. A compound was 

added to the nephrotoxicants’ list if its lowest LEL was only associated with kidney or urinary bladder 

related endpoints. SMILES codes of identified nephrotoxicants were sourced from Drugbank 

[195,196, https://www.drugbank.ca/], PubChem [199,200, 

https://pubchem.ncbi.nlm.nih.gov/search/], and ChemIDplus [189, 

https://chem.nlm.nih.gov/chemidplus/]. In silico models were queried by using the terms ‘’structural 

alerts’’ OR “structural fragments” OR “in silico” OR “QSAR” OR “mechanistic model” OR 

“mathematical model” AND ‘’nephrotoxicity’’ OR “kidney toxicity” OR “kidney injury” OR “kidney 

damage” OR ‘’urinary tract toxicity’’.  

 

 

https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
https://www.drugbank.ca/
https://pubchem.ncbi.nlm.nih.gov/search/
https://chem.nlm.nih.gov/chemidplus/
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Appendix A: Kidney assay data available in the ToxCastTM Dashboard  

AssayComponentEndpointName BiologicalProcessTarget AssayFunctionType GeneName IntendedTargetFamily Organism 

NVS_ENZ_pMTHFR regulation of catalytic 

activity 

enzymatic activity methylenetetrahydrofolate 

reductase (NAD(P)H) 

oxidoreductase pig 

NVS_ENZ_pMTHFR_Activator regulation of catalytic 

activity 

enzymatic activity methylenetetrahydrofolate 

reductase (NAD(P)H) 

oxidoreductase pig 

NVS_MP_rPBR receptor binding binding translocator protein transporter rat 

OT_AR_ARSRC1_0480 protein stabilization binding androgen receptor nuclear receptor human 

OT_AR_ARSRC1_0960 protein stabilization binding androgen receptor nuclear receptor human 

OT_ER_ERaERa_0480 protein stabilization binding estrogen receptor 1 nuclear receptor human 

OT_ER_ERaERa_1440 protein stabilization binding estrogen receptor 1 nuclear receptor human 

OT_ER_ERaERb_0480 protein stabilization binding estrogen receptor 1 nuclear receptor human 

OT_ER_ERaERb_1440 protein stabilization binding estrogen receptor 1 nuclear receptor human 

OT_ER_ERbERb_0480 protein stabilization binding estrogen receptor 2 (ER 

beta) 

nuclear receptor human 
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OT_ER_ERbERb_1440 protein stabilization binding estrogen receptor 2 (ER 

beta) 

nuclear receptor human 

OT_FXR_FXRSRC1_0480 protein stabilization binding nuclear receptor subfamily 

1, group H, member 4 

nuclear receptor human 

OT_FXR_FXRSRC1_1440 protein stabilization binding nuclear receptor subfamily 

1, group H, member 4 

nuclear receptor human 

OT_NURR1_NURR1RXRa_0480 protein stabilization binding retinoid X receptor, alpha nuclear receptor human 

OT_NURR1_NURR1RXRa_1440 protein stabilization binding retinoid X receptor, alpha nuclear receptor human 

OT_PPARg_PPARgSRC1_0480 protein stabilization binding peroxisome proliferator-

activated receptor gamma 

nuclear receptor human 

OT_PPARg_PPARgSRC1_1440 protein stabilization binding peroxisome proliferator-

activated receptor gamma 

nuclear receptor human 

TOX21_AR_BLA_Agonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_AR_BLA_Agonist_ch2 regulation of transcription 

factor activity 

reporter gene null background measurement human 

TOX21_AR_BLA_Agonist_ratio regulation of transcription 

factor activity 

reporter gene androgen receptor nuclear receptor human 

TOX21_AR_BLA_Antagonist_ratio regulation of transcription 

factor activity 

reporter gene androgen receptor nuclear receptor human 
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TOX21_AR_BLA_Antagonist_viability cell proliferation viability null cell cycle human 

TOX21_AutoFluor_HEK293_Cell_blue NA background control null background measurement human 

TOX21_AutoFluor_HEK293_Cell_green NA background control null background measurement human 

TOX21_AutoFluor_HEK293_Cell_red NA background control null background measurement human 

TOX21_AutoFluor_HEK293_Media_blue NA background control null background measurement human 

TOX21_AutoFluor_HEK293_Media_green NA background control null background measurement human 

TOX21_AutoFluor_HEK293_Media_red NA background control null background measurement human 

TOX21_ELG1_LUC_Agonist regulation of transcription 

factor activity 

reporter gene ATPase family, AAA 

domain containing 5 

hydrolase human 

TOX21_ERa_BLA_Agonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_ERa_BLA_Agonist_ch2 regulation of transcription 

factor activity 

reporter gene null background measurement human 

TOX21_ERa_BLA_Agonist_ratio regulation of transcription 

factor activity 

reporter gene estrogen receptor 1 nuclear receptor human 

TOX21_ERa_BLA_Antagonist_ratio regulation of transcription 

factor activity 

reporter gene estrogen receptor 1 nuclear receptor human 
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TOX21_ERa_BLA_Antagonist_viability cell proliferation viability null cell cycle human 

TOX21_PPARg_BLA_Agonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_PPARg_BLA_Agonist_ch2 regulation of transcription 

factor activity 

reporter gene null background measurement human 

TOX21_PPARg_BLA_Agonist_ratio regulation of transcription 

factor activity 

reporter gene peroxisome proliferator-

activated receptor gamma 

nuclear receptor human 

TOX21_FXR_BLA_agonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_FXR_BLA_agonist_ch2 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_FXR_BLA_agonist_ratio regulation of transcription 

factor activity 

reporter gene nuclear receptor subfamily 

1, group H, member 4 

nuclear receptor human 

TOX21_FXR_BLA_antagonist_ratio regulation of transcription 

factor activity 

reporter gene nuclear receptor subfamily 

1, group H, member 4 

nuclear receptor human 

TOX21_FXR_BLA_antagonist_viability cell proliferation viability null cell cycle human 

TOX21_PPARd_BLA_agonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 
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TOX21_PPARd_BLA_agonist_ch2 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_PPARd_BLA_agonist_ratio regulation of transcription 

factor activity 

reporter gene peroxisome proliferator-

activated receptor delta 

nuclear receptor human 

TOX21_PPARd_BLA_antagonist_ratio regulation of transcription 

factor activity 

reporter gene peroxisome proliferator-

activated receptor delta 

nuclear receptor human 

TOX21_PPARd_BLA_antagonist_viability cell proliferation viability null cell cycle human 

TOX21_PPARg_BLA_antagonist_ratio regulation of transcription 

factor activity 

reporter gene peroxisome proliferator-

activated receptor gamma 

nuclear receptor human 

TOX21_PPARg_BLA_antagonist_viability cell proliferation viability null cell cycle human 

TOX21_VDR_BLA_agonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_VDR_BLA_agonist_ch2 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_VDR_BLA_agonist_ratio regulation of transcription 

factor activity 

reporter gene cytochrome P450, family 

24, subfamily A, 

polypeptide 1 

cyp human 

TOX21_VDR_BLA_antagonist_ratio regulation of transcription 

factor activity 

reporter gene cytochrome P450, family 

24, subfamily A, 

polypeptide 1 

cyp human 
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TOX21_VDR_BLA_antagonist_viability cell proliferation viability null cell cycle human 

TOX21_FXR_BLA_agonist_viability cell proliferation viability null cell cycle human 

TOX21_ERa_BLA_Antagonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_ERa_BLA_Antagonist_ch2 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_FXR_BLA_Antagonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_FXR_BLA_Antagonist_ch2 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_PPARd_BLA_Agonist_viability cell proliferation viability null cell cycle human 

TOX21_PPARd_BLA_Antagonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_PPARd_BLA_Antagonist_ch2 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_PPARg_BLA_Antagonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_PPARg_BLA_Antagonist_ch2 regulation of transcription background control null background measurement human 
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factor activity 

TOX21_VDR_BLA_Antagonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_VDR_BLA_Antagonist_ch2 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_AR_BLA_Antagonist_ch1 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_AR_BLA_Antagonist_ch2 regulation of transcription 

factor activity 

background control null background measurement human 

TOX21_VDR_BLA_Agonist_viability cell proliferation viability null cell cycle human 

NCCT_HEK293T_CellTiterGLO cytotoxicity viability null cell cycle human 

For additional information on assays, please reference the ToxCastTM dashboard. 

  



47 
 

Appendix B: Kidney and urinary bladder related toxicity endpoints available in ToxRefDB 

SUB_dog_SystemicCarcinogenic_adult_PathologyNonProliferative_Urinary_Kidney 

CHR_dog_SystemicCarcinogenic_adult_PathologyNonProliferative_Urinary_Kidney 

CHR_mouse_SystemicCarcinogenic_adult_PathologyNonProliferative_Urinary_Kidney 

CHR_mouse_SystemicCarcinogenic_adult_PathologyProliferative_Urinary_Kidney 

CHR_mouse_SystemicCarcinogenic_adult_PathologyNeoplastic_Urinary_Kidney 

CHR_mouse_SystemicCarcinogenic_adult_PathologyGross_Urinary_Kidney 

CHR_rat_SystemicCarcinogenic_adult_PathologyNonProliferative_Urinary_Kidney 

CHR_rat_SystemicCarcinogenic_adult_PathologyProliferative_Urinary_Kidney 

CHR_rat_SystemicCarcinogenic_adult_PathologyGross_Urinary_Kidney 

CHR_rat_SystemicCarcinogenic_adult_PathologyNeoplastic_Urinary_Kidney 

SUB_rat_SystemicCarcinogenic_adult_PathologyNonProliferative_Urinary_Kidney 

SUB_rat_SystemicCarcinogenic_adult_PathologyGross_Urinary_Kidney 

SUB_rat_SystemicCarcinogenic_adult_PathologyProliferative_Urinary_Kidney 

DEV_rat_SystemicCarcinogenic_adult_PathologyGross_Urinary_Kidney 

DEV_rabbit_SystemicCarcinogenic_adult_PathologyGross_Urinary_Kidney 

MGR_rat_SystemicCarcinogenic_adult_PathologyNonProliferative_Urinary_Kidney 

MGR_rat_SystemicCarcinogenic_adult_PathologyProliferative_Urinary_Kidney 

MGR_rat_SystemicCarcinogenic_adult_PathologyGross_Urinary_Kidney 

SUB_mouse_SystemicCarcinogenic_adult_PathologyNonProliferative_Urinary_Kidney 

SUB_mouse_SystemicCarcinogenic_adult_PathologyProliferative_Urinary_Kidney 

SUB_dog_SystemicCarcinogenic_adult_Urinary_Kidney 

CHR_dog_SystemicCarcinogenic_adult_Urinary_Kidney 

CHR_mouse_SystemicCarcinogenic_adult_Urinary_Kidney 

CHR_rat_SystemicCarcinogenic_adult_Urinary_Kidney 

SUB_rat_SystemicCarcinogenic_adult_Urinary_Kidney 

DEV_rat_SystemicCarcinogenic_adult_Urinary_Kidney 

DEV_rabbit_SystemicCarcinogenic_adult_Urinary_Kidney 

MGR_rat_SystemicCarcinogenic_adult_Urinary_Kidney 

MGR_rat_SystemicCarcinogenic_juvenile_Urinary_Kidney 
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SUB_mouse_SystemicCarcinogenic_adult_Urinary_Kidney 

 

CHR_mouse_SystemicCarcinogenic_adult_PathologyNonProliferative_Urinary_UrinaryBladder 

CHR_mouse_SystemicCarcinogenic_adult_PathologyProliferative_Urinary_UrinaryBladder 

CHR_rat_SystemicCarcinogenic_adult_PathologyNonProliferative_Urinary_UrinaryBladder 

CHR_rat_SystemicCarcinogenic_adult_PathologyProliferative_Urinary_UrinaryBladder 

CHR_rat_SystemicCarcinogenic_adult_PathologyNeoplastic_Urinary_UrinaryBladder 

SUB_rat_SystemicCarcinogenic_adult_PathologyProliferative_Urinary_UrinaryBladder 

SUB_rat_SystemicCarcinogenic_adult_PathologyNonProliferative_Urinary_UrinaryBladder 

SUB_rat_SystemicCarcinogenic_adult_PathologyGross_Urinary_UrinaryBladder 

CHR_dog_SystemicCarcinogenic_adult_Urinary_UrinaryBladder 

CHR_mouse_SystemicCarcinogenic_adult_Urinary_UrinaryBladder 

CHR_rat_SystemicCarcinogenic_adult_Urinary_UrinaryBladder 

SUB_rat_SystemicCarcinogenic_adult_Urinary_UrinaryBladder 

SUB_mouse_SystemicCarcinogenic_adult_Urinary_UrinaryBladder 

CHR=chronic/cancer; MGR=multigenerational reproductive; DEV=prenatal developmental; 

SUB=subchronic; 

 

Appendix C: Description of (Q)SAR models associated with kidney and bladder toxicity 

C.1 Munday et al. [262] 

Munday et al. [262] aimed to derive structural alerts for rat nephrotoxicity from 16 1,2- and 1,4-

naphthoquinones. Some naphthoquinones, e.g. 2-hydroxy-1,4-naphthoquinone  and 2-amino-1,4-

naphthoquinone, had been found to be nephrotoxic, mainly causing renal tubular necrosis in rats 

associated with presence of casts in the tubules [262,271,272]. 2-hydroxy-1,4-naphthoquinone, the 

active component in henna, produced fatal renal tubular necrosis in a child who was cutaneously 

treated with henna [273]. The mechanism of renal tubular necrosis induced by the 1,4-

naphthoquinones was, and still appears to be, unknown. Munday et al. [262,272] hypothesised that 

nephrotoxicity was a result of tautomerism of hydroxyl or amino 1,4-quinolones to strongly reactive 

1,2-naphthoquinones or 1,2-naphthoquinoneimines. However, the results of the study suggest that 

this hypothesis is wrong. The results did not allow for the definitive identification of structural 

features associated with naphthoquinone-induced nephrotoxicity or the conclusive determination of 
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the mechanism. However, this study confirmed that 2-hydroxy-1,4-naphthoquinone and 4-amino-

1,2,-naphthoquinone were extremely toxic to the kidney. Several alterations in structure of the 

above compounds caused the following changes in their toxic effect to the kidney: methylation of 

the amino group substantially increased nephrotoxicity, whilst methylation of the hydroxyl group, 

arylation of the amino-group and substitution with a chloro or amino group in the 3-position of the 

quinone ring eliminated nephrotoxicity. It was also found that substitution with small substituents 

i.e. methyl or ethyl decreases the extent of renal tubular damage – the larger the size of alkyl group, 

the greater the reduction of renal damage.  

 

C.2 Pizzo et al. [263] 

Pizzo et al. [263] conducted a study to evaluate, identify and group substructures into six structural 

alerts recognised as being toxic to the kidney and / or urinary tract using repeated-dose toxicity 

studies on rats taken from the Hazard Evaluation Support System (HESS) database. SAs were 

selected based on their likelihood ratio (LR) and percentage of true positives. These alerts were 

encoded as SMARTS (SMiles ARbitrary Target Specification). A plausible mechanistic explanation for 

these substructures to cause nephrotoxicity was only provided for the 2nd, 3rd, 5th and 6th SAs.  

 

The 2nd SA identified is sulphanilamide, which belongs to the class of sulphonamides. According to 

the literature, sulphonamides can cause obstructive nephropathy as they are insoluble in acidic 

urine, which causes them to precipitate as crystals in the tubules [87]. SA 3 is found in benzonitriles 

which have been reported to be harmful to the kidney due to adverse effects leading to cytotoxicity 

in the human embryonic renal cell line HEK293T [274]. SA 5 is chloroform, which is also reported as a 

structural alert in other studies, including Myshkin et al. [265]. Chloroform is believed to cause 

nephrotoxicity via metabolism by P450 enzymes into toxic metabolites which may induce renal 

cancer through cytotoxicity eliciting regenerative cell proliferation [274]. SA 6 is biphenyl; according 

to Pizzo et al. [263], biphenyl was identified seven times in the dataset of 89 active kidney toxicants, 

out of which five cases were found in nephrotoxic molecules. Biphenyls cause haematuria, increased 

urinary pH, formation of calculi inducing urinary tract tumours [263,275]. According to ChemDraw 

Professional (version:16.0.1.4 (77)), SA 1 and 4 are benzenesulfonic acid and hepta-1,5-diene, 

respectively. Most of the above alerts were reproduced in the study by Myshkin et al. [265]. 

 

C.3 Derek Nexus  

Derek Nexus is a knowledge-based expert system that uses SAs to provide in silico prediction of 

toxicity [264]. As well as the key mechanisms mentioned earlier, Derek Nexus may identify 
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compounds elicting nephrotoxicity via additional mechanisms. Examples of these mechanisms 

include: necrosis and fibrosis of the renal medullary interstitium; drug-induced ureteral obstruction 

(when drug causes blockage in one or both of the ureters leading from kidneys to the bladder) and 

drug-induced formation of cholesterol emboli. Also, Derek Nexus EREK may trigger a warning for 

α2μ-globulin nephropathy. Any structural alerts are identified in the original structure as highlighted 

toxicophores. A list of key literature references is provided, along with, in some cases, a proposed 

mechanism.  

 

C.4 Myshkin et al. [265] 

Myshkin et al. [265] described the construction and validation of QSAR models based on a database 

of organ-level toxicity and the identification of toxicophores. QSAR models were generated to 

predict organ toxicity endpoints, including “nephrotoxicity” with subcategories for “kidney necrosis”, 

“kidney relative weight gain” and “nephron injury”, using a recursive partitioning algorithm. 

According to the authors, the models demonstrated good predictive performance overall. When 

developing the compound sets, chemicals that were known to cause the toxicity (positives) and 

chemicals known not to cause toxicity (negatives) were included. The positives that were correctly 

predicted by the models were then clustered based on common toxicophore substructures by the 

JKlustor  5.9.0 utility from ChemAxon.  

 

A total of 192 toxicophores were identified for all nephrotoxicity endpoints. However, the 

endpoints ”kidney weight gain”, “nephron injury” and ”nephrotoxicity” are unspecific toxicity 

endpoints with regard to attempting to identify a mechanistic explanation for the nephrotoxic effect. 

These three endpoints could be associated with all of the nephrotoxicity pathways discussed in more 

detail below. Some of the substructures identified by Myskin et al. [265] were also identified in the 

other studies mentioned above; for example, chloroform, providing further justification and 

confirmation. In addition, some of the substructures identified are also relatively unspecific, e.g. 

cyclohexane or chlorobenzene. In the case of chlorobenzene, some more specific related 

substructures have been proposed, such as 1,2-dichlorobenzene, 1,3-dichlorobenzene or 4-

chlorophenol. For this reason, it may be useful to study these substructures in more detail and find 

more defined alerts relating to nephrotoxicity. 

 

C.5 Jolivette and Anders [266]  

Jolivette and Anders [266] developed a linear QSAR model to predict the nephrotoxicity of 9 

haloalkenes. Haloalkenes are high-volume chemicals and common environmental pollutants. 
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Bioactivation of haloalkanes occurs to form reactive intermediates. This process involves the 

formation of hepatic glutathione S-conjugates, which are then hydrolysed by peptidases into 

cysteine S-conjugates. Cysteine S-conjugates subsequently undergo bioactivation, by renal cysteine 

conjugate lyases, to form the nephrotoxic intermediates. The reaction of glutathione with 

haloalkenes is catalysed by microsomal (MGST1) and cytosolic glutathione transferases (cGST) [266]. 

In this study, a computational chemistry approach was used to test the hypothesis that an SAR exists 

and that ELUMO (energies of the lowest unoccupied molecular orbitals) values can be used to predict 

the ability of rat liver MGST1 to catalyse the reaction of glutathione with haloalkenes. No, or a low 

level of, conjugate formation was detected for four of the nine molecules investigated. A linear 

relationship was found between the natural logarithms of the specific activities for the glutathione 

conjugation reaction catalysed by rat liver MGST1 and ELUMO values for hexafluoropropene, 2-

(fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene, 1,1,2-trichloro-3,3,3-trifluoro-1-propene and 1,1-

dibromo-2,2-difluoroethene. This linear relationship corresponds only to four data points and cannot 

be extrapolated to ELUMO values outside of the range -1.14 to -0.73 eV. When the ELUMO value for 

tetrachloroethene was added to those of the previously mentioned four compounds and compared 

with the natural logarithms, a linear relationship was not seen. It was found that haloalkenes with 

more negative ELUMO values demonstrate a greater specific activity for the enzyme-catalysed reaction 

of glutathione conjugation than haloalkenes with less negative ELUMO values. This indicates that the 

chemical reactivity of the substrate plays a crucial role in the rate at which the glutathione-

dependent biotransformation of the haloalkenes takes place.  

 

C.6 Barratt [99] 

α2μ-globulin nephropathy occurs in male rats as a result of a compound’s binding affinity to α2μ-

globulin, which causes the chemical-protein complex to accumulate in renal lysosomes [99]. This 

leads to tubular necrosis and eventually cell death. Barratt [99] derived two QSAR models to screen 

for the potential of a compound to induce α2μ-globulin nephropathy by multiple regression analysis 

and principal components analysis using the following properties: negative charge density of the 

binding molecule, molecular volume, and inertial axis lengths. The QSAR model based on multiple 

regression analysis alone did not accommodate all of the molecular features that allowed accurate 

predictions of chemicals that may cause α2μ-globulin nephropathy. Therefore, a previous dataset by 

Bomhard et al. [276] consisting of 43 aliphatic and alicyclic hydrocarbon structures was added and 

subjected to a principal components analysis. The toxicological endpoint assessed in Bomhard et al. 

[276] was α2μ-accumulation in renal lysosomes in male rats. It was found that for a molecule to 

cause α2μ-globulin nephropathy, its size and shape should be so that it fits with the binding site on 
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α2μ-globulin. It should also have a hydrogen bond acceptor. Lastly, hydrophobic interactions were 

found to be a contributing factor but not to a significant extent when included in either QSAR. The 

shape, size and electronegativity elements related to active compounds were incorporated in both 

QSARs.  

 

Barratt [99] concluded that the combination of the two QSARs is useful in identifying molecular 

structures with a potential to cause α2μ-globulin nephropathy. The applicability domain of both 

QSARs was not discussed. Furthermore, α2μ-globulin nephropathy has been acknowledged as an 

adverse effect specific to male rats and little relevant to human health as α2μ-globulin is not 

synthesised in the human liver [99]. Hence, these models may only be applied to assess whether 

compounds which have been linked to nephrotoxicity in male rats induce these effects via the α2μ-

globulin pathway.  

 

C.7 Lee et al. [252] 

Lee et al. [252] developed binary classification QSAR prediction models for three nephrotoxicity 

mechanisms: tubular necrosis, interstitial nephritis, and tubulo-interstitial nephritis. These models 

were built using two data sets, i.e. parent compounds (251 nephrotoxicants and 387 non-

nephrotoxicants) and their urinary metabolites (307 nephrotoxicants and 233 non-nephrotoxicants) 

based on clinical trials and post-marketing surveillance reports. A list of the parent and metabolite 

compounds was not published. Models were computed using a support vector machine and 20 

descriptors with highest information gains in the form of eight different fingerprints for parent and 

metabolite sets and each of the three mechanisms. According to the authors, the predicted 

accuracies of the models for each type of kidney injury were better than 83% for external validation 

sets. This indicates that the models used could prove to be useful in identifying potentially 

nephrotoxic compounds.  

 

Substructural fragments were analysed and were documented alongside the frequency of fragment 

enrichment factors. The selected eight substructures were common to both datasets for all of the 

above three nephrotoxicity mechanisms. Lee et al. [252] concluded that consideration of the 

metabolism of a chemical is important to predict its nephrotoxicity potential. When comparing the 

number of nephrotoxicants and non-nephrotoxicants with a specified fragment of the metabolite set 

to respective numbers of the parent compound set, the number of nephrotoxicant metabolites 

increased dramatically. This is due to the bioactivation of a potentially non-nephrotoxic compound 

into a toxic metabolite. Also, when these alerts were compared approximately to those found by 



53 
 

Pizzo et al. [263], similarities were not observed at first sight. Lee et al. [252] have provided a link 

that offers free access to the software on their website. However, this link does not appear to be 

working at this time: http://bmdrc.org/DemoDownload. 

 

C.8 Matthews et al. [267] 

Matthews et al. [267] created QSAR models to predict drug-induced urinary tract toxicity in humans 

on the basis of adverse events reported post marketing approval. Six endpoints of urinary tract 

injury were considered, namely nephropathies, acute renal disorders, bladder disorders, blood in 

urine, urolithiases and kidney function tests. Four QSAR approaches were applied using the following 

software: MC4PC, BioEpisteme, MDL QSAR and Leadscope Predictive Data Miner. The best 

predictive performance was achieved for the endpoints kidney function test with 87.7% specificity, 

43.3% sensitivity and 91.6% coverage, and nephropathies with of 81.5% specificity, 49.5% sensitivity 

and 91.4% coverage. One of the limitations of these models is the variable quality of the post-

marketing reported adverse event data used which may be compromised through non-uniform 

reporting of an adverse effect and its occurrence in patients who are often subject to multi-drug 

therapy. 

 

C.9 Antczak et al. [268] 

This study aimed to link physico-chemical features to drug-induced transcriptional responses and 

phenotypic outcome using a multivariate statistical approach. A number of KEGG pathways, which 

were reported to be significantly perturbed by nephrotoxic compounds under consideration in this 

study, may be specifically associated with nephrotoxicity [268]. The model showed that nephrotoxic 

substances are characterised by high polarisability, low electronegativity and low molecular 

symmetry. 

 

C.10 Hammann et al. [269] 

For this study, Hammann et al. [269] use decision tree inference analysis, a machine learning 

method, based on the chemical, physical, and structural properties and adverse drug reactions of 

507 drugs. As decision tree inference algorithms, classification and regression tree (CART) and chi-

squared automatic interaction detector (CHAID) were selected. Both models performed well, with 

CART and CHAID model corrected classification rates (CCRs) of 88.6 and 84.7%, respectively. The 

CART model highlights that amine functions, sulphur, and carboaromatic ring structures have an 

influence on a drug’s potential to cause nephrotoxicity. For substances safer to the kidney, CHAID 

http://bmdrc.org/DemoDownload16
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model found few aromatic atoms (<19), a basic pKa <10.71, van der Waals surface area <1,014.5 Å2, 

and logP values >2.43. 

 

C.11 Lei et al. [270] 

Lei et al. [270] used a mouse intraperitoneal urinary tract toxicity data set of 258 chemicals from the 

ChemIDplus public database to develop eight qualitative and quantitative structure-activity 

relationship (QSAR), i.e. classification and regression, models to predict urinary tract toxicity. The 

recursive feature elimination method incorporated with random forests (RFE-RF) was applied for 

dimension reduction, followed by the utilisation of eight machine learning approaches for QSAR 

modelling, i.e., relevance vector machine (RVM), support vector machine (SVM), regularized random 

forest (RRF), C5.0 trees, eXtreme gradient boosting (XGBoost), AdaBoost.M1, SVM boosting 

(SVMBoost), and RVM boosting (RVMBoost). Among these, RVMBoost based on the RBF kernel 

accomplishes the best quantitative and qualitative predictions for the test set (MCC of 0.787, AUC of 

0.893, sensitivity of 89.6%, specificity of 94.1%, and global accuracy of 90.8%). All chemicals included 

in this study are within the application domain coverage. Overall, a reliable prediction is achieved by 

both regression and classification models developed by the SVMBoost approach. 
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