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Abstract
Main conclusion ATR-FTIR spectroscopy with subsequent multivariate analysis non-destructively identifies plant–
pathogen interactions during disease progression, both directly and indirectly, through alterations in the spectral 
fingerprint.

Plant–environment interactions are essential to understanding crop biology, optimizing crop use, and minimizing loss to 
ensure food security. Damage-induced pathogen infection of delicate fruit crops such as tomato (Solanum lycopersicum) 
are therefore important processes related to crop biology and modern horticulture. Fruit epidermis as a first barrier at the 
plant–environment interface, is specifically involved in environmental interactions and often shows substantial structural and 
functional changes in response to unfavourable conditions. Methods available to investigate such systems in their native form, 
however, are limited by often required and destructive sample preparation, or scarce amounts of molecular level information. 
To explore biochemical changes and evaluate diagnostic potential for damage-induced pathogen infection of cherry tomato 
(cv. Piccolo) both directly and indirectly, mid-infrared (MIR) spectroscopy was applied in combination with exploratory 
multivariate analysis. ATR-FTIR fingerprint spectra (1800–900 cm−1) of healthy, damaged or sour rot-infected tomato fruit 
were acquired and distinguished using principal component analysis and linear discriminant analysis (PCA–LDA). Main 
biochemical constituents of healthy tomato fruit epidermis are characterized while multivariate analysis discriminated 
subtle biochemical changes distinguishing healthy tomato from damaged, early or late sour rot-infected tomato indirectly 
based solely on changes in the fruit epidermis. Sour rot causing agent Geotrichum candidum was detected directly in vivo 
and characterized based on spectral features distinct from tomato fruit. Diagnostic potential for indirect pathogen detection 
based on tomato fruit skin was evaluated using the linear discriminant classifier (PCA–LDC). Exploratory and diagnostic 
analysis of ATR-FTIR spectra offers biological insights and detection potential for intact plant–pathogen systems as they 
are found in horticultural industries.

Keywords MIR spectroscopy · Plant–pathogen interaction · Multivariate analysis · Crop biology · Geotrichum candidum

Introduction

Providing food security for a rapidly growing global popu-
lation of which a large fraction is malnourished is one of 
the greatest challenges in the modern era (IFPRI 2017). 
Conventional solutions such as increased land clearing and 
increasing usage of pesticides to produce sufficient food are 
unfavourable due to their environmental impacts and long-
term unsustainability. Thus, novel alternatives are needed 
to efficiently produce the approximately 70% more food 
needed by 2050 (Beuchelt and Virchow 2012). Crop loss 
to pests and pathogens throughout food production/supply 
represent a major threat to this aim. Pests and pathogens may 
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reduce crop yield by 80%, thereby presenting a significant 
challenge to crop productivity (Oerke 2006). Detection of 
pests and pathogens within pre- and post-harvest settings 
is therefore essential to minimize the impacts on crop pro-
duction. The post-harvest consumer stage can be viewed as 
one of the most critical points during food production/sup-
ply, because maximum resource allocation has occurred at 
this point, making plant–pathogen interactions especially 
relevant at this stage. Current methods for crop diagnos-
ing crop health include remote sensing, molecular based 
methods and complex analytical techniques all of which 
have drawbacks. Remote sensing, including hyperspectral 
imaging and thermography, are highly responsive to envi-
ronmental conditions and distance to the measured object 
making it difficult to determine disease specificity (Mahlein 
2016). Molecular based techniques [for example, polymer-
ase chain reaction (PCR), fluorescent in situ hybridization 
(FISH), and enzyme-linked immunosorbent assay (ELISA)] 
are time consuming and prone to contamination (Chitarra 
and Van Den Bulk 2003; Schaad and Frederick 2002; Wall-
ner et al. 1993). Complex analytical methods, for example 
gas or liquid chromatography coupled to mass spectrometry 
(GC/LC–MS, require extensive sample preparation and are 
difficult to use in the field (Martinelli et al. 2015).

The development of flexible, non-destructive sensors 
capable of providing adequate detection sensitivity and 
pathogen specificity are keys goal for the detection of crop 
pathogens (Mahlein 2016; Skolik et al. 2018). This includes 
the ability to detect early effects of plant stress or disease, 
to differentiate between the effects of abiotic and biotic 
stresses and between different diseases, and to quantify 
the severity of the stress or disease (Mahlein 2016). While 
various molecular and imaging techniques to detect crop 
pathogens are under development, the limitations of many 
analytical methods combined with the above criteria for 
sensor technologies, has led to the development of label-
free, non-destructive spectroscopic techniques that provide 
information about the chemical structure of analysed sam-
ples. The spectroscopic approach, originating in analytical 
chemistry, has been translated to the biological sciences 
mainly through advancements in computational analysis 
and the ability to measure live samples (Chan and Kazarian 
2016). Application of these techniques to model plant and 
crop systems has the potential to both provide novel insight 
into plant–pathogen interactions, whilst generating a large 
number of variables for autonomous classification of disease 
states for detection of pests and pathogens.

Mid-infrared (MIR) spectroscopy has made substantial 
headway in the biological sciences as a non-destructive 
and rapid bioanalytical sensor technology (Martin et al. 
2010). This is because MIR spectra have been effective 
at providing molecular insights into biological systems, 
while providing a large number of variables on which 

to discriminate samples. More recently, spectrochemi-
cal techniques have made substantial progress in the 
plant and crop sciences, specifically with regard to the 
analysis of dynamic processes and plant biology-related 
to crop production (Butler et al. 2015, 2017; Ord et al. 
2016; Skolik et al. 2018). This has been effective mainly 
through the development of new data analysis methods 
including multivariate analysis. For MIR biospectroscopy, 
data analysis can be split into two main types: exploratory 
and diagnostic. Exploratory analysis is aimed primarily 
at data visualization and pattern recognition (Trevisan 
et al. 2012). Diagnostic analysis employs the use of clas-
sifier algorithms to evaluate the potential for diagnosis of 
sample condition (healthy versus diseased, for example) 
(Trevisan et al. 2012). While the two frameworks typically 
have different objectives, they are closely linked and in 
general, the exploratory precedes the diagnostic frame-
work. Among the many available data analysis options, 
unsupervised principal component analysis (PCA) and 
supervised linear discriminant analysis (LDA) have been 
used alone or in combination to successfully investigate 
a large number of biological phenomena based on MIR 
data (Li et al. 2015; Strong et al. 2017). Both PCA and 
LDA have formed core components of biospectroscopy 
data analysis. Related classifiers including support vector 
machine (SVM) and linear discriminant classifier (LDC) 
have also found ample application in the diagnostic frame-
work. Such advancements have highlighted the potential 
for MIR biospectroscopy as an effective sensor technol-
ogy for the plant and crop sciences (Skolik et al. 2018). 
Despite this progress, the number of investigations on 
intact samples has been limited, which is arguably and 
important prerequisite for the development of fully non-
destructive horticultural sensors, and thus more research 
on intact samples is required. Recently, both attenuated 
total reflection Fourier-transform infrared (ATR-FTIR) 
and Raman spectroscopy have been favoured for study-
ing intact samples of important crops (Butler et al. 2015; 
Ord et al. 2016; Fu et al. 2016; Trebolazabala et al. 2013). 
Raman spectroscopy is a complementary method to FTIR 
spectroscopy and the two are often combined for a more 
robust analysis, as each have specific drawbacks due to 
the distinct light–matter interactions they measure (Baker 
et al. 2014; Butler et al. 2016). Compared to macro-FTIR, 
Raman scattering as a low probability event can be highly 
variable, prone to interference from fluorescence, featuring 
a small measurement area typically between 20 and 30 µm, 
and uses more intense laser powers potentially leading to 
photobleaching (tissue decomposition) of delicate organic 
samples (Butler et al. 2016; Yeturu et al. 2016). Never-
theless, a strong case has been made in previous studies 
demonstrating the effectiveness of Raman spectroscopy 
for direct detection of microbial pathogens in intact crops 
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(Egging et al. 2018; Farber and Kurouski 2018; Yeturu 
et al. 2016). While direct detection of a plant–pathogen 
interaction generates spectral changes suitable for disease 
detection, indirect detection of plant infection through 
spectral changes in tissues because of pathogen attack 
remains difficult but offers a novel approach especially 
for early or pre-symptomatic stages of disease (Skolik 
et al. 2018). ATR-FTIR spectroscopy has the advantage 
of macro-measurements increasing the measurement area 
while also affording a very defined magnitude of light pen-
etration into the sample (Kazarian and Chan 2013; Chan 
and Kazarian 2016). This may be more suitable for analy-
sis at the whole-plant level as many experiments still rely 
on previous removal (cutting) of leaves and fruit, which 
is not truly non-destructive (Trebolazabala et al. 2017; 
Yeturu et al. 2016). It is therefore essential to evaluate 
Raman complementary methods such as FTIR, as a com-
bination approach can overcome the limitations of a sin-
gle technique, as well as the variable nature of crops and 
plant–pathogen systems covered by modern agriculture.

Herein we use ATR-FTIR spectroscopy to study the 
effects of damage and ambient infection by the sour rot 
causing agent G. candidum, both directly and indirectly, 
in commercially obtained, consumer-stage (red ripe) intact 
cherry tomatoes. Conventional spectral analysis for the 
characterization of main absorbance peaks of tomato 
and fungus G. candidum is followed by exploratory and 
diagnostic multivariate analysis to probe subtle biochemi-
cal changes induced indirectly by damage and infection. 
Changes to the surface of tomato fruit are characterized 
in response to damage and sour rot infection using the 
tandem technique of PCA–LDA to maximize inter-class 

differences between damage, infected, and control fruit. 
The diagnostic potential of this approach is evaluated 
using the tandem classifier PCA–LDC, to distinguish 
damaged and infected tomato fruit from healthy controls 
indirectly and autonomously.

Materials and methods

Sample preparation and storage

Vine cherry tomatoes cv. Piccolo were obtained from a local 
supermarket (Sainsbury’s Lancaster Main Store, UK). All 
analyses were performed prior to the advertised expiration 
date, which at the time of purchase presented a window of 
8 days. Tomatoes were removed from their commercial 
packaging taken off the vine and adapted to room tempera-
ture (23 ± 1°C) and 35–40% relative humidity for 2 h prior 
to initial analysis. Loose tomatoes were split into two sets, 
including a control series accounting for changes occurring 
in naturally ripening tomatoes over the analysis timeframe 
(Fig. 1a–c), as well as a set of tomatoes punctured through 
the stem scar, at 0 h, to a depth of approximately 1 cm with a 
21-gauge sterile syringe needle leaving the remainder of the 
skin intact (Fig. 1d). Damaged tomatoes were thus suscepti-
ble to ambient infection at the puncture site, which was vis-
ible starting at 48 h post-puncture, and full colonization of 
the punctured stem scar was observed at 96 h post-puncture 
(Fig. 1f). Control and damaged tomatoes were dark stored 
in cardboard boxes under identical conditions to compare 
pathogen development and allow stem scar infection with 
ambient fungal spores. Damaged tomato fruit (0 h) were 

Fig. 1  Symptoms associated 
with tomato fruit damage (d), 
early (e), and late (f) infection 
of tomato fruit by G. candidum 
compared to their shelf-life-
matched controls (a–c)
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subsequently analysed opposite their shelf-life-matched con-
trols, allowed to age naturally, at 48 and 96 h post-puncture, 
to assess pathogen infection caused by initial damage. Prior 
to analysis, tomato fruit were washed thoroughly with de-
ionized water to remove dust and debris, as well as fun-
gal growth and fluid exudate present on fruits at the early 
infection (48 h) and late infection (96 h) stages, prior to 
spectral acquisition, in order to characterize changes in fruit 
skin, without contribution from the fungus itself (analysed 
separately) or exudates from the site of infection. The fun-
gal–fruit complex on fully colonized tomatoes at 96 h post-
puncture (Fig. 1f) was analysed to obtain spectra from the 
fungus in its native state on tomato fruit.

ATR‑FTIR spectroscopy

MIR spectra were acquired from intact tomato fruit, using 
a Bruker Tensor 27 IR spectrometer with Diamond ATR 
Helios attachment (Bruker Optics, Coventry, UK). Spectra 
were acquired over the range 4000–400 cm−1 with a spectral 
resolution of 8 cm−1, 3.84 cm−1 data spacing, 32 co-addi-
tions and a mirror velocity of 2.2 kHz for optimum signal-
to-noise ratio (Martin et al. 2010; Baker et al. 2014). Back-
ground spectra were taken prior to each sample to account 
for ambient atmospheric conditions. The diamond ATR crys-
tal defined a spatial resolution (sampling area) of approxi-
mately 250 µm × 250 µm. The whole fruit was placed on the 
sample stage with no more than 0.1 kg of applied pressure. 
Between sample measurements, ATR cleaning wipes con-
taining isopropyl-alcohol (Bruker Optics, Coventry, UK) 
were used to clean the ATR diamond crystal between meas-
urements. Five points from around the fruit circumference 
were measured; two spectra from each of the five points for 
a total of 10 measurements per fruit. Ten spectra per fruit 
generally supply enough replicates for PCA–LDA, which 
provide intra-class differences (i.e., variance specific to 0 h 
control vs. 0 h damage, 48 h control vs. 48 h early infec-
tion, and 96 h control vs. 96 h late infection) while mini-
mizing the effect of natural tissue heterogeneity potentially 
masking the subtle effects underpinning plant response to 
pathogen. Six fruits were measured for each treatment group. 
Measurements of G. candidum were taken in vivo without 
modification as part of the tomato–pathogen complex at late 
infection state (96 h post-puncture). The fungal mass com-
pletely covered the ATR crystal during measurements; six 
separate samples (10 spectra from each fungal sample) of G. 
candidum were measured to obtain a representative in vivo 
spectrum.

Pre‑processing and computational analysis

All computational analysis was conducted using the open 
source IRootlab toolbox (https ://githu b.com/trevi sanj/iroot 

lab) specialized for analysis of IR spectra (Trevisan et al. 
2013), in conjunction with Matlab 2016 (The Math Works, 
MA, USA), unless otherwise stated. Raw spectra were trun-
cated to the spectral fingerprint region between 1800 and 
900 cm−1, which is the primary region where biomolecules 
absorb IR radiation. Fingerprint spectra were pre-processed 
using the rubber band-like baseline correction algorithm and 
maximum normalized to account for differences in sample 
thickness and ATR diamond contact pressure. Class mean 
spectra were used for direct analysis. Exploratory PCA 
reduces the dataset down to factors that account for spec-
tral variance; PCA was optimized using the IRootlab pareto 
function, where the first 10 PCs accounted for more than 
99% of the variance in the dataset [see Supporting Infor-
mation (SI) Figure S1]. These served as input variables for 
LDA forming the composite technique PCA–LDA (Tre-
visan et al. 2012). While PCA reduces the complexity of 
the spectral data, it is unsupervised, does not account for 
class labels, views all classes as one and therefore does not 
distinguish between control, damaged, or infected tomatoes 
for the purposes of extracting class-specific differences (Tre-
visan et al. 2012). Combined with a supervised approach, 
LDA following PCA (PCA–LDA) maximizes the spectral 
differences between classes (control vs. damage/infected), 
and thus allows the extraction of the class-specific biomark-
ers associated with damage and subsequent sour rot (Martin 
et al. 2010; Kelly et al. 2011; Trevisan et al. 2012). Pair-
wise comparisons between two classes generate one linear 
discriminant (LD), which summarizes the main class-spe-
cific differences between control and afflicted tomato fruit. 
This linear discriminant can be visualized as cluster plots, 
where each spectrum is defined as a point where overlap and 
separation of points indicate similar or dissimilar features, 
respectively (Trevisan et al. 2012). PCA–LDA loadings pro-
vide a ‘spectrum-like’ graph indicating the wavenumbers 
at which variance between classes is most pronounced, as 
indicated by the peak magnitude (variance). Peak maxima 
are used as ‘spectral biomarkers’ indicative of the biological 
process under investigation (Kelly et al. 2011).

Exploratory analysis by way of cluster separation along 
LD1 was explored, to determine whether significant altera-
tions between control and damaged/infected groups were 
evident. In each case, a pairwise comparison conducted of 
damaged, early, and late-infected tomatoes at 0, 48, and 96 h, 
with their shelf-life-matched controls. For a characteriza-
tion of the main spectral alterations, PCA–LDA loadings, in 
combination with a peak-pick algorithm (20 cm−1 minimum 
separation) identifying peak maxima, was used to tabulate 
the top six most prominent wavenumber alterations (spec-
tral biomarkers). Identified spectral biomarkers were given 
chemical assignments matched to previously characterized 
spectral biomarkers, considering parameters including spe-
cies, tissue type, instrumentation (method, measurement 

https://github.com/trevisanj/irootlab
https://github.com/trevisanj/irootlab
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area, interrogation depth, data analysis), and biological 
interaction (plant–pathogen).

Group classification was evaluated using PCA in com-
bination with a linear discriminant classifier (PCA–LDC), 
which tests autonomous classification accuracy based on 
spectral differences (Butler et al. 2017; Gajjar et al. 2013; 
Friedman et al. 2001). PCA–LDA and PCA–LDC were 
cross-validated using 10 k-folds. Further information regard-
ing analysis of biospectroscopy data can be found at https ://
githu b.com/trevi sanj/iroot lab and in the literature (Trevisan 
et al. 2012; Kelly et al. 2011). To test for statistically signifi-
cant differences in PCA–LDA scores along the primary LD 

between controls, damaged, and infected tomato, LD1 scores 
for each biological sample were averaged and tested for sig-
nificance using unpaired two-tailed t tests (GraphPad Prism).

Results and discussion

Spectral characterization of surface structures 
of intact tomato fruit S. lycopersicum

Spectra from whole tomato fruit surface structures reflect 
prominent biochemical components present in the cuticle 
and cell wall (Serrano et al. 2014). There were no differences 
visible in the appearance of control, undamaged tomato fruit 
during the 96-h analysis window (Fig. 1a–c). In contrast, 
damaged tomato (0 h) had a small puncture wound from 
the syringe at which fungal infection developed (Fig. 1d–f). 
Figure 2 shows the primary absorbance intensities of intact 
tomato fruit corresponding to Fig. 1; for the control set at 
0, 48, and 96 h (Fig. 2a) and damaged (0 h), early infected 
(48 h), and late infected (96 h) (Fig. 2b) over the baseline-
corrected and normalized ATR-FTIR fingerprint spectrum 
over the region 1800–900 cm−1. Comparison of spectra from 
both control and damage/infected classes shows that the 
top six main vibrational bands, and chemical assignments 
were identical as depicted in Fig. 2 and Table 1. Absorb-
ance intensities shown in Fig. 2 and assigned in Table 1 
reflect prominent biochemical components of plant surface 
structures including cutin, phenolic compounds, waxes, and 
potentially volatile organic chemicals (VOCs) (Baldassarre 
et al. 2015). Several of these compounds had been identified 
previously from the inner or outer face of isolated tomato 
cuticles (España et al. 2014; Heredia-Guerrero et al. 2014), 
despite differences in spectral resolution and equipment used 
to characterize isolated tomato cuticles (España et al. 2014). 
This is consistent with the thickness of the cuticle during the 

Fig. 2  ATR-FTIR spectrum of intact tomato fruit S. lycopersicum cv. 
Piccolo, over the fingerprint region (1800–900 cm−1): a control series 
at 0 (light grey), 48 (grey), and 96 (black) h; b 0  h damaged (light 
grey), 48 h early infection (grey), and 96 h late infection (black)

Table 1  Primary absorbance peaks of intact tomato fruit S. lycopersicum cv. Piccolo

Wave-
number 
 (cm−1)

Vibrational mode Biochemical assignment References

1728 ν(C=O) ester Cutin Heredia-Guerrero et al. (2014), Movasaghi et al. (2008) and Ord et al. 
(2016)

1605 ν(C–C) aromatic Phenolic compounds, pectin Heredia-Guerrero et al. (2014), Movasaghi et al. (2008) and Schulz and 
Baranska (2007)

1462 δ(CH2) scissoring Cutin and other waxes, polysaccharides Heredia-Guerrero et al. (2014), Movasaghi et al. (2008) and Schulz and 
Baranska (2007)

1223 νa(C–O–C) ester Monoterpene Movasaghi et al. (2008), Ord et al. (2016) and Schulz and Baranska 
(2007)

1165 νa(C–O–C) ester Cutin, cellulose, pectin Heredia-Guerrero et al. (2014), Movasaghi et al. (2008), Ord et al. 
(2016) and Schulz and Baranska (2007)

1103 νs(C–O–C) ester Cutin, cellulose, pectin Heredia-Guerrero et al. (2014), Movasaghi et al. (2008), Ord et al. 
(2016) and Schulz and Baranska (2007)

https://github.com/trevisanj/irootlab
https://github.com/trevisanj/irootlab
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late red-ripe stage of tomato fruit (España et al. 2014; Here-
dia-Guerrero et al. 2014) and the shallow interrogation depth 
of the ATR-FTIR beam (~ 1–3 μm). Cuticle components 
readily identified include vibrational modes associated with 
the main polymer cutin at wavenumbers 1728, 1462, 1165, 
and 1103 cm−1 (España et al. 2014; Heredia-Guerrero et al. 
2014). Phenolic compounds are among other cuticle constit-
uents that strongly absorb IR radiation, and were identified 
by absorption at 1605 cm−1 (España et al. 2014; Heredia-
Guerrero et al. 2014). We also identified an absorption peak 
at 1223 cm−1 that is not present in isolated cuticle (Heredia-
Guerrero et al. 2014) but which has been previously associ-
ated with monoterpenes, more specifically geranyl acetate, 
a structural component of many VOCs (Ord et al. 2016; 
Rodríguez et al. 2013; Schulz and Baranska 2007). Tomato 
fruit produce a characteristic profile of secondary metabo-
lites including VOCs during ripening (Petro-Turza 1986; 
Buttery et al. 1988, 1990) and it likely that monoterpenes 
characteristic of VOCs present at the red-ripe stage, repre-
sent a unique contribution to the fingerprint spectrum of 
intact tomato fruit compared to isolated cuticle (Rodríguez 
et al. 2013). Alternatively, it is possible that the absorption 
at 1223 cm−1 may simply be a broad absorption band related 
to the previously identified δ(OH) mode between 1246 and 
1243 cm−1 associated with both cutin and other polysac-
charides (Heredia-Guerrero et al. 2014). Both cuticle and 
underlying plant layers including the cell wall have been 
well studied using MIR-based biospectroscopy (Heredia-
Guerrero et al. 2014; Largo-Gosens et al. 2014). However, 
due to several caveats, the number of studies on intact, and 
hence physiologically competent, samples have been limited, 
limiting also the development of vibrational spectroscopy 
for applied horticulture (Skolik et al. 2018). Characterizing 
spectral features of tomato fruit in vivo, such as the cuticle, 
provides a first but important step in this endeavour and will 
contribute significantly to the sustainability of crop protec-
tion measures. Yet the role of the cuticle, and other epider-
mal structures as part of the tomato fruit skin, in post-har-
vest quality, shelf-life, and pathogen susceptibility remains 
debated especially at the molecular level, in part due to the 
difficult nature of this recalcitrant layer and the intimate 
relationship with the underlying cell wall (Domínguez et al. 
2015; Lara et al. 2014). To shed light on this, analytical sur-
face techniques such as ATR-FTIR spectroscopy are ideal, 
as demonstrated by the ability to measure delicate intact 
fruit truly non-destructively in vivo (Fig. 2). But before the 
molecular in vivo details can be uncovered, surface charac-
terization of intact fruit is necessary to aid the interpretation 
of more subtle changes hidden in the spectral data, which 
can only be extracted through multivariate analysis, similar 
to how previous cuticle component characterization aids the 
interpretation of the tomato fruit skin in vivo shown in Fig. 2 
(Heredia-Guerrero et al. 2014). Comparing between isolated 

constituents and their native arrangements, in fruit or oth-
erwise, will remain necessary to aid in the identification of 
candidate target compounds to serve as spectral biomark-
ers for varying conditions, especially dynamic physiologi-
cally driven ones, including plant–pathogen interactions. It 
is therefore important to characterize the candidate plant 
compounds being measured by MIR biospectroscopy tech-
niques, for appropriate interpretation of spectral data from 
physiologically competent samples in vivo. Further, indirect 
detection of damage to the fruit surface (cuticle, cell wall, 
epidermis) and pathogens affecting crops, such as tomato 
which are easily compromised by damage leading to infec-
tion, would be of utmost interest for commercial develop-
ment. Once characterized, changes in the MIR signature 
caused by abnormalities such as damage, pathogen infection, 
or stress, will prove useful for monitoring fruit condition as 
it pertains to shelf life through the post-harvest food system, 
thereby improving crop utilization. 

Spectral alterations associated with tomato fruit 
damage and sour rot infection by Geotrichum 
candidum

The MIR spectrum of fruit surface structures is altered in 
response to damage through the stem scar and subsequent 
infection by G. candidum. Artificially damaged tomatoes 
(Fig. 1d) exposed to ambient conditions showed no initial 
signs of fungal infection after 24 h (data not shown), whilst 
at 48 h post-puncture (early infection) clear signs of infec-
tion were evident around the puncture site (black arrows) 
(Fig. 1e), and at 96 h post-puncture (late infection) substan-
tial pathogen growth had covered the puncture site (Fig. 1f). 
Based on visible symptoms starting at 48 h post-puncture 
(Fig. 1d, f) the pathogen was determined to be G. candidum, 
a non-specific fungus known as a ubiquitous contaminant 
of tomato processing equipment (Thornton et al. 2010). 
Because the mean spectra of control and damage/infected 
tomatoes (Fig. 2a, b) were nearly identical, with respect to 
direct comparison of main vibrational bands (Fig. 2 and 
Table 1), PCA–LDA was employed to investigate if sub-
tle class-specific effects were detectable between control 
and compromised tomatoes. This approach was intended to 
determine if any changes caused by damage and subsequent 
pathogen infection were observable indirectly without con-
tributions from the fungus itself.

Class-specific differences for damage, early, and late 
infection were observed for tomato fruit compared to their 
healthy counterparts, as determined by multivariate analy-
sis using PCA and LDA in tandem (PCA–LDA). Pairwise 
comparisons (class versus control) lead to the generation of 
a single LD, in this case generating three PCA–LDA score 
plots (Fig. 3a–c). Figure 3 shows a clear separation of clus-
ters belonging to each paired class, indicating differences 
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in spectra acquired from controls and damaged, early, and 
late infected (Fig. 3a, b, and c, respectively). Separation 
along LD1 indicates significant differences within fin-
gerprint spectra, which are specific to damage and infec-
tion. PCA–LDA score plots reveal significant data cluster 
separation, with statistical differences between damaged 
(p = 0.003), early infected (p = 0.0001), and late-infected 
(p = 0.0003) fruit, compared to their shelf-life-matched 
controls. This suggests that spectral changes are most pro-
nounced for the early infected stage, showing the largest 
degree of separation along LD1 (Fig. 3b), followed by the 
late-infected stage (Fig. 3c) and damaged fruit (Fig. 3a), 
respectively. Loading plots (Fig. 3d–f) indicate the wave-
number regions responsible for the observed cluster separa-
tion within the PCA–LDA score plots (Fig. 3a–c) (Martin 
et al. 2007; Trevisan et al. 2012). Wavenumbers identified 
through peaks within loading pots, represent the areas with 
the highest degree of variance. Table 2 summarizes the top 
six discriminating wavenumbers identified from PCA–LDA 
loading plots. These top six wavenumbers, identified via the 
peak-picking algorithm described, are assigned as tentative 
spectral biomarkers responsible for the class-specific differ-
ences. Spectral biomarkers identified by PCA–LDA were 
considered a match if these were within ± 10 wavenumbers 
of those identified within the other classes. It is notewor-
thy that because PCA–LDA potentially extracts very subtle 
differences within complex tissue architectures, biomarkers 

identified this way may not originate from the prominent 
cuticle components evident in the fingerprint spectra shown 
in Fig. 2, but may represent small fractions of molecules 
embedded in the epidermal matrix. For this reason and with-
out extensive validation of their origin, spectral biomarkers 
are assigned tentatively. 

Several wavenumbers identified for the various fruit con-
ditions showed overlap, where biomarkers as discrimina-
tors for initial damage were also identified as discrimina-
tors for early and late infection. Vibrational modes at 1701, 
1632–1628, 1254–1246 cm−1 were seen to be consistent 
between initial fruit damage and early G. candidum infec-
tion. Absorption at 1701 cm−1 was the only exact match 
between these two classes. These three wavenumber regions 
are assigned as carbonyl groups in fatty acid esters of cutin 
(1701 cm−1) (España et al. 2014); carbon–carbon bonds in 
phenolic cuticular compounds (1632–1628 cm−1) (Heredia-
Guerrero et al. 2014); and hydroxyl group deformation in 
cutin or other polysaccharides (1254–1246 cm−1) (Here-
dia-Guerrero et al. 2014), which are part of the epidermal 
surface. Alternatively, the region from 1254 to 1246 cm−1 
has been associated with the amide III band of proteins or 
methylene functional groups of phospholipids (Movasaghi 
et al. 2008), which are also potential targets of ATR-FTIR 
as part of the epidermis. Consistency within spectral bio-
markers was also observed between those indicative of 
damage and those identified within late-stage G. candidum 

Fig. 3  PCA–LDA 1-dimen-
sional score plots showing 
class-specific cluster separation 
indicative of spectral differ-
ences between damaged, early, 
and late infection opposite their 
shelf-life-matched controls 
(a–c); corresponding loadings 
show specific wavenumbers 
responsible for clustering along 
LD1 (d–f)
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infection, specifically absorption bands at 1582–1574, 1520, 
and 1215 cm−1. Interestingly, both absorption at 1520 and 
1215 cm−1 were exact matches to wavenumbers related to 

initial fruit damage and may therefore play a role in both 
damage response and response to pathogens (Table 2). 
Absorption bands between 1582 and 1574 cm−1 are strongly 

Table 2  Top six discriminating class-specific wavenumbers and tentative chemical assignments, from LD1 loading plots associated with tomato 
fruit damage, early infection or late infection versus control classes

Overlap between wavenumbers ± 10 was considered. Bold wavenumbers indicate class-specific wavenumbers
a Indicates overlapping wavenumbers between damaged and early infection
b Between damaged and late infection
c Between early and late infection

Class Wave-
number 
 (cm−1)

Vibrational mode Biochemical assignment References

Damaged 1701a ν(C=O–H) Fatty acid esters
Cutin

Heredia-Guerrero et al. (2014), Ord et al. (2016)

1628a ν(C=C)
νs(C–C) ring
Amide I

Phenolic compounds
Pectin
Proteins

Butler et al. (2015, 2017), Heredia-Guerrero et al. (2014), Largo-
Gosens et al. (2014), Ord et al. (2016)

1574b Amide II Proteins Movasaghi et al. (2008), Ord et al. (2016)
1520b ν(C–C) aromatic

Amide II
C=N or C=C

Phenolic compounds
Proteins
Nucleic acids?

Butler et al. (2017), Heredia-Guerrero et al. (2014), Largo-Gosens 
et al. (2014), Movasaghi et al. (2008), Ord et al. (2016)

1254a δ(OH)
Amide III
νa(CH2)

Cutin/polysaccharides
Proteins
Phospholipids

Butler et al. (2017), Heredia-Guerrero et al. (2014), Movasaghi et al. 
(2008), Ord et al. (2016)

1215b νaPO2
Amide III

Phosphate
Proteins

Movasaghi et al. (2008), Ord et al. (2016)

Early infection 1747 ν(C=O)
ν(C=C)
Aliphatics

Polysaccharides
Lipids (fatty acids)
Suberin

Butler et al. (2017), Largo-Gosens et al. (2014), Movasaghi et al. 
(2008), Ord et al. (2016)

1701a ν(C=O–H) Fatty acid esters
Cutin

Heredia-Guerrero et al. (2014), Movasaghi et al. (2008), Ord et al. 
(2016)

1659c ν(C=C)
Amide I

Pectin
Proteins

Largo-Gosens et al. (2014), Movasaghi et al. (2008), Ord et al. (2016)

1632a ν(C=C)
νs(C–C) ring
Amide I

Phenolic compounds
Proteins

Butler et al. (2017), Heredia-Guerrero et al. (2014), Largo-Gosens 
et al. (2014), Movasaghi et al. (2008), Ord et al. (2016)

1366 δ(CH2)
νs(COO)
δs(CH3)

Cutin and waxes
Cellulose
Fatty acids
Sesquiterpenes

Butler et al. (2017), Largo-Gosens et al. (2014), Movasaghi et al. 
(2008), Ord et al. (2016)

1246a δ(OH)
Amide III
νa(CH2)

Cutin/polysaccharides
Proteins
Phospholipids

Butler et al. (2017), Heredia-Guerrero et al. (2014), Movasaghi et al. 
(2008), Ord et al. (2016)

Late infection 1724 ν(C=O) Cutin and lipids
Pectin/polysaccharide
Phenolic ester

Butler et al. (2015, 2017), Heredia-Guerrero et al. (2014), Largo-
Gosens et al. (2014), Ord et al. (2016)

1651c ν(C=C)
Amide I

Pectin
Proteins

Butler et al. (2015), Movasaghi et al. (2008), Ord et al. (2016)

1582b Amide II Proteins Movasaghi et al. (2008), Ord et al. (2016)
1520b ν(C–C) aromatic

Amide II
C=N or C=C

Phenolic compounds
Proteins
Nucleic acids

Butler et al. (2015, 2017), Heredia-Guerrero et al. (2014), Movasaghi 
et al. (2008), Ord et al. (2016)

1466 δ(CH2) Cutin and waxes Butler et al. (2015), Heredia-Guerrero et al. (2014), Largo-Gosens 
et al. (2014), Ord et al. (2016)

1215b νaPO2
Amide III

Phosphate
Proteins

Movasaghi et al. (2008), Ord et al. (2016)
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associated with the amide II band of proteins (Movasaghi 
et al. 2008). The absorption band at 1520 cm−1 is potentially 
a shoulder region of the amide II peak but more likely asso-
ciated with carbon–carbon bonds in phenolic compounds 
(Heredia-Guerrero et al. 2014), although this region has also 
been associated with alkene groups in aromatic compounds, 
or the imine group in nucleic acids (Movasaghi et al. 2008). 
Class-unique wavenumbers occur only in the early and late 
infection stages (upon appearance of visual symptoms). 
All absorption bands identified in damaged tomato occur 
also in either early or late infection and generate no unique 
absorbance peaks within the top six tentative biomarkers. 
Wavenumbers unique to early infection include absorb-
ance at 1747 and 1366 cm−1 (Table 2). Vibrational modes 
at 1747 cm−1 are associated with double bonds in carbonyl 
and alkene functional groups of cutin, wax and suberin-like 
compounds, as well as lipids in general (España et al. 2014; 
Heredia-Guerrero et al. 2014). Besides compounds includ-
ing cutin and waxes, also cellulose, pectin, polysaccharides, 
and sesquiterpenes are biomolecules, which have vibrational 
modes that absorb at 1366 cm−1 (Largo-Gosens et al. 2014; 
Heredia-Guerrero et al. 2014; Movasaghi et al. 2008). These 
spectral biomarkers appear to be unique to early infection of 
tomato fruit (Table 2). In contrast, late infection of tomato 
fruit shows specific absorbance at 1724 and 1466 cm−1 and 
are associated with carbonyl vibration of cutin, lipids, poly-
saccharides, or phenolic esters; and methylene vibration of 
cutin or other waxes, respectively (Heredia-Guerrero et al. 
2014; Movasaghi et al. 2008). Taken together, these results 
indicate prominent changes occurring simultaneously across 
several compounds including lipids, proteins, and carbohy-
drates, many of which represent prominent components 
of the epidermal structure including cuticle and cell wall 
components.

Spectral alterations associated with tomato fruit damage 
are partially retained during subsequent early and late patho-
gen infection. Initially, tomato damage induces a wound-
ing response, as colonization by G. candidum has not yet 
occurred (Figs. 1d, 3a, d), suggesting that the observed 
spectral alterations are specific to wounding. Both metabolic 
activity and VOC composition change in response to plant 
wounding; at the red-ripe stage, damage elicits changes in 
the VOC profile (Baldassarre et al. 2015). Wavenumbers 
identified as discriminators for fruit damage may therefore 
reflect prominent changes to the VOC profile, potentially 
combined with up-regulation of genes involved in defence 
reactions and the resulting changes in metabolism (Baldas-
sarre et al. 2015). As VOCs diffuse through plant surface 
layers, their interaction with the cuticle, cell wall, or epider-
mis in general may produce alterations in these layers lead-
ing to the observed spectral changes (Peñuelas and Llusià 
2001). Also, because damage has a direct effect on post-har-
vest deterioration and shelf life through various biochemical 

and physiological events (Lara et al. 2014; Watada and Qi 
1999), rapid damage detection of tomato fruit using spectro-
chemical analysis would help prevent subsequent infection 
and spoilage induced by spreading microorganisms such as 
G. candidum. Spectral biomarkers from the initial response 
to wounding are retained in part during subsequent early 
and late infection (Table 2). Although several spectral bio-
markers are consistent between damaged and early as well 
as late-infected tomatoes, both early and late infection show 
unique spectral characteristics as well. It therefore seems 
plausible that changes in tomato fruit surfaces resulting from 
damage, share common biochemical alterations with early 
and late-stage infection, for example through a general stress 
response transitioning into a pathogen-specific response, 
explaining the overlap in biomarkers previously described 
(Table 2). As an increasing number of genetic and metabolic 
changes are induced by wounding and subsequent infection, 
the change in spectral profile likely reflects the move from 
damage response to plant–pathogen interaction, explaining 
the development of unique biomarkers at the early and late 
infection stages (Table 2).

Spectral alterations in plant surface structures of tomato, 
related to plant–pathogen interactions have been previously 
identified and may be related to conserved changes in epi-
dermal surface structures in response to stress through the 
reactive oxygen species (ROS) network. Plant–pathogen 
interactions induce complex signalling networks leading to 
the induction of the hypersensitive response (HR) and/or 
systemic acquired resistance (SAR), both of which involve 
significant alterations to metabolism including lignifica-
tion, suberization, callose deposition, changes in ion fluxes 
and lipid peroxidation (Camejo et al. 2016). The HR also 
involves the activation of programmed cell death (PCD). 
This is often accompanied by an oxidative burst generating 
ROS in the form of superoxide radical  (O2

−), hydrogen per-
oxide  (H2O2) and hydroxyl radical (·OH) accumulation (Apel 
and Hirt 2004; Hakmaoui et al. 2012; Suzuki et al. 2011). 
More generally, ROS signatures are altered in response to 
abiotic and biotic stresses alone and in combination (Camejo 
et al. 2016; Choudhury et al. 2017). Further, the oxidative 
burst, initiated during plant–pathogen interactions with 
fungi, generates essential ROS, which influence structural 
features of both cuticle and cell wall (AbuQamar et al. 2017). 
Part of the response to damage and pathogen attack, specifi-
cally at the late ripening stage is accelerated fruit softening 
caused by cutin depolymerization, which occurs naturally 
during the ripening program (Saladié et al. 2007; Brummell 
and Harpster 2001). Observed changes are therefore likely 
associated with a stress response initiated by fungal infec-
tion at a distance (in this case infection at the stem scar) 
and not caused by fungal released cutinases leading to cutin 
hydrolysis and depolymerization. To this end, the region 
1750–1700 cm−1 has been implemented in the measurement 
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of cutin in tomato cuticles, with the potential to determine 
the degree of cutin esterification (España et al. 2014). This 
region was not only identified as a major cuticle compo-
nent of intact tomato fruit (Table 1), but was also extracted 
by PCA–LDA for all classes (Table 2) making this spectral 
region a potentially robust biomarker indicative of spectral 
alterations associated with cuticle-dependent shelf-life and 
pathogen susceptibility. ROS signatures, or more specifically 
downstream targets of ROS present in epidermal surface 
structures such as the cuticle and cell wall, may therefore 
offer suitable targets for the detection and potential quantifi-
cation of both abiotic/biotic stresses in various combinations 
(AbuQamar et al. 2017; Choudhury et al. 2017). Wavenum-
bers associated with the categories of damage, early, and late 
infection (Table 2), have also been identified as biomarkers 
related to abiotic and biotic stress in the epidermal surface 
structures of intact leaves of Acer pseudoplatanus (Syca-
more) (Ord et al. 2016). Importantly, in this and the study by 
Ord et al. (2016), ATR-FTIR spectroscopy coupled with the 
composite technique PCA–LDA was employed emphasizing 
the effectiveness of this technique to extract biochemical 
information from dynamic biological processes. Spectral 
biomarkers identified in A. pseudoplatanus were associated 
with abiotic stresses caused by ozone and vehicle air pollu-
tion, as well as biotic stress caused by the tar spot leaf fun-
gus Rhytisma acerinum. Changes in the cuticle and cell wall, 
as well as ROS signalling, are early events in the response 
of plants to environmental stress making it plausible that 
certain biochemical and biophysical changes occurring in 
plant surface structures in response to stress are conserved 
between species. Consequently, the observed alterations in 
the spectral signature of A. pseudoplatanus leaves (Ord et al. 
2016) may be linked to the generation of ROS in response 
to stress, providing the connection between biomarkers 
observed here and those measured in A. pseudoplatanus 
stress response (Ord et al. 2016). This would explain the 
appearance of spectral biomarkers in tomato fruit related to 
damage and biotic stress, which have been previously asso-
ciated with both abiotic and biotic stresses in surface struc-
tures of the distantly related A. pseudoplatanus. Although 
spectral biomarkers identified here in tomato match with 
stress biomarkers reported previously, the biomarkers occur 
in different combinations, which may be due to a combina-
tion of factors including inter-species differences, difference 
in tissue type, or differences conferred by disease (stress) 
specificity. Nevertheless, the identification of such a large 
number of spectral biomarkers point to strong commonali-
ties between these two, different species, and suggests that 
spectral alterations relate to dynamic physiological changes 
pertaining to biotic and abiotic stress responses. While diffi-
cult to confirm through spectrochemical analysis alone, once 
additional data become available, the link between changes 
in the MIR signature, changes in epidermal structures, plant 

stress, and specific signalling pathways such as ROS, will 
become increasingly clear.

In vivo spectral characterization of sour rot 
pathogen Geotrichum candidum

Interaction of G. candidum with tomato fruit in vivo appears 
to alter the MIR spectrum characteristic of typical fungi. The 
fungus G. candidum was measured on the tomato fruit as 
depicted in Fig. 1f at 96 h post-puncture. To date, MIR has 
been primarily used to study fungal pathogens from isolated 
and prepared samples (Salman et al. 2012, 2010). G. can-
didum is an economically important pathogen as it induces 
sour rot in many fruit and vegetable crops including tomato 
(Cantu et al. 2008). Its ubiquitous occurrence, as part of the 
human micro-biome, soil, as well as horticultural process-
ing equipment, makes pathogenic strains of G. candidum a 
threat to crops (Thornton et al. 2010). Further, G. candidum 
can improve the conditions for infection by other pathogens 
thus contributing to further infection or synergistic pathogen 
interactions (Suzuki et al. 2014; Wade et al. 2003).

Figure 4 shows the ATR-FTIR fingerprint spectrum of G. 
candidum in vivo on tomato fruit. The main six vibrational 
bands of G. candidum in vivo are shown in Table 3. Iden-
tified vibrational bands are distinct from those of tomato 
fruit (Fig. 2 and Table 1) and contain several absorbance 
peaks consistent with those of other fungal pathogens (Sal-
man et al. 2012, 2010). Absorbance peaks at 1639, 1547, 
1404, and 1034 cm−1 could be assigned to a typical fungal 
MIR spectrum (Salman et al. 2012, 2010). In comparison, 
vibrational bands at 1342 and 1238, which are prominent 
peaks of G. candidum in vivo, appear to be much less pro-
nounced or even absent depending on the fungal species 
under study (Salman et al. 2012). Main absorbance peaks 
of G. candidum in vivo, show vibrational modes associated 
with proteins between 1639 and 1342 cm−1 (Movasaghi et al. 
2008; Salman et al. 2012) Specific absorbance peaks over 
this region include 1639, 1547, and 1404 cm−1, correspond-
ing to the fundamental protein vibrations amide I, amide II, 
and (C–N) vibration, respectively (Movasaghi et al. 2008; 

Fig. 4  ATR-FTIR fingerprint spectrum of in  vivo sour rot pathogen 
G. candidum present on tomato fruit at the 96 h late infection stage
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Salman et al., 2010, 2012). Vibration at 1034 cm−1 is also 
readily identified as belonging to the chitin (C–O) bond (Sal-
man et al. 2012, 2010). Absorbance at 1639, 1547, 1404, 
and 1034 cm−1 are thus all consistent with those previously 
characterized in fungal isolates of Colletotrichum, Fusarium, 
Rhizoctonia and Verticillium species (Salman et al. 2012, 
2010). However, the vibrational bands identified here at 1238 
and 1342 cm−1 do not appear to be a common constituent of 
other fungal pathogen isolates (Fig. 4). Phosphate  (PO4

2−) 
vibrational band at 1238 cm−1 is strongly associated with 
nucleic acids such as part of the DNA or RNA phosphate 
backbone (Movasaghi et al. 2008). Polysaccharide vibra-
tion  (CH2), atypical of fungi was also identified as a strong 
peak of G. candidum as part of the tomato fruit–pathogen 
complex (Fig. 4). It is likely that the discrepancy between 
the spectrum of G. candidum and those of other species is 
a result of in vivo analysis. The unique interaction between 
fungi and their host plants could influence the measured 
composition of the fungus, when compared to MIR spectra 
of fungal isolates, which are homogenized and taken out of 
their biological context. Although it cannot be ruled out that 
lack of sample preparation (dehydration and homogeniza-
tion) prior to spectral acquisition led to a higher water con-
tent and more heterogeneous arrangement, which influenced 
the MIR spectrum (Fig. 4), the fundamentally different bio-
chemical composition of fungal pathogens to that of tomato 
fruit is reflected in their respective MIR fingerprint spectra 
(Figs. 2 and 4). This fundamental difference in composition 
has led to the direct detection of fungal pathogens within 
plant tissues using differences in MIR spectral data. How-
ever, here we demonstrate that the typical fungal spectrum 
may have very unique features when measured intact. What 
remains to be seen is whether the differences in the MIR 
fungal spectrum arise due to simple fungal heterogeneity, or 
whether the interaction between plant and pathogen is the 
driving force for changes in its MIR fingerprint. Regardless, 
the characterization of pathogens in their native state, and as 
part of in vivo host–pathogen systems, is necessary to fully 
evaluate MIR for the non-destructive and rapid analysis of 
plant–pathogen interactions outside of the laboratory under 
the many variable conditions in which they occur. 

Autonomous indirect detection of damage 
and infection based on alterations to tomato fruit 
surfaces

Diagnostic classifiers based on PCA–LDC are effective at 
detecting tomato fruit damage and infection indirectly and 
autonomously. PCA–LDC is one of many classifier algo-
rithms used as training/validation datasets to evaluate the 
potential for autonomous classification based on MIR spec-
tra (Butler et al. 2017; Strong et al. 2017). To evaluate the 
potential for autonomous detection of damage, early, and late 
infection, compared to healthy shelf-life-matched controls 
using MIR, spectra of intact tomato fruit were used as train-
ing/validation datasets for the PCA–LDC classifier (Fig. 5). 
Discrimination of classes using PCA–LDC has recently been 
applied to plant tissues with high accuracy (Butler et al. 
2017). Classification of healthy controls, compared to their 
initially damaged but non-infected counterparts, showed the 
lowest observed accuracy at 78% for healthy controls, while 
freshly damaged tomatoes were identified correctly 83% of 
the time (Fig. 5a). In comparison, tomato fruit showing early 
signs of sour rot were accurately classified at 97%, and 92% 
for healthy controls at 48 h post-puncture (Fig. 5b). Late-
stage G. candidum-infected tomatoes correctly classified 
83% similar to freshly damaged tomatoes, was in contrast 
to the classification of control group at 96 h, which showed 
a classification accuracy of 96% (Fig. 5c). This was consist-
ent with the separation observed along the primary LD for 
these classes (Fig. 3), as well as with the classification rates 
achieved by Butler et al. (2017) investigating calcium nutri-
ent deficiency in tissues of Commelina communis. Interest-
ing is the higher classification accuracy at early (97%) com-
pared to late-stage infection (83%) (Fig. 5b, c). Late-stage 
infection leading to tissue breakdown and fruit softening, 
is likely more similar to the natural ripening process repre-
sented by control fruit at 96 h, when compared to younger 
control tomatoes at 48 h opposite their freshly colonized 
early infected counterparts. Also, the switch from damage 
to pathogen response may be more pronounced in com-
parison to shelf-life changes in younger tomatoes at 48 h. 
Such effects may lead to the higher classification accuracy 
in early infected compared to late-infected tomatoes. This is 

Table 3  Primary absorbance 
peaks of fungal pathogen G. 
candidum in vivo on tomato 
fruit

Wavenumber 
 (cm−1)

Vibrational mode Biochemical assignment References

1639 Amide I Proteins Salman et al. (2010, 2012)
1547 Amide II Proteins Salman et al. (2012)
1404 ν(C–N) Proteins Salman et al. (2010)
1342 ν(CH2) Polysaccharides Movasaghi et al. (2008)
1238 ν(PO4

2−) Nucleic acids Movasaghi et al. (2008)
1034 ν(C–O) Chitin Salman et al. (2012)
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beneficial as detection of early infection is favourable over 
detection at later disease stages.

These collective data suggest that correct classification 
of infected tomato fruit improves with disease progression. 
Demonstrating that this is possible indirectly based only on 
changes in fruit epidermis not yet afflicted by pathogens, 
will be important to be able to detect damaged tomato fruit, 
prior to the development of the symptoms of fungal infec-
tion in order to reduce food waste through the repurposing of 
the affected crops. In addition, the early detection of fungal 
infection would help prevent the effects and spread of post-
harvest disease. It is well documented that damage to deli-
cate fruits and vegetables leads to rapid spoilage (Tournas 
2005) and thus early symptoms of damage may also serve 
as a pre-symptomatic indicator for imminent infection by 
ambient microorganisms. To this end, classifier performance 
may be further optimized by increasing the number of fac-
tors (PCs) fed into the LDC. For commercial development, 
appropriate training and test datasets would likely improve 
classification accuracy further. Nevertheless, preliminary 
classification accuracy of around 80% upwards is promising 
and certainly provides precedence for further development 
of spectrochemical analyses as a tool for crop protection.

Conclusions and future perspectives

Spectrochemical analysis combined with multivariate analy-
sis offers a non-destructive sensor technology for the analy-
sis of intact crops, active pathogens, and plant–pathogen 
interactions. Spectral characterization of intact tomato fruit 
showed prominent components from the cuticular layer of 
the plant epidermis including cutin, phenolic compounds, 
waxes, and VOCs. During healthy growth and plant–envi-
ronment interactions, these compounds are notably modi-
fied with consequences for fruit quality and thereby provide 
unique groups of compounds serving as targets of dynamic 

processes pertaining to crop biology. At the environmental 
interface, the cuticle is of specific importance due to its role, 
as part of the cell wall, in the determination of fruit qualities 
such as susceptibility to cracking and pathogen infection 
(Isaacson et al. 2009; Lara et al. 2014).

Multivariate analysis (PCA–LDA) can effectively dis-
criminate healthy and compromised tomato fruit, based on 
damage and sour rot infection by G. candidum, effectively 
detecting pathogens indirectly. Spectral alterations in tomato 
fruit epidermis caused by damage and sour rot, induced 
changes in cuticle structure, which were assigned as tenta-
tive biomarkers. Damage, early and late-stage infected fruit 
thereby showed unique spectral profiles, while partial over-
lap of spectral markers between damage and early infection, 
as well as damage and late infection suggests a potential for 
disease specificity at these distinct stages. Disease specific-
ity based on unique spectral markers is tentatively linked to 
complex and evolving stress responses. While the exact con-
nection between spectral biomarkers of compromised tomato 
fruit and specific stress responses remains unclear, they are 
linked either directly or indirectly to plant responses such as 
ROS, SAR, and the HR. Clear alterations observed between 
healthy and damaged tomatoes further suggests the potential 
to identify damaged fruit prior to pathogen colonization. 
This may prevent disease spread, or to repurpose unmarketa-
ble specimens. Spectra of fungal pathogens and tomato fruit 
are fundamentally different offering direct detection of colo-
nized pathogens within the intact fruit–pathogen complex.

Automatic detection of damage, early, and late infection 
through changes in fruit epidermal surface layers was evalu-
ated based on the related classification model PCA–LDC. 
Indirect detection of damage and infection was shown to 
be effective with detection accuracy improving with dis-
ease development. Classification of tomato fruit damage 
and infection ranged between 83% and 97%, which may 
be improved through knowledge transfer, the use of more 

Fig. 5  Classification rates (%) of damage, early, and late infection, compared with shelf-life-matched controls, extracted from PCA input to lin-
ear discriminant classifier (PCA–LDC)
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sophisticated classification models, and trials with larger 
sample cohorts available to commercial growers.

Adapting spectrochemical analysis for fundamental plant 
science has been successful, yet more work is required to 
exploit the sensor potential of MIR spectrochemical analy-
sis in complex crop systems. Herein, we demonstrate the 
ability to analyse individual parts of plant–pathogen com-
plexes in vivo and show that effects of damage and infec-
tion generate unique spectral signatures reflecting common 
stress responses in fruits. These signatures are effective for 
the autonomous detection of compromised fruit crops non-
destructively both directly and indirectly. This opens the 
door for future work, which may focus increasingly on intact 
or native plant systems. Portable spectrochemical analysis 
equipment including MIR and Raman probes are becoming 
increasingly available and just beginning to be explored for 
crop analysis (Egging et al. 2018; Farber and Kurouski 2018; 
Fu et al. 2016; Trebolazabala et al. 2013; Yeturu et al. 2016). 
Rapid developments in MIR spectrochemical analysis for 
plant and crop science will likely to lead to concrete large-
scale applications for crop protection and production in the 
near future.
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