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Uncertainty with Probability Bounds Analysis
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ABSTRACT
It is of paramount important to identify and rank the influence
of components on the performance of interest. System sensitivity
analysis provides a quantitative tool for accessing the importance
of components within a specific system configuration. In practice,
however, due to lack of information, there exist epistemic uncer-
tainty within the components distribution parameters, which makes
it is hard to estimate the reliability of the corresponding system. In
this paper, survival signature is adopted to evaluate the system per-
formance, and the area value of the probability box is introduced
to reflect the epistemic uncertainty of the system. Also, in order to
find out which component or components set is more sensitive to
the system, the probability bounds analysis which bases on pinch-
ing method is used. Two case studies are presented to show the
applicability of the approaches.

Keywords
Sensitivity Analysis, Epistemic Uncertainty, Probability Bounds
Analysis, Systems Reliability

1. INTRODUCTION
In large and complex engineering systems composed by a large
number of components, it is of paramount important to identify and
rank their influence on the system performance. System sensitivity
analysis is a method to assess the sensitivity of a system to changes
to its component parameters. In other words, sensitivity analysis
is a quantitative study of how the inputs of a model influence the
outputs of interest [21].
Most existing models assume that there are precise parameter val-
ues available, so the quantification of uncertainty is mostly done
by the use of precise probabilities [10]. However, due to lack of
perfect knowledge, imprecision within the components failure time
or their distribution parameters. Hence, the sensitivity analysis for
the whole system is affected by the so called epistemic uncertainty
[14].
In order to deal with the epistemic uncertainty, the Dempster-Shafer
approach to representing uncertainty was articulated by Dempster
[11] and Shafer [27]. A robust Bayesian approach to modelling
epistemic uncertainty in common-cause failure models was pre-
sented by Troffaes et al. [30]. Tonon [29] used random set theory to
propagate epistemic uncertainty through a mechanical system. Hel-
ton et al. [18] combined sensitivity analysis with evidence theory to

represent epistemic uncertainty. Fuzzy set theory is also proposed
to deal with uncertainty in [4, 22]. An integrated framework to deal
with scarce data, aleatory and epistemic uncertainties is presented
in [23, 24], and it is an efficient tool to perform uncertainty man-
agement of large finite element models.
Beyond of the above methods, William and Downs [31] introduced
interval-type bounds on cumulative distribution functions, which
is called “probability boxes” or “p-boxes” for short. The use of
p-box in risk analysis offers many significant advantages over a
traditional probabilistic approaches because it provides convenient
and comprehensive ways to handle several of the most practical se-
rious problems face by analysts [16]. For example, Karanki et al.
[20] expressed uncertainty analysis based on p-box in probabilis-
tic safety assessment. Evidential networks for reliability analysis
and performance evaluation of systems with imprecise knowledge
was introduced by Simon and Weber [28]. In order to make a quan-
tification of margins and uncertainties, Sentz and Ferson [26] pre-
sented probabilistic bounding analysis (PBA), which also can be
used to perform the sensitivity analysis of systems. This approach
represents the uncertainty about a probability distribution by a set
of cumulative distribution functions lying entirely within a pair of
bounding distributions [17]. Ali et al. [1] used PBA for radiological
risk assessment.
Recently, survival signatures [7] have received more and more at-
tention in system reliability analysis not only because they sepa-
rate the system’s structure from its probabilistic characteristics, but
also because they are suitable to deal with complex systems with
multiple types of components. There are some developments on
this method. Aslett developed a Reliability Theory package which
was used to calculate the survival signature [2] and analysed sys-
tem reliability within the Bayesian framework of statistics [3]. A
non-parametric predictive inference for system reliability using the
survival signature was proposed by Coolen and Coolen-Maturi [9].
Feng et al. [12] dealt with the imprecision within the system based
on survival signature and presented new component importance
measures. Some efficient simulation approaches which based on
survival signature for reliability analysis on large system were pre-
sented by Patelli et al. [25]. Coolen and Coolen-Maturi [8] linked
the (imprecise) probabilistic structure function to the survival sig-
nature.
Therefore, survival signatures can be used to perform system re-
liability and sensitivity analysis on systems with epistemic uncer-
tainty by using probability bounds analysis. The epistemic uncer-
tainty within the components lead to upper and lower bounds for
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the survival functions, and it is necessary to find out which compo-
nent with imprecision is more sensitive to the system reliability.
In order to solve the above problem, this paper represents the epis-
temic uncertainty by probability box (p-box). To be specific, the
area of p-box, which denotes as APB , reflects the degree of the
epistemic uncertainty. the p-boxes of the components inputs are
propagated to the output of the system which bases on the sur-
vival signature. Then, it is easy to know the former p-box value of
AbeforePB . Since the decision maker may wants to reduce the epis-
temic uncertainty, it can replace the imprecise distribution parame-
ter of a specific component or components set with the precise dis-
tribution parameter. Then we can get the new p-box and calculate
the AafterPB . Therefore, it is easy to know the percentage reduction
and find out the most sensitive component or components set. The
applicability of the proposed approach is demonstrated by solving
the numerical examples.
This remainder of the paper is organized as follows. Section 2 gives
a brief conceptions about the probability box and survival signa-
ture. The probability bounds method based sensitivity analysis is
presented in Section 3. In Section 4, a typical complex system is
conducted to show the applicability and performance of the pro-
posed approach. Finally, the paper is concluded in Section 5 with
some discussions.

2. PROBABILITY BOX AND SURVIVAL
SIGNATURE

2.1 Probability Box

Suppose X is an uncertain event with 0 ≤ P (X) ≤ P (X) ≤ 1,
where P (X) is called the lower probability for event X and P (X)
is upper probability for event X . When the functions P (X) and
P (X) circumscribe an imprecisely known probability distribution,
we call [P (X), P (X)], specified by the pair of functions, a “prob-
ability box” or “p-box” for that distribution [15]. For instance, let
assumeX is Lognormal distribution with imprecise parameters are
([0.5,0.6], [0.05,0.1]), the p-box of event X is calculated by taking
all combinations of (0.5, 0.05), (0.6, 0.05), (0.5, 0.1) and (0.6, 0.1)
into account. Figure 1 reflects all the combination of distributions
for event X , while Figure 2 shows the p-box for event X .
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2.2 Survival Signature
Suppose there is a system with m components which belong to
K ≥ 2 component types, with mk components of type k ∈
{1, 2, ...,K} and

∑K

k=1
mk = m. Assume that the random fail-

ure times of components of the system type are exchangeable,
while full independence is assumed for components belong to
different types (iid), [7] proposed the survival signature which
can be denoted by Φ(l1, l2, ..., lK), with lk = 0, 1, ...,mk for
k = 1, 2, ...,K. It defines the probability that the system func-
tions given that lk of its mk components of type k work, for
each k ∈ {1, 2, ...,K}. There are

(
mk
lk

)
state vectors xk with∑mk

i=1
xki = lk (k = 1, 2, ...,K), where xk = (xk1 , x

k
2 , ..., x

k
mk

).
Let Sl1,l2,...,lK denote the set of all state vectors for the whole sys-
tem, and it can be known that all the state vectors xk ∈ Sklk are
equally likely to occur. Therefore, the survival signature can be ex-
pressed as:

Φ(l1, ..., lK) = [

K∏
k=1

(
mk

lk

)−1
]×

∑
x∈Sl1,...,lK

φ(x) (1)

Let Ck(t) ∈ {0, 1, ...,mk} denote the number of k components
working at time t. Assume that the components of type k have a
known cumulative distribution function (CDF) Fk(t) and the com-
ponents failure times of different type are assumed independent,
then:

P (

K⋂
k=1

{Ck(t) = lk}) =

K∏
k=1

P (Ck(t) = lk) =

K∏
k=1

(
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk (2)

Hence, the survival function of the system with K types of compo-
nents becomes:

P (t) =

m1∑
l1=0

...

mK∑
lK=0

Φ(l1, ..., lK) ∗
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P (

K⋂
k=1

{Ck(t) = lk}) (3)

Equation 3 shows that the structure of the system is separated from
the its components failure times, which is the typical advantage
of the survival signature. The survival signature is a summary of
structure functions and only needs to be calculated once for the
same system. As a result, it is an efficient method to perform system
reliability analysis on complex systems with multiple component
types.

2.3 Represent Epistemic Uncertainty by P-box

For the uncertain event X , ∆(X) = P (X) − P (X) is called the
imprecision for the uncertain event X [6]. Since epistemic uncer-
tainty reflects the unsureness in the predicted reliability, a decision
maker might want to reduce it by investing resource to more accu-
rately estimate the value of each event parameter [33].
As for the system reliability, the survival function is time varying,
which can be seen in Equations 2 and 3. The epistemic uncertainty
within the components failure time distribution parameters prop-
agates to the survival function of the system P (t). The epistemic
uncertainty will lead to the lower and upper bound of the survival
function, which can be expressed by P (t) and P (t) respectively.
Figure 3 shows an example of the p-box of the system survival
function.
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Fig. 3. Example of p-box of the system survival function

The area of p-box, denoted byAPB , reflects the degree of the epis-
temic uncertainty. To be specific, to calculate the survival function
of a time dependent system which is described by p-box, the time
interval is discretized into several subintervals, the minimum and
maximum difference value at each subinterval can be got. Then
summarize the product of difference value and its corresponding
subintervals, which can get the value ofAPB . The more knowledge
or information on the failure time distribution, the smaller area of
the p-box. If there exist no epistemic uncertainty, which means the
precise values of the components failure distribution parameters are
known to us, the area of p-box APB will shrink to zero.
Since it is clear that P (t) ≤ P (t) ≤ P (t), and P (t) reflects the re-
liability of the system at different time t, theAPB can be expressed
by the following Equation.

APB =

∫ ∞

0

[P (t)− P (t)]dt (4)

It can be seen from Equation 4 that APB is the difference between
the estimated upper and lower survival functions of the system in
presence of epistemic uncertainty.

3. PROBABILITY BOUNDS ANALYSIS AS
SENSITIVITY ANALYSIS

Ferson and Donald [13] developed probability bounds analysis
(PBA) which can produce bounds around the output distribution
from an assessment. These bounds enclose all the possible distribu-
tions that could actually arise given what is known and what is not
known about the model (system)and its inputs (components failure
distribution parameters). Therefore, PBA represents uncertainty by
using a p-box.
PBA is a combination of probability theory and interval analysis,
and the main advantage of PBA is that it separates aleatory uncer-
tainty from epistemic uncertainty and propagates them differently,
thus each maintains its own characters [19].
System sensitivity analysis is a systematic study of how the inputs
of the system influence the reliability of the system. Therefore, sys-
tem sensitivity analysis has two fundamental features: one is to find
out how the reliability and function of the system is influenced by
the inputs, and another is to focus on improving estimates of inputs
which will lead to the most improvement of the system reliability.
Because of the obvious and fundamental importance of sensitivity
analysis on systems, it is essential and of interest to perform a sen-
sitivity analysis on the systems by combining with the probability
bounds analysis. This paper uses pinch strategy to assess the impact
of epistemic uncertainty on the systems.
As we known before, the epistemic uncertainty within the compo-
nents failure time distribution will lead to lower and upper survival
function bounds of the system, and the epistemic uncertainty de-
gree can be quantified by APB . If there are extra information or
data are available on an input, there will be less uncertainty degree
of the whole system, which also means the APB will decrease.
Therefore, it is doable to compare the value difference before and
after “pinching” an input, i.e., replacing the uncertain input with
a point value or with a precise distribution distribution function.
Pinching can be applied to each input and the maximum reduction
of uncertainty of the system is regarded as the most sensitive input
of the system.
The estimate of the value of information for a parameter will de-
pend on how much uncertainty within the parameter, and how it
influences the uncertainty in the system reliability. The reduction
or sensitivity can be expressed by Equation 5.

100

(
1−

AafterPB

AbeforePB

)
% (5)

where AbeforePB is the former p-box value of APB , while AafterPB
represents the area of p-box with an input which is pinched.
The result of this Equation reflects the percentage reduction of un-
certainty when the former uncertain input parameter is replace by
a more precise value. The pinching theory [5] can be applied to
each system component in turn and the results of all components
got through the above Equation, then ranking the results to find out
the most sensitive component. What is more, it can be extended
to pinch multiple inputs simultaneously to perform the sensitivity
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Table 1. Survival signature of the typical complex system
in Figure 4

l1 l2 l3 Φ(l1, l2, l3)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
0 2 0 0
0 2 1 0
1 0 0 0
1 0 1 0
1 1 0 1/2
1 1 1 1
1 2 0 1
1 2 1 1
2 0 0 0
2 0 1 0
2 1 0 1
2 1 1 1
2 2 0 1
2 2 1 1

analysis on components set of the system, and then locate which
components set is more sensitive. Therefore, it can use sensitivity
index (SI) to represent Equation 5.

4. NUMERICAL EXAMPLES
Figure 4 shows a circuit bridge system, which is a typical complex
system with three component types.

2

3

4
5

1
1

1

2

3

2
Fig. 4. A typical complex system: the number outside the box is the com-
ponent index, while the number inside the box represents the component
type.

The components are all according to Exponential distribution, if
there exist epistemic uncertainty within the parameters, the impre-
cise and precise distribution parameters of all components can be
seen in Table 2.
According to stochastic dominance theory [32] which has been ver-
ified in [12], the lower bound of the survival function for the sys-
tem, with components parameters λk ∈ [λk1 , λ

k
2 ], is

P (TS > t) =

m1∑
l1=0

...

mK∑
lk=0

Φ(l1, ..., lK) ∗

Table 2. Imprecise and precise distribution parameters of all
components in the typical complex system

Component in-
dex

Component
type

Imprecise param-
eter

Precise parame-
ter

1 1 [0.24, 0.50] 0.37
2 1 [0.24, 0.50] 0.37
3 2 [0.18, 0.55] 0.365
4 2 [0.18, 0.55] 0.365
5 3 [0.21, 0.45] 0.33

K∏
k=1

(
mk

lK

)
[1− e−λk

1
t]mk−lk [e−λ

k
1
t]lk (6)

The corresponding upper bound of the survival function becomes:

P (TS > t) =

m1∑
l1=0

...

mK∑
lk=0

Φ(l1, ..., lK) ∗

K∏
k=1

(
mk

lK

)
[1− e−λk

2
t]mk−lk [e−λ

k
2
t]lk (7)

The bounds of imprecise survival function and precise survival
function of the typical system can be seen in Figure 5.
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Fig. 5. The bounds of imprecise survival function and precise survival
function of the typical system

The area of p-box AbeforePB = 0.2551 by using Equation 4, which
reflects the degree of the epistemic uncertainty. Then let perform
sensitivity analysis on specific component and components set un-
der epistemic uncertainty with probability bounds analysis.

4.1 Sensitivity Analysis on Specific Component
Let replace the imprecise input with a precise distribution parame-
ter of each component, as shows in Table 2.
Taking component 1 as an example, when replace the imprecise
distribution Exponential([0.24, 0.50]) with precise distribution Ex-
ponential(0.37), while the other components remain the former im-
precise parameters. Now the p-box of the system survival function
is shown in Figure 6.
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Fig. 6. The p-box of the system survival function when component 1 is
pinched by a precise distribution

Therefore, it can be got that AafterPB1 = 0.2112 through Equation 4.
The sensitivity index of component 1 can be calculated by Equation
5, which is 17.209%.
Similarly, the sensitivity index of component 2, 3, 4 and 5 is
17.21%, 27.95%, 27.95% and 4.98% respectively. Thus, the se-
quence of each component’s sensitivity index is SI3 = SI4 >
SI1 = SI2 > SI5, which means components 3 and 4 are more
sensitive than other three components.

4.2 Sensitivity Analysis on Components Set
It is sometimes important to analyse the sensitivity degree of differ-
ent components sets to the system. For instance, if people want to
know the sensitivity index of these five different components sets:
C[1,3], C[2,4,5], C[1,2], C[3,4] and C[5], it is necessary to replace
the imprecise distribution parameters of components in each set
with precise distribution parameter, which can also see in Table 2.
Pinching component 1 and component 3 to a distribution with pre-
cise parameter, to be specific, component 1 with Exponential(0.37)
while component 3 with Exponential(0.33). Then calculate the
lower and upper bounds of the system survival function, which
shows in Figure 7.
Here it can see that the area of p-box shrinks a lot compared to
the initial one, to be specific, AafterPB13 = 0.1321 after quantization
calculation. Therefore, the percentage reduction is 48.22%.
Similarly as the above case, compare with the former epistemic
uncertainty degree AbeforePB , the percentage reduction is 53.19%,
34.89%, 55.27% and 4.98% for the other four components sets,
which means SIC[3,4] > SIC[2,4,5] > SIC[1,3] > SIC[1,2] >
SIC[5]. Engineers should pay more attention on components sets
C[3,4] and C[2,4,5] as they are more sensitive than the other com-
ponents sets.

5. CONCLUSIONS
Sensitivity analysis on complex systems is essential in real engi-
neering applications. Engineers often perform sensitivity analysis
to explore how changes in the inputs of the component affect the
outputs of the system. Most former works mainly focus on com-
ponents with precise distribution parameters, however, there ex-
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Fig. 7. The p-box of the system survival function when components set
C[1,3] is pinched by a precise distribution

ist epistemic uncertainty within the components distribution due
to lack of information. The epistemic uncertainty within the com-
ponents will lead to reliability bounds (which is called p-box) of
the corresponding system.
This paper uses the area of the p-box to reflect the epistemic uncer-
tainty degree. The lower and upper survival function of the complex
system can be calculated based on the survival signature, which
leads to former area value of p-box AbeforePB . In order to find out
which component or components set is more sensitive to the sys-
tem, the probability bounds analysis which bases on pinching the-
ory is introduced, therefore, the new p-box and AafterPB can be cal-
culated. Two cases have been studied to show applicability of sen-
sitivity analysis for systems under epistemic uncertainty with prob-
ability bounds analysis. There are also some interesting works to do
in the future. For example, the distribution type of Exponential dis-
tribution can be extended to other distribution types. Also, there are
maybe some other methods to represent the epistemic uncertainty
in the systems.
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[22] Bernd Möller and Michael Beer. Fuzzy randomness: un-
certainty in civil engineering and computational mechanics.
Springer Science & Business Media, 2013.

[23] Edoardo Patelli, Diego A Alvarez, Matteo Broggi, and Marco
de Angelis. An integrated and efficient numerical framework
for uncertainty quantification: application to the nasa langley
multidisciplinary uncertainty quantification challenge. In 16th
AIAA Non-Deterministic Approaches Conference (SciTech
2014), pages 2014–1501, 2014.

[24] Edoardo Patelli and Geng Feng. Efficient simulation ap-
proaches for reliability analysis of large systems. In Inter-
national Conference on Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems, pages
129–140. Springer, 2016.

[25] Edoardo Patelli, Geng Feng, Frank PA Coolen, and Tahani
Coolen-Maturi. Simulation methods for system reliability us-
ing the survival signature. Reliability Engineering & System
Safety, 167:327–337, 2017.

[26] Kari Sentz and Scott Ferson. Probabilistic bounding analysis
in the quantification of margins and uncertainties. Reliability
Engineering & System Safety, 96(9):1126–1136, 2011.

[27] Glenn Shafer et al. A mathematical theory of evidence, vol-
ume 1. Princeton university press Princeton, 1976.

[28] Christophe Simon and Philippe Weber. Evidential networks
for reliability analysis and performance evaluation of systems
with imprecise knowledge. IEEE Transactions on Reliability,
58(1):69–87, 2009.

[29] Fulvio Tonon. Using random set theory to propagate epis-
temic uncertainty through a mechanical system. Reliability
Engineering & System Safety, 85(1):169–181, 2004.

[30] Matthias CM Troffaes, Gero Walter, and Dana Kelly. A ro-
bust bayesian approach to modeling epistemic uncertainty
in common-cause failure models. Reliability Engineering &
System Safety, 125:13–21, 2014.

[31] Robert C Williamson and Tom Downs. Probabilistic arith-
metic. i. numerical methods for calculating convolutions and
dependency bounds. International journal of approximate
reasoning, 4(2):89–158, 1990.

[32] Elmar Wolfstetter et al. Stochastic dominance: theory and ap-
plications. Humboldt-Univ., Wirtschaftswiss. Fak., 1993.

[33] Qingyuan Zhang, Zhiguo Zeng, Enrico Zio, and Rui Kang.
Probability box as a tool to model and control the effect of
epistemic uncertainty in multiple dependent competing fail-
ure processes. Applied Soft Computing, 2016.

6


	INTRODUCTION
	PROBABILITY BOX AND SURVIVAL SIGNATURE
	Probability Box
	Survival Signature
	Represent Epistemic Uncertainty by P-box

	PROBABILITY BOUNDS ANALYSIS AS SENSITIVITY ANALYSIS
	NUMERICAL EXAMPLES
	Sensitivity Analysis on Specific Component
	Sensitivity Analysis on Components Set

	CONCLUSIONS
	Acknowledgement
	References

