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Abstract 

 Hyperspectral imaging is a powerful tool to obtain both chemical and spatial 

information of biological systems. However, few algorithms are capable of working with full 

three-dimensional images, in which reshaping or averaging procedures are often performed to 

reduce the data complexity. Herein, we propose a new algorithm of three-dimensional 

principal component analysis (3D-PCA) for exploratory analysis of complete 3D 

spectrochemical images obtained through Raman microspectroscopy. Blood plasma samples 

of ten patients (5 healthy controls, 5 diagnosed with ovarian cancer) were analysed by 

acquiring hyperspectral imaging in the fingerprint region (~780–1858 cm-1). Results show 

that 3D-PCA can clearly differentiate both groups based on its scores plot, where higher 

loadings coefficients were observed in amino acids, lipids and DNA regions. 3D-PCA is a 

new methodology for exploratory analysis of hyperspectral imaging, providing fast 

information for class differentiation.  
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1. Introduction 

In spectrochemical imaging, a spectrum is generated for each pixel in the 

original image, where both spatial and chemical information are considered. The data 

are represented by three-dimensional (3D) arrays for each sample measured, where the 

spatial coordinates are present in the x- and y-coordinates and the wavenumbers in the 

z-coordinate. Thus, each wavenumber response (a 2D image) is stacked up one above 

the other in a manner similar to paper sheets in a book in order to form a 3D object,1 

informally called a “data cube”. 

There are many types of instrumental techniques that generate 3D 

spectrochemical imaging (i.e., multispectral or hyperspectral imaging), e.g., near-

infrared (NIR), infrared (IR), Raman and mass spectrometry (MS).2-5 Several matrices 

have been analysed by using spectrochemical imaging, e.g., food,6,7 soil,8 atmospheric 

particulate matter,9 and tissues.10 Many chemometric techniques can be used for 

analysing this type of data, such as principal component analysis (PCA), partial least 

squares (PLS), multivariate curve resolution (MCR), among others;11,12 however, in 

many cases, reshaping, averaging procedures, and data compression are performed in 

order to reduce dimensionally.11,13 Recently, some adaptations of first-order 

algorithms used for classical spectroscopy data, such as linear discriminant analysis 

(LDA) and PCA, were produced for 2D data obtained via excitation-emission matrix 

(EEM) fluorescence spectroscopy.13,14 These algorithms, named 2D-LDA and 2D-

PCA, are found to have excellent performance using 2D data without using previous 

dimensional reduction techniques,13,14 hence its usage could be extended for chemical 

imaging. 

One of the imaging techniques that has found increasingly applications is Raman 

microspectroscopy.15,16 Raman imaging has been used in a wide range of applications, 
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including investigation of drug delivery systems,17 pharmaceutical analysis,18 food quality 

control,19 and analysis of biological materials.16,20 For instance, in cancer detection, Raman 

imaging has been applied to diagnose breast,4 skin,21 cervical,22 lung,22 and brain cancers.23 A 

major advantage is that the use of Raman imaging provides both chemical and structural 

information of the sample being analysed with minimum water interference. 

Ovarian cancer affects some 7,300 women in the UK alone per year and results in 

around 4,100 deaths per year.24 For standard ovarian cancer diagnosis, women with 

symptoms undergo a pelvic examination followed by measurement of serum cancer antigen 

(CA-125). If symptoms persist in the absence of raised CA-125 levels, an abdominal and 

transvaginal ultrasound is performed.24,25 However, ovarian cancer often presents late 

symptoms in which the cancer has already metastasized within the abdomen, resulting in late-

stage and poor prognoses.24,25 Besides these limitations, the diagnosis tends to be extremely 

invasive, expensive and time-consuming. Therefore, alternative methodologies to detect 

ovarian cancer that can reduce these drawbacks are of major importance, especially towards 

early-stage diagnosis. Herein, we propose a new algorithm of 3D principal component 

analysis (3D-PCA) for hyperspectral image analysis, exemplified in the exploratory analysis 

of plasma samples of healthy controls and ovarian cancer patients analysed by Raman 

microspectroscopy imaging. 

 

2. Methods 

2.1 Samples  

 Ten plasma samples of five healthy controls and five patients diagnosed with ovarian 

cancer were analysed by a Renishaw InVia Basis Raman spectrometer coupled to a confocal 

microscope (Renishaw plc, UK). All experiments were performed in accordance with Royal 
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Preston Hospital Guidelines, and approved by the ethics committee at Royal Preston Hospital 

UK (16/EE/0010). Informed consents were obtained from all human participants of this 

study. For analysis, 50 μL of plasma were deposited on aluminium covered glass slides and 

left to air-dry overnight. Samples were analysed with an acquisition area of 50 μm × 50 μm 

using 50× magnification and a laser power of 100% at 785 nm with 0.1 ms exposure time. 

Hyperspectral images were acquired via StreamHRTM imaging technique (high confocality 

mode) with a grid area of 57 × 57 pixels, resulting in 3,249 spectra in the range of ~780–1858 

cm-1 generated for each image (1 cm-1 data spacing, 1,016 wavenumbers per spectrum). Thus, 

each sample’s image was composed by a data array with dimension 57 × 57 × 1016. 

2.2 Software 

 The Raman images were converted into suitable .txt files using Renishaw 

WiRE software; and processed using MATLAB R2014b (MathWorks, Inc., USA) 

with lab-made routines. All the samples’ images were pre-processed by cosmic rays 

(spikes) removal and Savtizky-Golay smoothing (window of 9 points, 2nd order 

polynomial fitting). All data were mean-centred before further data analysis. A 

personal computer (16 GB of RAM memory, Intel® CoreTM i7 processor 2.81 GHz) 

was used for data processing. 

2.3 3D-PCA 

 PCA is an exploratory analysis technique characterized by the decomposition of a 

given spectral data matrix 𝐗 into a few number of principal component (PCs) responsible for 

the majority of the original data variance. Each PC is orthogonal to each other, being 

composed of scores (projections of the samples on the PC direction) and loadings (angle 

cosines of the variables projected on the PC direction).26-28 The PCA decomposition of a 

spectral matrix 𝐗 into scores (𝐓), loadings (𝐏) and residuals (𝐄) takes the form: 
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𝐗 = 𝐓𝐏T + 𝐄            (1) 

 The scores 𝐓 represent the variability on sample direction; the loadings 𝐏 the 

variability on variables (e.g., wavenumbers) direction; and the residuals 𝐄 the 

unexplained data after decomposition. 𝐓 is used for assessing 

similarities/dissimilarities among the samples in an exploratory analysis context, 

whereas 𝐏 contains the weights for each variable in the decomposition.  

 In 3D-PCA, a regular PCA decomposition (eqn.1) using nonlinear iterative 

partial least squares (NIPALS) algorithm is applied to each point (i,j) on the surface of 

the hyperspectral image data set. However, before PCA, each point in the image is 

transformed into a temporary 2D structure 𝐗𝑖𝑗
∗  having s rows (samples) and k columns 

(variables) in order to keep the scores and loadings with their original meanings: 

𝐗𝑖𝑗
∗ = 𝐓𝑖𝑗𝐏𝑖𝑗

T + 𝐄𝑖𝑗           (2) 

 The number of PCs is selected based on the singular values obtained by 

singular value decomposition (SVD)26 of the hyperspectral imaging, in a similar 

manner as described by Morais and Lima for florescence data.13 After the number of 

PCs is selected, the scores 𝐓𝑖𝑗 and loadings 𝐏𝑖𝑗 are combined for all points (i,j) and 

separated for each PC. Hence, new three-dimensional arrays 𝐓𝒄 (s × n × m) and 𝐏𝒄 (k × 

n × m) are created for each PC, c. Figure 1 illustrate the 3D-PCA graphically. 

[Insert Figure 1 here] 

 

3. Results and Discussion 

Ten plasma samples (5 health controls and 5 of patients diagnosed with ovarian 

cancer) were analysed by Raman microspectroscopy imaging. Their hyperspectral 
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images were generated with dimension of 57 × 57 × 1016, accounting 3,300,984 data 

points for each sample. The hyperspectral images for healthy controls and ovarian 

cancer samples are depicted in Figure 2 and Figure 3, respectively. Notably, each 

image presents distinct visual features, characterized by physical differences, such as 

dents and surface anomalies, of the samples analysed. However, chemically they 

should be grouped into at least two clusters (healthy vs. cancer). 

 [Insert Figure 2 here] 

[Insert Figure 3 here] 

 The images were acquired in the spectral range of ~780–1858 cm-1, which 

includes the fingerprint region; therefore, encompassing Raman signals of the major 

biochemical molecules present in the samples.29 3D-PCA was applied to the pre-

processed images using only 2 PCs (34.23% cumulative explained variance) (Table 1). 

The 3D-PCA took approximately 1 min to run the entire data set, which accounted to 

more than 33 million of data points (10 images × 3,300,984 data points/image), using 

a standard personal computer. The 3D-PCA scores on PC1 and PC2 are shown in 

Figure 4. 

[Insert Table 1 here] 

[Insert Figure 4 here] 

The scores on PC1 and PC2 across the x-axis (Figure 4A and 4B, respectively) show a 

separation tendency between healthy controls and ovarian cancer patients. However, a across 

the y-axis, the scores on both PC1 and PC2 are very noisy (Figure 4C and 4D, respectively); 

although, a separation pattern is observed on the scores on PC2 (Figure 4D). Combining the 

average scores on PC1 and PC2, the PC1 vs. PC2 scores plot (Figure 4E) shows a clear 

formation of two clusters separated along both PC1 and PC2. Healthy control patients are 
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located in the bottom-right side of the graph, while ovarian cancer patients on the upper-left 

side. Only one ovarian cancer sample is within the healthy control cluster. Figure 5 shows the 

boxplots for comparing the 3D-PCA scores individually along the axis and averaged. In all 

cases, statistical difference between healthy controls and ovarian cancer patients were 

observed at a 95% confidence level (p <0.05): p ≈ 10-25 for scores on PC1 across x-axis 

(Figure 5A); p ≈ 10-27 for scores on PC2 across x-axis (Figure 5B); p ≈ 10-46 for scores on 

PC1 across y-axis (Figure 5C); p ≈ 10-100 for scores on PC2 across y-axis (Figure 5D); p ≈ 

0.004 for average scores on PC1 (Figure 5E); and p ≈ 0.002 for average scores on PC2 

(Figure 5F).  

[Insert Figure 5 here] 

The loadings profiles show larger coefficients around the Raman shift at 1400 

cm-1 for PC1 (Figure 6A), a region containing N-H in-plane deformation and (C=O)-

O- stretching in amino acids; and at ~1800 cm-1 and ~825 cm-1 representing C=O 

stretching in lipids and O-P-O stretching vibration in DNA, respectively.30 Vibrations 

around 820 cm-1 and 1400 cm-1 have been reported as protein biomarkers for cervical 

tumours.30,31 

 [Insert Figure 6 here] 

 The fast data processing and clear scores segregation between healthy controls 

and ovarian cancer patients depicts the power of 3D-PCA as an exploratory analysis 

method for assessing between-samples differences in hyperspectral images. Even 

being an unsupervised method, statistical differences were found at a 95% confidence 

level between the 3D-PCA scores of the two different classes, indicating its potential 

usage towards classification applications. However, to build proper classification 

models in this case, a large cohort should be analysed by means of supervised 
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classification techniques, which can be easily adapted to 3D-PCA by employing 

discriminant analysis techniques32 or support vector machines33 to the 3D-PCA scores. 

 

4. Conclusion 

 This paper reports a new 3D-PCA algorithm applied for exploratory analysis of 

plasma samples of healthy controls and ovarian cancer patients. Ten samples (5 

healthy controls and 5 ovarian cancer) were analysed by Raman miscrospectrocopy 

imaging in the region of ~780–1858 cm-1, generating data tensors with size of 57 × 57 

× 1016 data points. 3D-PCA was applied to the whole dataset, generating scores 

showing clear differences between the two classes on both PC1 and PC2; and the 

loadings profiles on these components indicate that the main biomarker contributing 

for class differentiation are amino acids, lipids and DNA. 3D-PCA provided fast 

exploratory analysis for hyperspectral data, having potential for future applications in 

other types of spectrochemical imaging techniques. 
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Captions for Figures 

 

Figure 1: Illustration of data processing using 3D-PCA. d represents the z-axis coordinate 

dimension with size of k (number of wavenumbers) × s (number of images); n the number of 

pixels in the x-axis coordinate; m the number of pixels in the y-axis coordinate; and c the 

number of principal components (PCs). 

Figure 2: Raman hyperspectral images of healthy control samples. 

Figure 3: Raman hyperspectral images of ovarian cancer samples. 

Figure 4: 3D-PCA scores plot. (A) Scores on PC1 and (B) PC2 across x-axis; (C) scores on 

PC1 and (D) PC2 across y-axis; (E) average scores on PC1 versus PC2. HC: healthy controls 

(in blue); OC: ovarian cancer (in red). 

Figure 5: Boxplots for 3D-PCA scores. (A) Scores on PC1 across x-axis (p = 1.903×10-25); 

B) scores on PC2 across x-axis (p = 4.884×10-27); C) scores on PC1 across y-axis (6.118×10-

46); (D) scores on PC2 across y-axis (6.239×10-100); (E) average scores on PC1 (p = 0.004); 

(F) average scores on PC2 (p = 0.002). HC: healthy controls; OC: ovarian cancer. 

Figure 6: 3D-PCA loadings. (A) Loadings on PC1; (B) loadings on PC2. 
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Tables 

Table 1. Explained variance for 3D-PCA. 

PC Explained variance (%) Cumulative explained variance (%) 

1 20.78 20.78 

2 13.45 34.23 

3 11.34 45.57 

4 10.32 55.88 

5 9.61 65.50 

6 9.12 74.62 

7 8.73 83.34 

8 8.46 91.80 

9 8.20 100 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

 


