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Abstract—This paper discusses the implementation of the 

boundary element method (BEM) on an Excel spreadsheet and how it 
can be used in teaching vector calculus and simulation. There are two 

separate spreadsheets, within which Laplace equation is solved by the 

BEM in two dimensions (LIBEM2) and axisymmetric three 

dimensions (LBEMA). The main algorithms are implemented in the 
associated programming language within Excel, Visual Basic for 

Applications (VBA). The BEM only requires a boundary mesh and 

hence it is a relatively accessible method. The BEM in the open 

spreadsheet environment is demonstrated as being useful as an aid to 
teaching and learning. The application of the BEM implemented on a 

spreadsheet for educational purposes in introductory vector calculus 

and simulation is explored. The development of assignment work is 

discussed, and sample results from student work are given. The 
spreadsheets were found to be useful tools in developing the students’ 

understanding of vector calculus and in simulating heat conduction.  
 

Keywords—Boundary element method, Laplace equation, vector 
calculus, simulation, education 

I. INTRODUCTION 

OR some time, the spreadsheet has been utilised by 

scientists and engineers as a powerful environment for 

exploring numerically-based topics. There are a number of 

spreadsheet packages available, but the most prevalent one at 

the time of writing is Microsoft Excel. The interactive nature of 

the spreadsheet, and the immediacy of data and graphs, is the 

basis of its usefulness as a tool for exploring a topic in science 

and engineering, and hence its educational predisposition. 

There are a number of texts on the application of Excel to 

scientific and engineering problems available [1]-[3]. These 

texts are a learning resource in which the authors’ clearly regard 

the spreadsheet environment as conducive to education. A 

recent paper by Niazkar and Afzali [4] reviews various recent 

application areas for spreadsheets. The usefulness of 

spreadsheet applications in enhancing engineering education 

has been the subject of research at the University or Central 

Lancashire for some time [5], [6]. 

The spreadsheet is useful for evaluating formulae, a facility 

that is required in mathematics, science and engineering. 

However, when mathematical models include, for example, 

integrals, differential equations or integral equations then, in 

general, numerical methods are required. The spreadsheet 

environment has also been explored for implementing 

numerical methods, including educational purposes [3], [7]-[9]. 

A wide-ranging set of problems in science and engineering is 

modelled by partial differential equations (PDEs). PDEs 
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generally provide a physical model within a prescribed spatial 

domain in one, two or three dimensions, and often also in time. 

The spreadsheet naturally lends itself to the lower dimensional 

problems, given the two-dimensional nature of the computer 

screen and spreadsheet environment. The spreadsheet is 

therefore most applicable for the educational side of PDEs, and 

perhaps restrictive for the three-dimensional domains that will 

be encountered in practice. 

In this work, the BEM [10] is implemented in Excel. The 

BEM is a method for solving PDEs. The BEM is not as widely-

applicable as the more well-known methods for solving PDEs - 

the finite element method and the finite difference method. 

However, the BEM has the special property that only the 

boundary requires discretisation, and hence, the BEM is often 

viewed as potentially more efficient than the alternative 

methods, as less elements or nodes are required. More 

importantly, particularly from the user or educational viewpoint 

of this work, the requirement to only mesh the boundary also 

means that the BEM is a significantly more accessible method. 

There has been little development of the BEM in a spread-

sheet environment for some time. The main work in this area is 

that of Davies and Crann in the 1990s [11]. The work of Davies 

and Crann was focused on using the Excel spreadsheet to teach 

the BEM itself. Whilst the work in this paper may be extended 

to that aim, the focus on the educational purpose of the BEM 

implemented on a spreadsheet is that its accessibility facilitates 

teaching and learning in elementary vector calculus and 

simulation. The motivation for the work of Davies and Crann 

was that of using the spreadsheet to direct students of the BEM 

to focus on the implementation stages of the method itself, 

rather than on the development of computer code. In this paper, 

the focus is not just on hiding the complexity of coding the 

BEM, but also hiding the BEM itself so that students are not 

distracted from learning about vector calculus and elementary 

simulation. 

Spreadsheets have been available for several decades. Davies 

and Crann state that their implementation of the BEM could be 

transferred from Excel to other spreadsheet products, 

emphasising the portability of their work. However, spread-

sheets evolve, with new versions every few years, and there is 

a concern about the maintenance of applications. In this work, 

the main computations are carried out using the programming 

language VBA, that accompanies the Excel spreadsheet and can 

be activated from the spreadsheet. The sheets and cells of the 

accompanying spreadsheets are only used to set the input, 

communicate the output, and hold intermediate data. The 
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outcome of this approach is that greater generality can be 

established, and the codes are as maintainable as any computer 

codes. The Excel spreadsheets in this work are more 

maintainable than the works of Davis and Crann but are not 

transferable between various spreadsheet platforms. 

The simplest equation that can be solved by the BEM is the 

Laplace equation. The spreadsheet of Davis and Crann solves 

Laplace equation in a two-dimensional interior domain. In this 

work, a spreadsheet LIBEM2.xlsm that enables the solution of 

Laplace equation in the two-dimensional interior domain and a 

spreadsheet LBEMA.xlsm that solves Laplace equation in 

axisymmetric three-dimensions are introduced. LIBEM2 and 

LBEMA are available and free to download from the author’s 

website [8] as open-source. LIBEM2 was used as a practical 

tool in a lecture course given by the author at the LD College of 

Engineering in Ahmedabad [12] and LIBEM2 and LBEMA 

have recently been used in assignments for year two and year 

three School of Engineering (SC2153 and SC3007) students at 

the University of Central Lancashire. This work extends the 

author’s previous work on development and communication in 

the BEM [10], [13]-[16]. 

In this paper, the boundary integral equations for the solution 

of the interior two-dimensional Laplace equation are outlined 

in Section II. In Section III, it is shown that these equations can 

be discretised in order to develop the equations that are the basis 

of the two-dimensional BEM. LIBEM2, the spreadsheet for 

solving two-dimensional interior Laplace problems, is 

introduced in Section IV. In Section V, the work is extended to 

axisymmetric three-dimensional problems, and the LBEMA 

spreadsheet is introduced. The educational application of the 

spreadsheets in the area of vector calculus and simulation is 

considered in Section VI with the results from the students’ 

assignment work.  

II. THE BOUNDARY INTEGRAL EQUATION FORMULATION FOR 

2D INTERIOR PROBLEMS 

In this section, the boundary element solution of Laplace 

equation: 
 

∇2𝜑 = 0 ,                                (1) 

 

for two-dimensional problems, and axisymmetric three-

dimensional problems is outlined. Traditionally, there have 

been two variations of the BEM, termed the Direct Method and 

the Indirect Method. Since there is a vast overlap in the 

computation in these methods, and for the long-term various 

uses of the spreadsheets, both methods are implemented. 

LIBEM2 solves the interior Laplace problem in two-

dimensional space and is effectively the ‘entry level’ for 

learners. 

A. Integral Equation Formulations of the 2D Interior 

Laplace Problem 

For the interior problem, Laplace equation (1) governs the 

interior domain D enclosed by a boundary S, as shown in Fig. 

1. The solution must also satisfy a boundary condition, and it is 

important in terms of maintaining the generality of the method 

that this is in a general (Robin) form: 

𝛼(𝒑)𝜑(𝒑) + 𝛽(𝒑)
𝜕𝜑

𝜕𝑛𝑝
(𝒑) = 𝑓(𝒑)     (𝒑 ∊ 𝑆).         (2) 

 

 

Fig. 1 Illustration of the interior domain [10] 

 

In the direct BEM, Laplace equation is replaced by an 

equivalent integral equation of the form: 
 

∫
𝜕𝐺(𝒑,𝒒)

𝜕𝑛𝑞𝑆
 𝜑(𝒒)𝑑𝑆𝑞 +

1

2
𝜑(𝒑) = ∫ 𝐺(𝒑, 𝒒)

𝜕𝜑(𝒒)

𝜕𝑛𝑞𝑆
 𝑑𝑆𝑞         (𝒑 ∊

𝑆). (3a) 
 

∫
𝜕𝐺(𝒑,𝒒)

𝜕𝑛𝑞𝑆
 𝜑(𝒒)𝑑𝑆𝑞 + 𝜑(𝒑) = ∫ 𝐺(𝒑, 𝒒)

𝜕𝜑(𝒒)

𝜕𝑛𝑞𝑆
 𝑑𝑆𝑞             (𝒑 ∊

𝐷). (3b) 

 

The terminology 
𝜕∗

𝜕𝑛𝑞
 represents the partial derivative of the 

function * with respect to the unit outward normal at the point 

q on the boundary. The function G is known as a Green’s 

function. Physically, G(p, q) represents the effect observed at a 

point p of a unit source at the point q. For the Laplace equation, 

the Green’s function is denoted by G and is defined as 𝐺(𝐩, 𝐪) =

−
1

2𝜋
ln 𝑟  for two-dimensional Laplace problems, where 𝑟 =

|𝒒 − 𝒑|. 
The equivalent indirect formulation is obtained by writing 

𝜑(𝒑) as a single layer potential: 
 

𝜑(𝒑) = ∫ 𝐺(𝒑, 𝒒) 𝜎(𝒒)
𝑆

 𝑑𝑆𝑞        (𝒑 ∈ 𝑆⋃𝐷),       (4a) 

 

where the boundary function 𝜎 is the single layer potential with 

no particular physical representation. By differentiating with 

respect to the outward normal to the boundary for a point  𝒑 ∈
𝐷 and taking the limit, as the point approaches the boundary 

along a normal, returns the following equation: 
 

𝜕𝜑(𝒑)

𝜕𝑛𝑝
= ∫

𝜕𝐺(𝒑,𝒒)

𝜕𝑛𝑞𝑆
 𝜎(𝒒)𝑑𝑆𝑞 +

1

2
𝜎(𝒑)    (𝒑 ∈ 𝑆).       (4b) 

B. The Integral Equation Formulations in Operator Notation 

Integral operators provide a useful shorthand notation for 

writing integral equations and form a useful basis for 

generalisation in developing BEM software. Applying the 

integral operator to a function ζ, defined on a boundary Г, 
 

∫ 𝐺(𝒑, 𝒒)𝜁(𝒒)𝑑𝑆𝑞 = µ(𝒑),
Г

 

 

returning a function µ. This may be written in a simplified form, 
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{𝐿𝜁}Г(𝐩) = µ(𝐩), (5) 
 

where 𝐿 represents the integral operator and the subscript (Г) 

refers to the domain of integration. Г is used as a variable, 

representing either a whole boundary or a part of the boundary.  

The other Laplace integral operators required in this work are 

defined as follows: 
 

{𝑀𝜁}Г(𝒑) = ∫
𝜕𝐺(𝒑,𝒒)

𝜕𝑛𝑞
 𝜁(𝒒)𝑑𝑆𝑞Г

 ,                   (6) 

 

{𝑀𝑡𝜁}Г(𝒑; 𝒗𝑝) =
𝜕

𝜕𝑣𝑝
∫ 𝐺(𝒑, 𝒒) 𝜁(𝒒)𝑑𝑆𝑞Г

 ,           (7) 

 

where 𝒗𝑝 is any unit vector.  

In operator notation, the direct integral equation formulation 

(3a) and (3b) can be written in the following form: 
 

{(𝑀 +
1

2
 𝐼) 𝜑}𝑆(𝒑) = {𝐿𝑣}𝑆(𝒑)      (𝒑 ∈ 𝑆) ,         (8a) 

 

𝜑(𝒑) = {𝐿𝑣}𝑆 − {𝑀𝜑}𝑆       (𝒑 ∊ 𝐷),               (8b) 
 

where 𝑣(𝒒) =
𝜕𝜑(𝒒)

𝜕𝑛𝑞
 . Similarly, for the indirect formulation 

(4a) and (4b), 
 

𝜑(𝒑) = {𝐿𝜎}𝑆      (𝒑 ∊ 𝑆⋃𝐷),                   (9a) 
 

𝑣(𝒑) = {(𝑀𝑡 +
1

2
𝐼) 𝜎}𝑆      (𝒑 ∊ 𝑆).             (9b) 

III. THE BEM FOR 2D PROBLEMS 

The boundary 𝑆 is assumed to be expressed and 

approximated by a set of panels: 
 

𝑆 ≈ 𝑆̃ = ∑ ∆𝑆𝑗̃.𝑛
𝑗=1                            (10) 

 

Usually the panels have a characteristic form and cannot 

represent a given boundary exactly. The simplest method of 

achieving this is through each ∆𝑆𝑗̃ being a straight line, and this 

is the method that is used in LIBEM2. Fig. 2 illustrates this 

method of approximation on the boundary in Fig. 1. 
 

 

Fig. 2 The boundary represented by a set of straight-line panels [10] 

 

The functions defined on the boundary, that occur in the 

boundary integral equation formulations, are also represented 

or approximated by a simple functional form on each panel, for 

example in the method of collocation. In this work, the 

boundary functions are represented by a constant on each panel, 

with the collocation point at the centre. The element is defined 

by the form of the panel and the representation the boundary 

functions. 

A. Direct and Indirect BEMs 

As stated earlier, the first stage of the BEM involves finding 

further information on the boundary S. For the direct BEM 

solution of the interior Laplace problem, that is developed in 

this section, the initial stage involves solving the boundary 

integral equation (3a), returning (approximations to) both 𝜑 and 
𝜕𝜑

𝜕𝑛
 on S. The second stage of the BEM involves finding the 

solution at any chosen points in the domain. The substitution of 

representations for the boundary functions in the integral 

equation reduces it to discrete form. 

The simplifications allow us to re-write (8a) as the 

approximation  
 

∑ {(𝑀 +
1

2
𝐼) 𝑒}𝛥𝑆𝑗̃

𝑛
𝑗=1 (𝒑) 𝜑𝑗 ≈  ∑ {𝐿𝑒}𝛥𝑆𝑗̃

𝑛
𝑗=1 (𝒑) 𝑣𝑗      (𝒑 ∊ 𝑆̃)  

 

where e is the unit function (e ≡1).  

The boundary function is approximated or represented by a 

constant located at the central point of each panel (the 

collocation point). Computing the discrete forms of the relevant 

integral operators, with 𝒑 taking the value of all the collocation 

points, results in the following system 
 

∑ {(𝑀 +
1

2
𝐼) 𝑒}𝛥𝑆𝑗̃

𝑛
𝑗=1 (𝒑𝑆𝑖) 𝜑𝑗 ≈   ∑ {𝐿𝑒}𝛥𝑆𝑗̃

𝑛
𝑗=1 (𝒑𝑆𝑖) 𝑣𝑗  

                                                      (𝒑𝑆𝑖 ∊ 𝑆̃) 
 

for i = 1, 2, ..., n is obtained, by putting 𝒑 = 𝒑𝑆𝑖 in the previous 

approximation.  
This system can now be written in the matrix-vector form, 
 

(𝑀𝑆𝑆 +
1

2
I) 𝜑̂𝑆 = 𝐿𝑆𝑆𝑣𝑆  (11) 

 

with the matrix components defined by [𝐿𝑆𝑆]𝑖𝑗 = {𝐿𝑒}𝛥𝑆𝑗̃
(𝒑𝑆𝑖),

[𝑀𝑆𝑆]𝑖𝑗 = {𝑀𝑒}𝛥𝑆𝑗̃
(𝒑𝑆𝑖). The vectors 𝜑̂𝑆 and 𝑣𝑆 are representative 

or approximate values of φ and 𝑣 at the collocation points. In 

the first stage of the BEM, the system (11) is solved alongside 

the discrete form of the boundary condition (2): 
 

𝛼𝑖𝜑𝑖 + 𝛽𝑖𝑣𝑖 = 𝑓𝑖   for 𝑖 = 1,2, … , 𝑛.               (12) 
 

The matrix components in (11) are definite integrals that 

usually need to be computed by numerical integration. On 

solution of (11) and (12), the approximation to the boundary 

data is known at the collocation points. 

Once the approximations to the functions on the boundary 

are known, after completing the initial stage of the direct BEM, 

the domain solution can be found. In the case of the interior 

Laplace problem, equation (3b/8b) will yield the domain 

solution. Similarly, the discrete equivalent of (8b) may be 

derived: 
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𝜑̂𝑃 = 𝐿𝑃𝑆 𝑣̂𝑆 − 𝑀𝑃𝑆 𝜑̂𝑆  (13) 

 

where [𝐿𝑃𝑆]𝑖𝑗 = {𝐿𝑒}𝛥𝑆𝑗̃
(𝒑𝐷𝑖), [𝑀𝑃𝑆]𝑖𝑗 = {𝑀𝑒}𝛥𝑆𝑗̃

(𝒑𝐷𝑖) and 

the 𝒑𝐷𝑖 are the points in the domain 𝐷, where the solution is 

sought. 

Similarly, for the indirect method, the discrete forms of (9a) 

and (9b), for obtaining the approximation to the boundary 

functions, are as follows 
 

𝜑̂𝑆 = 𝐿𝑆𝑆𝜎̂𝑆,                                  (14a) 

 

𝑣𝑆 = (𝑀𝑆𝑆
𝑡 +

1

2
𝐼) 𝜎̂𝑆 ,                          (14b) 

 

where the 𝑀𝑆𝑆
𝑡  matrix is the discrete equivalent of the 

𝑀𝑡operator, defined in a similar way as the matices 𝐿𝑆𝑆 and 𝑀𝑆𝑆 

for their respective operators. Equations (14) are solved 

simultaneously with the discrete boundary condition (12) in 

order to compute the approximation to the layer potential  𝜎̂𝑆. 

The solution at the domain points can then be found using the 

discrete equivalent of (9a): 
 

𝜑̂𝑃 = 𝐿𝑃𝑆𝜎̂𝑆.                               (14c) 

IV. LIBEM2: THE SOLUTION OF THE 2D LAPLACE EQUATION 

IN EXCEL 

In this section, the Excel spreadsheet LIBEM2 is introduced. 

This spreadsheet solves the two-dimensional interior Laplace 

problem for a domain of any shape and with a generalised 

boundary condition. The Laplace problem is input from the first 

sheet Set Problem; the boundary, boundary condition and the 

interior points (at which the solution is sought) are all input 

from this sheet. The sheet Sketch illustrates the boundary and 

the interior points and hence is most useful for visually 

checking for geometrical errors. The spreadsheet allows for 

internal boundaries, as we will see with the test problems, and 

the sheet Closed Boundaries separates these, and this sheet is 

also useful for checking the geometry. The computed solutions 

are returned to the sheets Direct Solution and Indirect Solution. 

The focus of this paper is on using the spreadsheet to teach 

vector calculus and simulation and, for these purposes, the 

student does not need to go beyond these areas of the 

spreadsheet. 

The computations within the BEM are activated from buttons 

on the Set Problem sheet. These computations are carried out 

using the VBA programming language that accompanies Excel. 

In the previous section, it was shown that the BEM involves 

evaluating matrices and solving the ensuing systems of 

equations. The data corresponding to these are placed on 

identified sheets of the spreadsheet. These are useful for 

students learning the BEM, but they are not required for the 

purposes of this paper. 

The matrices that were introduced in the previous section, 

that are computed when the method is executed, are listed on 

the individual sheets, each labelled with the corresponding 

identifier. The solution of the equations corresponding to the 

direct problem requires a column-exchanging method. Both 

methods require the LU factorisation of the resulting system 

and the data recording this is also stored on various sheets. If 

𝑓(𝒑) is changed in the boundary condition, then these values 

may be placed on the New Condition sheet, and the results from 

this may be computed in a fraction of the time that is required 

to execute a new problem from the Set Problem sheet. 

However, none of the information in this paragraph is required 

for the purposes of teaching and learning vector calculus and 

simulation. 

A. Test Problem 

In order to introduce the spreadsheet, a simple test problem 

is placed on the Set Problem sheet. The problem is illustrated in 

Fig. 3, in which the boundary is a unit square, and the Dirichlet 

boundary conditions φ=10 and φ=20 are placed on the left and 

right sides of the square and the Neumann boundary condition 

of  ∂φ/∂n=0 is set on the upper and lower sides. The interior 

points, at which the solution is sought, are also shown in Fig. 3, 

these are the points (0.25, 0.25), (0.75, 0.25),(0.25, 0.75), 

(0.75,0.75) and (0.5, 0.5). 
 

 

Fig. 3 The 2D Test Problem 

 

From the mathematical point of view, the solution is 𝜑 =
10 + 𝑥. This can easily be shown to be a solution of Laplace 

equation and satisfying the left and right boundary condition. 

Given the identity 
𝜕𝜑

𝜕𝑛
=  ∇𝜑. 𝒏, it can be shown that the 

Neumann conditions are also satisfied as ∇𝜑 = (
10
0

) and 𝒏 =

(
0
1

) for the upper surface and 𝒏 = (
0

−1
) for the lower surface. 

The solutions at the interior points are 𝜑 = 12.5, 15, and 17.5. 

In order to motivate the practical application of the 

spreadsheet, the test problem may also be considered in a 

physical or engineering sense, and it is useful to relate the 

physical with the mathematical solution. For example, it may 

be interpreted as a steady-state heat conduction problem, with 

𝜑 as the temperature. The square may be thought of as a metal 

plate (insulated on the planar surfaces or a square prism), with 

the set temperature of 10 °C on the left side and 20 °C on the 

right side. The ∂φ/∂n=0 on the upper and lower sides may be 

interpreted as no heat flow or insulation. The solution is just as 

anyone would expect, with 𝜑 = 12.5 °C, 15 °C, or 17.5 °C at 

the selected interior points. 
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B. Setting up the Test Problem on the Spreadsheet 

The boundary is defined on the spreadsheet by a set of nodes 

and panels that are defined in the Nodes and Panels columns of 

the spreadsheet. The method for describing the boundary is 

illustrated in Fig. 4. The outer boundary must be defined in the 

clockwise direction (if there are any inner boundaries then they 

must be defined in the counter-clockwise direction). For the test 

problem above, with the boundary of the unit square, the nodes 

on the boundary are enumerated 1, 2, 3, 4, with the first node 

having coordinates (0,0.000). 
 

 

Fig. 4 The nodes and panels that describe the boundary 

    

If the square is defined by 32 panels of equal size then the 

node 2 has coordinates (0,0.125), as shown in Fig. 4. The 

coordinates of nodes 3 and 4 are also illustrated. 32 nodes are 

required. Each panel is defined by linking two nodes. For 

example the panel ① links node 1 to node 2, panel ② links 

node 2 with node 3. Finally, panel  links node 32 with node 

1. In general, when defining each panel, proceeding from the 

first node that defined the panel to the second node, the interior 

is on the left. On the Set Problem sheet of the spreadsheet the 

boundary is defined in the columns Nodes and Panels. For the 

test problem, there are 32 nodes and panels, and this is stated at 

the top of the respective column. The coordinates of each node 

and the nodes that make up the panels are listed. 

The definition of the boundary is the most critical part in 

setting up the problem; errors in this can have a catastrophic 

effect on the accuracy of the answer. The spreadsheet has a 

number of methods for checking the boundary data is 

satisfactory, with appropriate error messages when issues are 

noted. The button <Check boundary data…> on the Set 

Problem sheet enables the user to carry out a check on the 

boundary before executing the BEM. This also creates a 

diagram of the boundary on the Sketch sheet, with the chosen 

interior points plotted within. Below the button is the Panel 

Centres column that is also completed when the button is 

activated. This column is populated with the coordinates of the 

centre of each panel which can be helpful in setting boundary 

conditions, as the 𝑥 and 𝑦 values can be readily substituted into 

an analytic solution of Laplace equation or its derivative on the 

boundary. 

The column following Panels on the Set Problem sheet is for 

setting the boundary condition. The boundary condition is 

applied to each individual panel and so the number of panels 

and their indices are copied from the Panels column and are in 

cells shaded blue. The boundary condition has the discrete form 

(12), with 𝛼𝑖, 𝛽𝑖 and 𝑓𝑖  defined on the panels for 𝑖 = 1, 2, … , 𝑛. 

In general, the functions α(𝐩), β(𝐩) and f(𝐩) vary on each 

panel and their representative value is determined as the value 

at the centre of the panel. Similarly, in setting up test problems 

with analytic solutions φ(𝐩) and 
𝜕𝜑(𝒑)

𝜕𝑛
 are functions of x and y, 

determined at the centres of the panels, that are listed in the 

Panel Centres column. 

The Dirichlet boundary condition φ = 10 on the left-hand 

side of the square, for the first eight panels, is achieved by 

putting 𝛼𝑖 = 1, 𝛽𝑖 = 0 and 𝑓𝑖 = 10 for 𝑖 = 1,2, … , 8. The 

Neumann boundary condition on the upper side on the square 

may be effected by putting 𝛼𝑖 = 0, 𝛽𝑖 = 1 and 𝑓𝑖 = 0 for 𝑖 =
9,10, … , 16. Similarly for panels 17 to 32, and the values are 

listed in the Boundary Condition column. 

C. Running the Test Problem and Interpreting the Results 

The buttons on the left activate the computation of the 

solution. The button <Form BEM Matrices L_SS, M_SS, Mt_SS, 

L_PS, M_PS> activates the computation of the matrices 𝐿𝑆𝑆, 

𝑀𝑆𝑆, 𝑀𝑆𝑆
𝑡 , 𝐿𝑃𝑆 and 𝑀𝑃𝑆, introduced in the previous section. The 

buttons <Direct Solution> and <Indirect Solution> activate the 

computation of the solutions via the direct and indirect BEM. 

The solutions are listed on the Direct Solution and Indirect 

Solution sheets. The column phi_D lists the solution at the 

chosen interior points and the results from this test are listed in 

Table I. The boundary solution is also listed on the same sheet 

in the column ‘Solution on S’. This echoes the input boundary 

condition, with 𝜑 = 10 on the first eight panels and 
𝜕𝜑

𝜕𝑛
= 0 on 

the next eight panels etc. The results show the steady increase 

in 𝜑 from 10 to 20, moving right along the upper and lower 

sides. The results also show, for example, that 
𝜕𝜑

𝜕𝑛
≈ −10 on the 

left side and this can be verified with 𝛻𝜑 = (
10
0

) and 𝑛 =

(
−1
0

) and hence, analytically, 
𝜕𝜑

𝜕𝑛
=  𝛻𝜑. 𝑛 =  −10.  

 
TABLE I 

COMPARISON OF COMPUTED AND EXACT RESULTS FOR SQUARE TEST 

Point Exact Direct Indirect 

(0.25,0.25) 12.5 12.4957 12.4838 

(0.5,0.5) 15 15.0000 14.9836 

(0.25, 0.75) 17.5 17.5043 17.4780 

 

With the author’s experience in teaching with this 

spreadsheet, and through guiding students in setting up and 

running their own problems, it is useful to reinforce the 

mathematics of the solution of Laplace equation and the 

calculation of 
𝜕𝜑

𝜕𝑛
 with this very simple initial test problem. It is 

important that students are aware that the results are 

approximations and to compare analytic with numerical 

solutions. However, there is also a significant opportunity to 

attach physical meaning to the results, as discussed earlier, and 

this also prepares the students in applying the spreadsheet to 

practical problems in their own work. Returning to the heat 

conduction model, the internal approximations to the 

temperature are as expected. The results for 
𝜕𝜑

𝜕𝑛
 also indicate the 
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flow of heat in and out of the domain, and, since the model is at 

steady-state, the flow of heat in must be equal to the flow of 

heat out. 

V. THE BEM FOR AXISYMMETRIC 3D PROBLEMS AND LBEMA 

In this section, the BEM is developed for interior and exterior 

axisymmetric problems. The implementations of the BEM on 

the LBEMA spreadsheet are outlined and demonstrated with 

test problems. 

A. The BEM for Axisymmetric 3D Laplace Problems and 

LBEMA.xlsm 

In three dimensions, the same operator notation (5-7) is used, 

except with Γ representing a whole or partial surface and with 

𝐺 as the Green’s function for the three-dimensional Laplace 

equation 
 

𝐺(𝒑, 𝒒) =
1

4𝜋𝑟
                                (15) 

 

where 𝑟 is the distance between the points 𝒑 and 𝒒, 𝑟 = |𝒑 − 𝒒|. 
With these changes of definition, the integral equation 

reformulation of the interior Laplace problem is the same as 

those for two-dimensional problems (8) and (9). 

In exterior three-dimensional problems, Laplace equation is 

solved in the domain 𝐸 exterior to a surface 𝑆. The integral 

equation reformulation for exterior problems is similar, but with 

sign changes. In operator notation, the direct integral equation 

formulation (3a) and (3b) are as follows: 
 

{(𝑀 −
1

2
 𝐼) 𝜑}𝑆(𝒑) = {𝐿𝑣}𝑆(𝒑)      (𝒑 ∈ 𝑆),       (16a) 

 

𝜑(𝒑) = {𝑀𝜑}𝑆 −  {𝐿𝑣}𝑆     (𝒑 ∊ 𝐸)               (16b) 
 

where 𝑣(𝒒) =
𝜕𝜑(𝒒)

𝜕𝑛𝑞
. The indirect formulation is as follows 

 

𝜑(𝒑) = {𝐿𝜎}𝑆      (𝒑 ∊ 𝑆⋃𝐸),                     (17a) 
 

𝑣(𝒑) = {(𝑀𝑡 −
1

2
𝐼) 𝜎}𝑆      (𝒑 ∊ 𝑆).               (17b) 

 

In order to activate the method, the axisymmetric boundary 

is approximated by a set of truncated conical panels. 

Collocation is applied and, with the changes in some definitions 

as described, the discrete equations for the interior problem are 

the same as those for the 2D problem (11)-(14). 

For the exterior problem, the discrete equivalents of equation 

(16a) and (16b) are as follows: 
 

(𝑀𝑆𝑆 −
1

2
I) 𝜑̂𝑆 = 𝐿𝑆𝑆𝑣𝑆,                        (18a) 

 

𝜑̂𝑃 = 𝑀𝑃𝑆 𝜑̂𝑆 − 𝐿𝑃𝑆 𝑣𝑆.                          (18b) 

 

Similarly, for the indirect method, the discrete equivalent of 

(17a) and (17b) is 
 

𝜑̂𝑆 = 𝐿𝑆𝑆𝜎̂𝑆,                                  (19a) 

 

𝑣𝑆 = (𝑀𝑆𝑆
𝑡 −

1

2
𝐼) 𝜎̂𝑆 ,                          (19b) 

 

𝜑̂𝑃 = 𝐿𝑃𝑆𝜎̂𝑆.                                 (19c) 

 

In the equations above, for the exterior problem, 𝜑̂𝑃 

represents the approximation to the solution at the selected 

exterior points.  

B. Test Problems and Their Implementation on the LBEMA 

Spreadsheet 

The LBEMA spreadsheet has a very similar format as 

LIBEM2. However, in this case, there are two example sheets 

for setting the problem, the first is an interior problem and the 

second is an exterior problem and these sheets have the titles 

Set Interior Problem and Set Exterior Problem. On the Set … 

Problem sheets the four columns Nodes, Panels, Boundary 

Condition and Interior/Exterior points communicate the test(s) 

to the spreadsheet program in a similar way. The button <Check 

Boundary. Find panel centres and sketch> similarly checks the 

validity of the boundary, completes the Panel Centres column 

and the Sketch sheet. The panels are defined in a similar way as 

in LIBEM2. However, in this case, the panels are truncated 

cones, with the two nodes on the generator, with (𝑟, 𝑧) 

coordinates in Nodes, defining the panel. The two nodal indices 

define the panel in Panels, with the interior to the right when 

the nodes are in order. 

The buttons on the right activate the computation of the BEM 

matrices and calculate the direct and indirect boundary element 

solution on the appropriate sheets. The spreadsheet can solve 

both the interior and exterior Laplace equation and on the top 

left corner of the spreadsheet the value TRUE is placed in order 

to indicate an interior problem and FALSE in order to indicate an 

exterior problem.  

Interior Test Problem 

The interior test problem is set up on the Set Interior Problem 

sheet in LBEMA. The initial test surface is a cylinder, with the 

generator linking the upper centre (𝑟, 𝑧) = (1,0) to the upper 

edge (1,1) to the lower edge (1,0) and to the lower centre (0,0).  

The boundary condition that is applied is 𝜑=20 on the upper 

surface, 𝜑=10 on the lower surface and 
𝜕𝜑

𝜕𝑛
= 0 on the curved 

surface. As with the 2D example, there is a straightforward heat 

conduction analogy and the expected interior solutions are 12.5, 

15 and 17.5. The results from LIBEMA are given in Table II. 

Exterior Test Problem 

The exterior test problem is set up on the Set Exterior 

Problem sheet in LBEMA. The test surface is a unit sphere, 

centred at the origin, defined by 20 panels. In this case, the test 

problem is set up with the Laplace solution. 
 

𝜑(𝒑) =
1

𝑟
 for 𝑟 ≥ 1 (20) 

 

where 𝑟 is the distance from the origin to the point 𝒑. A 

Dirichlet boundary condition 𝜑 = 1 is applied on the upper 
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hemisphere. A Neumann boundary condition is applied to the 

lower hemisphere: 

 

𝜕𝜑

𝜕𝑛
=

𝜕𝜑

𝜕𝑟

𝜕𝑟

𝜕𝑛
=

−1

𝑟2
 . 1 = −

1

𝑟2
= −1 (when 𝑟 = 1). 

 
TABLE II 

COMPARISON OF COMPUTED AND EXACT RESULTS FOR CYLINDER TEST 

Point (r, z) Exact Direct Indirect 

(0.25, 0.25) 12.5 12.4990 12.4980 

(0.75, 0.25) 12.5 12.4944 12.4967 

(0.25, 0.75) 17.5 17.5012 17.4993 

(0.75, 0.75) 17.5 17.5060 17.4899 

(0.5,0.5) 15 15.0002 14.9959 

 

The solution is sought at the five exterior points with (𝑟, 𝑧) 

coordinates (0,2), (0,-2), (1,1), (1,-1) and (2,0), at which the 

exact solutions are 𝜑 = 0.5, 0.5, 0.7071, 0.7071 and 0.5 to 

four decimal places. The solutions from the direct BEM are 

listed in Table III. 
 

TABLE III 

COMPARISON OF COMPUTED AND EXACT RESULTS FOR SPHERE TEST 

Point (r, z) Exact Direct Indirect 

(0, 2) 0.5 0.4988 0.4995 

(0, -2) 0.5 0.4987 0.5027 

(1, 1) 0.7071 0.7054 0.7061 

(1, -1) 0.7071 0.7052 0.7111 

(2, 0) 0.5 0.4987 0.5008 

VI. THE BEM ON A SPREADSHEET IN TEACHING VECTOR 

CALCULUS AND SIMULATION 

The spreadsheets LIBEM2 and LBEMA have been used to 

facilitate teaching and learning in vector calculus and 

simulation to undergraduate engineering students at the 

University of Central Lancashire. For both spreadsheets, the 

students were given an assignment to work through under the 

guidance of their tutor. The assignment is therefore formative 

with the student developing their skills and understanding as 

they carry out their work. In this section, the motivation for and 

structure of the assignment work is developed, and samples of 

student work are listed. 

A. Assignment  

The assignment imitated the structure of a typical analysis of 

an applied numerical method and simulation, reported as would 

be expect in a technical report. The students were asked to 

develop a test problem using a non-trivial solution of Laplace 

equation interior to a boundary. Once the test problem has been 

input to the spread-sheet and executed, a comparison can be 

made between computed and analytic solutions. Finally, 

‘realistic’ boundary conditions, based on a heat conduction 

problem, are applied and students are expected to attach a 

practical understanding to the results. 

1. Vector Calculus 

An important outcome is that students are able to connect the 

analytical mathematical solution with the computed solution, 

are able to develop and input the mathematical problem and 

interpret the output. Trivial solutions of (the interior) Laplace 

equation such as 𝜑 = 1, 𝜑 = 𝑥, or 𝜑 = 𝑦, or any combination, 

should be discouraged. Trivial solutions are not significantly 

testing the software and, more importantly for teaching and 

learning, are too simple for developing skills in vector calculus. 

On the other hand, solutions like 𝜑 = 𝑥𝑦 or 𝜑 = 𝑥2 − 𝑦2 are 

acceptable and these can be combined with each other and with 

the trivial solutions to provide a variety. The chosen solution 𝜑 

may be applied directly as a Dirichlet condition, using the 

coordinates in the Panel Centres column.  

Using the identity 
𝜕𝜑

𝜕𝑛
= 𝛻𝜑. 𝒏, where 𝒏 is the normal to the 

boundary, the analytic Neumann boundary condition can be 

derived. It is possible therefore to have various Dirichlet and 

Neumann conditions, or to combine them to form the more 

general Robin condition. Clearly, this is more difficult than 

applying a Dirichlet condition on the whole boundary. In order 

to maintain challenge, students may be directed away from the 

easiest route, alternatively students could be asked to verify the 
𝜕𝜑

𝜕𝑛
 data given on the solution sheets, comparing the numerical 

results with the expected mathematical solution. 

In showing that the chosen function 𝜑 is a solution of Laplace 

equation and deriving or interpreting 
𝜕𝜑

𝜕𝑛
 data, the students are 

demonstrating their skills in vector calculus. As the work is in 

the context of using computers in engineering, then students 

may also be expected to use symbolic mathematical calculators 

to support their analysis. 

2. Simulation 

From a practical point of view, this assignment is about 

engineers building personal or collective confidence in 

software. In carrying out the work of the assignment, the 

students should observe that the method gives approximations 

to the test problems, with convergence to the analytic solution 

as the number of panels increases. Even though the practical 

heat conduction will normally have no analytic solution, the 

results should be as reasonably expected. 

The test boundary, in 2D or axisymmetric 3D could be of any 

shape of the students’ choosing. The freedom reinforces the 

robustness of the underlying method. Various students applying 

the method to various problems, and all achieving similar sorts 

of results, also nurtures confidence. This would be much harder 

to achieve with domain methods (such as the finite element 

method); the ease of creating the boundary mesh with the BEM 

enables the educational experience discussed. 

Results from the direct and indirect method are given, 

enabling the comparison of different methods. Different meshes 

can be applied and thus a connection between mesh size and 

accuracy can be established. 

B. Tests Developed by Students 

In this section, two extracts from the students’ assignment 

work is shown. The first example is by a second year student, 

using LIBEM2 to solve a two-dimensional problem and the 

second is by a tird year student using LBEMA to solve a three-

dimensional problem. 
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1. Two-Dimensional Test 

A two-dimensional test problem using LIBEM2 is carried out 

on the shape illustrated in Fig 5. The solution of Laplace 

equation that forms the basis of the test problem is 𝜑 = 𝑥2 −
𝑦2. A Dirichlet boundary condition is applied on all sides, 

except the upper and lower sides, where a Neumann boundary 

condition is applied. The computed and exact results are 

compared in Table IV. 
 

 

Fig. 5 Two-dimension test shape 

 
TABLE IV 

COMPARISON OF COMPUTED AND EXACT RESULTS FOR 2D TEST 

Point Exact Direct Indirect 

(3,1.5) 6.75 6.7654 6.7527 

(2,2) 0 0.0043 0.0008 

(2,1.5) 1.75 1.7560 1.7512 

(3.5, 1.5) 10.0 10.0056 10.004 

(2,0.5) 3.75 3.7537 3.7509 

2. Three-Dimensional Test 

In the three-dimensional axisymmetric test using LBEMA, 

the boundary is in the shape of a flask, as shown through a 

diagram of its generator in Fig. 6. Fig. 6 also shows the location 

of the interior points at which the solution is sought. In the first 

test, the exact solution is 𝜑 = 𝑟2 − 2𝑧2 and the corresponding 

Dirichlet boundary condition is applied. The results from this 

test at a few sample points are given in Table V. 
 

TABLE V 

COMPARISON OF COMPUTED AND EXACT RESULTS FOR FLASK 

Point Exact Direct Indirect 

2 -12.89 12.888 12.894 

7 -11.5 -11.499 -11.500 

10 5.289 5.290 5.291 

 

Fig. 6 The generator of the flask 
 

Realistic boundary conditions are then applied to the flask 

test problem, in which 𝜑 is interpreted as the temperature in a 

steady-state heat conduction problem. The inside boundary is at 

a temperature of 3° (𝜑 = 3), and the outside boundary is at a 

temperature of 20° (𝜑 = 20). Results with and without the 

insulated inner cavity (
𝜕𝜑

𝜕𝑛
 =0) at selected points are given in 

Table VI. 
 

TABLE VI 

COMPARISON OF RESULTS FOR THE FLASK WITH AND WITHOUT CAVITY 

 without cavity With cavity 

Point Direct Indirect Direct Indirect 

1 10.933 10.933 10.933 10.933 

2 17.157 17.157 17.158 17.158 

3 19.708 19.708 19.713 19.713 

7 5.835 3.002 5.835 3.002 

8 17.172 19.986 17.173 19.987 

9 6.133 3.001 6.133 3.000 

10 17.440 20.000 17.441 20.000 

 

The results show that the direct and indirect method give 

similar answers. The values at points 1 to 3 show a simple 

temperature gradient, as we would expect. Finally, the insertion 

of the cavity has little effect on the results for points 1 to 3, well 

away from the cavity, however, for points 7-10, either side of 

it, the results are as we would expect. 

VII. CONCLUSION 

Software, in this case built on spreadsheets, enables us to 

hide complexity. In this case, hiding the complexity of the BEM 

and all the coding enables us to use in the prosaic stated 

ambition of an educational aid in vector calculus and 

simulation. The openness of the spreadsheet environment, 
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combined with the accessibility of the BEM, supports the 

teaching and learning.  

Computing technology is increasingly being harnessed for 

educational purposes. The spreadsheets LIBEM2 and LBEMA, 

considered in this work, are examples of this, linking the worlds 

of engineering, mathematics and computing. 
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