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Abstract 19 

Purpose of review: There is an increasing body of evidence from epidemiology and 20 

laboratory investigations on periodontal disease being a risk factor for dementia. In particular, 21 

Porphyromonas gingivalis infections in animal models suggest causal associations with 22 

Alzheimer’s disease (AD). This review focusses on how P. gingivalis infections promote the 23 

incidence of functional loss in AD.  24 

Latest findings: The risk of the sporadic form of AD doubles when periodontitis persists for 25 

ten or more years. AD differs from other forms of dementia in that the clinical signs together 26 

with the presence of amyloid-beta (Aβ) plaques and neurofibrillary tangles must be present at 27 

autopsy. P. gingivalis oral infections in mice have demonstrated all of the characteristic 28 

pathological and clinical features of AD following infection upon their entry tof the brain. 29 
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Summary: Multiple factors (inflammation, Aβ oligomers, and bacterial factors) are likely to 30 

disrupt neuronal communication channels (synapses) as a plausible explanation for the 31 

functional loss.  32 

Abstract: 150 words  33 
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Introduction 42 

Longstanding periodontitis, formerly known as “chronic” periodontitis has an adverse effect 43 

on a number of complex human diseases associated with longstanding inflammation [1-3]. 44 

Recent research has linked poor oral hygiene to other neurological conditions that manifest 45 

with dementia. Currently they include the sporadic form of Alzheimer’s disease (AD), and the 46 

Lewy body Parkinson’s disease (dementia) [4-6]. Amyloid-beta (Aβ) plaques are central to all 47 

forms of dementia, but are more important to AD pathology. A significant body of literature 48 

considers the Aβ plaques of AD and the α-synuclein of Lewy bodies to be antimicrobial 49 

peptides that combat infections of the brain [7-10]. This concept may provide vital clues to 50 

the occurrence of these neuropathological lesions.  51 

 52 

Porphyromonas gingivalis  53 

Porphyromonas gingivalis is found in the oral cavity (saliva) of all humans where it may or 54 

may not cause oral pathology, but is able to tolerate low concentrations of oxygen 55 

(microaearophilic). In addition, recent research has implicated P. gingivalis as the keystone 56 

pathogen of periodontitis, which is an inflammatory disease constituting complex dysbiotic 57 

microbial community residing below the gumline, within “pockets”. P. gingivalis appears to 58 

translocate from the saliva to the subgingival location using neutrophils as “Trojan horses” in 59 

some individuals because clinical observations suggest that not everyone progresses to 60 

manifesting periodontal disease.  61 

The mouth harbours a microbiome, which essentially is a reservoir of health 62 

promoting microbes until their balance changes to more pathogenic forms. The fact that P. 63 

gingivalis can act as a commensal,and provides us with an opportunity to discuss the role of 64 

its source of Porphyromonas gingivalis its primary oral source to its access of the brain in 65 

relation to cognitive dysfunction. This is not only because AD is a prime example of a 66 

dementing neurological disease but also forthat has a plausible the established  association 67 

withof  P. gingivalis with both the AD brain [11, 12]. and periodontitis as a keystone 68 

bacterium [12]. In addition, This is strengthened by the development of models for 69 

periodontal infection and AD in mice P. gingivalis infection to the brain directly from its 70 

primary oral niche [13] where it has been demonstrated to can reproduce the cardinal 71 

hallmark pathology inclusive of Aβ plaques, phosphotau [14], and cognitive function in 72 

experimental mice [15-17]. 73 

 74 
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Alzheimer’s disease 75 

AD is end of life stage and the most common example of dementia. The cardinal clinical signs 76 

are cognitive decline with deterioration in memory. The hHippocampus is the region of the 77 

brain where memory is processed and the functional loss has been associated with the death of 78 

neurons in specific regions of the brain related to memory. AD has a long preclinical phase 79 

(20 years) with the duration of suffering lasting on average for 8-10 years and longer [18]. At 80 

the preclinical stage of the illness, the individual may not seek medical help. Usually a family 81 

member or the caregiverr of the person with declining cognition and memory may voice their 82 

concern to a health care professional. This may be their general medical practitioner (GP) or a 83 

health care professional (district nurse). The first stage in exploring this health complaint is 84 

for the caregiverr to take the person (with suspected dementia signs) to his/her GP. The GP 85 

will then refer the person on to a memory service to establish a more formal clinical 86 

diagnosis, and initiate treatment and support. The final diagnosis of AD rests with both the 87 

clinical history together with the demonstration of the neuropathological occurrence of Aβ 88 

plaques and hyperphosphorylated tau protein binding to neurofibrillary tangles in a 89 

characteristic pattern and distribution in the specific regions of the brain. AD neuropathology 90 

can co-exist with other neurological and/or vascular pathologies because it is not an isolated 91 

disease.  92 

 93 

Plausible cause of Alzheimer’s disease and Lewy-body dementia  94 

The cause of the sporadic forms of the neurological diseases under discussion (AD and 95 

Parkinson’s disease with Lewy bodies) remains unclear. However, amongst others, the risk 96 

factors include ageing and inheritance of the apolipoprotein E gene allele 4 (APOE є4) [19, 97 

20]. The APOE є4 susceptibility gene links with environmental risk factors that include the 98 

host’s dysbiotic oral microbiome [21]. P. gingivalis infections of the brain in laboratory mice 99 

induced with periodontitis demonstrate excessive oxidative stress and inflammation [13-15, 100 

22].  101 

Lewy bodies are intra-neuronal cytoplasmic inclusions composed of synuclein and 102 

other proteins lying within the pigmented neurons of the substantia nigra, limbic and the 103 

cerebral cortex regions of the brain. The clinical symptoms of Parkinson’s disease in its purest 104 

form are tremor, immobility and rigidity of muscles. However, cognitive deficit occurs when 105 

Parkinson’s disease co-exists with dementia (Lewy body Parkinsonian dementia), see 106 

comment above related to mixed pathologies. Epidemiological investigations [4, 5] in a 107 
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Taiwanese population have linked this to periodontal disease. As mentioned earlier, the Aβ 108 

protein of AD plaques and the α-synuclein within Lewy bodies are a form of broad-spectrum 109 

antimicrobial peptides, released following infection, including that caused by the periodontal 110 

pathogen P. gingivalis [7-10, 14]. If Aβ and α-synuclein represent the host’s response to a 111 

previous infection, it follows that these neurodegenerative diseases have causative 112 

associations with microbes during their development. This has given rise to the antimicrobial 113 

protection hypothesis [23] linking infection as a plausible trigger for the sporadic form of AD. 114 

If this theory becomes widely accepted, then explaining the existing oxidative stress, the 115 

activated complement, the longstanding inflammation and the defects in the blood-brain 116 

barrier (BBB) would be easy in the context of P. gingivalis infection [13, 22, 24]. All of the 117 

above-mentioned signaling cascades and others (not included here), would enhance the role of 118 

Aβ as an antimicrobial peptide in killing the elusive invader(s) and/or the little understood 119 

brain’s own microbiome converting to a pathobiome. In addition, the elderly are unlikely to 120 

be immuno-privileged because the BBB defects in the 70+ year’s age group are associated 121 

with more rapid cognitive decline [25] and could have implications for pathogen entry.  122 

 123 

Plausible cause of cognitive deficit 124 

What actually causes the cognitive deficit during dementia onset is unclear, because the 125 

individual examples of dementia such as AD are seldom pure. However, the amyloid cascade 126 

hypothesis originally focused on Aβ deposits as a possible cause [26]. Subsequent 127 

immunological therapy to remove Aβ plaques from the brains of AD patients disproved the 128 

notion that insoluble Aβ deposits contribute to cognitive dysfunction [27]. Prior to the 129 

amyloid hypothesis, the synaptic loss hypothesis of Terry et al. [28] and Masliah et al. [29] 130 

originated from the fact that specific neuronal loss may be due to synaptic loss. The revised 131 

version of the amyloid cascade hypothesis has incorporated soluble oligomeric Aβ in the 132 

synaptotoxicity and cognitive impairment theory [30]. It is possible that there is close 133 

interplay between the mechanisms underlying these three hypotheses. After all, it is highly 134 

plausible that microbial debris, inflammatory mediators, oligomeric Aβ, smaller tau peptides 135 

released by gingipains, and pathogen activated inflammasomes [31], can all act to disrupt 136 

synapses and result in cognitive deficit.   137 

 138 

Relationship between periodontitis and AD 139 
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The idea of dementia being a risk factor for periodontitis is undisputable, but then one would 140 

expect all demented individuals to have periodontitis by the time of death. Literature suggests 141 

the formerly known “chronic” periodontitis has a clearer relationship with a subgroup of AD 142 

cases [32-36]. Significant progress will only be made to find the actual direction of this 143 

relationship, once we better understand the parameters that should be included and/or 144 

excluded from the investigation in case control and/or cohort studies. For example, we now 145 

understand that periodontitis only becomes a risk factor for AD development some 10 years 146 

after it is diagnosed [37, 38]. This would imply that studies conducted in less than 10-year 147 

cohort analysis would provide inconclusive results [39]. One suggested risk of developing AD 148 

is having fewer remaining teeth (loss of up to 9 teeth) in early to mid-life due to periodontitis 149 

[30, 40], resulting from longstanding poor oral hygiene. For a more comprehensive discussion 150 

on the direction of the relationship between oral health and risk of developing AD, see Daly et 151 

al. [41]. There is agreement that periodontitis doubles the risk for developing late onset AD 152 

with an odds ratio of 2.2 (95% CI 1.1, 4.5) 10 years after its initial diagnosis [37, 38]. An 153 

interventional study on the periodontal treatment in AD patients [42] indicated a plausible 154 

causal relationship in demented individuals. It is suggested that patients with early stage 155 

dementia (at the time ofpoint when they visiting the memory clinic for initial diagnosis) show 156 

worsening oral hygiene [43], implying that dementia may be the risk factor for periodontal 157 

disease in this group of patients. It is also suggested that if dental intervention is provided at 158 

the early stage of dementia onset, it would delay the speed of cognitive deterioration. Early 159 

intervention is important and memory clinics should consider taking it on at the time the 160 

initial diagnosis [43]. However, to confirm the direction of the relationship, more studies with 161 

larger cohorts are needed in the “at risk” subpopulation of individuals whose periodontitis co-162 

exists with AD cases. In addition, future interventional studies should include participants 163 

who suffer from periodontitis approaching the risk age for dementia (pre 65-year age) for 164 

maximal impact on delaying the onset of AD.  165 

 166 

Relationship of P. gingivalis with AD development 167 

As mentioned, P. gingivalis is considered a keystone pathogen in periodontitis [12] and it is 168 

adept at manipulating the sub-gingival microbiome and the host’s immune system [44-49]. P. 169 

gingivalis is an intracellular pathogen that has been used to develop AD via periodontal 170 

infection in mice [13, 14]. The infection periodontal model of Ilievski et al. [14] produced the 171 

AD defining hallmark lesions in the mouse brains (Aβ and phosphotau neurofibrillary 172 
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tangles), a finding reproduced in mice by Dominy et al. [50]. Since the Ilievski and the 173 

Dominy models were of wild type mice, there is a high probability that Aβ was cleaved from 174 

its precursor protein into various oligomer sizes following oxidative stress initiated by P. 175 

gingivalis, which in turn activated cathepsin B within the endo/lysosomes [22, 51]. This 176 

intracellular processing of Aβ agrees with the earlier report of Wu et al. [15] showing, that 177 

metabolic processing of the amyloid precursor protein after P. gingivalis lipopolysaccharide 178 

(LPS) was administered into cathepsin B sufficient mice. Other studies in which either P. 179 

gingivalis or its LPS was introduced, supported the development of the AD-like clinical 180 

phenotype [15-17, 52] resulting in impaired spatial learning and memory. All of these 181 

investigations support a causal relationship of periodontitis with the development of AD. 182 

 183 

Mechanisms of cognitive deficit by P. gingivalis infection 184 

Soluble oligomeric Aβ and BBB defects 185 

In line with Dominy et al. [50] confirming P. gingivalis genetic footprints (DNA) in the AD 186 

brains, in vivo infection models of periodontitis are recapitulating hallmark proteins and the 187 

emerging phenotype is supporting cognitive deficit [14-17, 52]. P. gingivalis produces two 188 

types of cysteine proteases (gingipains). They are the lysine specific Kgp and the arginine 189 

specific RgpA and RgpB gingipains [53]. A novel finding described by Dominy et al. [50] is 190 

the capacity of these proteases to hydrolyse the biochemical structure of the protein tau, and 191 

this opens up future avenues for research.  192 

Gingipains activity has the potential to erode endothelial tight junction proteins [24] as 193 

supported by the P. gingivalis/host interactome study [54]. Cognitive deterioration due to 194 

BBB defects in the human elderly individuals are also documented [25] and this may yet be 195 

another contributory factor in mice models displaying AD-like clinical phenotype. In addition, 196 

if the soluble form of the olgomeric Aβ can interfere with synapses and contribute to 197 

cognitive deficit, as proposed by Cline et al. [30]. Then P. gingivalis oral infection can also 198 

contribute to this protein following its entry into the brain [14, 50].  199 

 200 

Inflammation and inflammatory mediators in general 201 

Numerous studies have shown that LPS from Gram negative bacteria either administered 202 

directly into the peritoneum or the brain, induce neuroinflammation in the form of glial cell 203 

activation [55] and when measured, the inflammatory response is accompanied by learning 204 

and memory impairment [56, 57] as a result of IL-1β secretion following peripheral challenge 205 

with LPS [58]. This is in agreement with the Wu et al. [15] hypothesis that systemic 206 
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administration of P. gingivalis LPS leads to cognitive deficit following Aβ liberation in an IL-207 

1β receptor dependent pathway on neurons, (also see [21]). IL-1β cytokine is implicated in 208 

synaptic loss [59, 60] and with reduced long-term potentiation, which is a unit of memory 209 

[59], supporting the role of this cytokine in deteriorating cognition.   210 

 211 

P. gingivalis, complement, and immune dysbiosis 212 

Gingipains are virulence factors of great importance to the immune subversion activity of P. 213 

gingivalis [53]. In the context of the complement cascade, these proteases play a major role. 214 

P. gingivalis oral infection of apolipoprotein E-/- mice demonstrated complement activation in 215 

their brains [13]. Activation of complement does take place in AD brains, where Aβ plaques 216 

are the suggested trigger [61]. If, according to the novel hypothesis of Allen [62] that Aβ 217 

senile plaques are miniature foci of bacterial biofilms, and that the antimicrobial protection 218 

theory of Moir et al. [23] supporting the Aβ antimicrobial peptide idea then the downstream 219 

immune activity triggering complement activation in AD brains does fit. Inappropriately 220 

activated complement compromises the function of healthy neurons, because of their 221 

inadequate shielding from protective proteins that rescue them from the non-specific mode of 222 

activity of this powerful innate immune signaling cascade [63]. During complement 223 

activation, release of several small proteins (opsonins) takes place, which then opsonize to 224 

neurons [13]. Depending on the site of opsonin binding to the neuron, (e.g. at the synaptic 225 

cleft), there remains a potential to disrupt the path of neuronal communication and give way 226 

to cognitive dysfunction. In addition, the continuation of this cyclic cascade will generate 227 

more cytokines and contribute to cognitive deficit (see above). 228 

P. gingivalis infection continues to cleave complement components (C1-C5) through 229 

its gingipains activity, and prevents both deposition of C3b on the bacterial surface and 230 

capture of the C4b binding protein [64-68]. By hijacking the complement regulator C4bp on 231 

the bacterial surface, P. gingivalis prevents assembly of the membrane attack complex and 232 

acquires the ability to regulate C3 convertase [66]. Accordingly, the gingipains do not only 233 

destroy complement through proteolytic degradation, but they also inhibit activation of 234 

complement by binding to the complement inhibitor C4bp [66]. This inhibits complement 235 

action and results in a local accumulation of the anaphylatoxin C5a [69]. P. gingivalis also 236 

exerts C5 convertase-like enzymatic activity and exploits complement-Toll like receptor 237 

(TLR) crosstalk to subvert host defenses and thus escape elimination from the host [45]. 238 

Zhang et al. [52] recently demonstrated that the mechanism by which P. gingivalis impaired 239 
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spatial learning and memory is via TLR crosstalk because inhibiting this pathway rescued 240 

memory in their infection mouse model. 241 

As an analogy to TLR signaling, our in house data clearly showed that CD14, an LPS 242 

binding receptor, expressed on healthy IMR32 neurons (also participates in TLR signaling) 243 

was completely or partially removed following exposure to endo/exotoxins from P. gingivalis 244 

ATCC 33277T and W50, respectively (see Figure 1). Such mechanisms lead to defective 245 

immune surveillance because of their influence in remodeling the periodontal microbiota into 246 

a dysbiotic state. P. gingivalis can also reduce the antibacterial and proinflammatory activity 247 

of C5a by deiminating its C-terminal arginine residues [70]. Degradation of complement 248 

proteins probably allows colonization and proliferation of bacteria possessing higher 249 

sensitivity towards complement killing than found in P. gingivalis itself [47]. Thus, P. 250 

gingivalis may support survival of the entire biofilm community by helping bystander bacteria 251 

evade complement mediated killing [46], whilst neurons survive with compromised function. 252 

These activities have consequences for the developing neuropathology. Thus, the 253 

neuropathology and the clinical functional loss together, constitute the AD diagnosis. P. 254 

gingivalis infection under laboratory conditions are supporting both of these possibilities [13-255 

17, 22, 24, 52]. 256 

 257 

Bacterial factors disrupting synapses 258 

Our in-house in vitro studies in which IMR32 (neuroblastoma-derived) neurons challenged 259 

with P. gingivalis virulence factors (containing LPS and gingipains) indicated considerable 260 

alterations in their actin cytoskeletal filaments following their detection with fluorescein-261 

phalloidin dye. The LPS binding to cell surface membranes caused blebbing [11], whilst the 262 

protease caused the cells to withdraw their processes and round up (see Figure 2). In 263 

summary, the structural alteration of the IMR32 neurons, in vitro, could provide the basis for 264 

the failure of communication between neighboring cells. In addition, excess 265 

bacterial/inflammatory mediators possibly trap between micro spaces of opposing (pre-post) 266 

synapses (synaptic clefts) or adversely affect synaptosomes during their neurotransmitter 267 

release contributing to cognitive loss. These areas are open to future investigations in relation 268 

to memory. Infection of microglia with P. gingivalis in mice has promoted cell migration and 269 

an inflammatory response through gingipain-mediated activation of protease-activated 270 

receptor-2 [71]. We need to clarify if and how infectious episodes impair memory at the 271 

synaptosomal level, rather than at the synaptic cleft level. Such information may refine our 272 
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understanding at an earlier stage of deteriorating cognition albeit at the neurotransmitter 273 

release and its uptake levels. 274 

 275 

Dysbiosis of immune defense by alternative means 276 

miRNA has a role in the virulence of P. gingivalis, contributing to modulation of host-cell 277 

immune responses in a manner that promotes bacterial survival, and progressively reduces the 278 

host’s protective function [49]. Some miRNAs are even associated with P. gingivalis itself 279 

[72], while others (miRNA-128, miRNA-146, miRNA-203, and miRNA-584) are host 280 

derived for inflammation. Bacterium-associated miRNAs are likely to influence the innate 281 

immune response against P. gingivalis, whereas LPS from this bacterium may affect the level 282 

of the host’s miRNA–mRNA interactions. These miRNA-dependent effects may supplement 283 

other forms of deception exerted by P. gingivalis thus subverting innate and adaptive immune 284 

responses possibly by altering gene function [54, 69]. 285 

  286 

P. gingivalis and tau protein phosphorylation  287 
 288 

As mentioned earlier, Ilievski et al. [14] demonstrated that P. gingivalis infection can lead to 289 

tau phosphorylation and neurofibrillary tangle formation in mice. The neurons that develop 290 

these hallmark lesions in the human AD brain are cells with compromised function, and the 291 

structural change in the nerve cell soma and axons, the later disrupting their connectivity. The 292 

effect of gingipains on the integrity of actin filaments seen with IMR32 neurons (Figure 2) 293 

may be analogous to the neurofibrillary tangle bearing neurons in AD.  This structural change 294 

is likely to be detrimental to their communications with other brain cells resulting in 295 

deteriorated cognition.    296 

Previously, we have discussed outer membrane vesicles (microbullets) from P. 297 

gingivalis [73] playing a role in AD development. P. gingivalis cultures produce them in vast 298 

numbers, suggesting they constitute the main superhighway of communication with other 299 

bacteria in the biofilm [74]. Since they carry additional arsenals of weapons to manipulate 300 

their entry into disparate organs, disrupt actin structures, erode epithelial junctional proteins, 301 

hijack phagocytosis, destroy tissues, and affect complement related genes, they may also be 302 

responsible for transducing proinflammatory signaling cascades that ultimately lead to disease 303 

defining lesion development and cognitive decline, typical of clinical AD.  304 

Ilievski et al. [14] demonstrated a chronic infection with live P. gingivalis strain W83 305 

for 22 weeks with both the hallmark lesions (Aβ and NFTs) that characterize AD with tau 306 

Commented [SKS<oD1]: I think this is the sentence 
asked to be clarified?, needs addressing 
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protein phosphorylation at the serine396 (ser396) residue. This generated a new concept that an 307 

oral infective focus in neurological diseases may result in dementia. Up until now, abnormally 308 

phosphorylated tau protein has not featured negatively in the pathophysiology of periodontal 309 

disease per se. However, Adamowicz et al. [75] implicated the role of glycogen synthase kinase 310 

3 (GSK-3) in bacterial-induced periodontitis because its inhibition rescued bone loss. Thus, 311 

GSK-3 may be influencing phosphorylation of brain tau via immune responses mediated by P. 312 

gingivalis, in the Ilievski et al. [14] study. GSK-3β appears to mediate proinflammatory 313 

cytokine production during bacterial infections because inhibition of GSK-3β leads to an innate 314 

hypo-reactivity to oral pathogens [76]. Macrophages treated with LPS, in vitro suggest that 315 

GSK-3β stimulates interferon-β (IFN-β) production via c-Jun thus activating a transcription 316 

factor (ATF)-2-dependent mechanism [76]. GSK-3β also negatively regulates production of the 317 

endogenous IL-1β antagonist, IL-1R, via its ability to regulate the MAPK and ERK 1/2 in LPS-318 

stimulated innate immune cells. There is no doubt that further research will widen investigation 319 

of these pathways for more direct causal links with oral disease and dementing diseases with 320 

cognitive deterioration. 321 

The Dominy et al. [50] publication has provided a stronger argument for the role of 322 

pathogenic tau in AD development. In their in vitro neuronal culture system, Dominy et al. 323 

[50] demonstrate that tau is a substrate for gingipains and show a low molecular weight band 324 

corresponding to a novel tau peptide. Further research will establish if it is neurotoxic or not.   325 

  326 

P. gingivalis and lymphocytes 327 

It is possible that T cell entry into the AD brain is restricted and this somehow influences 328 

ineffective clearance of the Aβ by macrophages and the resident microglia. Baek et al. [77] 329 

found that Treg cells (subpopulation of T cells) had an effect on cognitive function by 330 

decreasing Aβ deposition and inflammatory cytokine secretion in a 3xTg-AD mice model. In 331 

contrast, depletion of Tregs increased the onset of cognitive deficit, accelerated the amount of 332 

the Aβ burden, enhanced microglia/macrophage responses and decreased glucose metabolism 333 

in 3xTg-AD mice. In patients with atherosclerosis, the Treg population was reduced if they  334 

harbored type II fimA of P. gingivalis compared to those with other types of fimbriae [78]. 335 

Therefore, P. gingivalis type II fimA could be associated with dysregulation of Tregs in 336 

extraoral lesions. Severe immunosuppression seems to favor not only colonization with 337 

varying serotypes of periodontopathogenic bacteria, but also with species not commonly 338 

found in the subgingival microbiota [79]. In the brain, this may contribute to the 339 
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establishment of a multi species microbiota, previously reported in AD patients [80]. In 340 

addition, accumulation of insoluble and toxic Aβ42 has detrimental effect on the neighboring 341 

neurons and their connections, which may have further implications for neurodegeneration 342 

and related cognitive loss. 343 

 344 

Conclusions 345 

Dominy et al. [50] have recently provided robust data linking the main pathogen (P. 346 

gingivalis) of periodontitis with the cause of AD. This bacterium appears to migrate from the 347 

mouth to the brain of some individuals as they age and a significant proportion of subjects 348 

who go onto developing AD. This further highlights the possibility that AD has a microbial 349 

infection origin. Ilievski et al. [14] provide evidence for P. gingivalis infection having causal 350 

associations by reproducing the hallmark lesions. Four independent studies carried out in mice 351 

infected with P. gingivalis provide causal links through impaired learning and memory. The 352 

suggested mechanism is related to the TLR crosstalk and this may have relevance to the 353 

inflammasome formation with the resulting cytokines (mature IL-1β) being linked to memory 354 

disturbances.  355 

These studies reinforce the advice that oral hygiene is important in keeping pathogens 356 

low and encouraging greater diversity of commensals (health promoting bacteria). This 357 

provides a healthy microbiome and better general health. Health authorities need to heed this 358 

warning and take research based evidence seriously. The UK NHS England provides a 359 

recommendable oral health toolkit for the elderly to maintain better oral hygiene with the aim 360 

of delaying/preventing AD.  361 
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Figure legends 716 

Figure 1. Western blot showing CD14 protein on the human neuroblastoma cell line 717 

IMR32. a) is an immunoblot of cell lysate prepared from IMR32 neurons following 718 

their standard growth culture medium and incubation conditions, no exposure to 719 

virulence factors (control) (lane 1). and cIMR32 neurons cultured in their growth 720 

medium to which ontrol with P. gingivalis sterile growth medium diluted 1:4 from 721 

stockfor P. gingivalis  was addedcultures (lane 2)., IMR32 neurons in their growth 722 

medium plus P. gingivalis ATCC 33277T conditioned medium diluted 1:4 from stock 723 

(lane 3) with exposure (test) to P. gingivalis ATCC 33277T (lane 3) and strain W50 724 

conditioned medium (diluted 1:4 from stock) (lane 4) spent medium (diluted 1:4 from 725 

stock) for 24 h. The proteins were separated by SDS-PAGE electrophoresis and 726 

electro transferred onto the PVDF (polyvinylidene difluoride) membrane. Following 727 

incubation of the membrane overnight with mouse anti-CD14 antibody, clear bands 728 

around the 55 kDa molecular weight were seen (in the control lanes 1 and 2, long 729 

arrow) indicatesing that the CD14 receptor protein was expressed present on control 730 

by these cells. Upon challenge with P. gingivalis 33277T the band completely 731 

diminished (lane 3, CD14 cleaved from cell membrane). Treatment of the same cells 732 

with the W50 strain surprisingly, only partially cleaved CD14 (lane 4) as compared 733 

with the control lanes 1 and 2. b) IMR32 cells grown on coverslips were also 734 

incubated with the same anti-CD14 antibody. The green colour shows CD14 labelling 735 

on the surface membrane of cells confirmingmeaning that the receptor is intact. The 736 
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red colour indicates the nucleus due to propidium iodide uptake from the mounting 737 

medium. c) Following exposure to P. gingivalis 33277T, the cells for 24 h (as for the 738 

blot), the green labelling was missing and correlated with the blot data. d) Exposure to 739 

P. gingivalis W50, demonstrated green labelling on the membranes again correlating 740 

with the blot data. 741 

 742 

 743 

 744 

 745 

Figure 2 746 

IMR32 neurons in culture: Fluorescein-phalloidin (5 units/ml final, for 30 min) 747 

labelling for actin cytoskeletal protein (green), (nuclei = red due to propidium 748 

iodide uptake).  a) IMR32 monolayer in growth medium shows long processes of 749 

the cells extending outwards. b) Exposure to P. gingivalis ATCC 33277T, spent 750 

medium (diluted 1:4) for 6 h demonstrated the processes thickened, whilst the cell 751 

soma enlarged. c) As for b, but after 24 h exposure, the cells rounded up and 752 

detached. Images taken after examining the cells under the 510 series Zeiss 753 
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confocal microscope (Carl Zeiss Ltd). Micron bar = 10754 

 755 


