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Abstract 

Spectroscopic techniques, such as Fourier-transform infrared (FTIR) spectroscopy, are used to 

study the interaction of light with biological materials. This interaction forms the basis of many 

analytical assays used in disease screening and diagnosis, microbiological studies, forensic and 

environmental investigations. Advantages of spectrochemical analysis are its low cost, minimal 

sample preparation, non-destructive nature and substantially accurate results. However, there is 

now an urgent need for repetition and validation of these methods in large-scale studies and across 

different research groups, which would bring the method closer to clinical and/or industrial 

implementation. In order for this to succeed, it is important to understand and reduce the effect of 

random spectral alterations caused by inter-individual, inter-instrument and/or inter-laboratory 

variations, such as variations in air humidity and CO2 levels, and the aging of instrumental parts. 

Thus, it is evident that spectral standardization is crucial for the widespread adoption of these 

spectrochemical technologies. By using calibration transfer procedures, where the spectral 

response of a secondary instrument is standardized to resemble the spectral response of a primary 

instrument, different sources of variations can be normalized into a single model using 

computational-based methods, such as direct standardization (DS) and piecewise direct 

standardization (PDS); therefore, measurements performed under different conditions can generate 

the same result, eliminating the need for a full recalibration. In this paper, we have constructed a 

protocol for model standardization using different transfer technologies described for FTIR 

spectrochemical applications. This is a critical step towards the construction of a practical 

spectrochemical analysis model for daily routine analysis, where uncertain and random variations 

are present. 
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Introduction 

Vibrational spectroscopy has shown great promise as an analytical tool for the investigation 

of numerous sample types with wide applications in diverse sectors, such as biomedicine, 

pharmaceutics or environmental sciences1-5. Fourier-transform infrared (FTIR) spectroscopy is 

one of the preferred techniques for identification of biomolecules through the study of their 

characteristic vibrational movements. Another commonly used approach is Raman spectroscopy, 

which provides complementary spectral information to IR. Raman spectroscopy exploits the 

inelastic scattering of light whereas IR studies light absorption. Both methods have their benefits 

and drawbacks. A limitation of IR, for instance, is that water generates undesired peaks at the 

region of interest, which can mask important biological information, and therefore extra sample 

preparation and/or spectral processing is necessary. On the contrary, Raman spectroscopy has an 

inherently weak signal and fluorescence interference, which can, however, be addressed by 

optimizing the experimental settings or by applying enhancement techniques to increase the 

Raman signal. For the purposes of this protocol we have used FTIR spectroscopy to demonstrate 

our standardization model. 

 Using chemometric approaches, the system is trained to recognize unique spectral features 

within a sample, so that when unknown samples are introduced an accurate classification is 

feasible. Alterations in the measurement parameters could interfere with the spectral signature and 

produce random variations. Therefore, a crucial step is spectral correction, or standardization, 

which would provide comparable results and allow system transferability. The idea is that non-

biological variations, such as those arising from different users, locations or instruments, will no 

longer affect the classification result; therefore any collected data could be imported into a central 

database and handled for further exploration or diagnostic purposes. Several groups and companies 
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worldwide are developing spectrochemical approaches for diagnosis, discrimination and 

monitoring of diseases, as well as for other uses. Combination of multiple datasets would facilitate 

the conduction of large-scale studies which are still lacking in the field of bio-spectroscopy. 

Sensor-based technologies 

Sensor-based technologies are an integral part of daily life ranging from locating sensor-

based technology, such as global positioning system (GPS)6, to image biosensors, such as X-rays7-

10 and γ-rays11-13, which are used extensively for medical applications. Other powerful approaches 

that make use of sensor-based technologies toward medical disease examination and diagnostics 

include circular dichroism (CD) spectroscopy14-17, ultraviolet (UV) or visible spectroscopy18,19, 

fluorescence20-24, nuclear magnetic resonance (NMR) spectroscopy25-29 and ultrasound (US) 7,30-

33. 

Over the last two decades, optical biosensors employing vibrational spectroscopy, 

particularly IR spectroscopy, have seen tremendous progress in biomedical and biological 

research. A number of studies using the above-mentioned methods have focused on cancer 

investigation with malignancies such as brain34-37, breast38-40, oesophagus41,42, skin43-47, 

colorectal48-50, lung51-53, ovarian54-58, endometrial55,59,60, cervical61-64 and prostate65-68 cancer being 

some of them. Non-cancerous diseases have also been examined, namely neurodegenerative 

disorders69-72, HIV/AIDS73, diabetes74-76, rheumatoid arthritis77,78, cardiovascular diseases79,80, 

malaria81-83, alkaptonuria84, cystic fibrosis85, thalassemia86, prenatal disorders87,88, macular 

degeneration89,90, atherosclerosis80,91 and osteoarthritis92-94. 
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Limitations 

Spectrochemical approaches are advantageous when compared with traditional molecular 

methods as they provide a holistic status of the sample under interrogation, thus generating typical 

spectral regions widely known as “fingerprint regions”. These methods have also been shown to 

be rapid, inexpensive and non-destructive while they also improve diagnostic performance and 

eliminate subjective diagnosis (e.g., histopathological diagnosis), where inter- and intra-observer 

variability are present95. However, like any other analytical method, vibrational spectroscopy also 

comes with some limitations. For instance, prior to FTIR studies, optimization of instrumental 

settings, sample preparation and operation mode also needs to be conducted in order to improve 

the spectral quality and molecular sensitivity4,96,97. Overall, the above-mentioned barriers can be 

overcome after careful consideration of the experimental design. 

A considerable limitation that is yet under-investigated in the field of spectrochemical 

techniques is associated with the difficulties entailed in data conformation and system 

standardization. Currently, there are multiple pilot studies showing promising results but an 

approach towards standardization for biological applications is lacking. Random variation between 

studies can originate from differences in instrumentation, operators, and environmental conditions, 

such as room temperature and humidity. 

The main objective of this article is to present a protocol for model standardization which 

can be applied in FTIR spectrochemical techniques to rule out the chance of random spectral 

alterations. Inter-individual, inter-instrument, inter-sample and/or inter-laboratory variations can 

be a source of unwanted, non-biological alterations, thus leading to incorrect conclusions. 

However, for a method to become reliable and clinically translatable, it is important that 

measurements performed under different conditions generate comparable results. The aim of the 
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spectral standardization model presented here is to expedite multi-centre studies with large 

numbers of samples; this would bring these spectrochemical techniques closer to clinical 

implementation and facilitate life-changing decisions. We describe a protocol that has four main 

components: (i) sample preparation, (ii) spectral acquisition, (iii) data pre-processing and (iv) 

model standardization. The current protocol has an in-depth insight obtained from cross-laboratory 

collaborations with leading experts in the field. This article offers a step-by-step procedure, which 

can be implemented by a non-specialist in spectrochemical studies. For further information about 

instrumental and software options, spectral acquisition steps and data analysis for a range of 

different analytical systems the reader is directed towards additional protocols4,98-105. 

Applications 

Spectrochemical approaches, in combination with computational analysis, have been 

proven to be effective for biomedical research through facilitating the diagnosis, classification, 

prognosis, treatment stratification and modulation or monitoring of a disease and treatment. 

However, these techniques are widely applicable to other fields as well, namely food industry106-

109, toxicology2,110-112, microbiology113-118, forensics119-123, pharmacy2,3,124, environmental and 

plant science125-127, as well as defence and security128-130. Applications of standardization 

algorithms vary according to the spectral technique and sample matrix studied, and have been 

mostly applied to Raman and Fourier-transform near-infrared (FT-NIR) spectroscopy. Table 1 

summarizes some standardization applications. 
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Table 1. Examples of applications involving standardization techniques.  1 

Sample matrix Spectroscopic technique Aim Ref. 

Tissue Raman Standardization of various perturbations on Raman spectra for diagnosis of breast cancer based on snap frozen 

tissues  

131 

 Raman Standardization of spectra acquired in 3 different sites for analysing oesophageal samples based on snap frozen 

tissues 

132 

Cells Raman Standardization of spectra acquired with 4 different instruments for classification of three different cultured spore 

species 

133 

Biofluids FT-NIR Standardization of spectra acquired with 3 different instruments for measuring haematocrit in the blood of 

grazing cattle 

134 

 LC-MS Standardization of spectra acquired with 2 different instruments for mapping rendition times and matching 

metabolite features of subjects diagnosed with small cell lung cancer based on blood serum and plasma samples 

analysis 

135 

Pharmaceutical materials Raman Standardization of spectra acquired with 5 different instruments for analysing various pharmaceutical excipients, 

active pharmaceutical ingredients (APIs) and common contaminants 

136 

 FT-NIR Standardization of spectra acquired with 2 different instruments for simultaneous determination of rifampicin 

and isoniazid in pharmaceutical formulations 

137 

 FT-NIR Standardization of spectra acquired with 2 different instruments for predicting content of 654 pharmaceutical 

tablets 

138 

Food FT-NIR Standardization of spectra acquired with 3 different instruments for predicting parameters in corn samples 138 
139 

 FT-NIR Standardization of spectra acquired with 2 different instruments for predicting vitamin C in navel orange 140 

 FT-NIR Standardization of spectra recorded in 4 different labs for determining moisture, proteins and oil content in soy 

seeds 

141 

 FT-NIR Standardization of spectra acquired by a benchtop and portable instrument for determining total soluble solid 

contents in single grape berry 

142 

 UV-Vis Standardization of visible spectra acquired with 3 different instruments for measuring pH of Sala mango 143 

Plant FT-NIR Standardization of spectra acquired with 2 different instruments for predicting baicalin contents in radix 

scutellariae samples 

139 

 FT-NIR Standardization of spectra acquired by 2 different instruments and in three physical states (powder, filament and 

intact leaf) for determining total sugars, reducing sugars and nicotine in tobacco leaf samples 

144 

 NMR Standardization of spectra acquired with 3 different instruments for authenticity control of sunflower lecithin 145 

Cosmetic CD spectroscopy Standardization of spectra acquired between standard and real-world samples for determining Pb2+ in cosmetic 

samples 

146 

Inorganic substances FT-IR Standardization of interferogram spectra acquired with 2 instruments for classifying acetone and SF6 samples 147  

Fuel FT-IR Standardization of spectra acquired with 2 different instruments for predicting density of crude oil samples 148 

 2 



8 
 

Model transferability 3 

Transferability models have been previously developed, however this is still an under-4 

investigated field, especially for biomedical applications. These models use computer-based 5 

methods to standardize spectral data generated across different experimental settings (e.g., 6 

different instruments, operators or laboratories). An inclusive standardization protocol that 7 

could be implemented in a range of different spectrochemical approaches is of great need. 8 

Differences are present even between identical instruments; for instance, changes in signal 9 

intensity caused by replacement, alignment or ageing of optical and spectrometer components, 10 

natural variations in optics and detectors construction, changes in measurement conditions 11 

(temperature and humidity), changes in physical constitution of the sample (particle size and 12 

surface texture) and operator discrepancies could all lead to wavenumber shifts and artefacts 13 

in the spectra. In all of these cases, prediction errors of the estimated group categories (e.g., 14 

whether the sample is classified as healthy or cancerous) can become very large, especially 15 

when the whole spectrum is used in the model. Standardization techniques aim to generate a 16 

uniform spectral response under differing conditions, ensuring the interchangeability of results 17 

obtained in different situations, without having to perform a full calibration for each situation. 18 

Previous standardization methods include the use of simple slope and bias 19 

correction149,150, direct standardization (DS)151-155, piecewise direct standardization 20 

(PDS)149,156-158, piecewise linear discriminant analysis (PLDA)147, guided model 21 

reoptimization (GMR)158, back-propagation neural network (BNN)147, generalized least 22 

squares weighting (GLSW)159, model updating (MU)160,161, orthogonal signal correction 23 

(OSC)162,163, orthogonal projections to latent structures (OPLS)148, wavelet hybrid direct 24 

standardization (WHDS)157, maximum likelihood PCA (MLPCA)164, Shenk and Westerhaus 25 

method (SW)165,166, positive matrix factorization (PMF)167,168, artificial neural networks (ANN) 26 

drift correction169, transfer via extreme learning machine auto-encoder method (TEAM)170, 27 
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calibration transfer based on the maximum margin criterion (CTMMC)171, calibration transfer 28 

based on canonical correlation analysis (CTCCA)172 and calibration methods, such as 29 

wavenumber offset correction, instrument response correction and baseline correction132. In 30 

this protocol, we use direct standardization (DS) and piecewise direct standardization (PDS), 31 

because they are the most common methods for spectral standardization. 32 

Direct standardization. DS is one of the most used methods for data standardization. It was 33 

initially proposed to correct relatively large spectral differences between data collected from 34 

the same sample measured by two different instruments149. In DS, the entire spectrum from a 35 

new secondary response (e.g., a different instrument) is transformed to resemble the spectrum 36 

from the primary source (e.g., original instrument)151
. This is performed based on a linear 37 

relationship between the data acquired under different circumstances160: 38 

𝐒1 = 𝐒2𝐅           (01) 39 

where 𝐒1 represents the data acquired for the primary response; 𝐒2 represents the data acquired 40 

for the secondary response; and 𝐅 is the transformation matrix that maintains the relationship 41 

between 𝐒1 and 𝐒2. 42 

 The transformation matrix 𝐅 is estimated in a least-squares sense by173: 43 

𝐅 = 𝐒2
+𝐒1           (02) 44 

where 𝐒2
+ is the pseudo-inverse of 𝐒2, calculated by: 45 

𝐒2
+ = (𝐒2

T𝐒2)
−1𝐒2

T          (03) 46 

in which T stands for the matrix transpose operation. 47 

 Then, when samples are measured under the secondary system, the signals generated 𝐗 48 

are transformed to resemble the primary system response by160: 49 
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𝐗̂T = 𝐗T𝐅           (04) 50 

where 𝐗̂ is the standardized response for X. 51 

 Problems related to different background information between instruments can affect 52 

the standardization procedure. To correct for this, the standardization process is usually adapted 53 

with the background correction method173, in which the transformation matrix described in Eq. 54 

02 is calculated with a background correction factor (𝐅b) and an additive background correction 55 

vector 𝐛s as follows: 56 

𝐒1 = 𝐒2𝐅b + 𝟏𝐛s
T          (05) 57 

where 𝟏 is an all-ones vector and 𝐛s is obtained by: 58 

𝐛s = 𝐬1m − 𝐅b
T𝐬2m          (06) 59 

in which 𝐬1m is the mean vector of 𝐒1 and 𝐬2m is the mean vector of 𝐒2. 60 

 One of the key steps for DS is the selection of the number of samples to transfer (called 61 

“transfer samples”). These are samples’ spectra from the primary system (𝐒1) that will be used 62 

to transform the signal obtained using the secondary system (𝐒2). The transfer samples are 63 

obtained from a same cohort of samples (e.g., plasma samples) measured in the two instruments 64 

(primary and secondary systems). Usually, the procedure for selecting transfer samples is based 65 

on sample selection techniques, such as Kennard-Stone (KS) algorithm174 or leverage149. 66 

Subsequently, the number of transfer samples is evaluated using a validation set through an 67 

arbitrary cost function. For quantification applications, a common cost function is the root-68 

mean-square error of prediction, while for classification one can use the misclassification rate. 69 

A disadvantage of DS is that each transformed variable is calculated using the whole 70 

spectrum, which carries a high risk of overfitting. The estimation of 𝐅 in Eq. (02) is an ill-71 
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conditioned problem, because the number of variables (e.g., wavenumber) may be much larger 72 

than the number of standard samples. 73 

Piecewise direct standardization. PDS is another standardization procedure commonly 74 

employed for system transferability. It is based on DS, however it uses windows (e.g., 75 

wavenumber portions) to make the standardization process more suitable for smaller regions 76 

of the data. When compared to DS, PDS is calculated by using the transformation matrix F 77 

with most of its off-diagonal elements set to zero149. With this, PDS fits minor spectral 78 

modifications not covered by DS. PDS is the technique of preference for correcting smaller 79 

spectral variations, such as small wavelengths shift, intensity variations, and bands enlargement 80 

and reduction149. In addition, an advantage of PDS compared to DS is that the local rank of 81 

each window will be smaller than the rank of the whole data matrix, which means that the 82 

number of standard samples can be smaller, and indeed good results have been obtained with 83 

very few samples. 84 

 One disadvantage of PDS is the need of an additional optimization process, because in 85 

addition to the number of transfer samples, PDS also needs a window size optimization, which 86 

might lead to a risk of overfitting. In this protocol, window size optimization is made using a 87 

cost function expressed as the misclassification rate calculated for each window size tested, 88 

being evaluated using a validation set where the window with smaller misclassification is 89 

selected for final model construction. 90 

Experimental Design 91 

Any study using vibrational spectroscopy, follows these general steps: careful 92 

experimental design, protocol optimisation and development of experimental procedure 93 

document, sample collection and preparation, spectral collection, pre-processing of the derived 94 

information and lastly the use of chemometrics for exploratory, classification and 95 
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standardization purposes. FTIR spectroscopy is described in more detail in this study, however, 96 

the standardization protocol described here can be adapted to a range of techniques, including 97 

attenuated total reflection (ATR-FTIR), transmission and transflection FTIR, near-IR (NIR), 98 

UV-visible, NMR spectroscopy and mass spectrometry (MS). Nevertheless, intrinsic features 99 

of each technique should be taken into consideration before standardization and the protocol 100 

may change depending on the application of interest. 101 

A number of biological samples can be analyzed with the above-mentioned analytical 102 

methods such as tissues, cytological materials or biological fluids. Sample type and preparation 103 

may differ depending on the technique that is employed each time. For instance, IR 104 

spectroscopy is limited by water interference at the fingerprint region that can mask the signal 105 

of the analyte close to the water peak. This could be addressed with an extra step of sample 106 

drying, in contrast to Raman spectroscopy, for example, where water does not generate signal 107 

in this region. 108 

Typical steps for sample preparation, acquisition of spectra and data pre-processing are 109 

briefly presented here. However, the main focus of this protocol is placed on the calibration 110 

transfer and standardization procedures. Readers are directed to additional literature for more 111 

detailed information regarding sample format and preparation4,98-100,105,175-177, suitability of 112 

substrates4,99, instrumentation settings4,98,99,105,175,177,178 or available software packages (Table 113 

2) and manufacturers4,99 . 114 

Table 2. Software packages for data standardization. 115 

Software Website Description Availability 

PLS_Toolbox http://www.eigenvector.com/ 

 

MATLAB toolbox for chemometric 

analysis. Contains standardization 

routines using DS, PDS, double 

window PDS, spectral subspace 

transformation, GLSW, OSC, and 

alignment of matrices. 

Commercial 

Unscrambler® X http://www.camo.com/ 

 

Software for multivariate data 

analysis and design of experiments. 

Commercial 

http://www.eigenvector.com/
http://www.camo.com/
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Contains standardization routines 

using interpolation, bias and slope 

correction, and PDS. 

OPUS https://www.bruker.com/ 

 

Spectral acquisition software with 

data processing features. Contains a 

standardization routine using PDS. 

Commercial 

Pirouette® https://infometrix.com/ 

 

Chemometrics modelling software. 

Contains standardization routines 

using DS and PDS. 

Commercial 

 116 

Experimental design: sampling 117 

Sample preparation. Biological samples have been studied extensively with spectrochemical 118 

techniques for disease research. Tissue specimens can be analysed fresh, snap-frozen or 119 

formalin-fixed, paraffin-embedded (FFPE). Fresh or snap-frozen histology sections are 120 

preferable as they are devoid of contaminants whereas FFPE treatment contributes to 121 

characteristic peaks, hindering the biological information. FFPE tissues can be deparaffinized 122 

either by chemical methods (e.g., incubation in xylene, hexane or Histo-Clear solutions)4, 123 

which can alter tissue structures and be inefficient for the complete wax removal179, or by 124 

applying chemometrics (e.g., digital dewaxing)180,181, which keeps the tissue intact but might 125 

introduce artefacts due to over- or under-estimation of the wax contribution179. 126 

Fixatives, such as ethanol, methanol or formalin, are often used for the preservation of 127 

cytological material, also generating strong peaks and interfering with the spectra; thus, a 128 

washing step is crucial before spectroscopic interrogation. Fixation in tissue or cells for 129 

preservation purposes generates protein cross-linking which can cause changes in the spectra, 130 

especially on the Amide I peak182.  Alternatively, cells can be studied live after washing from 131 

residual medium. 132 

Preparation and pre-treatment of biological fluids depend on the sample type. Some of 133 

the biofluids that have been previously used in spectroscopic studies include blood (whole 134 

blood, plasma or serum), urine, sputum, saliva, tears, cerebrospinal fluid (CSF), synovial fluid, 135 

ascitic fluid or amniotic fluid183-185. An initial centrifugation step should precede analysis in 136 

https://www.bruker.com/
https://infometrix.com/
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cases where the cells present in these fluids are not the focus of the study; the supernatant could 137 

then be kept for further analysis. In blood-based studies, the user should also consider the 138 

anticoagulant of preference (e.g., EDTA, citrate or heparin) as it could generate unwanted 139 

spectral peaks186-188. Careful planning of experiments as well as consistence throughout a study 140 

are of great importance for the generation of robust results. Care should be taken to generate 141 

samples that are stable, since the spectral differences between the data collected under different 142 

situations (e.g., different instruments or temperature) should be directly related to the difference 143 

between the systems and not a change caused by chemical or physical degradation of the 144 

samples. Optimal sample thickness, suitability of substrates and sample formats can differ from 145 

one analytical technique to another and thus the user should decide and tailor these according 146 

to the study’s objective (a list with appropriate substrates is given in the Materials-Equipment 147 

section). Another consideration is the number of freeze-thaw cycles and long-term storage as 148 

these could compromise the integrity of the samples186,189. Preferably, FFPE tissue samples 149 

should be analysed after thorough dewaxing and freeze-thaw cycles or long-term storage 150 

avoided since these could result in many confounding factors for analysis. 151 

Spectral acquisition. Depending on the study’s objective, FTIR spectral information can be 152 

collected using either point spectra or imaging.  153 

 FTIR spectra can be collected in different operational modes, namely ATR-FTIR, 154 

transmission or transflection. Instrument parameters such as resolution, aperture size, 155 

interferometer mirror velocity and co-additions have to be optimised before acquisition of 156 

spectra to achieve high SNR4,98. Metal surfaces can also be used to increase the IR signal in a 157 

technique known as surface-enhanced IR absorption (SEIRA)190,191. As water interference can 158 

mask biological information in IR spectra, the user can purge the spectrometer with dry air or 159 

nitrogen gas to reduce the internal humidity of the instrument, or use computational analysis to 160 

remove the water signature. In addition, samples should be dried until all water content 161 
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evaporates; however, drying of a sample is not without consequences, since chemical changes 162 

may occur such as loss of volatile compounds. A background sample is collected regularly to 163 

account for any changes in the atmospheric or instrument conditions. 164 

For analysing homogenous samples (e.g., biofluids), measurements can be performed 165 

by acquiring spectra on different regions of the centre of a drop and across its borders. In 166 

transmission measurements, the sample can be measured raw or diluted. Usually, 10 spectra 167 

are collected per sample. A higher number of spectral replicas can be performed to decrease 168 

the standard-deviation (SD) between measurements, since the SD is proportion to 1/√𝑛, where 169 

𝑛 is the number of replicas. For heterogeneously distributed samples (e.g., tissues), spectra 170 

should be acquired covering the sample surface as uniformly as possible, to ensure that all 171 

sources of variation in the samples are stored in the spectral data. Samples replicas are also 172 

recommended at least as triplicates. For precision estimation, at least six replicates at three 173 

levels should be performed. The minimum number of samples for analysis can be estimated 174 

using a power test at an 80% power192. Further details regarding sampling methodologies for 175 

analysing biological materials using FT-IR spectroscopy can be found in our previous 176 

protocols4,98. 177 

Experimental design: data quality evaluation 178 

Before processing, the data can be assessed to identify presence of anomalous 179 

behaviours or biased patterns. This can be made initially by visual inspection (e.g., 180 

identification of very anomalous spectra) followed by Hotelling T2 versus Q residuals charts 181 

using only the mean-centred spectra. PCA residuals193 can be explored to identify biased 182 

patterns, in which heteroscedastic distributions are signs of biased experimental measurements; 183 

while homoscedastic distributions are associated with good sampling. SNR can be estimated 184 

by dividing the power (𝑃) of signal by the power of noise, that is SNR = 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 𝑃𝑛𝑜𝑖𝑠𝑒⁄ =185 
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(𝐴𝑠𝑖𝑔𝑛𝑎𝑙 𝐴𝑛𝑜𝑖𝑠𝑒⁄ )
2
, where 𝐴 is the amplitude; or by the inverse of the coefficient of variation, 186 

when only non-negative variables are measured. Collinearity can be evaluated by calculation 187 

of the condition number, which is a matrix calculation that measures how sensitive the result 188 

is to perturbations in the input data (i.e., spectra) and to roundoff errors made during the 189 

solution process. This value is naturally high for spectral data (high collinearity). 190 

Experimental design: pre-processing 191 

Data pre-processing is used to maximise the SNR. This process is fundamental for 192 

correcting physical interferences, such as light scattering, different sample thickness, different 193 

optical paths and instrumental noise. Therefore, the pre-processing step has fundamental 194 

importance to highlight the signal of interest, reduce interferences and possibly correct 195 

anomalous samples. 196 

 For standardization applications, the pre-processing step is also important for reducing 197 

differences between the different systems that are used. Before any additional pre-processing, 198 

the spectrum should be trunctated to the biofingerprint region (e.g., 900-1800 cm-1) before 199 

analysis. This region contains the main absorptions from biochemical compounds and it suffers 200 

only minor effects of environmental variability, such as air humidity (free νO-H = 3650–3600 201 

cm-1, hydrogen-bonded νO-H = 3400 – 3300 cm-1) and air CO2 (νsCO2 = 2350 cm-1)194. Table 202 

3 summarizes the main pre-processing techniques for correcting noise in biologically-derived 203 

datasets. 204 
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Table 3. Main pre-processing used for biologically-derived datasets. 205 

Pre-processing Interfering Technique Advantage Disadvantage Optimization 

Savitzky-Golay 

smoothing195 

Instrumental noise ATR-FTIR, FTIR, 

NIR, Raman, NMR, 

UV-Vis 

Corrects spectral noise 

without changing the shape 

of data significantly 

The polynomial order and 

window size for 

polynomial fit affects the 

result 

The polynomial function should 

have an order similar to the 

spectral data (e.g., 2nd order 

polynomial function for IR data) 

and the window size should be an 

odd number and not too small 

(keeping the noise) or too large 

(changing the spectral shape) 

Multiplicative scatter 

correction (MSC)196 

Light scattering (Mie 

scattering), different 

pressure over the sample 

when using ATR or probe, 

different lengths of optical 

path 

ATR-FTIR, FTIR, 

NIR, Raman, NMR, 

UV-Vis 

Corrects light scattering 

maintaining the same 

spectral shape and signal 

scale 

Need of a reference 

spectrum representative of 

all measurements 

The reference spectrum is 

regularly set as the average 

spectrum across all training 

samples 

Standard normal variate 

(SNV)197 

Light scattering (Mie 

scattering), different 

pressure over the sample 

when using ATR or probe, 

different lengths of optical 

path 

ATR-FTIR, FTIR, 

NIR, Raman, NMR, 

UV-Vis 

Corrects light scattering 

maintaining the same 

spectral shape 

Creates negative signals 

since the data are 

centralized to zero (y-

scale) 

-- 

Spectral 

differentiation195 

Light scattering (Mie 

scattering), different 

pressure over the sample 

when using ATR or probe, 

different lengths of optical 

path, background 

absorption interfering 

ATR-FTIR, FTIR, 

NIR, Raman, NMR, 

UV-Vis 

Corrects light scattering 

and baseline problems; 

highlights smaller spectral 

differences 

Changes the signal scale, 

shifts the data and 

increases noise 

The order of the derivative 

function should be used carefully 

to avoid increased noise (usually 

1st or 2nd order differentiation is 

preferred). The differentiation can 

be coupled to Savitzky-Golay 

smoothing 

Baseline correction198 Background absorption 

interfering 

ATR-FTIR, FTIR, 

NIR, Raman, NMR, 

UV-Vis, MS 

Corrects the baseline 

maintaining the same 

spectral shape 

-- There are many methods for 

baseline correction (e.g., rubber 

band, automatic weighted least 

squares, Whittaker filter). The 

method chosen should be 

maintained consistent for all 

systems used 
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Normalization95 Different sample thickness 

and concentration 

ATR-FTIR, FTIR, 

Raman 

Avoids influence of non-

desired signals among the 

samples 

The normalization might 

hide signal differences 

between samples at 

important bands, such as 

Amide I and Amide II; and 

also may introduce non-

linearities 

-- 

206 
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 Figure 1 shows the effect of a pre-processing approach employed for a blood plasma 207 

dataset acquired under different experimental conditions (i.e., different systems and operators). 208 

In this Figure, the reduction of the spectral differences between the systems is evident after 209 

data pre-processing (Savitzky-Golay smoothing, MSC, baseline correction and normalization). 210 

After pre-processing (Table 3), a scaling step should be done, because  most 211 

classification methods require all the variables (e.g., wavenumbers) in the dataset to be at the 212 

same scale in order to work properly. 213 

For spectral data, mean-centring (also referred as “standardization” by Hastie et al.199) 214 

is a very reasonable approach, after which all variables in the dataset will have zero mean. 215 

When data contain values represented by different scales (e.g., after data fusion using both IR 216 

and Raman spectra), block-scaling should be used, where each block of data (i.e., data from 217 

each instrumental technique) would have the same sum-of-squares (normally after mean-218 

centring). 219 

 Another important aspect of pre-processing is the order in which each step is applied. 220 

Pre-processing should be employed in a logical order so that the next pre-processing step is not 221 

affected by the previous one. For example, pure spectral differentiation cannot be employed 222 

before smoothing, since the spectral differentiation will increase the original noise. Therefore, 223 

smoothing should be applied before differentiation. Albeit, Savitzky-Golay routine 224 

incorporates smoothing and spectral differentiation so, in practical terms, these can be 225 

performed together. To summarise, the suggested order of pre-processing is as follows: 226 

1. Spectral Truncation 227 

2. Smoothing 228 

3. Light scattering correction 229 

4. Baseline correction 230 
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5. Normalization 231 

6. Scaling 232 

Further details about these pre-processing steps are provided in “Procedure: Data pre-233 

processing” section. When using different instruments but same type of sample, the pre-234 

processing steps should be the same for the data acquired under different circumstances. 235 

Experimental design: data analysis 236 

Sample splitting. Sample splitting is fundamental for constructing a predictive chemometric 237 

model. It consists of a data analysis step performed before construction of a chemometric 238 

model, in which a portion of the samples are assigned to a training set, while the remaining 239 

samples are assigned to a validation and/or test set. The training set is used for model 240 

construction, the validation set for model optimization, and the test set for final model 241 

evaluation. The process of dividing the samples in three sets can be performed manually or by 242 

computer-based methodologies. Manual splitting can generate biased results, therefore we 243 

recommend a computational-based split instead. Some examples of these include random 244 

selection, leverage149 or the KS algorithm174. KS works based on Euclidian distance calculation 245 

by firstly assigning the sample with the maximum distance to all other samples to the 246 

calibration set, and then by selecting the samples which are as far away as possible from the 247 

selected samples to this set, until the designed number of selected samples is reached. This 248 

ensures that the calibration model will contain samples that uniformly cover the complete 249 

sample space, where no or minimal extrapolation of the remaining samples are necessary; 250 

avoiding problems of manual or random selection, such as non-reproducibility and non-251 

representative selection. Usually, the dataset is split with 70% of the samples assigned for 252 

training, 15% for validation and 15% for test. In this case, the test set is dependent on the initial 253 

group of samples measured, and it is not a regular independent test set where a new set of 254 

similar samples are measured. 255 
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Exploratory analysis. Exploratory analysis is an important tool to provide an initial 256 

assessment of the data. Using exploratory analysis, the analyst can see the clustering patterns 257 

and then draw conclusions related to the nature of samples, outliers and experimental errors. 258 

One of the most common techniques for exploratory analysis is principal component analysis 259 

(PCA), in which the original data are decomposed into a few principal components (PCs) 260 

responsible for most of the variance within the original dataset. The PCs are orthogonal to each 261 

other and are generated in a decreasing order of explained variance, so that the first PC 262 

represents most of the original data variance, followed by the second PC and so on200. 263 

Mathematically the decomposition takes the form: 264 

𝐗 = 𝐓𝐏T + 𝐄           (07) 265 

where 𝐗 represents the pre-processed data (e.g., pre-processed samples’ spectra); 𝐓 are the 266 

scores; 𝐏 are the loadings; and 𝐄 are the residuals. 267 

 The PCA scores represent the variance in the sample direction and they are used to 268 

assess similarities/dissimilarities among the samples, thus detecting clustering patterns. The 269 

PCA loadings represent the variance in the variable (e.g., wavenumber) direction and they are 270 

used to detect which variables show the highest importance for the pattern observed on the 271 

scores. The PCA loadings are commonly employed as a tool for searching spectral markers 272 

that distinguish different biological classes201. The PCA residuals represent the difference 273 

between the decomposed and original data and can be used to identify experimental errors. 274 

Ideally, the PCA residuals should be random and close to zero, representing a heteroscedastic 275 

distribution. Otherwise, they can indicate experimental bias according to a homoscedastic 276 

distribution. 277 

 For standardization applications, PCA is a fast, intuitive and reliable tool to observe if 278 

there are differences between the spectra acquired by different systems. Ideally, if the same 279 
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sample is measured under different conditions (different laboratories, instrument 280 

manufacturers or user operators) their PCA scores should be random and completely 281 

superposed. If a discrimination pattern is observed on the PCA scores, then it is indicative that 282 

the data need standardization. Figure 2 illustrates a PCA scores plot from the same samples 283 

(blood plasma of healthy controls) measured using three IR instruments before (Fig. 2a) and 284 

after (Fig. 2b) PDS. Even though the samples in Fig. 2a are pre-processed, three different 285 

clusters are still evident. After PDS the samples measured using different systems are 286 

normalized into a single cluster. 287 

Outlier detection. Outlier detection is important to prevent samples, which differ from the 288 

original dataset, from affecting the results using predictive models. Outliers can be attributed 289 

to experimental errors, such as inconsistent sample preparation or spectral acquisition, or to 290 

larger experimental noise, such as Johnson noise, shot noise, flicker noise and environmental 291 

noise. These samples can have large leverage for classification, masking the real signal from 292 

the samples of interest; therefore, it is advised that they be removed from the dataset used to 293 

train the predictive model. 294 

 To detect outliers, techniques such as Jack-knife202, Z-score203 or K-modes clustering204 295 

can be utilised among others205. One of the most popular and visually intuitive technique for 296 

detecting outliers is the Hotelling T2 vs Q residual test206. In this test, a chart is created using 297 

the Hotelling T2 values in x-axis and the Q residuals in the y-axis, generating a scatter plot. The 298 

Hotelling T2 represents the sum of the normalized squared scores, which is the distance from 299 

the multivariate mean to the projection of the sample onto the PCs207. The Q residuals represent 300 

the sum of squares of each sample in the error matrix, thus measuring the residues between a 301 

sample and its projection onto the PCs207. All samples far from the origin of this graph are 302 

considered outliers and should be removed one at a time, as the PCA is highly influenced by 303 

the samples that are included in the model. Samples with high values in both Hotelling T2 and 304 
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Q residuals are the worst outliers; while samples with high values in only one of these axis are 305 

the second worst outliers. Supplementary Method 1 illustrates an example for outlier detection. 306 

Squared confidence limits can be draw based on this graph; however, this can hinder outlier 307 

detection. For example, if the confidence limits is set at a 95% level, certain amount of data-308 

points (5%) should be statistically outside these boundaries.  309 

Classification. Classification techniques are employed for sample discrimination. Using 310 

chemometric analysis, one can distinguish classes of samples based on their spectral features 311 

and then make further predictions based on these. The prediction capability of a classification 312 

model should be evaluated with external samples (unknown samples) through the calculation 313 

of figures of merit, including accuracy (proportion of samples correctly classified considering 314 

true positives and true negatives), sensitivity (proportion of positives that are correctly 315 

identified) and specificity (proportion of negatives that are correctly identified)208. 316 

 There are many types of classification techniques for spectral data. Table 4 summarizes 317 

the main classification techniques employed for bio-spectroscopy applications, along with their 318 

advantages and disadvantages. 319 

 Table 4. Classification techniques. 320 

Classification Technique Advantage Disadvantage 

Linear discriminant 

analysis (LDA)209 

Simplicity, fast calculation Needs data reduction, does not account 

for classes having different variance 

structures, greatly affected by classes 

having different sizes 

Quadratic discriminant 

analysis (QDA)209 

Fast calculation, accounts for 

classes having different variance 

structures, not much affected by 

classes having different sizes 

Needs data reduction, higher risk of 

overfitting 

Partial least squares 

discriminant analysis 

(PLS-DA)210 

Fast calculation, high accuracy Greatly affected by classes having 

different sizes, needs optimization of the 

number of latent variables (LVs) 

K-Nearest Neighbours 

(KNN)211 

Simplicity, non-parametric, suitable 

for large datasets 

Time consuming, needs optimization of 

the distance calculation method and k 

value, highly sensitive to the “curse of 

dimensionality”199 

Support vector machines 

(SVM)212 

Non-linear classification nature, 

high accuracy 

High complexity, high risk of overfitting, 

needs optimization of kernel function 

and SVM parameters, time consuming 
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Artificial neural networks 

(ANN)213 

Non-linear classification nature, 

ability to work with incomplete 

knowledge, high accuracy 

High computational cost, needs 

optimization of the number of neurons 

and layers, no interpretability (“black 

box” model) 

Random forests214 Non-linear classification nature, 

high accuracy, relatively low 

computational cost 

High risk of overfitting, needs 

optimization of the number of trees, no 

interpretability (“black box” model) 

Deep learning 

approaches215 

Non-linear classification nature, 

native feature extraction (e.g., in 

convolutional neural networks 

(CNN)), local spatial coherence 

(CNN),  high accuracy 

High computational cost, needs 

hyperparameter optimization, needs large 

datasets, time consuming, no 

interpretability (“black box” model) 

 321 

 When employing classification techniques, one must follow a parsimony order216, 322 

where the simplest algorithms should be used first, reducing the need for more complex 323 

algorithms which would require more optimization steps. An order for using these 324 

classification algorithms is: LDA>PLS-DA>QDA>KNN>SVM>ANN>Random forests>Deep 325 

learning approaches, from the simplest to the most complex. 326 

 Classification algorithms can be coupled to feature extraction and feature selection 327 

techniques in order to reduce data collinearity/redundancy, thus reducing the risk of overfitting 328 

in the classifier training, and speeding up such training, as there are less variables involved.  329 

An additional benefit of such a feature extraction/selection step is to provide spectral markers 330 

identification as a “side-effect” (depending on the feature extraction/selection method applied). 331 

For feature extraction, the most popular technique is PCA. In this case, a PCA is firstly applied 332 

to the data, and then the PCA scores are used as the input variables (instead of the wavenumbers 333 

data points) for the classification techniques mentioned above217. PLS-DA is also a feature 334 

extraction technique210, and normally it performs better than a PCA followed by LDA, as the 335 

scores from a PCA does not necessarily describe the difference between the samples, but rather 336 

the variance in the data. In PLS-DA, a partial least squares (PLS) model is applied to the data 337 

in an interactive process reducing the original variables to a few number of LVs, where a LDA 338 

is used for classifying the groups218. Other discriminant classifiers, in particular QDA, also 339 

could be used in this classification step to circumvent problems observed with LDA. For feature 340 
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selection, there are many techniques commonly employed in biological datasets, including 341 

genetic algorithm (GA)219 and successive projections algorithm (SPA)220. The variables (e.g., 342 

wavenumbers) selected by these techniques are used as input variables for the classification 343 

models described in Table 2. An important advantage of GA is its relatively low-computational 344 

cost compared to SPA and reduction of data collinearity. Furthermore, GA-based techniques 345 

are intuitive and simple to understand in the algorithmic sense but they also have a non-346 

deterministic nature and require optimization of many parameters. SPA’s advantage relies on 347 

its deterministic nature, minor parameter optimization and reduction of data collinearity, 348 

however, it is very time consuming. For hyperspectral imaging, feature selection can also be 349 

performed by Minimum Redundancy Maximum Relevance (mRMR) algorithm221, where the 350 

selection process is based on maximizing the relevance of extracted features and 351 

simultaneously minimize redundancy between them. 352 

 Standardization. Data standardization should be employed when a primary classification 353 

model is built and new data comes to be predicted from a secondary system (different 354 

laboratory or instrument manufacturers), or when there is a change in instrument components 355 

(e.g., laser, gratings, etc.) or when the data of the chemometric model are acquired under 356 

different circumstances (different analysts, days, instrumental settings, etc.). As previously 357 

mentioned, the most common and reliable methods for data standardization are the DS and 358 

PDS algorithms. These methods can be found in a few software packages (described in Table 359 

3). 360 

Figure 3 summarises the standardization protocol using DS applied to spectra acquired 361 

under different conditions. The first step consists of applying KS algorithm for selecting the 362 

number of transfer samples from the primary system as well as the number of training samples 363 

for the secondary systems, which is ideally 70% of the dataset. Thereafter, the DS transform 364 

generation algorithm is employed to estimate the transform matrix. The validation set of the 365 
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secondary system is then used with the classification model of the primary system to evaluate 366 

the optimum number of transfer samples. This optimization step is repeated depending on the 367 

number of transfer samples from the primary system. After this number is defined, the 368 

validation set of the secondary system is finally standardized and the final classification model 369 

is subsequently applied. This procedure is realized with a certain number of samples measured 370 

in all instruments being standardized. This procedure should be realized in as similar manner 371 

as possible to reduce spectral differences. After the model is standardized and proper validated, 372 

new external samples can be measured in any of the instruments and predicted by the 373 

standardized classification model. 374 

 For PDS, an extra step is added after defining the number of transfer samples to estimate 375 

the optimum window size. The dashed region in Fig. 3 is repeated according to the window 376 

size. 377 

 For multi-laboratory studies the flowchart depicted in Fig. 4 illustrates how the 378 

standardization protocol should be employed. 379 

 In Fig. 4, spectra acquired under different experimental conditions are used for a global 380 

standardization model. A primary system should be designated and then all spectra from 381 

secondary systems are equally pre-processed, followed by an exploratory analysis to assess 382 

samples’ similarities/dissimilarities, outlier detection, standardization by the method outlined 383 

in Figure 3; the final model construction follows last. With this, all sources of variations present 384 

in different systems can be included into a general chemometric model. 385 

 386 
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MATERIALS 387 

REAGENTS 388 

• Biological samples (tissue, cells, biofluids)(see Reagent Setup).  389 

▲ CRITICAL Human samples should be collected with appropriate local institutional 390 

review board for ethical approval and adhere to the Declaration of Helsinki principles. 391 

Similarly, for studies involving animals, all experiments should be performed in 392 

accordance with relevant guidelines and regulations. Ethical approval has to be obtained 393 

before any sample collection. 394 

• Optimal cutting temperature (OCT) compound (Agar Scientific, cat. no. AGR1180) 395 

• Liquid nitrogen (BOC, CAS no. 7727-37-9) ! CAUTION Asphyxiation hazard; make sure 396 

room is well ventilated. Causes burns; wear face shield, gloves and protective clothing. 397 

• Paraplast Plus paraffin wax (Thermo Fisher Scientific, cat. no. SKU502004) 398 

• Isopentane (Fisher Scientific, cat. no. P/1030/08) ! CAUTION Extremely flammable, 399 

irritant, aspiration hazard and toxic; use in a fume hood. 400 

• Distilled water 401 

• PBS (10×; MP Biomedicals, cat. no. 0919610) 402 

• Virkon (Antec, DuPont, cat. no. A00960632) 403 

• Trypsin–EDTA (0.05%, Sigma-Aldrich, Thermo Fisher Scientific cat. no. 25300054) 404 

 405 

Anticoagulants 406 

• EDTA (Thermo Fisher Scientific, BD Vacutainer, cat. no. 02-687-107 ) 407 

• Sodium citrate (Thermo Fisher Scientific, BD Vacutainer) 408 

• Lithium/sodium heparin (Thermo Fisher Scientific, BD Vacutainer) 409 

 410 

Fixative and preservative agents 411 
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• Formalin, 10% (vol/vol; Sigma-Aldrich, cat. no. HT501128) ! CAUTION Potential 412 

carcinogen, irritant and allergenic; use in a fume hood. 413 

• Ethanol (Fisher Scientific, cat. no. E/0600DF/17) 414 

• Methanol (Fisher Scientific, cat. no. A456-212) ! CAUTION Toxic vapours; use in a fume 415 

hood. 416 

• Acetone (Fisher Scientific, cat. no. A19-1) ! CAUTION Acetone vapors may cause 417 

dizziness; use in a fume hood. 418 

• ThinPrep (PreservCyt Solution, Cytyc Corp) 419 

• SurePath (Becton Dickinson Diagnostics) 420 

 421 

Dewaxing agents 422 

• Xylene (Sigma-Aldrich, cat. no. 534056) ! CAUTION Potential carcinogen, irritant and 423 

allergenic; use in a fume hood. 424 

• Histo-Clear (Fisher Scientific, cat. no. HIS-010-010S) ! CAUTION It is an irritant. 425 

• Hexane (Fisher Scientific, cat. no. 10764371) ! CAUTION Extremely flammable liquid, 426 

can cause skin irritation; use protective equipment as required; use in a fume hood. 427 

 428 

EQUIPMENT 429 

• Microtome (Thermo Fisher Scientific, cat. no. 902100A; or cat. no. 956651) 430 

• Wax dispenser (Electrothermal, cat. no. MH8523B) 431 

• Sectioning bath (Electrothermal, cat. no. MH8517) 432 

• Centrifuge (Thermo Fisher Scientific, cat. no. 75002410) 433 

• Desiccator (Thermo Fisher Scientific, cat. no. 5311-0250) 434 

• Desiccant (Sigma-Aldrich, cat. no. 13767) 435 

• Laser power meter (Coherent, cat. no. 1098293) 436 
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• Spectrometer 437 

• Computer system 438 

 439 

Substrates 440 

▲ CRITICAL Substrate should be carefully chosen depending on the spectrochemical 441 

approach and the experimental mode that will be used. For more details about the choice 442 

of substrate see ref 4,99. 443 

• Low-E slides (Kevley Technologies, CFR) 444 

• BaF2 slides (Photox Optical Systems) 445 

• CaF2 slides (Crystran, cat. no. CAFP10-10-1) 446 

• Silicon multi-well plate (Bruker Optics) 447 

• Glass slides (Fisher Scientific, cat. no. 12657956) 448 

• Quartz slides (UQG Optics, cat. no. FQM-2521) 449 

• Aluminum-coated slides (EMF, cat. no. AL134) 450 

• Mirrored stainless steel (Renishaw, cat. no. A-9859-1825-01) 451 

 452 

REAGENT SETUP 453 

Tissue For FFPE tissue, the excised specimen is immersed in fixative (e.g., formalin), 454 

dehydrated in ethanol, cleared in xylene and embedded in paraffin wax. Specimens can then 455 

be stored indefinitely at room temperature. For snap-frozen tissue, the specimen is immersed 456 

in OCT, followed by cooling of isopentane with liquid N2. 457 

▲ CRITICAL Snap-frozen tissue should be thawed before analysis. Spectroscopic analysis 458 

should be performed directly after excision in case of fresh tissue to avoid sample degradation. 459 

Cells Cells can be treated with a suitable fixative or preservative solution or studied alive. 460 
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▲ CRITICAL In case cells are fixed or stored in a preservative solution, a number of washing 461 

steps using centrifugation should be followed prior to spectroscopic analysis to remove 462 

unwanted signature. If cells are studied alive, optimum living conditions (e.g., growth medium, 463 

temperature and pH) should be maintained; washing of live cells from medium is also 464 

necessary. 465 

Biofluids Biofluids can be collected in designated, sterile tubes using standard operating 466 

procedures to achieve uniformity of performance. Preparation of biofluids depends on the 467 

sample type and the experiment’s objective. If cellular material is not directly studied, it should 468 

be removed from the biofluid before storage. Biofluids can be analysed right after their 469 

collection or stored at a -80°C freezer. 470 

▲ CRITICAL If biofluids have been stored in a freezer, it is essential that they are fully 471 

thawed before acquiring aliquots for spectroscopic analysis. 472 

▲ CRITICAL Users are advised to store biofluids in smaller, single-use aliquots at -80°C to 473 

avoid repeated freeze-thaw cycles. 474 

 475 

EQUIPMENT SETUP 476 

The user can choose from a range of different instrumental setups and spectral acquisition 477 

modes. General information about FTIR systems is provided below. For more details about 478 

equipment setup see refs.4,98,99. 479 

The FTIR spectrometer can be left on for long periods of time. Before spectral acquisition, the 480 

user should check the interferogram signal for amplitude and position and keep a record of the 481 

measurements. 482 
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▲ CRITICAL For detectors that require a prior cooling step using liquid nitrogen (e.g., 483 

mercury cadmium telluride (MCT) detectors), the signal should be allowed to stabilize for 484 

approximately 10 min before data collection. 485 

▲ CRITICAL In case that the interferogram signal deviates from the last measurement, re-486 

alignment or part replacement may be required. 487 

Software: Software for spectral acquisition is typically provided by the manufacturer. Software 488 

packages for spectral analysis and data standardization are provided in Table 3. 489 

PROCEDURE 490 

Sample preparation 491 

1| Prepare the biological samples for spectrochemical analysis using the following steps: option 492 

A for FFPE tissue samples, option B for snap-frozen or fresh tissue samples, option C for cells 493 

and option D for biofluids. 494 

▲ CRITICAL Sample preparation is briefly presented in this protocol. More details about 495 

sample preparation can be found in refs.4,98,99. 496 

(A) Tissue (FFPE) ● TIMING 1-1.5 h 497 

(i) Obtain FFPE tissue blocks. 498 

 (ii) Section the whole tissue block using a microtome to obtain tissue sections at desired 499 

thickness (2-10 μm). 500 

▲ CRITICAL STEP Cooling of the tissue on an ice block for 10 min prior to sectioning, 501 

hardens the wax and allows easier cutting. 502 

 (iii) Float the tissue ribbons in a warm H2O bath (40-44°C) and then deposit onto the 503 

substrate of choice. 504 
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 (iv) Allow the tissue sections to dry either at room temperature (30 min) or in a 60°C 505 

oven (10 min). 506 

▲ CRITICAL STEP The tissue slide may be dried in the oven for longer periods of time, 507 

depending on the type of tissue, to ensure optimal, initial melting of the wax. 508 

 (v) Dewax the samples by performing three sequential immersions in a dewaxing 509 

reagent such as fresh xylene, Histo-Clear solution or hexane (each immersion should last at 510 

least 5 min).  511 

▲ CRITICAL STEP Thorough dewaxing is important for eliminating all spectral peaks 512 

attributed to paraffin. 513 

 (vi) Immerse the tissue slide in acetone or ethanol (5 min) to remove the xylene and 514 

then left to air-dry. 515 

■ PAUSE POINT Slides can be stored in a desiccator at room temperature for at least 1 year. 516 

(B) Tissue (Snap-frozen or fresh) ● TIMING 2 h + drying time (3 h for FTIR only) 517 

▲ CRITICAL Snap-frozen tissue can be stored at -80°C for several months.  518 

▲ CRITICAL For fresh tissue, proceed to step 1B(ii). 519 

 (i) Acquire snap-frozen tissue from freezer and place onto a cryostat (30 min) to allow 520 

the tissue to reach the cryostat’s temperature (-20°C). 521 

(ii) Use a cryostat to obtain tissue sections at desired thickness (8-10 μm). 522 

 (iii) Deposit the tissue sections onto an appropriate substrate before spectra are 523 

collected (see a list of substrates in the Materials-Equipment section). 524 

▲ CRITICAL For FTIR studies the tissue sections need to dry for at least 3 h to remove the 525 

H2O interference from the IR spectra. 526 
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▲ CRITICAL Exposure to light should be minimised to prevent sample degradation due to 527 

oxidation. 528 

(C) Cells (fixed or live) ● TIMING 30 min + desiccation time (3 h for FTIR only) 529 

▲ CRITICAL If you are working with fixed cells, do step 1C(i) and then proceed to step 530 

1C(iii). If you are working with live cells,  proceed to step 1C(ii) 531 

 (i) Wash fixed cells to remove the fixative or preservative solution as these chemicals 532 

cause spectral interference in the fingerprint region. Three sequential washes with distilled H2O 533 

or PBS have been shown to remove unwanted peaks. 534 

 (ii) Detach cultured cells from the growth substrate adding 2-3 mL of fresh warm 535 

trypsin/EDTA solution to the side wall of the flask; gently swirl the contents to cover the cell 536 

layer. Wash with warmed sterile PBS to remove the medium and trypsin (×3 times; gentle 537 

centrifuge at 300 g for 7 min).  538 

▲ CRITICAL STEP All reagents should be warmed to 37°C to reduce the shock to cells and 539 

maintain morphology. 540 

 (iii) After the final wash, resuspend the remaining cell pellet in distilled H2O (~50-100 541 

μL) and mount onto a substrate of choice; allow sample to dry before analysis. 542 

▲ CRITICAL STEP The final suspension of cells (~50-100 μL) should be evenly deposited 543 

on the slide either by cytospinning or by micro-pipetting. For cytospinning, take a maximum 544 

volume of 200 μL of cells in suspension (spin-fixed cells at 800 g for 5 min). After spinning, 545 

leave the slide to air-dry. 546 

▲ CRITICAL For FTIR studies the sample needs to dry for at least 3 h. 547 
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(D) Biofluids (frozen or fresh) ● TIMING 5 min + thawing (20 min) + drying (1-1.5 h)  548 

▲ CRITICAL If biofluids are analysed fresh, immediately after collection, continue to step 549 

1D(ii). 550 

 (i) Acquire biofluids from the -80°C freezer and allow them to fully thaw. 551 

 (ii) Mix or gently vortex the sample before obtaining the desired volume for analysis. 552 

▲ CRITICAL STEP Only a small amount of the biofluid is typically required for 553 

spectroscopic studies (1-100 μL). However, this depends and should be tailored according to 554 

the study and experimental design. For instance, in case a substrate is used for experiments in 555 

the ATR mode, a larger volume is preferred as it allows spectral acquisition from multiple 556 

locations of the blood spot. On the contrary, if no substrate is used, such as in the case of the 557 

direct deposition of the sample on the ATR crystal, smaller volumes can also be used. 558 

 (iii) Deposit the biological fluid onto an appropriate substrate. 559 

▲ CRITICAL STEP For ATR-FTIR spectroscopic studies, an alternative option is to deposit 560 

the sample directly on the ATR crystal instead of a substrate if the instrumentation setting 561 

allows (i.e., if crystal is facing upwards). However, if the sample is sufficiently thick (>2-3 μm) 562 

to avoid substrate interference, then the use of a holding substrate is advantageous as it allows 563 

measurements from multiple locations as well as longer storage. 564 

▲ CRITICAL STEP For FTIR studies the sample needs to dry adequately before 565 

spectroscopic analysis (50 μL dry within approximately 1 h at room temperature). Drying can 566 

be sped up by using a gentle stream of air over the sample at a specific flow rate (in a sterile 567 

laminal flow hood). 568 

 569 
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Spectral acquisition for FTIR spectroscopy ● TIMING 2 - 5 min per spectrum 570 

▲ CRITICAL Spectrochemical information can be collected as follows for FTIR 571 

spectroscopy. 572 

▲ CRITICAL Spectral acquisition is briefly presented in this protocol. More details can be 573 

found in refs.4,98,99. 574 

 575 

2 | Optimise the settings before each new study to increase the SNR (see ‘Experimental 576 

design: spectral acquisition’). 577 

▲ CRITICAL STEP Some of the parameters that need to be adjusted include the 578 

resolution, spectral range, co-additions, aperture size, interferometer mirror velocity, 579 

and interferogram zero-filling. 580 

▲ CRITICAL STEP  To improve reproducibility and decrease differences between 581 

the data collected by different operators, the spectral resolution should be set constant, 582 

since it can cause major differences between data collected across different 583 

experimental setups.  584 

▲ CRITICAL STEP The pressure applied on the sample in the ATR mode affects the 585 

signal intensity (i.e., absorbance) between data collected by different instruments and 586 

operators. Thus, the pressure applied on the sample should be as similar as possible 587 

across different experimental setups to reduce differences between the spectra 588 

collected. Depending on the sampling mode that has been chosen (ATR-FTIR, 589 

transmission or transflection), deposit the sample onto the appropriate holding 590 

substrate. 591 

3 | Acquire a background spectrum to account for atmospheric changes. 592 

▲ CRITICAL STEP This should be done before every sample.  593 
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4 | Load the sample and visualise the region of interest; information can then be acquired 594 

either as point map or as image maps. 595 

▲ CRITICAL Typically, 5-25 point spectra are collected per sample while for image 596 

maps the step size should be the same or smaller than the selected aperture size divided 597 

by two. Sampling can be performed with 6 replicates in 3 levels. 598 

 599 

■ PAUSE POINT Save the acquired data in a database until further analysis. 600 

Data quality evaluation ● TIMING 15 min – 4 h (depending on the size of the dataset) 601 

5 | Evaluate the raw data using quality tests to identify anomalous spectra or biased 602 

patterns before applying pre-processing. This can be made by visual inspection of the 603 

collected spectra followed by Hotelling T2 versus Q residuals charts (see Supplementary 604 

Method 1) using only the mean-centred data, and analysis of PCA residuals. Samples 605 

far from the origin of the Hotelling T2 versus Q residuals chart should be removed, and 606 

PCA residuals should be random and close to zero. Further instructions about data 607 

quality evaluation can be found at “Experimental Design: data quality evaluation” 608 

section. 609 

Data pre-processing ● TIMING 15 min – 4 h (depending on the size of the dataset) 610 

▲ CRITICAL Steps 6-11 below can be modified depending on the nature of the dataset. Table 611 

1 provides more details about these pre-processing steps. In case of an ATR-FTIR dataset 612 

where samples were acquired and analysed under different experimental conditions, the pre-613 

processing method should follow this order: 614 

6 | Cutting at biofingerprint region (900-1800 cm-1). Truncate the spectra to the 615 

biofingerprint region, to eliminate atmospheric interference present in other regions of 616 

the spectra. 617 
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7 | Savitzky-Golay smoothing for removing spectral-noise. Window size varies 618 

according to the size of the spectra dataset (e.g., wavenumber). The window size should 619 

be an odd number, since a central data point is required for the smoothing process.  Try 620 

different window sizes from 3 to 21 and observe how the spectra change (in shape) and 621 

how the noise is reduced. Use the smallest window that removes the noise considerably 622 

whilst maintaining the original spectral shape. Using a spectral resolution of 4 cm-1, the 623 

biofingerprint region (900-1800 cm-1) usually contains 235 wavenumbers. In that case, 624 

a window size of 5 points should be used. The polynomial order for Savitzky-Golay 625 

fitting should be 2nd order for IR spectroscopy due to the band shape. 626 

8 | Light scattering correction using either multiplicative scatter correction (MSC), 627 

SNV or 2nd derivative. First try using MSC or SNV, as MSC maintains the spectral 628 

scale and both methods maintain the original spectral shape. If the results are not 629 

satisfactory (e.g., classification accuracy < 75%), try using the 2nd derivative spectra. 630 

9 | Perform baseline correction using automatic weighted least squares or rubber 631 

band baseline correction. If spectral differentiation is applied as light scattering 632 

correction method, baseline correction is not necessary. 633 

10 | Normalization Normalize the spectrum to the amide I peak or amide II peak, or 634 

perform a vector normalization (2-Norm, length = 1) to correct different scales across 635 

spectra (e.g., due to different sample thicknesses when using FTIR in transmission 636 

mode). 637 

11 | Scaling Mean-centre the data for each variable, and divide this value by the variable 638 

standard deviation. In case of data fusion, block-scaling should be used. 639 
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Data analysis  640 

Exploratory analysis. ● TIMING 1h – 4 d (depending on the data size) 641 

12 | Determine whether a standardisation procedure is necessary by performing PCA. The 642 

PCA scores plot (PC1 vs PC2) should generate a unique clustering pattern for the same 643 

type of sample. If two or more clusters are observed for the same type of sample 644 

measured under different experimental conditions, then a standardisation procedure is 645 

necessary (see Figure 2). 646 

Outlier detection. ● TIMING 1h – 1 d (depending on the data size) 647 

13 | Apply PCA to the dataset and then estimate the Q residuals and Hotelling T2 values. 648 

Use the chart of Q residuals versus Hotelling T2 to identify outliers. The outliers (e.g., 649 

cosmic rays, artefacts, low signal spectra and substrate only (non-tissue) spectra) should 650 

be removed from the data set before proceeding to the next steps. 651 

Sample split. ● TIMING 1 – 4 h (depending on the data size) 652 

14 | Separate the samples that will be used for the training and the test sets. Sample split 653 

should be performed before construction of standardization of multivariate 654 

classification models. The samples can be split into training (70%) and test (30%) sets, 655 

using a cross-validated model; or split into training (70%), validation (15%) and test 656 

(15%) sets without using cross-validation. To maintain consistency and account for a 657 

well-balanced training model, KS algorithm should be employed to separate the 658 

samples into each set. KS algorithm is freely available at 659 

https://doi.org/10.6084/m9.figshare.7607420.v1. 660 

Standardization. ● TIMING 1h – 4 d (depending on the data size) 661 

▲ CRITICAL Standardization methods should be employed in the following order: 662 

DS > PDS (DS should be done before PDS), since the latter is more complex and 663 

https://doi.org/10.6084/m9.figshare.7607420.v1
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requires an additional optimization step (window size optimization). The data from the 664 

secondary response should be separated into training (70%), validation (15%) and test 665 

(15%) sets using KS algorithm. The number of transfer samples should be firstly 666 

optimized using the validation set from the secondary response. Then, when employing 667 

PDS, the window size should be optimized according to the size of the dataset. 668 

15 | Use DS to vary the number of transfer samples from 10-100% of the training set from 669 

the primary system. Use the validation set from the secondary instrument to find the 670 

optimum number of transfer samples using the misclassification rate as cost function. 671 

16 | Perform PDS using the optimum number of samples found with DS. Test different 672 

window sizes using the validation set from the secondary system with the 673 

misclassification rate as cost function. The window size should vary from 3-29 for a 674 

spectral set with resolution of 4 cm-1 in the biofingerprint region (235 variables). 675 

Model construction. ● TIMING 1h – 4 d (depending on the data size) 676 

▲ CRITICAL Feature extraction (e.g., by means of PCA) or feature selection (e.g., 677 

by means of GA or SPA) should be employed to reduce data collinearity and speed up 678 

data processing and analysis time. PLS-DA is already a feature extraction method, thus 679 

the performance of prior feature extraction is not necessary in this case. The 680 

classification technique employed must follow a parsimony order: LDA>PLS-681 

DA>QDA>KNN>SVM>ANN>Random forests>Deep learning approaches. 682 

17 | Apply the feature extraction or selection technique. The optimization of the number of 683 

PCs during PCA can be performed using an external validation set (15% of the original 684 

dataset) or using cross-validation (leave-one-out for small dataset [ppl samples] or 685 

venetian blinds [sample splitting: 10] for large datasets [>20 samples]). GA should be 686 

realized three-times starting from different initial populations and the best result using 687 

an external validation set (15% of the original dataset) should be used. Cross-over 688 
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probability should be set for 40% and mutation probability should be set for 1-10% 689 

according to the size of the dataset. 690 

18 | The classification method should be employed using optimization with an external 691 

validation set or cross-validation, especially for selecting the number of latent variables 692 

of PLS-DA and the kernel parameters for SVM. The kernel function for SVM should 693 

be RBF kernel, due to its adaptation to different data distributions. To avoid overfitting, 694 

cross-validation should be always performed during model construction to estimate the 695 

best RBF parameters. 696 

? TROUBLESHOOTING 697 

Spectral acquisition: Spectral resolution, spectral range, SNR and signal aperture should be 698 

optimized during experimental setup. Operators using different systems should try to keep 699 

these parameters constant to reduce spectral differences. 700 

Data pre-processing: To reduce spectral differences, the same data pre-processing should be 701 

applied for spectra acquired in different systems. 702 

Standardization: To improve the prediction capability of the classification model, the primary 703 

system used should be the one with highest spectral resolution and smallest noise, since all data 704 

from the secondary systems will be standardized to this pattern. 705 

● TIMING 706 

Sample preparation:  707 

Step 1(A) Tissue (FFPE): 1-1.5 h 708 

1(B) Tissue (Snap-frozen or fresh): 2 h + drying time (3 h) 709 

1(C) Cells (fixed or live): 30 min + desiccation time (3 h) 710 

1(D) Biofluids (frozen or fresh): 5 min + thawing (20 min) + drying (1-1.5 h)  711 
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Steps 2-4, Spectral acquisition:  1 s – 5 min per spectrum (depending on the instrument and 712 

spectral acquisition configurations) 713 

Step 5, Data quality evaluation: 15 min – 4 h (depending on the size of the dataset) 714 

Steps 6-11, Data pre-processing: 15 min – 4 h 715 

Data analysis:  716 

Step 12, Exploratory analysis: 1 h – 4 d 717 

Step 13, Outlier detection: 1 h – 1 d 718 

Step 14, Sample split: 1- 4h (depending on sample size) 719 

Step 15-16, Standardization: 1 h – 4 d 720 

Step 17-18, Model construction: 1 h – 4 d 721 

ANTICIPATED RESULTS 722 

To illustrate how this protocol can be used in practice, we conducted a pilot study to 723 

evaluate the effect of different instrument manufacturers and operators towards spectral 724 

acquisition of healthy controls and ovarian cancer samples based on blood plasma (5 healthy 725 

controls with 10 spectra per sample; 5 ovarian cancers with 10 spectra per sample) for a binary 726 

classification model using ATR-FTIR spectroscopy. All specimens were collected with ethical 727 

approval obtained at Royal Preston Hospital UK (16/EE/0010). Table 4 summarizes the 728 

experimental conditions in which the experiments were performed. 729 

Table 4. Experimental conditions for pilot study. 730 

Instrument Operator Spectral range Number of 

co-additions 

Spectral 

resolution 

Room 

temperature 

Air 

humidity 

A  1 4000-400 cm-1 32 4 cm-1 23.0ºC 23% 

 2 4000-400 cm-1 32 4 cm-1 23.4ºC 26% 

B  1 4000-400 cm-1 32 4 cm-1 24.0ºC 26% 

 2 4000-400 cm-1 32 4 cm-1 24.9ºC 24% 

C  1 4000-400 cm-1 48 4 cm-1 22.5ºC 28% 

 2 4000-400 cm-1 48 1 cm-1 22.8ºC 26% 

 731 
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 Instrument A and B were Bruker Tensor 27 with an HELIOS ATR attachment while 732 

instrument C was an ATR-FTIR Thermo Scientific Nicolet iS10. The spectra were collected 733 

for the same types of samples within three different days (operator 1: instrument A in day 1, 734 

instrument B in day 3, and instrument C in day 2; operator 2: instrument A in day 2, instrument 735 

B in day 1, and instrument C in day 3) and across two different laboratories (instrument A and 736 

B in laboratory 1 and instrument C in laboratory 2). Each operator prepared the samples 737 

individually from the same bulk, and measured them individually. Spectral acquisition times 738 

were around 30 s for instruments A and B, and 40 s for instrument C. 739 

Effect of different instruments  740 

 Three different ATR-FTIR spectrometers were used to analyse the samples. Data were 741 

pre-processed by truncating at the biological fingerprint region (900-1800 cm-1), followed by 742 

Savitzky-Golay smoothing (window of 15 points, 2nd order polynomial function), MSC, 743 

baseline correction using automatic weighted least squares and vector normalization (2-Norm, 744 

length = 1). Each data set (A, B and C) was pre-processed individually. The raw and pre-745 

processed spectra for healthy controls and ovarian cancer samples are depicted in 746 

Supplementary Figure 1. All spectra collected by the three instrument maintained the same 747 

spectral shape, indicating that the chemical information stayed the same; however, large 748 

differences between the absorbance intensity were observed between instrument C and the 749 

others (A, B), being caused due to different pressures applied on the sample in the ATR module. 750 

The pressure applied to keep the sample in contact with the ATR crystal directly affects the 751 

spectral signal intensity, which for instrument A and B (same manufactures) were somewhere 752 

controlled by a contra weight, while for instrument C the pressure was set based on a 753 

mechanical screw on the device, thus being biased by the operator usage. The absorbance 754 

intensity variation between A and B is observed for this same reason, but in a minor scale. 755 
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Outlier detection was performed using a Hotelling T2 versus Q residual test (Supplementary 756 

Figure 2). 757 

(i) Classification. Classification was performed using PCA-LDA (10 PCs, explained 758 

variance of 99.21%). Fig. 5a depicts the discriminant function (DF) score plot for PCA-LDA 759 

using only the primary system (ATR-FTIR A). As observed, there is an almost perfect 760 

separation between the samples from the two classes (accuracy = 100%, sensitivity = 100%, 761 

specificity = 100%). However, when the spectra acquired using instruments B and C are 762 

predicted using the model for A, the results decreased significantly (accuracy = 66.7%, 763 

sensitivity = 83.2%, specificity = 48.9%) (Fig. 5b), necessitating the use of a standardization 764 

procedure. 765 

(ii) Standardization. Standardization was employed using both DS and PDS in order 766 

to compare the two methods. The number of transfer samples for DS was optimized according 767 

to the misclassification rate obtained for the validation set using the secondary system (Fig. 768 

6a). An optimum number corresponding to 80% of the samples in the training set of the primary 769 

system (55 transfer samples) was obtained, resulting to a misclassification rate of 22.2% in the 770 

validation set of the secondary system. This improved the accuracy (77.8%) and specificity 771 

(80.0%). Sensitivity decreased to 75.0%, which is an acceptable value. The results after DS are 772 

better balanced than without standardization. Fig. 6b shows the DF plot for the PCA-LDA 773 

model using the training of the primary system and prediction with the secondary system after 774 

DS. 775 

 PDS was also applied. The number of transfer samples was maintained as 55 (80% of 776 

the primary training set) and the window size was optimized by using the validation set of the 777 

secondary system. An optimum window size of 23 wavenumbers was selected with a 778 

misclassification rate of 25.9% (Fig. 6c). The accuracy, sensitivity and specificity using PDS 779 
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were 74.1%, 71.4% and 75.0%, respectively. The DS presented a slightly higher performance 780 

than PDS for this dataset. However, DS generated some outliers not observed before, while 781 

PDS did not. Thus, in general, PDS provided a better standardization of the data. The PCA-782 

LDA DF plot after PDS is depicted in Fig. 6d. 783 

 784 

Effect of different operators 785 

The effect of different user operators acquiring spectra from the same samples using 786 

the same instruments was also evaluated. Similarly to before, data were pre-processed by 787 

cutting the biological fingerprint region (900-1800 cm-1), followed by Savitzky-Golay 788 

smoothing (window of 15 points, 2nd order polynomial function), MSC, baseline correction 789 

using automatic weighted least squares and vector normalization (2-Norm, length = 1). Each 790 

dataset was pre-processed individually. All raw and pre-processed spectra varying operators 791 

are depicted in Supplementary Figures 4 and 5. Outlier detection was performed using a 792 

Hotelling T2 versus Q residual test (Supplementary Figure 7). The PCA scores plots for the 793 

pre-processed spectra are depicted in Supplementary Figure 6. The main difference between 794 

the operators was observed for instrument C Supplementary Figure 5, since the spectral 795 

resolutions used by them were different, which can cause major data distortion. 796 

 (i) Classification. Classification was performed using PCA-LDA (10 PCs, explained 797 

variance of 98.62%). Fig. 7a depicts the DF score plot for PCA-LDA using only the primary 798 

system (Operator 1). There is a significant separation between the samples from the two classes 799 

(accuracy = 88.4%, sensitivity = 77.3%, specificity = 100%). When the spectra acquired by 800 

Operator 2 are predicted using the model for Operator 1, the results decreased (accuracy = 801 

75.6%, sensitivity = 66.7%, specificity = 84.6%) (Fig. 7b), which again necessitates the use of 802 

a standardization procedure. 803 
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(ii) Standardization. DS and PDS were employed as standardization methods. The 804 

number of transfer samples for DS was optimized according to the misclassification rate 805 

obtained for the validation set using the secondary system (Operator 2) (Fig. 8a). An optimum 806 

number of 59 transfer samples (30% of the samples in the training set of the primary system 807 

[Operator 1]) was obtained, resulting in a misclassification rate of 17.8% in the validation set 808 

of the secondary system. This improved the accuracy (82.2%), sensitivity (69.6%) and 809 

specificity (95.5%) compared to the results without DS. Fig. 8b shows the DF plot for the PCA-810 

LDA model using the training of the primary system and prediction with the secondary system 811 

after DS. 812 

 The number of transfer samples was maintained as 59 for PDS; and the window size 813 

was optimized by using the validation set of the secondary system. An optimum window size 814 

of 23 wavenumbers was selected with a misclassification rate of 22.2% (Fig. 8c). The accuracy, 815 

sensitivity and specificity using PDS were 77.8%, 100% and 54.5%, respectively. Although 816 

DS obtained an average better classification performance than PDS for this dataset, it also 817 

generated some outliers as mentioned before. For this reason, the results after PDS seem better 818 

standardized. The PCA-LDA DF plot after PDS is depicted in Fig. 8d. 819 
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Figure legends 1370 

Figure 1. IR spectra of healthy control (absence of disease) samples varying ATR-FTIR 1371 

instruments and operators. Average (a) raw and (b) pre-processed IR spectra for healthy 1372 

control samples measured across three different ATR-FTIR spectrometers in the same institute 1373 

(A, B and C). Average (c) raw and (d) pre-processed IR spectra for healthy control samples 1374 

across two different operators (Operator 1 and 2). 1375 

Figure 2. PCA scores for healthy control (absence of disease) samples varying ATR-FTIR 1376 

instruments before and after standardization. (a) PCA scores for healthy control samples 1377 

across three different ATR-FTIR spectrometers in the same institute (A, B and C) after pre-1378 

processing but before PDS; (b) PCA scores for healthy control samples across three different 1379 

ATR-FTIR spectrometers in the same institute (A, B and C) after PDS (model built with 55 1380 

transfer samples and window size of  23 wavenumbers). The dotted blue circle shows 95 % 1381 

confidence ellipse (two-sided). Each measurement observation (circle) corresponds to the data 1382 

acquired from a unique operator. 1383 

Figure 3. Flowchart for standardization using Direct Standardization (DS). 1384 

Figure 4. Flowchart for a standardization protocol using different experimental 1385 

conditions.  1386 

Figure 5. Discriminant function (DF) plots using PCA-LDA to discriminate healthy 1387 

control (absence of disease) samples from ovarian cancer samples varying the instrument. 1388 

(a) DF plot of the PCA-LDA model for the primary system; (b) DF plot of the PCA-LDA 1389 

model for the primary system predicting the samples from the secondary systems. Sample 1390 

index represents the number of samples’ spectra. 1391 

Figure 6. PCA-LDA results for DS and PDS standardisation models for spectra collected 1392 

by the three different instruments. (a) Misclassification rate in % for the validation set of the 1393 

secondary system varying the number of transfer samples in % from the primary system for 1394 
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DS optimization; (b) DF plot of the PCA-LDA model for the primary system predicting the 1395 

validation set from the secondary system after DS; (c) Misclassification rate in % for the 1396 

validation set of the secondary system varying the window size for PDS optimization; (d) DF 1397 

plot of the PCA-LDA model for the primary system predicting the validation set from the 1398 

secondary system after PDS. Transfer samples (%) refer to the percentage of training samples’ 1399 

spectra from the primary instrument that are used to transform the signal obtained using the 1400 

secondary instrument. 1401 

Figure 7. Discriminant function (DF) plots using PCA-LDA to discriminate healthy 1402 

control (absence of disease) samples from ovarian cancer samples varying the operator. 1403 

(a) DF plot of the PCA-LDA model for the primary system (Operator 1); (b) DF plot of the 1404 

PCA-LDA model for the primary system predicting the samples from the secondary system 1405 

(Operator 2). 1406 

Figure 8. PCA-LDA results for DS and PDS standardisation models for spectra collected 1407 

by two different operators. (a) Misclassification rate in % for the validation set of the 1408 

secondary system (Operator 2) varying the number of transfer samples in % from the primary 1409 

system (Operator 1) for DS optimization; (b) DF plot of the PCA-LDA model for the primary 1410 

system predicting the validation set from the secondary system after DS; (c) Misclassification 1411 

rate in % for the validation set of the secondary system varying the window size for PDS 1412 

optimization; (d) DF plot of the PCA-LDA model for the primary system predicting the 1413 

validation set from the secondary system after PDS.  1414 
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