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ABSTRACT

As research into magnetic thin films and spintronics devices is moving from single to multiple magnetic layers, there is a need for micro-
magnetics modeling tools specifically designed to efficiently handle magnetic multilayers. Here, we show an exact method of computing
demagnetizing fields in magnetic multilayers, which is able to handle layers with arbitrary spacing, arbitrary thicknesses, and arbitrary rela-
tive positioning between them without impacting the computational performance. The multilayered convolution method is a generalization
of the well-known fast Fourier transform-based convolution method used to compute demagnetizing fields in a single magnetic body. In
typical use cases, such as multilayered stacks used to study skyrmions, we show that the multilayered convolution method can be up to 8
times faster, implemented both for central processors and graphics processors, compared to the simple convolution method.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116754

I. INTRODUCTION

Multilayered magnetic structures are currently at the forefront
of research into spintronics devices, spurred by applications to non-
volatile magnetic memories and logic as well as the fascinating
physics of spin transport across multiple ferromagnetic/nonmagnetic
layer interfaces. In particular, skyrmions,1 stabilized at room temper-
ature in ultrathin magnetic layers through the Dzyaloshinskii-Moriya
interaction (DMI),2,3 have shown great promise as information carri-
ers in spintronics devices, utilizing the spin-Hall effect to efficiently
manipulate them with electrical currents.4 Skyrmion motion has
been observed in magnetic multilayered stacks,5–8 while hybrid chiral
skyrmions have been studied in magnetic multilayers.9,10 Racetrack
memory devices have also been proposed11 based on current-induced
domain wall motion in multilayered stacks.12,13 Moreover, magnetic
multilayers with surface exchange coupling allow the modification
of dipolar interactions in synthetic antiferromagnetic and synthetic
ferrimagnetic tracks,14–17 resulting in fast domain wall motion and
reduced threshold currents.

Numerical micromagnetics18 modeling plays a very important
role in understanding and analyzing experimental results, allowing
the reproduction of magnetization dynamics in the presence of

magnetic fields as well as spin torques in multilayers.19 The magne-
tostatic interaction, which is an essential part of the micromag-
netics model, is particularly difficult to evaluate due to its
long-range effect, accounting for the majority of simulation time.
The use of magnetic multilayers further significantly complicates
this, as the spacing and thicknesses of magnetic layers used in
many experimental studies make it difficult to discretize the simula-
tion space, while also allowing an efficient simulation. A widely
used approach to calculating the demagnetizing fields due to the
magnetostatic interaction is based on finite difference discretization
and uses fast Fourier transforms (FFTs) to evaluate the convolution
sum of a demagnetizing tensor with the magnetization distribu-
tion.20,21 A closely related method allows the calculation of demag-
netizing fields from the scalar potential.22,23 When applied to
multilayers, the main difficulty with this approach is the require-
ment for uniform computational mesh discretization. This poses a
problem for magnetic multilayers, where the layer thicknesses and
spacings may not readily lend themselves to a uniform discretiza-
tion of the entire space. Other approaches to calculating the demag-
netizing field are available, including tensor grids24 as well as finite
element/boundary element methods25—for a review of this class of
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methods, see Ref. 26. The finite difference method with FFT-based
convolution remains very popular, owing to better computational
performance compared to finite element methods, particularly for
rectangular geometries.26 Finite element methods are more accurate
for curved geometries, although staircase corrections can be used in
the finite difference formulation to reduce discretization errors on
the demagnetizing field.27,28

Freely available software include OOMMF,29 mumax3,30 and
Fidimag,31 and all compute demagnetizing fields using the FFT-based
convolution method. Here, we introduce a new method specifically
designed for magnetic multilayers, which is a generalization of the
FFT-based convolution method, termed multilayered convolution.
This method has been implemented in Boris Computational
Spintronics32 both for central processors (CPU) and graphics proces-
sors (GPU). Multilayered convolution allows computation of demag-
netizing fields in multiple layers with arbitrary thicknesses and
spacing, without the requirement to uniformly discretize the entire
simulation space. In typical use cases, we show that this method
results in up to 8 times faster computational speeds compared to
FFT-based convolution with uniform discretization, while still being
an exact method.

II. MULTILAYERED CONVOLUTION

In micromagnetics, for a magnetic body with a discrete distri-
bution of magnetization values M at points in the set V = {ri; i∈P},
the demagnetizing fields may be obtained as

H(rk) ¼ �
X
ri[V

N(rk � ri)M(ri), rk [ V : (1)

The demagnetizing tensor N has the following components,
which may be computed using the formulas given in Newell et al.:33

N ¼
Nxx Nxy Nxz

Nxy Nyy Nyz

Nxz Nyz Nzz

0
@

1
A: (2)

For uniform finite difference discretization, Eq. (1) may be
evaluated very efficiently using the convolution theorem:20,21 the
input magnetization and tensor components are transformed using
the discrete Fourier transform (DFT), multiplied point-by-point in
the transform space, and the output demagnetizing field distribu-
tion is obtained by further applying the inverse DFT. Since the
demagnetizing tensor only depends on the fixed geometry, it can
be obtained in the kernel form by applying the DFT only once in
the initialization stage.

When we have a collection of magnetic bodies, {Vi; i = 1, …, n},
one approach to calculating the demagnetizing field distribution is to
simply apply Eq. (1) again by taking the union of these separate
magnetic bodies into a single magnetic body V. For this method to
be exact, the discretization cellsize must be chosen so as to divide the
separate bodies Vi, as well as the empty space between them, into an
integer number of cells in each dimension. For most cases of practi-
cal interest, this approach is not only restrictive in terms of the
geometries that can be reasonably simulated but also inefficient,

since the resulting cellsize is typically much smaller than that
required to accurately simulate each magnetic body separately. To
give examples, we distinguish two cases: (i) magnetic multilayers with
large thickness values compared to the separation between the layers
and (ii) ultrathin magnetic multilayers with relatively large separation
between the layers. Case (i) includes synthetic antiferromagnetic
structures,14–17 while case (ii) occurs most notably in ultrathin mag-
netic multilayered stacks used to study skyrmions.5–8,34 With this
method, the local and short-range effective field contributions, e.g.,
due to exchange interaction and magnetocrystalline anisotropy, are
computed separately in each computational mesh, while the long-
range demagnetizing field is computed on the union of these compu-
tational meshes. We term this method supermesh convolution.

With the multilayered convolution approach, we can write the
convolution sum as

H(r0kl)¼�
X
i¼1,...,n
rij[Vi

N(r0kl � rij, hk, hi)M(rij), k¼ 1, . . . , n; r0kl [ Vk

(3)

In the demagnetizing tensor of Eq. (3), we explicitly specify
the cellsize, h, of the two computational meshes the tensor relates.
Since in Eq. (3) we have n terms of the form given in Eq. (1), we
can again apply the convolution theorem. This time, for each
output mesh (H), we have n input meshes (M), together with n
kernels. Thus, to calculate the outputs in all n meshes, we require a
total of n2 sets of kernel multiplications and n(n− 1) summations
in the transform space. This is illustrated in Fig. 1. Since the set
of n input magnetization distributions is reused for each of the n
output field distributions, we only require n applications of the
DFT, and similarly the final outputs can be obtained using only n
applications of the inverse DFT. This approach is much more

FIG. 1. Multilayered convolution algorithm for n computational meshes. The
magnetization input of each mesh is transformed separately using a FFT algo-
rithm, either directly (dotted line) or by first transferring to a scratch space with a
common discretization cellsize using a weighted average smoother (solid lines).
In the transform space, the inputs are multiplied with precomputed kernels for a
total of n2 sets of point-by-point multiplications. Finally, the output demagnetizing
fields are obtained using an inverse FFT algorithm, which are set directly in the
output meshes (dotted line), or transferred using a weighted average smoother
if the discretization cellsizes differ (solid lines).
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efficient than directly summing the interlayer demagnetizing field
contributions, as this would require n2 inverse DFTs.

In the 3D mode (all DFTs are three-dimensional), we require
all input/output spaces to have the same dimensions and same
discretization cellsize. For the 2D mode (all DFTs are two-
dimensional in the xy plane), there is no restriction on the thick-
ness of each layer; thus, we only require the x and y components of
discretization cellsizes to be the same across the n input/output
spaces. In this latter case, it is easy to modify the formulas given in
Newell et al.33 to calculate the tensor components for two cells
with unequal dimensions—see Appendix A. If the n input spaces
have unequal dimensions, we can simply use zero padding to
extend them to the largest dimension in the set. A more difficult
case arises if the cellsize values differ between the input spaces. In
this case, we can use an interpolation method to first transfer the
input values to scratch spaces with a common discretization cellsize
across the n scratch spaces. Similar remarks apply for the output
fields, and this is also illustrated in Fig. 1.

Before discussing the mesh transfer method, we note that in
many micromagnetics problems involving multilayers, the simu-
lated magnetic materials used are either the same or with a similar
exchange length, which means the required computational cellsize
can be set the same without sacrificing computational efficiency.
There is a further restriction on the cellsize due to the requirement
of integer number of cells in each dimension. For the 2D mode, as
mentioned above, there is no restriction on the thickness of each
layer as there is just one computational cellsize along the z direction
for all computational meshes involved. In the 3D mode, we may
also wish to simulate layers with different thickness values. In this
case, we can obtain the z component of the common discretization
cellsize by dividing the largest mesh z dimension by the largest
number of computational cells along the z direction, from the set
of n computational meshes. The input magnetization distributions
are then transferred using interpolation to the scratch spaces with
common discretization, using zero padding where needed. There is
no restriction imposed on the cellsize by either the spacing or rela-
tive positioning between the layers; thus, multilayered convolution
allows for simulations with arbitrary spacing between the layers,
which may be inaccessible to supermesh convolution. For example,
consider the Pt(5 nm)\FM\Au(d)\FM\Pt(5 nm) structure from
Ref. 8, where FM is Ni(4 Å)\Co(7 Å)\Ni(4 Å), and d is the variable
Au spacer thickness. To simulate such a structure using an exact
discretization, a 1 Å cellsize in the z direction is required that
renders it impractical. Instead, an effective medium approximation
may be introduced by considering the FM layer as a whole, in
which case a cellsize of 1.5 nm can be used—this still requires dis-
cretizing the Au layer, which can be very inefficient for large thick-
nesses, and also restricts the values of d to multiples of 1.5 nm.
With the multilayered convolution method, this structure with the
individual Ni and Co layers can be simulated exactly, as it is very
efficient (six 2D layers of the required thickness can be set); more-
over, the Au layer thickness can be set to any value without impact-
ing the computational performance. Similar considerations apply
to the multilayered structures used in Refs. 5–7 as well as the
multilayered tracks used in Refs. 14–17. Thus, in many cases, the
individual layers may be simulated using 2D transforms, which
further results in significant speedup compared to supermesh

convolution, the latter requiring a large 3D convolution. The lower
DFT dimensions also result in increased numerical accuracy.35 The
need for n2 sets of kernel multiplications may seem excessive, but each
set of point-by-point multiplications is much smaller compared to the
case of supermesh convolution, which, when taking into account the
significantly reduced DFT sizes, allows for a large number of layers to
be handled while still providing significant speedup factors.

The mesh transfer procedure uses a weighted average smoother
with second order accuracy in space,36 described as follows. Consider
a discrete distribution of magnetization values M at points
V = {ri; i∈P}. Let h be the cellsize of the input mesh, with the set of
cells {ci; i∈P} centered around the points ri. To obtain the magneti-
zation value at a point r0 in a cell c with dimensions h0, we introduce
the definitions di = |r0-ri|, dV= |h0 + h|/2, and ~di ¼ dV � di. The
weighted average is given as

M(r0) ¼
X
i[P

wiM(ri), (4)

where

wi ¼
~diδi
~dT

,

δi ¼
1, ci > c = �,

0, otherwise,

�

~dT ¼
X
i[P

~diδi:

(5)

The weights can be precomputed at the initialization stage,
thus speeding up the algorithm at run-time.

Finally, we consider the properties of kernels used for transform
space multiplications, which are obtained from the demagnetizing
tensors using the DFT. In general, the kernels are complex-valued and
use a storage space with (Nx/2 + 1) ×Ny ×Nz points, where Nx, Ny,
and Nz are the DFT sizes in the x, y, and z dimensions, respectively.
The first dimension is always reduced since the input tensor elements
are purely real. The demagnetizing tensor elements also have symme-
try properties, which in some important special cases allow the
kernels to be purely real or purely imaginary (thus resulting in multi-
plication by a scalar only) as well as use a reduced storage space of
(Nx/2 + 1) × (Ny/2 + 1) × (Nz/2 + 1) points.

20 The symmetry properties
of the demagnetizing tensor components as well as the resulting
kernel properties in the cases of interest are summarized in Table I.

At one extreme, we have the self-demagnetizing kernels for
2D and 3D cases (i.e., zero shift between the input and output
spaces), which, due to symmetry properties of the tensor compo-
nents, are purely real and can also be stored using reduced storage
space—the remaining elements may be recovered from symmetry
properties of the kernels.20 At the other extreme, we obtain the
stray field from one magnetic body at another, with an arbitrary
shift between the two spaces. In this case, the kernels are both
complex-valued and require the full storage space. While the input
tensor elements have symmetries about the x = 0, y = 0, and z = 0
points in each dimension, due to the shift introduced the input
tensor symmetries do not carry through to the transform space.
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The notable exception is that of a shift along the z axis only (cases
denoted as 2D-zShift or 3D-zShift in Table I). In this case, the
symmetries in the x and y dimensions are still applicable and the
resulting kernel properties are summarized in Table I. Note that for
the 3D-zShift case, while the kernels are complex, they can still be
stored using reduced storage space since the input to the z dimen-
sion DFT is either purely real or purely imaginary.

While the multilayered convolution algorithm requires n2 sets
of kernel multiplications, typically we do not require storage of n2

kernels due to the redundant information between them. For
example, for each kernel that relates an input and output space
with a given shift between them, we also need a kernel for the
opposite direction shift. For the 2D-zShift case, this may simply be
obtained from the first by adjusting signs in the kernel multiplica-
tion stage, as resulting from the tensor properties in Table I.
Also, since it is only the relative shift between two spaces that is
important, not their absolute positions, we can further reduce the
required kernel storage in many typical use cases. For example, the
most efficient use case is that of regularly spaced multilayers, for
which we only need n kernels. Finally, a note on implementation,
the FFTs in Boris are computed using FFTW337 on the CPU and
the CUDA 9.2 FFT library38 on the GPU. Boris is coded in C++14
and is open source.32 A pseudo-code for the multilayered convolu-
tion algorithm is shown in Appendix B.

III. VALIDATION

To verify the multilayered convolution algorithm, micromag-
netics problems have been solved using both the supermesh convo-
lution and multilayered convolution algorithms for all the cases
shown in Table I. The most stringent test involves reproducing the
exact magnetization dynamics, similar to the approach taken in
μMag standard problem 4.39 For these, the Landau-Lifshitz-Gilbert
(LLG) equation was solved with effective field contributions of
applied field, exchange interaction field, and demagnetizing field.
An example of this is shown in Fig. 2, where the magnetization
switching in a 640 × 320 nm2 trilayer Ni80Fe20 structure was simu-
lated under a 20 kA/m in-plane magnetic field oriented 5° to the x
axis. Typical material parameters for Ni80Fe20 are used as given in
Ref. 40. The starting magnetization state is shown in the inset of
Fig. 2(b). The switching field was applied to the top and bottom
layers only; thus, the middle layer switches purely due to the dipole

field from the outer layers. Here, the outer layers have a thickness
of 20 nm, while the middle layer has a thickness of 10 nm, with
separation between layers of 1 nm. The supermesh convolution
method uses a (5 nm, 5 nm, 1 nm) cellsize in order to accommo-
date the 1 nm gap between the layers and was computed using
mumax3. The Runge-Kutta 4th (RK4) order evaluation method
was used with a 100 fs time step due to the stiffness of the LLG
equation. For the multilayered convolution, we simply use a 5 nm
cubic cellsize in each of the three layers. This was computed using
Boris with the RK4 evaluation method using a 500 fs time step. The
magnetization switching is plotted for the bottom and middle
layers in Fig. 2(b) and 2(c)—the top layer average magnetization
dynamics is the same as for the bottom layer due to mirror symme-
tries. Due to the larger magnetic moments of the top and bottom
layers, these are switched toward the applied magnetic field direc-
tion. The middle layer, with a smaller magnetic moment, switches
due to the large stray fields from the top and bottom layers. As can
be seen in Fig. 2, the two convolution methods result in excellent
agreement, despite the different cellsize values used to compute the
demagnetizing and exchange fields. This problem was computed
using the GTX 1050 Ti GPU on Windows 7 x64. In terms of com-
putational performance, the multilayered convolution on Boris is
around 18 times faster compared to the supermesh convolution on
mumax3, partly due to the much smaller time step required when
using the smaller cellsize. In terms of absolute performance per
RK4 iteration, the supermesh convolution on Boris is around 1.5
times faster compared to mumax3 on this platform.

Another problem is shown in Fig. 3, where the Néel skyrmion
diameter in ultrathin Co layer stacks is computed using both the
supermesh and multilayered convolution algorithms. The Co layers
are 1 nm thick, of circular shape with 512 nm diameter, and are with
a 3 nm nonmagnetic spacer between the layers. The Co layers have
strong perpendicular magnetocrystalline anisotropy, in practice
arising due to interfacial spin-orbit coupling with a heavy metal
layer,41, e.g., Pt, which forms part of the nonmagnetic spacer.
Material parameters used are the same as given in Ref. 34. The
effective field contributions include the applied field, exchange inter-
action field, interfacial DMI field with DMI exchange constant
D =−1.5 mJ/m2, uniaxial magnetocrystalline anisotropy field, and
demagnetizing field. The skyrmion diameter was obtained by fitting
the z skyrmion profile with the function mz(r) ¼ cos(2 arctan
(sinh(R=w)=sinh(r=w))),42 where R is the skyrmion radius and

TABLE I. Convolution kernel properties for the general 2D and 3D cases, as well as special cases, where Ndd and Kdd refer to the diagonal components (dd = xx, yy, or zz). 2D-Self
and 3D-Self refer to the calculation of self-demagnetizing fields. 2D-zShift and 3D-zShift refer to cases where the shift between two computational meshes is along the z axis only. In
general, the storage space required has (Nx/2 + 1) × Ny × Nz points. For “reduced” storage space (cases indicated in the table), we only need (Nx/2 + 1) × (Ny/2 + 1) × (Nz/2 + 1) points.
For 3D modes, we require the cellsizes to match (hi = hj) for the computational meshes the kernel relates, while for 2D modes, we only require the x and y components of the cell-
sizes to match [h(x,y)i = h(x,y)j]. The symmetry properties of tensor components along the x, y, and z axes are indicated, as well as the resulting kernel types after DFT—real, imaginary,
or complex.

Tensor x y z
Kernel
(DFT)

2D-Self
“reduced”

3D-Self
“reduced”

2D-zShift “reduced”
h(x,y)i = h(x,y)j

3D-zShift
“reduced” hi = hj

2D-Full “full”
h(x,y)i = h(x,y)j

3D-Full
“full” hi = hj

Ndd Even Even Even Kdd Real Real Real Complex Complex Complex
Nxy Odd Odd Even Kxy Real Real Real Complex Complex Complex
Nxz Odd Even Odd Kxz 0 Real Imaginary Complex Complex Complex
Nyz Even Odd Odd Kyz 0 Real Imaginary Complex Complex Complex
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w ¼ πD=4K with K ¼ Ku � μ0M
2
S=2. Here Ku is the uniaxial mag-

netocrystalline anisotropy and MS is the saturation magnetization.34

The calculated diameter as a function of out-of-plane mag-
netic field strength and number of Co layers is shown in Fig. 3(b).

Both the supermesh and multilayered convolution algorithms use a
cellsize of (4 nm, 4 nm, 1 nm); however, with multilayered convolu-
tion, the stray field is only computed in the Co layers alone. As can
be seen in Fig. 3(b), the computed diameters are virtually identical
for the two methods on Boris, showing the expected inverse depen-
dence on magnetic field strength.43 We have also computed the
skyrmion diameters using supermesh convolution with mumax3,
shown as open squares in Fig. 3(b). Again, there is an excellent
agreement between the two methods, with differences in diameter
up to 2 nm, thus half the in-plane discretization cellsize.

IV. ALGORITHM PERFORMANCE

The performance comparison between the two algorithms
clearly depends on the relative spacing between the layers. At one
extreme, we can have a set of magnetic layers with relatively little
empty space between them, which can also be exactly discretized
without reducing the cellsize dimensions just to accommodate the
layer spacing. In this case, the supermesh convolution algorithm is
faster. At the other extreme, we have magnetic multilayers with either
very small spacing between them relative to the layer thickness values
or which otherwise need a very small magnetic cellsize to exactly and

FIG. 2. Magnetization switching in a trilayer Ni80Fe20 structure using a 20 kA/m
in-plane magnetic field oriented 5° to the x axis, computed using multilayered
convolution (Boris) as well as supermesh convolution (mumax3). The top and
bottom layers have a thickness of 20 nm, the middle layer has thickness of
10 nm, with separation between layers of 1 nm, length of 640 nm, and width of
320 nm. (a) Magnetization configuration during the switching event, showing the
three separate layers, with magnetization direction arrows color coded using the
inset color wheel. (b) and (c) Components of average magnetization as a func-
tion of time, plotted for the bottom and middle layers, respectively, showing the
starting magnetization configuration in the inset. For supermesh convolution, a
(5 nm, 5 nm, 1 nm) cellsize was used—open symbols—while for multilayered
convolution, a 5 nm cubic cellsize was used in each layer—dashed lines.

FIG. 3. Calculation of average skyrmion diameter in multilayered 512 nm diameter
disks as a function of out-of-plane magnetic field and number of Co layers. The Co
layers are 1 nm thick with a separation of 3 nm. (a) Skyrmion in a 6-layer stack,
with magnetization direction arrows color coded using the inset color wheel.
(b) Skyrmion diameter as a function of magnetic field and number of Co layers,
computed with Boris using supermesh convolution (dashed lines), multilayered con-
volution (disks), as well as supermesh convolution with mumax3 (open squares).
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uniformly discretize for supermesh convolution. Here, we give a per-
formance comparison for a typical use case, e.g., as arising in multi-
layered [Pt (3 nm)\Co (1 nm)\Ta (4 nm)]n stacks used in previous
works.5,34 The same material parameters and effective fields are used
for the results in Fig. 3. Two computational platforms were used,
GTX 980 Ti GPU with the i7 4790 K CPU on Windows 7 x64 as
well as the GTX 1050 Ti GPU with the i7 x980 CPU on Windows 10
x64. The benchmarking results are the average of the results obtained
on these 2 computational platforms. The benchmarking results are
shown in Fig. 4, plotting the computation time per iteration as a
function of number of stack repetitions, namely n = 1 up to n = 17,
for both the supermesh and multilayered convolution algorithms.
Both the CPU and GPU implementations of the algorithms are con-
sidered. In all cases, the multilayered convolution algorithm results in
much faster performance, with speedup factors between 2.5 and 8.

The multilayered convolution simulation time increases smoothly
with the number of layers, following a parabolic dependence partly
due to the required n2 sets of kernel multiplications indicated in
Fig. 1. On the other hand, the supermesh convolution algorithm
shows abrupt jumps in simulation time—this is due to the
power-of-2 dimensions required by the FFT algorithm. The same
benchmarking test was run for the case of 1 nm separation between
the layers, which should favor supermesh convolution due to the
reduced empty space between the layers. Even in this case, the multi-
layered convolution algorithm is faster, with an average speedup
factor of 1.5 and a maximum speedup factor of 2. The only case
where multilayered convolution was slower was for n = 16, with a
speedup factor of 0.9; however, this jumps to 1.2 for n = 17 as the z
FFT dimension is doubled for supermesh convolution.

V. CONCLUSIONS

Here, we have demonstrated a new method of computing
demagnetizing fields in magnetic multilayers, which was shown to
be a generalization of the FFT-based convolution method used for
single magnetic bodies. The multilayered convolution method is able
to handle arbitrary spacing and arbitrary relative positioning between
the magnetic layers with no impact on the computational perfor-
mance. Moreover, for thin magnetic layers, which may be simulated
using 2D convolution, the multilayered convolution method also
allows arbitrary thickness values for the layers in the stack. For 3D
convolution, the algorithm is also able to handle layers with different
thickness values as well as different xy plane dimensions between the
different layers. The algorithm was implemented both for the CPU
and GPU. Multilayered convolution is most efficient when the indi-
vidual layers are thin and are stacked along the z direction. This case
occurs very often in practice, and, in particular, for a typical multi-
layered stack used to study skyrmions, it was shown to be up to 8
times faster compared to the simple convolution method that treats
the entire multilayered stack as a single magnetic body.

APPENDIX A: DEMAGNETIZING TENSOR FORMULAS

Let s = (x, y, z) be the shift between two rectangular prisms
with dimensions (cellsizes) hs = (hx, hy, hsz) and hd = (hx, hy, hdz);
thus, the cellsizes are allowed to differ at most in their z dimension.
The shift is oriented from the origin corner of the source cellsize
with dimensions hs to the origin corner of the destination cellsize
with dimensions hd. In this case, the demagnetizing tensors for the
xx and xy elements are computed using

Nxx(s) ¼ L[f ; hs, hd](s),

Nxy(s) ¼ L[g; hs, hd](s):
(A1)

The function L is given as

L[w; hs, hd](s)¼ 1
τ

X1
ε1,ε2¼�1

1

ð�2Þjε1jþjε2j

�w(xþε1hx , yþε2hy , z�hsz)
�w(xþε1hx , yþε2hy , zþhdz)
þw(xþε1hx , yþε2hy , z)
þw(xþε1hx , yþε2hy , z�Δ)

8>><
>>:

9>>=
>>;
,

(A2)

where τ = πhx × hy × hdz and Δ = hsz− hdz.

FIG. 4. Performance comparison of supermesh and multilayered convolution
algorithms in a Co stack as a function of number of Co repetitions, for both (a)
CPU implementation for 512 nm diameter disks and (b) GPU implementation for
1024 nm diameter disks. Solid disks show the simulation time per iteration, and
empty triangles show the speedup factor of multilayered vs supermesh convolu-
tion (simulation time ratio of supermesh to multilayered convolution).
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The functions f and g are given below,33 where R2 = x2 + y2 + z2.

f (x, y, z) ¼ (2x2 � y2 � z2)R
6

� xyz arctan
yz
xR

� �
þ y(z2 � x2)

4
ln 1þ 2y(y þ R)

x2 þ z2

� �
þ z(y2 � x2)

4
ln 1þ 2z(z þ R)

x2 þ y2

� �
, (A3)

g(x, y, z) ¼� xyR
3

� z3

6
arctan

xy
zR

� �
� zy2

2
arctan

xz
yR

� �
� zx2

2
arctan

yz
xR

� �

þ y(3z2 � y2)
12

ln 1þ 2x(x þ R)
y2 þ z2

� �
þ x(3z2 � x2)

12
ln 1þ 2y(y þ R)

x2 þ z2

� �
þ xyz

2
ln 1þ 2z(z þ R)

x2 þ y2

� �
: (A4)

The remaining tensor elements may be obtained from Nxx and Nxy by permuting the dimensions for the s, hs, and hd vectors as
explained in Ref. 33.

APPENDIX B: MULTILAYERED CONVOLUTION ALGORITHM PSEUDOCODE

The multilayered convolution algorithm is presented in pseudo-code below. The implementation using C++, both for the CPU and
GPU using CUDA, is available as open source in Ref. 32.
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