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Abstract

Young protostellar discs may be massive enough that they become unstable and frag-

ment, leading to the formation of planets, brown dwarfs, and low-mass stars. This

thesis examines the development of the gravitational instability in discs: how it oc-

curs and whether planets can form through gravitational fragmentation.

I consider the effects of radiative feedback by objects formed through gravitational

fragmentation in discs, and compare simulations which consider three cases of radia-

tive feedback: none, continuous, and episodic. I find that when radiative feedback is

continuous, only one object forms as its radiative feedback suppresses further fragmen-

tation. However, when radiative feedback is episodic, further fragmentation occurs as

the disc cools between episodes. Generally, the stronger the radiative feedback, the

fewer objects ultimately form through gravitational fragmentation. Since multiple ob-

jects are formed, those of lower mass are ejected due to gravitational interactions. On

the other hand, the more massive objects accrete a sufficient amount of gas to even-

tually become brown dwarfs or low-mass stars. Therefore, disc fragmentation may be

a significant source of free-floating planets and companion brown dwarfs.

I study the effects of gravitational instability in protostellar discs around M-dwarfs

and determine the minimum disc mass required for fragmentation. Disc-to-star mass

ratios of between q ∼ 0.3 and q ∼ 0.6 are found to be necessary, and although the

metallicity of the disc does not affect this, a high metallicity can inhibit fragmentation

altogether. The gravitational fragmentation of protostellar discs around M-dwarfs re-

sults in the formation of massive protoplanets: they have initial masses above 5 MJ
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and form on wide orbits (∼ 10− 100 AU from the host star). Therefore, the massive

planets on wide orbits observed around M-dwarfs may have formed via gravitational

fragmentation, provided that they were attended by relatively massive discs during

their early phase of formation.

iv



Contents

Declaration ii

Abstract iii

Acknowledgements xxx

1 Introduction 1

1.1 Formation of young stellar objects . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Properties of circumstellar discs . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Disc radii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Disc masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Disc kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Disc structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Mass distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Vertical structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Temperature profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Evolution of circumstellar discs . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Viscous evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Photoevaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.3 Disc-planet interaction . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Gravitational instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Magnetorotational instability . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



1.7 Planet formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.7.1 Exoplanet detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.7.2 Core accretion, gravitational fragmentation, or both? . . . . . . 28

1.8 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Computational techniques 32

2.1 Smoothed particle hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Smoothing function . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.2 ∇h conservative scheme . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.3 Self-gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.4 Artificial viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.4.1 Time-dependent artificial viscosity . . . . . . . . . . . . 39

2.1.4.2 The Balsara switch . . . . . . . . . . . . . . . . . . . . . . 40

2.1.4.3 The Cullen & Dehnen (2010) inviscid treatment . . . . 40

2.1.5 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.6 Choosing a timestep ∆t . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.7 Sink particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.8 Summary of basic equations . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Radiative transfer in SPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.1 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Radiative feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1 Fixed radiative feedback . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.2 Continuous radiative feedback . . . . . . . . . . . . . . . . . . . . 57

2.3.3 Episodic radiative feedback . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Numerical codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 The effect of radiative feedback on disc fragmentation 62

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



3.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Disc fragmentation and the effect of radiative feedback . . . . . . . . . . 68

3.4.1 No radiative feedback (NRF) . . . . . . . . . . . . . . . . . . . . . 70

3.4.2 Continuous radiative feedback (CRF) . . . . . . . . . . . . . . . . 72

3.4.3 Episodic radiative feedback (ERF) . . . . . . . . . . . . . . . . . . 72

3.4.4 Comparison of simulations . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.5 Caveats of sink particles . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Efficient radiative transfer techniques in hydrodynamic simulations 94

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Cloud collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Protostellar discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.2 Relaxed low-mass disc . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.3 High-mass disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.4 High-mass disc with spiral arms . . . . . . . . . . . . . . . . . . . . 104

4.3.5 High-mass disc with clumps . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Protostellar discs with embedded planets . . . . . . . . . . . . . . . . . . 106

4.4.1 Disc with an embedded 1.4 MJ planet . . . . . . . . . . . . . . . . 106

4.4.2 Disc with an embedded 11 MJ planet . . . . . . . . . . . . . . . . 109

4.5 Testing the β-cooling approximation . . . . . . . . . . . . . . . . . . . . . 110

4.6 Dynamical evolution comparison . . . . . . . . . . . . . . . . . . . . . . . 113

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Planet formation around M-dwarfs via gravitational instability 122

vii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.1 Mass loading test and convergence . . . . . . . . . . . . . . . . . . 130

5.4 Fragmentation of M-dwarf discs . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.1 Consequences of initial stellar mass and disc radius . . . . . . . 136

5.4.2 Effect of metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.3 Accretion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 The properties of planets formed through disc fragmentation . . . . . . 146

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6 Summary 157

6.1 The effect of radiative feedback . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2 Efficient radiative transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 Gravitational instability in discs around M-dwarfs . . . . . . . . . . . . . 159

6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Appendix 162

7.1 SPH extras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.1.1 Momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.1.2 Energy equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Bibliography 188

viii



List of Tables

3.1 The initial disc parameters. The disc is gravitationally unstable, as de-

termined by the Toomre criterion. . . . . . . . . . . . . . . . . . . . . . . 68

3.2 The properties of objects formed by gravitational fragmentation in the

simulations with no radiative feedback from secondary objects (NRF),

with continuous radiative feedback (CRF), and with episodic radiative

feedback (ERF001, ERF01, ERF03). No is the total number of secondary

objects formed, t i is the formation time of an object, Mi its initial mass,

and M f its final masses (i.e. at the end of the hydrodynamical simu-

lation; t = 10 kyr). MMAX is the maximum possible mass it can attain

by accreting mass from the disc (see discussion in the text), 〈Ṁ〉 is the
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Chapter 1

Introduction

The notion that the planets of our solar system were formed in a disc was first pre-

sented in the late 18th century (Laplace 1796). Recently, thanks to the contribution

of the Kepler Space Mission (Koch et al. 2010; Borucki et al. 2010a), thousands of

planets around other stars have been discovered. These so-called extra-solar-planets

(henceforth exoplanets) are not only exclusive to single stars, but also orbit binary

(Doyle et al. 2011) and even higher multiplicity stellar systems (Wagner et al. 2016).

This suggests that planet formation is a highly robust process.

Planets are formed within circumstellar discs, which not only provide the necessary

chemical and dynamical environment for planets to form (e.g. Lissauer 1993), but also

provide their host protostars with the majority of their final mass through accretion

processes. Young circumstellar discs are typically referred to as protostellar discs which

are accreting rapidly onto the central protostar. After a significant fraction of the mass

within the disc has accreted onto the protostar, the long-lived, low-mass disc is where

planets have time to form, and is hence referred to as a protoplanetary disc. The work

presented in this thesis focuses on the former, though theoretical and observational

background is presented for circumstellar discs in general.

In this Chapter, I begin with an outline on the formation of young stellar objects.

The star formation process itself is important as it sets the initial conditions of the
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protostellar disc. The properties of circumstellar discs and their evolution is then

discussed, as well as some of the physical processes which occur within these envi-

ronments.

1.1 Formation of young stellar objects

Young stellar objects (YSOs) form from the collapse of gas in molecular clouds (e.g.

Klessen 2011) where local gravitational collapse occurs from density inhomogeneities

on much smaller scales than that of the cloud itself. However, clouds are not static

entities but are instead turbulent. Turbulence provides an effective pressure and sta-

bilises the cloud. The cloud is also supported by thermal and magnetic pressures and

collapse only occurs when gravity dominates over these sources of support.

A feature that has been shown to be ubiquitous to molecular clouds are filaments

(e.g. André et al. 2010, 2014). They have typical widths of ∼ 0.1 pc, lengths between

1 and 100 pc and possess minimal curvature. Figure 1.1 illustrates the filamentary

structure within Taurus B211/B213. The local magnetic field configuration depends

on whether the filament is self-gravitating or not (Peretto et al. 2013). Those that are

self-gravitating lie perpendicular to the local magnetic field whereas gravitationally

unbound filaments lie parallel to the local magnetic field. The flow of material onto

the filament ultimately leads to the formation of dense cores via gravitational frag-

mentation. Until recently, the role of magnetic fields in star formation has not been

well constrained (Crutcher & Troland 2000; Curran & Chrysostomou 2007). How-

ever, observations obtained from the James Clerk Maxwell Telescope, specifically the

B-Fields In Star-Forming Region Observations (BISTRO) survey, have shed light on the

importance of magnetic fields in star formation regions (Ward-Thompson et al. 2017;

Pattle et al. 2017; Kwon et al. 2018). Figure 1.2 shows the polarisation vectors within

the OMC 1 region of the Orion A filament, demonstrating the intricate connection

between filamentary structure and magnetic field orientation.
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Figure 1.1: A column density map of Taurus B211/B213 showing filamentary structure. This
was observed by the Herschel Space Observatory (Palmeirim et al. 2013).
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Figure 1.2: Polarisation map of OMC 1 with a SCUBA-2 850 µm continuum emission of Orion
A in greyscale. The image demonstrates an observational confirmation of the intricate nature
between filamentary structure and magnetic fields within a star forming region. Taken from
Pattle et al. (2017).
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Observations show that that ∼ 70% of all prestellar cores lie on filaments where

column densities exceed NH2
¦ 7×1021 cm−2 (e.g. Men’shchikov et al. 2012; Kirk et al.

2013). These are the dense cores that are dominated by gravity such that they will

go on to form one or more YSOs. Once collapse occurs, a Class 0 object is formed

which is typically undetectable at wavelengths λ < 10 µm and has a spectral energy

distribution akin to a blackbody with T ≤ 30 K (Andre et al. 1993).

Consequent stages can be classified based on the slope of the infrared region (typ-

ically in the range 2 - 14 µm) of the spectral energy distribution of the YSO (Lada

1987; Andre et al. 1987), quantified by the spectral index α where

α=
d log(λFλ)
d log(λ)

. (1.1)

As the surrounding envelope accretes onto the disc, emission from the protostellar disc

becomes detectable. This is the Class I phase where α > 0 and the age of the YSO is a

few 104 to 105 yrs. Emission in this phase is the result of hot dust heated by the pro-

tostar and cold dust in the envelope, and may be the epoch in which the gravitational

instability could develop within the disc. The envelope is then consequently accreted

resulting in the Class II, Classical T-Tauri phase where −1.5 < α < 0. Near- and mid-

infrared emission is primarily due to emission from the disc itself. Weak-line T-Tauri

stars are further evolved and exhibit reduced emission from the disc. The post T-Tauri,

Class III phase is characterised by a spectral index α < 1.5, where the gaseous disc has

dissipated, leaving only a debris disc and planetary or (sub)-stellar companions. The

central T-Tauri star then slowly contracts to become a main-sequence star.

1.2 Properties of circumstellar discs

The molecular clouds in which protostars are formed typically have a component of

angular momentum (e.g. Imara & Blitz 2011; Tatematsu et al. 2016). Collapsing gas
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and dust therefore forms a disc around a young protostar (e.g. Terebey et al. 1984;

Attwood et al. 2009), where excess angular momentum may be carried out by bipolar

outflows (Bachiller 1996). In this section I discuss the radii, masses and kinematics of

circumstellar discs.

1.2.1 Disc radii

The radii of circumstellar discs range from tens of AU around brown dwarfs (Scholz

et al. 2006) to 104 AU around massive B-type stars (Cesaroni et al. 2007). However,

the cool outer regions of circumstellar discs are difficult to observe and thus difficult to

constrain spatially. Vicente & Alves (2005) measured outer disc radii in the Trapezium

cluster by observing the absorption of the discs against the bright HII background.

They determined that 22 of the discs had outer radii between 50 and 194 AU, with

an extreme outlier with an outer radius of 612 AU. The Atacama Large Millimetre

Array (ALMA) has been key in determining the properties of young discs. Ansdell

et al. (2018) utilised ALMA Band 6 (1.33 mm) and determined outer disc radii in

the young (1-3 Myr) Lupus star forming region. The 1.33 mm continuum data traces

the dust, but observations were also obtained for the 12CO, 13CO and C18O J = 2− 1

lines, which trace the gas. The authors ubiquitously found that the extent of the dust

disc is smaller than the gas disc, probably due to the inward drift of dust. The radial

distribution of the dust component of the discs in Lupus ranges from 38 - 334 AU: the

gaseous component 68 - 462 AU.

1.2.2 Disc masses

The dynamics of circumstellar discs are governed by the gas content as this consti-

tutes 98− 99% of their mass. The small proportion of dust is directly observable via

thermal continuum emission. Assuming that the dust opacity within discs is the same

as in the interstellar medium, the masses of circumstellar discs can be constrained to
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10−4 M� < Mdisc < 10−1 M� (Andrews & Williams 2005). This assumption neglects

dust evolution whereby dust grains agglomerate and grow in size, reducing the dust

opacity in the near-infrared waveband. The range of masses of circumstellar discs

may therefore have been underestimated. Young disc masses obtained from position-

velocity diagrams may also be underestimated by ∼ 20% due to an enhanced radial

pressure on the gas (MacFarlane & Stamatellos 2017). This may also lead to dust de-

pletion and a lower dust-to-gas ratio. Bergin et al. (2013) measure the gas mass of

TW Hydrae via the fundamental rotational transition of hydrogen deuteride, the emis-

sion of which is sensitive to the total mass. They find a disc mass of Mdisc = 0.05 M�,

typically larger than when using CO as a tracer which yields disc masses in the range

5× 10−4 M� < Mdisc < 0.6 M� (Thi et al. 2010; Gorti et al. 2011).

From a 1.33 mm ALMA survey of the discs in the σ Orionis Cluster (Ansdell et al.

2017), the dust mass of the discs was constrained to ∼ 2 M⊕ with only 11 of the 37

discs possessing more than 10 M⊕. The intermediate age of the sample (∼ 3−5 Myr)

therefore suggests that after a few Myr of evolution, most of the discs lack sufficient

dust to form giant planet cores. The gas mass of discs which had detectable CO was

constrained to ∼ 3 MJ. These results suggest that giant planet formation is either

a rare phenomenon, or that it begins early in disc evolution. 230 GHz continuum

observations of young discs surrounding Class 0 protostars in the Serpens molecular

cloud yield disc masses between 0.04 M� and 1.7 M�, with a mean value of 0.2 M�

(Enoch et al. 2009b, 2011). This supports the idea that the more massive, earlier

phase of discs is the one in which gravitational instability may occur (see Section 1.5).

1.2.3 Disc kinematics

Evolved protoplanetary Class II discs have accreted sufficiently onto their accompa-

nying protostar such that they are typically low in mass and are generally thin. The
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orbital frequency of gas within the disc is Keplerian such that

ΩK(R) =

√

√GM?

R3
, (1.2)

where M? is the mass of the central protostar and R is the distance from it. The specific

angular momentum of gas on a circular orbit at a given radius, j(R), is

j(R) =
p

RGM? . (1.3)

The requirement for accretion onto the central protostar is that the gas needs to lose

angular momentum by some process (see Sections 1.5 and 1.6).

Many protoplanetary discs have been observed to determine their velocity profiles,

and they are typically Keplerian (e.g Koerner et al. 1993; Dutrey et al. 1994; Mannings

et al. 1997; Duvert et al. 1998; Guilloteau & Dutrey 1998; Simon et al. 2000). How-

ever, it is difficult to determine velocity profiles for young embedded protostellar discs

(Class 0 and Class I objects) as the disc emission is combined with that of the in-

falling envelope. Brinch et al. (2007) determine that even at the young embedded

stage, a Class I protostellar disc surrounding the protostar L1489 IRS has a Keplerian

profile. This was determined using the Sub-Millimetre Array (SMA) observing the

HCO+ J = 3− 2 line at a resolution of ∼ 1′′. A range of Class I discs have been ob-

served to exhibit Keplerian velocity profiles since (e.g. Lommen et al. 2008; Jørgensen

et al. 2009; Lee 2010, 2011; Takakuwa et al. 2012; Yen et al. 2013; Brinch & Jørgensen

2013; Harsono et al. 2014; Chou et al. 2014). In regard to Class 0 objects, Tobin et al.

(2013b) observed a Keplerian disc around a very young, 0.3 Myr old protostar L1527

IRS, which is in perhaps the earliest stage of star formation. Indeed, there are multiple

systems which exhibit similar properties (e.g Murillo et al. 2013; Codella et al. 2014;

Lee et al. 2014; Yen et al. 2015a; Aso et al. 2017). However, there are some systems

which show no hint of rotational motion within their envelope (Brinch et al. 2009; Yen
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et al. 2013; Maret et al. 2014; Yen et al. 2015b), suggesting that, if they do possess

Keplerian discs, they have radii < 10 AU.

1.3 Disc structure

Analytical representations of circumstellar discs are important when developing initial

conditions for numerical simulations. In this Section I describe how the density and

temperature of circumstellar discs vary radially and vertically. I discuss observational

results in comparison to models, and show that the structure of circumstellar discs is

subject to variation.

1.3.1 Mass distribution

The distribution of mass within a circumstellar disc is characterised by the surface

density Σ, where through the vertical direction of the disc z, is

Σ(R) =

∫ +∞

−∞
ρ(R, z) dz. (1.4)

R is the radius in the x − y plane and ρ is the density at a given position within

the disc. The radial profile of the surface density is typically described by a power

law such that Σ(R)∝ R−p, where the power index p may have a value in the range

between 0 and 3/2. From observational inferences of discs in the Taurus-Ariga and

Ophiuchus-Scorpius star forming regions (Andrews & Williams 2007), a median index

of p = 1/2 is determined. Taking an analytical approach, Tsukamoto et al. (2015)

assume a steady viscous accretion disc with constant cooling rate and obtain a value

of p = 3/2. Note that this value also corresponds to the canonical surface density

power index of the minimum mass solar nebula (Weidenschilling 1977).

A pure power law truncated at an outer radius of the dust disc may not be compat-

ible with the extended gaseous component (McCaughrean & O’Dell 1996; Piétu et al.
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2005; Isella et al. 2007). Instead, an exponentially tapered form of the surface density

may be more suitable, of which there is an existing analytical solution for viscous discs

(Lynden-Bell & Pringle 1974; Hartmann et al. 1998). It has the form

Σ(R) = (2− γ)
Mdisc

2πR2
c

�

R
Rc

�−γ

exp

�

−
�

R
Rc

�2−γ�

, (1.5)

where Mdisc is the total disc mass, γ is a radial viscosity power index (where the kine-

matic viscosity has the relation ν∝ Rγ) and Rc is a characteristic radius. The latter

is the radius at which the surface density deviates from a power law and instead be-

gins to decline steeply. Hughes et al. (2008) observed four discs in 230 and 345 GHz

continuum as well as the CO J = 3−2 molecular transition line. They concluded that

the tapered exponential surface density profile reproduces both dust and gas emission

more closely than a pure power law profile. They also found characteristic radii in the

range Rc = 30− 200 AU and that Rout ≈ 2Rc. Surface density and viscosity power law

indices in the ranges p = 1.0−1.3 and γ= 0.7−1.1, respectively, were determined as

the best fitting parameters for their continuum models. Andrews et al. (2009, 2010)

surveyed the discs in the Ophiuchus star forming region finding characteristic radii in

the range Rc = 14−198 AU and viscosity power law indices in the range γ= 0.4−1.1.

Additionally, Cieza et al. (2018) find that discs around FU Orionis objects are typi-

cally more compact than discs around T-Tauri objects, having characteristic radii of

Rc < 20− 40 AU.

1.3.2 Vertical structure

The vertical structure of a disc depends on the interplay between gravity and the disc

thermal pressure. Assuming a disc is azimuthally symmetric and there is no tempera-

ture gradient in the vertical direction, vertical hydrostatic equilibrium can be described
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by
dP
dz
= −ρ

GM?

R3
z = −ρΩ2z. (1.6)

P andρ are the gas pressure and density, respectively, andΩ is the Keplerian frequency

at a given radius in the disc. For gas densities up to ∼ 0.1 g cm−3, the gas can be

assumed to be ideal, thus P = c2
s ρ, where cs is the sound speed, defined as

cs =

√

√ kT
µ̃mH

. (1.7)

T is the temperature, k is the Boltzmann constant, µ̃ the mean molecular weight,

and mH the mass of the hydrogen atom. Combined with the ideal gas approximation,

Equation 1.6 can be written
d
�

c2
s ρ
�

dz
= −ρΩ2z. (1.8)

The temperature has been assumed to be constant vertically at a given radius R, hence

one can rearrange to obtain the differential equation

1
ρ

dρ
dz
= −
Ω2

c2
s

z, (1.9)

which has the solution

ρ(R, z) = ρ0 exp
�

−
z2

2H2

�

. (1.10)

The pressure scale height H = cs/Ω quantifies the balance between thermal pressure

and gravity. Recall the expression for surface density in Equation 1.4, then

ρ0 =
Σ

∫ +∞
−∞ exp

� −z2

2H2

�

dz
=
Σ(R)
p

2πH
, (1.11)

hence

ρ(R, z) =
Σ(R)
p

2πH
exp

�

−
z2

2H2

�

. (1.12)
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1.3.3 Temperature profile

Circumstellar discs can be described as passive, absorbing and re-emitting the radia-

tion from the central protostar, or active, generating heat via viscous dissipation. In

the case of a flat, passive disc, the stellar blackbody flux incident on the disc decreases

with radius as R−3: a combination of distance from the star R−2, and incidence angle

to the disc surface R−1. More specifically, it can be shown (e.g. Armitage 2015) that

Fabs∝ σT 4
?,eff

�

R
R?

�−3

, (1.13)

where σ is the Stefan-Boltzmann constant, Fabs is the stellar flux absorbed by the disc,

T?,eff is the effective temperature of the protostar and R? is the radius of the protostar.

If one assumes that the disc radiates as a blackbody, then the emitted flux is

Femm∝ σT 4
disc, (1.14)

and this can be combined with Equation 1.13 to give

Tdisc(R)∝ T?,eff

�

R
R?

�−3/4

. (1.15)

Re-examining the pressure scale height, it is noted that H ∝ T 1/2 and H ∝ R−3/2

from the sound speed and Keplerian frequency, respectively. Inserting the obtained

temperature profile here yields H ∝ R−1/4+3/2 ∝ R5/4. The aspect ratio of the disc is

then H/R ∝ R1/4, which increases with radius and so discs are flared. Flared discs

receive a greater flux from their central protostar than flat discs, thus T ∝ R−3/4 is the

steepest profile expected for passive discs. In fact, the possibility of flared discs was

first presented by Kenyon & Hartmann (1987), who observed that the spectral energy

distributions of T-Tauri discs did not match a profile for a flat disc.

Discs which are actively accreting generate heat through viscous dissipation. They
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undergo differential rotation, with material moving inward as angular momentum is

transferred outward (see Section 1.4.1). It can be shown that half of the gravitational

potential energy lost from material moving inward is used to heat the disc. If this

energy is radiated away as blackbody radiation between an annulus R and R +∆R

from both sides of the disc, where mass flows inward at a rate Ṁ , then

1
2

GM?Ṁ
R

∆R
R
' 4πR∆RσT 4

disc(R). (1.16)

This can be rearranged to give

Tdisc '
�

GM?Ṁ
8πσR3

�1/4

, (1.17)

or more simply, Tdisc(R)∝ R−3/4. The radial temperature profiles have the same form

for both passive and active discs! In the former case, the temperature is regulated by

the protostellar effective temperature. In the latter, the temperature is regulated by

the accretion rate through the disc.

1.4 Evolution of circumstellar discs

Circumstellar discs evolve subject to an array of processes, including gravitational and

magnetorotational instability, viscous accretion, dust accretion and midplane settling,

and photoevaporation. Figure 1.3 schematically shows where such processes occur in

the disc.

1.4.1 Viscous evolution

As a first order approximation one can assume thin-disc viscous evolution (e.g. see

Pringle (1981)). By also making the assumption that the gravitational potential of the

system remains constant (and hence dΩ/dt = 0), it can be shown (e.g. Frank et al.

13



CHAPTER 1

102 AU 10 AU 1 AU 0.1AU 10-2 AU

M
wind

(photoevaporation)
.

?

radial extent of FU
Orionis outbursts
(instability mechanism)

dlnΣ / dlnr at
r < r

out
(ν(r))

<B>,<δv> in disk
(nature of turbulence)

surface density at r~1 AU
(existence of dead zone)

open magnetic field
(magnetic braking /
disk winds)

M(t), disk lifetime
statistics (ν(r))

dust settling
(level of turbulence,
particle diffusivity)

non-axisymmetry, non-
Keplerian vφ (self-gravity,
magnetic field pressure)

M
disk

(t), r
out

(t) statistics
(viscosity, nature of
photoevaporation)

Figure 1.3: Schematic view of a circumstellar disc and the processes that occur within the
system. Early on, material is accreted onto the disc from the natal envelope, increasing disc
mass and causing instabilities. Later on material is lost due to photoevaporation while dust
settles into the midplane. Eventually the gaseous disc dissipates completely. Turbulence exists
throughout its evolution providing an effective viscosity. Taken from Armitage (2011).
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2002; Armitage 2011) that the surface density evolves as

∂ Σ

∂ t
=

3
R
∂

∂ R

�

R1/2 ∂

∂ R

�

νΣR1/2
�

�

, (1.18)

where ν is the kinematic viscosity. From this, a radial velocity can be determined such

that

vr = −
3
ΣR1/2

∂

∂ R

�

νΣR1/2
�

. (1.19)

The material in the inner region migrates inward and accretes onto the central pro-

tostar whereas the material in the outer region gains angular momentum resulting in

disc expansion.

A typical parameterisation of viscosity is the α-prescription (Shakura & Sunyaev

1973), where viscosity is controlled by a dimensionless parameter α. The viscosity is

set to depend on the sound-speed and scale-height of the disc so that

ν= αHcs. (1.20)

Typically, α = 10−4 − 10−1 estimated from stellar accretion evolution of young stellar

objects (Hartmann et al. 1998), or via the fitting of models to single systems (Hueso

& Guillot 2005).

1.4.2 Photoevaporation

Protoplanetary discs not only lose their mass through accretion processes (e.g. vis-

cously), but also through magnetic driven jets and winds, as well as photoevaporation

from the central protostar and other nearby massive stars. Dissipation by photoevap-

oration can occur rapidly in comparison to the lifetime of the disc: ∼ 105 yrs (Simon

& Prato 1995; Wolk & Walter 1996; Clarke et al. 2001) compared to 5 × 106 − 107

yrs (Strom et al. 1989; Wyatt 2008). Photoevaporation is the process whereby the

15



CHAPTER 1

surface of a disc is heated by X-ray, EUV, and FUV radiation to a few 103 K, at which

point the material is stripped away (e.g. Alexander et al. 2014) at subsonic velocity

(Owen et al. 2012; Gorti et al. 2015).

Early in the lifetime of a circumstellar disc the mass accretion throughout the disc

due to angular momentum transfer is greater than that of mass loss from photoevapo-

ration, which is typically∼ 10−10 M� yr−1. Eventually the mass loss due to photoevap-

oration dominates and gaps form within the disc where material cannot be replenished

(e.g. Clarke et al. 2001). Material exterior to a gap cannot flow inward and so a cav-

ity forms around the central star. The subsequent irradiation of the inner rim of the

disc then tends to lead to rapid dispersal of the outer disc, on the order of 105 yrs

Alexander et al. (2006a,b); Haworth et al. (2016b). Similarly, gaps formed from gi-

ant planets can yield the same outcome (Rosotti et al. 2013). Figure 1.4 shows this

process schematically.

The energy of the incident photons is dependent on the accretion rate onto the

central star: at Ṁ? < 10−6 M� yr−1, the disc is heated by hard X-ray and far UV pho-

tons, and at Ṁ? < 10−9 M� yr−1 by soft X-ray and extreme UV photons (Gorti et al.

2009). Thus the energy spectrum of emitted stellar radiation varies over time (e.g.

Ercolano et al. 2009; Owen et al. 2012), and along with dependencies on disc mass,

radius and viscosity as well as stellar mass, can result in photoevaporative mass loss

rates of 10−11 − 10−7 M� yr−1 for stars with mass ∼ 0.1− 3 M�.

Similarly, a disc may be irradiated by an external field whose strength is typically

quantified by the Habing unit G0 (Habing 1968) which has a value 1.6×10−3 erg s−1 cm−2

and is a measure of UV flux. Protoplanetary discs in the Orion nebula are subject to

an external radiation field of ∼ 5×104−2×107 G0 (Störzer & Hollenbach 1999) due

to an association of nearby O-stars. These brightly illuminated discs (coined proplyds)

are well studied and exhibit photoevaporative flows, the observations of which agree

well with models (e.g. O’Dell et al. 1993; McCaughrean & O’Dell 1996; Johnstone et al.

16



CHAPTER 1

Δt
 =

 fe
w

 M
yr

Δt
 ~

 1
0

5
yr

X-rays

UV photons

MHD disk wind
primarily neutral
photoevaporative flow

migration

dust disk

photoevaporative
gap formation

direct illumination
of outer disk

H

Ne+

Ne+

H
H

H volatile loss
in partially
ionized wind

0.1 AU 1 AU 10 AU 100 AU

Class II YSO

Accreting
transitional disk

Non-accreting
transitional disk

Figure 1.4: A schematic representation of photoevaporation from the central protostar. Early
on in the lifetime of a circumstellar disc, active accretion causes material to move inward at a
rate where the lost material due to photoevaporation is replenished. Once accretion reduces
such that the mass loss rate from photoevaporation becomes dominant, gaps can form thus
preventing outer material from drifting inward. As such, a large cavity forms around the
central star and radiation incident on the inner rim of the remaining disc causes it to rapidly
disperse. Taken from Alexander et al. (2014).
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1998; Bally et al. 2000; Mesa-Delgado et al. 2012; Eisner et al. 2016, 2018). However,

it may not only be within highly extreme environments that photoevaporative winds

can be driven (e.g. Scally & Clarke 2001; Adams et al. 2004; Holden et al. 2011; Ha-

worth et al. 2016a). Theoretical models show that for discs of size R> 150 AU, mass

loss rates can exceed 10−8 M� yr when subject to a∼ 30 G0 field (Facchini et al. 2016).

In fact, observations of proplyds in NGC 1977 have demonstrated that photoevapo-

ration can yield mass loss rates of ∼ 10−9 − 10−8 M� yr−1 in ∼ 3000 G0 regions (Kim

et al. 2016). Additionally, the protoplanetary disc IM Lup (Cleeves et al. 2016) may

exhibit mass loss rates of ∼ 10−8 M� yr (comparable to the stellar accretion rate) in

a very low radiation field of 4 G0 (Haworth et al. 2017). Although it was typically

thought that externally driven photoevaporation only occurred in energetic regions,

for example in the vicinity of an O-star association, it may be that it is a much more

robust phenomenon. However, this may only apply to discs that are extended enough

to receive a sufficient amount of stellar flux, and surround a low-mass protostar such

that the disc material is only marginally gravitationally bound.

The formation and evolution of planets may also be affected by photoevaporation.

Photoevaporation provides a limit on disc lifetime and also affects planetary orbital

properties. Provided a disc has evolved long enough such that a large proportion of

its dust content has settled to the midplane, Throop & Bally (2005) suggest that UV

radiation can drive gas rich outflows and increase the dust-to-gas mass ratio of the

disc, thus enhancing planet formation. Indeed, Gorti et al. (2015) find that dust par-

ticles remain in the disc during photoevaporation. Additionally, the rate of planetary

migration (discussed in Section 1.4.3) can be inhibited or promoted depending on the

radial position of gaps formed by photoevaporation. This could lead to preferential

final semi-major axes of planets, and may explain the swathe of detected ∼ 1 MJ exo-

planets at ∼ 1 AU (Alexander & Armitage 2009; Alexander & Pascucci 2012; Ercolano

& Rosotti 2015). Wise & Dodson-Robinson (2018) performed 2D simulations, both
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with and without photoevaporation, and found only small differences in how giant

planets migrate between the two cases. The study however does not cover a wide

range of planet masses, formation radii or disc properties.

1.4.3 Disc-planet interaction

Massive planets on short-period orbits (known as hot Jupiters, P < 10 days) present

a problem for in-situ models of planet formation. These planets typically have cores

of mass Mcore > 10 M⊕ (Goldreich et al. 2004; Chiang & Laughlin 2013), and as such,

cannot form within the disc lifetime as there is not a sufficient mass reservoir of ice in

the inner disc region. Efficient dust growth requires icy grains which are only present

outside of the water snow line, typically at a few AU (Kennedy & Kenyon 2008; Mar-

tin & Livio 2012, 2013). Furthermore, the formation of a planet through gravitational

fragmentation is unlikely to happen at small radii within the disc where the temper-

ature is high (see Section 1.5). As such, it is expected that hot Jupiters form in the

cold, outer region of the disc and subsequently migrate inwards to their final orbital

radii.

Planetary migration is classified in two main types: type-I is the migration of low-

mass planets which do not open a gap in the disc and type-II is the migration of high-

mass planets which do carve a gap. Type-I migration does not alter the global disc

structure dramatically, but spiral density waves do arise due to the differential velocity

shearing. The inner and outer spirals result in Lindblad torques which compete to

affect the radial position of the planet. The inner spirals generate a positive torque,

increase the planet’s angular momentum and cause outward migration. The outer

spirals act to cause the opposite effect. Typically, the planet is driven inwards (Ward

1997), though the direction of migration is dependent on disc viscosity, opacity and

thermodynamical properties (Paardekooper & Mellema 2006; Duffell & Chiang 2015).

A planet must carve a gap within the disc to undergo type-II migration. The gap
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opening criteria are thus: the Hill radius of the planet must exceed the disc scale

height of the disc (Ward 1997), and the viscous effects in the disc must not be strong

enough to close the gap. The former of these criteria (assuming a circular orbit) can

be expressed as

RHill = Rp

� Mp

3M?

�1/3

≥ H, (1.21)

where Rp and Mp are the planet orbital radius and mass, respectively. This can be

rearranged to give a planet-to-star mass ratio q such that

q =
Mp

M?

≥ 3

�

H
Rp

�3

. (1.22)

Given typical values of disc aspect ratio H/R ≈ 0.05 and stellar mass M? ≈ 1 M�,

the minimum planet mass for gap opening is 0.4 MJ. The viscous criterion for gap

formation (Lin & Papaloizou 1993) is

q ≥
40ν
R2

pΩp
=

40αcsH
R2

pΩp
, (1.23)

where the right-hand side is obtained using Equation 1.20. This can be simplified

further to give

Mp > 40M?α

�

H
Rp

�2

. (1.24)

For typical values of disc aspect ratio H/R ≈ 0.05, stellar mass M? ≈ 1 M� and α =

10−2, the minimum planet mass for keeping a gap open is 1 MJ. However, this ignores

the effect of thermal pressure. Crida et al. (2006) performed numerical simulations

to determine a consolidated gap opening criterion which has the form

3
4

H
RHill

+
50
qRe
® 1, (1.25)
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where the Reynolds number Re is

Re=
ΩpR2

p

ν
. (1.26)

The depth of a gap is determined by the planetary mass, the disc scale height and the

disc viscosity (e.g. Duffell & MacFadyen 2013; Kanagawa et al. 2015b,a) such that

Σmin

Σ0
=

1
1+ 0.04K

. (1.27)

The dimensionless quantity K is defined as

K =
�Mp

M?

�2� H
Rp

�−5
1
α

. (1.28)

Thus, a higher mass planet opens up a deeper gap. The disc’s thermodynamical prop-

erties play a key role too, as they control the disc scale height. The migration timescale

after the planet has carved a gap is that of the disc viscous timescale (dependent on

the stellar mass only). If the planet is massive enough the migration may be slower.

1.5 Gravitational instability

Gravitational instability leads to the formation of spiral features, and possibly the for-

mation of dense clumps within circumstellar discs. The onset of the gravitational

instability can be quantified by considering the balance between the disc gravity and

the combination between rotational and thermal support. This can be expressed by

the Toomre stability criterion Q (Toomre 1964) where

Q =
κcs

πGΣ
. (1.29)
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The rotational support is represented by the epicyclic frequency κ, which can be ap-

proximated to the Keplerian frequency Ω. The sound speed, cs ∝ T 1/2 acts to ther-

mally stabilise the disc. Gravity, represented by the column density Σ, acts to desta-

bilise the disc. In the razor-thin disc approximation a disc may become gravitationally

unstable provided Q < 1. However, in 3-dimensional discs the critical Toomre value

may be Q < 1.4 (Durisen et al. 2007), and the disc could fragment provided Q < 0.6

(Takahashi et al. 2016).

The Toomre criterion can also be expressed in a context relating to the structure of

a circumstellar disc. The mass interior to a radius R within the disc is approximately

πR2Σ. Recall that the scale-height of the disc can be written H = cs/Ω, thus the

Toomre criterion becomes
Min

M?

¦
H
R

. (1.30)

If one considers the whole disc such that R= Rout and Min = Mdisc, then discs are stable

when the disc-to-star mass ratio is small. Thus a disc may only undergo gravitational

instability when its mass is comparable to that of the central protostar. This would

occur early on in the disc lifetime when the disc is relatively massive. At this stage,

the disc is embedded within, and actively accreting from its parent cloud (i.e. in the

Class 0 or Class I phase). Observing the gravitational instability may therefore be

difficult due to the presence of the surrounding envelope.

The young, 1 Myr old star Elias 2-27, which has a mass of 0.5− 0.6 M� (Luhman

& Rieke 1999; Natta et al. 2006), hosts a Class II and relatively massive circumstellar

disc, where Mdisc = 0.04−0.14 M� (Andrews et al. 2009; Isella et al. 2009; Ricci et al.

2010). ALMA observations indicate that the system possesses two large-scale spiral

arms (Pérez et al. 2016), shown in Figure 1.5. It has recently been considered that the

spiral features may exist due to gravitational instability in the disc (Meru et al. 2017;

Tomida et al. 2017). Meru et al. (2017) also consider the scenario whereby the spiral

arms are driven by a massive companion external to the spirals. The structure of the
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Figure 1.5: Thermal dust emission of the disc surrounding Elias 2-27 observed at 1.33 mm
with ALMA. The right hand panel has an increased contrast with an unsharp masking filter
applied, highlighting the spiral features of the system. Taken from Pérez et al. (2016).

spirals is analysed by Forgan et al. (2018) who demonstrate that the spirals are best

fit with models which consider a constant pitch angle (see Figure 1.6). Importantly,

an external companion cannot produce such a fit, so the spirals may well be driven by

gravitational instability, and Elias 2-27 could be a circumstellar system exhibiting this

phenomenon.

Spiral arms generated by gravitational instability may be a primary driver of angu-

lar momentum transfer within protostellar discs (see also Section 1.6). The outward

transfer of angular momentum allows the material within the disc to migrate radially

inward and ultimately accrete onto the central protostar. A spiral arm may evolve

non-linearly and fragment into bound objects. If a region obeys Q < 1 and cools ef-

ficiently such that tcool < (0.5− 2)torb where torb is the local orbital period (Gammie

2001; Johnson & Gammie 2003; Rice et al. 2003b, 2005), a dense clump may form

and subsequently collapse under gravity. Without efficient cooling, a dense clump may

not undergo gravitational collapse due to the large degree of supporting thermal pres-

sure. In the last few years, the validity of this cooling criterion has been scrutinized,

and it has been suggested that fragmentation may happen for even slower cooling
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Figure 1.6: Surface density plots of two snapshots from simulations modelling the Elias 2-27
circumstellar disc. Left panel: a simulation where the spiral arms are generated by gravita-
tional instability. Right panel: a simulation where the spiral arms are being excited by an
external companion (red point). White points indicate spiral identification. The spirals gener-
ated by gravitational instability are best fit to a model with constant pitch angle. Taken from
Forgan et al. (2018).

rates (Meru & Bate 2011; Paardekooper et al. 2011; Lodato & Clarke 2011; Rice et al.

2012; Tsukamoto et al. 2015). However, irrespective of the detailed criteria, there

has been significant observational evidence that disc fragmentation does occur (Tobin

et al. 2013a, 2016; Dupuy et al. 2016).

Object formation through gravitational instability is of great importance: it may

be a mechanism for forming massive planets, brown dwarfs and low-mass hydrogen

burning stars (e.g. Whitworth & Stamatellos 2006; Stamatellos et al. 2007a; Boley

2009; Stamatellos & Whitworth 2009b; Kratter et al. 2010; Zhu et al. 2012; Lomax

et al. 2014; Kratter & Lodato 2016; Vorobyov 2013). Figure 1.7 shows Keck JHK-

band combined observations of the HR 8799 system (Marois et al. 2010). With the

light from the central star removed, four companions are detected. They orbit at radii

of 15, 24, 38 and 68 AU and have masses between 5 and 10 MJ. These planetary

companions may have formed via gravitational fragmentation (see Section 1.7.2).
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Figure 1.7: Keck image of the HR 8799 planetary system (Marois et al. 2010). The companions
b, c, d and e have masses between 5 and 10 MJ and orbit around HD 9799a at 68, 38, 24, and
15 AU, respectively. Gravitational fragmentation may have been the formation mechanism for
these objects.

1.6 Magnetorotational instability

The magnetorotational instability (MRI henceforth) was first conceived by Velikhov

(1959) and Chandrasekhar (1960). Balbus & Hawley (1991) first presented the rel-

evance of the instability in the context of astrophysical accretion discs. In a typical

circumstellar disc, the viscous dissipation timescale considering molecular viscosity

alone is very long. Therefore some process must act to transport angular momentum

radially outwards more efficiently, allowing material to move inward and accrete onto

the central star within the required timeframe. In Section 1.5, I discussed one process

to drive accretion, the gravitational instability. However, this requires the fulfillment

of the Toomre criterion within a region of the disc. On the other hand, the MRI is

activated provided the disc has some degree of ionisation and is threaded by a weak

magnetic field.

Consider two particles threaded by the same magnetic field line, separated slightly
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in the vertical plane. Shear flow can perturb the particles and put them on slightly

different radial orbits such that the inner particle travels at a higher velocity than the

outer. The magnetic field line is stretched as they differentially rotate (see Figure 1.8).

The magnetic tension acts to restore equilibrium by straightening the field line and

as it does so, the inner faster particle transfers some of its angular momentum to the

outer particle. Thus the inner particle moves inwards and the outer particle outwards.

The evolution is non-linear, but the instability can be suppressed if the magnetic field

becomes sufficiently strong.

The MRI can only be onset provided there exists a sufficient level of ionisation at

the disc surface due to stellar irradiation and cosmic rays, or deeper within the disc

due to radionuclides (Gammie 1996). However, there is a region in the disc midplane

where the level of ionisation is expected to be too low; this region is known as the dead-

zone. Zhu et al. (2009a) present work which combines the effects of the gravitational

instability and the MRI to explain the non-steady accretion onto protostars. They

argue that the gravitational instability is active in the outer disc region and transports

material efficiently into the inner disc, where it undergoes thermal ionisation and the

MRI is onset.

1.7 Planet formation

The detection of thousands of extra-solar planets in recent years has demonstrated that

not only is the planet formation process robust, but exoplanets have diverse properties.

Ground based telescopes such as ESO-HARPS, Keck and WASP have been paramount

in the exoplanet discovery process, with follow-up observations from space based tele-

scopes such as Kepler, Spitzer and the Hubble Space Telescope. This has led to the

observations of > 3,500 confirmed exoplanets (Schneider et al. 2011). It may be the

fundamental formation process of planets itself which gives rise to certain divisions of

exoplanet properties.
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Figure 1.8: Schematic description of the magnetorotational instability where two ionised par-
ticles are threaded by the same weak magnetic field line. As the particles move, they stretch
the magnetic line threading them. The magnetic field line then responds by straightening due
to the restoring magnetic tension. This moves the inner particle inward and the outer particle
outward. The net effect is the transfer of angular momentum outward. Taken from Armitage
(2015).

1.7.1 Exoplanet detection

Various methods exist for the detection of planets each with their merits and limita-

tions (see Wright & Gaudi (2013) and Fischer et al. (2014) for reviews). Until recently,

the main technique of planet detection was Doppler spectroscopy, which measures the

radial velocity of stars arising from the gravitational influence induced by the planet.

The key issue with this method is that the measured Doppler velocity is dependent on

the inclination of the planet. As such, the mass of an orbiting planet will be typically

larger than measured: only Mp sin i can be found where i is the unknown inclination of

the planet. There is also a bias toward high-mass planets orbiting close to the central

star, as this increases the radial velocity of the star.

The largest number of exoplanets discovered to date have been done so through

transits, i.e. the dimming of the star as the planet passes in front of it. The probabil-

ity of a transit depends on the orientation of the orbit and the photometric detection
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depends on the depth of the transit which is typically [1,0.1, 0.01]% for Jupiter-sized,

super Earth-sized and Earth-sized planets, respectively. Thus, evermore sensitive in-

strumentation is required to observe smaller and smaller planets. In order to observe

multiple transits, the orbital period must be reasonably small, and so the planet must

be close to the central star. The first observations of exoplanetary transits (Henry et al.

2000; Charbonneau et al. 2000) has motivated two decades of results, culminating in

the discovery of terrestrial-sized planets (Léger et al. 2009; Batalha et al. 2011); multi-

planet transiting systems (Lissauer et al. 2011; Gillon et al. 2016, 2017); and planets

with temperatures similar to that of Earth (Deeg et al. 2010; Bonfils et al. 2018).

Figure 1.9 shows the distribution of planetary mass as a function of semi-major

axis for confirmed exoplanets. Data were taken from the EU exoplanet archive1.

1.7.2 Core accretion, gravitational fragmentation, or both?

Planets are formed within circumstellar discs where there exists a sufficient reservoir

of gas and dust. There are two theories which aim to explain the formation of planets.

The core accretion model (Safronov 1969; Goldreich & Ward 1973; Greenberg et al.

1978; Hayashi et al. 1985; Lissauer 1993) considers the agglomeration of dust and

ice grains, which go on to form planetesimals and eventually rocky planets. Once the

rocky core is formed, a period of rapid gas accretion (e.g. Pollack et al. 1996) may

follow, leading to the formation of a giant gaseous planet. The alternative theory,

gravitational fragmentation (Kuiper 1951; Cameron 1978; Boss 1997), involves the

collapse of gravitationally unstable regions within protostellar discs. The process is

rapid, typically forming massive ¦ 2 MJ planets, and is the result of the gravitational

instability which develops within a disc.

Each theory requires certain conditions. For core accretion to occur, dust agglom-

eration must be rapid and overcome two barriers. The first of these barriers arises

1exoplanet.eu Last accessed 03/03/2019.
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Figure 1.9: Confirmed exoplanet masses as a function of semi-major axis. Planets of the solar
system are shown as black crosses. This demonstrates the large range of planetary masses
and orbital properties. Data were retrieved from the EU exoplanet archive1 (Schneider et al.
2011).
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from the radial drift of dust (Adachi et al. 1976; Weidenschilling 1977; Laibe 2014).

Small dust grains (∼ 1 mm) couple to the gas efficiently, and may be accreted onto

the central protostar before having the opportunity to grow. The fragmentation barrier

(Blum & Wurm 2008) pertains to larger grains (∼ 10 cm), which, instead of sticking

to others during collision, fragment. The trapping of dust, which may be robustly

self-induced (Gonzalez et al. 2017), could account not only for asymmetrical features

observed within discs (e.g. van der Marel et al. 2013), but could also form ideal regions

for rapid grain growth. Consequent planetesimal formation may occur due to further

collisions or from gravitational collapse within the dust traps (Johansen et al. 2014;

Levison et al. 2015). The planet formation timescale from core accretion is typically

a few million years, possibly longer than the disc lifetime itself (Haisch et al. 2001;

Cieza et al. 2007). This issue may be circumvented by the presence of local pressure

maxima (Johansen et al. 2007), or by density perturbations caused by the streaming

instability (Youdin & Goodman 2005).

The criteria for gravitational fragmentation are those discussed in Section 1.5,

namely a Toomre parameter Q ® 1 and efficient cooling. Fragmentation may oc-

cur naturally from the rapid cooling of spiral arms in isolated discs or driven by infall

accretion from a surrounding cloud (e.g. Kratter et al. 2008). As gravitational instabil-

ity only occurs in the colder outer disc (e.g. Stamatellos & Whitworth 2008), planets

which form via fragmentation are typically super-Jovian, wide-orbit companions. The

instability is also only thought to be onset in the early phases of protostellar discs i.e.

when there is a large reservoir of gas available for accretion by planets. The inward mi-

gration of a planet (see Section 1.4.3) and subsequent accretion increases its mass such

that it may become a brown dwarf (M ¦ 13 MJ) or even a low-mass hydrogen-burning

star (M ¦ 80 MJ) (Stamatellos et al. 2007a; Stamatellos & Whitworth 2009b,a). The

protostellar system L1448 IRS3B comprises a central pair of binary protostars (IRS3B-

a and IRS3B-b) with a total mass 1 M�, as well as a 0.085 M� companion (IRS3B-c).
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Figure 1.10: ALMA 1.33 mm image of the L1448 IRS3B triple protostellar system (Tobin et al.
2016). The central binary system is represented by the two close-by red crosses and have a
combined mass 1 M�. The third member of the system has a mass 0.085 M� and was likely
formed through gravitational fragmentation.

The latter may be a candidate of disc fragmentation. Figure 1.10 shows an ALMA

1.33 mm image of the system with IRS3B-c on the left.

The tidal stripping of massive planets formed through gravitational fragmentation

could ultimately lead to the formation of Earths and super-Earths (Nayakshin 2015a,b;

Nayakshin & Fletcher 2015; Nayakshin 2016). Therefore it may be that both theories

discussed in this section contribute to the planetary population.
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1.8 Thesis outline

This thesis focuses on the gravitational instability within protostellar discs, the neces-

sary conditions for it to happen and the effects it can have on the evolution of young

protostellar systems. Chapter 2 introduces the computational techniques used within

this work. I describe the fundamentals of smoothed particle hydrodynamics, explain-

ing its relevance to the studies herein as well as some modern implementations which

improve upon the method. Following this, I discuss how thermodynamics is treated,

including the radiative feedback from accreting objects and how the thermal properties

of a system evolve. A model of episodic accretion is then outlined, which, combined

with radiative feedback allows the self-consistent inclusion of thermal effects from ac-

cretion outbursts. The chapter ends with a brief introduction to the numerical codes

SEREN and GANDALF. The work in Chapter 3 is an investigation into the formation

of objects due to disc fragmentation, a consequence of the gravitational instability.

Specifically, I determine how the heat generated from accretion onto these objects af-

fects subsequent disc evolution. In Chapter 4 I compare methods of radiative transfer

in multiple disc configurations including unstable and fragmented discs. The accuracy

of each method is determined and compared to a simple approach with parameterised

cooling. As the gravitational instability is sensitive to the thermal properties of a disc,

I also discuss the effect of each method on disc stability. Chapter 5 concerns the study

of the gravitational fragmentation of discs around M-dwarf stars. I determine the min-

imum mass for fragmentation for a variety of disc and stellar properties. Additionally,

I discuss the properties of the formed clumps/protoplanets formed by fragmentation.

The work presented in this thesis is summarised in Chapter 6.
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Computational techniques

2.1 Smoothed particle hydrodynamics

Numerically solving the equations of fluid dynamics for star and planet formation

studies requires a technique that can handle a large dynamic range, both spatially and

temporally. An inherently adaptive method therefore lends itself ideally to this prob-

lem. Smoothed particle hydrodynamics (SPH henceforth), developed independently

by Gingold & Monaghan (1977) and Lucy (1977), utilises interpolation points which

follow a fluid and probe its properties. These points are generally referred to as SPH

particles and each has an associated mass. They are smoothed over a scale length h

via a weighting function W (r , h) which are referred to as the smoothing length and

smoothing function (or smoothing kernel), respectively. This allows the representa-

tion of a continuous fluid with a discrete set of particles.

To form the basis of SPH, note that the integral interpolant of a function f (r ) over

a volume V is

f (r ) =

∫

V

f (r ′)W (r − r ′, h) dV, (2.1)
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where the smoothing function is normalised so that

∫

V

W (r − r ′, h) dV = 1. (2.2)

In the limit h→ 0 the smoothing function becomes the Dirac delta function. Equation

2.1 can be discretised given a set of particles by replacing the volume element with

particle mass and density to give the value of property f at the location of particle i,

f (r i)≈
N
∑

j=1

f (r j)
m j

ρ j
W
��

�r i − r j

�

� , h
�

, (2.3)

where the sum is over neighbouring particles j. The density estimate, and also the

continuity equation for SPH, is obtained by substituting f (r )with densityρ(r ). Hence

ρi =
N
∑

j=1

m jW (r i j, h), (2.4)

which has the spatial derivative

∂ ρi

∂ r i

=
N
∑

j=1

m j∇iW (r i j, h). (2.5)

The substitutions r i j = r i − r j and ∇i = ∂ /∂ r i have been made for convenience.

The SPH fluid equations can be derived from the Euler-Lagrange equations which

guarantee the conservation of momentum, angular momentum, and energy. This can

be achieved using the SPH form of the continuity equation stated above, as well as the

first law of thermodynamics. Doing so yields the basic forms of the SPH momentum

equation
dv i

dt
= −

N
∑

j=1

m j

�

Pi

ρ2
i

+
Pj

ρ2
j

�

∇iW (r i j, h), (2.6)
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and energy equation
dui

dt
=

Pi

ρ2
i

N
∑

j=1

m j v i j · ∇W (r i j, h). (2.7)

The formulation of these equations requires a constant smoothing length h and as-

sumes that there is no dissipation. Gravity is also not taken into account in the momen-

tum equation. These points are revisited in later sections, whilst the final equations

are summarised in Section 2.1.8.

The benefits of the Langrangian nature of SPH over Eulerian grid techniques are

realised when considering diverse systems. Computational expense is reduced in low

density regions where there are few particles. In high density regions, the resolution

is necessarily increased as particles follow the fluid. Grid-based approaches instead

require continuous adaptive refinement to resolve dense regions.

2.1.1 Smoothing function

The summation across N particles results in O (N 2) computational cost and so particle

properties are calculated based on a much smaller set of neighbour particles Nneigh,

attained by truncating the smoothing function (typically at some multiple of h). The

smoothing function that is adopted for the work presented in this text is the M4 cubic

B-spline kernel (Schoenberg 1946) truncated at 2h. It has the functional form

W (r i j, h) =
σ

hd























1
4(2− q)3 − (1− q)3, 0≤ q < 1;

1
4(2− q)3, 1≤ q < 2;

0, q ≥ 2,

(2.8)

where q = r i j/h. Thus, particles outside 2h are not considered. The dimensionality of

the system is denoted d andσ is a normalisation constant whereσ = [2/3,7/10π, 1/π]

in [1,2, 3] dimensions, respectively. The benefits of this kernel are thus: it is symmetric

hence gives a good density estimate, it is twice continuously differentiable, and itself
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and its gradient are computationally inexpensive to calculate. Increasing the number

of neighbours indeed yields a more accurate density estimate but at the cost of com-

putational expense, and more importantly can lead to the pairing instability when

using B-spline kernels. The pairing instability is the result of the negative maximum

in the spatial derivative of B-spline kernels, where for the M4 kernel, mutual forces

between particles tend to zero when placed closer than ∼ (2/3)q apart. This leads

to the particles essentially forming a pair. The number of neighbours at which this

occurs is greater than 55− 58 (Dehnen & Aly 2012; Price 2012). A family of kernels

which incorporate all desirable properties that do not instigate the pairing instability

are the Wendland kernels (Wendland 1995). With a low number of neighbours, the

density estimate is inaccurate compared to B-spline kernels and so a large number of

neighbours is necessary.

2.1.2 ∇h conservative scheme

A constant smoothing length is not suitable within systems which have large density

ranges. Consider a particle which has a small smoothing length due to being within

a dense region, that moves into a low density region. Its smoothing length is still

small and thus neighbours may not be captured within its smoothing kernel. A similar

issue exists for the opposite effect, wherein a particle may have many neighbours thus

wasting computational time. By assigning a variable smoothing length to each particle,

spatial resolution can be increased considerably (Hernquist & Katz 1989; Benz 1990).

Typically one sets the smoothing length to a function of density such that

hi = η
�

mi

ρi

�1/d

. (2.9)
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Here, d represents the number of dimensions and η controls the mean number of

neighbours, which depends on the dimensionality. In 3-dimensional space the smooth-

ing length of a particle is

hi =
�3Nneighmi

32πρi

�1/3

. (2.10)

Due to the interdependence of ρ and h (see Equation 2.4), an iterative procedure

(e.g. Newton-Raphson) is employed until a chosen convergence criterion is met. The

temporal variability of the smoothing length can be found by taking the time derivative

of Equation 2.9 to obtain
dhi

dt
= −

hi

ρid
dρi

dt
. (2.11)

To calculate this fully, one can take the Lagrangian time derivative of Equation 2.4 and

get
dρi

dt
=

1
Ωi

N
∑

j=1

m j v i j · ∇iW
�

r i j, hi

�

. (2.12)

Ωi is a dimensionless parameter that corrects for any spatial variability in h which,

when included, conserves energy and entropy (Nelson & Papaloizou 1993, 1994;

Serna et al. 1996). This factor has the form

Ωi = 1−
∂ hi

∂ ρi

N
∑

j=1

m j

∂Wi j

∂ hi

(r i j, hi). (2.13)

The resulting momentum and energy equations with the correction term taken self-

consistently into consideration can be shown (Springel & Hernquist 2002) to be

dv i

dt
= −

N
∑

j=1

m j

�

Pi

Ωiρ
2
i

∇iW (r i j, hi) +
Pj

Ω jρ
2
j

∇iW (r i j, h j)

�

, (2.14)

dui

dt
=

Pi

Ωiρ
2
i

N
∑

j=1

m j v i j · ∇W (r i j, h), (2.15)

respectively, which are the forms used within the ∇h-SPH scheme.
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2.1.3 Self-gravity

Self-gravity can be included into SPH using the consistent methods of smoothing

across particle neighbours, but which also yields an exact form outside of the smooth-

ing kernel. Gravitational softening is used to avoid unphysically large accelerations

when SPH particles get close to each other. It has been shown (e.g. Dyer & Ip 1993;

Dehnen 2001) that gravitational softening via a smoothing function rather than a soft-

ening length is a better choice. This also allows it to be implemented into SPH trivially.

As the density is a continuous property, it can be related to the continuous gravi-

tational potential via Poisson’s equation ∇2Φ= 4πGρ. Price & Monaghan (2007) de-

rive the SPH momentum equation via the Lagrangian taking into account self-gravity

and introduce two new smoothing functions akin to the density smoothing function

W (r , h). These are the force smoothing function φ, and the potential smoothing func-

tion φ′. When the density smoothing function is an M4 cubic-spline kernel, these

quantities have the forms

φi j(r i − r j, hi) =
1
hi























2
3q2 − 3

10q4 + 1
10q5 − 7

5 , 0≤ q < 1;

4
3q2 − q3 + 3

10q4 − 1
30q5 − 8

5 +
1
15q, 1≤ q < 2;

−q−1, q ≥ 2.

(2.16)

and

φ′i j(r i − r j, hi) =
1
h2

i























4
3q− 6

5q3 + 1
2q4, 0≤ q < 1;

8
3q− 3q2 + 6

5q3 − 1
6q4 − 1

15q−2, 1≤ q < 2;

q−2, q ≥ 2.

(2.17)

where q = r i j/h. Outside of 2h, the potential has the form 1/r and the force 1/r2

i.e. there is no smoothing and the quantities are exact. The form for the gravitational

acceleration of a particle i, accounting for adaptive smoothing lengths (see Section
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2.1.2) is
dv i

dt

�

�

�

�

grav

= −G
N
∑

j=1

m j

φ′
�

r i j, hi

�

+φ′
�

r i j, h j

�

2
r̂ i j

−
G
2

N
∑

j=1

m j

�

ζi

Ωi
∇iW

�

r i j, hi

�

+
ζ j

Ω j
∇iW

�

r i j, h j

�

�

.

(2.18)

ζ accounts for the spatial variability in h, a term similar toΩwhich is given in Equation

2.13. It has the form

ζi =
∂ hi

∂ ρi

N
∑

j=1

m j

∂ φi j

∂ hi

(r i j, hi). (2.19)

The gravitational acceleration can be added to the SPH momentum equation to ac-

count for gravitational influence from other particles. Similarly, the gravitational po-

tential of a particle is

Φi = G
N
∑

j=1

m j

φ
�

r i j, hi

�

+φ
�

r i j, h j

�

2
. (2.20)

As the quantities are derived from the Lagrangian, momentum and energy are con-

served.

2.1.4 Artificial viscosity

Artificial viscosity is used within SPH simulations to capture shocks. Within these re-

gions, SPH particles may inter-penetrate and can incorrectly represent the conversion

of kinetic energy to heat. As such, artificial viscosity modifies the acceleration and

heating/cooling rate of a particle such that

dv i

dt

�

�

�

�

visc

= −
N
∑

j=1

m jΠi j∇iW (r i j, hi), (2.21)

and
dui

dt

�

�

�

�

visc

=
N
∑

j=1

m jΠi j v i j · ∇iW (r i j, hi). (2.22)
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The artificial viscosity term Πi j (Monaghan & Gingold 1983) is given as

Πi j =
−αc̄s,i jµi j + βµ2

i j

ρ̄i j
, (2.23)

where α and β are dimensionless viscosity parameters, ρ̄i j =
1
2(ρi + ρ j), cs is the

isothermal sound speed and c̄s,i j =
1
2(cs,i + cs, j). The term µi j can be expanded such

that

µi j =











hi v i j ·r i j

|r i j| , if v i · r i j < 0;

0, otherwise.
(2.24)

A small factor ε2 may be added to the
�

�r i j

�

�

2
term to prevent singularities at very small

particle distances. Note that artificial viscosity only applies to converging flows, it

does not affect receeding flows.

2.1.4.1 Time-dependent artificial viscosity

Morris & Monaghan (1997) developed a method whereby artificial viscosity adapts to

the convergence of the flow. Each particle is assigned a viscosity parameter αi and

the α and β terms in Equation 2.23 are replaced with αi and 2αi, respectively. The

viscosity parameter for each particle is allowed to change over time (Monaghan 1997)

such that
dαi

dt
=
αmin +αi

τi
− Si. (2.25)

The viscosity αi falls to a minimum value αmin within an e-folding time of τi provided

the source term Si = 0. This term is represented as

Si =max[−(∇ · v)i, 0](αmax −αi). (2.26)

The first term on the right hand side of the equation ensures that: when a particle

enters a shock (∇ · v < 0), the viscosity parameter increases to αmax; when a particle
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leaves a shock (∇· v > 0), the viscosity parameter decreases to αmin. The second term

on the right hand side of the equation constrains the upper limit of αi. The e-folding

time is described by

τi =
hi

2`cs,i
, (2.27)

where ` is selected to make τi equal to a single sound-crossing time for the smoothing

kernel of the particle. Typically, ` = 0.1 − 0.2. Rosswog et al. (2000) proposed to

multiply the source function in Equation 2.25 by a factor of (αmax−αi). This prevents

αi from exceeding the maximum viscosity and also increases the rate of change of αi

when it is small. Price (2004) show that this latter point results in a better treatment

of shocks.

2.1.4.2 The Balsara switch

Within protostellar discs where shear flows are important, the artificial viscosity may

provide non-physical amounts of shear viscosity. To prevent this phenomenon from

occurring, the viscosity parameters in Equation 2.23, or the source function in Equa-

tion 2.26, may be multiplied by a factor fi j =
1
2( fi + f j) (Balsara 1995). For a particle

i, this factor has the form

fi =
|∇ · v i|

|∇ · v i|+ |∇× v i|+σ
, (2.28)

where σ = 10−3 cs,i/hi. Within shocks, fi → 1 as |∇ · v i| � |∇× v i| (compression)

and within shear flows, fi → 0 as |∇ · v i| � |∇× v i| (vorticity). The Balsara switch

does not remove shear viscosity completely, it only reduces it.

2.1.4.3 The Cullen & Dehnen (2010) inviscid treatment

The previously discussed methods improve the treatment of viscosity but still result

in small amounts of unwanted shear viscosity. Cullen & Dehnen (2010) developed a

41



CHAPTER 2

novel prescription which differentiates shocks from convergent flows, removing vis-

cosity completely except within shock regions. The metric used to achieve this, and to

differentiate between pre- and post-shock regions is the time derivative of the velocity

divergence, ∇̇ · v . If one considers the time derivative of the continuity equation such

that

− ∇̇ · v =
d2 lnρ

dt2
, (2.29)

then it is clear that ∇̇ · v < 0 represents an increase in flow convergence, typical for

pre-shock regions. Similarly, ∇̇ · v > 0 for the post-shock region. Thus, only negative

values need be considered: the shock indicator, analogous to the source function in

Equation 2.26, is

Ai = ξi max[−(∇̇ · v)i, 0]. (2.30)

ξ is a limiter which acts to prevent false detections of compressive flows, where ξ→ 0

when the shear is greater than the convergence of the flow and no shock is present.

Provided the shear flow is not too strong, the limiter may be approximated to the

Balsara factor (Equation 2.28). A more detailed description is given in §3.3 of Cullen

& Dehnen (2010).

The artificial viscosity of a particle is set to a local value

αloc,i =
hiAi

v2
sig,i + h2

i Ai
, (2.31)

where the signal velocity vsig,i is the velocity at which two sound waves travel toward

each other. It has the value

vsig,i =max j

�

cs,i + cs, j − βmin
�

0, v i j · x̂ i j

��

, (2.32)

where β = 2α as in the standard α-prescription. When a particle passes through the

maximum flow of convergence within a shock, the values of Ai and αloc,i return to
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zero: the signal velocity is approximately equal to the sound speed here as the flows

are now diverging. The artificial viscosity evolves over time whenever αi > αloc,i such

that
dαi

dt
=
(αloc,i −αi)

τi
, (2.33)

where the timescale is the same as that in Equation 2.27.

2.1.5 Time integration

In order to temporally evolve the properties of the fluid an integration scheme must

be chosen. Those commonly adopted are the Leapfrog (or Verlet-Störmer) and Runge-

Kutta methods.

The Leapfrog method is a second-order integrator where a particle’s position and

velocity are updated based on the previous half-timestep. It is time-reversible, con-

serves both angular momentum and energy provided timesteps are constant, and can

be implemented via two different approaches. The kick-drift-kick scheme obtains the

next position and velocity after a timestep ∆t via

x n+1 = x n + v n∆t +
1
2

an∆t2, (2.34)

v n+1 = v n +
1
2
(an + an+1)∆t. (2.35)

The acceleration need only be calculated once per timestep as the next acceleration be-

comes the current in the subsequent timestep. Similarly, in the drift-kick-drift scheme

where positions and velocities are shifted by half of a timestep, integration is obtained

such that

x n+ 1
2
= x n +

1
2

v n∆t, (2.36)

v n+ 1
2
= v n +

1
2

an− 1
2
∆t, (2.37)
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v n+1 = v n + an+ 1
2
∆t, (2.38)

x n+1 = x n +
1
2
(v n + v n+1)∆t. (2.39)

Again, the acceleration is only calculated once per timestep but this time in the middle

of the timestep. Note that this scheme requires an extra step of calculations: a ‘drift’

is performed to find the half-timestep values, the acceleration is calculated, and then

another ‘drift’ is performed using the updated acceleration in order to obtain the new

values.

The Runge-Kutta method comes in many flavours, though for brevity, I outline only

the 2nd and 4th order techniques here. The second order Runge-Kutta approximation

(also called the improved Euler method or Heun’s method) calculates the value of x

at the next timestep via

x n+1 =
1
2
(k1 + k2)∆t, (2.40)

with coefficients

k1 = f (tn, x n), (2.41)

k2 = f (tn+1, x n + k1∆t), (2.42)

where each is a slope estimation. The 4th order method instead uses four coefficients

with different weightings such that

x n+1 = x n +
1
6

�

k1 + 2k2 + 2k3 + k4

�

∆t, (2.43)

k1 = f (tn, x n) , (2.44)

k2 = f
�

tn+ 1
2
, x n +

1
2

k1∆t
�

, (2.45)

k3 = f
�

tn+ 1
2
, x n +

1
2

k2∆t
�

, (2.46)

k4 = f (tn+1, x n + k3∆t) . (2.47)
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The Runge-Kutta method can be extended to even higher orders to obtain a more

accurate approximation but at the cost of computational efficiency. It should be noted

that it does not share the time-reversible properties of the Leapfrog method.

2.1.6 Choosing a timestep ∆t

Given any explicit numerical integration scheme, one needs to assure that information

is not propagated too rapidly within a timestep. In the case of grid-codes information

should be constrained to a single cell within a timestep; for SPH, the information

should be constrained to a single smoothing length of a particle. This is achieved via

the Courant-Friedrichs-Lewy (CFL) condition (Courant et al. 1928).

For SPH schemes the timestep for a particle i can be calculated using the CFL

condition where

∆t i = CCFL

hi

vsig,i
. (2.48)

The Courant number CCFL acts as a timestep multiplier and is almost always less than

unity, typically ∼ 0.2. The signal velocity vsig,i is the speed at which information is

propagated and is given in Equation 2.32. Additionally, when self-gravity is included

within a simulation, a particles timestep can be constrained to

∆t i = Cgrav
hip
ai

, (2.49)

where typically Cgrav ∼ 0.5 is the gravitational acceleration timestep condition.

Furthermore, particles can be grouped into hierarchical timestep levels based on

the current maximum timestep∆tmax. This is typically achieved by assigning timesteps

to some power-of-two fraction of the maximum timestep (e.g. Hernquist & Katz 1989;

Springel 2005; Hubber et al. 2011; Hubber et al. 2018) such that

∆t l =
∆tmax

2l
, (2.50)
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for timestep levels l = [0, 1,2, ..., lmax]. Particles can move to higher levels of the hi-

erarchy as this is necessarily calculated, but moving to lower levels requires synchro-

nisation of that level. Only when a timestep is performed on the lowest level can the

maximum timestep be recalculated. The hierarchical timestepping technique reduces

the number of kinetic integrations and spatial partitioning recalculations resulting in

a faster computational runtime.

2.1.7 Sink particles

Particles within high density regions of SPH simulations are subject to short timesteps

which slows down the temporal evolution of a simulation significantly. A solution

to this problem are sink particles (Bate et al. 1995) which replace the high density

collection of particles, conserving mass and momentum. The resulting sink particle

no longer interacts with the rest of the computational domain hydrodynamically, only

gravitationally.

A sink particle is used within a simulation provided an SPH particle exceeds a

user-defined density ρsink and does not have another sink within its smoothing length.

Other criteria can be used in conjunction, for example the particle must have the

minimum gravitational potential within its neighbour list (Federrath et al. 2010), and

have a negative velocity and acceleration divergence (ensures condensation is not

affected by shear or tidal forces, respectively). A suitable choice for the sink creation

density is 10−9 g cm−3. If gas reaches this density it is likely that it is already part of a

dense clump which will heat to ∼ 2000 K (such that molecular hydrogen dissociates)

and continue to collapse.

A sink may accrete other particles provided a particle crosses the sink radius (which

can be fixed or a multiple of h), and if the mutual kinetic plus gravitational energy

of the sink and particle is negative. The accretion of a single or set of particles i is

instantaneous (i.e. occurs within a single simulation time-step), and the following
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sink properties (mass, position, velocity and angular momentum) are updated

m′s = ms +
∑

i

mi, (2.51)

r ′s =
1
m′s

�

msr s +
∑

i

mi r i

�

, (2.52)

v ′s =
1
m′s

�

msv s +
∑

i

mi v i

�

, (2.53)

L′s = Ls +ms

�

r s − r ′s
�

×
�

v s − v ′s
�

+
∑

i

mi

�

r i − r ′s
�

×
�

v i − v ′s
�

. (2.54)

The last of these equations can result in an artificial removal of angular momentum

from a simulation. Hubber et al. (2013) have developed a method which solves this

issue by allowing feedback of angular momentum to the material nearby a sink parti-

cle.

47



CHAPTER 2

2.1.8 Summary of basic equations

The basic SPH equations can be summarised as thus: the continuity equation

ρi =
N
∑

j=1

m jW (r i j, h); hi =
�3Nneighmi

32πρi

�1/3

; (2.55)

the momentum equation

dv i

dt
= −

N
∑

j=1

m j

¨

Pi

Ωiρ
2
i

∇iW (r i j, hi) +
Pj

Ω jρ
2
j

∇iW (r i j, h j) +Πi j

«

+
dv i

dt

�

�

�

�

grav

, (2.56)

with gravitational contribution

dv i

dt

�

�

�

�

grav

= −G
N
∑

j=1

m j

φ′
�

r i j, hi

�

+φ′
�

r i j, h j

�

2
r̂ i j

−
G
2

N
∑

j=1

m j

�

ζi

Ωi
∇iW

�

r i j, hi

�

+
ζ j

Ω j
∇iW

�

r i j, h j

�

�

;

(2.57)

the energy equation

dui

dt
=

N
∑

j=1

m j

¨

Pi

Ωiρ
2
i

v i j · ∇iW (r i j, hi) +
Pj

Ω jρ
2
j

v i j · ∇iW (r i j, h j) +Πi j

«

; (2.58)

where the viscosity terms are

Πi j =
−αc̄s,i jµi j + βµ2

i j

ρ̄i j
; µi j =











hi v i j ·r i j

|r i j| , if v i · r i j < 0

0, otherwise
; (2.59)

and the correction terms are

Ωi = 1−
∂ hi

∂ ρi

N
∑

j=1

m j

∂Wi j

∂ hi

(r i j, hi); ζi =
∂ hi

∂ ρi

N
∑

j=1

m j

∂ φi j

∂ hi

(r i j, hi). (2.60)
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2.2 Radiative transfer in SPH

A radiative term can be added to the SPH energy equation which captures time-

dependent radiation transport. Calculating this term is computationally expensive

(e.g. Harries 2015; Harries et al. 2017) and so an estimate is made using underlying

assumptions. The Stamatellos et al. (2007b) method estimates the column density

through which cooling/heating happens, and along with the local opacity, are used to

estimate an optical depth for each particle. This can be used to determine the heating

and cooling of the particle and incorporates effects from ice melting, dust sublimation,

bound-free, free-free and electron scattering interactions. The equation of state used

and the effect of each assumed constituent are described in detail in §3 of Stamatellos

et al. (2007b). The opacities are based on the Bell & Lin (1994) parameterisation

where

κ(ρ, T ) = κ0ρ
aT b. (2.61)

κ0, a and b are constants which depend on the species which contribute to opacity at

a given density and temperature.

The radiative heating/cooling rate of a particle i is set to

dui

dt

�

�

�

�

rad

=
4σSB

�

T 4
BGR
− T 4

i

�

Σ̄2
i κ̄R (ρi, Ti) + κ−1

P
(ρi, Ti)

, (2.62)

where σSB is the Stefan-Boltzmann constant, TBGR is the pseudo-background tempera-

ture below which particles cannot cool radiatively, Σ̄i is mass-weighted mean column

density of the particle, and κ̄R and κP are the pseudo-mean Rosseland- and Planck-

mean opacities, respectively (see Stamatellos et al. (2007b)). They are assumed to be

equal. Note that whilst particles cannot cool radiatively below TBGR, they can cool due

to the expansion of the gas to a minimum of 5 K. The mass-weighted mean column
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density for a particle is calculated as

Σ̄i = ζ
�

ψiρi

4πG

�1/2

, (2.63)

where ζ = 0.368 is a dimensionless constant with a weak dependence on polytropic

index n = 1.5 (see §2.4 of Stamatellos et al. (2007b) for details). The use of a parti-

cle’s gravitational potential ψi here relies on an approximate spherical configuration.

Lombardi et al. (2015) proposed a different metric for the mean-weighted column

density which instead uses the pressure scale height of a particle such that

Σ̄i = ζ
′ Pi
�

�ah,i

�

�

. (2.64)

ζ′ is a dimensionless quantity on the order of unity. Pi is the pressure of a particle,

and ah,i is the hydrodynamical acceleration of a particle which does not include grav-

itational or viscous influence. It is related to the pressure gradient such that

ah,i =
−∇Pi

ρi
. (2.65)

Figure 2.1 compares the estimated column density against the calculated value for

both methods. It demonstrates that the Lombardi et al. (2015) method estimates the

column density more accurately within a protostellar disc, specifically at the surface.

Once Σ̄ has been calculated the necessary pseudo-mean opacities must be found

in order to calculate the heating/cooling rate of Equation 3.2. The method describing

this calculation is given in detail in §2.2 of Stamatellos et al. (2007b). The requirement

for on-the-fly calculation is averted via the use of an opacity look-up table. Using the

density and temperature of a given particle, specific internal energy, mean-molecular

mass, mass-weighted optical depth, Rosseland- and Planck-mean optical depths, ratio
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Figure 2.1: Actual column density (black dotted line) as a function of disc height in a pro-
tostellar disc. The red dashed line shows the column density estimation using the Lombardi
et al. (2015) pressure scale-height method. Both dashed blue lines are estimations using the
gravitational potential metric of Stamatellos et al. (2007b). The dashed cyan line includes the
gravitational potential from the central star. The pressure scale-height provides a greater accu-
racy for column density estimation, especially at the surface of the disc. Taken from Lombardi
et al. (2015).
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Figure 2.2: Quantities as a function of temperature for a variety of densities. Top left: the
specific internal energy; top right: the mean molecular weight; lower left: the pseudo-mean
opacity; lower right: the local mean opacity. All of these quantities can be accessed via the
look-up table using the density and temperature of a particle. This removes the need for on-
the-fly calculation.

of specific heat capacities, and the first adiabatic index can be found efficiently. Fig-

ure 2.2 illustrates the variation of specific internal energy, mean molecular mass, the

pseudo-mean opacity and local mean opacity as a function of temperature. I also plot

isopycnic curves at densities ρ =
�

10−12, 10−9, 10−6, 10−3
�

g cm−3. Some notable fea-

tures are: the excitation of the rotational degrees of freedom of hydrogen at 80−100 K

(see the specific internal energy panel); the dissociation between 1000 and 2000 K and

ionisation of hydrogen between 5000 and 10, 000 K which modifies the specific inter-

nal energy and the mean molecular weight of the gas; the opacity gap between 1000

and 3000 K.
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2.2.1 Equation of state

The adopted equation of state accomodates variable adiabatic index and mean molec-

ular weight, and so captures the state changes of the gas e.g. ionisation. Ideal gas is

assumed which is reasonable up to densities ∼ 0.03 g cm−3. Hence the temperature

of the gas is given by

T =
(γ− 1) eµmHu

k
, (2.66)

where mH is the mass of hydrogen and eµ is the mean molecular weight. This relation

is shown in the upper left panel of Figure 2.2. The pressure of the gas is

P = (γ− 1)ρu, (2.67)

and its entropy is

s = (γ− 1)ρ1−γu. (2.68)

Finally, the sound speed of the gas can be calculated via

cs =
Æ

Γ1 (γ− 1)u , (2.69)

where Γ1 is the first adiabatic exponent of the gas and is given by

Γ1 =
�

∂ ln P
∂ lnρ

�

s
=

dT
du
(γ− 1)u

T
χ2

T
+χρ. (2.70)

The values χT and χρ are the temperature and density exponents defined by

χT =
�

∂ ln P
∂ ln T

�

ρ

= 1−
∂ ln eµ
∂ ln T

, (2.71)

and

χρ =
�

∂ ln P
∂ lnρ

�

T

= 1−
∂ ln eµ
∂ lnρ

, (2.72)
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respectively. The subscripts of the differential quantities denote that they are calcu-

lated at a constant value of that subscript.

Both γ and Γ1 are dependent on the density and temperature, and therefore vary

from particle to particle. For a given ρ and u one can calculate Γ1 through Equation

2.70. The ratio of specific heats γ can be found by considering the ratio of specific

heats at constant pressure and volume such that

γ=
CP

CV

. (2.73)

These quantities are

CP =
du
dT
+

R?
eµ

, (2.74)

and

CV =
du
dT

. (2.75)

Here, R? = k/mH in cgs units. Using these two quantities one arrives at

γ= 1−
R?
eµ

dT
du

. (2.76)

Figures 2.3 and 2.4 show the variation of γ and Γ1 as a function of temperature, respec-

tively. I show the relationship for densities of ρ =
�

10−12, 10−9, 10−6, 10−3
�

g cm−3.

The densities are chosen such that a comparison of Γ1 can be made to figure 1 of

D’Angelo & Bodenheimer (2013).

2.3 Radiative feedback

The background temperature TBGR in Equation 3.2 is a limit below which particles

cannot cool radiatively. This can be set based on the contribution of radiating objects,

and is referred to as radiative feedback. Sinks that represent stars, brown dwarfs and
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Figure 2.3: The relationship between the ratio of heat capacities with temperature for a variety
of densities in units of g cm−3. The values of γ are found via Equation 2.76.
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Figure 2.4: The relationship between the first adiabatic index with temperature for a variety
of densities in units of g cm−3. The densities are chosen to directly compare with figure 1 of
D’Angelo & Bodenheimer (2013). The values of Γ1 are found via Equation 2.70.
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planets in SPH simulations of protostellar systems interact both gravitationally and

radiatively with the disc. In the optically thin limit, the temperature that the dust/gas

will attain at a distance |r − r n| from a radiative object n is

Tn (r ) =
�

Ln

16πσSB

�1/4

(|r − r n|)
−1/2 . (2.77)

In the optically thick limit, considering a geometrically thin, passive disc (e.g. Kenyon

& Hartmann 1987) the temperature is

Tn (r ) =
�

LnRn

4πσSB

�1/4

(|r − r n|)
−3/4 . (2.78)

Therefore, the temperature drops faster with the distance from the radiative object in

the optically thick case (q = 3/4 vs q = 1/2, respectively). However, in the case of a

flared disc the temperature drop is less steep, approaching the q = 1/2 value. This is

because a flared disc intercepts a higher fraction of the star’s radiation (e.g. Kenyon &

Hartmann 1987; Chiang & Goldreich 1997). This lower value for q is also consistent

with disc observations (e.g. Andrews et al. 2009).

Customarily, the optically thin case is used in analytic and computational studies of

protostellar disc evolution (e.g. Matzner & Levin 2005; Kratter & Matzner 2006; Sta-

matellos et al. 2007b; Offner et al. 2009; Stamatellos & Whitworth 2009; Stamatellos

et al. 2011b; Zhu et al. 2012; Lomax et al. 2014; Vorobyov & Basu 2015; Dong et al.

2016; Kratter & Lodato 2016), albeit with a scaled down stellar luminosity (by a factor

of ∼ 0.1) so as to match detailed radiative transfer calculations (see Matzner & Levin

2005). In either case, the temperature at a given distance from a radiative source

depends on the luminosity of the source. The luminosity of young stellar and sub-

stellar objects is mostly due to accretion of material onto their surfaces. In the work

presented here I consider 3 types of radiative feedback, as described in the following

sections.
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2.3.1 Fixed radiative feedback

This method is used when modelling protostellar discs. I assume that the radiative

feedback from the central protostar sets a minimum temperature TBGR below which

the gas cannot cool radiatively. This is set to

T ?
BGR
(R) =

�

T 4
0

�

R2 + R2
0

AU2

�−2q

+ T 4
∞

�1/4

. (2.79)

R is the distance from the star on the disc midplane, R0 = 0.25 AU is a smoothing

radius which prevents non-physical values when R → 0, q defines the steepness of

the temperature profile, and T0 is the temperature at a distance of 1 AU from the

central star. Heating from a background radiative field is included where T∞ = 10

K. In this method, no heating is considered from accreting objects that form through

gravitational fragmentation.

2.3.2 Continuous radiative feedback

The heating due to accretion from objects that form through gravitational fragmenta-

tion within a simulation (represented by sink particles) provide a pseudo-background

temperature set to

T 4
BGR
(r ) = (10 K)4 +

∑

n

�

Ln

16πσSB |r − r n|
2

�

, (2.80)

where Ln and r n are the luminosity and position of a radiative object n (Stamatellos

et al. 2011b; Stamatellos et al. 2012; Stamatellos 2015). The above also includes the

contribution to heating from a background radiative field. The luminosity of an object

n is set to

Ln = LNB +
f GMnṀn

Racc
. (2.81)
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The first term on the right hand side of the equation describes the luminosity of the

object from nuclear burning which is set equal to (Mn/ M�)
3 L� for stellar objects

(M > 0.08 M�) and 0 for substellar objects. The second term represents the accretion

luminosity. f = 0.75 is the fraction of accretion energy that is radiated away at the

photosphere of the object (Offner et al. 2010). Racc is the accretion radius, set to

Racc = 3 R� (Palla & Stahler 1993).

2.3.3 Episodic radiative feedback

Mass accretion onto young stars increases their luminosity due to gravitational en-

ergy being converted into heat on the accretion shock around the surface of a star.

The accretion is typically considered to be continuous (Krumholz 2006; Bate 2009;

Offner et al. 2009; Krumholz & Burkert 2010). However, consider a star which has

just evolved out of the Class 0 phase, which will ultimately have a mass of 1 M�. It

has an age of ∼ 105 yr and has accumulated half of its final mass. This yields a mean

mass accretion rate of ∼ 5 × 10−6 M� yr−1 and a mean luminosity of ∼ 25 L�. Ob-

servational studies show that solar-like protostars have much lower luminosities (e.g.

Kenyon et al. 1990; Evans et al. 2009; Enoch et al. 2009a). This is the so called lumi-

nosity problem. It may be circumvented if accretion onto protostars is not continuous,

but rather episodic, happening in short bursts (e.g. Dunham et al. 2010; Dunham &

Vorobyov 2012; Audard et al. 2014).

FU Ori objects provide evidence of episodic accretion. These objects exhibit sud-

den luminosity increases on the order of ∼ 5 mag and estimated accretion rates of

> 10−4 M� yr−1 which last from a few tens of years to a few centuries (Herbig 1977;

Hartmann & Kenyon 1996; Greene et al. 2008; Peneva et al. 2010; Green et al. 2011).

Episodic accretion maybe due to gravitational instabilities (Vorobyov & Basu 2005;

Machida et al. 2011; Vorobyov & Basu 2015; Liu et al. 2016), thermal instabilities in

the inner disc region (Hartmann & Kenyon 1985; Lin et al. 1985; Bell & Lin 1994), or
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due to gravitational interactions in a binary system (Bonnell & Bastien 1992; Forgan

& Rice 2010). It has also been suggested that they may be due to the combined ef-

fect of gravitational instabilities operating in the outer disc region transferring matter

inwards and the magnetorotational instability (MRI) operating episodically in the in-

ner disc region delivering matter onto the young protostar (Armitage et al. 2001; Zhu

et al. 2007, 2009a,b, 2010).

The episodic accretion model that is adopted within this work is described in detail

in Stamatellos et al. (2011b) and Stamatellos et al. (2012). Gravitational instabilities

cannot develop within the inner regions of a protostellar disc (∼ a few AU) due to high

temperatures. Therefore, there is no mechanism to transport angular momentum out-

wards for the gas to accrete onto the object. Mass accumulates in the inner disc region

which leads to an increase in density and temperature. When the temperature is suf-

ficiently high to ionise the gas, the magnetorotational instability (MRI, see Section

1.6) is activated, and gas starts flowing onto the object. As with gravitational insta-

bility, angular momentum is transported outwards and matter flows inward. When

the mass in the inner accretion disc is depleted, the MRI ceases and mass once again

begins to accumulate within the inner disc region. The accretion of gas provides an

effective luminosity via Equation 2.81 and consequently a pseudo-background tem-

perature constribution via Equation 2.80.

As the hydrodynamic simulations do not have the resolution to capture the de-

tails of the inner accretion disc around each bound object, Stamatellos et al. (2011b)

developed a sub-grid model to capture the effect of MRI utilising the time-dependent

episodic accretion model ascribed to Zhu et al. (2010). Each object that forms through

gravitational fragmentation is represented by a sink particle and is notionally split into

two components, the object and the inner accretion disc (IAD). The total mass of the

sink is

Msink = M? +MIAD, (2.82)
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where M? is the mass of the object and MIAD is the mass of its inner accretion disc.

The accretion rate onto the object, Ṁ?, is assumed to have two components: a small

continuous accretion ṀCON, and the accretion due to the MRI, ṀMRI. The total accretion

rate is therefore

Ṁ? = ṀCON + ṀMRI. (2.83)

The material only couples to the magnetic field when it becomes sufficiently ionised.

The temperature at which this occurs is set to TMRI ∼ 1400 K. Zhu et al. (2010) estimate

that the accretion rate during an episode and the duration of an episode are

ṀMRI ∼ 5× 10−4 M� yr−1
�αMRI

0.1

�

, (2.84)

and

∆tMRI ∼ 0.25 kyr
�αMRI

0.1

�−1� M?

0.2 M�

�2/3
�

ṀIAD

10−5 M� yr−1

�1/9

, (2.85)

respectively. ṀIAD is the mass accretion rate which flows onto the inner accretion disc,

i.e. the accretion rate onto the sink. αMRI is the MRI viscosity α-prescription parameter

(Shakura & Sunyaev 1973). The MRI is assumed to occur when sufficient mass has

been accumulated within the inner accretion disc such that

MIAD > MMRI ∼ ṀMRI∆tMRI. (2.86)

Substituting in Equations 2.84 and 2.85 yields

MIAD > 0.13 M�

�

M?

0.2 M�

�2/3
�

ṀIAD

10−5 M� yr−1

�1/9

. (2.87)

Observations of FU Orionis stars (see e.g. Hartmann & Kenyon 1996), show that the

accretion rate during an outburst episode drops exponentially. The accretion rate onto
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the central object is therefore set to

ṀMRI = 1.58
MMRI

∆tMRI

exp
§

−
t − t0

∆tMRI

ª

, t0 < t < t0 +∆tMRI. (2.88)

t0 and t0 +∆tMRI are the temporal bounds of the accretion episode and the factor of

1.58= e/(e−1) is included to allow all of the mass in the IAD to be accreted onto the

object within ∆tMRI. The accumulation of mass into the inner accretion disc occurs on

a timescale

∆tACC ∼
MMRI

ṀIAD

. (2.89)

Using Equation 2.87 gives

∆tACC ' 13 kyr
�

M?

0.2 M�

�2/3
�

ṀIAD

10−5 M�yr−1

�−8/9

. (2.90)

Comparing this with Equation 2.85 shows that the period when mass is being accu-

mulated into the inner accretion disc is much longer than the accretion episodes.

The free variables in this model are ṀCON and αMRI. Increasing αMRI yields shorter

but more intense accretion episodes. Note that Equations 2.87 and 2.90 are inde-

pendent of αMRI. The uncertainty on αMRI, which lies in the range 0.01 − 0.4 (King

et al. 2007), is therefore not reflected in the mass accreted in an episode nor the time

interval between successive episodes.

2.4 Numerical codes

The simulations ran in this work are performed using two hydrodynamical codes,

SEREN (Hubber et al. 2011), used within Chapter 3, and GANDALF (Hubber et al. 2018),

used within Chapters 4 and 5. The features chosen when using SEREN are listed as

thus: full 3-dimensional ∇h SPH; kernel-softened gravity; time-dependent artificial

viscosity with the Balsara switch; a 2nd order Runge-Kutta integration scheme with
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hierarchical timesteps; sink particles; approximate radiative transfer via the Stamatel-

los et al. (2007b) method; continuous and episodic radiative feedback 1.

GANDALF (the Graphical Astrophysics code for N-body Dynamics And Lagrangian

Fluids) is the successor to SEREN designed to have better performance and a more

accessible codebase for users to implement their own algorithms. Nearest neighbours

and gravitational forces are calculated using a binary k-d tree rather than an octal

tree to ensure balancing across compute nodes. The code is also parallelised using a

hybrid OpenMP and MPI approach which allows theoretically linear scaling up to 128

cores, though for configurations such as protostellar discs this is not attainable. The

features chosen when using GANDALF are: full 3-dimensional∇h SPH; kernel-softened

gravity; time-dependent artificial viscosity with the Cullen & Dehnen (2010) viscosity

switch; a Leapfrog kick-drift-kick integration scheme with hierarchical timesteps; sink

particles; approximate radiative transfer via either the Stamatellos et al. (2007b) or

Lombardi et al. (2015) method (personal contribution).

The features listed are by no means exhaustive and only represent those enabled

for the simulations within this work (unless specified otherwise). The codes are pub-

licly available through the online source control service GitHub 2.

1Courtesy of Dimitris Stamatellos.
2At https://github.com/dhubber/seren and https://github.com/gandalfcode/

gandalf/, respectively.
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Chapter 3

The effect of radiative feedback on

disc fragmentation

3.1 Introduction

A significant fraction of low-mass stars and brown dwarfs may form by fragmentation

in gravitationally unstable discs (Whitworth & Stamatellos 2006; Stamatellos et al.

2007a; Stamatellos & Whitworth 2009b; Kratter et al. 2010; Zhu et al. 2012; Lomax

et al. 2014; Kratter & Lodato 2016; Vorobyov 2013). Protostellar discs fragment if two

conditions are met. (i) They are gravitationally unstable such that

Q ≡
κcs

πGΣ
<Qcrit, (3.1)

where Q is the Toomre parameter (Toomre 1964), κ is the epicyclic frequency, cs is the

local sound speed and Σ is the disc surface density. The value of Qcrit is on the order

of unity and it is dependent on the assumed geometry of the disc and the equation of

state used: for a razor-thin disc, Qcrit = 1; in a 3D disc Qcrit = 1.4 (see Durisen et al.

2007, and references therein). (ii) They cool sufficiently fast, i.e. tcool < (0.5− 2)torb

where torb is the local orbital period (Gammie 2001; Johnson & Gammie 2003; Rice
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et al. 2003b, 2005).

Theoretical work and simulations suggest that the conditions for disc fragmenta-

tion are met in the outer disc regions (> 70−100 AU) (e.g. Whitworth & Stamatellos

2006; Stamatellos et al. 2011a; Stamatellos & Whitworth 2009, 2008; Boley 2009).

Most of the objects formed by disc fragmentation are brown dwarfs, though low-mass

stars and planets may also form (Stamatellos & Whitworth 2009b; Zhu et al. 2012;

Vorobyov 2013). Fragments that form in gravitationally unstable discs start off with a

mass that is determined by the opacity limit for fragmentation, i.e. with a few Jupiter

masses (Low & Lynden-Bell 1976; Rees 1976; Boss 1988; Whitworth & Stamatellos

2006; Boley et al. 2010; Forgan & Rice 2011; Rogers & Wadsley 2012). However, they

quickly accrete mass to become brown dwarfs or even low-mass stars (Stamatellos &

Whitworth 2009b; Kratter et al. 2010; Zhu et al. 2012; Stamatellos 2015). A few of

the fragments remain in the planetary-mass regime (M < 13 MJ) but these are typi-

cally ejected from the disc (Li et al. 2015, 2016) becoming free-floating planets (e.g.

Zapatero-Osorio et al. 2000; Kellogg et al. 2016).

These low-mass objects that form by disc fragmentation have properties that are

similar to the properties of objects forming from the collapse of isolated low-mass pre-

(sub)stellar cloud cores. They are expected to be attended by discs (Stamatellos &

Whitworth 2009b; Liu et al. 2015; Sallum et al. 2015), and they may also launch jets

perpendicular to the disc axis (Machida et al. 2006; Gressel et al. 2015). Stamatel-

los & Herczeg (2015) suggest that discs around low-mass objects (brown dwarfs and

planets) that form by disc fragmentation are more massive from what would be ex-

pected if they were formed in collapsing low-mass pre-(sub)stellar cloud cores, which

is consistent with recent observations of brown dwarf discs in Upper Sco OB1 and

Ophiuchus (van der Plas et al. 2016).

It is reasonable to assume that low-mass objects that form by disc fragmentation

may also exhibit radiative feedback due to accretion of material from their individual
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discs onto their surfaces, which for young protostars, is expected to affect the dynam-

ical and thermal evolution of their parent cloud and their discs (Stamatellos et al.

2011b; Stamatellos et al. 2012; Lomax et al. 2014; Guszejnov et al. 2016). The ef-

fect of radiative feedback due to accretion onto low-mass objects such as planets and

brown dwarfs has been ignored by previous studies of disc fragmentation. Recent sim-

ulations of the evolution of giant proto-planets in self-gravitating discs (Stamatellos

2015) have shown that radiative feedback from giant planets may reduce gas accre-

tion and hence suppress their mass growth. The authors found that when radiative

feedback is included the fragment’s final mass is within the planetary-mass regime

(see also Nayakshin & Cha 2013).

The objective of the work presented in this chapter is to examine how radiative

feedback (see Section 2.3) from objects that form by disc fragmentation influences

the properties of these objects and whether subsequent fragmentation in the disc is af-

fected. More specifically, I investigate whether radiative feedback from objects forming

in the disc (hereafter referred to as secondary objects) suppresses their mass growth,

increasing the possibility that these objects will end up as planets rather than brown

dwarfs or more massive objects, in contrast with what previous studies suggest (e.g.

Stamatellos & Whitworth 2009b; Kratter et al. 2010).

I construct numerical experiments to examine three different cases of radiative

feedback from secondary objects. In Section 3.2, I provide the computational frame-

work of this work and in Section 3.3 I discuss the initial conditions of the simulations.

I present the results of the effect of radiative feedback on the evolution of discs and

on the properties of the objects form by disc fragmentation in Section 3.4. The results

are summarised in Section 3.5.
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3.2 Numerical method

The smoothed particle hydrodynamics (SPH) code SEREN (Hubber et al. 2011) is used

to simulate gravitationally unstable protostellar discs which are represented by a large

number of SPH particles. To avoid small timesteps at a density of ρsink = 10−9 g cm−3,

a particle is replaced by a sink (Bate et al. 1995) that represents a bound object (star,

brown dwarf or planet, depending on its mass). Sinks interact with the rest of the

disc both gravitationally and radiatively (in the cases where radiative feedback is in-

cluded). Gas particles which pass within Rsink = 1 AU and are gravitationally bound

to a sink are accreted onto it.

The heating and cooling of gas is performed using the radiative transfer method

described in Section 2.2 using the gravitational potential (Stamatellos et al. 2007b) to

estimate the column density from any given particle to the disc surface. The radiative

heating/cooling rate of a particle i is

dui

dt
=

4σSB

�

T 4
BGR
− T 4

i

�

Σ̄2
i κ̄R (ρi, Ti) +κ−1

P
(ρi, Ti)

, (3.2)

where σSB is the Stefan-Boltzmann constant, TBGR is the pseudo-background tempera-

ture below which particles cannot cool radiatively, Σ̄i is mass-weighted mean column

density of the particle, and κ̄R and κP are the pseudo-mean Rosseland and Planck

opacities, respectively.

Once most of the gas in the disc has dissipated (accreted onto the central star and

onto the secondary objects formed in the disc; t = 10 kyr), an N-body integrator with

a 4th-order Hermite integration scheme (Makino & Aarseth 1992) is utilised to follow

the evolution of the objects present at the end of each hydrodynamic simulation up to

200 kyr. A strict timestep criterion is used so that energy is conserved to better than

one part in 108 (Hubber & Whitworth 2005). This allows the ultimate fate of these

objects to be determined. It is noted that at this phase, gravitational and dissipative
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interactions due to gas within the disc are ignored.

In the simulations presented here, a time-independent contribution from the cen-

tral star in the optically thick regime (see Section 2.3.1) is assumed as it is part of the

initial conditions and does not form self-consistently in the simulations. Therefore the

accretion rate onto it may not be properly determined. Additionally, by choosing a

relatively steep temperature profile the role of the central star in stabilising the disc is

minimised, and focus is put on the radiative effect from the secondary objects form-

ing in the disc. A time-dependent contribution in the optically thin regime from the

secondary objects that form self-consistently in the simulations is assumed. It should

be noted that these contributions only account for disc heating due to radiation re-

leased on the surfaces of bound objects; energy release in the disc midplane due to

accretion is taken into account self-consistently within the hydrodynamic simulation.

This approach ignores the case in which the density of the gas within the Hill radius

of a secondary object is high, shielding the rest of the disc from the effect of heating.

However, such a phase would be short-lived as gas is accreted onto the secondary

object.

Three cases of radiative feedback from secondary objects forming in the disc by

fragmentation are considered: (i) no radiative feedback, (ii) continuous radiative

feedback, and (iii) episodic radiative feedback. In the case of no radiative feedback,

objects accrete gas but the accretion energy deposited on their surfaces is not fed

back into the disc. In the continuous radiative feedback case (see Section 2.3.2), gas

accretes onto the object releasing energy that is fed back into the disc through the

pseudo-background temperature set by Equations 2.80 - 2.81. In the episodic radia-

tive feedback case, mass accretes in periodic bursts resulting in episodic energy release.

The adopted model is discussed in Section 2.3.3.
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3.3 Initial conditions

I study the evolution of a 0.3 M� gravitationally unstable protostellar disc around a

0.7 M� star using smoothed particle hydrodynamics (Gingold & Monaghan 1977; Lucy

1977, see Section 2.1 for details). The surface density and temperature profiles of the

disc are set to Σ∝ R−p and T ∝ R−q, respectively. The surface density power index p

is thought to lie between 1 and 3/2 from semi-analytical studies of cloud collapse and

disc creation (Lin & Pringle 1990; Tsukamoto et al. 2015). The temperature power

index q has been observed to lie in the range from 0.35 to 0.8 from studies of pre-main

sequence stars (Andrews et al. 2009). Here, values of p = 1 and a relatively high

q = 0.75 are adopted. This is to minimise the role of the central star in stabilising the

disc and thus focus on the radiative effect from the secondary objects forming in the

disc.

The disc extends from an inner radius Rin = 1 AU to an outer radius Rout = 100 AU.

The surface density profile is set to

Σ(R) = Σ0

�

R2
0

R2
0 + R2

�1/2

, (3.3)

where Σ0 = 1.7× 104 g cm−2 is the surface density at R = 0. The initial disc temper-

ature profile is set using Equation 2.79, i.e. initially T (R) = T ?BGR(R). N = 106 SPH

particles are used to represent the disc which are distributed using random numbers

between Rin and Rout so as to reproduce the disc density profile. Table 3.1 lists all the

values for the aforementioned parameters.

The disc is initially massive enough that it is gravitationally unstable (Q < 1) be-

yond ∼ 30 AU (see Figure 3.1). Such a profile is chosen to ensure that the disc will

fragment so as to study the effect of radiative feedback from secondary objects on

subsequent fragmentation. The initial Toomre parameter reaches very low values at

the outer edge of the disc which is unrealistic: when a disc forms around a young
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protostar its mass increases by in-falling material from the protostellar envelope. This

progressively reduces Q to just below ∼ 1 and the disc may then fragment (e.g. Sta-

matellos et al. 2011b). In the simulations that are presented here, the initial low Q

value results in high effective viscosity so that the disc attains a nearly uniform Q ∼ 1

(see Figure 3.1, red & green lines) within a few outer orbital periods. This is similar

to what it would be expected for a disc forming in a collapsing cloud.

The gravitational acceleration for every particle is calculated using a spatial octal-

tree (Barnes & Hut 1986). The velocity of a particle i in the x − y plane are set using

vx y,i =
q

Ri

�

�gx y,i

�

� , where Ri and gx y,i are the radius and the gravitational acceleration

of the particle on the disc midplane, respectively. No initial motions perpendicular to

the disc midplane are assumed.

The number of SPH particles used to represent the disc
�

106
�

ensures that grav-

itational fragmentation can be properly resolved. The minimum resolvable mass for

a 0.3 M� disc comprising 106 particles is 3.14× 10−4 MJ. Bate & Burkert (1997) ar-

gue that the Jeans mass must be resolved by 2× Nneigh and Nelson (2006) conclude

that the Toomre mass must be resolved by 6× Nneigh. The simulations performed by

Stamatellos & Whitworth (2009) with a 0.7 M� disc and 1.5 × 105 particles find a

minimum Jeans mass of ∼ 2 MJ and a minimum Toomre mass of ∼ 2.5 MJ. If one

takes 2 MJ as a lower resolution limit, then this corresponds to ∼ 128 × Nneigh i.e.

the disc is sufficiently resolved. The vertical structure of this disc is also adequately

resolved since ∼ 7 times more particles are used than the simulations of Stamatellos

& Whitworth (2009) where the disc scale-height is resolved by a factor of more than

3−5 smoothing lengths. The scale-height of the initial disc here is resolved such that

h/H = [0.90,0.17, 0.12] at radii R= [1,50, 100] AU, respectively.
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Table 3.1: The initial disc parameters. The disc is gravitationally unstable, as determined by
the Toomre criterion.

Disc Parameter Value
N 106

Mdisc 0.3 M�
M? 0.7 M�
Rin 1 AU
Rout 100 AU
R0 0.25 AU
T0 250 K
T∞ 10 K
p 1
q 0.75

0 20 40 60 80 100
R (AU)

100

101

Q

t = 0 yr
t = 2400 yr
t = 2600 yr

Figure 3.1: Azimuthally-averaged Toomre parameter Q for a disc with the initial conditions
listed in Table 3.1, and at later times (as marked on the graph), before the disc fragments.
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3.4 Disc fragmentation and the effect of radiative feed-

back

The disc is gravitationally unstable, thus spiral arms form and the disc fragments to

form secondary objects in all 5 cases (see Table 3.2). The only difference between the

5 simulations is the way the radiative feedback from these secondary objects is treated:

(i) for simulation "NRF" there is no radiative feedback from secondary objects, (ii) for

simulation "CRF", the radiative feedback from secondary objects is continuous, (iii)

for simulations "ERF001", "ERF01", "ERF03" the radiative feedback is episodic. The

difference between the last three simulations is the value of the viscosity parameter

due to the MRI (see Section 2.3.3), which determines the intensity and the duration

of the outburst (ERF001: αMRI = 0.01; ERF01: αMRI = 0.1; ERF03 αMRI = 0.3). The

disc surface density and the disc midplane temperature of the 5 runs are shown in Fig-

ures 3.2-3.6. In all five simulations the discs evolve identically and at 2.7 kyr an object

forms due to gravitational fragmentation. From this point on, the simulations differ

as this object provides different radiative feedback in each run. In the NRF run, 7 sec-

ondary objects from by disc fragmentation, whereas in the CRF run only 1 secondary

object forms. In the ERF runs, 3-4 secondary objects form, i.e. somewhere in between

the two previous cases, similar to what previous studies have found (Stamatellos et al.

2011b; Stamatellos et al. 2012; Lomax et al. 2014, 2015). The properties of the ob-

jects formed in each run are listed in Table 3.2. In the next subsections I discuss each

of the simulations in detail.

3.4.1 No radiative feedback (NRF)

Figure 3.2 shows the evolution of the surface density and midplane temperature for

the disc where no radiative feedback is provided from secondary objects that form

in the disc. Spiral arms develop and the disc fragments to form 7 secondary objects
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Table 3.2: The properties of objects formed by gravitational fragmentation in the simulations
with no radiative feedback from secondary objects (NRF), with continuous radiative feedback
(CRF), and with episodic radiative feedback (ERF001, ERF01, ERF03). No is the total number
of secondary objects formed, t i is the formation time of an object, Mi its initial mass, and M f
its final masses (i.e. at the end of the hydrodynamical simulation; t = 10 kyr). MMAX is the
maximum possible mass it can attain by accreting mass from the disc (see discussion in the
text), 〈Ṁ〉 is the mean accretion rate, Ṁ f is the accretion rate onto the object at 10 kyr, Ri is
the distance from the star when it forms, R f is its final distance from the star, and∆R= R f −Ri
is its radial migration within 10 kyr. S denotes the central star, LMS secondary low-mass stars,
BD brown dwarfs and P planets. In the final column I mark whether the object is bound to its
host star at the end of the N-body simulation (200 kyr). B and E denote bound and ejected,
respectively.

Run ID αMRI No t i Mi M f MMAX 〈Ṁ〉 Ṁ f Ri R f ∆R Type Bound
(kyr) (MJ) (MJ) (MJ)

�

10−7 M�yr−1
� �

10−7 M�yr−1
�

(AU) (AU) (AU)

NRF - 7

0.0
2.7
4.3
5.5
5.9
6.0
7.1
7.5

733
2
4
2
2
2
1
1

773
97
48
13
4
66
4
3

774
99
53
13
4

67
4
3

37.7
124
75.0
22.0
4.63
154
7.78
6.33

5.29
14.7
27.3
2.83
0.02
4.57
3.19
0.34

0
77
65

160
270
103
191
103

0
105
25

144
570
15

169
235

0
28
-40
-16
300
-88
-22
132

S
LMS
BD

P/BD
P

BD
P
P

-
B
E
E
E
B
E
E

CRF - 1
0.0
2.7

733
2

772
79

826
191

36.8
100

31.9
66.6

0
77

0
68

0
-9

S
BD/LMS

-
B

ERF001 0.01 4

0.0
2.7
5.4
8.2
9.8

733
2
3
2
2

772
87
32
8
3

811
127
42
32
5

37.2
111
60.5
31.0
51.0

33.0
35.0
8.54
20.7
2.01

0
77
93

166
119

0
76

178
97

104

0
-1
85
-69
-15

S
LMS
BD
P
P

-
B
B
E
E

ERF01 0.1 3

0.0
2.7
6.3
7.9

733
2
3
2

771
91
13
9

805
124
63
25

37.3
117
26.9
31.4

25.2
24.3
36.4
11.9

0
77
85

137

0
64

123
129

0
-13
38
-8

S
LMS
P/BD

P

-
B
E
E

ERF03 0.3 4

0.0
2.7
5.5
6.0
6.0

733
2
2
2
3

771
105
66
17
16

782
116
73
24
16

44.3
135
138
34.9
72.0

33.6
31.2
18.5
29.5
0.0

0
77

106
87
96

0
40
14

142
300

0
-37
-92
55

204

S
LMS
BD
BD
BD

-
B
B
E
E
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(see Table 3.2). Fragmentation occurs outside 65 AU where the disc is gravitationally

unstable and cools fast enough (e.g. Rice et al. 2003a, 2005; Stamatellos et al. 2007a,

2011a). After 10 kyr, the first of these objects has accreted a sufficient amount of gas

to become a low-mass hydrogen-burning star (M = 97 MJ). Two brown dwarfs are

formed (with masses 48 and 66 MJ) and orbit within 25 AU of the central star (at 25

and 15 AU, respectively). Three of the objects formed remain in the planetary-mass

regime. These form at a late stage and at large orbital radii, thus having less time to

accrete gas from the disc. One of these planets undergoes a net radial outward migra-

tion of 300 AU between its formation at 5.9 kyr and the end of the hydrodynamical

simulation (10 kyr). These objects are bound to the central star by the end of the

hydrodynamic simulation. However, a few of them are loosely bound at large radii

(R > 150 AU for 3 of them), and therefore destined to be ejected from the system.

Indeed, at the end of the N-body calculation (at 200 kyr), all but two of these objects

are ejected from the system, becoming free-floating planets and brown dwarfs (see

also Stamatellos & Whitworth 2009b; Li et al. 2015, 2016; Vorobyov 2016).

3.4.2 Continuous radiative feedback (CRF)

Figure 3.3 shows the evolution of the disc surface density and disc midplane temper-

ature for the simulation with continuous radiative feedback from secondary objects

that form in the disc. The disc fragments but only one secondary object forms. Con-

tinuous radiative feedback from this object heats and stabilises the disc; therefore, no

further fragmentation occurs. The object carves out a gap within the disc and migrates

inwards 9 AU by the end of the hydrodynamical simulation (i.e. within 7.3 kyr since

its formation). At this point it has accreted enough gas to become a high-mass brown

dwarf and is close to overcoming the hydrogen-burning mass limit. As there is still

plenty of gas within the disc, the ultimate fate of this system is a binary comprising a

solar-type and a low-mass secondary star.
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Figure 3.2: Disc evolution without any radiative feedback from secondary objects (NRF run).
The top snapshots show the disc surface density and the bottom snapshots show the disc mid-
plane temperature (at times as marked on each graph). 7 objects form by gravitational frag-
mentation due to the disc cooling fast enough in its outer regions. Most of the objects formed
are brown dwarfs and planets. Planets are ultimately ejected from the system.
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Figure 3.3: Disc evolution with continuous radiative feedback from secondary objects (CRF
run). The disc fragments but only one object forms that ends up as a low-mass star. Radiative
feedback from this object suppresses further fragmentation. The object forms on a wide orbit
(68 AU) and migrates inwards only by 9 AU within 7.3 kyr.
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3.4.3 Episodic radiative feedback (ERF)

Figures 3.4, 3.5 and 3.6 show the surface density and disc midplane temperature evo-

lution for the simulations with episodic radiative feedback from secondary objects

forming in the disc, in three different cases: αMRI = 0.01, 0.1,0.3, respectively. The

disc fragments as in the previous cases; the radiative feedback from secondary objects

is now episodic due to episodic accretion. During the accretion/outburst episodes, the

mass that has accumulated in the inner disc region of a secondary object flows onto

the object, resulting in an increase of its accretion luminosity that affects a large por-

tion of the disc around the central star. This is evident by the sudden increase in the

temperature (e.g. in Figures 3.4 and 3.5). The increase of the temperature in the disc

is three- to four-fold (see Figure 3.7b), which is enough to stabilise the disc during

the outburst. However, in all three cases, when the outburst stops the disc becomes

unstable and fragments.

The number of secondary objects formed is similar in all three cases (3-4 objects).

Therefore, fewer objects form than in the non-radiative feedback case and more objects

than the continuous radiative feedback case (Stamatellos et al. 2011b; Stamatellos

et al. 2012; Lomax et al. 2014, 2015).

The frequency and duration (see Table 3.3) of the accretion/feedback outbursts

are important for the gravitational stability of the disc. The total duration of episodic

outbursts drops from ∼ 18% to ∼ 0.8% of the simulated disc lifetime (10 kyr), as the

viscosity parameter αMRI is increased from 0.01 to 0.3. A larger αMRI results in stronger

but shorter outbursts. The number of secondary objects forming in the disc does not

strongly depend on αMRI, which indicates that for suppressing disc fragmentation the

total duration of episodic outbursts must be longer.

I find that the average mass of secondary objects at the end of the hydrodynamical

simulation (10 kyr) increases with αMRI; the average masses are 33, 38 & 51 MJ for

αMRI = 0.01, 0.1, and 0.3, respectively. In all cases, the two lowest mass objects are
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Table 3.3: The duration of episodic accretion events from each secondary object in the simu-
lations which consider episodic radiative feedback.

Run ID αMRI Sink # Episodes Duration (yr)
ERF001 0.01 2 3 1170

3 2 487
4 1 90
5 0 0

All 6 1747

ERF01 0.1 2 3 108
3 1 10
4 1 9

All 5 128

ERF03 0.3 2 3 46
3 2 22
4 1 4
5 2 9

All 6 81

ultimately ejected from the system. For αMRI = 0.01, the two lowest mass objects are

planets. For αMRI = 0.1, the two lowest mass objects consist of a planet and a brown

dwarf. And finally, for αMRI = 0.3, the two lowest mass objects are brown dwarfs. The

estimated maximum mass that all of all these objects will eventually attain (see next

section) is above the deuterium-burning limit, except for one object in the αMRI = 0.01

run.

I also find that subsequent formation of secondary objects happens on a more rapid

timescale for greater values of αMRI. Radiative feedback episodes are shorter for a

higher αMRI: the disc cools fast after an episode ends, becoming gravitationally unsta-

ble and fragments again within a shorter time.
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Figure 3.4: Disc evolution with episodic radiative feedback from secondary objects and a
viscosity parameter αMRI = 0.01 (ERF001 run). The disc fragments and 4 objects form as the
disc is cool enough to be gravitationally unstable between accretion episodes.
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Figure 3.5: Disc evolution with episodic radiative feedback from secondary objects and a
viscosity parameter αMRI = 0.1 (ERF01 run). The disc fragments and 3 objects form. Two of
these objects are planets, as in the ERF001 run.
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Figure 3.6: Disc evolution with episodic radiative feedback from secondary objects and a
viscosity parameter αMRI = 0.3 (ERF03 run). The disc fragments and 4 objects form. One
object migrates inwards significantly such that it accretes a large amount of gas while in a
close orbit to the central star. The two lowest mass objects are ultimately ejected from the
system.
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3.4.4 Comparison of simulations

Table 3.2 lists information pertaining to the secondary objects that form in the disc

simulations: the number of objects formed in each simulation; their initial and final

masses (i.e. at the end of the hydrodynamical simulation, t = 10 kyr) and an estimate

of the maximum mass they can ultimately attain (considering that they will still be

evolving in a gaseous disc); the gas accretion rate onto them; their formation and

final radius; their type; and whether they are still bound to the central star at the end

of the N-body simulation (200 kyr).

The maximum mass, M i
MAX

, that an object i can attain is calculated as follows. It

is assumed that each object will continue to accrete at its accretion rate
�

Ṁ i
f

�

at the

end of the hydrodynamic simulation (which is likely an overestimate as generally the

accretion rate decreases, unless there is some kind of violent interaction within the

disc). Therefore, the maximum mass that an object i can attain is

M i
MAX
= M i

f + Ṁ i
f tacc, (3.4)

where M i
f is the mass of an object i at t = 10 kyr, and tacc is the time for which it will

keep on accreting gas. I also assume that only a fraction ξ = 0.9 of all the gas from

the disc could eventually accrete either onto the central star or onto the secondary

objects, therefore

ξMdisc =
∑

sec

M i
f +

∑

all

Ṁ i
f tacc (3.5)

where the first sum on the right hand side is over the secondary objects and the second

sum is over all objects to include gas accreting onto the central star. I assume that the

accretion time tacc is the same for all objects within each simulation, therefore it is

calculated such that

tacc =
ξMdisc −

∑

sec M i
f

∑

all Ṁ i
f

. (3.6)
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The maximum estimated mass for an object i can then be calculated using Equa-

tion 3.4.

Radiative feedback from secondary objects affects the entire disc as these sec-

ondary objects are high accretors (at their initial stages of their formation). For a

short time they may even outshine the central star (see Figure 3.8). The assumed

pseudo-background temperature profile provided by each secondary object (see Equa-

tion 2.80) influences the temperature at a given location in the disc and may affect

disc fragmentation (Stamatellos et al. 2011a) but probably not significantly. If one

adopts a pseudo-background temperature profile with q = 3/4 instead of q = 1/2,

then the disc temperature at a distance 50 AU from a radiative object will be a factor

of ∼ 5 smaller, and the Toomre parameter Q (see Figure 3.7a) a factor of ∼ 2 smaller,

bringing it (for the CRF and ERF runs), close to the critical value for fragmentation

(Q ≈ 1; see e.g. Durisen et al. 2007). However, this is the maximum expected effect.

Even in the case of q = 3/4 (which is an upper limit for q) the disc temperature is ex-

pected to be higher than the minimum "background" value due to energy dissipation

within the disc as it is gravitationally unstable.

With regard to the episodic radiative feedback runs, the number of secondary ob-

ject does not vary much for a different MRI viscosity parameter αMRI. 4 objects form

when αMRI = 0.01; 3 objects form when αMRI = 0.1; 4 objects form when αMRI = 0.3.

More secondary objects result in more radiative feedback episodes and a hotter disc

for longer periods of time. Thus this provides sustained stability against gravitational

fragmentation. The duration of episodic outbursts affects the stability of the disc. For

a smaller αMRI, episodes are longer and provide longer periods of stability. The op-

posite is true for a larger αMRI. This is shown in Table 3.3. However, it is evident

that episodic feedback from only 1 or 2 secondary objects cannot suppress further disc

fragmentation, in contrast with the continuous feedback case, where the presence of

just one secondary object suppresses fragmentation.
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Figure 3.7: (a) Azimuthally-averaged Toomre parameter Q, (b) disc midplane temperature,
and (c) disc surface density for all simulations at t = 4.4 kyr. The coloured dashed lines
correspond to times when outburst episodes are happening: t = 5.6 kyr and t = 5.2 kyr for
the simulations ERF001 and ERF01, respectively. The disc inner region is gravitationally stable
due to the high temperature, whereas the disc is unstable outside ∼ 70 AU. The temperature
peaks between 50 and 100 AU correspond to regions close to secondary objects.
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Figure 3.8: (a) Mass accretion rates onto and (b) accretion luminosities of the first secondary
object that forms in each of the simulations where radiative feedback is considered. Time is
given with respect to the formation time of each object. At their initial stages of their formation,
secondary objects are high accretors and they may even outshine the central star. In the case
where radiative feedback is episodic this only happens for a short time and therefore would
be difficult to observe. In the case of continuous radiative feedback (which is probably not
realistic) secondary objects may outshine the central star for longer.
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Observations of episodic outbursts from secondary objects do not require high-

sensitivity; during these outbursts their luminosity increases from a few L� to tens of

L� (see Figure 3.8). In the case of αMRI = 0.01, where the outburst events are mild

and long, 18% of the initial 10 kyr of the disc’s lifetime correspond to the outburst

phase. On the other hand, when αMRI = 0.3, where the events are short and intense,

this percentage drops down to just 0.8% (see Table 3.3). However, episodic accretion

events are expected to be relatively more frequent only during the initial stages of

disc evolution, i.e. within a few kyr after the disc’s formation, while the newly formed

secondary objects are vigorously accreting gas from the disc. Therefore, such outbursts

from secondary objects at the initial stages of disc evolution should not significantly

influence the observed number of outbursting sources. Scholz et al. (2013) observed

a sample of ∼ 4000 YSOs over a period of 5 years and they found 1 − 4 possible

outbursting sources indicating that outbursts happens at intervals of (5−50) kyr; this

is roughly consistent with the models presented here after the initial ∼ 4 kyr during

the disc’s evolution (see Figure 3.8).

Figure 3.7 shows a comparison between radially-averaged Toomre parameter, tem-

perature and surface density for a representative snapshot from each simulation ex-

hibiting strong spiral features (t = 4.4 kyr). Within the inner ∼ 25 AU, the disc is

stable due to heating from the central star. The peaks in surface density and temper-

ature around ∼ 50 AU correspond to regions around secondary objects. The discs are

unstable or close to being unstable outside ∼ 80 AU in all cases apart from the CRF

run and the ERF runs (during episodic outbursts).

In all simulations disc fragmentation occurs beyond radii∼ 65 AU (see Figure 3.9a),

where the disc is gravitationally unstable and can cool fast enough (e.g. Stamatellos

& Whitworth 2009b). The initial mass of a fragment is a few MJ, as set by the opacity

limit for fragmentation (Low & Lynden-Bell 1976; Rees 1976). The masses of the sec-

ondary objects at the end of the hydrodynamical simulations are shown in Figure 3.10.
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Figure 3.9: Mass-radius plots of the secondary objects formed by disc fragmentation in all 5
simulations. (a) Mass and radius at formation. A zoomed inset panel is shown for clarity. (b)
Mass and radius at the end of the hydrodynamical simulation (10 kyr). (c) Mass and and semi-
major axis at the end of the N-body simulation (200 kyr). The upper mass limits correspond
to the maximum mass that the object may attain (see text for details), whereas the lower mass
limits corresponds to the mass of the object at the end of the hydrodynamical simulation. The
horizontal bars in this panel represent the periastron and apastron of the secondary object’s
orbit around the central star. The dashed line represents the hydrogen burning limit, and the
grey band the deuterium burning limit (∼ 11− 16 MJ; Spiegel et al. 2011).
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Figure 3.10: The masses of the secondary objects at the end of the hydrodynamic simulations
(10 kyr). Colour denotes the order in which each secondary object formed; from earliest to
latest: red, orange, yellow, green, cyan, blue, violet. Circles and squares correspond to objects
that are ultimately bound or ejected (at 200 kyr), respectively. The lower points in the NRF
and ERF003 simulations are separated for clarity. The dashed line represents the hydrogen
burning limit (∼ 80 MJ). The grey band represents the deuterium burning limit.

The first object that forms in each simulation generally migrates inwards and accretes

enough mass to become a low-mass star; this object remains ultimately bound to the

central star. All secondary objects increase in mass as they accrete gas from the disc.

However, roughly half of the objects formed in each simulation (excluding continuous

radiative feedback) remain as planets by the end of the hydrodynamical simulation as

shown in Figure 3.10.

In the continuous radiative feedback simulation (CRF) the mass growth of the sec-

ondary object is mildly suppressed (Figures 3.11a,3.12a) due to an increased outward
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Figure 3.11: The mass evolution of the first 3 secondary objects that form in each of the 5
simulations (for the simulations with episodic radiative feedback the mass refers to the sink
mass, i.e. both the object and the inner accretion disc). Time is given with respect to the
formation time of each object. The second object in the ERF03 run (b) undergoes a rapid
increase in mass as it migrates into a dense region around the central star.
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Ṁ
(M
�

yr
−

1 )

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t− tform (kyr)

−7.0

−6.5

−6.0

−5.5

−5.0

−4.5
(c)

Figure 3.12: Mass accretion rates onto the first 3 secondary object that form in each of the 5
simulations (for the simulations with episodic radiative feedback the accretion rates onto the
sinks are plotted). Time is given with respect to the formation time of each object. Upward
pointing triangles represent the beginning of accretion episodes in the ERF runs. These are
followed by corresponding downward pointing triangles denoting the end of episodes.
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thermal pressure, so that the final mass of the object is within the brown dwarf regime.

Secondary objects that form at later times tend to have lower masses (Figure 3.10).

Episodic feedback also mildly suppresses the mass growth of the first secondary

object that forms (Figure 3.11a). Its effect is more pronounced for the second sec-

ondary object (Figure 3.11b). However, the mass growth of each object also depends

on where the object forms in the disc and how it interacts both with other objects and

with the spiral structure of the disc. Therefore, the mass growth of an object can be

rather erratic, e.g. for the second object at around 2 kyr (Figure 3.11b). Specifically,

this object migrates into the high density region surrounding the central star where it

rapidly accretes a large amount of gas (see Figure 3.6, 7.2-8 kyr). The effect of episodic

accretion is to suppress mass accretion during/after the outburst (e.g. Figure 3.12a

compare NRF and ERF runs after the first outburst; also seen in Figures 3.12b, c).

However, the accretion rate is restored to its previous value within 200− 400 yr. Ul-

timately, there is no strong anti-correlation between the mass that an object and the

number and duration of the episodic outbursts it undergoes.

I find a population of planetary-mass objects on wide orbits (100−800 AU) around

the central star. However, these objects are loosely bound to the central star and

could be liberated into the field becoming free-floating planets. The evolution of these

systems is followed using N-body simulations. Indeed I find that all planetary-mass

objects are ejected from the discs (Figure 3.10c); what is left behind is a central star

with a low-mass star or brown dwarf companion. Consequently, it is unlikely that the

observed wide-orbit giant planets (Kraus et al. 2008, 2014; Marois et al. 2008; Faherty

et al. 2009; Ireland et al. 2011; Kuzuhara et al. 2011, 2013; Aller et al. 2013; Bailey

et al. 2014; Rameau et al. 2013; Naud et al. 2014; Galicher et al. 2014; Macintosh et al.

2015) may form by disc fragmentation, unless somehow the mass growth of secondary

objects forming in the disc is suppressed. On the other hand disc fragmentation may

readily produce free-floating planets and brown dwarfs (Stamatellos & Whitworth
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2009b; Hao et al. 2013; Li et al. 2015; Vorobyov 2016).

Note however that in order to follow the long term evolution of the system, the

effect of the gas has been ignored once the hydrodynamical simulation has evolved

for 10 kyr. The effect of gas is to stabilise the system. Therefore it is possible that

some of these planets may remain bound to the central star. However, they should

co-exist with a higher mass object (e.g. a low-mass star or a brown dwarf) and they

may accrete enough mass to become brown dwarfs.

3.4.5 Caveats of sink particles

Sink particles are used in the simulations to prevent large running times. In dense

regions, time-steps become very short and without sinks the simulation effectively

stalls.

In the presented simulations, a sink particle is created when the density exceeds

10−9 g cm−3. It is therefore assumed that if a proto-fragment reaches this density it

will continue to contract to heat to ∼ 2000 K such that molecular hydrogen dissoci-

ates to initiate the second collapse. The proto-fragment will ultimately reach stellar

densities (∼ 1 g cm−3) to become a bound object. The density threshold used for sink

creation is higher than the density required for the formation of the first hydrostatic

core (∼ 10−13 g cm−3). Therefore, the proto-fragment at this stage contracts on a

Kelvin-Helmholtz timescale. The time that it takes a proto-fragment to evolve from

the first to second hydrostatic core is ∼ 1− 10 kyr (Stamatellos & Whitworth 2009).

Thus, it is possible that some of the proto-fragments may get disrupted e.g. by inter-

actions with spiral arms and/or tidal forces, and dissolve (Stamatellos & Whitworth

2009; Zhu et al. 2012; Tsukamoto et al. 2013).

Another limitation in the use of sink particles relates to their size. It is assumed that

the sink radius of secondary objects that form in the disc is 1 AU, which roughly corre-

sponds to the size of the first hydrostatic core during the collapse of a proto-fragment
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(Masunaga & Inutsuka 2000; Tomida et al. 2013; Vaytet et al. 2013). The size of

the Hill radius of proto-fragments that form in the disc is on the order of a few AU.

Therefore, a significant fraction of the accretion disc around a proto-fragment is not

resolved. The flow of material from the sink radius to the secondary object is consid-

ered to be instantaneous, but in reality there is a time delay. This results in increased

accretion onto secondary objects, which in the case of continuous feedback, results

in an increased luminosity. As such, the effect of luminosity on disc fragmentation

may be overestimated. However, for the episodic accretion runs, a sub-grid model

(within a sink radius) is employed based on an α-viscosity prescription that allows

gas to flow (episodically) onto the secondary object (see Section 3.4.3). Even in this

case, the accretion rate is possibly overestimated, as the inner accretion disc within

the sink (< 1 AU) does not exchange angular momentum with the rest of the accretion

disc (for an additional discussion of this issue see Hubber et al. 2013). Nevertheless,

considering the uncertainties in αMRI (which in effect modulates the accretion of mate-

rial onto the secondary objects and for which I examine a wide range of values, all of

which lead to similar outcomes) I have confidence that the choice of sink size does not

qualitatively affect the results of this work regarding the effect of radiative feedback

on disc fragmentation.

3.5 Conclusions

I have performed SPH simulations of gravitationally unstable protostellar discs which

investigate the effect that radiative feedback from secondary objects formed by frag-

mentation has on disc evolution. I have considered three cases of radiative feedback

from secondary objects: (i) No radiative feedback: where no energy from secondary

objects is fed back into the disc. (ii) Continuous radiative feedback: where energy,

produced by accretion of material onto the surface of the object is continuously fed

93



CHAPTER 3

back into the disc. (iii) Episodic radiative feedback: where accretion of gas onto sec-

ondary objects is episodic, resulting in episodic radiative feedback. The findings are

summarised as follows.

• Radiative feedback from secondary objects that form through gravitational frag-

mentation stabilises the disc, reducing the likelihood of subsequent fragmen-

tation. When there is no radiative feedback from secondary objects, 7 objects

form, compared to a single object forming when radiative feedback is continu-

ous. When radiative feedback happens in episodic outbursts, 3−4 objects form.

This is because the disc cools sufficiently to become gravitationally unstable be-

tween the outbursts. All objects in the three different radiative feedback cases

that I examine here form at radii > 65 AU, with initial masses of a few MJ.

• The mass growth of secondary objects is mildly suppressed due to their radiative

feedback. The mass of the first object that forms within the disc is generally

larger when there is no radiative feedback; in the case when radiative feedback is

continuous the mass of the first secondary object is the lowest. Episodic radiative

feedback tends to reduce the mass accretion rate onto a secondary object during

and after an episode outburst. However, the accretion rate is restored to its

previous value relatively quickly (within ∼ 200− 400 yr).

• The intensity and the duration of an outburst (which is determined by the effec-

tive viscosity due to the magnetorotational instability, αMRI) does not affect the

number of objects that form within the disc when episodic radiative feedback is

considered. The total duration of the radiative feedback outbursts is not long

enough to fully suppress disc fragmentation. However, I find that αMRI affects

the average mass of the objects formed: lower αMRI results into lower mass sec-

ondary objects. Moreover, subsequent fragmentation happens faster for higher

αMRI, as the first outburst finishes faster. The first object that forms in each case

undergoes a larger inward migration for increased values of αMRI.
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• Regardless of the type of radiative feedback, I find that the first object that forms

within the disc remains ultimately bound to the central star. It accretes mass

while it generally migrates inwards. Brown dwarfs also form in the simulations

and a fraction of them remain bound to the central star. Gravitational frag-

mentation may therefore provide a method for the formation of intermediate

separation, low-mass-ratio binary systems.

• A significant fraction (∼ 40%, dropping to ∼ 20% if the estimated final mass is

considered) of the secondary objects formed by disc fragmentation are planets,

regardless of the type of radiative feedback. However, every planet that forms

within the disc is ultimately ejected from the system. I do not find any giant plan-

ets that remain on wide-orbits around the central star. Secondary objects that

form and remain within the disc accrete enough mass to become brown dwarfs,

even in the case where radiative feedback suppresses gas accretion. Thus, gravi-

tational fragmentation may produce free-floating planets and brown dwarfs, but

not wide-orbit gas giant planets, unless the mass growth of fragments forming

in a young protostellar disc is further suppressed.
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Efficient radiative transfer techniques

in hydrodynamic simulations

4.1 Introduction

Full 3-dimensional, wavelength dependent radiative transfer within hydrodynamic

simulations is computationally expensive (e.g. Harries 2015; Harries et al. 2017). It

is only typically used to post-process snapshots of simulations to produce synthetic

observations (e.g. RADMC-3D; Dullemond 2012). However, the inclusion of radia-

tive transfer is important when an accurate treatment of the thermal evolution of the

system is needed.

There are various methods which efficiently include approximate radiative trans-

fer in hydrodynamic simulations, each with their underlying simplifying assumptions

(Oxley & Woolfson 2003; Whitehouse & Bate 2004; Stamatellos et al. 2007b; Forgan

et al. 2009b; Young et al. 2012; Lombardi et al. 2015). There are two main types of

approach: (i) using the diffusion approximation (e.g. Whitehouse & Bate 2004; Boley

et al. 2006; Commerçon et al. 2011b,a), a method which may still be computation-

ally expensive, or (ii) use a metric to estimate the optical depth for each element of
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the fluid and hence the heating/cooling rate (Stamatellos et al. 2007b; Forgan et al.

2009b; Young et al. 2012; Lombardi et al. 2015). Another method that is used in the

context of protostellar discs is the β-cooling approximation (e.g. Gammie 2001; Rice

et al. 2003b). This method assumes that the temporal evolution of the specific inter-

nal energy, u, is inversely proportional to the cooling time such that u̇= −u/tcool. The

cooling time is set inversely proportional to the Keplerian frequency with a constant

β , i.e. tcool(R) = βΩ−1(R), where R is the distance from the central star as measured

on the disc midplane. This method over-simplifies the underlying physics but comes

at low computational cost.

Stamatellos et al. (2007b) proposed a radiative transfer method which uses the

gravitational potential and the density of gas as a metric to estimate the optical depth

through which a gas element cools. This is then used to calculate an estimated cool-

ing rate, and, in the optically thick case, reduces to the diffusion approximation. The

method works well for roughly spherical systems and results in an increase of compu-

tational time by less than ∼ 5%. However, Wilkins & Clarke (2012) showed that the

cooling rate calculated with the Stamatellos et al. (2007b) method can be systemati-

cally underestimated in the optically thick midplane of protostellar discs. Therefore,

the Stamatellos et al. (2007b) method may not be suitable to provide accurate cool-

ing rates in non-spherical systems. This method has been combined with flux-limited

diffusion to increase accuracy in high-optical depth regions (e.g. Forgan et al. 2009b).

Young et al. (2012) proposed a method, in the context of protostellar discs, that

uses the gravitational potential in the z direction only, i.e. out of the disc midplane.

From this, they obtain accurate estimates (within a few tens of percent) of column

density and optical depths. However, when fragments form due to the gravitational

instability in massive discs, the Stamatellos et al. (2007b) gives better estimates of the

cooling rates within the dense fragments, which can be assumed to be approximately

spherical.
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Instead of using the gravitational potential to estimate the optical depth, Lombardi

et al. (2015) proposed to use the pressure scale-height. This retains the majority of the

characteristics of the original Stamatellos et al. (2007b) method, merely employing a

different metric to estimate optical depth. It is shown to provide a much more accurate

estimate of cooling rate in spherical polytropes and protostellar discs with specified

density and temperature profiles. The reader is directed to Section 2.2 for a detailed

comparison of the two methods.

The aim of this chapter is to compare how the above methods (Stamatellos et al.

2007b; Lombardi et al. 2015) behave when applied to actual hydrodynamic simula-

tions. I test the two methods in the context of collapsing clouds and protostellar discs.

In the case of the latter, I consider relaxed discs, discs with spiral arms, discs with

clumps, and discs with embedded planets which carve gaps. I also examine whether

the β-cooling method, which is widely used for protostellar discs, provides a good

approximation to the thermal physics. Such tests of different methods are needed as

radiative transfer plays a critical role in many cases (e.g. disc fragmentation and gap

opening in discs with planets).

Section 4.2 shows the comparison between the aforementioned methods for the

collapse of spherically-symmetric cloud. I test the behaviour of both methods for pro-

tostellar discs in Section 4.3 and for discs with embedded planets in Section 4.4. A

discussion on the performance of the β-cooling approximation is presented in Sec-

tion 4.5. A comparison to demonstrate the effect on dynamical evolution from the

two radiative transfer methods discussed, as well as the β-cooling approximation, is

presented in Section 4.6. The results are summarised in Section 4.7.

4.2 Cloud collapse

I utilise the Graphical Astrophysics code for N-body Dynamics and Lagrangian Fluids

(GANDALF, Hubber et al. 2018) to perform simulations of a collapsing molecular cloud,
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using the Stamatellos et al. (2007b) and Lombardi et al. (2015) methods of estimating

optical depths. The cloud is initially static, has a mass of 1.5 M� and is isothermal with

a temperature 5 K. The cloud is represented by N ≈ 2× 106 SPH particles distributed

such that the density profile of the cloud is uniform across its radius Rcloud = 104 AU.

Figure 4.1 shows the evolution of the central density and temperature for the two

methods of estimating optical depths. Initially, the cloud collapses almost isothermally

and the core temperature increases slowly with increasing density. The core tempera-

ture starts to increase rapidly as the cloud becomes optically thick (ρ ∼ 10−13 g cm−3).

At ∼ 100 K the rotational degrees of freedom of molecular hydrogen are excited and

the temperature increases at a slower rate as the gravitational energy is diverted away

from heating the cloud. The increasing temperature leads to increased thermal pres-

sure that is able to slow down the collapse and the first hydrostatic core forms (Lar-

son 1969; Masunaga & Inutsuka 2000; Whitehouse & Bate 2006; Stamatellos et al.

2007b). The first core contracts and heats slowly to ∼ 2000 K at which point hydro-

gen begins to dissociate. This results in the second collapse and the formation of the

second hydrostatic core (the protostar).

The Lombardi et al. (2015) method gives similar results regarding the central den-

sity and temperature of the cloud with the Stamatellos et al. (2007b) method, which

in turn compares very well with the Masunaga & Inutsuka (2000) method, indicating

that both methods work reasonably well for spherical geometries. The second collapse

in the case of the Stamatellos et al. (2007b) method is delayed by ∼ 100 yr, which

may arise due to a slight over-estimate in optical depth and thus less efficient cooling,

as can be seen from the slightly higher temperatures calculated by this method (see

Figure 4.1).
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Figure 4.1: The evolution of central temperature as a function of central density for the col-
lapse of an initially isothermal, non-rotating, 1.5 M� cloud with a radius of 104 AU. The ra-
diative transfer methods of Stamatellos et al. (2007b) and Lombardi et al. (2015) are in good
agreement.
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4.3 Protostellar discs

Protostellar discs form due to the turbulence and/or initial rotation of their progen-

itor molecular clouds. Their study is important as they are the birthplace of planets,

which can form either through core accretion (e.g. Safronov & Zvjagina 1969; Lissauer

1993), or by gravitational fragmentation of discs (Whitworth & Stamatellos 2006; Sta-

matellos et al. 2007a; Stamatellos & Whitworth 2009b; Kratter et al. 2010; Zhu et al.

2012). Massive protostellar discs fragment if two conditions are met: (i) They are

gravitationally unstable i.e.

Q ≡
κcs

πGΣ
<Qcrit, (4.1)

where Q is the Toomre parameter (Toomre 1964), κ is the epicyclic frequency, cs is

the local sound speed and Σ is the disc surface density. The value of Qcrit is on the

order of unity. (ii) They cool sufficiently fast, i.e. tcool < (0.5 − 2)torb, where torb is

the local orbital period (Gammie 2001; Johnson & Gammie 2003; Rice et al. 2003b,

2005). Both requirements are dependent on the thermal properties of the disc, and so

it is important that the cooling rate and the disc temperature are accurately calculated

with the employed radiative transfer method.

Here I present comparisons of estimated optical depth and cooling rate obtained

via the Stamatellos et al. (2007b) and Lombardi et al. (2015) radiative transfer meth-

ods. In Section 4.3.1 I present the comparison methodology. Section 4.3.2 considers

a low-mass relaxed disc and Section 4.3.3 considers a high-mass disc which fragments

forming spiral arms (Section 4.3.4) and eventually gravitationally bound clumps (Sec-

tion 4.3.5).

4.3.1 Methodology

The Graphical Astrophysics code for N-body Dynamics and Lagrangian Fluids (GANDALF,

Hubber et al. 2018) is utilised to perform simulations of protostellar discs (Section 4.3)
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and protostellar discs with embedded planets (Section 4.4). From these simulations,

snapshots are selected for which the behaviour of the Stamatellos et al. (2007b) and

Lombardi et al. (2015) radiative transfer methods are compared.

The estimated column density for both the gravitational potential and pressure

scale-height metrics, Σ̄ ≡ Σest, is found by post-processing a snapshot of the GAN-

DALF hydrodynamic simulation. The corresponding estimated optical depth is τ̄ ≡

τest = Σestκ̄R, where κ̄R is the mass-weighted opacity for each method (note that this

is slightly different for the two methods, see Lombardi et al. (2015)). The column

density and optical depth are calculated for each particle in the simulation. It should

be emphasised that the optical depths and cooling rates are calculated for the same

snapshots for both methods, i.e. using the same density and temperature disc config-

urations. Azimuthally-averaged radial profiles of the optical depth and cooling rates

at the disc midplane (defined such as |z|< 0.5 AU) are constructed. Similarly, profiles

vertical to the disc midplane are also constructed.

The actual values of column density and optical depth are calculated by integrating

from a given gas element to the disc surface along the z-axis (perpendicular to the disc

midplane) such that Σactual =
∫

ρ dz and τactual =
∫

κ (ρ, T )ρ dz.

The estimated cooling rate per unit mass can then be found via Equation 3.2. This

is normalised with respect to 4σSB

�

T 4 − T 4
BGR

�

such that the quantity

u̇est ≡ −
du
dt

�

�

�

�

est

1

4σSB

�

T 4 − T 4
BGR

� =
1

Σ̄2κ̄R +κ−1
P

, (4.2)

represents the estimated cooling-rate per unit mass. This is compared with the ac-

tual cooling-rate per unit mass which is calculated using the actual optical depth and

column density, hence

u̇actual ≡ −
du
dt

�

�

�

�

actual

1

4σSB

�

T 4 − T 4
BGR

� =
1

Σ
�

τR +τ−1
P

� , (4.3)
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where τR and τP are the optical depths calculated using the Rosseland-mean and

Planck-mean opacities, respectively (which in many cases are assumed to be the same).

It should be noted that the above equation is itself an approximation to the diffusion

approximation (Mihalas 1970) in which the radiative flux is

F = −
4

3κRρ
∇
�

σSB T 4
�

. (4.4)

From this, the cooling rate per unit mass can be obtained

u̇=
1
ρ
∇ · F ≈

σSB T 4

κRΣ2
≈
σSB T 4

τRΣ
, (4.5)

and has the same form of Equation 4.3 in the optically thick limit.

4.3.2 Relaxed low-mass disc

I simulate a protostellar disc with a mass of 0.01 M� around a 1 M� protostar. N ≈

2 × 106 SPH particles are distributed between radii of 5 and 100 AU such that the

initial column density and temperature profiles follow Σ(R)∝ R−1 and T (R)∝ R−1/2,

respectively. The temperature at 1 AU from the central star is T0 = 250 K. The disc is

heated by an ambient radiation field of 10 K.

A steady-state is reached after a few outer orbital periods, shown in Figure 4.2a.

The disc is optically thin, thus both the Stamatellos and Lombardi methods provide

accurate cooling rate estimates (see Figure 4.2b). However, the Stamatellos method

generally overestimates the optical depth, especially in the inner disc, consequently

underestimating the cooling rate. I also take an annulus of the disc between 34 and

36 AU and show the azimuthally-averaged vertical profiles of optical depth and cool-

ing rate (Figure 4.2d, e). The cooling rate from the disc midplane to the surface is

accurately estimated as the region is optically thin. In this regime, the optical depth

is not important for calculating the cooling rate (see Equation 3.2).
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Figure 4.2: A low-mass disc which has evolved for a few outer orbital periods and has reached
a steady-state. Panel (a): a column density snapshot where the dashed white line represents
the radius at which an analysis perpendicular to the disc midplane is performed. Panels (b)
and (c): comparisons of azimuthally-averaged optical depth and cooling rate at the disc mid-
plane (|z|< 0.5 AU). Panels (d) and (e): azimuthally-averaged optical depth and cooling rate
perpendicular to the disc midplane for a radial annulus of 34 − 36 AU. The upper plots in
panels (b-e) show the ratio between estimated and actual values. The black dashed lines rep-
resent equality. The disc is optically thin, and as such, both methods give good estimates of
the cooling rate. The Stamatellos method generally overestimates the optical depth at the disc
midplane, especially in the inner disc region, consequently underestimating the cooling rate.
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4.3.3 High-mass disc

I simulate a massive protostellar disc which develops spiral features, undergoes frag-

mentation, forming dense, gravitationally-bound clumps. The disc has an initial mass

of 0.2 M� and attends a 0.8 M� protostar. N ≈ 2× 106 SPH particles are distributed

between radii of 5 and 100 AU such that the initial column density and temperature

profiles follow Σ(R)∝ R−1 and T (R)∝ R−1/2, respectively. The temperature at 1 AU

from the central star is T0 = 250 K. The disc is heated by an ambient radiation field of

10 K.

Figure 4.3a shows the column density of the disc before any significant dynamical

evolution occurs. The disc midplane is optically thick (out to a radius of ∼ 30 AU),

but the optical depth does not drop below τ = 0.1 further out (Figure 4.3b). The

Stamatellos method overestimates the optical depth by a factor of a few throughout

the disc. The Lombardi method yields a better estimate for both the optical depth and

the cooling rate. Similar results are found when considering the vertical profiles of

these quantities in a radial annulus between 34 and 36 AU (Figure 4.3d, e).

4.3.4 High-mass disc with spiral arms

After some time, the disc becomes unstable and spiral arms begin to form. This is

shown in Figure 4.4a. The optical depth and cooling rate at the disc midplane are well

described by the Lombardi method, but are over- and underestimated, respectively, by

the Stamatellos method. The cooling rate estimated by the Stamatellos method is in

agreement with the actual value when the disc is optically thin (Figure 4.4b). Two

cylindrical regions with base radius of 5 AU are considered wherein vertical analy-

ses are performed: one cylinder is inside a spiral arm and and the other outside (see

marked regions in Figure 4.4a). Outside the spiral arm, the disc is optically thin and

the cooling rate is estimated well by both methods (Figure 4.4e, dashed lines). How-

ever, inside the spiral arm where the disc is optically thick, the Stamatellos method
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Figure 4.3: A high-mass disc which has not yet undergone significant evolution. Panel (a):
a column density snapshot where the dashed white line represents the radius at which an
analysis perpendicular to the disc midplane is performed. Panels (b) and (c): comparisons of
azimuthally-averaged optical depth and cooling rate at the disc midplane. Panels (d) and (e):
azimuthally-averaged optical depth and cooling rate perpendicular to the disc midplane for
a radial annulus of 34− 36 AU. The upper plots in panels (b-e) show the ratio between esti-
mated and actual values. The black dashed lines represent equality. The Stamatellos method
overestimates the optical depth at the disc midplane by a factor ∼ 5 at all disc radii, but the
Lombardi method yields a more accurate estimate. This is reflected in the cooling rate. Similar
results are found when considering the optical depth and cooling profiles perpendicular to the
disc midplane (d-e).
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overestimates the optical depth and therefore the cooling rate. The Lombardi method

provides more accurate values for both quantities (Figure 4.4e, solid lines).

4.3.5 High-mass disc with clumps

The disc eventually fragments and dense clumps form. The column density snap-

shot in Figure 4.5a contains four clumps. The central density of the densest clump is

∼ 10−6 g cm−3 and for the least dense clump is∼ 10−10 g cm−3. Figure 4.5b shows that

both the Stamatellos and Lombardi methods give good estimates of the azimuthally-

averaged optical depth at the disc midplane, but it should be noted that an azimuthally-

averaged analysis is not ideal for describing this disc, as it is highly non-axisymmetric.

Therefore I focus on two of the clumps: the inner, densest clump, and the least dense

clump. A cylinder with base radius of 5 AU centered on each of these clumps and

a vertical analysis in the direction perpendicular to the disc midplane. Figure 4.5d

shows the optical depth comparison. For the least dense clump (dashed lines), the

Stamatellos method is accurate in the center of the clump. The Lombardi method

overestimates the optical depth by a factor ∼ 2. In the center of the densest clump,

both methods are inaccurate, but only by a factor of a few. In general - for the disc as

a whole as well as the clumps - the Lombardi method estimates the cooling rate well,

whilst the Stamatellos method systematically underestimates the cooling rate.

4.4 Protostellar discs with embedded planets

The gravitational interaction between a planet and the surrounding disc may result

in the formation of planet-induced gaps (e.g. Goldreich & Tremaine 1980; Lin & Pa-

paloizou 1993; Bryden et al. 1999; Kley & Nelson 2012). Such structures may provide

indirect evidence for the presence of planets in discs. The Crida et al. (2006) semi-

analytical criterion for gap formation involves the balance between the tidal torque
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Figure 4.4: A high-mass disc which has evolved to form spiral arms. Panel (a): a column
density snapshot. White circles represent cylindrical regions where an analysis perpendicular
to the disc midplane is performed. Panels (b) and (c): comparisons of azimuthally-averaged
optical depth and cooling rate at the disc midplane. Panels (d) and (e): optical depth and
cooling rate comparisons perpendicular to the disc midplane inside (solid lines), and outside
(dashed lines) of a spiral arm. The upper plots in panels (b-e) show the ratio between esti-
mated and actual values. The black dashed lines represent equality. The optical depth and
cooling rate at the disc midplane are well estimated by the Lombardi method at all disc radii,
but are over- and underestimated by the Stamatellos method, respectively. Vertically to the
disc midplane, the same result is observed within a spiral arm. However, outside of the spiral
arms, where the disc is optically thin, both methods yield a good estimate for the cooling rate.
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Figure 4.5: A high-mass disc which has evolved to form dense clumps. Panel (a): a column
density snapshot. White circles represent regions where vertical analyses are performed. Pan-
els (b) and (c): comparisons of azimuthally-averaged optical depth and cooling rate at the
disc midplane. Panels (d) and (e): optical depth and cooling rate comparisons perpendicular
to the disc midplane for the densest clump (solid lines), and the least dense clump (dashed
lines). The upper plots in panels (b-e) show the ratio between estimated and actual values.
The black dashed lines represent equality. The optical depth is generally overestimated by the
Stamatellos method. The Lombardi method gives a better estimate, even within the dense
clump. The cooling rate is also estimated more accurately.
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Figure 4.6: A disc which has an embedded 1.4 MJ planet at a radius of 5.1 AU. Panel (a):
a column density snapshot. Panels (b) and (c): comparisons of azimuthally-averaged optical
depth and cooling rate at the disc midplane. The vertical black dashed lines in panels (b) and
(c) represent the location of the planet. Panels (d) and (e): optical depth and cooling rate
comparisons perpendicular to the disc midplane between radial annuli of 4 − 6 AU (in the
gap, solid lines), and 3− 4 AU (interior to the gap, dashed lines). Gas within RHILL = 0.6 AU
of the planet is excluded when analysing the gap. The upper plots in panels (b-e) show the
ratio between estimated and actual values. The black dashed lines represent equality. The
Stamatellos method overestimates the optical depth by a factor of 3 or more throughout the
disc. The Lombardi method estimates the optical depth within a factor of 2, and it also gives
an accurate estimate of the cooling rate, both inside and outside the planet-induced gap.
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which opens the gap and the viscous torque which closes the gap. It has been shown

that planets with masses down to 10 M⊕ can open gaps (Duffell & MacFadyen 2012).

However, for migrating planets, a gap must form on a rapid enough timescale. Malik

et al. (2015) argue that a gap can only form provided the gap opening time is longer

than the migration timescale of the planet. The accurate treatment of the radiative

transfer in such planet-disc systems is important and may play a significant role when

determining the rate and the direction (i.e. inwards or outwards) of migration, and

the final mass of the planet (Stamatellos 2015; Benítez-Llambay et al. 2015; Stamatel-

los & Inutsuka 2018).

Here I examine two cases of protostellar discs with embedded planets: one with

an embedded 1.4 MJ planet (§4.4.1) and one with an embedded higher-mass, 11 MJ,

planet (§4.4.2). I compare the estimated optical depth and cooling rate obtained via

the Stamatellos et al. (2007b) and Lombardi et al. (2015) radiative transfer methods.

4.4.1 Disc with an embedded 1.4 MJ planet

I consider a disc with an initial mass 0.005 M� surrounding a 1 M� protostar. A 1 MJ

mass planet is embedded within the disc at a radius of 5.2 AU. The initial disc extends

out to 15.6 AU with a surface density profile Σ(R) ∝ R−1/2 (e.g. Bate et al. 2003),

temperature profile T (R)∝ R−3/4, and is represented by 106 SPH particles. The tem-

perature at 1 AU from the central star is T0 = 250 K. The planet migrates slightly

inwards (0.1 AU) and increases in mass by accreting gas from the disc. At the snap-

shot presented here (Figure 4.6a) the planet is at 5.1 AU and has carved out a gap

between 4 and 6 AU. Its mass has increased to 1.4 MJ.

The density of the disc is high and as such, the disc is optically thick (Figure 4.6b).

The Stamatellos method overestimates the optical depth at the disc midplane through-

out the disc by a factor of a few, whilst the Lombardi method provides a better estimate
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(accurate within a factor of ∼ 2). This is reflected in the estimated cooling rates (Fig-

ure 4.6c).

Vertical profiles are shown for radial annuli at the planet gap (4−6 AU; Figure 4.6d,

e - solid lines) as well as on a region interior to the gap (3 − 4 AU, Figure 4.6d, e -

dashed lines). The gas within the Hill radius (RHILL = 0.6 AU) of the planet is excluded

when analysing the gap region. Both of these regions are optically thick. Again, the

Lombardi method provides a better estimate for the optical depth and cooling rate.

In the gap region, which is important for the evolution of the planet, the Lombardi

method is very accurate, whereas the Stamatellos method overestimates the optical

depth, and therefore underestimates the cooling rate.

4.4.2 Disc with an embedded 11 MJ planet

I consider a system comprising a star which has an initial mass 1 M�, that is attended

by a protostellar disc with mass 0.1 M� and initial radius 100 AU. The disc is repre-

sented by 106 SPH particles, and has initial surface density and temperature profiles

Σ(R)∝ R−1 and T (R)∝ R−3/4, respectively (Stamatellos 2015). The temperature at

1 AU from the central star is T0 = 250 K. A planet with an initial mass 1 MJ is embed-

ded in the disc at radius of 50 AU. At the snapshot presented in Figure 4.7a the disc

mass has dropped to 0.08 M� and the planet mass has increased to 11 MJ. The planet

has migrated inwards and is located at a radial distance of 36 AU. It has carved a gap

between ∼ 30 and ∼ 40 AU.

Figure 4.7b shows that the Lombardi method estimates the optical depth at the

midplane of the disc well within the gap, but overestimates it by a factor of a few

outside of the gap. The Stamatellos method overestimates the optical depth at all

radii: by a factor of ∼ 2 outside of the gap and ∼ 10 within the gap.

Two radial annuli are considered where vertical analyses are performed. One in-

cludes the gap (between 33 and 37 AU, Figure 4.7d, e - solid lines), the other a region
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interior to the gap (between 23 and 27 AU, Figure 4.7d, e - dashed lines). The disc

is optically thin within the gap. Thus the cooling rate is well estimated by both meth-

ods. The gas within the Hill radius of the planet (RHILL = 8.0 AU) is excluded when

analysing the gap. The region interior to the gap is optically thick. The cooling rate is

well estimated at all z by the Lombardi method, but the Stamatellos method underes-

timates the cooling rate by up to a factor of 10.

4.5 Testing the β-cooling approximation

The β-cooling approximation (e.g. Gammie 2001; Rice et al. 2003b) is a computa-

tionally inexpensive technique used when simulating accretion discs. This method

assumes that the cooling rate at a given radius R within the disc, is inversely propor-

tional to cooling time such that

u̇=
u

tcool
, (4.6)

where the cooling time is

tcool = βΩ
−1. (4.7)

Ω is the Keplerian frequency and β is a dimensionless parameter which is typically

assumed to be between 1 and 20. Provided a disc is close to Toomre instability (i.e.

Q ≈ 1), a disc may only be able to fragment if the cooling is sufficiently fast (β on the

order of a few). The critical value at which gravitational fragmentation occurs, βcrit, is

still debated. Meru & Bate (2011) suggest that the limit may be as high as βcrit ≈ 30.

More recent studies by Baehr et al. (2017) suggest a value of βcrit = 3.

In this section, I compare the β-cooling approximation with the cooling rates which

is obtained from Equation 4.3 (referred to as actual cooling). An effective beta, βeff is
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Figure 4.7: A disc which has an embedded 11 MJ planet at a radius of 36 AU. Panel (a): a
column density snapshot. Panels (b) and (c): comparisons of azimuthally-averaged optical
depth and cooling rate at the disc midplane. The vertical black dashed lines in panels (b) and
(c) represent the location of the planet. Panels (d) and (e): optical depth and cooling rate
comparisons perpendicular to the disc midplane between radial annuli of 33− 37 AU (inside
the gap, solid lines), and 23−27 AU (outside the gap, dashed lines). Gas within RHILL = 8.0 AU
of the planet is excluded when analysing the gap. The upper plots in panels (b-e) show the
ratio between estimated and actual values. The black dashed lines represent equality. Both
methods overestimate the optical depth in the outer disc by a factor of 2 or 3. However,
the Lombardi method estimates both the optical depth and the cooling within the gap more
accurately than the Stamatellos method. Outside and within the gap, the Lombardi method
gives a good estimate for both quantities from the disc midplane to the disc surface. The
Stamatellos method estimates the cooling rate well within the gap as this region is optically
thin. 114
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calculated in order to determine whether the assumption of a constant β is a reason-

able approximation. Therefore, I define βeff as

βeff =
u
u̇
Ω. (4.8)

where

u̇=
4σSB T 4

Σ
�

τR +τ−1
P

� . (4.9)

I emphasise that when calculating u the detailed equation of state used by Stamatellos

et al. (2007b) is also used here (see Section 2.2).

I show the βeff that is calculated for the snapshots of protostellar discs presented

in Sections 4.3 and 4.4. Figure 4.8 shows the azimuthally-averaged βeff at the disc

midplane; Figure 4.9 shows the value of βeff vertically towards the surface of the disc

at the given regions; Figure 4.10 shows colour maps of βeff at the disc midplane. It is

clear that βeff varies significantly throughout different regions of each disc, between

∼ 0.1 and ∼ 200.

For the smooth axis-symmetric disc cases that are examined here (Figures 4.10a,

b), βeff is high in the inner disc regions (βeff > 20) but drops down to ∼ 3 in the outer

regions. For the disc with the spiral arms (Figure 4.10c), the spirals are regions where

βeff ∼ 1, hence cooling is efficient. Thus, spiral arms may be prone to gravitational

collapse as thermal energy generated by the contraction of a forming gas clump can

efficiently escape. The dense, bound clumps in Figure 4.10d cool inefficiently (βeff ∼

200), due to being extremely optically thick.

Figure 4.10e shows βeff for a disc with a 1.4 MJ embedded planet. βeff is high

in the outer regions but is low within the planet gap. This may be attributed to the

associated high and low optical depths, respectively, of these regions. For a disc with

an embedded higher-mass 11 MJ planet (Figure 4.10f), the planet induces a high-

density spiral wake which cools fast (βeff ∼ 1), whereas the gap region cools slowly
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Figure 4.8: Azimuthally-averaged effective β at the disc midplane for the following snapshots:
(a) a low-mass relaxed disc; (b) a high-mass disc; (c) a high-mass disc with spirals arms; (d) a
high-mass disc with dense clumps; (e) a disc with an embedded 1.4 MJ planet; (f) a disc with
an embedded higher-mass 11 MJ planet. Horizontal dashed lines represent βeff = 3. Vertical
dotted lines represent the radii of planets (in the last two cases).

(βeff > 50). The region around the planet has a low βeff (< 1) and thus cools more

efficiently.

As expected, the regions of the disc cool inefficiently (slowly) when they are opti-

cally thin (low-density regions of the disc, e.g in gaps), efficiently (quickly) when they

are just optically thick (τ ∼ 1, e.g. in spirals induced by gravitational instabilities or

planets), and again inefficiently (slowly) when they become extremely optically thick

(in clumps/fragments).

I conclude that the actual cooling rate in a protostellar disc varies radially, vertically

and with time as the disc evolves. Significant variations are observed within dense

clumps which form through gravitational fragmentation. This makes the β-cooling

method a rather crude approximation of the disc thermal physics when considering

highly dynamical systems.
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Figure 4.9: Effective β from the disc midplane to the disc surface for the following snapshots:
(a) a low-mass relaxed disc (radial annulus 34 < R < 36 AU); (b) a high-mass relaxed disc
(radial annulus 34 < R < 36 AU); (c) a disc with spirals arms (vertical cylinders with a base
with radius of 5 AU regions centered within a spiral arm, solid line, and outside spiral arms,
dashed line); (d) a disc with dense clumps (vertical cylinders with a base with radius of 5
AU centered within the densest clump, solid line, and the least dense clump, dashed line);
(e) a disc with an embedded 1.4 MJ planet (radial annuli 4 < R < 6 AU, solid line) and
3 < R < 4 AU ,dashed line); (f) a disc with an embedded higher-mass 11 MJ planet (radial
annuli 33< R< 37 AU, solid line) and 23< R< 27 AU, dashed line). Horizontal dashed lines
represent βeff = 3.
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Figure 4.10: Effective β values at the disc midplane for the following snapshots: (a) a low-
mass relaxed disc; (b) a high-mass disc; (c) a disc with spirals arms; (d) a disc with dense
clumps; (e) a disc with an embedded 1.4 MJ planet; (f) a disc with an embedded higher-mass
11 MJ planet. Regions where βeff is lower cool more efficiently. Gravitational instability is
typically considered to occur for β < 3 provided that the Toomre parameter is also on the
order of unity. It is clear that β varies across the disc, especially within spiral features and
dense clumps. As such, it may not be appropriate to assume that β is constant throughout the
disc.
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4.6 Dynamical evolution comparison

I perform three simulations to demonstrate the differences that the β-cooling approxi-

mation, the Stamatellos et al. (2007b), and the Lombardi et al. (2015) radiative trans-

fer methods exhibit. I consider a 0.8 M� protostar which is attended by a 0.2 M� disc

with surface density and temperature profiles Σ(R)∝ R−1 and T (R)∝ R−1/2, respec-

tively. N ≈ 2 × 106 particles represent the disc, which is heated by a 10 K external

radiative field. No heating from the central star is included. I test the β-cooling ap-

proximation with a value of β = 3, a limit at which cooling is efficient enough for

gravitational instability to occur (Rice et al. 2003a).

Figure 4.11 shows the three discs after 1.5 kyr of evolution using: (a) the β-

cooling approximation; (b) the Stamatellos radiative transfer method; and (c), the

Lombardi radiative transfer method. Whilst all three discs become gravitationally un-

stable, the β-cooling approximation yields a more stable disc than the two radiative

transfer methods. Due to a generally higher estimation of the cooling rate, the Lom-

bardi method allows the disc to cool more efficiently and develop stronger spiral arms.

4.7 Discussion

I have compared two approximate (but computationally inexpensive) methods to in-

clude radiative transfer in hydrodynamic simulations. These methods use two differ-

ent metrics to calculate the optical depth through which the gas heats and cools: (i)

the Stamatellos et al. (2007b) method uses the gravitational potential and the density,

and (ii) the Lombardi et al. (2015) method instead uses the pressure scale-height.

I find that although both methods yield accurate estimates in the case of collapsing

clouds, the use of the pressure scale-height metric to estimate optical depths (Lom-

bardi et al. 2015) is more accurate when considering protostellar discs. I summarise

the results in Figure 4.12, which illustrates the difference of optical depth estimation
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Figure 4.11: Surface density plots of a 0.2 M� disc around a 0.8 M� protostar after 1.5 kyr
of evolution. Panel (a): a disc evolved using the β-cooling approximation with β = 3. Panel
(b): a disc evolved using the Stamatellos et al. (2007b) radiative transfer method. Panel (c):
a disc evolved using the Lombardi et al. (2015) method. Each disc becomes gravitationally
unstable, but it is clear that the Lombardi disc (panel c) is more unstable, demonstrated by
the stronger, more detailed spiral arms.

for the cases examined in this chapter for both methods. Using the pressure scale-

height as a metric, a more accurate estimate of optical depth (by a factor of 2 or

better) and cooling rate is obtained for protostellar discs in a variety of configura-

tions: low-mass and high-mass discs, with or without an embedded planet, as well as

gravitationally unstable discs which develop spiral arms and form bound clumps. The

Stamatellos et al. (2007b) method may overestimate the optical depth by a factor of

10 in some cases, but the Lombardi et al. (2015) method is generally accurate within

a factor of 3. Consequently, the Stamatellos et al. (2007b) method underestimates the

cooling rate in optically thick protostellar discs, whereas the Lombardi et al. (2015)

method provides better accuracy (although generally it also underestimates the cool-

ing rate). Both methods give accurate estimates in the optically thin regime.

I also compare the cooling rates in hydrodynamic simulations of discs with those of

the commonly used β-cooling approximation (e.g. Gammie 2001; Rice et al. 2003b).

I find that using a constant value of β for a disc may not be a suitable approximation
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as this parameter may vary radially and vertically throughout the disc (between ∼ 0.1

and ∼ 200 in the cases examined here). It also varies with time as the disc evolves

(e.g. when spiral arms and/or gaps form in the disc), but most significantly within

dense clumps. The approximate radiative transfer methods discussed previously may

be more appropriate to use as, at comparable computational cost, they are adaptive

to the changes that happen as the disc evolves (e.g. the formation of spiral arms and

clumps). Nevertheless, the β-cooling approximation is a useful parameterisation that

facilitates greater control in numerical experiments considering the thermal behaviour

of a disc.

Many hydrodynamic simulations of protostellar discs (in the context of e.g. disc

evolution, disc fragmentation, disc-planet interactions, planet migration) have used

such approximations for the radiative transfer to avoid excessive computational cost

(e.g Rice et al. 2003a; Lodato & Rice 2004; Clarke et al. 2007; Lodato et al. 2007;

Forgan & Rice 2009; Meru & Bate 2010; Stamatellos & Whitworth 2011; Ilee et al.

2017). Their results need to be seen in the context of the accuracy of the radiative

transfer method used.

Studies of disc fragmentation (e.g Stamatellos & Whitworth 2009b; Stamatellos

et al. 2011a) that use the Stamatellos et al. (2007b) method may have underestimated

disc cooling by a factor of a few, so that their discs are less prone to fragmentation. This

would mean that even discs with lower masses than the ones studied by Stamatellos

et al. (2011a) may be able to fragment (i.e. a disc with mass less than 0.25 M around

a 0.7 M star). However, it should be noted that the uncertainties in the disc opacities

could also be up to an order of magnitude, i.e. the uncertainty introduced is similar

to that of the Stamatellos et al. (2007b) method.

Disc simulations using the β-cooling approximation also suffer from uncertainties

in calculating cooling rates. For discs that start off optically thin, the cooling is ineffi-

cient and hence βeff is large. βeff decreases (i.e. the cooling becomes more efficient)
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Figure 4.12: The ratio between estimated and actual optical depth for: (a) the Stamatellos
et al. (2007b) method; (b) the Lombardi et al. (2015) method. Various disc configurations
are shown. Radii have been normalised to the outer radius of each disc. The black dashed
lines represent equal values of estimated and actual optical depth. The upper and lower grey
dashed lines represent factors of 3 over- and underestimation respectively. The Lombardi et al.
(2015) metric of estimating optical depths provides better accuracy in all cases presented. The
optical depth is accurate by a factor of less than 3. The Stamatellos et al. (2007b) method is
accurate within dense clumps/fragments.
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as the density increases in spiral arms and in the region around a planet (i.e. its cir-

cumplanetary disc). If the density continues to increase and clumps form, the cooling

becomes inefficient due to the high optical depth, and βeff increases. The use of a con-

stant β misses this variation of cooling efficiency (both in space and time). Therefore

the physics of disc fragmentation may not be captured appropriately. I demonstrate

that a disc evolved using the β-cooling approximation, with a value of β = 3, results

in a more stable disc as compared to similar simulations which employ the Stamatel-

los et al. (2007b) and Lombardi et al. (2015) radiative transfer methods (see Section

4.6).

In the case of planets embedded in discs, it has been suggested that efficient cooling

promotes gas accretion (Nayakshin 2017; Stamatellos & Inutsuka 2018) and dust ac-

cretion (Humphries & Nayakshin 2018) onto the planet. Therefore, cooling rates may

affect the mass growth of planets, their metallicity, and their associated circumplan-

etary discs. This in turn results in different migration rates, final masses and orbital

characteristics for these planets e.g. as seen in Stamatellos (2015) in comparison with

Baruteau et al. (2011) (see Stamatellos & Inutsuka 2018).
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4.8 Conclusions

Approximate radiative transfer methods are useful due to their computational effi-

ciency, but they should be treated with caution as radiative transfer may, in many

cases, fundamentally affect the evolution of an astrophysical system. The Lombardi

et al. (2015) method (that uses the pressure scale-height to calculate optical depths) is

more accurate than the Stamatellos et al. (2007b) method (that uses the gravitational

potential and the gas density as a proxy for optical depths) for disc simulations. Both

methods behave accurately for spherical geometries (i.e. collapsing clouds or clumps

in discs). When used for modelling protostellar discs, both methods are more accurate

than the β-cooling approximation (at similar computational cost), which nevertheless

is a good tool for controlled numerical experiments of disc thermodynamics.
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Planet formation around M-dwarfs via

gravitational instability

5.1 Introduction

M-dwarf stars are the most common within the galaxy (Chabrier 2003) and so the

study of their early evolution is important, especially in the context of planet forma-

tion. Each method of planet detection is better suited to a different range of orbital

separations: radial velocity and transit techniques are most sensitive to small (< 2 AU)

planetary separations (e.g. Borucki et al. 2010b), and direct imaging allows the de-

tection of planets beyond ∼ 10 AU (e.g. Kalas et al. 2008; Marois et al. 2010). There

exists catalogues for planets around M-dwarfs detected by radial velocity (Bonfils et al.

2013; Reiners et al. 2018a,b) and direct imaging (Bowler et al. 2015), the latter of

which predicts an occurrence rate of ∼ 10% for planets of mass 1 − 13 MJ orbiting

between 10 and 100 AU. The circumstellar discs of M-dwarfs early in their lifetime

are typically less massive than their higher mass counterparts (Apai 2009; Andrews

et al. 2013), yet massive planets (> 0.1 MJ) are still discovered orbiting these stars.

Figure 5.1 shows the masses of detected exoplanet and brown dwarfs as a function of
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their semi-major axis, taken from the EU exoplanet archive1 (Schneider et al. 2011).

Highlighted in red are those objects > 1 MJ surrounding stars with masses < 0.5 M�.

These are candidates which may not have formed through core accretion (Safronov &

Zvjagina 1969; Goldreich & Ward 1973; Greenberg et al. 1978; Hayashi et al. 1985;

Lissauer 1993) as the formation of such massive planets may exceed the lifetime of

the disc (Haisch et al. 2001; Cieza et al. 2007).

An alternative theory of planet formation is the gravitational fragmentation of

young protostellar discs (Kuiper 1951; Cameron 1978; Boss 1997). The protoplanets

initially have characteristic masses of a few MJ (set by the opacity limit for fragmen-

tation) but can rapidly accrete gas, growing massive enough to become brown dwarfs

or low-mass hydrogen-burning stars (Stamatellos & Whitworth 2009b; Kratter et al.

2010; Vorobyov 2013; Kratter & Lodato 2016). Those objects that do remain as plan-

ets are typically ejected through gravitational interactions with more massive bodies

however (Li et al. 2015, 2016, also see Chapter 3). Free-floating planets have indeed

been detected using direct imaging (Mróz et al. 2018; Shvartzvald et al. 2019) and it

has been suggested that the distribution of planet masses are the same for both bound

and free objects (van Elteren et al. 2019).

Disc fragmentation originates from the gravitational instability, which can happen

within an accretion disc provided the Toomre criterion (Toomre 1964) is satisfied,

where

Q ≡
csκ

πGΣ
<Qcrit. (5.1)

Rotational and thermal stability are provided through the epicyclic frequency κ and

the local sound speed cs, respectively. Note that within Keplerian discs, the epicyclic

frequency is equal to the rotational frequency Ω. Instability is driven by gravity, rep-

resented by the column density Σ. The critical value for instability, Qcrit, is of order

unity for razor-thin discs, but studies of 3-dimensional discs show that this value may

1exoplanet.eu Last accessed 03/03/2019.
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be as high as ∼ 1.6 (Durisen et al. 2007). The gravitational instability leads to the

formation of spiral arms which transfer angular momentum radially outwards. This

then results in the inward movement of material and subsequent accretion onto the

central body.

A spiral arm can evolve non-linearly and collapse if the cooling rate is sufficiently

high: typically on the order tcool < (0.5 − 2)torb, i.e. within a few orbital periods

(Gammie 2001; Johnson & Gammie 2003; Rice et al. 2003b, 2005). Typically the

cooling time is parameterised as a fixed factor β of the orbital period. In Chapter 4

I show that a more realistic treatment of thermal evolution yields a large range in β ,

both radially and vertically throughout the disc.

As M-dwarfs are cooler than their solar-type counterparts, so are their protostellar

discs. These discs are therefore less thermally supported which may promote the de-

velopment of gravitational instability, but on the other hand they are less massive than

the discs of solar-type counterparts. Boss (2006) shows that the formation of Jupiter

mass bodies is indeed possible via fragmentation of discs around stars with masses

0.1 and 0.5 M�. These discs are small in extent (4 < R < 20 AU) and so the column

density remains relatively high. Similarly, Backus & Quinn (2016) perform simula-

tions of discs surrounding a 0.33 M� star. They find that only the discs which exhibit

a Qcrit ® 0.9, fragment. The radii of the discs studied are between 0.3 and 30 AU,

with masses between 0.01 and 0.08 M�. Typically, fragments which form due to grav-

itational instability form at radii > 65 AU, where discs are sufficiently cool (Rafikov

2005; Stamatellos & Whitworth 2009b). Such studies consider solar-type stars which

are hotter and more massive than M-dwarfs.

In this chapter, I study the evolution of protostellar discs around M-dwarf stars. The

key aim is to find a minimum disc mass for which fragmentation happens. The chapter

is laid out as follows. In Section 5.2, I describe the numerical methods employed

within the chapter. Section 5.3 outlines the initial conditions of each simulation. In
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Figure 5.1: Detected exoplanet mass as a function of semi-major axis. In red is the population
of planets with masses > 1 MJ around stars with mass < 0.5 M�. These massive planets may
have formed via gravitational fragmentation within a protostellar disc around an M-dwarf
protostar. Data were retrieved from the EU exoplanet archive1 (Schneider et al. 2011).

Section 5.4 I discuss the fragmentation of discs around M-dwarfs, the mass at which

they do so, and how initial conditions and disc metallicity affect this. I investigate

the properties of the formed protoplanets in Section 5.5. The work is summarised in

Section 5.6.

5.2 Numerical method

I use GANDALF (Hubber et al. 2018) to perform smoothed particle hydrodynamical

simulations of protostellar discs using the conservative grad-h SPH scheme (Springel

& Hernquist 2002). Artificial viscosity is included to capture shocks where the Cullen
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& Dehnen (2010) switch is utilised in order to eliminate unwanted dissipation away

from shock regions (see Section 2.1.4.3). The simulations also employ an approximate

radiative transfer scheme where the heating/cooling rate is described as

dui

dt
=

4σSB

�

T 4
BGR
− T 4

i

�

Σ̄2
i κR(ρi, Ti) +κ−1

P
(ρi, Ti)

. (5.2)

σSB is the Stefan-Boltzmann constant and TBGR is a background temperature which

particles cannot radiatively cool below. κR and κP are the Rosseland- and Planck-

mean opacities respectively, and are assumed to be the same. Σ̄i is the mass-weighted

column density. I utilise the Lombardi et al. (2015) method to calculate the column

density, which uses the pressure scale-height of the gas HP,i to obtain Σ̄i ∼ ρiHPi
.

The pressure scale-height can be calculated from readily available quantities within a

hydrodynamical simulation such that

HP,i =
Pi

ρi

�

�ah,i

�

�

, (5.3)

where Pi and ρi are the pressure and density of the gas respectively. ah,i is the hydro-

dynamical acceleration of the gas, which does not consider the gravitational or viscous

components. The full form for the Lombardi et al. (2015) column density estimation

is therefore

Σ̄i = ζρi
Pi
�

�ah,i

�

�

. (5.4)

ζ= 1.014 is a dimensionless coefficient with a weak dependence on polytropic index.

This formulation has been shown to yield a more accurate estimate in the context

of protostellar disc as compared to using the gravitational potential to estimate the

column density (see Chapter 4). Note that the opacities used within this pressure

scale-height method are not the same as in the Stamatellos et al. (2007b) prescription,

but are slightly modified (see §2.1 of Lombardi et al. (2015)). The opacities are based

on the Bell & Lin (1994) parameterisation such that κ(ρ, T ) = κ0ρ
aT b, where κ0, a
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and b are constants, set depending on the chemical species contributing to opacity

at a given density and temperature. These opacity contributions include ice melting,

dust sublimation, bound-free, free-free and electron scattering interactions.

Equation 5.2 allows the calculation of cooling rate smoothly between the optically

thin and thick regimes. It must be noted that the optically thick regime reduces to

the diffusion approximation (Mihalas 1970). Flux-limited diffusion can be combined

with this prescription to increase accuracy in the optically thick limit (e.g. Forgan et al.

2009a).

In order to find a minimum fragmentation mass for a disc, the disc mass is slowly in-

creased at a constant rate, employing a low mass accretion rate (see Zhu et al. (2012)).

The method can be conceptually thought as accretion onto the disc from an infalling

envelope, where material is distributed across the whole disc instead of just the outer

regions. The disc mass accretion rate is set to

Ṁdisc =
χMdisc,0

torb
, (5.5)

where Mdisc, 0 is the initial disc mass and χ is a quantity which regulates the magnitude

of accretion. torb is the orbital period at a radius R= 100 AU where

torb = 2π

√

√ R3

GM?

. (5.6)

The mass accretion is simply performed by increasing the mass of every particle equally

every timestep. This is referred to as mass loading. The discs are evolved until they

fragment i.e. as when a density of ρ > 10−9 g cm−3 is attained. The caveat of this

method is that higher density regions of the disc i.e. where there are more particles,

will be preferentially mass-loaded. For example, spiral arms may receive a higher mass

accretion and the collapse of a dense region may be driven artificially.

When a disc has fragmented, its mass is calculated to yield a minimum mass for
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fragmentation, denoted Mdisc. I calculate the time of fragmentation t, disc-to-star mass

ratio when fragmentation happens q, and the outer radius of the disc Rdisc, which

encompasses 95% of the disc mass. The distance between the central star and the

formed fragment is denoted afrag, and its radius, rfrag, is defined as the distance at

which the surrounding density drops below 10−10 g cm−3. The fragment mass mfrag is

the total mass enclosed within this radius.

5.3 Initial conditions

I construct protostellar systems with different stellar mass, disc radial extent and

metallicity. The stellar masses are set to M? = [0.2, 0.3, 0.4] M� exploring a range of

masses for M-dwarfs. The disc extents are set to Rinit = [60, 90, 120] AU whereas the

inner edge is set to 5 AU. The metallicity is varied through the opacities by factors of

z = [0.1, 1,10]. The initial disc mass is chosen such that the Toomre parameter has a

fixed value at the outer radius of the disc chosen such that Qout = 10. This is shown

in Figure 5.2 and ensures that the discs are initially gravitationally stable. Each disc

is comprised of N ≈ 2× 106 SPH particles, and so both the Jeans mass and Toomre

mass are well resolved (Bate & Burkert 1997; Nelson 2006). Similarly, the disc vertical

structure is adequately resolved (see Chapter 3).

The surface density and temperature profiles of the disc are set to Σ∝ R−p and

T ∝ R−q, respectively. The surface density power index p is thought to lie between 1

and 3/2 from semi-analytical studies of cloud collapse and disc creation (Lin & Pringle

1990; Tsukamoto et al. 2015). The temperature power index q has been observed to

lie in the range from 0.35 to 0.8 from studies of pre-main sequence stars (Andrews

et al. 2009). Here, I adopt p = 1 and q = 0.7. The surface density profile has the form

Σ(R) = Σ0

�

R2
0

R2 + R2
0

�p/2

, (5.7)
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Figure 5.2: Toomre parameter as a function of disc radius for discs with outer radial extents
of Rinit = [60, 90, 120] AU. The dashed black line represents a value of Q = 10, the Toomre
value at each disc outer edge. Every disc is initially stable at all radii.

where Σ0 is the surface density 1 AU away from the star and R0 = 0.01 AU is a smooth-

ing radius to prevent unphysical quantities close to the star. The disc temperature

profile is set to

T (R) =

�

T 2
0

�

R2 + R2
0

AU2

�−2q

+ T 2
∞

�1/2

. (5.8)

Here, T0 = 100 K is the temperature at 1 AU from the star, T∞ = 10 K is the tempera-

ture far away from the protostar. This term is used to provide a minimum temperature

below which particles cannot radiatively cool, and is equivalent to TBGR in Equation

5.2.

The strategy is to start with a gravitationally stable disc and slowly increase its mass
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until it becomes unstable and fragments. However, a relatively low disc accretion rate

is used so that accretion is not the key driver of the gravitational instability, contrary

to other studies of accretion onto protostellar discs (Hennebelle et al. 2016). The full

set of initial conditions for each simulation are listed in Table 5.1.

5.3.1 Mass loading test and convergence

To check the validity of the mass loading method, I perform a simulation where the

initial disc mass is set to 0.12 M� and the disc accretion rate to 3× 10−5 M� yr−1 i.e.

χ ∼ 0.5 (see Equation 5.5). I also perform a set of simulations where the disc masses

are fixed, but each with an increased mass: from 0.15 to 0.2 M� in 0.01 M� intervals.

Each disc has column density and temperature profiles of Σ ∝ R−1 and T ∝ R−0.7

respectively, extend from 5 to 90 AU, with a 0.2 M� host star and are comprised of

N ≈ 2×106 particles. I find that the disc with a fixed mass of 0.17 M� does not undergo

fragmentation whereas the disc with a fixed mass of 0.18 M� does. The disc which

includes mass loading fragments at a mass of 0.176 M�, consistent with fixed-mass

disc simulations.

The number of particles are also varied to determine whether the mass loading

simulations have converged. Figure 5.3 shows the mass at which a disc fragments

under mass loading with an increasing number of particles. Even for a relatively small

number of particles (N = 128,000) convergence is achieved. Only negligible differ-

ences are seen when the particle number is consequently doubled, up to a maximum

of N ≈ 8× 106.

Finally, I investigate the effect of the quantity which regulates the amount of mass

loading, χ (see Equation 5.5). I choose a disc with initial conditions similar to those

of run 4 in Table 5.1, albeit with a disc accretion rate of 2.5×10−5 M� yr−1. Figure 5.4

shows disc fragmentation masses where values of χ = [0.05,0.075, 0.1,0.2, 0.5] have

been adopted. The corresponding mass accretion rates are Ṁdisc = [1.25,1.88, 2.5,5, 12.5]×
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Table 5.1: List of initial conditions for each simulation. Disc masses are set such that the
Toomre parameter at the outer radius is Q = 10 (i.e. they are initially gravitationally stable).
The constant mass accretion rate onto the disc is set from Equation 5.5 where χ = 0.1. Disc
metallicity is varied by modifying the opacities by a factor z (see Equation 5.2).

Run M?,0 (M�) Rinit (AU) z Mdisc, 0 (M�) Ṁdisc (× 10−6 M� yr−1)
01 0.2 60 1 0.040 1.80
02 0.2 60 0.1 0.040 1.80
03 0.2 60 10 0.040 1.80
04 0.2 90 1 0.050 2.25
05 0.2 90 0.1 0.050 2.25
06 0.2 90 10 0.050 2.25
07 0.2 120 1 0.059 2.63
08 0.2 120 0.1 0.059 2.63
09 0.2 120 10 0.059 2.63
10 0.3 60 1 0.049 2.70
11 0.3 60 0.1 0.049 2.70
12 0.3 60 10 0.049 2.70
13 0.3 90 1 0.062 3.38
14 0.3 90 0.1 0.062 3.38
15 0.3 90 10 0.062 3.38
16 0.3 120 1 0.072 3.95
17 0.3 120 0.1 0.072 3.95
18 0.3 120 10 0.072 3.95
19 0.4 60 1 0.057 3.60
20 0.4 60 0.1 0.057 3.60
21 0.4 60 10 0.057 3.60
22 0.4 90 1 0.071 4.50
23 0.4 90 0.1 0.071 4.50
24 0.4 90 10 0.071 4.50
25 0.4 120 1 0.083 5.26
26 0.4 120 0.1 0.083 5.26
27 0.4 120 10 0.083 5.26
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Figure 5.3: Convergence test for the mass loading method described in Section 5.2. I run SPH
simulations with an increasing number of particles and compare the disc mass at the point of
fragmentation. For> 128×103 particles, there is little difference in the fragmentation mass of
a disc that has undergone mass loading. I therefore conclude that the method is well behaved
for N ≈ 2× 106, the number of particles used for the simulations presented in this work.

10−6 M� yr−1. A low accretion rate onto the disc is preferable so that its evolution is

not affected by the mass loading, whereas for computational purposes it would be

preferable to have a high accretion rate so that the fragmentation mass is achieved

quickly. There is little difference in the computed fragmentation mass for χ ≤ 0.1 and

so this is the adopted value for the rest of the work presented in this chapter.
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Figure 5.4: A comparison of disc fragmentation mass for different values of the param-
eter χ which regulates the disc accretion rate (see Equation 5.5). This tests by how
much the disc fragmentation mass is affected when it fragments given by the disc accre-
tion rate. The corresponding mass accretion rates for χ = [0.05,0.075, 0.1,0.2, 0.5] are
Ṁdisc = [1.25, 1.88,2.5, 5,12.5] × 10−6 M� yr−1 respectively. For values of χ ≤ 0.1, there is
only a small difference in the disc fragmentation mass. As such, a value of χ = 0.1 is adopted
for work presented here.
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5.4 Fragmentation of M-dwarf discs

I perform a set of 27 simulations, varying initial disc radius and stellar mass, as well as

the disc metallicity. Each disc is initially gravitationally stable, but the mass of each disc

increases over time. As such, each disc eventually becomes unstable and spiral arms

develop. In the majority of cases, continued mass loading causes the spiral arms to

evolve non-linearly, and ultimately form gravitationally bound fragments. The results

of the disc simulations are presented in Table 5.2. Stated are the stellar mass and the

mass of the disc when fragmentation occurs, as well as the corresponding time and

the disc-to-star mass ratio. I also define a disc radius as the radius which encompasses

95% of the disc mass. Additionally, the distance to the central star, radius and mass of

the formed fragment is given. Figure 5.5 shows column density snapshots of six of the

simulations at the time when the density at the center of the fragment is 10−9 g cm−3.

The effects of the varied initial conditions are discussed in Section 5.4.1 and dif-

ferent metallicities in Section 5.4.2. In each of these sections, I also discuss why seven

of the discs do not fragment. The relationship between disc and stellar accretion rate

is examined in Section 5.4.3.
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5.4.1 Consequences of initial stellar mass and disc radius

The fragmentation mass is shown as a function of the stellar mass in Figure 5.6, and

demonstrates that for a given initial disc radius, the fragmentation mass increases

linearly with stellar mass. A more massive central protostar results in a more stable

disc as Q∝ Ω and Ω∝ M1/2
?

. The fragmentation mass also increases with respect to

initial disc radius, and although the discs expand due to outward angular momentum

transport, they all do so by a similar amount by the time they fragment. Consequently,

the average surface density of smaller discs is larger for the same disc mass. Hence,

smaller discs fragment at a lower mass, as Σ∝ R−2 and Q∝ Σ−1.

The discs in runs 19 - 21 do not fragment which may be attributed to a period

of rapid disc expansion, a result of strong spiral arm formation and efficient outward

transport of angular momentum. This stabilises the discs, which, in this case are more

stable than their same radius counterparts as they orbit a more massive central star.

To demonstrate the effect of disc expansion, I compare runs 1 - 3 where runs 1 and 2

undergo fragmentation and run 3 instead exhibits disc expansion. Figure 5.7 shows

azimuthally-averaged Toomre parameter (a) and ratio between cooling time and or-

bital period (b). Although in each case the cooling time is small enough to allow for a

fragment to condense out, run 3 does not become sufficiently gravitationally unstable.

The spiral arms do not evolve non-linearly and instead efficiently distribute angular

momentum outward, expanding the disc.

In Figure 5.8 the relationship between the disc mass and disc-to-star mass ratio

with the disc radius at the time of fragmentation is presented. Extended discs are

typically more massive and need a higher disc-to-star mass ratio to fragment. A larger

disc requires more mass than a smaller one to attain the same surface density, but it

must also be noted that at larger radii the thermal and rotational support are lower (as

the temperature is lower and the disc rotates slower), thus promoting the development
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Run 27

Figure 5.5: Column density snapshots for a selection of discs at the time of fragmentation.
This is defined as when a density of 10−9 g cm3 is reached. The fragments are shown by the
orbiting white points. The initial conditions for each run can be found in Table 5.1 and final
results in Table 5.2.
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Figure 5.6: The disc mass as a function of stellar mass at the time when the disc fragments.
The relationship between the two quantities is linear for a given initial disc radius. Smaller
discs fragment at a lower mass as the average disc surface density is larger.
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Figure 5.7: Azimuthally-averaged Toomre parameter (a) and ratio between cooling time and
orbital period (b) for runs 1 - 3 in red, green and blue respectively. The time at which these
quantities are shown are just prior to fragmentation (runs 1 and 2), and just prior to a period
of disc expansion (run 3). The dashed blue line shows run 3 after the expansion. Each disc is
gravitationally unstable such that spiral arms form, but only in runs 1 and 2 does the Toomre
parameter fall below unity such that bound fragments form. In all cases, the cooling time is
sufficiently short for a condensed fragment to collapse. The expansion of the disc in run 3
(and characteristic of most runs with an increased metallicity) acts to stabilise it.
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of disc instabilities (assuming that the surface density is sufficiently high). The disc-

to-star mass ratios required for the fragmentation of discs around M-dwarfs are from

q ∼ 0.3 for smaller discs to q ∼ 0.6 for more extended discs.

5.4.2 Effect of metallicity

The metallicity of the discs is varied by modifying the opacities used in Equation 5.2

by factors of z = [0.1,1, 10], and the effect that this has on the fragmentation mass of

the disc is determined. Changing the metallicity has little effect on the fragmentation

mass. In fact, in all cases, the disc mass increases by a factor∼ 2 before fragmentation

occurs. However, the disc evolution is affected by metallicity; from the onset of the

gravitational instability, to the collapse of dense fragments.

In Figure 5.9, column density snapshots of runs 1 - 3 (panels a, b and c, respec-

tively) at a time of 22 kyr are presented. Figure 5.9a is shown shortly before frag-

mentation for the disc with z = 1 (solar metallicity). I show that in Figure 5.9b where

the metallicity is lower (z = 0.1), the disc exhibits weaker, but well defined spiral fea-

tures. Given that τ = Σκ, and the metallicity has been reduced, a greater amount of

material is required for the spiral arms to attain τ∼ 1, where cooling is most efficient.

As such, the spirals in this case take longer to fragment. Once a sufficient density is

reached however, fragmentation happens as cooling is more efficient. In the case of

Figure 5.9c, where the metallicity is increased (z = 10), the disc does not fragment as

the disc cannot cool fast enough. The fragments that do form have masses between

∼ 2 and ∼ 8 MJ, all above the opacity limit. Although an increased metallicity (and

therefore mean molecular mass) reduces the opacity limit (see Whitworth (2018)), no

relation is found between metallicity and fragment mass, though it should be noted

that the exact definition of fragment mass is important for comparisons with theory.

In general, the metal rich discs fragment at a higher disc-to-star mass ratio (Figure

5.10a) and do so with a larger outer radius (Figure 5.10b). The latter point is probably
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Figure 5.8: (a) The disc mass and (b) disc-to-star mass ratio as a function of disc radius at
the time when the disc fragments. The radius is defined as an annulus which encompasses
95% of the disc mass. A higher disc mass is required for fragmention for more extended discs.
The same applies to the disc-to-star mass ratio. Initial disc radii of Rinit = [60, 90,120] AU
are shown by the red, green and blue points, respectively. The initial stellar masses of
M? = [0.2, 0.3,0.4] M� are denoted by the circles, triangles and squares, respectively. Discs
surrounding more massive stars fragment at a higher mass as they rotate faster. The disc-to-
star mass ratio required for fragmentation varies from ∼ 0.3 (for small discs) to ∼ 0.6 (for
more extended discs).
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a result of a disc expansion period after spiral arms develop. Discs with initial outer

radii R = [60,90] AU do not fragment for z = 10 (apart from run 006). For the discs

with metallicities z = [0.1,1], only small differences in the disc-to-star mass ratio at

fragmentation are found.

All of the discs studied reach a point where fragmentation occurs, or the disc un-

dergoes expansion, stabilises and retains spiral arms which provide an efficient mech-

anism for material to move radially inward. This is characterised by an increase in

stellar accretion rate. Typically, it is found that the smaller discs with z = 10 do not

fragment. This is a combination of inefficient cooling in the spiral arms and a higher

rate of disc expansion when the spiral features become strong. Runs 3, 12 and 15 are

examples of this. However, an increased stellar mass also provides stability. Combined

with the other stabilising factors, this is the reason why runs 19 - 21 as well as 24 do

not fragment (see discussion in Section 5.4.1).

5.4.3 Accretion relation

Typically, the mass accretion rate of the central star scales with the disc accretion

rate, albeit ∼ 3 orders of magnitude smaller. Figure 5.11 shows this relation. The

average stellar accretion rate throughout the whole simulation is shown, as well as

the beginning and end of each simulation. It is found that the stellar accretion rate

is smaller at the start of each simulation and larger at the end when compared to

the total average accretion rate. This demonstrates the angular momentum transport

provided by the gravitational instability, as the end of the simulations are when the

discs are unstable. Prior to the onset of the instability, angular momentum transport

outward is inefficient, and material only moves inward slowly.
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100 AU

(a) z = 1 (b) z = 0.1

0 1 2 3
log column density [g cm-2]

(c) z = 10

Figure 5.9: Column density snapshots of discs at a time of 22 kyr, specifically for runs 1 - 3
(see Table 5.2). Panel (a) is a disc where z = 1 (solar metallicity), and is shown just prior to
the formation of a bound fragment. Panel (b) is a disc where the metallicity has been reduced
by an order of magnitude with z = 0.1. The disc is stable as more material is required in the
spiral arms for them to become optically thick. Panel (c) is a disc where the metallicity has
been increased by an order of magnitude with z = 10. No strong spirals have yet formed as
material can be efficiently distributed throughout the disc. Spirals do eventually form, but the
disc does not fragment due to inefficient cooling.
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Figure 5.10: The effect of metallicity on M-dwarf disc fragmentation. The disc-to-star mass
ratio, q, at the time of disc fragmentation as a function of (a) stellar mass, and (b) disc radius,
for metallicities z = [0.1,1, 10] marked by the red, green and blue points, respectively. Typi-
cally, discs with a higher metallicity require a larger q to fragment. Similarly, these discs are
larger, suggesting a period of expansion. There exists no significant difference in q for discs
with metallicities of z = [0.1,1]. Generally, discs around more massive stars fragment at a
lower disc-to-star mass ratio. The required disc-to-star mass ratio for fragmentation increases
with disc size.
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Figure 5.11: The relationship between the mass accretion rate onto the disc (set by Equation
5.5) and the accretion rate onto the central star during the simulation. The black points show
the average stellar accretion rate for each simulation. The red and blue points show the average
stellar accretion rate during the first and last 10% of the disc evolution period, respectively.
Toward the end of the simulations, the discs are gravitationally unstable, providing a means of
outward angular momentum transport. As such, material can move inward and accrete onto
the central star, hence the observed increase in the stellar accretion rate.
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5.5 The properties of planets formed through disc frag-

mentation

The evolution of discs which undergo fragmentation is continued until a fragment

collapses and attains a central density of 10−3 g cm−3. These dense objects are referred

to as protoplanets. Note that due to the violent interactions with the discs and other

fragments, the fragments analysed in the previous section are not necessarily those

which correspond with the formed protoplanets here. When a fragment undergoes a

second collapse (Larson 1969), I define the boundaries for the corresponding first and

second cores as the maxima in the radial/infall velocity profiles.

The protoplanet data are presented in Table 5.3, showing the distance from the

central star at which they form, the radii and masses of the first and second cores, and

the ratios of rotational-to-gravitational and thermal-to-gravitational energy at the first

and second core boundaries. The first core masses are super-Jovian and in some cases,

are higher than the brown dwarf mass limit of∼ 13 MJ. They have radii between 1 and

10 AU, typical of more massive cloud collapse simulations (Larson 1969; Stamatellos

et al. 2007b). The second cores are an order of magnitude smaller.
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Spherically-averaged radial profiles for the protoplanets are presented in Figure

5.12. Shown are: (a) density; (b) temperature; (c) rotational and (d) radial infall

velocity; (e) mass within a given radius; and (f) ratios of the thermal-to-gravitational

and rotational-to-gravitational energy. Structurally, the various protoplanets are simi-

lar to one another, differing only by mass. The temperature is generally higher within

the more massive protoplanets, and as such, the radius at which the thermal energy

exceeds the gravitational energy is larger. The rotational velocity is comparable to the

infall velocity, but despite this, the ratio between rotational energy and gravitational

energy is generally small throughout, between 0.01 and 0.1. The thermal energy is

comparable to the gravitational energy, becoming dominant at radii 0.02 - 0.04 AU.

Some of the protoplanets do not show any infall velocity signatures indicative of a

second core (runs 14, 16, 18, 23 and 25). Figure 5.13 shows the spherically-averaged

radial profiles for the protoplanets in these runs. The protoplanets with and without

second cores are structurally similar to each other with regard to density and tem-

perature. Most strikingly however is the difference in infall velocity (Figures 5.12d

and 5.13d, respectively). The protoplanets without a second core have an almost zero

infall velocity in their inner regions and some even exhibit expansion (i.e. −vr < 0).

Figure 5.14 shows azimuthally-averaged radial profiles of the ratio between rota-

tional to infall velocity. I compare protoplanets which show a clear sign of second core

formation with those that do not. The protoplanets with a second core (runs 8 and

11, green and blue lines, respectively) have vrot/vr < 10 in their inner regions, which

is relatively low compared to the protoplanets without second cores. In these latter

cases (runs 16 and 25, orange and purple lines, respectively), the rotational velocity

is a factor of 2 - 4 magnitudes higher than the infall velocity.

The initial mass and semi-major axis of the protoplanets are shown in Figure 5.15,

and are compared against known exoplanet data. Although the protoplanets formed

through gravitational instability are massive (5− 21 MJ) on intermediate separation
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Figure 5.12: Spherically-averaged properties for a set of protoplanets, i.e. fragments which
have undergone second collapse and attained a central density of 10−3 g cm−3. Panels (a)
and (b) show the density and temperature respectively. They do not vary significantly from
protoplanet to protoplanet, though the protoplanets in runs 6, 9 and 27 possess denser and
hotter central regions due to their high mass. Panels (c) and (d) show rotational and infall
velocity, the former of which is significant as the protoplanets reside in a disc. The peaks in
infall velocity are indicative of surface boundaries where gas begins to decelerate. The second
core boundaries are at R= 10−2−10−1 AU and the first core boundaries at R= 1−10 AU. Panel
(e) shows the mass of the protoplanet at a given radius demonstrating that even in low-mass
discs, the masses of formed objects are on the order of a few MJ or higher. Panel (f) shows
the ratio of energies interior to a given radius: Ether/Egrav (top lines) and Erot/Egrav (bottom
lines). The thermal energy only exceeds the gravitational energy within the second core.
Rotational energy is generally much lower compared to gravitational energy. The protoplanets
are resolved down to 10−4 < R< 10−3 AU.
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Figure 5.13: Spherically-averaged properties for a set of protoplanets, i.e. fragments that
have attained a central density of 10−3 g cm−3. These are the protoplanets that do not show
any infall velocity signatures indicative of a second core. They are structurally similar to the
protoplanets in Figure 5.12, however the infall velocities here are almost zero, and even show
that parts of the protoplanet are slowly expanding. The protoplanets are resolved down to
10−4 < R< 10−3 AU.
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Figure 5.14: Azimuthally-averaged rotational-to-infall velocity for a set of protoplanets with
and without any second core signatures as determined from infall velocity peaks. Runs 8 and
11 do possess second cores and exhibit values of vrot/vr < 10 in their inner regions. Runs
16 and 25 do not have second core signatures, and their rotational velocity is on the order 3
magnitudes higher than the infall velocity in their inner regions. It may be that a significant
amount of rotational velocity can inhibit the formation of the second core completely.
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orbits (14−105 AU), these may not be their final properties. Massive planets embed-

ded within a protostellar disc can open up a gap. Prior to gap formation, the planet

can migrate inward. This may continue albeit on a shorter timescale after the gap

is formed. However, the direction of migration may also change, and the planet can

migrate outward. This depends on the mass of the planet, as well as disc thermo-

dynamics, structure and viscosity. Additionally, gravitational interactions with other

planets may also affect their orbital configuration.

A massive planet may also accrete material from the disc. This typically results

in an overall mass increase, so much so that the planet may become a brown dwarf

> 13 MJ or a hydrogen-burning star > 80 MJ. The mass accretion rate of the planet

depends on the availability of material of the disc, and can be reduced if the planet pro-

vides radiative feedback, heating the neighbouring disc (e.g. Stamatellos & Inutsuka

2018). Alternatively, if a protoplanet formed through gravitational fragmentation un-

dergoes tidal stripping via disruption or migration, then the resulting mass may not

only be smaller, but potentially in the terrestrial mass regime (Nayakshin 2010, 2011).

5.6 Conclusions

I have performed a set of 27 SPH simulations of protostellar discs surrounding M-dwarf

mass protostars. I varied the initial stellar mass such that M? = [0.2, 0.3,0.4] M� as

well as the initial disc radius where Rout = [60, 90,120] AU. Additionally, I investigated

the effect of metallicity by adopting values z = [0.1, 1,10]. The discs are initially

stable, but their masses are steadily increased through mass loading. As such, they

become gravitationally unstable, spiral arms develop, and in the majority of cases,

a protoplanet forms via fragmentation within 30 kyr. The density requirement for

fragment formation is chosen to be ρ > 10−9 g cm−3 i.e. a threshold typically reached

during gravitational collapse. From the discs that do fragment, I determine a minimum

disc mass necessary for fragmentation to occur. The results are summarised as follows.
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Figure 5.15: The distribution of planet mass as a function of their semi-major axis surrounding
M-dwarf stars with masses M? < 0.5 M�. Black points show the current discovered exoplan-
ets. The red and blue points are the data from this work, where semi-major axis represents the
distance to the central star. In red are the fragments which form through gravitational insta-
bility and have attained a central density of 10−9 g cm3. The blue points are the protoplanets,
defined as bound objects which have undergone second collapse and have reached a central
density of 10−3 g cm3. As these massive protoplanets are still embedded within their proto-
stellar discs, they may radially migrate inwards or outwards, affecting their final semi-major
axis. Similarly, they may undergo mass accretion or tidal stripping, affecting their final mass.
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Figure 5.16: The average surface density of the discs at the time they fragment where
Σ̄disc = Mdisc/πR2

disc. A higher average surface density is required for fragmentation when
the disc metallicity is lower. The lowest Σ̄ is attained by metal rich discs around low-mass
stars. However, an increased metallicity decreases the cooling rate in dense fragments, and
can inhibit gravitational collapse altogether.
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• The fragmentation of protostellar discs around M-dwarfs requires a disc-to-star

mass ratio of at least q ∼ 0.3 for smaller discs (Rout = 60 AU) surrounding stars

with masses 0.2 − 0.3 M�. When the stellar mass is increased to 0.4 M�, such

discs do not fragment. The disc-to-star mass ratio increases to q ∼ [0.4, 0.5,0.6]

for larger discs (Rout = 120 AU) around stars of mass M? = [0.4,0.3, 0.2] M�,

respectively.

• The mass at which a disc fragments increases with both the size of the disc and

the mass of the central star. However, no fragmentation occurs for discs of initial

radius Rout = 60 AU around stars with mass 0.4 M�. This is likely a combined

effect of rapid disc expansion from the formation of strong spiral features, with

the fact that a larger stellar mass provides a greater degree of rotational support.

I find that the smallest discs around lower mass stars are most susceptible to

gravitational fragmentation, provided no extended period of rapid expansion

occurs.

• The disc metallicity does not affect the mass at which discs fragment, but in

some cases fragmentation may be suppressed. In the cases where the metallicity

is an order of magnitude smaller, spiral arms are longer lived prior to fragment

formation. When the metallicity is increased by an order of magnitude, spiral

arms take longer to develop, and may not undergo gravitational fragmentation

at all. This inhibition of collapse is due to inefficient cooling.

• I have calculated an average column density Σ̄disc for the fragmented discs for

a variety of stellar masses, shown in Figure 5.16. I find that disc fragmentation

requires 0.01 < Σ̄disc < 0.1 g cm−2 and that lower metallicity discs require a

higher average column density in order to fragment. These are the discs which

are generally more compact and can cool more efficiently. Fragmentation occurs

at Σ̄disc ∼ 0.01 g cm−2 for discs with metallicity z = 10.
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• Protoplanets that form by gravitational fragmentation around M-dwarfs are ini-

tially massive (5−21 MJ) on intermediate separation orbits (14−105 AU), have

similar density and temperature profiles, and possess significant rotational ve-

locity. In some cases this can act to preclude the collapse and formation of a

protoplanet. The masses and semi-major axes of the formed planets are com-

patible with known exoplanets, though it should be noted that processes such

as migration and mass accretion can affect these properties.
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Summary

The work presented in this thesis pertains to the gravitational instability of protostel-

lar discs with the objective of determining how it occurs and the implications it has

on planet formation. This has been achieved through the use of numerical simula-

tions where novel techniques have been employed in order to capture the physics of

the gravitational instability and the formation of planets through gravitational frag-

mentation. I began with an investigation of the gravitational instability in massive

protostellar discs, and how the radiative feedback from objects formed through disc

fragmentation affects their evolution and the evolution of the disc. This was followed

by a numerical comparison between approximate radiative transfer methods for a va-

riety of disc configurations, including those undergoing gravitational instability and

fragmented discs. I finished with a study into the gravitational instability of discs sur-

rounding M-dwarf stars with a focus on the feasability of planet formation. Here I

summarise the results from each of these studies, and conclude the thesis with con-

siderations of potential future endeavours.
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6.1 The effect of radiative feedback

The gravitational fragmentation of massive protostellar discs can lead to the formation

of planets, brown-dwarfs and low-mass stars. I studied the effect of radiative feedback

from such formed objects (referred to as secondary objects) using radiative hydrody-

namic simulations. I compared the results of simulations without any radiative feed-

back from secondary objects with those where two types of radiative feedback were

considered: continuous and episodic. I found that: (i) continuous radiative feedback

stabilises the disc and suppresses further fragmentation, reducing the number of sec-

ondary objects formed; (ii) episodic radiative feedback from secondary objects heats

and stabilises the disc when the outburst occurs, but shortly after the outburst stops,

the disc becomes unstable and fragments again. Fewer secondary objects are formed

compared to the case without radiative feedback. I also found that the mass growth

of secondary objects is mildly suppressed due to the effect of their radiative feedback.

However, their mass growth also depends on where they form in the disc and on their

subsequent interactions, such that their final masses are not drastically different from

the case without radiative feedback. I found that the masses of secondary objects

formed by disc fragmentation range from a few MJ to a few 0.1 M�, though planets

formed by fragmentation tend to be ejected from the disc. I concluded that planetary-

mass objects on wide orbits are unlikely to form by disc fragmentation. Nevertheless,

the fragmentation of massive protostellar discs may be a significant source of free-

floating planets and companion brown dwarfs.

6.2 Efficient radiative transfer

Radiative transfer is an important component of hydrodynamic simulations as it deter-

mines the thermal properties of a physical system. It is especially important in cases

where heating and cooling regulate significant processes, such as in the collapse of
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molecular clouds, the development of gravitational instabilities in protostellar discs,

disc-planet interactions, and planet migration. The computationally inexpensive treat-

ment of radiative transfer in numerical simulations (Stamatellos et al. 2007b) was

examined and compared with a novel approach whereby the column density of the

gas (through which heating/cooling occurs) was estimated using the pressure scale

height instead of the gravitational potential (Lombardi et al. 2015). I found that both

methods are accurate for spherical configurations e.g. in collapsing molecular clouds

and within clumps that form in protostellar discs. However, the pressure scale-height

approach is more accurate in protostellar discs (low and high-mass discs, discs with

spiral features, fragmented discs, discs with embedded planets). I also investigated

the β-cooling approximation which is commonly used when simulating protostellar

discs. This method assumes that the cooling time of the gas is proportional to its or-

bital period. I demonstrated that the use of a constant β cannot capture the wide

range of spatial and temporal variations of cooling in protostellar discs, which may

affect the development of gravitational instabilities, planet migration, planet mass

growth, and the orbital properties of planets. I emphasised that computationally in-

expensive approximate radiative transfer is available within numerical simulations,

and can adequately capture the physics of the gravitational instability as well as disc

fragmentation.

6.3 Gravitational instability in discs around M-dwarfs

There exists a number of super-Jovian mass exoplanets orbiting M-dwarf stars. These

may be prime candidates of planets which formed through the gravitational fragmen-

tation of their natal protostellar disc. Utilising an approximate prescription of radiative

transfer (Lombardi et al. 2015), I explored the potential for planet formation via the
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gravitational fragmentation of low-mass protostellar discs around M-dwarf stars. I de-

termined the minimum mass required for fragmentation for discs by steadily increas-

ing their masses until they fragmented and a bound object formed. The discs that were

considered had radial extents R = [60,90, 120] AU and metallicities z = [0.1,1, 10]

solar metallicity, each surrounding stars of mass M? = [0.2,0.3, 0.4] M�. I found that

disc-to-star mass ratios of q ∼ 0.6 are required for extended discs (R = 120 AU) to

fragment, and q ∼ 0.3 for compact discs (R= 60 AU) to fragment. However, compact

discs surrounding stars of mass 0.4 M� do not fragment due to a high degree of ro-

tational support: they tend to expand rapidly and become gravitationally stable. The

mass at which a disc fragments increases with both the initial disc radius and stellar

mass. Metallicity does not affect the fragmentation mass of a disc, but it does however

affect its evolution: spirals are longer lived when the metallicity is lower, and develop

later when the metallicity is higher. Additionally, a high metallicity may inhibit the

collapse of dense fragments in spiral arms as thermal support against gravity is sig-

nificant. Planets form via gravitational fragmentation with masses 5− 21 MJ and at

distances 14−105 AU from the central star. They all have similar density and temper-

ature profiles, attained after second collapse has occurred, and all possess significant

angular velocity. Their masses and orbital radii from the host star agree well with

the population of massive exoplanets on wide orbits around M-dwarf stars. However,

migration, mass accretion and tidal stripping can affect these properties, and so an

evolutionary study of the planets is required to determine their ultimate masses and

orbital configurations.

6.4 Future work

The gravitational instability is an important process regarding protostellar discs, not

only as a key driver of angular momentum transfer, but may also be a way to form

massive wide-orbit or free-floating planets.
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This work has focused on massive protostellar discs and discs around Sun-like

stars and M-dwarfs. However, I have not considered the gravitational instability of

circumbinary discs, where it is expected that the thermal contribution from the sec-

ondary star would act to provide additional thermal support. Although there exists

studies of the gravitational instability in such systems (see Mayer et al. (2010) for

a review), it would be useful to compare the results of simulations where a realistic

treatment of radiative transfer is used. Additionally, the feasibility of gravitational

fragmentation of circumbinary discs can be determined, and the properties of formed

protoplanets can be compared with those that form in similar discs around single stars.

Dense clumps within simulations are typically replaced with sink particles at a

relatively early stage (typically when the density reaches 10−9 g cm−3), but it would be

useful to implement a technique which can track the clump until it undergoes second

collapse and a protoplanet is formed. At this point, the temperature profile of the

protoplanet can be obtained and included as a thermal contribution after a sink is

introduced. This improved method of obtaining realistic temperature profiles may

lead to changes in the subsequent evolution of the disc, and in the migration and

mass accretion of the protoplanet.

There already exists observations of protostellar discs potentially undergoing grav-

itational instability (e.g Pérez et al. 2015) and of planets which may have formed via

gravitational fragmentation (e.g. Marois et al. 2010; Tobin et al. 2016). With accurate

treatments of physical processes and ever increasing computational performance, we

can now begin to construct synthetic population models of planets formed through

gravitational fragmentation, probing their properties, and following their evolution

from collapse to ultimate orbital configuration. Combined with the swathe of recent

observations, a statistical comparison would then be able to be made. Although I have

demonstrated that planet formation can result from the gravitational fragmentation

of protostellar discs, a comparison with current and upcoming observations will be
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able to elucidate details regarding its frequency, requirements, and importance in the

context of planet formation.
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Appendix

7.1 SPH extras

7.1.1 Momentum equation

The SPH fluid equations can be derived from the Euler-Lagrange equations which

guarantees the conservation of momentum, angular momentum, and energy. The

Lagrangian of a given system is

L = T − V, (7.1)

where T and V are the kinetic and potential energies respectively. For a hydrodynam-

ical system neglecting self-gravity (e.g. Eckart 1960; Salmon 1988; Morrison 1998),

the Lagrangian can be written

L =
∫

V

�

1
2
ρv2 −ρu

�

dV, (7.2)

which in discreet form is

Li =
N
∑

j=1

m j

�

1
2

v2
j − u j

�

. (7.3)
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The specific internal energy u is a function of both entropy and density (and therefore

spatial co-ordinate). The Euler-Lagrange equations guarantee conservation i.e.

d
dt

�

∂Li

∂ v i

�

−
∂Li

∂ r i

= 0. (7.4)

Differentiating Equation 7.3 with respect to v and r , noting that u(r ), yields

d
dt

�

∂Li

∂ v i

�

= mi
dv i

dt
, (7.5)

∂Li

∂ r i

=
N
∑

j=1

m j

∂ u j

∂ ρ j

�

�

�

�

s

∂ ρ j

∂ r j

. (7.6)

Consider the first law of thermodynamics which states that the total energy of a system

is conserved i.e.

dU = TdS − PdV, (7.7)

where the first term on the right hand side represents heat added to the system in terms

of temperature T and entropy S. The second term on the right hand side represents

work done via expansion and contractions in terms of pressure P and volume V . As

the SPH volume estimate is V = m/ρ, then dV/dρ = −m/ρ2, and the above can be

written as

du= Tds+
P
ρ2

dρ, (7.8)

where now, u = U/m is the specific internal energy and s = S/m the specific entropy.

Then, at constant entropy
∂ u
∂ ρ
=

P
ρ2

. (7.9)

We can put this and Equation 2.5 into Equation 7.6 to get

∂Li

∂ r i

= −mi

N
∑

j=1

m j

�

Pi

ρ2
i

+
Pj

ρ2
j

�

∇iW
�

r i j, h
�

, (7.10)
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and hence the SPH momentum equation

dv i

dt
= −

N
∑

j=1

m j

�

Pi

ρ2
i

+
Pj

ρ2
j

�

∇iW (r i j, h). (7.11)

This is only valid for constant smoothing lengths and no dissipation. It is however

fully conservative provided the smoothing kernel is symmetric: the summation of the

momentum of particle i is equal and opposite to that of particle j.

7.1.2 Energy equation

The SPH energy equation can be found by considering the first law of thermodynamics

in the form from Equation 7.8. If entropy is constant then

du=
P
ρ2

dρ, (7.12)

and the time derivative is
du
dt
=

P
ρ2

dρ
dt

. (7.13)

Noting that in discreet form

∂ ρi

∂ t
= −

N
∑

j=1

m j v i j · ∇iW (r i j, h), (7.14)

then the SPH energy equation is

dui

dt
=

Pi

ρ2
i

N
∑

j=1

m j v i j · ∇W (r i j, h), (7.15)

where v i j = v i − v j. This assumes no dissipation (i.e. constant entropy) and constant

smoothing length.
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