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Abstract

The second Hi-C flight (Hi-C 2.1) provided unprecedentedly high spatial and temporal resolution (∼250 km, 4.4 s)
coronal EUV images of Fe IX/X emission at 172Å of AR 12712 on 2018 May 29, during 18:56:21–19:01:56 UT.
Three morphologically different types (I: dot-like; II: loop-like; III: surge/jet-like) of fine-scale sudden-brightening
events (tiny microflares) are seen within and at the ends of an arch filament system in the core of the AR. Although
type Is (not reported before) resemble IRIS bombs (in size, and brightness with respect to surroundings), our dot-
like events are apparently much hotter and shorter in span (70 s). We complement the 5 minute duration Hi-C 2.1
data with SDO/HMI magnetograms, SDO/AIA EUV images, and IRIS UV spectra and slit-jaw images to
examine, at the sites of these events, brightenings and flows in the transition region and corona and evolution of
magnetic flux in the photosphere. Most, if not all, of the events are seated at sites of opposite-polarity magnetic flux
convergence (sometimes driven by adjacent flux emergence), implying likely flux cancellation at the microflare’s
polarity inversion line. In the IRIS spectra and images, we find confirming evidence of field-aligned outflow from
brightenings at the ends of loops of the arch filament system. In types I and II the explosion is confined, while in
type III the explosion is ejective and drives jet-like outflow. The light curves from Hi-C, AIA, and IRIS peak nearly
simultaneously for many of these events, and none of the events display a systematic cooling sequence as seen in
typical coronal flares, suggesting that these tiny brightening events have chromospheric/transition region origin.

Unified Astronomy Thesaurus concepts: Solar active regions (1974); Solar active region magnetic fields (1975);
Solar magnetic flux emergence (2000); Solar corona (1483); Solar photosphere (1518); Solar transition
region (1532)

Supporting material: tar.gz file

1. Introduction

The second sounding-rocket flight of the High-Resolution
Coronal Imager (Hi-C 2.1: Rachmeler et al. 2019) took coronal
extreme-ultraviolet (EUV) images of NOAA Active Region
(AR) 12712 in 172Å (Fe IX/X emission) with unprecedented
spatial and temporal resolutions (∼250 km, 4.4 s). The data
were collected for about 5 minutes, during the period of
18:56:21–19:01:56 UT on 2018 May 29, near solar disk center
(AR position: N15E10). The Hi-C 2.1 (hereafter “Hi-C”) data
have revealed multiple small-scale activities inside the AR core
and in the AR’s surroundings. These small-scale brightenings
remained unnoticed in earlier EUV observations.

Solar ARs contain the brightest and hottest coronal EUV
loops (Golub et al. 1980; Reale 2014)—the core of an AR is
typically the brightest structure inside the AR (Warren et al.
2012). In the chromosphere the AR core often contains a set of

cool loops, known as an arch filament system (Bruzek 1967),
long observed in Hα filtergrams. Usually emerging flux regions
(EFRs; Zirin 1972) in the cores of ARs are seen as cool arch
filament systems (Bruzek 1967; Frazier 1972). Because the
field is arched and emerging, these arch filament systems are
found to have blueshifts (of up to 10 km s−1) in their central
parts (apex) in the chromosphere and redshifts (of up to
40 km s−1) at both ends (Georgakilas et al. 1990; Tsiropoula
et al. 1992; González Manrique et al. 2018). These flow
patterns weaken as the field emergence ends—hardly any
significant flows are noticed after the emergence has stopped.
The AR in the present study is near the end of global
emergence of its overall bipolar field (but local flux emergence
at multiple places, often recurrently, continues).
Small-scale polarity inversion lines (PILs), also known

as neutral lines, are often present in the cores of EFRs
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(Frazier 1972). These emerging flux regions (with cool
chromospheric but hot coronal environment) can have multiple
explosive events such as Ellerman bombs (EBs; Ellerman 1917;
Rutten et al. 2013), surges (Newton 1942; Roy 1973), and IRIS
bombs (IBs; Peter et al. 2014). IBs and EBs both have mixed-
polarity photospheric magnetic field and often have common
properties to each other, but their plasma temperatures
(<10,000 K for EBs vs. ;80,000 K for IBs) are apparently
different. Both EBs and IBs might form in the photosphere (Tian
et al. 2016). Recent magnetohydrodynamic simulations, how-
ever, support the idea that both form in the higher atmosphere,
i.e., in the low chromosphere (Hansteen et al. 2019).

Surges are more explosive (than EBs), can be hotter than
chromospheric temperature, and have a rapid cool plasma
outflow (from the source region), often followed by a weaker
inflow (plasma flowing toward the source/base of the surge;
Newton 1942). EBs are sometimes present at the base of surges
(Roy 1973; Matsumoto et al. 2008; Young et al. 2018), which
have mixed-polarity photospheric magnetic flux similar to EBs,
and are a consequence of flux emergence and/or flux
cancellation (Roy 1973; Liu & Kurokawa 2004; Jiang et al.
2007; López Fuentes et al. 2018).

In the present work we report on three types of fine-scale
transient brightening events in the core of AR 12712 observed
in 172Å by Hi-C: type I, dot-like; type II, loop-like; and type
III, surge/jet-like events (described in Section 3). Type I events
were not identified earlier in AIA 171Å, probably due to their
small size, but possibly partially due to AIA’s somewhat
narrower bandwidth than that for Hi-C.

2. Data and Methods

The 5 minutes of Hi-C observations (obtained at a cadence
of 4.4 s and a spatial resolution of ∼250 km; Rachmeler et al.
2019) were complemented by the Interface Region Imaging
Spectrograph (IRIS; De Pontieu et al. 2014b), the Solar Optical
Telescope (SOT; Ichimoto et al. 2008; Shimizu et al. 2008;
Suematsu et al. 2008; Tsuneta et al. 2008; Lites et al. 2013) on
board Hinode (Kosugi et al. 2007), the Helioseismic Magnetic
Imager (HMI; Schou et al. 2012) and Atmospheric Imaging
Assembly (AIA; Lemen et al. 2012) on board SDO, and several
other instruments. We mainly analyze the data from Hi-C, IRIS,
and SDO (AIA+HMI) in the present work.

IRIS captured slit-jaw (SJ) movies in Mg II 2796, Mg
continuum 2832, Si IV λ1400, and C II λ1330 at a cadence of
13 s with a pixel size of 0 33. These SJ images sample plasma
from 6000 to ∼100,000 K.

The IRIS slit scanned an eastern part of the region of our
interest with an eight-step raster, at a step size of 1″ and a step
cadence of 3.2 s, thus resulting in a raster cadence of 25 s
(ObsID 3600104031). A total of 256 rasters were obtained for
about 1 hr and 50 minutes, including the 5 minutes of Hi-C
observations. The exposure time for each slit position of each
wavelength is 2 s. The slit width is 0 33, and each pixel of the
spectrum image spans 0 33 along the slit and a wavelength
increment of 0.02Å (or a Doppler-shift increment of 3 km s−1)
along the dispersion axis. The Hi-C field of view (FOV) and
the FOV of our interest are shown in Figure 1.

Similar to that of IRIS, the SDO AIA (12 s cadence for EUV
images and 24 s cadence for UV images, 0.6 arcsec pixel size)
and HMI (45 s cadence for line-of-sight [LOS] magnetograms,
a pixel size of 0 5) data are used to follow the brightness and
magnetic field in the cool arch filament system. The random

per-pixel photon noise for 45 s cadence HMI LOS magneto-
grams is ≈7 G (Couvidat et al. 2016). Small-scale dynamic
events are followed for 2.5 hr, centered at the Hi-C
observations.
AIA covers a broad range of temperatures. We use all EUV

channels: AIA 304, 171, 193, 211, 335, 94, and 131Å, which
show emission from plasma at ∼50,000 K (He II), 700,000 K
(Fe IX/X), 1.5 MK (Fe XII), 2 MK (Fe XIV), 2.5 MK (Fe XVI),
6 MK (Fe XVIII), and 10 MK (Fe XXI), respectively. Note that
AIA 94 and 131 channels also see cooler components at about
1 and 0.5 MK, respectively, and the AIA 193 channel sees a
hotter component at 20 MK. The AIA 193 and 211Å channels
also see some cooler plasma; see Lemen et al. (2012) for
details. Warren et al. (2012) describe a method to remove the
warm component from the AIA 94 Å channel. We have used
this method to calculate “hot 94” images.
The Hi-C, IRIS, and SDO data are well aligned using SSW

routines. Note that all corrections, including roll angle, as well as
by manual fine-tuning whenever required, were performed for
alignment of Hi-C, IRIS, AIA images, and HMI magnetograms
to about the spatial resolution of these images. HMI LOS
magnetograms at a 45 s cadence are used to follow flux
cancellation, emergence, and/or the presence of mixed-polarity
magnetic field.
We have created three videos from Hi-C, IRIS SJ, and AIA

images to track features over time and compare them in
multiple wavelengths. To allow better tracking, we have
overplotted HMI LOS magnetogram contours of±25 G on
each frame in these movies.
We have created movies of the Dopplergrams from the

spectral data of Mg II λ2796, Si IV λ1400, and C II λ1330 lines
obtained with IRIS. Dopplergrams are intensity differences at
fixed wavelength offsets (fixed Doppler-shift offsets) from line
center in the blue and red wings of the line. For best visibility
of redshift and blueshift our selected offsets are±50 km s−1 for
Mg II λ2796 (as in De Pontieu et al. 2014a; Tiwari et al. 2018)
and ±25 km s−1 for C II λ1330 and Si IV λ1400 lines (based
on different trials in this work). These Dopplergrams show
signatures of blueshift and/or redshift along the slit at the
location where the slit cuts across the surge or other brightening
event. To suppress local fluctuations in the Dopplergrams, we
have averaged Dopplergrams created by integrating the signal
over a range of 10 km s−1 centered at around±50 km s−1 for
Mg II and around±25 km s−1 for Si IV and C II lines. The
Dopplergrams for the Mg II line provide structure and
dynamics (redshift and blueshift) of chromospheric plasma,
whereas those for Si IV and C II lines provide structure and
dynamics of transition region plasma (De Pontieu et al.
2014a, 2014b; Tiwari et al. 2018).

3. Results

We identified 15 brightening events in the core of the AR
observed by Hi-C, by combining Hi-C data with IRIS and
SDO/AIA data. Based on different observed characteristics, we
assigned each event to one of three categories: type I—dot-like
transient brightening in Hi-C 172Å and AIA 171Å; type II—
transient elongated brightenings along small magnetic loops;
and type III—surge/jet-like transient eruptions with outflows
often followed by inflows. Most of the observed properties, i.e.,
lifetimes, visibility in AIA 94Å (or hot 94), the presence of
mixed-polarity flux, flux convergence, measurable flux cancel-
lation, flux emergence, field-guided flows (assuming that all
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Figure 1. Context image of the Hi-C 2.1 observations of NOAA AR 12712 (at disk position N15E10). (a) Full FOV observed by Hi-C in 172 Å. Within the core of the
AR the region of interest for the present research is outlined by the purple box, a zoomed-in view of which is displayed in (b). In (c) and (d) images of the same FOV
as in (b) observed with IRIS SJI 1400 Å and SDO/AIA 171 Å are displayed. In (e) an LOS magnetogram (saturated at ± 400 G) obtained with SDO/HMI is shown.
The red and yellow (green and blue for IRIS SJI 1400 Å, red and blue for AIA 171 Å) contours are, respectively, for positive and negative LOS magnetic field at a
level of±25 G.
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plasma flows and elongations in the UV and EUV images are
along the magnetic field), Doppler flows in Mg II λ2796 (when
the IRIS slit covers at least a part of the event), and the
presence/absence of the underlying neutral line, are listed in
Table 1.

We created three movies from Hi-C, IRIS, and AIA images. The
first movie, “hic_iris_sdo.mp4,” contains eight panels: Hi-C 172,
AIA 171, 304, hot 94, IRIS 2796, 1400, 1330 SJ images, and
SDO/HMI LOS magnetograms, with LOS magnetic contours (of
level±25 G) plotted on each image. Hot 94 was calculated by
removing warm components from AIA 94 by using the method of
Warren et al. (2012). The second movie, “iris_long.mp4,” contains
six panels: IRIS 2796, 2832, 1400, 1330 SJ images, AIA 171
images, and HMI LOS magnetograms with the magnetic contours
overplotted on each frame as in the first movie. The third movie,
“sdo_long.mp4,” contains six panels: AIA 171, 304, 193, 211, hot
94 images, and HMI LOS magnetograms, with the magnetic
contours overplotted on each image frame. While the first movie
spans only the Hi-C observation time, the second and third movies
are for about 2 and 2.5 hr, respectively, covering the 5 minutes of
the Hi-C observations in their middle. We have also created a
Dopplergram movie (“Doppler.mp4”) from the spectral rasters of
IRIS for the Mg II k, C II, and Si IV lines to check the Doppler
flows in the covered parts of the events. All four movie files are
available in a .tar.gz package.

3.1. Type I—Dot-like Brightening Events

In Figure 2 we display the two dot-like round-ish events,
listed in Table 1, appearing in the same Hi-C frame. Although
we display the image in Figure 2 for the time when both dots
appear in the same frame, their peak brightness times, as listed
in Table 1, are slightly different. The dot on the right (in the
solar west) is named Dot 1, as its intensity peaks slightly before
the dot on the left (in the solar east), which is named Dot 2.

The size and brightening enhancement of each of the two
dots are estimated and given in Figure 3. The average diameter
is 2 5, and intensity enhancement is 70% with respect to the
background. These numbers are similar to those for penumbral
bright dots (Alpert et al. 2016), EUV-bright dots (Régnier et al.
2014), and IBs (Peter et al. 2014).
After we followed closely the Dot 2 event by combining

IRIS movies with Hi-C, we found that the base of the Dot 2
event is located farther south, on the PIL of canceling opposite-
polarity magnetic field. A loop-like structure extends toward
the north from the PIL, and Dot 2 in Hi-C 172Å images
appears at the peak time of the loop in IRIS (see, e.g., the
1400Å panel in Figure 2). Therefore, dot-like events
apparently are closely connected to loop-like events, described
later. However, given the fact that the Dot 2 event is apparently
driven from the cancellation PIL (an obvious plasma flow to
the north from the PIL is seen in the IRIS 1400Å SJ movie),
Dot 2 shares some properties of type III events; see Section 3.3.
We show in Figure 4 the magnetic flux evolution of each of

our dots. Careful inspection of contours of opposite-polarity
magnetic field near each dot shows flux convergence at a
“sharp” neutral line (a PIL interval along which the positive-
flux 25 G contour is within a few pixels of the negative-flux 25
G contour), marked by arrows in each case. In Dot 1 a small
positive-polarity flux patch, crossed by the green arrow, is
canceling at 18:58:32. The overall convergence continues
along the neutral line afterward; see the location pointed to by
the blue arrow at 18:57:18 and 19:01:47. For Dot 2 a clear
emergence of negative flux can be seen, which cancels with the
encountered ambient majority positive magnetic flux on its
south side. The location of its convergence with the positive-
polarity magnetic flux is marked by green arrows in lowest row
of Figure 4. Follow the evolution of these dots in the movie
hic_iris_sdo.mp4.

Figure 2. Two type I (dot-like) brightening events (Dot 1 in the right/solar west, and Dot 2 in the left/solar east), pointed to by arrows in the Hi-C image. The same
locations are pointed to by similar arrows in the IRIS SJI 2796, IRIS SJI 1400, AIA 171, AIA 304, and AIA hot 94 Å images. The red and yellow contours are for
positive and negative LOS magnetic field at a level of±25 G. For better visibility red color is replaced by green for contours on IRIS SJI 1400 and AIA 304 Å images,
and yellow color is replaced by blue for contours on IRIS SJI 1400 Å images.
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Because we could isolate the minority-polarity negative
magnetic flux in the extended base of the Dot 2 event, we made
a plot of the time evolution of flux in that negative patch
(Figure 4, middle right panel). Flux increase (emergence) is
followed by flux decrease (cancellation). We estimate the flux
cancellation rate to be 2×1017 Mx s−1. This and any other
flux evolution rates that we have provided in this paper are
crude (order-of-magnitude) estimates and should be taken with
caution. With both emergence and cancellation happening at
the same time, which is often the case in our present study, it is
not possible to reliably estimate either the cancellation rate or
the emergence rate from a flux–time plot.

To investigate the formation temperature of each dot, we
made light curves of all AIA EUV and IRIS SJ wavelengths. In
Figure 5 we display light curves (intensity integrated over
∼2×2 arcsec2∼16×16 Hi-C pixel2 ∼4×4 AIA pixel2)
from different AIA channels, IRIS wavelengths, and Hi-C
images. The area for making light curves is selected during the
peak intensity time and is shown as insets on the light-curve
images (also true for type II and III events).

All of the AIA and IRIS light curves that peak for Dot 1 and
Dot 2 peak nearly simultaneously in Figure 5. Hi-C 172 and
AIA 171 have a double peak for Dot 2, which is compatible
with similar two-peak behaviors seen in several other

wavelengths. This behavior is similar to some of the EUV-
bright dots found in moss regions (at the edge of an AR;
Régnier et al. 2014). We also calculated error bars (not shown
here) for the AIA 94 channel to verify the reliability of their
light curves. In particular, we verified that AIA 94Å intensity
peaks are above noise and are real. Although the light curves in
AIA 94 peak slightly after Hi-C 172/AIA 171 in Dot 1, these
are still near simultaneous.
Although most light curves peak closely together for both

dots, AIA 335, 211, 304, and IRIS SJ 2796 do not show
significant peaks for Dot 1. Because there is no indication that
the dots systematically appear in the hotter passbands (such as
hot 94 or AIA 94Å shown in green) before the cooler ones
(such as AIA 171Å shown in red), these events are different
from a typical coronal flare. This behavior of dot-like events
(that the peak happens in all passbands at the same time
without significant delays) is closely similar to the low-lying
Hi-C 193Å loop nanoflare events studied by Winebarger et al.
(2013). These events are thus evidently at transition region
temperature. For comparison, an example of a subflare is
shown in Appendix A, showing the typical cooling behavior
observed in coronal flares.
Dot 1 does not show a response or peak in AIA 211Å, and

Dot 2 shows only a weak response, probably because AIA 211

Figure 3. Close-up look at the two Hi-C dot-like brightening events. The solid and dashed–dotted lines in (c) and (d) are two plots at nearby different times (solid line
at 18:58:32, dashed–dotted line at 18:58:58) when both dots seem to be apparently brightest. The slight shift in the Dot 2 intensity most probably is a real shift in the
location of the peak intensity of the dot in the given time difference but might be due to smearing of the Hi-C data (Rachmeler et al. 2019). The approximate diameter
and brightness enhancement with respect to the background of the dots are also given. The diameter of dots (∼2 5) is several times larger than the diameter of the Hi-
C point-spread function (�0 4; Kobayashi et al. 2014).
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detects plasma emission from the overlying hotter atmosphere
(at 2 MK) and has a response an order of magnitude lower than
the 700,000 K plasma seen by the Hi-C 172Å filter and AIA
171Å filter.

Note that although hot 94 calculation works relatively well for
hotter AR loops, it may not work so accurately for tiny, cooler
events such as our Hi-C dots owing to a rather complicated
thermal response of AIA 94Å (see, e.g., Aschwanden & Boerner
2011; Del Zanna et al. 2011; Foster & Testa 2011; Schmelz et al.
2011; Testa et al. 2012; Del Zanna 2013). Thus, the appearance

of a dot in the hot 94 image may not suggest the dot’s true
temperature. This caveat is also valid for type II and type III
events, explored in the next two subsections.
We carefully inspected for any dark/bright plasma flows linked

to type I events. We found no apparent outflows (plasma flowing
away from dots) or inflows (plasma flowing toward dots) within
either of these two dot events in the Hi-C 172Å and AIA 171Å
images. The IRIS SJ images, however, show plasma upflow in
the Dot 2 event, from the brightening (prospective magnetic
reconnection) site south of the dot.

Figure 4. Images showing magnetic flux evolution for Dot 1 and Dot 2. A convergence can be noticed at the places pointed to by green and blue arrows in the top row
for Dot 1. These are a small FOV taken from a few frames of the movie “hic_iris_sdo.mp4”—the convergence can be more closely followed in the movie. Calculation
of the flux cancellation rate is not reliably possible here owing to difficulty in isolating the flux patch of interest. Probably convergence-driven cancellation that triggers
Dot 1 is happening at the PIL and triggers a few other fainter brightenings at the location of Dot 1 (see, e.g., the faint brightening in the third frame of the Hi-C image
at 18:59:46). Similar flux evolution for Dot 2 is displayed in the lowest row. Both flux convergence and flux emergence are visible in the images. The green arrows in
the bottom panel of stacked Hi-C and HMI images point to one of the locations where flux convergence is happening. The contours converge on the PIL south of Dot
2 as the minority polarity decreases, that is, as the area of minority-polarity flux encircled by its contour decreases. We also make a plot showing negative magnetic
flux evolution for Dot 2, shown in the right of the middle row. The FOV used to calculate negative magnetic flux evolution is shown in the left three panels of the
middle row. In the flux evolution plot the Hi-C peak time of Dot 2 is marked by a dashed black vertical line. The vertical green dashed line marks the time when the
event starts appearing in IRIS SJI 2796 Å. The flux is integrated over the area south of Dot 2 because from IRIS SJI 1400 and IRIS SJI 1330 images the southern part is
evidently linked with the Dot 2 brightening—IRIS SJI show that the Dot 2 is near the middle or foot of an extended loop that starts before and ends after the 172 Å Dot
2 disappears. The flux cancellation rate is mentioned on the plot. Note that magnetic flux is emerging when the event Dot 2 is triggered—probably emergence-driven
cancellation is happening at the PIL.
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Each event is more elongated in IRIS 1400 SJ images than in
the Hi-C 172 and AIA 171Å images, with the bright dot seen
in Hi-C 172 and AIA 171 being nearly in the middle of the
elongated brightening seen by IRIS. A cartoon diagram
depicting a possible formation mechanism of type I events is

shown in Figure 14. We repeat that the “dot-like” nature only
applies to Hi-C 172Å or AIA 171Å images since IRIS (SJI
1400 and 1330Å) images show a loop-like feature (covering
the Hi-C dot in the middle or slightly farther north of the
feature). Therefore, as discussed later, the true magnetic

Figure 5. Light curves from Hi-C, AIA, and IRIS intensity images over Hi-C time for the two type I (dot-like) events pointed to by arrows in Figure 2. To avoid
confusion due to overlaps, light curves for each dot (and for all other events discussed later) are plotted in two panels. The Hi-C area selected for making light curves is
displayed as a small inset in the left panel for each dot during its peak intensity time in Hi-C. The vertical dashed line in each panel marks the peak time of the event in
Hi-C 172 Å, as listed in Table 1.
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structure of dots might resemble that of either type II events or
type III events.

3.2. Type II—Loop-like Events: Elongated Brightenings in
Small Magnetic Loops

We noticed several brightening events that are elongated in
Hi-C 172 and/or AIA 171Å images and look like small
magnetic loops (see Table 1). In most of these cases the
brightening starts from one end and extends to the other end.
Two of the loop-like brightening events are shown in Figure 6.
Other type II events can be noticed in the movies marked by

arrows. Each event listed in Table 1 is marked by an arrow in
Appendix B.
The events (Loop 1 and Loop 3 in Figure 6) are located on

obvious sharp neutral lines, and the long AIA movie (sdo_long.
mp4) shows a trend of flux convergence in general over the
time. We show in Figure 7 flux convergence at the neutral lines
of Loop 1 and Loop 3, suggesting flux cancellation being
involved in triggering these events. However, it is difficult to
isolate either of the magnetic polarities here, and therefore a
reliable estimate of magnetic flux cancellation rate is not
possible in these cases. The same is true for the other loop-like

Figure 6. Two examples of type II (loop-like) events pointed to by arrows in the Hi-C images. These events are Loop 1 and Loop 3 in Table 1. The location of the loop
in each case is also pointed out by the white arrow in IRIS SJI 2796, IRIS SJI 1400, AIA 171, AIA 304, and AIA hot 94 Å images. The red and yellow contours are for
positive and negative LOS magnetic field at a level of±25 G. For better visibility red color is replaced by green for contours on IRIS SJI 1400 and AIA 304 Å images,
and yellow color is replaced by blue for contours on IRIS SJI 1400 Å images.
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events. Therefore, we can only infer the possibility of flux
cancellation in these cases in which the canceling flux cannot
be isolated well enough to reliably measure the amount of flux
cancellation.

Interestingly, Loop 2 (at 18:59:02) does not show a neutral
line in the±25 G level contours. Nonetheless, because the
Loop 2 event is a “flare-like” explosive energy release (similar
to all of our events), the magnetic flux presumably has a neutral
line. In any case, other mechanisms (than flux cancellation) are
possible in each of our type I and type II events. One such
mechanism could be the convective driving of braiding from
the feet of the loop leading to the event (Parker 1983b, 1988;
Tiwari et al. 2014). Another possibility is that braiding from the
feet built up the free energy in the loop and then the event was
triggered by waves produced from photospheric convection
and p-mode oscillations (Moriyasu et al. 2004; Ning et al.
2004; Chen & Priest 2006; Heggland et al. 2009). Alter-
natively, wave dissipation without the presence of any braiding
in the loops can also lead to transient heating events
(Osterbrock 1961; Heyvaerts & Priest 1983).

Although proposed for coronal heating in quiet solar regions,
the flux tube tectonics heating model by Priest et al. (2002)
may be equally valid in the closed loop system of the AR core.
Any lateral motions of the surface magnetic flux in such a
closed loop system can drive transient heating in the chromo-
spheric/coronal separatrix surfaces of current sheets by fast
reconnection (or in a turbulent manner; see, e.g., Zank et al.
2018). Because there is a hint of weak negative magnetic flux
(below±25 G) at the right/west end of this event (Loop 2), we
cannot rule out the possibility of this event being a very tiny
surge-like event (type III), discussed in Section 3.3.

In Figure 8 we display light curves (intensity integrated over
∼2×2 arcsec2∼16×16 Hi-C pixel2∼4×4 AIA pixel2)
of Loops 1 and 3 in different AIA channels, IRIS wavelengths,
and Hi-C images. Light curves for other loops listed in Table 1
can be found in Appendix D. Most of the plots peak nearly
simultaneously. Note that neither hot 94 nor any of the IRIS
light curves show a peak in the Loop 3 event, which is a

particularly prominent loop. The absence of Loop 3 in IRIS SJI
and in hot 94 together suggests that this loop forms in the
transition region. Consistently, Peter et al. (2019a) show that in
this event there are simultaneous cool loops in IRIS but they are
not co-spatial—there is a small but significant offset between
the warm/hot Hi-C loop and cool IRIS loops, as can be seen in
Figure 6.
We do not find the systematic cooling sequence in any of the

loop events (an example of such sequential cooling in a small
flare is shown in Appendix A). Thus, similar to type I events,
type II events also do not behave like coronal flares and are
cooler (of transition region origin).
In most of the type II events brightening starts from one end

and moves to the other end. In a few cases both outflow
(plasma flowing away from the bright end) and inflow (plasma
flowing toward the bright end) signatures of hot (bright in most
channels) plasma can be noticed. However, it is difficult to
conclude from the images whether these are plasma flows or
only apparent motions (e.g., heating fronts, propagation of
shocks, etc.).
We explain via a cartoon in Figure 14 how type I and type II

could be similar in magnetic configuration and reconnection
and how type Is could be either symmetrically heated (true
dots) or actually asymmetrically heated as in type II, depending
on the visibility of heated loops.

3.3. Type III—Surge-like Eruptions

We found another (third) dot-like event in the Hi-C images
(at 19:01:56 UT; named Surge 4 in Table 1), but careful
inspection showed cool plasma outflow from the event
followed by a weak inflow. This behavior is similar to a weak
surge/jet activity. When we followed AIA and IRIS movies in
time beyond the Hi-C time range, in the core of the Hi-C AR,
we found several other surge-like activities in that plasma
shoots up, travels along a long loop, and then sometimes drains
back. The IRIS slit has covered the shooting end of these
events, in some cases allowing us to create Dopplergrams to

Figure 7. Three image frames of Hi-C images and HMI LOS magnetograms showing closely the magnetic evolution for Loop 1 (top panel) and Loop 3 (bottom
panel). The green arrows point to the locations where flux convergence is more obvious, although convergence is happening all along the neutral line in a longer time
span (see the movies hic_iris_sdo.mp4 and sdo_long.mp4). Contours are the same as in other images and movies.
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detect the flows. Two example type III events are shown in
Figure 9. The base of the surge-like activity is pointed to by a
white arrow in each panel. A cool plasma outflow from the
base is also marked by a green arrow in each panel—plasma
outflow is most clearly visible in Hi-C 172, AIA 171, and AIA
304. The surge extends to the right and then (more clearly
visible in AIA 304, 171, and 211) drains back toward the base
(see movies sdo_long.mp4 and iris_long.mp4).

In all type III events the presence of mixed-polarity flux, flux
emergence, convergence, and cancellation is clearly visible. In
Figure 10 we show flux emergence, as well as convergence-
driven cancellation taking place in Surge 4 and Surge 6.
Although convergence-driven flux cancellation seems to be
clearly responsible for triggering some type III events, there are
some clear examples of type III events happening during the
emergence of the minority-polarity flux. We show in
Appendix E flux evolution plots for the four other type III
events. Because in each of the type III (surge) events plasma
first shoots up (or to the right along the magnetic field lines)
and there is flux cancellation going on at the base, these
together suggest that the flux cancellation prepares and triggers
the eruption that drives the plasma outflows.

The light curves (intensity integrated over ∼2×2 arcsec2∼
16×16 Hi-C pixel2∼4×4 AIA pixel2) of different AIA
channels and IRIS wavelengths for Surges 4 and 6 are plotted in
Figure 11. Light curves for other surges listed in Table 1 can be
found in Appendix D. Similar to type I and type II events, all the
light curves for type III peak nearly simultaneously, suggesting
that we see the cooler plasma detected by the hotter channels, so
that these events are cooler/chromospheric/transition region
events (as in Winebarger et al. 2013).

Note that hot 94 does show intensity enhancement in Surge
6, but not in Surge 4. Nonetheless, neither of the two examples
nor any of the other type III events show a systematic cooling
pattern. Thus, they are likely not coronal-flare-like events.
However, some of their appearance in hot 94 (Fe XVIII
emission) suggests that these events might be heated up to
6 MK or more. In those cases (because intensities peak together
with cooler wavelengths) the cooling must be very fast so that
the heating can be balanced merely by radiative cooling
(probably conduction does not play a role; thus, no significant
time lag is seen). However, such a scenario would require very
high plasma density, which is not estimated in the present
work. Further, the calculation of hot 94 emission might have
uncertainties, particularly during a flare (Warren et al. 2012).

We cannot rule out the possibility of some of these events
being multithermal. The emission at 6 MK may become weak
very fast owing to the expansion, or because it is obscured by
EUV absorption.

The IRIS spectra did not cover any of the type I or II events
but did cover bases of most of the Type III events. Thus, it is
possible that type I and II events also had outflows (though
unobserved). Therefore, the idea that they could also be due to
some kind of unresolved surge-like eruptive process cannot be
ruled out. We made Dopplergrams to verify upflows/outflows
(plasma flowing away from the base of the surge) and/or
downflows/inflows (plasma flowing toward the base of the
surge) at or near the base of surges and to see whether there is a
twisting of the magnetic field, similar to jets (Schmieder et al.
2013; Cheung et al. 2015; Moore et al. 2015; Panesar et al.
2016, 2017; Sterling et al. 2017; Tiwari et al. 2018), which is
generally expected in flux rope eruptions.

The Dopplergrams (Figure 12) near the base of surges for
each of the three wavelengths (IRIS 2796, 1400, 1330Å) often
show simultaneous redshift and blueshift next to each other,
which reveals simultaneous upflow and downflow patterns
during the onset of surge events. In most cases a clear outflow
is evident near the bright source/base of the surges, consistent
with similar blueshift found in Hα surges by Canfield et al.
(1996). Because the redshift and blueshift are not on top of
each other (across a surge/jet, which could then suggest
twisting motion; see e.g., Tiwari et al. 2018), but rather side by
side (along a surge), we interpret this as plasma downflow and
upflow along the surge. Thus, no clear Doppler signatures of
twisting motions are found (in which across the elongated axis
of the surge/jet the LOS velocity on one side is toward the
observer and the LOS velocity on the other side is away from
the observer; e.g., Tiwari et al. 2018).
In the Dopplergrams for the Surge 4 event (Figure 12), the

strong redshifted point sits on the AIA 171 dot, and the
blueshifted feature is on the outflow site seen in the AIA 171
movie. These Dopplergrams show no evidence of spin in the
outflow, but show only the component of the outflow
velocity along the LOS. Thus, the Hi-C 172 dot-like
brightening in this case is a jet-base bright point, and it is
compatible with the idea of surge formation in Figure 15, that
it should have downflow in it giving the redshift in the IRIS
spectra. In Figure 13 spectra along two slit positions during
the peak of events Surge 4 and Surge 6 are displayed, which,
consistent with the Dopplergrams, show redshifts and
blueshifts.

4. Discussion

We report on three types of small-scale explosive energy
release, sudden-brightening events, in the core of an AR
observed by a unique combination of instruments—Hi-C, IRIS,
and SDO/AIA. We first characterize the transient brightening
activity that we noticed in the Hi-C 172Å images: type I—a
confined dot-like brightening event, never reported before in
the core of an AR; type II—an elongated brightening in and
along a short magnetic loop. We then investigate a third type of
event occurring in the same region—type III—a surge/jet-like
eruption. Much smaller jets (than our surges/jets), outside the
AR in the Hi-C data, have been reported at sites of magnetic
flux cancellation by Panesar et al. (2019).
Each of our events (with one exception) shows the

presence of mixed-polarity magnetic field (with sharp neutral
line(s) shown by±25 G contours) at the base, often with
ongoing flux convergence. We show quantitative evidence of
flux cancellation in seven cases and infer the presence of flux
cancellation in other cases based on the observed flux
convergence. Although we do not rule out other possibilities,
the observations of flux convergence at the base of events
suggest that flux cancellation could play an important role
in triggering several of these events, in accord with many
recent similar findings of flux cancellation leading to jet
eruptions (Huang et al. 2015; Panesar et al. 2016, 2017,
2018a; Tiwari et al. 2016, 2018; Sterling et al. 2017, 2018;
López Fuentes et al. 2018). As was first proposed by van
Ballegooijen & Martens (1989) and Moore & Roumeliotis
(1992) and has been observationally confirmed (e.g., Panesar
et al. 2016, 2017, 2018a, 2018b; Sterling et al. 2018; Tiwari
et al. 2018; Chintzoglou et al. 2019), the process of flux
cancellation (driven by converging photospheric flows) can
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prepare and trigger the magnetic field that explodes in a
flare eruption. The magnetic explosion is either confined
(does not produce a surge, jet, or CME) or ejective (produces
a surge, jet, or CME) (e.g., Machado et al. 1988; Moore et al.
2001). Some of our small-scale events occur during flux
emergence, suggesting that emergence-driven cancellation
prepares and triggers some of these events, the preparing

again being by flux cancellation in the manner of van
Ballegooijen & Martens (1989), and the triggering again
being by flux cancellation in the manner of Moore &
Roumeliotis (1992).
Although observed in a different wavelength, our dot-like

brightening events have much visual similarity with IBs (Peter
et al. 2014) and EBs (Rutten et al. 2013). However, EBs are

Figure 8. Light curves from Hi-C, IRIS slit-jaw (SJ), and AIA images during Hi-C time for two type II (transient bright loop) events, namely, Loop 1 and Loop 3,
pointed to by arrows in Figure 6. The Hi-C area selected for making light curves is displayed as a small inset in the left panel for each loop during its peak intensity
time in Hi-C. The peak times of the events in Hi-C are marked by vertical dashed lines. The light curves for Loop 1 peak in the early phase of the Hi-C observing
period. Due to the integrated area of the SJI covering a few (dark) pixels from a dust patch, some of the IRIS light curves show repeated fluctuations.
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much cooler (<10,000 K), have much longer lifetimes, and are
more stable/continuous/repetitive brightenings than our dot-like
small-scale events reported here. Thus, the observed dot-like
events are not simply EBs. IBs (Peter et al. 2014) have more
visual similarities with our dot-like events—they are hotter than
EBs, they have a similar size and intensity enhancement with
respect to background as our dot-like events, and they are all
found near mixed-polarity flux and sharp neutral lines. However,
both EBs (∼560 s; Watanabe et al. 2011) and IBs (∼5 minutes)

have much longer lifetimes than our Hi-C dot-like events
(∼70 s). A caution with this interpretation is made at the end of
next paragraph.
Further, IBs and our dot-like events are apparently seen at

different temperatures. Peter et al. (2014) found that IBs show
no brightenings in AIA 171Å, whereas our dot-like events are
seen in Hi-C 172Å. Thus, our dot-like events (type Is) are
apparently much hotter and briefer explosions than those of
IBs. A caveat is that AIA 171 channel emission might suffer

Figure 9. Two examples of type III events (Surge 4 and Surge 6) each pointed to by white arrows in each panel: Hi-C, IRIS SJI 2796, IRIS SJI 1400, AIA 171, AIA
304, and AIA hot 94 Å images. Note that Hi-C data are not available for Surge 6 and the HMI LOS magnetogram is used for a panel instead. Green arrows point to the
cool plasma (most clearly visible in AIA/Hi-C 171/172 Å) shooting outward. The red and yellow contours are for positive and negative LOS magnetic field at a level
of±25 G. For better visibility red color is replaced by green for contours on IRIS SJI 1400 and AIA 304 Å images, and yellow color is replaced by blue for contours
on IRIS SJI 1400 Å images. Two vertical dashed lines in SJI 2796 mark the east–west boundary of IRIS slit scans, Dopplergrams for which are available as a video—
Doppler.mp4.
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with bound-free absorption, which could lead to shorter
lifetimes of our dot-like events. Moreover, the Hi-C passband
covers O V/VI lines, which form at a much lower temperature.

Thus, it is possible that we see cool transition region
contamination in the AIA and Hi-C passbands. This subject
thus remains open for further investigation.

Figure 10. Magnetic flux convergence and cancellation in Surge 4 and Surge 6. Small FOVs covering the base of Surge 4 and Surge 6 (Hi-C, SJI 1330, and LOS
magnetogram) are shown in the upper left panels for both Surge 4 and Surge 6—the same FOV is used to calculate flux evolution plots (negative flux for Surge 4;
positive flux for Surge 6) shown in the upper right panels for each of these surges. The peak time of the event is marked by a dashed black vertical line. The vertical
green dashed line marks the time when the event starts appearing in SJI of Mg II λ2796. The emergence, convergence, and cancellation are also visible for each event
in the movie hic_iris_sdo.mp4. The flux cancellation rate is mentioned in the plots. Evidently magnetic flux emergence (and convergence; see contours at neutral lines
marked by green arrows) driven cancellation at the PIL triggers these events.
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Note that type I events are also visible in AIA 171Å but not
as outstandingly as in Hi-C, and so they remained unnoticed
earlier and were not reported before in the core of ARs. There
are similar bright dots reported in the past elsewhere in the

solar atmosphere, e.g., in sunspot penumbra using IRIS data
(Tian et al. 2014) and Hi-C 1 (in 193Å) data (Alpert et al.
2016), in the surroundings of the Hi-C 1 AR (Régnier et al.
2014). The “sparkling” bright dots in the moss region (at the

Figure 11. Light curves from AIA and IRIS intensity images for two Type III (surge/jet-like) events: Surge 4 and Surge 6 pointed to by arrows in Figure 9. The Hi-C
area for Surge 4, or the AIA area for Surge 6, selected for making light curves is displayed as a small inset in the left panel for each surge during its peak intensity time
in AIA 171. Because the relative intensity of the Hi-C images drops quickly after 19:01:20 UT (see, e.g., Figure7 of Rachmeler et al. 2019), the images after this time
are not usable for making light curves, and thus the Hi-C light curve is not plotted for Surge 4. The vertical dashed lines mark times for the peak brightness of the
events in AIA 171 Å. Due to the integrated area of the SJI covering a few (dark) pixels from a dust patch, some of the IRIS light curves show repeated intensity
fluctuations.
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edge of the AR) of Hi-C 1, studied by Régnier et al. (2014)
have shorter lifetimes (25 s) and are smaller (700 km) than our
dots. These sparkling bright dots form in EUV corona, having a
temperature of 1–1.5 MK, similar to that of our dots.

The moving bright dots in sunspot penumbra were proposed
to form owing to impact of strong downflows from the corona
into the diverse-density chromosphere/transition region, or by
magnetic reconnection in two field lines inclined at different
angles (Alpert et al. 2016). The dots in the plage area
surrounding ARs were proposed to be a result of nanoflares

high in the moss loops (Régnier et al. 2014). The formation
mechanism of the present dot-like brightening events seems to
be different—these are located at or near sharp PILs and so are
plausibly triggered by flux cancellation or by flux emergence
(which drives flux cancellation on its outside; Moore &
Roumeliotis 1992), which was not the case in the EUV-bright
dots at the edge of Hi-C 1 AR, or in penumbral moving
bright dots.
Most of the type II loop-like events also have mixed-polarity

magnetic field (with sharp neutral lines) on the photosphere,

Figure 12. Dopplergrams of Mg II, Si IV, and C II lines during the peak of the events Surge 4 and Surge 6 displaying blueshift and redshift (plasma flow patterns) at
the event locations. See the movie “Doppler.mp4” to follow these events in time. The black saturated is redshift, and white saturated is blueshift in the image and in the
movie. Similar to that in the movie, the time of first slit position in each raster is given on each panel of the image. The yellow circle is centered on the base in Surge 4
(white arrow in Figure 9) but is centered beside (west of) the base in Surge 6 (white arrow in Figure 9). The spectra along two slit positions are shown in Figure 13.

Figure 13. Mg II, Si IV, and C II spectra along two consecutive slit positions for the Surge 4 event (at 19:01:56 UT) and Surge 6 event (at 19:33:21 UT).
Corresponding Dopplergrams displaying blue and red flow patterns during the event are shown in Figure 12. The yellow lines outline the north–south boundary of the
events, outlined by circles in Figure 12.
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but flux cancellation is not as clearly visible as in type I or type
III events. However, a careful inspection reveals the presence
of flux convergence along the sharp neutral line, plausibly
driving cancellation, accompanied by the loop brightening. The
presence of mixed-polarity field and/or flux cancellation has
recently been reported to play an important role in coronal loop
heating and is proposed to be present at least at one footpoint of
a bright coronal loop (Tiwari et al. 2014, 2017; Chitta et al.
2017a; Priest et al. 2018). Here we show smaller loop events
than earlier reported ones, but some of these might share the
heating mechanism with those coronal loops with mixed-
polarity field at least at one foot.

We note the following caveat: the presence of a neutral line
in short loops does not necessarily mean that there must be flux
cancellation. Short, low-lying loops obviously have opposite-
polarity magnetic field in proximity and thus occur close to the
neutral line, and thus they may have flux cancellation.
Therefore, whether most of the bright loops form because of
flux cancellation (which results from submergence of short
loops made by magnetic reconnection of the legs of adjacent
sheared loops driven together at the PIL by convection)
remains elusive.

Several alternative mechanisms are plausible to generate
type I and II events. For example, random footpoint shuffling
of magnetic loops can braid the loops, which can lead to the
events by reconnections in the form of nanoflares (sudden
current dissipation; Parker 1983b, 1988). The heating could
also be caused by wave dissipation (e.g., Osterbrock 1961;
Heyvaerts & Priest 1983). Reconnection events could also be
triggered by waves (produced from the photospheric convec-
tion at loop foot; Heggland et al. 2009), or by external
triggering of loops (Tiwari et al. 2014). As discussed before, a
flux tube tectonics heating model also predicts low-lying
smaller loops to possess enhanced heating (Priest et al. 2002).

Because in most of the type II events brightenings start at
one end and move toward the other end along the loop, it is
possible that type II events are formed in the same way as type
III events.

If they peak, the light curves from all AIA and IRIS channels
(for all of these events) peak nearly at the same time. Note that
in a few cases, e.g., in Loop 3 in Figure 8, IRIS SJ intensity
dose not show a consistent peak in the light curves. Similarly,
although many of our events do, some do not show a peak in
hot 94. However, none of our events display a systematic
cooling pattern as seen for typical coronal solar flares. Thus,
our events are either cool (at chromospheric/transition region
temperature), i.e., a cool contamination to coronal passbands,
or broadly isothermal (in substructures/strands), similar to the
low-lying loop nanoflare events reported by Winebarger et al.
(2013). If the latter is true, then the cooling time in each strand
might be so short that the heating is balanced by radiative
cooling.

Type III events show clear flux cancellation and plasma
outflow from the source region, often followed by plasma
inflow. These events have a dot-like structure at the source
region in Hi-C 172Å (when available) and AIA 171Å images.
Therefore, if surges are very small and do not show a clear
outflow, they can be mistaken to be type I events. We suspect
that Dot 2 is a type III event. Thus, Dots 1 and 2, and any other
dot-like events, might be made in the same way as a type II or a
type III event. Similarly, some type II events can be interpreted
as small type III events, as we suspect in the case of Loop 2.

Dopplergrams of type III events provide confirming
evidence of plasma outflows along the field during its initial
phase and inflows during the later phase. The eruption triggered
by flux cancellation (due to submergence of lower reconnected
loop) evidently drives outflows—if similar flux cancellation
were to occur at both feet of a loop system, these could drive
simultaneous bidirectional flows, which will be similar to the
well-known counterstreaming flows in large classical filaments
(e.g., Alexander et al. 2013). However, this remains only
speculation in absence of clear evidence of such counter-
streaming flows in the core of the Hi-C AR studied here.
In Table 1 only one event (type II, Loop 2) does not contain

a clear neutral line shown by±25 G contours. This could be
due to the absence of mixed-polarity field, or the minority-
polarity flux may be below the detection limit of the SDO/HMI
instrument. A more detailed future study with higher-resolution
vector magnetograms, e.g., obtained by DKIST (Rimmele et al.
2018) or other new-generation solar telescopes, would confirm
or deny the proposed scenario of the formation of loop-like
events.

4.1. Proposed Configuration and Reconnection of the Magnetic
Field in Each Event Type

Here we present simplistic 2D schematic drawings for
the magnetic field and its reconnection that could produce the
events studied here. As discussed earlier, type I could be the
same as type II—both seem to be often elongated (particularly
visible when seen in IRIS SJI)—and at some phase of these
events a loop-like elongated structure can be noticed. This
suggests that dot-like events are basically similar to loop-like
events but with more confined extension of a reconnection-
resultant loop. Plausibly IRIS sees both the upper and lower
loops that are made and heated by magnetic reconnection, and
the Hi-C 172 and AIA 171 images show only the upper loop
because the upper loop is hot enough to show in Hi-C 172 and
AIA 171Å images but the lower loop is not hot enough. Both
of these are found mostly located at or near mixed-polarity
field/neutral lines.
The cartoon diagram shown in Figure 14 proposes a possible

formation mechanism for type I and II brightening events. The
magnetic reconnection (indicated by the red cross in (b)) occurs
between the legs of two sheared field loops (one in front of the
cross, the other behind) that are perhaps sheared and pushed
together by photospheric shearing convection merging at the
PIL. We note that this picture (presented in Figure 14) is a
speculation based on the magnetic settings and evolution of
magnetic flux in the photosphere—to the best of our (and an
anonymous referee’s) knowledge no theoretical model or
computational simulation that tests this specific scenario is
available. However, we note that the magnetic topology and
reconnection depicted in Figure 14 and their rationale are
essentially those for any one of the nanoflare reconnection
events proposed by Parker (1983a, 1983b, 1988) for coronal
heating in a closed magnetic loop, each nanoflare burst of
reconnection occurring at a current sheet built in the body of
the loop by photospheric convection in the loop’s feet.
Similar to type II events, type Is are confined (no obvious

ejective outflow), but unlike type IIs, type I events are brightest
in the middle, not brightest on one end. Thus, type Is could be
the same as type II (loop) events, except they are shorter and
more symmetrically heated.
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An alternative possibility of the formation of type II loop-
like events (and possibly of dot-like events) is given in the
following. A few of these cases, particularly in type II (loop
eruptions with mostly unidirectional flow), have flux emer-
gence before flux cancellation, thus suggesting a loop–loop
interaction scenario (with three-legged magnetic field config-
uration), as suggested by Hanaoka (1997) for flares, jets, and
surges. The loop–loop interaction may cause component
reconnection of crossed flux tubes rooted in the same-polarity
magnetic flux.

Type III events most clearly show flux emergence and
cancellation at the driver end. Plausibly, the flux-emergence-
driven cancellation at the neutral line prepares and triggers a
fine-scale core magnetic field structure (a small sheared/

twisted core field or flux rope along and above the cancellation
line) to explode. A cartoon diagram depicting this formation
scenario for type III surge-like events is shown in Figure 15.

Figure 14. Schematic depiction of the proposed configuration and reconnection
of the sheared and twisted bipolar magnetic field in fine-scale explosive energy
release events of type I (dot-like) and type II (loop-like). The thick black line is
the photospheric surface. The plus and minus signs give the polarity of the
photospheric magnetic flux. The curves represent crossed field loops projected
on a vertical plane perpendicular to the PIL. The PIL lies along the view
direction and is midway between the plus sign and the first minus sign to the
right of the plus sign. Blue curves are for a field that has not yet undergone
reconnection. Red curves are for a reconnected field. In (a) and (b), the right leg
of the left blue loop is in front of the left leg of the right blue loop. In (b), the
red cross marks the site of ongoing reconnection between those two loop legs,
the two solid-line loops are for a type I event, the dashed curve depicts that the
right loop has a longer rightward reach in a type II event, and the red arrows
denote the outflow of the upper and lower reconnected field loops and their
plasma. In (c), the lower solid curve is the lower reconnected field loop in a
type I event, as well as in a type II event, the upper solid curve is the upper
reconnected field loop in a type I event, and the dashed curve depicts that the
upper reconnected field loop has a greater rightward reach in a type II event.
Note that this depiction is a possibility for type I and type II events whether or
not the pre-event magnetic field is prepared and triggered by flux cancellation
at the PIL. The pre-event field might instead be twisted by convection in the
loop feet and perhaps triggered by the same convection or p-mode oscillations.

Figure 15. Schematic depiction of the proposed configuration, eruption, and
reconnection of the magnetic field in fine-scale explosive energy release events of
type III, each of which is a surge/jet-like eruption from a fine-scale island of
minority-polarity (negative) flux that is undergoing cancellation with the majority-
polarity (positive) flux in the east end of the arch filament system. The style and
meaning of the symbols, lines, curves, and color are the same as in Figure 14.
Here, each curve is either a field line in or the projection of a field line onto a
vertical plane through the center of a negative-flux island in surrounding positive
flux. Rightward is heliographic west; leftward is east. In (a), the curled field
straddles the PIL on the west edge of the island and is in a twisted flux rope
(viewed end-on from the south) that has been built by flux cancellation driven at
the PIL by convergence of convection flow in and below the photosphere. This
flux rope is the core of a sheared magnetic arcade that straddles the PIL and that, as
a result of further flux cancellation at the PIL, is triggered to start erupting in the
time between (a) and (b). In (b), the erupting arcade is driving (1) external
reconnection with encountered far-reaching field that reaches to the west end of the
arch filament system, and (2) internal reconnection of the legs of the erupting
arcade. The external reconnection drives westward plasma flow out along the
reconnected far-reaching field. The internal reconnection builds a miniature flare
arcade that is seen in Hi-C and AIA coronal EUV images (registered with HMI
magnetograms) as a bright point located on the cancellation PIL of the magnetic
island. In (c), the eruption and reconnection have ended and some of the previously
ejected plasma is draining back to the foot of the reconnected far-reaching field.
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The flow patterns (redshift in the left/east and blueshift in the
right/west) in (b) are consistent with that observed in
Dopplergrams; see, e.g., Figure 12 and movie Doppler.mp4.

As mentioned before, type I and type II events might be
smaller versions of type III event, and all three kinds of events
could form in the same way as proposed in Figure 15. In that
case each of our type I and II events may occur at an embedded
flux island that is near the neutral line but is too small/weak to
be detected in the HMI magnetograms. The field configuration
sketched in Figure 14 is for any type I or type II event in which
HMI sees only a single long neutral line and no embedded flux
island.

The eruption that drives the production of the jet/surge
could be prepared and triggered by magnetic flux cancellation.
In this mechanism, instead of flux emergence, flux cancellation
leads to and triggers the jet/surge eruption. A twisted flux rope
forms by flux cancellation (van Ballegooijen & Martens 1989;
Panesar et al. 2017; Sterling et al. 2018), which is then
triggered (to erupt and drive internal and external reconnections
as in Figure 15) by further flux cancellation (van Ballegooijen
& Martens 1989; Panesar et al. 2016, 2017; Sterling et al. 2017;
Panesar et al. 2018a, 2018b). Recent theoretical models support
this scenario (Wyper et al. 2017, 2019). Earlier models of
X-ray-bright points also showed that flux cancellation can drive
small-scale brightening events (e.g., Priest et al. 1994). The
magnetic configuration as shown in Figure 15 is similar to the
configuration as found in UV bursts. There, following flux
emergence, the minority polarity cancels with the majority
polarity of opposite sign (Chitta et al. 2017b). Another recent
reconnection modeling shows a similar situation to that shown
in our Figure 15, which is found to lead to a bidirectional jet
(Peter et al. 2019b).

In their MHD simulations Shibata et al. (1992b), Yokoyama
& Shibata (1995, 1996), Moreno-Insertis & Galsgaard (2013),
and Nóbrega-Siverio et al. (2016) showed that reconnection
between emerging magnetic flux and overlying magnetic field
can create surges, thus advocating for magnetic reconnection as
an essential process for large-scale (flares) to small-scale (jets
and surges) events. The field-aligned flows in surges (or
apparent intensity propagation in loops) might be accelerated
by the enhanced gas pressure behind the shocks driven by
magnetic reconnection. The cool and hot plasma could be
ejected in this process (Shibata et al. 1992a; Yokoyama &
Shibata 1996). Because we observe both magnetic flux
emergence and cancellation, the surges might be formed in
the way proposed by Shibata et al. (1992a, 1992b) and
Yokoyama & Shibata (1995, 1996).

We would like to stress that most of the observed flux
cancellation is plausibly a result of submergence of short loops
made by convection-driven magnetic reconnection. This is
what is also shown in Figures 14 and 15. When we mention
that flux cancellation prepares and triggers an event, this means
that a small flux rope/minifilament is formed in the way
proposed by van Ballegooijen & Martens (1989), and then
runaway internal reconnection under the flux rope (in the lower
solar atmosphere, say, in the chromosphere; of course, these
heights are set by the size of the closed field lobes of the jet
base) unleashes the eruption that drives external reconnection
that makes the jet spire (Moore & Roumeliotis 1992; Moore
et al. 2001; Sterling et al. 2015; Panesar et al. 2016, 2017;
Wyper et al. 2017; Tiwari et al. 2018).

5. Conclusions

We have reported small-scale explosive energy release
events observed in the core of the AR observed by Hi-C 2.1.
We find three types of transient brightening events: type I dot-
like, type II loop-like, and type III surge/jet-like. Most of the
events we studied here are located at or near sharp neutral lines,
and some show clear evidence of flux cancellation, often led or
followed by flux emergence. Emergence-driven or converging-
flow-driven flux cancellation plausibly prepares and triggers
several of the three types of events we investigated.
We also mention other possible mechanisms, e.g., these

events could be sudden energy release by wave dissipation, or
by nanoflares in braided loops (either produced by footpoint
shuffling or induced by waves). Dot-like events fit being a part
of either loop-like events or surge-like events. Based on the
similarities in intensity propagation and the photospheric
magnetic field setting and evolution of several type I and II
events with type III events, one can expect type I and type II
events to be smaller versions of type III events. However, to
confirm this, further detailed investigation of more cases with
Hi-C-like or better instrumentation is required.
The IRIS spectra available for type III events show complex

activities at their base and upflowing cool material; as expected
in a surge/jet activity, these events show outflows in the initial
phase and inflows in the late phase. Because the light curves
(from Hi-C, IRIS, and different AIA channels) for most of type
I, II, and III events peak nearly simultaneously, and for none of
the events show a coronal-flare trend of cooling, all three types
(except for those clearly showing up in hot 94Å images—in
them the cooling time is so short that the heating is balanced by
radiation) apparently have transition region and/or chromo-
spheric (and not coronal) temperature, but see Section 4 for
caveats.
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Appendix A
Light Curves for a Subflare in the Hi-C Active Region

In Figure 16, we plot AIA light curves for a small flare in the
Hi-C AR during 18:39:33—18:59:50 UT for a comparison with
the light curves for our three types of events studied in this
paper. These light curves show a systematic cooling sequence
similar to that observed in typical solar coronal flares.

Figure 16. Light curves (right panel) from AIA intensity images for a subflare event peaking in AIA 94 at 18:43:59 UT. The area for the light curves is outlined by a
black box in a hot 94 image of the subflare (left panel). See the flare evolution in the movie sdo_long.mp4. A systematic cooling in this small flare can be seen in the
light curves—note the time sequence of the peaks of the successively cooler channels: hot 94/AIA 94, 335, 211, 193, and then AIA 171.
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Appendix B
Hi-C or AIA 171Å Images at the Peak Time of All

Brightening Events Listed in Table 1

Figure 17 contains 15 images of Hi-C or AIA, one for each
event (during its peak time) listed in Table 1.

Figure 17. Image frame of each of the events (during their peak time) as listed in Table 1. Each of these is a frame from either Hi-C 172 Å movie “hic_iris_sdo.mp4”
(when available) or AIA 171 Å movie “sdo_long.mp4.” Each event is pointed to by a green arrow.
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Appendix C
Examples of Unidirectional and Bidirectional Flows

Figure 18 shows one example of unidirectional flow (for
Loop 2) and one example of bidirectional flow (for Surge 6).

Figure 18. Example of unidirectional flow (in Loop 2) and bidirectional flow (in Surge 6). These image frames are for reference; the flows (seen as intensity
propagations) are more obvious in the movies.
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Appendix D
Light Curves of the Other Nine Events Listed in Table 1

Figures 19–23 display light curves for Loops 2, 4, 5, 6, and
7, and Surges 1, 2, 3, and 5, respectively.

Figure 19. Light curves from AIA and IRIS intensity images over Hi-C time for Loop 2. The Hi-C area selected for making light curves is displayed as a small inset in
the left panel during its peak intensity time in Hi-C. Due to the integrated area of the SJI covering a few (dark) pixels from a dust patch, some of the IRIS light curves
show repeated fluctuations. The dashed vertical line marks the peak time of the event.
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Figure 20. Light curves from AIA and IRIS intensity images for Loops 4 and 5. The AIA 171 Å area selected for making light curves is displayed as a small inset in
the left panel for each loop during its peak intensity time in AIA 171 Å. The vertical dashed lines mark times for the peak brightness of the events in AIA 171 Å.
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Figure 21. Light curves from AIA and IRIS intensity images for Loops 6 and 7. The AIA 171 Å area selected for making light curves is displayed as a small inset in
the left panel for each loop during its peak intensity time in AIA 171 Å. The vertical dashed lines mark times for the peak brightness of the events in AIA 171 Å. Loop
6 is a double-peak event. For Loop 7, the IRIS observation time ends soon after the peak time of the event.

25

The Astrophysical Journal, 887:56 (30pp), 2019 December 10 Tiwari et al.



Figure 22. Light curves from AIA and IRIS intensity images for Surges 1 and 2. The AIA 171 Å area selected for making light curves is displayed as a small inset in
the left panel for each surge during its peak intensity time in AIA 171 Å. The vertical dashed lines mark times for the peak brightness of the events in AIA 171 Å. Note
that for Surge 1 the IRIS coverage starts after the event has already started.
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Figure 23. Light curves from AIA and IRIS intensity images for Surges 3 and 5. The AIA 171 Å area selected for making light curves is displayed as a small inset in
the left panel for each surge during its peak intensity time in AIA 171 Å. The vertical dashed lines mark times for the peak brightness of the events in AIA 171 Å. For
Surge 5, AIA 171 Å (in particular) shows a double peak in the light curve.
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Appendix E
Magnetic Flux Evolution in Surges Displaying Flux

Emergence and Cancellation

Figures 24 and 25 display magnetic flux evolution plots and
images for Surges 1, 2, 3 and 5.

Figure 24. Magnetic flux evolution showing emergence and cancellation in Surge 1 and Surge 2. Small FOVs covering the base of Surge 1 and Surge 2 (AIA 171,
IRIS SJI 1330, and HMI LOS magnetogram) are shown in the upper left panels for both Surge 1 and Surge 2—the same FOV is used to calculate flux evolution plots
(negative flux for both) shown in the upper rightmost panels for each of these surges. The peak time of the event is marked by a dashed black vertical line. The vertical
green dashed line marks the time when the event starts appearing in AIA 304 or SJI of Mg II λ2796. The emergence, convergence, and cancellation are also visible for
each event in the movie hic_iris_sdo.mp4. The flux cancellation rate is mentioned in the plots. Evidently magnetic flux emergence (and convergence) driven
cancellation at the PIL triggers these events.
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