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Abstract: Observational epidemiological studies indicate that endometriosis and migraine co‐occur 

within individuals more than expected by chance. However, the aetiology and biological 

mechanisms underlying their comorbidity remain unknown. Here we examined the relationship 

between endometriosis and migraine using genome‐wide association study (GWAS) data. Single 

nucleotide polymorphism (SNP) effect concordance analysis found a significant concordance of SNP 

risk effects across endometriosis and migraine GWAS. Linkage disequilibrium score regression 

analysis found a positive and highly significant genetic correlation (rG = 0.38, P = 2.30 × 10−25) between 

endometriosis and migraine. A meta‐analysis of endometriosis and migraine GWAS data did not 

reveal novel genome‐wide significant SNPs, and Mendelian randomisation analysis found no 

evidence for a causal relationship between the two traits. However, gene‐based analyses identified 

two novel loci for migraine. Also, we found significant enrichment of genes nominally associated 

(Pgene < 0.05) with both traits (Pbinomial‐test = 9.83 × 10−6). Combining gene‐based p‐values across 

endometriosis and migraine, three genes, two (TRIM32 and SLC35G6) of which are at novel loci, were 

genome‐wide significant. Genes having Pgene < 0.1 for both endometriosis and migraine (Pbinomial‐test = 

1.85 ×10−°3) were significantly enriched for biological pathways, including interleukin‐1 receptor 

binding, focal adhesion‐PI3K‐Akt‐mTOR‐signaling, MAPK and TNF‐α signalling. Our findings 

further confirm the comorbidity of endometriosis and migraine and indicate a non‐causal 

relationship between the two traits, with shared genetically‐controlled biological mechanisms 

underlying the co‐occurrence of the two disorders. 
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1. Introduction 

Endometriosis is one of the leading gynaecological disorders affecting 6%–10% of women of 

reproductive age and 35%–50% of women with infertility worldwide [1,2]. The disorder is defined by 

the presence of endometrial tissue in extra‐uterine locations and characterised by varying degrees of 

pelvic, menstrual, abdominal, bowel and lower‐back pain as well as infertility [1,2]. With an estimated 

global prevalence of 14.7%, migraine, on the other hand, is the most disabling neurologic disorder and 

the third most common illness worldwide [3,4]. Like endometriosis, women in their reproductive and 

most productive years are more commonly affected with migraine [5,6]. A typical migraine presents 

with a recurrent, unilateral and episodic headache of moderate to severe intensity [7]. Both 

endometriosis and migraine portend substantial morbidity with wide‐ranging socioeconomic burdens 

to sufferers, their families, relationships, and the society at large [8–11]. Notably, the diagnosis of the 

two disorders is challenging, due to a lack of diagnostic markers, which often results in missed or 

delayed diagnosis. Also, the aetiology and pathogenesis of endometriosis and migraine remain 

relatively obscure, and there are currently no known curative treatments for them. 

While endometriosis and migraine appear to have clear‐cut distinctions—anatomically, as well as 

in terms of clinical diagnosis and disease classification—some shared epidemiological characteristics 

or similarities suggest a comorbid relationship between them. For instance, similar to endometriosis, 

which almost exclusively affects women [12], migraine has a substantially higher prevalence in 

women (15%‒18%) compared to men (6%), and women of reproductive age also experience a longer 

duration of migraine attacks with greater disability [13–16]. The two disorders share similar risk 

factors in women including early menarche, menorrhagia, and involvement of the menstrual cycle in 

their pathogenesis [17–19]. Indeed, increased exposure to menstruation is a known risk factor for 

endometriosis just as menstrual migraine and menstrually‐related migraine (with prevalence varying 

from 4%–70%) are common subtypes of migraine in women [20–24]. Furthermore, Danazol (a 

synthetic androgen for managing endometriosis) has been reported to reduce the frequency of 

migraine attacks [25]. In addition to their shared similarities and risk factors, the comorbidity 

(co‐occurrence of two or more conditions in the same individual) of endometriosis with migraine has 

been consistently reported by observational epidemiological studies [5,6,18,26–29].  

As far back as 1975, for example, a clinic‐based study had reported a higher prevalence of 

headache (84%) among women diagnosed with endometriosis compared to the control (60%, P = 0.007) 

[26]. Interestingly, 28% of the endometriosis cases described their headaches as migraine‐like 

compared to only 18% (P = 0.023) in control [26]. In a related case‐control study, over two times higher 

prevalence of migraine was found in endometriosis (38.3%) compared to the control (15.1%, P < 0.001) 

[27]. A study investigating the cost implications of endometriosis in the United States similarly found a 

three‐fold greater prevalence of migraine in endometriosis compared to the general population [28]. 

More recently, adolescents with surgically confirmed endometriosis had over two‐fold greater 

prevalence (69.3% vs 30.7%) and nearly five‐fold increased odds of migraine (adjusted Odds Ratio 

[AOR] = 4.77; 95% CI: 2.53–9.02) compared to their counterparts with no endometriosis [30]. Also, a 

recent French case‐control study similarly found a higher prevalence of endometriosis in migraine 

cases (35.2%) compared to controls (17.4%, P = 0.003) [5]. 

The consistent and growing evidence on the endometriosis–migraine comorbid relationship, 

notwithstanding, some questions remain unanswered. First, is the endometriosis–migraine 

comorbidity reported in observational studies a true association, or could the findings be due to the 

confounding effects, biases, or otherwise false‐positive results of the traditional observational studies? 

Second, is there a causal relationship between endometriosis and migraine? Third, are there some 
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shared genetic variants, susceptibility loci, genes and biological pathways between the two disorders? 

Last, what biological mechanism(s) may underlie possible endometriosis–migraine comorbidity?  

Using a twin‐based study approach, Nyholt et al. [13] examined the genetic influences and 

comorbidity of migraine and endometriosis and reported that additive genetic factors accounting for 

69% (95% CI: 60%–77%) of the phenotypic variance in migraine also account for 17% (95% CI: 8%–27%) 

of the variance in endometriosis (i.e., bivariate heritability of 17%)—suggesting shared genetic 

influences completely explain their co‐occurrence within individuals. Additional bivariate heritability 

analyses utilising direction‐of‐causation twin models did not support endometriosis as the cause of 

migraine or vice versa; however, given the sample size and similar heritability for endometriosis and 

migraine, these analyses lacked power [13]. 

To date, genome‐wide association studies (GWAS) have identified 19 independent single 

nucleotide polymorphisms (SNPs) for endometriosis [31] and 44 for migraine [32]. However, 

molecular genetic studies of the association between endometriosis and migraine, including causality 

and shared genetic risk variants and loci are currently lacking. Lastly, biological pathways driving 

possible endometriosis and migraine comorbidity remain poorly understood. The present study, thus, 

aims to assess the molecular genetic overlap, causal relationship and shared pathways between 

endometriosis and migraine using GWAS data. 

2. Materials and Methods  

2.1. Data Sources and Study Samples 

We utilise GWAS meta‐analysis summary statistics from the International Endogene Consortium 

(IEC, endometriosis GWAS data) [31] and the International Headache Genetics Consortium (IHGC, 

migraine GWAS data) for analysis in the present study. Summary statistics data sourced from the 

United Kingdom Biobank (UKBB, migraine GWAS data) were used in testing the reproducibility of 

our findings for SNP‐level genetic overlap and correlation studies. 

2.1.1. IEC Endometriosis GWAS Data 

The ‘IEC endometriosis’ GWAS summary statistics utilised in this study represent the largest 

endometriosis genetic study published to date [31]. The data combined 11 separate GWAS case‐control 

datasets (QIMRHCS, deCODE, LEUVEN, OX, 23andMe, NHS2‐dbGaP, WGHS, iPSYCH, BBJ, 

Adachi‐6, and Adachi‐500K) consisting of 17,054 cases of endometriosis (all stages of endometriosis) 

and 191,858 controls (n = 208,912). A total of 6,979,035 SNPs passed quality control in six or more (at 

least 50%) of the studies and those were included in a fixed‐effect meta‐analysis [31]. Study 

participants in the GWAS were of European (approximately 93%) and Japanese ancestries (from 

Australia, Belgium, Denmark, Iceland, Japan, the UK, and the USA). Endometriosis was surgically 

confirmed (using the revised American Fertility Society system [33]) in cases from QIMRHCS, OX, 

deCODE and LEUVEN studies, while cases from other studies were self‐reported or their diagnosis 

was based on combined self‐report and surgical records [31]. Similar quality control procedures were 

used in each of the GWAS. A detailed description of these GWAS, the quality control and the analyses 

carried out have previously been published [31].  

2.1.2. IHGC Migraine GWAS Data 

Our migraine data were sourced from the 2016 IHGC (http://www.headachegenetics.org) 

migraine GWAS, which meta‐analysed migraine summary statistics from 22 GWAS (obtained from six 

tertiary headache clinics and 27 population‐based cohorts) [32]. A total of 59,674 migraine cases and 

316,078 controls were included in the meta‐analysis, and all participants were unrelated individuals of 

European ancestry [32]. Diagnosis of migraine was through self‐reported questionnaires or clinical 

interview, and, in line with the criteria of the International Classification of Headache Disorder (ICHD) 

[34]. Standard protocols for quality control were included and a common 1000 Genomes Project [35] 
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reference panel (Phase I, v3) was used in imputing missing genotypes into each of the samples. 

Logistic regression analysis was conducted on the imputed genotypes in each of the GWAS for 

association analysis [32].  

To account for possible population stratification and other confounders, an adjustment was made 

for the top ten principal components, sex and other covariates where necessary [32]. The GWAMA 

program [36] was used to perform a combined fixed‐effect meta‐analysis. SNPs were filtered based on 

imputation quality and other metrics [32]. A detailed and more comprehensive description of the 

‘IHGC migraine’ GWAS sample has previously been published [32]. The data utilised in the present 

study were restricted to 29,208 cases and 172,931 controls (n = 202,139) with a total of 8,935,979 SNPs, 

following the exclusion of the 23andMe GWAS sample (30,465 migraine cases and 143,147 controls). 

The 23andMe GWAS sample was excluded to ensure there was no sample overlap between the ‘IEC 

endometriosis’ GWAS data (which comprise 23andMe GWAS data) and the ‘IHGC migraine’ GWAS 

data. 

2.1.3. United Kingdom (UK) Biobank Data 

The UK Biobank is a large, population‐based cohort study that was established in the United 

Kingdom in the year 2006. A total of 500,000 volunteers aged 40–69 years were recruited for the study 

between 2006 and 2010 with the aim of investigating the genetic and environmental determinants of 

health and diseases [37]. Extensive genotype and phenotype data, including biological samples, 

physical measurements, health and lifestyle information, multimodal imaging, and genome‐wide 

genotyping have been collected from these study participants [37]. Also, a variety of their 

health‐related outcomes are being followed up [37]. Anonymised data from the study are made 

available to researchers via an application process [37]. We utilised UK Biobank GWAS summary 

statistics for migraine sourced from the Neale Lab, which performed linear regression analysis 

controlling for 10 principal components of ancestry, in a sample of 337,159 unrelated individuals of 

“White British” ancestry, comprising 10,007 self‐reported migraine cases and 327,152 controls 

(https://nealelab.github.io/UKBB_ldsc/h2_summary_20002_1265.html, downloaded 12/03/2018)  . 

GWAS summary statistics were available for 10,894,597 SNPs. 

2.2. SNP Effect Concordance Analysis (SECA) 

We assessed the genetic overlap between the ‘IEC endometriosis’ GWAS data and the ‘IHGC 

migraine’ GWAS data using SECA (https://sites.google.com/site/qutsgel/software/seca‐local‐version) 

[38]. SECA utilises GWAS summary statistics data and tests whether the direction of single nucleotide 

polymorphism (SNPs) are positively correlated across GWAS results thereby facilitating the 

assessment of genetic overlap between traits [38]. We formatted our datasets appropriately so that 

SECA requirements were met [38]. Thereafter, the ‘IEC endometriosis’ GWAS data was assigned, for 

SECA analysis, as dataset 1 and the ‘IHGC migraine’ GWAS as dataset 2. SECA first aligns the SNP 

effects across dataset 1 and dataset 2 to the same effect allele, and, subsequently extracts a subset of 

independent SNPs by utilising a ‘p‐value informed’ SNP clumping, accounting for linkage 

disequilibrium (LD) between SNPs.  

For each of the ‘IEC endometriosis’ and ‘IHGC migraine’ GWAS datasets, SECA partitions the 

extracted SNPs into 12 p‐value subsets which ranges from 0.01 to 1 (P ≤ 0.01, 0.05, 0.1, 0.2, 0.3. 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 1.0). The p‐value partitioning yields 144 subsets of SNPs from all possible 

combinations of dataset 1 (P1, 12 SNP subsets) with dataset 2 (P2, 12 SNP subsets). SECA performs two 

tests: a binomial test to assess the presence of excess SNP subsets associated between the two datasets, 

and, the Fisher exact test for the concordance in the direction of effect of the individual SNPs across 

datasets 1 and dataset 2 [38].  

Our SECA analysis was restricted to SNPs that are most strongly associated with dataset 1; hence, 

we swapped ‘IEC endometriosis’ GWAS data as dataset 2 and ‘IHGC migraine’ GWAS data as dataset 

1 in an analogous analysis. This ability to condition on one of the GWAS datasets (not possible using 
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the linkage disequilibrium score regression method can help determine whether an observed genetic 

overlap is driven similarly by both datasets, or driven predominantly by one dataset. We estimated LD 

using the 1000G Phase I v3 CEU genotype data and LD pruning prioritised SNPs with smaller 

p‐values (P1) in dataset 1. Also, we tested the reproducibility of our study using independent migraine 

summary statistics GWAS data from the UKBiobank. 

2.3. Linkage Disequilibrium Score Regression (LDSC) 

We estimated the SNP‐based heritability and cross‐trait genetic correlation for endometriosis and 

migraine using the LDSC software (https://github.com/bulik/ldsc). The ‘IEC endometriosis’ and ‘IHGC 

migraine’ GWAS data were utilised in the analysis. These datasets were formatted using the 

‘munge_sumstats.py’ script in line with the LDSC documentation 

(https://github.com/bulik/ldsc/wiki/Heritability‐and‐Genetic‐Correlation). We performed univariate 

LDSC analyses to estimate SNP‐based liability heritability (h2SNP) using the ‘IEC endometriosis’ 

(sample prevalence = 8.2%, population prevalence = 8% [31]) and the ‘IHGC migraine’ (sample 

prevalence = 14.5%, population prevalence = 15% [39])’ GWAS data. Also, to estimate the genetic 

correlation (rG) between the two traits, we conducted a bivariate cross‐trait LDSC analysis utilising the 

‘IEC endometriosis’ GWAS data and the ‘IHGC migraine’ GWAS data. This analysis complements our 

SECA‐based study in assessing the genetic overlap between endometriosis and migraine. We 

constrained the intercept to one for ‘IEC endometriosis’ GWAS data (both in heritability and cross‐trait 

LDSC correlation analysis) because the estimated intercept (without constraining) was not 

significantly different from one. We also constrained the genetic covariance intercept to zero (in the 

cross‐trait LDSC correlation analysis) given there was no sample overlap between the two datasets. 

The intercept for all migraine data was significantly different from one, hence, their estimated 

intercepts (obtained without constraining) were retained in the model. In all the LDSC analyses, we 

calculated the LD scores based on the European 1000 Genomes Project haplotype reference data (Phase 

I, v3). Last, we repeated the above analysis procedures using the ‘IEC endometriosis’ GWAS data and 

the migraine GWAS data from the UKBB (‘UKBB migraine’ GWAS data).  

2.4. Cross-Disorder Meta-Analysis of Endometriosis and Migraine 

We conducted a cross‐disorder meta‐analysis of the ‘IEC endometriosis’ and the ‘IHGC migraine’ 

GWAS summary statistics data to identify possible genetic variants and loci shared by both 

endometriosis and migraine. The inverse variance‐weighted fixed effect (FE) and ‘Han and Eskin’s 

random effect’ (RE2) models, implemented in METASOFT (http://genetics.cs.ucla.edu/meta/), were 

utilised in the meta‐analysis. We accounted for possible between‐study heterogeneity using RE2—a 

modified random effect model. Unlike the traditional random effect (RE) model, which is highly 

conservative, RE2 has greater power under heterogeneity [39–41]. We included a total of 411,051 

participants in the analysis, and meta‐analysed the 6,904,914 SNPs overlapping the two GWAS. We 

aimed at identifying novel cross‐disorder genome‐wide significantly enriched (P < 5 × 10−8)) SNPs and 

loci associated with both endometriosis and migraine. 

2.5. Mendelian Randomisation (MR) 

To assess the causal relationship between endometriosis and migraine, we performed a 

two‐sample Mendelian Randomization analysis (“TwoSampleMR”) [42] utilising genome‐wide 

significant (P < 5 × 10−8) SNPs associated with ‘IEC endometriosis’ summary statistics data. 

Randomised controlled trials (RCTs) are considered the most reliable evidence for drawing causal 

inferences. However, due to limitations such as substantial costs, non‐availability of appropriate 

interventions and controls and certain ethical constraints [43,44], conducting an RCT may not always 

be feasible. MR analysis mimics the design of an RCT thereby providing an alternative approach to 

assessing and estimating the causal relationship between an exposure and outcome variables [45].  
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MR method is anchored on the principle of Mendel’s law of inheritance—gene segregation and 

natural randomisation at gamete formation which is comparable to the experimental randomisation in 

RCTs. The method is supported by the understanding that genotypes are naturally fixed at conception 

and generally not subject to confounding effects or bias of reverse causation [45]. MR analysis, thus, 

exploits the presence of specific genetic variants associated with the variable of interest as proxies for 

assessing causality with the outcome of interest. The effect of the genetic variants (instrumental 

variables, IVs) on the outcome is expected to be through the exposure variable (vertical pleiotropy). 

Although not without limitations—possible violations of some of its assumptions—MR analysis is 

increasingly being used as an unbiased causality detection, and, where possible, estimation method 

[45]. 

In the present study, we performed “TwoSampleMR” analyses [42]. First, we extracted a total of 

338 SNPs associated with endometriosis, in the ‘IEC endometriosis’ GWAS data, at a genome‐wide 

significance level (P < 5 × 10−8). We assigned endometriosis as the exposure variable and migraine 

(‘IHGC migraine’ GWAS data) as the outcome variable. Following LD clumping (r2 < 0.001; to ensure 

the independence of the extracted SNPs), 11 genome‐wide significant SNPs associated in the ‘IEC 

endometriosis’ GWAS were retained as our IVs. Second, we extracted SNP effects from the outcome 

(‘IHGC migraine’ GWAS) data. To ensure that the SNP effects on exposure and outcome data 

correspond to the same allele, we carried out harmonisation of both the exposure and the outcome 

variables.  

Last, we conducted a “TwoSampleMR” analysis using the inverse variance weighted (IVW) 

method. IVW estimates are essentially the weighted average of the individual Wald‐type ratios for 

each of the IVs. The IVW method assumes the absence of horizontal pleiotropy or a balance of same 

among the IVs. We conducted sensitivity analyses to address a possible violation of this assumption 

using the weighted median (which provides valid causal estimates even if up to 50% of the IVs have 

pleiotropic effect) [46], and the MR‐Egger method (which corrects pleiotropy and provides valid 

causal estimates even if all the IVs are invalid) [47]. We implemented the “TwoSampleMR” [42] 

analysis methods in the R statistical package following a well‐established protocol 

(https://mrcieu.github.io/TwoSampleMR/).  

MR analyses are based on three fundamental assumptions [48]. First, is that a robust association 

exists between the selected genetic variants (IVs) and the exposure variable [48]. This assumption can 

easily be validated, and we utilised only the genome‐wide significant (P < 5 × 10−8) SNPs associated 

with endometriosis thereby satisfying the assumption. Second, is that the IVs are not associated with 

potential confounders [48]. We acknowledge that this assumption is difficult to prove, however, to 

reduce chances of violating it, we ensured that our IVs were independent. Also, we assessed the 

association between the IVs and age at menarche, age at menopause, menorrhagia, oestrogen level, as 

well as oral contraceptives use—all of which are possible risk factors for endometriosis and migraine 

[17–19]. This assessment was carried out using PhenoScanner v2 [49] 

(http://www.phenoscanner.medschl.cam.ac.uk, accessed on 2nd September 2019), at P < 1 × 10−05 

(suggestive genome‐wide significance level). Our IVs were not associated with any of these traits, 

except “rs74485684” which we found to be associated with ‘length of menstrual cycle’ and ‘excessive, 

frequent and irregular menstruation’ (Supplementary Table 1). To address possible pleiotropy implied 

by this finding, we carried out a ‘leave‐one‐out’ MR analysis. 

The third assumption, which is also difficult to validate, is that the IVs do not affect the outcome 

through any alternative pathway other than the exposure variable, that is, there is no horizontal 

pleiotropy [48]. We conducted a test for horizontal pleiotropy as well as used alternative MR 

approaches including MR‐Egger, and weighted median, to minimise the possibility of breaching this 

assumption.  

2.6. Gene-Based Association Study 

Gene‐based analysis examines associations between a trait of interest and all SNPs while 

accounting for LD and allelic heterogeneity between the SNPs [50]. Compared to SNP‐level studies (in 



Genes 2020, 11, 268 7 of 28 

 

 

which individual SNPs are assessed), gene‐based studies are more powerful in gaining mechanistic 

insights into the biology of complex traits [50] given that, as the basic functional units of the human 

genome, they are more closely related to biological mechanisms than SNPs. Thus, to identify genes 

associated with endometriosis and migraine as well as further assess the molecular genetic overlap 

between the two traits, we conducted gene‐based tests using Vegas2 software 

(https://vegas2.qimrberghofer.edu.au/) [51]. Vegas2 is user‐friendly, computationally tractable, and 

has been used extensively in studies [31,51]. We utilised the ‘IEC endometriosis’ and ‘IHGC migraine’ 

GWAS data for the Vegas2 gene‐based analyses.  

Prior to conducting Vegas2 analyses, we extracted all SNPs from each of the two GWAS data. 

Following the exclusion of SNPs with no rsIDs, a total of 6,978,534 SNPs from the ‘IEC endometriosis’ 

GWAS and 8,175,736 SNPs from the ‘IHGC migraine’ GWAS were available for analysis. However, to 

ensure equivalent gene‐based tests were performed for both disorders, we restricted Vegas2 analyses 

to a total of 6,904,914 SNPs overlapping the ‘IEC endometriosis’ and ‘IHGC migraine’ GWAS. We 

utilised the following Vegas2 options: Use SNPs from = ‘1000G EUROPEAN’; Select Sub‐population 

from = ‘ALL EUROPEAN’; Use Gene definition from = ‘+/− 0 kb outside gene’; and Chromosome = 

‘All’. Importantly, rather than the default ‘Top‐x% test with top 100 per cent’ test, we specified the 

‘Best‐SNP test’. These analysis procedures were carried out separately for the ‘IEC endometriosis’ and 

‘IHGC migraine’ GWAS data. We extracted nominally significant genes (at P < 0.1, P < 0.05, and P < 

0.01) from Vegas2 outputs for each of the two traits and assessed those for overlapping genes between 

endometriosis and migraine. We also estimated gene‐based Fisher’s combined p‐values (FCP) for 

association (at Pgene < 0.1) across endometriosis and migraine to assess genes overlapping the two traits 

at a genome‐wide level of significance. 

Due to the presence of ‘LD between the most significant SNP (‘Best‐SNP’) assigned to each gene , 

gene‐based association results could be correlated across neighbouring genes’ [52]. Hence, we 

estimated the effective number of independent genes (independent gene‐based tests) by examining the 

LD between the ‘Best‐SNP’ assigned to each gene. Briefly, we estimated the effective number of 

independent gene‐based tests in both the endometriosis and migraine datasets utilising the ‘genetic 

type 1 error calculator’ (GEC) software [53]. This analysis adjusts for multiple testing corrections 

taking into account correlation due to LD which may exist across neighbouring genes in our 

gene‐based results. ‘Best‐SNPs’ from the endometriosis and migraine Vegas2 results were processed as 

input files for GEC analysis [53]. GEC first partitions input SNPs into LD blocks with the assumption 

that LD blocks are independent (r2LD < 0.1), and thereafter estimates the effective number of 

independent SNPs (hence, the independent gene‐based tests) in the LD blocks. 

2.7. Overlapping Genes and Statistics Tests 

To allow for differences in power across the endometriosis and migraine GWA studies, we 

generated gene sets with gene‐based association p‐values less than three nominal p‐value thresholds 

(Pgene < 0.1, Pgene < 0.05, and Pgene < 0.01). For each gene set, estimates of the effective number of 

independent gene‐based tests were calculated by GEC [53]. We assigned endometriosis as the 

‘discovery’ set and migraine as the ‘target’ set to test whether the proportion of overlapping genes was 

more than expected by chance. The observed number of overlapping genes was defined as ‘the 

effective number of independent genes with p‐values less than the threshold in both the discovery and 

target sets’ [52]. The observed proportion of overlapping genes was ‘calculated as the observed 

effective number of independent overlapping genes divided by the effective number of independent 

genes with a p‐value less than the threshold in the discovery set’ [52]. The expected proportion of 

overlapping genes was calculated as the effective number of independent genes with a p‐value less 

than the threshold in the target set divided by the total effective number of independent genes in the 

target set. The statistical significance of whether the number of overlapping genes was more than 

expected by chance was calculated using one‐sided exact binomial test. We also report the raw number 

of genes in the gene sets to highlight the importance of estimating the effective number of independent 

genes. 
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2.8. Pathway-Based Functional Enrichment Analyses  

To further elucidate potential biological mechanisms underlying the co‐occurrence of 

endometriosis and migraine, we conducted pathway‐based functional enrichment analyses. The 

protocols proposed by Reimand and colleagues [54] for enrichment analysis (using the g:Gost tool in 

g:Profiler [55]), visualisation (using Enrichmentmap [56]) and interpretation (using auto annotate [54]) 

of enriched pathways were adopted in this study. The g:Gost tool, implemented in g:Profiler, performs 

statistical enrichment analysis and automates the functional annotation of user‐inputted genes based 

on their molecular, cellular and biological functions [54,55], thereby identifying over‐represented 

(significantly enriched) biological pathways for the trait(s) of interest [54,55]. We utilised the 

web‐based (http://biit.cs.ut.ee/gprofiler/) version of the tool, which is user‐friendly. Notably, g:Gost’s 

databases, including Gene Ontology, WikiPathways and Human Phenotype Ontology (for human 

disease phenotypes), are updated on a regular basis [55]. Regulatory motifs matches (TRANSFAC), 

miRNA targets (miRTarBase), Human Protein Atlas (for tissue specificity), CORUM (for protein 

complexes) and Biological pathways (Kyoto Encyclopedia of Genes [KEGG], as well as Reactome) are 

also included in the g:Gost tool of g:Profiler [55]. 

In the present study, we utilised the g:Gost tool of g:Profiler (accessed 1st October 2019) to perform 

pathway‐based functional enrichment analysis [54,55] using genes overlapping endometriosis and 

migraine at Pgene < 0.1 [52]. We employed the ‘g:SCS algorithm’ recommended for multiple testing 

correction in the g:Gost analysis, and restricted our results to only significantly enriched pathways at 

Padj < 0.05 (adjusted p‐value for multiple testing correction [54]). Also, the size of the functional 

category (term size) was restricted to within 5 and 350 values (minimum and maximum) as 

recommended [54]. Several of the pathways enriched in g:Gost tool may be redundant. Therefore, we 

utilised the ‘Enrichmentmap’ application to produce ‘enrichment maps’ by collapsing related versions 

of over‐represented pathways (g:Gost results) into simplified biological themes—thus, eliminating 

redundancy and enhancing the visualisation of enriched pathways [54,56]. We also utilised the ‘auto 

annotate’ application, to promote the interpretation of enriched pathways by organising ‘enrichment 

maps’ into clusters [54]. We implemented both ‘Enrichmentmap’ and ‘auto annotate’ tools via the 

Cytoscape environment [54,57]. 

3. Results 

3.1. SECA: Genetic Overlap between Endometriosis and Migraine 

SECA reveals significant concordance of SNP effects across the endometriosis and migraine 

GWAS, indicating that a strong molecular genetic overlap exists between the two traits. All 144 SNP 

subsets produced Fisher’s exact tests with at least nominally significant concordance effects (OR > 1 

and P ≤ 0.05) between the ‘IEC endometriosis’ GWAS data (dataset 1) and ‘IHGC migraine’ GWAS 

data (dataset 2) [PFsig‐permuted = 9.99 × 10−04; 95%CI: 5.12 × 10−05 – 5.64 × 10−03]. The most statistically 

significant concordance test was produced by SNP subsets with ‘IEC endometriosis’ GWAS Passoc ≤ 0.2 

and the ‘IHGC migraine’ GWAS Passoc ≤ 0.6 (ORFT = 1.36; PFTmin‐permuted = 1.66 × 10−32). Moreover, a total of 

59,188 independent SNPs was shared by both endometriosis and migraine (SNP subsets with P1 = P2 = 

1), out of which 30,790 (52%) showed concordance effect (Table 1). The test of association between the 

two traits (for SNP subsets with P1 = P2 = 1) was positive and highly significant statistically (OR = 1.18, 

Fisher's p‐value [two‐sided] = 8.77 × 10−23). Importantly, SNP effect concordance increased as one 

conditioned on SNPs with smaller p‐values. For example, the risk increasing alleles were concordant 

(OR = 1.92, Fisher’s p‐value [two‐sided] = 2.23 × 10−09) for 804 (58%) of the 1,383 independent 

endometriosis and migraine SNPs with nominally significant p‐values (P1 = P2 < 0.05) [Table 1]. The 

proportion of concordance further increased to 66% (OR = 3.61, Fisher's p‐value [two‐sided] = 7.20 × 

10−04) for the 128 independent endometriosis and migraine SNPs with p‐values (P1 and P2) < 0.01 

(Table 1). 
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Table 1. SNP effect concordance analysis (SECA) results for the test of genetic concordance between 

endometriosis and migraine. 

P1 P2 Concordant 

SNPs 

Discordant 

SNPs 

Total 

SNPs 

Proportion of 

concordance 

OR P 

1 1 30790 28398 59188 0.52 1.18 8.77 × 10−23 

0.9 0.9 27540 25213 52753 0.52 1.19 4.11 × 10−24 

0.8 0.8 24222 21971 46193 0.52 1.22 1.30 × 10−25 

0.7 0.7 20842 18665 39507 0.53 1.25 6.60 × 10−28 

0.6 0.6 17474 15458 32932 0.53 1.28 1.23 × 10−28 

0.5 0.5 14218 12383 26601 0.53 1.32 2.69 × 10−29 

0.4 0.4 10973 9415 20388 0.54 1.36 1.31 × 10−27 

0.3 0.3 7804 6510 14314 0.55 1.44 3.21 × 10−27 

0.2 0.2 4771 3855 8626 0.55 1.53 6.92 × 10−23 

0.1 0.1 1946 1496 3442 0.57 1.69 2.06 × 10−14 

0.05 0.05 804 579 1383 0.58 1.92 2.23 × 10−09 

0.01 0.01 85 43 128 0.66 3.61 7.20 × 10−04 

P1: International Endogene Consortium (IEC) Endometriosis data p‐value; P2: International Headache 

Genetics Consortium (IHGC) migraine data p‐value; SNP: single nucleotide polymorphism; OR: odds 

ratio for the effect direction concordance association test for endometriosis and migraine; P: Fisher’s 

exact p‐value for the effect direction concordance association test between endometriosis and 

migraine. 
In an analogous analysis where the ‘IHGC migraine’ and ‘IEC endometriosis’ GWAS dataset 

order was reversed (designated dataset 1 and dataset 2, respectively), the number of SNP subsets with 

significant effect concordance remained unchanged at 144 (PFsig‐permuted = 9.99 × 10−04; 95%CI: 5.12 × 10−05 

– 5.64 × 10−03) and produced a similar pattern of results as before. The subset of SNPs producing the 

most statistically significant concordance test was Passoc ≤ 0.6 for the ‘IHGC migraine’ and Passoc ≤ 0.6 for 

the ‘IEC endometriosis’ GWAS (ORFT = 1.27; PFTmin‐permuted = 1.35 × 10−26).  

We replicated SECA analysis using another independent migraine GWAS data from the 

UKBiobank. Our results confirmed significant SNP effect concordance between the ‘IEC 

endometriosis’ GWAS data and the ‘UKBiobank migraine’ GWAS data with 85 SNP subsets showing 

significant concordance of effect direction (PFsig‐permuted = 4.0 × 10−03; 95%CI: 1.56 × 10 −03 – 1.02 × 10 −02). 

The most significant test was for SNP subsets with ‘IEC endometriosis’ GWAS Passoc ≤ 0.1 and 

‘UKBiobank migraine’ GWAS Passoc ≤ 0.2 (ORFT = 1.20; PFTmin‐permuted = 4.83 × 10−04). An analogous 

concordance test where the ‘UKBiobank migraine’ and ‘IEC endometriosis’ GWAS dataset order was 

reversed (designated dataset 1 and dataset 2, respectively) similarly indicated significant effect 

concordance with 119 SNP subsets producing Fisher’s exact tests with at least nominally significant 

concordance effects (PFsig‐permuted = 9.99 × 10−04; 95%CI: 5.12 × 10−05 – 5.64 × 10−03) between the two datasets. 

The most statistically significant subset being SNPs with ‘UKBiobank migraine’ GWAS Passoc ≤ 0.1 and 

‘IEC endometriosis’ GWAS Passoc ≤ 0.05 (ORFT = 1.48; PFTmin‐permuted = 1.10 × 10−04). 

3.2. LD Score Regression Results for Endometriosis-Migraine  

Our univariate LDSC analysis estimated SNP‐based liability heritability (h2SNP) of 11.44% (95%CI: 

10.73%–12.15%) and 8.99% (95%CI: 8.23%–9.75%), for the ‘IEC endometriosis’ and ‘IHGC migraine’ 

GWAS, respectively (Table 2). Cross‐trait bivariate LD score regression analysis revealed a moderate, 

positive and highly significant genetic correlation between endometriosis and migraine (rG = 0.38, P = 

2.30 × 10−25). Using the ‘UKBiobank migraine’ GWAS data, we estimated a h2SNP of 16.87% (96%CI: 

15.07%–18.67%, Table 2) for migraine and a statistically significant positive correlation between the 

‘IEC endometriosis’ and ‘UKBiobank migraine’ GWAS data’ (rG = 0.14, P = 1.60 × 10−3). 

Table 2. Linkage disequilibrium (LD) score regression summary. 

SNP-based Heritability 

Phentype Dataset Valid SNPs Liability scale h2SNP (95% Intercept (se) 
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source in analysis CI) 

Endometriosis IEC 1,157,235 11.44% (10.73 – 12.15%) Constrained to 1 

Migraine IHGC 1,173,223 8.99% (8.23 – 9.75%) 1.0232 (0.008) 

Migraine UKBB 1,177,705 16.87% (15.07 – 18.67%) 1.0122 (0.007) 

SNP-based Genetic Correlation   

Phenotype 1  

(data source) 

Phenotype 2 

(data source) 

SNPs with 

valid 

alleles 

rG (se)  

[P-value] 

Phenotype 1 

Intercept  

Phenotype 2 

Intercept  

Gencov 

Intercept 

(se) 

Endometriosis 

(IEC) 

Migraine 

(IHGC) 

1,154,255 

 

0.38 (0.0364)  

[2.30 × 10−25] 

Constrained 

to 1 

1.0214 

(specified) 

Constrained 

to 0 

Endometriosis 

(IEC) 

Migraine 

(UKBB) 

1,152,558 

 

0.14 (0.0438) 

1.60 × 10−°3 

Constrained 

to 1 

1.0136 

(specified) 

Constrained 

to 0 

IEC: International Endogene Consortium, IHGC: International Headache Genetics Consortium, UKBB: 

United Kingdom BioBank, SNP: single nucleotide polymorphism, h2SNP: SNP‐based heritability, CI: 

confidence interval, se: standard error. 

3.3. SNPs Associated with Endometriosis and Migraine 

Based on the results of our RE2 meta‐analysis model (RE2 selected due to the presence of 

heterogeneity), 13 SNPs at one locus, associated with both endometriosis and migraine, were enriched 

to genome‐wide signficance (PSNPs < 5 × 10−8) in our meta‐analysis of the ‘IEC endometriosis’ and the 

‘IHGC migraine’ GWAS data (Supplementary Table 2). The 13 SNPs (rs11031005, rs11031006, 

rs11031040, rs11031047, rs12223987, rs12278989, rs3858429, rs4071558, rs4071559, rs4071563, 

rs75525300, rs7929660, rs7947350) are at a locus (the 11p14.1 locus) which has previously been reported 

to be genome‐wide significantly associated with endometriosis (with rs74485684 as the index SNP) 

[31]. Indeed, all 13 SNPs are in strong LD with the endometriosis lead SNP (rs74485684), 12 having r2 > 

0.8, and the remaining one, rs12223987, having r2 = 0.694. An additional 47 independent SNPs loci 

associated with both endometriosis and migraine showed evidence of genome‐wide suggestive (P < 1 

× 10−5) association (Supplementary Table 3).  

3.4. Mendelian Randomisation (MR) 

Table 3 presents the results of the individual Wald‐type ratio, IVW MR as well as the various 

sensitivity analyses—summarising the association of our IVs with endometriosis and migraine. Given 

the large sample size of our ‘IEC endometriosis’ GWAS data, the robust association between our IVs 

and endometriosis and the approximate F‐statistics greater than 30, our IVs are strong and are not 

expected to suffer from weak instrument bias [58]. 
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Table 3. Instrumental variables, Mendelian randomisation (MR) results and sensitivity analyses. 

SNPs EA OA Beta 

(endo) 

SE 

(endo) 

P(endo) Beta 

(migr) 

SE 

(migr) 

P(migr) Beta 

(endo-migr) 

F-Stat 

* 

SE 

(endo-migr) 

P 

(endo-migr) 

rs10167914 A G −0.11 0.02 1.10 × 10−°9 0.01 0.01 0.27 ‐0.11 37.27 0.10 0.27 

rs11674184 T G 0.12 0.01 2.67 × 10−17 −0.02 0.01 0.16 ‐0.13 71.40 0.09 0.16 

rs12037376 A G 0.15 0.02 8.87 × 10−17 0.01 0.01 0.35 ‐0.09 68.97 0.10 0.35 

rs12700667 A G 0.10 0.02 9.08 × 10−1° 0.01 0.01 0.6 ‐0.07 37.64 0.13 0.61 

rs1537377 T C −0.09 0.01 1.33 × 10−1° 0.00 0.01 0.83 0.03 41.53 0.12 0.83 

rs1903068 A G 0.10 0.01 1.04 × 10−11 0.01 0.01 0.32 0.11 46.28 0.11 0.32 

rs4762326 T C 0.08 0.01 2.20 × 10−°9 ‐0.01 0.01 0.31 0.14 35.55 0.13 0.31 

rs6546324 A C 0.08 0.01 3.01 × 10−°8 ‐0.01 0.01 0.42 0.11 30.56 0.14 0.42 

rs71575922 C G −0.11 0.02 2.02 × 10−°8 ‐0.01 0.01 0.35 ‐0.12 31.41 0.13 0.35 

rs74485684 T C 0.11 0.02 2.00 × 10−°8 0.04 0.01 0.01 0.36 31.55 0.13 0.01 

rs760794 T C 0.09 0.01 1.79 × 10−1° ‐0.02 0.01 0.07 ‐0.22 40.43 0.12 0.07 

 Methods Number of SNPs  Beta  SE P  

All – IVW  11 −0.02 0.05 0.67 

All – MR Egger 11 −0.25 0.27 0.38 

All – Simple mode  11 0.08 0.12 0.50 

All – Weighted mode 11 −0.11 0.07 0.14 

All – Weighted median 11 −0.09 0.05 0.10 

SNP: single nucleotide polymorphism, endo: endometriosis, migr: migraine, EA: effect allele, OA: other allele, Endo‐migr: endometriosis as exposure and migraine as 

the outcome variable, Beta: effect size in standard deviation unit, SE: standard error, P: p‐value, IVW: inverse variance weighted; * we estimated approximate F 

statistics values using t‐statistics = Beta/SE, which is the t distribution with N‐1 degrees of freedom (N is our sample size). The square of the t statistic represents 

approximate F statistics with degrees of freedom = 1. Thus, approximate F‐statistics = (Beta_endo/SE_endo)2. 
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Nevertheless, we found evidence for marginally significant heterogeneity among the IVs 

(Cochran’s Q statistics for IVW = 18.39, degree of freedom [df] = 10, P = 0.049, and Q’ statistics for MR 

Egger = 16.99, df = 9, P = 0.049). Under the null hypothesis of no heterogeneity, we expect that the value 

of Q and Q′ will be same as their corresponding df (10 and 9, respectively). This is not the case. 

However, the difference between Q and its df (18.39 – 10 = 8.39) for IVW and (Q’, 16.99 – 9 = 7.99) for 

MR Egger are small, indicating (alongside the borderline significant p‐value) that the heterogeneity 

was not substantial. In addition, we did not find MR Egger a better fit for our data than the IVW model 

since the difference Q − Q′ = 1.4 is not sufficiently extreme under a c
�
� distribution. Our selected 

instruments reportedly explained about 1.75% variance in endometriosis [31]. 

Combining all the 11 endometriosis SNPs (IVs), MR analysis did not find evidence for a causal 

relationship between endometriosis and migraine based on the IVW method ([OR = 0.98, 95%CI: 0.89 – 

1.07, P = 0.667] per standard deviation increase in endometriosis risk). Our results for sensitivity 

analyses using the MR‐Egger (OR = 0.78, 95%CI: 0.46 – 1. 32, P = 0.381), and the weighted median (OR = 

0.92, 95%CI: 0.83 – 1.02, P = 0.098) agree with that of the IVW method. Furthermore, the MR‐Egger 

intercept (representing the average estimate of the pleiotropic effects of a SNP) was 0.0232 (SE: 0.027, 

P: 0.413). This intercept was not significantly different from zero, indicating that there was no evidence 

of directional (unbalanced horizontal) pleiotropy. However, our results for ‘single SNPs MR’ analysis 

identify rs74485684 to be statistically significant as endometriosis genetic variant with risk‐increasing 

effect on migraine (OR= 1.43, 95%CI: 1.11 – 1.83, P = 0.006). This SNP was nominally associated with 

migraine (Table 3) as well as, ‘length of menstrual cycle’ and ‘excessive, frequent and irregular 

menstruation’ (Supplementary Table 1). The results of MR excluding the SNP (data not shown) did not 

make any difference to our previous finding, supporting the evidence of no causal association between 

our exposure and outcome variables. 

Compared to endometriosis, a greater number of genome‐wide significant SNPs have been 

identified for migraine [31,32]. Consequently, we conducted a “TwoSampleMR” utilising independent 

genome‐wide significant SNPs from migraine GWAS as IVs, migraine as the exposure variable, and 

endometriosis as the outcome variable, reversing the direction of the datasets (data not shown). We 

note, however, that the causal effects of migraine on endometriosis may be difficult to explain 

conceptually. Regardless, the results for this analysis also did not provide evidence for a causal 

association between migraine and endometriosis. 

3.5. Gene-Based Analysis for Endometriosis and Migraine 

Our gene‐based association analyses identified 1,749 and 1,871 genes nominally significant (Pgene < 

0.05) in the ‘IEC endometriosis’ and ‘IHGC migraine’ GWAS gene‐level association results, 

respectively (Supplementary Tables 4 and 5). A Bonferroni adjustment using the largest estimated 

total effective number of genes (17,104) produced a genome‐wide, gene‐based threshold of 2.92 × 10−6 

(0.05/17,104). At this threshold, nine genes (ARL14EP, VEZT, CDC42, LINC00339, WNT4, GREB1, IL1A, 

FGD6, KDR) were genome‐wide significant (Supplementary Table 6) in the gene‐based analysis for the 

‘IEC endometriosis’ GWAS, all of which have previously been reported for endometriosis (assessed 

using PhenoScanner v2 [49] (http://www.phenoscanner.medschl.cam.ac.uk, on 30 September 2019). 

Similarly, for migraine, a total of 17 genes (PLCE1, PLCE1-AS1, MRVI1, LRP1, STAT6, MEF2D, 

PRDM16, MROH2A, TRPM8, POC5, FHL5, KCNK5, PHACTR1, UFL1, TMEM91, MSL3P1, ANKDD1B) 

were genome‐wide significant (Supplementary Table 6) in the gene‐based analysis (at 2.92 × 10−6 

threshold). Following an assessment in PhenoScanner v2 (accessed on 22nd September 2019), five of the 

17 genes (PLCE1-AS1, MROH2A, POC5, TMEM91, ANKDD1B) have not previously been reported for 

migraine. Of the five new migraine genes, two (MROH2A on chromosome 2q37.1, and PLCE1‐AS1 on 

chromosome 10q23.33) were located at previously reported migraine loci. The remaining three genes 

are located at two loci not previously identified for migraine (POC5 and ANKDD1B on chromosome 

5q13.3, and TMEM91 on chromosome 19q13.2), thus, representing novel loci for migraine risks. 

We assessed overlapping genes between endometriosis and migraine using gene‐based test 

outputs, and our results revealed a total of 17 (at Pgene < 0.01), 196 (at Pgene < 0.05), and 493 (at Pgene < 0.1) 
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significantly enriched genes shared by the two traits (Supplementary Tables 7–9, respectively). 

Moreover, following FCP estimation for overlapping genes at Pgene < 0.1, three genes, ARL14EP (on 

chromosome 11p14.1), TRIM32 (on chromosome 9q33.1), and SLC35G6 (on chromosome 17p13.1) were 

enriched to a genome‐wide significant level based on their combined p‐value (Table 4). Two of these 

three genes (TRIM32, and SLC35G6) were not genome‐wide significant in endometriosis or migraine; 

rather they attained genome‐wide significance following the combination of the respective gene 

association p‐values for the two traits indicating evidence of their involvement in the two disorders 

(and possibly their comorbid state). ARL14EP, on the other hand, was genome‐wide significant for 

endometriosis only but attained a more genome‐wide significance status following the estimation of 

FCP using both endometriosis and migraine gene p‐values.  
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Table 4. Genome‐wide significant genes overlapping endometriosis and migraine in gene‐based association analyses. 

S/N Chro Gene 
Start 

Position 

Stop 

Position 

IEC Endometriosis IHGC Migraine   

Gene 

p-Value 
Top SNP 

Top SNP 

p-Value 

Gene 

p-Value 
Top SNP 

Top SNP 

p-Value 
FCP 

1 11 ARL14EP 30344648 30359165 1.00 × 10−06 rs4071559 5.60 × 10−08 5.54 × 10−02 rs4071559 5.97 × 10−03 9.81 × 10−07 

2 9 TRIM32 119449580 119463579 2.76 × 10−02 rs11793648 3.14 × 10−03 5.00 × 10−06 rs76973802 7.15 × 10−07 2.32 × 10−06 

3 17 SLC35G6 7384720 7386383 1.59 × 10−03 rs9891297 3.09 × 10−04 9.40 × 10−05 rs8065577 2.21 × 10−05 2.50 × 10−06 

Chr: chromosomes; FCP: Fisher’s combined p‐value; IEC: International Endogene Consortium; IHGC: International Headache Genetic Consortium. 

Table 5. Summary of gene‐level association analyses for endometriosis and depression under three p‐value thresholds. 

The effective number of genes in Endometriosis and migraine 

Disorder Total genes P value < 0.1 P < 0.05 P < 0.01 

Raw c Effective d Raw c Effective d Proportion e Raw c Effective d Proportion e Raw c Effective d Proportion e 

Endometriosis a 20473 17104 2966 2433 0.142 1749 1430 0.084 481 386 0.023 

Migraine b 20473 17046 3239 2579 0.151 1871 1467 0.086 587 450 0.026 

Number of overlapping genes and binomial test results for gene-based association 

Discovery Targets Overlapping genes Proportion of overlap Binomial test P-value 

Raw Effective Expected Observed 

P value < 0.01 

Endometriosis Migraine 17 15 450/17046 = 0.026 15/386 = 0.039 0.08259 

P value < 0.05 

Endometriosis Migraine 196 171 1467/17046 = 0.086 171/1430 = 0.120 9.83 × 10−06 

P value < 0.1 

Endometriosis Migraine 493 420 2579/17046 = 0.151 420/2433 = 0.173 1.85 × 10−03 

a Endometriosis data from International Endogene Consortium, b migraine data from International Headache Genetic Consortium (IHGC), c raw number of genes, d 

effective number of independent genes, e proportion of total effective number of genes.
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Lastly, the exact binomial test confirms that significant gene‐based genetic overlap exists 

between endometriosis and migraine at p‐value thresholds of P < 0.1 and P < 0.05 (Table 5). For 

example, at gene‐based p‐value < 0.05, the observed proportion of genes overlapping the two traits 

(12%) was significantly higher than the expected proportion (8.6%) [Pbinomial‐test = 9.83 ×10−06]. These 

results indicate that the observed gene‐based genetic overlap between endometriosis and migraine 

was more than expected by chance implying that at the least, a proportion of the identified 

overlapping genes are truly associated with both endometriosis and migraine.  

3.6. Functional Enrichment Analyses 

Functional enrichment analysis identifies six significantly enriched biological pathways for the 

493 genes overlapping endometriosis and migraine at Pgene < 0.1. Table 6 presents a summary of these 

pathways. Clusters were generated following enrichment mapping and auto‐annotation thereby 

collapsing the identified pathways into three main biological themes and clusters: mitogen‐activated 

protein kinase (MAPK) signalling pathway, regulation of kappa‐light‐chain‐enhancer of activated B 

cells (kappaB)  signalling and  tumor necrosis factor (TNF) alpha signalling pathway (Figures 1).  

Table 6. Significantly enriched ordered pathways for overlapping endometriosis‐migraine genes. 

Term ID for pathway Pathwa

y term 

name 

Adjuste

d 

p-value 

Genes 

Source: Gene Ontology (Molecular function) 

Interleukin‐1 receptor binding GO: 

0005149 

9.19 × 

10−03 

 

IL36RN, IL37, IL36B, IL1B, IL1F10 

Source: Gene Ontology (Biological process) 

Regulation of I‐kappaB kinase and 

NF‐kappaB signalling 

GO: 

0043122 

1.90 × 

10−02  

 

TRIM32, IL36RN, IL37, TMED4, IL36B, IL1B, 

RNF31, IKBKB, SHISA5, TANK, PARK2, IL1F10, 

ZDHHC17, GSTP1, DAB2IP, SLC35B2, TRIM13 

Source: Biological pathways (Kyoto Encyclopedia of Genes [KEGG]) 

MAPK signalling pathway KEGG: 

04010 

1.40 × 

10−02  

IL1B, FGF18, NGF, IKBKB, MAP2K5, PTPN5, 

PDGFC, MAPK9, NRAS, PPP3CA, CACNA1E, 

FGF17, MAP2K6, FGF9, MET, RPS6KA4, FGFR4 

Source: Biological pathways (WikiPathways) 

MAPK Signalling Pathway WP: 

WP382 

1.3 × 

10−02 

 

FGF11, IL1B, FGF18, NGF, IKBKB, MAP2K5, 

PTPN5, MAPK9, NRAS, PPP3CA, CACNA1E, 

FGF17, MAP2K6, FGF9, RPS6KA4, FGFR4 

Focal 

Adhesion‐PI3K‐Akt‐mTOR‐signali

ng pathway 

WP: 

WP3932 

1.54 × 

10−02 

 

FGF11, ITGB5, CREB5, PFKFB4, PPP2CA, DDIT4, 

FGF18, NGF, IKBKB, PTK2, PDGFC, SLC2A4, 

NRAS, CREB3L2, FGF17, FGF9, MET, FGFR4 

TNF alpha Signalling Pathway WP: 

WP231 

2.3 × 

10−02 

 

PPP2CA, RFK, IKBKB, PTPRCAP, MAPK9, 

NSMAF, NRAS, TANK, MAP2K6 
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Figure 1. Clustered biological themes for overlapping endometriosis–migraine genes. 

4. Discussion 

Several observational epidemiological studies have reported the comorbidity of endometriosis 

with migraine. For the first time, however, we present a comprehensive assessment of the molecular 

genetic overlap, causal relationship as well as shared genes and biological pathways between the 

two disorders. SECA reveals the existence of a strong and significant genetic overlap between 

endometriosis and migraine. For instance, the proportion of nominally significant (P < 0.05) 

independent SNPs with concordant risk allele effects for endometriosis and migraine (58%) was 

higher than expected under the null hypothesis of no association (Pconcordant = 2.23 × 10−9). Bivariate 

LDSC analysis estimates a moderate, positive and highly significant genetic correlation between 

endometriosis and migraine (rG = 0.38, P = 2.30 × 10−25). Notably, we reproduced these significant 

findings using a second independent migraine GWAS dataset from the UKBB (rG = 0.14, P = 1.60 × 

10−3). The weaker genetic correlation observed in the latter is most likely due to the smaller sample 

size (migraine cases) and the broader ‘self‐reported migraine’ phenotype in the ‘UKBB migraine’ 

GWAS. 

Our finding of significant genetic overlap and correlation between endometriosis and migraine 

indicates the presence of shared genetic components between the two disorders and confirms their 

comorbidity. This means that endometriosis patients share a non‐negligible proportion of genetic 

risk variants with migraine patients. The SNP‐based heritability estimated for endometriosis and 

migraine were lower than those reported from the twin‐based studies due to the imperfect tagging 

of causal variants by common SNPs, in particular, if the causal variants are rare [59]. However, our 

findings compare favourably with those of a previous twin‐based study which concluded that 

common genetic influences explain the comorbidity of migraine and endometriosis [13].  

Although a meta‐analysis of migraine and endometriosis GWAS produced a number of SNPs 

with genome‐wide significant P‐values, no novel risk loci were identified as all 13 SNPs reported 

were in strong LD with a previously reported risk locus for endometriosis on 11p14.1. Our finding, 

nonetheless, indicates the potential involvement of the locus in both disorders, and possibly, in their 

comorbid state. In addition to endometriosis, the 11p14.1 locus comprising FSHB has been 

associated with several female hormone‐related traits including age at menarche and menopause, 

short menstrual cycle, polycystic ovarian syndrome, and increased risk of dizygotic twinning 

[31,60–62]. Thus, the locus may influence risk for both endometriosis and migraine via more 

frequent (menstrual‐related) hormonal fluctuations in women as the same variants at this locus are 

associated with shorter and more frequent menstrual cycles and influencing oestradiol release, 

which have both been implicated in migraine risk [31,60]. We identified an additional 47 

independent SNPs loci enriched to genome‐wide suggestive (P < 1 × 10−5) association which should 

be prioritised in future studies. Meta‐analysing more powerful GWAS data (with larger sample 
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sizes) for endometriosis and migraine will identify more robust SNPs and novel risk loci shared by 

the two disorders.  

Results for ‘single SNPs MR’ analysis showed evidence that one of the 11 endometriosis 

genome‐wide significant SNPs, rs74485684, had a statistically significant risk‐increasing effect on 

migraine. The rs74485684 SNP is located on chromosome 11p14.1 near FSHB gene, a locus 

significantly enriched for both endometriosis and migraine in our meta‐analysis. The results for our 

PhenoScanner analysis, however, indicate a significant and strong association between rs74485684 

SNP and some traits namely ‘length of menstrual cycle’ and ‘excessive, frequent and irregular 

menstruation’. There is evidence that the named traits represent important risk factors for both 

endometriosis and migraine [13–19] which may have confounded our MR analysis—i.e., a violation 

of the second assumption of MR analysis [48]. This observation would negate a causal relationship 

of the endometriosis SNP (rs74485684) on migraine but lend support for a ‘shared genetic risk factor 

mechanism of association’ in the comorbidity of the two disorders.  

Combining all 11 endometriosis risk SNPs, MR analysis did not provide evidence of a causal 

relationship between endometriosis and migraine. We note, however, that the variance in 

endometriosis explained by the combined multi‐allelic instrument is rather small (less than 2%) 

indicating that our MR estimates were biased towards the null [63]. Thus, we cannot completely rule 

out the possibility of causal effects of endometriosis on migraine. Future studies should revisit the 

MR analysis when more genome‐wide significant SNPs associated with endometriosis are available. 

Although we do not have evidence of a causal relationship between endometriosis and migraine, 

some other mechanisms of association may explain their co‐occurrence. For example, observational 

studies have identified some epidemiological similarities for both endometriosis and migraine 

[13–19], suggesting a ‘shared risk factor mechanism of association’. The results of our genetic 

overlap analyses support this position—identifying shared genetic risk factors for the co‐occurrence 

of endometriosis and migraine.  

Moving beyond the SNP‐level study, we conducted gene‐based analyses thereby furthering our 

assessment of the genetic overlap between endometriosis and migraine. Considered the basic 

physical and functional unit of the human genome, genes exhibit a closer relationship with 

biological mechanisms than SNPs. Moreover, gene‐based analyses have the ability to account for LD 

and allelic heterogeneity while examining the association between a trait of interest and multiple 

co‐located SNPs [64]. Thus, gene‐based methods can provide a more robust and interpretable 

approach to understanding the biology of complex traits [64]. Like the SNP‐based analysis, we 

found a significant gene‐level genetic overlap between endometriosis and migraine with a total of 

196 significantly enriched genes nominally associated (Pgene < 0.05) with both traits (Pbinomial‐test = 9.83 × 

10−6). Three overlapping genes, ARL14EP (on chromosome 11p14.1), TRIM32 (on chromosome 

9q33.1), and SLC35G6 (on chromosome 17p13.1), were genome‐wide significant based on their 

combined gene association p‐values. We note, nonetheless, that these results are based on a 

statistical association of variants in and directly flanking each gene and do not strictly functionally 

implicate the genes. The 11p14.1 locus harbouring the ARL14EP gene has previously been associated 

with endometriosis [31], and implicated in our cross‐disorder meta‐analysis as well as the ‘single 

SNPs MR’ analysis (present study). However, the roles of the gene in migraine as well as in the 

comorbidity of endometriosis and migraine remain to be elucidated. ARL14EP is well expressed in 

thyroid and adrenal glands, brain, endometrium, lymph nodes, ovary, and many other tissues. More 

targeted studies are now warranted for a clearer understanding of the gene and its relationship with 

both endometriosis and migraine.  

The remaining two genome‐wide significant genes, TRIM32 and SLC35G6, have not been 

previously reported for endometriosis or migraine, neither are they located at or near established 

loci for any of the two disorders; hence, they represent two novel genes and susceptibility loci for the 

two traits. The SLC35G6 gene is well expressed in the testis, lowly expressed in the endometrium 

and adrenal gland; however, information about its biological functions is limited; hence, further 

investigation into the gene and its involvement in endometriosis and migraine is necessitated. 

Conversely, TRIM32 is a protein‐coding gene consisting of a ‘RING, B‐box, coiled‐coil and six 
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C‐terminal NHL domains’ [65]. Being a ubiquitously expressed E3 ligase, the gene targets several 

proteins for degradation through ubiquitination [65]. TRIM32 has broad substrate specificity and has 

been associated with several biological activities including the regulation of microRNA, 

tumorigenesis, development and differentiation, as well as innate immunity. Moreover, TRIM32 has 

been linked with certain disorders such as Bardet–Biedl syndrome (mutation in ‘the B‐box’ domain 

of the gene) [66,67], and limb‐girdle muscular dystrophy (mutations in the ’C‐terminal NHL 

domain’ of the gene) [68]. Endometrium, adrenal gland and the brain are among the three leading 

sites of TRIM32’s expression, lending greater support for its potential involvement in endometriosis 

and migraine. More targeted studies are required to elucidate TRIM32’s exact role in the two traits.  

To explain the pathogenesis of co‐occurring endometriosis and migraine, some authors have 

suggested a number of possible biological mechanisms including the roles of elevated levels of 

circulating prostaglandins [27], hormonal fluctuations [13], and impaired regulation of nitric oxide 

synthesis [69,70]. The involvement of hormone fluctuations is especially favoured by the fact that 

both endometriosis and migraine share risk factors consistent with the hormone‐based regulation of 

the menstrual cycle such as early menarche, and menorrhagia [17–19]. The results of our 

meta‐analysis, ‘single SNPs MR’ and, partly, overlapping genes assessment, potentially support a 

role for sex hormones activities in the pathogenesis of the two disorders. Following functional 

enrichment analysis, we also found significantly enriched biological pathways shared by both traits 

that may differ in some respects from the aforementioned mechanisms. For ease of interpretation as 

well as to eliminate possible redundancy, we carried out enrichment mapping thereby collapsing the 

over‐represented pathways into three simplified biological themes and clusters. The first cluster of 

biological pathways, MAPK signalling pathway, comprises ‘focal 

adhesion‐PI3K‐Akt‐mTOR‐signaling’ and ‘MAPK signalling’. MAPK and ‘PI3K‐Akt‐mTOR’ are 

expressed differently, however, there is evidence that both are activated by steroid hormones and 

growth factors [71], supporting a role for sex hormones in the pathogenesis of endometriosis and 

migraine.  

‘Focal adhesion‐PI3K‐Akt‐mTOR’ is a signalling cascade made up of ‘focal adhesion’ (or 

cell‐matrix adhesions), ‘phosphatidylinositide 3 kinases’ (PI3K), ‘protein kinase B’ (AKT), and 

‘mammalian target of rapamycin’ (mTOR). Besides their structural role of mediating the molecular 

contact between intra‐ and extra‐cellular spaces [63], focal adhesions relay signals between cells and 

the extracellular matrix, consequence upon which a range of cellular responses—cell growth, 

differentiation and movement—are initiated [63]. Protein kinases and phosphatases—two opposing 

but complementary groups of cells signalling proteins—as well as integrins, constitute essential 

parts of focal adhesive molecules [72,73]. While kinases and phosphatases co‐regulate protein 

phosphorylation, a biological process that is critical to several cellular functions, integrins sense the 

environment and subsequently evoke responses resulting in the regulation of cell motility and 

shapes [72,73]. Also, through a complex interplay of its core components—PI3K stimulation, AKT 

phosphorylation, mTOR activation—the ‘PI3K‐Akt‐mTOR’ pathway facilitates several cellular 

processes including cell proliferation, metabolism, angiogenesis, and apoptosis [74]. There is 

evidence implicating these mechanisms in the biology of endometriosis and migraine [71,75].  

For example, the role of kinases, particularly, MAPK, is well supported in the causal pathway of 

endometriosis, and arguably migraine [64–67]. Altered peritoneal microenvironment caused by 

endometriotic lesions is believed to activate kinase signalling pathways which may result in 

kinase‐dependent growth or proliferation of endometriotic lesions [68]. In the case of migraine, 

activation of MAPK is suggested to mediate the synthesis and the release of calcitonin gene‐related 

peptide (CGRP) which has long been implicated in the pathophysiology of migraine [66,69]. Indeed, 

recently approved monoclonal antibodies (mAbs) targeting CGRP or its receptor have lately been 

developed, representing a first major breakthrough for migraine‐specific treatments in 30 years 

[76–78]. Furthermore, overexpression of ‘PI3K‐Akt‐mTOR’ has been noted in endometriosis and 

certain types of cancers (ovarian, breast and urothelial), and therapeutic agents targeting its core 

components have been developed [71,79].  
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‘Interleukin‐1 receptor binding’ and ‘regulation of I‐kappaB kinase and NF‐kappaB signalling’, 

converged to a second biological cluster of pathways, regulation of kappaB signaling, following 

enrichment mapping and auto‐annotation. Nuclear factor‐ kappaB (‘NF‐kappaB’) is a transcription 

factor regulating inflammatory responses and mediating several functions of both the adaptive and 

innate immunity [80,81]. In addition to participating in the regulation of inflammatory processes, 

‘NF‐kappaB’ plays an important role in the expression of certain pro‐inflammatory genes such as 

those involved in coding for cytokines [81]. Interleukin 1, on the other hand, is a pro‐inflammatory 

cytokine whose activities are mediated through interleukin‐1 receptor binding [82,83]. There are two 

types of this receptor: interleukin‐1 receptor I which mainly transmits inflammatory signals, and 

interleukin‐1 receptor II which although transmits no signals may suppress the effects of 

interleukin‐1 by competing for its active binding sites [82,84]. Interleukin 1 not only mediates innate 

immune reactions, it also activates ‘NF‐kappaB’ inflammatory pathways [83,84]. Thus, in line with 

previous studies [83,85], our study suggests that inflammatory processes and immune system 

dysfunction, mediated by the deregulation of cytokines and the ‘NF‐kappaB’ factor [81], maybe 

relevant in the causal pathways of endometriosis and migraine.  

Lastly, the tumour necrosis factor‐alpha (TNF‐α) signalling pathway was significantly enriched 

as one of the biological mechanisms underpinning endometriosis and migraine in the present study. 

Primarily produced by activated macrophages, T helper type 1 cells and natural killer cells, TNF‐α, 

is among the most studied member of the TNF family [86,87]. The protein acts commonly alongside 

interleukin‐1 and similarly activates the ‘NF‐kappaB’ inflammatory pathways [86,87]. Consistent 

evidence indicates that women with endometriosis have a higher level of TNF‐α in their peritoneal 

fluid and endometrium [83,88]. Also, the size of endometriotic lesions has been reported to be 

positively correlated with the concentration of TNF‐α [83,88]. Therefore, our finding agrees with 

previous studies which have recognised the role of TNF in the pathogenesis of endometriosis [83,88]. 

In contrast, contradictory evidence for the role of TNF‐α in migraine has been reported [89,90]. 

Hence, the present study provides important support for TNF‐α in both endometriosis and migraine 

pathogenesis.  

Strengths and Limitations 

Major strengths of this study include our use of multiple statistical methods in analysing 

well‐powered world‐leading datasets to provide a comprehensive assessment of the relationship 

between endometriosis and migraine at the molecular genetic level. Furthermore, being based on 

genotype data, these analyses are generally not susceptible to potential confounding effects often 

associated with observational studies, thus providing strong and reliable evidence in support of our 

findings. For example, unlike in the traditional observational studies where the confounding effects 

of lifestyles or environmental factors are highly likely, genotypes are known to be well established 

and fixed at conception and should not be confounded by lifestyles or environments. Also, given 

that the inheritance of genotype precedes exposure to environmental factors, and, hence, disease 

onset later on in the offspring, the possibility of reverse causality is avoided in our study, lending 

credence to our findings. Limitations of our study mainly relate to those specific to the analysis 

methods. For example, sample overlap may confound LDSC and MR analyses. However, we 

ensured the independence of our samples and used a range of recommended approaches to 

minimise a possible violation of the MR assumptions. Lastly, several of the significantly enriched 

mechanisms in the pathway‐based analyses are prone to redundancy. To minimise this limitation, 

however, we performed enrichment mapping and auto‐annotation to collapse related pathways to 

simplified biological themes and clusters, thereby, enhancing the visualisation and interpretation of 

the significantly enriched biological pathways.  

5. Conclusions 

Our findings further confirm the comorbidity of endometriosis and migraine and indicate a 

non‐causal relationship between the two traits, with shared genetically controlled biological 
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mechanisms underlying the co‐occurrence of the two disorders. After combining gene‐based 

p‐values across endometriosis and migraine GWAS, we found that three genes (ARL14EP, TRIM32, 

and SLC35G6), were genome‐wide significant. Two of these genes (TRIM32, and SLC35G6) have not 

previously been reported for endometriosis or migraine, nor were they located on or near previously 

identified loci for any of the two traits—indicating that they represent novel genes and susceptibility 

loci for both endometriosis and migraine. Our functional enrichment analyses reveal some 

genetically controlled biological pathways underlying endometriosis and migraine including 

interleukin‐1 receptor binding, focal adhesion‐PI3K‐Akt‐mTOR‐signaling, MAPK and TNF alpha 

signalling. Biological mechanisms related to sex hormone activities, protein adhesion and 

phosphorylation as well as inflammatory and immune system dysfunction, among others, are 

implicated by these pathways. Our study further supports the importance of a concurrent screening 

for migraine in patients presenting with or being investigated for endometriosis. Clinicians, thus, 

would need to start exercising a heightened suspicion for migraine in endometriosis patients. Shared 

genes and biological pathways identified in the present study could serve as potential therapeutic 

targets for endometriosis and migraine and perhaps the comorbid state of the two traits. However, 

further molecular and functional studies are needed for a targeted investigation into their roles in 

both disorders. Future analyses utilising results from more powerful GWAS are expected to improve 

the power to identify more robust SNPs and loci, as well as genes for endometriosis, migraine and 

the co‐occurrence of the two disorders. 
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