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Abstract The dynamics of a nonlinear vibration
energy harvester for rotating systems is investigated
analytically through harmonic balance, as well as by
numerical analysis. The electromagnetic harvester is
attached to a spinning shaft at constant speed. Mag-
netic levitation is used as the system nonlinear restor-
ing force for broadening the resonant range of the
oscillator. The system is modelled as a Duffing oscil-
lator with linear frequency variation under static, as
well as harmonic excitation. Behaviour charts and
backbone curves are extracted for the fundamental
harmonic response and validated against frequency
response curves for selected cases, using direct numer-
ical integration. It is found that variation in stiff-
ness, together with asymmetric forcing, gives rise to
a novel structure of multiple resonant zones, incor-
porating mono-stable and bi-stable dynamics. Con-
trary to previously considered bi-stable energy har-
vesters, cross-well oscillations are realized through a
transition from single-well potential energy to double-
well with forward frequency sweep. Furthermore, in-
well_oscillations present a hardening behaviour, unlike
the well-known softening in-well response of bi-stable
Duffing oscillators. The analysis shows that the pro-
posed system has multiple resonant responses to a fre-
quency sweep, influenced by consecutive interacting
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backbone curves similar to a multi-modal system. This
combined effect of the transition to bi-stable dynam-
ics and the hardening in-well oscillations induces reso-
nant response of the harvester overmultiple distinct fre-
quency ranges. Thus, the system exhibits a broadened
frequency response, enhancing its energy harvesting
potential.

Keywords Energy harvesting · Backbone curve ·
Duffing oscillator · In-well oscillations · Bi-stable
dynamics

Nomenclature

B,C, D Functions of Ω, x0, x1
cm Mechanical damping coefficient (Ns/m)
cel Electrical damping coefficient (Ns/m)
d0 Separation of levitating magnet from its

static counterparts (m)
f1, f2 Functions of Ω, x0, x1 linking the

derivatives of the response components
Fcp Centripetal force (N)
Fb,t Bottom/top magnetic force (N)
Fm Moving magnet force (N)
g Gravitational acceleration (9.81 m/s2)
I Current (A)
k Linear stiffness coefficient (N/m)
k3 Nonlinear stiffness coefficient (N/m3)

L Inductance (H)
m Mass of the moving magnet (kg)
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1272 P. Alevras et al.

PL Electrical power load (W)
PL,av Average power load (W)
Ri Internal resistance (�)
RL Load resistance (�)
r Eccentric radius (m)
u Response perturbation (m)
v Variable used in the derivation of stabil-

ity conditions
x Radial displacement of the levitating

central magnet (m)
x0 Static displacement (m)
x1 Harmonic amplitude of displacement

(m)
V Harmonic amplitude of velocity (m/s)
β Normalized nonlinear stiffness coeffi-

cient (1/m2s2)
Δ Determinant of a matrix
ζ Damping ratio
Θ Electromagnetic coupling factor (Vs/m)
μ Floquet exponent
φ Phase of the harmonic response (rad)
Ω Angular velocity of the shaft (rad/s)
ωn Linear resonant frequency (rad/s)

1 Introduction

Vibration energy harvesting is a relatively recent con-
cept. Mechanical systems generally experience vibra-
tions due to manufacturing or assembly imperfec-
tions [1], transient and impulsive loading [2] and
wear/degradation. Although these causes have nega-
tive effects on the system structural integrity and ideal
operation, the potential for energy harvesting from the
vibratory modes has attracted much research [3–5]. It
is envisaged that the otherwise dissipated energy can be
supplied to devices of low power demand such as wire-
less sensors [3,4,6]. Besides improving the energy effi-
ciency of the host structure, the compact design of a har-
vester would allow its positioning in confined and often
hostile environments, such as in structural health mon-
itoring [7], which pose difficult accessibility through
traditional means with a power supply.

Most vibration energy harvesting concepts deal with
ambient vibrations acting as translational base exci-
tations for the harvesting attachment [8,9]. Despite
an overwhelming diversity of proposed concepts and
designs, one can identify twomajor classes of vibration
harvesters; cantilever beams with a tip mass in bend-

ing mode [10–12] (usually coupled with piezoelectric
elements), or a base-excited seismic magnetic mass,
oscillating in the proximity of an electric coil. The for-
mer class may also include continuous systems such as
plates and beams with their deflections inducing volt-
age in piezoelectric elements [13], which may extend
beyond mere vibration harvesting (e.g. fluid–structure
interactions [14]). Stephen [4] considered direct mass
and base excitation of a seismic mass, first proposed in
[3], comprising a mass suspended from a linear spring.
This concept was also used by Beeby et al. [5] for
the development of a micro-generator. A common con-
clusion from all the analytical and experimental work
has shown optimal device performance when operat-
ing in the vicinity of resonance. This finding points
to the requirement for tuning of the harvester to the
expected frequency of oscillations. However, ambient
vibrations are subject to unpredictable variations, both
in short- and long-term durations, rendering the tuning
of a device unsuitable when the dominant frequency of
oscillations shifts away from a tuned frequency. This
problemoccurswith systemsunder transient conditions
as highlighted in [1,2]. Therefore, complex and often
expensive control methods are required to re-tune the
harvester for an instantaneous prevailing condition. An
alternative would be the use of multi-modal devices
[15]. However, this approach can become impractical,
given the design constraints often imposed with regard
to any added weight and package space (compactness).
Passive tuning has also been proposed, often related to
frequency up-conversion [16] through impulsive inter-
actions of the device with the instantaneous vibration
response.

Another approach utilizes the system nonlinearities
which lead to a broader frequency response. Mann and
Sims [17] proposed the use of magnetic repulsion in
order to impose strongly nonlinear restoring forces on
a seismic magnetic mass. This concept has received
much attention due to the novelty of an intentionally
introduced nonlinearity. Barton et al. [18] suggested
coupling between a magnetic tip mass and a ferrous
coil core as a means of achieving nonlinear stiffness.
Remick et al. [19] provided an investigation of dynamic
instability of a strongly nonlinear harvester with repet-
itive impulsive excitation. These conditions occur in
manymechanical systems such as in gear rattle, caused
by impact of loose (unengaged) gearing [20]. A num-
ber of studies [21,22] have explored the advantages of
nonlinear harvesting over the classical linear approach,
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On the dynamics of a nonlinear energy harvester 1273

especially those related to the frequency range over
which high quantities of energy can be captured.

A widely used model for systems with nonlin-
ear forcing is based on the Duffing oscillator (cubic
nonlinearity) [23]. The major advantage of nonlinear
energy harvesting can be ascertained from the harden-
ing spring influence upon the frequency response curve
(FRC), in which an increase occurs in the response
bandwidth [25]. This effect allows for a broader range
of frequencies over which power can be generated effi-
ciently, comparedwith a linear system. Duffing oscilla-
tors have long been studied because of their numerous
applications in nonlinear engineering problems [23–
26]. Kovacic et al. [27,28] studied the presence of a bias
term in the harmonic excitation of a purely nonlinear
Duffing system. It was found that this term can induce
the frequency response to coincide with the hardening–
softening characteristics, which has also been observed
in the parametrically excited Duffing oscillators, along
with branch detachments [29]. Increased complexity of
the response (up to chaotic excursions) can be induced
by the presence of strongly nonlinear terms (fast-slow
mixed-modes, multi-stability etc. [30]). The large vari-
ation in dynamic behaviour necessitates detailed anal-
ysis of Duffing oscillators when employed in different
environments and applications.

Althoughharvesting energy from translational oscil-
lations has received much attention, there is a dearth
of investigation of torsional systems which abound in
powertrain and rotor dynamic applications. One can
conceive the design of a piezogenerator, based on tor-
sional stressing of its active elements [31,32]. Further-
more, the piezoelectric cantilever design has been used
for either torsional vibratory modes with piezoelectric
attachments or in bending modes, extending radially
from a shaft subjected to torsional oscillations [33].

In this paper, the magnetic levitation concept [17] is
used for a torsional vibration energy harvester rigidly
mounted onto a spinning shaft. The nonlinear restor-
ing force pertains to the principle of energy harvesting
within a broadband frequency response. The system
is investigated with a constant shaft speed in order to
reduce the complexity of the problem, thus enabling
an analytical solution. The harmonic balance method
is used to derive approximate analytical expressions
for the system frequency response, which is validated
against numerical integration of the system equations.
The harvester is found to exhibit a complex dynamic
behaviour when compared with other single-degree-

of-freedom (SDOF) oscillators, mainly concerning the
apparent coexistence ofmultiple backbone curves. This
is potentially a significant contribution to the energy
harvesting capabilities of the proposed concept, since
it combines mono-stable with bi-stable dynamics over
distinct frequency ranges for which significant energy
levels can be attained. An estimation of the induced
load power is also provided.

2 The proposed energy harvester and the
examined system

The proposed energy harvester comprises a levitating
magnet which is free to move between two outer mag-
nets, which are fixed to the device housing [17]. These
repel the central levitating magnet as shown in Fig. 1.
A coil is wrapped around the housing and the oscillat-
ing central magnet. The vibration energy is harvested
from the levitating magnet through the induced voltage
in the coil. The housing is attached to a rotating shaft,
with the entire assembly rotating with it.

Mann and Sims [17] demonstrated that the force
exerted by the outer static magnets upon the central
moving magnet can be reduced to a 3rd order poly-
nomial, resembling the nonlinear stiffness of Duffing
oscillators:

Fm (x) = kx + k3x
3 (1)

where x is the displacement of the oscillating magnet.
It was also shown that the linear component of the

stiffness can be tuned to a desired resonant frequency
through changes in the initial separation of themagnets,
d0, without affecting the nonlinear stiffness, k3 [17].

In the rotational configuration, the centripetal force
acting radially upon the central magnet becomes:

Fcp = mΩ2 (r + x) (2)

where r is the distance of the magnet from the centre
of the shaft whilst at rest, and Ω is the shaft’s angular
velocity.

Taking into account the gravitational force and
assuming viscous damping mechanism in the sys-
tem (with coefficient cm), the equation of motion of
the oscillating magnet with an open electric circuit
becomes:
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Fig. 1 a Sketch of the
magnetic levitation
harvester; b free body
diagram of the levitating
magnet

(a) (b)

mẍ+cm ẋ+kx+k3x
3 = mΩ2 (r + x)−mg cos (Ωt)

(3)

Normalizing Eq. (3) with respect tomass, and defining:
ω2
n = k/m, β = k3/m, cm/m = 2ζωn , then:

ẍ+2ζωn ẋ+
(
ω2
n − Ω2

)
x+βx3 = Ω2r−g cos (Ωt)

(4)

Using the commonly assumed constant electromag-
netic coupling between themovingmagnet and the coil,
Θ [8], the current flowing through the coil becomes:

L İ + (Ri + RL) I + Θ ẋ = 0 (5)

where L is the coil’s inductance, I is the current, Ri

is the coil’s resistance, and RL is the resistant load.
The coil’s inductance is often much smaller than the
circuit’s resistance, thus: L � (Ri + RL), leading to:

I = −Θ ẋ

Ri + RL
(6)

Furthermore, according to Faraday’s law, the current
flowing in the coil generates a magnetic field which
resists the magnet’s motion, thus:

ẍ+2ζωn ẋ+
(
ω2
n − Ω2

)
x+βx3− Θ

m
I = Ω2r−g cos (Ωt)

(7)

Then, by virtue of Eq. (6) and defining: cel =
Θ2/ (Ri + RL), the following equation of motion
results:

ẍ +
(
2ζωn + cel

m

)
ẋ +

(
ω2
n − �2

)
x + βx3

= �2r − g cos(�t) (8)

The electric power which can be utilized is usually con-
sidered to be the load power, which upon assuming:
Ri � RL, yields:

PL (t) = cel ẋ(t)
2 (9)

Assuming that the velocity of the oscillating magnet
varies harmonically (i.e. ẋ(t) = V sinΩt), then the
average load power is:

PL ,av = 1

T

T∫

0

celV
2 sin2(Ωt)dt = cel

2
V 2 (10)

where V is the amplitude of the oscillating magnet’s
velocity.

3 Dynamics of the harvester

A method to determine system dynamics is presented
based on the widely used harmonic balance analysis
[23,27], in order to extract the system’s dependence on
the forcing frequency and various system parameters.
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On the dynamics of a nonlinear energy harvester 1275

For the sake of brevity, the derivations are obtained
for Eq. (4) without any loss of generality. Henceforth,
it is assumed that the system response can take the
following form:

x = x0 + x1 cos (Ωt + φ) (11)

This assumption restricts the analysis to the case
of primary resonant system steady-state response by
equating the response frequency to that of the excita-
tion. Therefore, it is expected that super-harmonic and
sub-harmonic resonances would be discarded without
affecting the main objective of the analysis.

Substituting Eq. (11) into (4), applying trivial
trigonometric identities and equating the constant terms
on both sides of the equations, as well as terms contain-
ing cos (Ωt) and sin (Ωt), one can arrive at the follow-
ing set of autonomous nonlinear algebraic functions
with respect to x0, x1, φ:

x0

(
βx20 + 3

2
βx21 − Ω2 + ω2

n

)
= Ω2r (12a-c)

Ω2x1 − x1

(
3βx20 + 3

4
βx21 − Ω2 + ω2

n

)
= g cosφ

2ζωnΩx1 = g sin φ

The above functions are solvedwith respect to x0, x1
in order to extract the system frequency response, as
well as determining the influence of the main design
parameters. Different approaches have been used to
solve Eq. (12a-c), depending on the results sought.
Hereinafter, the system of equations is solved numer-
ically, unless otherwise stated. A common approach,
especially when the response phase is of secondary
interest, is to combine Eq. (12b) and (12c) and obtain
the frequency response function as:

x21

[(
3βx20 + 3

4
βx21 − 2Ω2 + ω2

n

)2
+ (2ζωnΩ)2

]
= g2

(13)

Normally, a solution with respect to Ω2 would be
sought. However, in the current study, both the linear
stiffness and the constant excitation term are functions
of the forcing frequencyΩ , preventing the derivation of
a straightforward expression. Nevertheless, some use-
ful analytical manipulations are possible as highlighted
below.

3.1 Symmetric layout of the harvester

Initially, a symmetric harvester layout with respect to
the rotating shaft is considered, yielding: r = 0, result-
ing in a purely harmonic excitation. Substituting this
condition intoEq. (12a) yields the following set of solu-
tions for static equilibrium:

⎧
⎪⎨
⎪⎩

x0 = 0
or

x20 = Ω2−ω2
n

β
− 3

2 x
2
1

(14a-b)

Since x20 should be positive real, then there can only
be one trivial solution forΩ < ωn . The static displace-
ment bifurcates to multiple coexisting solutions, when
Ω2 − ω2

n = 3βx21/2. Combining Eq. (13) with each of
Eq. (14a-b) results in an implicit equation in terms of
x1 and Ω as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x21

[( 3
4βx

2
1 − 2Ω2 + ω2

n

)2 + (2ζωnΩ)2
]

= g2

or

x21

[(
− 15

4 βx21 + Ω2 − 2ω2
n

)2 + (2ζωnΩ)2
]

= g2

(15a-b)

Differentiating Eq. (15a-b) with respect to Ω and
solving for dx1/dΩ = 0 yields the following condi-
tions:

⎧⎪⎪⎨
⎪⎪⎩

x21,cr = 4
[
2Ω2−(

1−ζ 2
)
ω2
n
]

3β
or

x21,cr = 4
[
Ω2−2

(
1−ζ 2

)
ω2
n
]

15β

(16a-b)

Equation (16a-b) describe the locus of the extremaof
amplitudes of the harmonic component of the response,
which are closely associated with the so-called back-
bone curves. Observation of the shape of the FRCs
shows that these are also maxima, something that is
confirmed by the second derivative test (see Appendix
A). Assuming dynamics of a conservative nature, an
interesting observation is the multiplicity of the back-
bone curves for a given parameter set (β, ωn). This is
discussed in detail in the numerical results’ section.
Additionally, neglecting the influence of damping, the
backbone curves in Eq. (15a-b) intersect the frequency
axis only forΩ ≥ ωn/

√
2 andΩ ≥ √

2ωn correspond-
ingly, with the equality holding for asymptotically low
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excitation amplitudes. These formulae show that the
limiting case of weak nonlinearity would not lead to a
unique resonant peak around the natural frequency, but
instead two resonant peaks occurring at the prescribed
frequencies.

3.2 Asymmetric layout of the harvester

Allowing the design of the harvester to have a small
eccentricity with respect to the centre of the spinning
shaft and following the same procedure as before, the
general set of Eq. (12a-c) poses some analytical dif-
ficulties as they yield less convenient expressions in
terms of x0. Rewriting Eq. (13), the frequency response
function assumes the form:

x21 [(B (Ω) + C (x1 (Ω))

+D (x0 (Ω)))2 + (2ζωnΩ)2
]

= g2 (17)

where

B (Ω) = ω2
n − 2Ω2

C (x1 (Ω)) = 3

4
βx21

D (x0 (Ω)) = 3βx20 (18)

A closer observation of the analysis for the symmet-
ric case shows that the term containing ζ in Eq. (17)
only slightly displaces the backbone curve to lower fre-
quencies, in much the same manner as the influence of
damping in the linear systems. Noting that in mechan-
ical systems the damping ratio is usually quite small
(i.e. ζ 2 � 1), one can disregard this term in order to
facilitate an analytical derivation. Then, differentiating
Eq. (17) and setting dx1/dΩ = 0, the condition for the
backbone curve takes the form:

[B (Ω) + C (x1 (Ω)) + D (x0 (Ω))](
−2Ω + 3βx0

dx0
dΩ

)
= 0 (19)

Differentiating Eq. (12a) with respect to Ω yields
an expression relating the derivatives dx0/dΩ and
dx1/dΩ (see Appendix B):

dx0
dΩ

= f1 (x0, x1,Ω) + dx1
dΩ

f2 (x0, x1,Ω) (20)

Hence, condition (19) after separating the dx1/dΩ
terms and further simplifying becomes:

(B + C + D) (−2Ω + 3βx0 f1) = 0 (21)

where the functions’ arguments have been omitted for
the sake of brevity. Substituting the known expressions
for the functions in Eq. (21) results in the following
independent conditions:

⎧⎨
⎩
12βx20 + 3βx21 − 8Ω2 + 4ω2

n = 0
and

6βr x0 − 3βx21 + 2Ω2 − 2ω2
n = 0

(22a-b)

Solving each of Eq. (22a-b) jointly with Eq. (12a)
provides the extrema of the system’s response. The type
of the extrema (maxima or minima) is extracted by
numerical computation of the second derivative onto
Eq. (17). The resulting curves are independent. How-
ever, an intersection point can exist forwhich the curves
merge into a single backbone curve.Aquestion of inter-
est is the dependence of this feature upon the system
parameters (i.e. it would be of interest to ascertain the
extent of required eccentricity to suppress the existence
of amerging point). In order to investigate this issue, the
intersection point corresponding to positive real ampli-
tudes should be sought. Utilizing Eq. (22a-b), the fol-
lowing condition for the existence of a meaningful (i.e.
real and positive x1) intersection point is derived as:

r >
ωn

3

√
2
√
3 − 3

β
(23)

Equation (23) holds particular importance in the design
of such a system. Keeping r below the critical value
leads to the existence of two separated backbone
curves. Since these curves diverge fromone another, the
bandwidth of significantly high response amplitudes
remains sufficiently broad. On the other hand, the exis-
tence of a single backbone curve effectively reduces
the frequency range, where the presence of nonlinear-
ity would be beneficial.

3.3 Stability characteristics of the harvester

It is important to ascertain the dynamic stability of the
derived solutions, especially as a multitude of these
may exist. Previous studies have shown that changes
in the stability of a solution branch are associated with
saddle-node bifurcations [26]. Furthermore, it has been
shown that bifurcation points coincide with the jump
phenomenon in systems with a Duffing-type nonlin-
earity [26] (i.e. a sudden discontinuous increase or
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On the dynamics of a nonlinear energy harvester 1277

decrease in the amplitude of the response when a
parameter is slowly varied). In fact, the jump frequen-
cies are of special interest in nonlinear systems since
their values limit the range of coexisting solutions,
practically determining the frequency range of inter-
est for nonlinear analysis.

In order to study the local stability of the solutions
and determine the limits of stability, the effect of a small
perturbation u (t) in the response is considered [24,27]:

x = x0 + x1 cos (Ωt + φ) + u (t) (24)

The local stability of the solution is given by the Jaco-
bian of Eq. (4) and the associated linearized system.
Then, the equation of motion with inclusion of pertur-
bation becomes:

ü (t) + 2ζωnu̇ +
(
ω2
n − Ω2

)
u

+3β(x0 + x1 cos (Ωt + φ))2u = 0 (25)

Considering the transformation u (t) = e−ζωn tv (t)
and substituting into Eq. (25), v (t) is derived as:

v̈ +
⎛
⎝σ0 + 2

2∑
j=1

σ j cos [ j (Ωt + φ)]

⎞
⎠ v = 0 (26)

where:

σ0 =
(
ω2
n − Ω2

)
+ 3βx20 + 3

2
βx21 − (ζωn)

2

σ1 = 3βx0x1

σ2 = 3

4
βx21 (27)

The stability of the original system can then be studied
using the Floquet theory [25], where solution to Eq.
(26) can be written as:

v (t) = eμt (B + sin (Ωt + ϕ)) (28)

Substituting Eq. (28) into (26) for harmonic balance,
a linear matrix equation with respect to [B, sin(φ),

cos(φ)]T can be derived as [27]:

⎡
⎣

μ2 + σ0 σ1cosθ −σ1sinθ
−2σ1sinθ −2μΩ − σ2 sin 2θ μ2 − Ω2 + σ0 − σ2cos2θ
2σ1cosθ μ2 − Ω2 + σ0 + σ2cos2θ 2μΩ − σ2sin2θ

⎤
⎦

⎡
⎣
B
sinϕ
cosϕ

⎤
⎦ = 0 (29)

The non-trivial solutions are obtained when the deter-
minant vanishes; Δ(μ) = 0. The latest transformation
of Eq. (28) implies that stability would depend on the
sign of the real part of−ζωn±μ.When the determinant
vanishes, a stability boundary is obtained as: ζωn = μ.
Hence, the stability boundaries are conditioned by the
determinant of Eq. (29) as:

Δ(ζωn = μ) = 0 (30)

The reader is referred to Nayfeh et al. [25] and to the
derivations by Kovacic et al. [27] for more details with
regard to the application of Floquet theory in stability
analysis.

The saddle-node bifurcations which are observed in
the case of the current system and their dependence
on the system parameters are further explored. The
observed bifurcations are at points where the FRC has
a vertical tangent. Hence, these are often referred to as
tangent bifurcations. It has been shown [27] that the
locations of vertical tangents in the FRC are associated
with a vanishing determinant of the Jacobian of Eq.
(12a-c). Then, recalling the expressions in Eq. (18), the
condition for the occurrence of a saddle-node bifurca-
tion is vanishing of the determinant of the Jacobian:
(
B + 2C + D + Ω2

) [
B + C + D

2
(B + 3C + D)

+ 2ζ 2ω2
nΩ

2
]

= 9β2x20 x
2
1 (B + C + D) (31)

Note that Eq. (31) provides the condition for the sta-
bility limits as well, since saddle-node bifurcations are
also linked to vertical tangencies.

4 Results and discussion

The FRCs of the proposed system are obtained based
upon the derivations in the previous section for Eq.
(12a-c). The approximate analytical results are com-
pared with direct numerical integration of Eq. (4) or
(8),where applicable, in order to examine the validity of
the analysis. Numerical FRCs are constructed through
sweep of excitation frequencies in incremental steps,
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whilst other system parameters remain unchanged.
Every point of the FRC is computed based upon the
time series of the numerical integration. The latter is
performed within a small time step, dt = 2π/ (100Ω).
Each time-domain solution is allowed to reach steady-
state conditions prior to selection of the last few peri-
ods for the determination of the response characteris-
tics. The values of the static displacement and harmonic
amplitude are computed from the Fourier coefficients
of the time series, whilst neglecting higher order har-
monic contributions.

4.1 Behaviour charts

The graphical illustrations of the influence of vary-
ing system parameters upon the response amplitudes
are presented using bifurcation diagrams. Applying the
condition in Eq. (31) to Eq. (12a-c), the saddle-node
bifurcation points can be calculated with respect to
(r,Ω). The resulting boundaries are plotted in Fig. 2
for two values of the nonlinear stiffness coefficient k3.
In Fig. 2a, two main sets of branches are observed
in the examined frequency range, along with a sin-
gle detached bifurcation branch. These branches effec-
tively discretize the parameter space into regions of
different number of coexisting solutions (up to seven
stable and unstable solutions for the examined range).
Starting from the left-hand side of the figure, the bifur-
cation tongue ABC is found. Branch AB leads to three
multiple solutions, before these converge into a single
solution after a short frequency range, due to the cross-
ing branch BC. This tongue extends approximately to
value: r = 0.011m. Beyond this value, the system
bifurcates when crossing branches DE or LK, again
exhibiting three coexisting solutions. It is noted that
for a very short range of r values just above point D,
the response quickly returns to a single solution fol-
lowing the narrow DL branch. However, the number
of coexisting solutions increases almost instantly into
three with the crossing branch LK.

The above structure indicates the rich dynamics of
the examined system. Moving to higher frequencies,
the system response solutions undergo a three-to-one
saddle-node bifurcation on the branch EF, whereas
multiple solutions exist on branches MK and FN.
Below point F, a richer structure is evident. Branches
KF and KJ induce the appearance of five coexist-
ing solutions, which reduce to three in branch FG.

(a)

(b)

Fig. 2 Behaviour charts for m = 0.02 kg, ωn = 90 rad/s; ζ =
0.03 and a k3 = 1×105N/m3; b k3 = 7×105N/m3; saddle-node
bifurcations causing transition from 1-to-3 coexisting solutions
(solid line), 3-to-1 (dashed line), 3-to-5 (dashed line with dot),
5-to-3 (dashed line with asterisk), 5-to-7 (dashed line with box)
and 7-to-5 (dashed line with diamond). The number of solutions
is also denoted in the different regions

Before that, a small area is found for the r parameter
space enclosed by JGH, where seven solutions coex-
ist, including the symmetric case (r = 0). The final
observed region occurs between GI and IH, defining a
short range for five coexisting solutions.

With an increasing nonlinear stiffness coefficient,
the same structure is generally maintained in the
behaviour chart (Fig. 2b). Nevertheless, some notable
changes are observed in branch ABC, now intersecting
with branch DK, thus creating a region of five coex-
isting solutions in the low frequency range. Moreover,
the region enclosed by branches JGH is expanded and
as a result a wider area with seven coexisting solutions
is present.
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(a)

(b)

(c)

Fig. 3 FRCs for x0 with parameters corresponding to Fig. 2a
and a r = 0.000; b r = 0.005 c r = 0.013. Stable (solid line)
and unstable (dashed line) analytical solution from Eq. (12a-c);
(circle) forward sweep from numerical integration of Eq. (4);
(plus) backward sweep

Figure 3 shows the FRCs of the static displacement
x0 for three cases selected from the behaviour chart of
Fig. 2a. The FRCs confirm the coincidence of saddle-
node bifurcations with the stability limits and jump fre-
quencies. Figure 3a corresponds to the symmetric case
(r = 0.000) and aswould be expected, up to sevenmul-
tiple solutions are found in the narrow frequency range:
f = 21.6–22.1Hz. In most of the frequency spectrum
considered inFig. 3a, three solutions coexist (in fact, for
f > 14.3Hz). The small discrepancy between the ana-
lytical solutions and the forward numerical response
around f = 16Hz is due to the occurrence of a 1/3
sub-harmonic resonance which affects the static dis-
placement. Further investigation of this interaction is
beyond the scope of this paper.

The behaviour chart of Fig. 2a predicts a narrow
frequency range with three coexisting solutions within
the ABC branch. Therefore, three coexisting solutions

Fig. 4 Backbone curves (dashed linewith dot) and FRC for x1 of
the symmetric case (r = 0m);m = 0.02 kg, k3 = 7×105 N/m3,
ωn = 90 rad/s. Stable (solid line) and unstable (dashed line) ana-
lytical solution fromEq. (12a-c) for ζ = 0.03 and numerical inte-
gration of Eq. (4) for forward (circle) and backward (plus) sweep.
Analytical solution (dotted line) for ζ = 0.09 and results of
numerical integration (times ). The arrows denote cases selected
for plotting the nonlinear normal modes of Fig. 5

would be expected inFig. 3a, b (crossingABC). Indeed,
in Fig. 3b there is a narrow region of coexisting solu-
tions around 12Hz. The same does not seem to be the
case in Fig. 3a due to the coincidence of multiple solu-
tions for x0 = 0. This is caused by the symmetry of the
system, which misleadingly appears to have a single
solution around 12Hz in Fig. 3a. Higher values of r
give rise to distinct solutions in this frequency range,
as it can be observed in Fig. 3b (for r = 0.005). A finite
value of r breaks the symmetry of the system leading to
a biased response. This effect is further pronounced in
Fig. 3c for r = 0.013 due to a higher centrifugal force.
The response undergoes three bifurcations at branches
DE, EF and FN (Fig. 2a), demonstrating the expected
changes in the response. An interesting observation is
that DE gives rise to a detached branch in the FRC, even
though it only extends to a narrow frequency range (as
it can be seen in the inset to Fig. 3c). The bifurcations
observed in the system response have significant effect
on the state of system equilibria. This can greatly affect
the operation of the energy harvesting device, espe-
cially when the oscillation boundaries are of concern.
However, the focus of this paper is on the harmonic
response of the system.
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Fig. 5 Nonlinear normal modes of the symmetric system
selected from the backbone curves in Fig. 4 (solid line) for
f = 11.6Hz (O1); f = 16Hz (O2); and f = 25Hz (O3).
Stable static equilibria of the system are also shown (dashed
line)

4.2 Backbone curves

The harmonic part of the response is important for
vibration energy harvesting purposes. It is notewor-
thy that the obtained frequency response curves and
the backbone curves emanate from the fundamental
harmonic response and are not associated with sec-
ondary resonances (either the sub-harmonics or the
super-harmonic) as the analytical approach disregards
these. Figure 4 shows the backbone curves computed
from Eq. (16a-b). The frequency response of the sys-
tem is plotted for the same parameters and two different
values of damping ratio (ζ = 0.03 and ζ = 0.09). It
can be seen that the value of damping ratio significantly
influences the peak response amplitudes as one would
expect. Due to the symmetry of the system (Fig. 4), sev-
eral coexisting solutions appear as the amplitude cor-
responding to a positive static displacement equates to
that of its negative equivalent. Therefore, there are only
up to four distinct solutions instead of the predicted
seven. A small discrepancy is also noted between the
analytical and the numerically predicted responses (as
is the case of the static response).

A control parameter of significance is the linear stiff-
ness of the oscillator, which is taken ωn = 90 rad/s,
or equivalently fn = 14.32Hz. The first backbone
curve given by Eq. (16a-b) originates from frequen-
cies lower than ωn , whilst the second curve from Eq.
(16a-b) initiates at higher frequencies. This threshold
separates the FRC into two distinct regions of single-
well and double-well dynamics, respectively, as one
may observe from the sign of the linear stiffness in Eq.
(4). The presented backbone curves concentrate the dif-
ferent modes of oscillation of the considered system
in the following manner: starting from low amplitude
oscillations, the first backbone curve describes the non-
linear normal modes of a single-well Duffing oscilla-
tor (see Fig. 5, plot O1). These are an extension of
the notion of linear normal modes to nonlinear sys-
tems, defined as synchronous periodic motions of all
the material points of a conservative system [34]. As
the amplitude increases, so does the frequency of the
modes, resulting in a softer linear stiffness up to the
point that it crosses the ωn threshold and becomes neg-
ative. At this point, the dynamics changes to a bi-stable
system. The previously stable equilibrium x0 = 0 is
destabilized and the equilibria given by Eq. (14a-b)
are stabilized. It is well known that, subject to satis-
factory input energy, bi-stable oscillators may perform
cross-well oscillations, which have been shown to be
favourable for vibration energy harvesting [35]. In fact,
the continuation of the first backbone curve in the bi-
stable regime comprises this type of cross-well oscil-
lation modes, as Fig. 5 shows (plot O2). On the other
hand, the second backbone curve which resides exclu-
sively in the bi-stable frequency region (aboveωn), cor-
responds to in-well oscillations of the system around
each stable equilibrium (see Fig. 5, plot O3). Note that
due to the symmetry of the currently considered layout,
the harmonic properties of the response are identical
for both equilibria. A notable difference with results
previously reported in the literature is that these in-
well oscillations are of hardening type that leads the
bent backbone curve to cover a higher frequency range,
compared with softening in-well oscillations. To sum-
marize, the first backbone curve drives a transition from
single-well dynamics to cross-well oscillations in the
double-well range, whilst the second one describes in-
well oscillations of the double-well version of the sys-
tem, yet, of hardening type.

Considering the damped dynamics of the system,
the FRCs have an unusual structure as it can be seen
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(a)

(b)

Fig. 6 a Backbone curves of maximum (dashed line with dot)
and minimum (dotted line) response amplitude x1 and FRC
for the asymmetric case (r = 0.002m), m = 0.02 kg, k3 =
7 × 105 N/m3, ωn = 90 rad/s and ζ = 0.03. Stable (solid line)
and unstable (dashed line) analytical solution from Eq. (12a-c);
(circle) forward sweep from numerical integration of Eq. (4) and
(plus) backward sweep. Forward sweep for different set of initial
conditions (square box) and backward (diamond); b correspond-
ing static displacement x0

for the case ζ = 0.03. This exhibits strongly non-
linear behaviour with an increasing frequency. The
low-energy branch, past the first backbone curve, is
destabilized by a saddle-node bifurcation. This gives
rise to another branch corresponding to the second
backbone curve, the structure of which also repli-
cates a hardening-type response. The emergence of
this branch has a significant contribution to the sys-
tem’s ability for vibration energy harvesting. It would
normally be expected that the harmonic response of a
regular Duffing-type oscillator with a single backbone
curve asymptotically vanishes after the jump-down
event with increasing frequency. However, the transi-

tion from single-well to double-well dynamics gives
rise to the second backbone curve corresponding to
in-well oscillations around each of the stabilized equi-
libria. Effectively, this behaviour induces a second res-
onant zone, leading to a high amplitude branch through
a second high-energy stable path. Importantly, this sec-
ond resonant zone is of hardening nature, allowing the
harvester to cover higher frequency ranges with high
response amplitudes. The two backbone curves (non-
linear regions) overlap onlywith insignificant damping,
indicating that they may be exploited independently
for energy harvesting purposes across the frequency
spectrum. Nonetheless, even if the choice of system
parameters leads to overlapping frequency ranges of the
backbone curves, any jump-down from the first curve
would land on the high-energy branch of the second,
thusmaintaining the beneficial contribution. Therefore,
this system may act as two separate vibration energy
harvesters working in a synergistic manner.

With any system (i.e. r �= 0), the backbone curves
are computed utilizing the conditions in Eq.s (22a-b)
and (12a-c). Figure 6 shows the backbone curves along
with the frequency response of the harmonic amplitude
obtained for the same system parameters as in Fig. 4,
and r = 0.002m. This induces a breakage of the FRC
at the point where the low-energy branch of the sym-
metric layout loses its stability. Therefore, a third back-
bone curve appears in the intermediate frequency range
of the previously observed resonant zones in Fig. 4. The
nonlinear branch, residing in the high frequency range
(corresponding to the second backbone curve of the
symmetric case), is now detached from the rest of the
FRC, even though an overlap exists. In Fig. 3 it was
shown that eccentricity leads to asymmetric frequency
response, separating themultiple solutions for the static
displacement to two distinct regions (in the positive and
in the negative space). This observation points to the
possibility of the levitating magnet oscillating closer to
the top or the bottom static magnets. This behaviour
is also observed in the FRC of the harmonic ampli-
tude. Starting from the lowest frequency in Fig. 6a,
one can observe a joint FRC shaped around the first
two backbone curves. This FRC extends over thewhole
frequency range (diminishing in an asymptotic manner
for f > 25Hz), corresponding to the positive static
displacement seen in Fig. 6b. Furthermore, the region
between the backbone curves, where only a single solu-
tion exists, connects the two local maxima. Since two
local peaks exist for a single curve, then a local mini-
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mum also exists in the intermediate region. In fact, the
maxima stem from the first condition used in the com-
putations, Eq. (22a),whilst theminimaare derived from
the second condition, Eq. (22b). This allows for sepa-
rate manipulation of these points, which in the context
of energy harvesting requires the value of the localmin-
imum to be as close as possible to the maxima, so that
the response amplitude would retain high values in the
intermediate region.On the other hand, the secondFRC
arising at f = 19Hz corresponds to the negative static
displacement in Fig. 6b. Thus, in order to fully exploit
the potential of the harvester, onewould have to impose
a jump in the response from the positive space to the
negative when the excitation frequency exceeds 25Hz.

The above observation becomes clearer when the
basins of these coexisting attractors are plotted. Fig-
ure 7 shows the basins of the initial conditions, result-
ing in different solutions for the symmetric and asym-
metric cases. It indicates that under certain condi-
tions some attractors become dominant, whereas others
demonstrate weaker attraction. This could potentially
diminish the harvester’s capacity to operate with high
vibration amplitudes, such as in Fig. 7b. The desired
response (indicated as 3) occupies a narrow region of
initial conditions, which renders it sensitive to even
small sudden changes in the prevailing conditions. On
the other hand, the basins of attractions point to a strat-
egy for the integration of the multiple solutions in an
optimized energy harvesting operation. For example, if
the optimal response is no longer sustainable, a suitable
strategy can be devised so that the response is attracted
by the second best option, indicated as 1.

Overall, as for the symmetric case, the onset of an
additional backbone curve is equivalent to an additional
nonlinear harvester, tuned to the frequency rangewhere
this curve would reside. It appears that a small eccen-
tricity would bring beneficial influence on the usage
of such a design for vibration energy harvesting, espe-
cially when the added curve covers a frequency range
of otherwise relatively low response amplitudes.

Figure 6 shows that the backbone curves asymptot-
ically tend to the vertical, as x1 → 0. This is the typ-
ical shape of the backbone curves of oscillators with
cubic nonlinearities. The physical interpretation is that
of a linear-like behaviour of these oscillators when the
excitation amplitude is sufficiently low. Even so, the
separate backbone curves define multiple peaks in the
shape of the FRC, with clear advantages for energy
harvesting compared with a linear harvester, for which

Fig. 7 Basins of attractions form = 0.02 kg, k3 = 7×105 N/m3,
ωn = 90 rad/s, f = 23.5Hz, ζ = 0.03 and: a r = 0.0m. Basin 1
corresponds to the attractor (x0, x1) = (0.0196, 0.0018), basin
2 to (0.0173, 0.0077), basin 3 to (− 0.0196, 0.0018) and basin
4 to (− 0.0173, 0.0077); b r = 0.002m. Basin 1 corresponds to
(− 0.0175, 0.0032), basin 2 to (0.0212, 0.0008) and basin 3 to
(0.0166, 0.0109)

only a single resonant peak exists. Recalling the anal-
ysis in the previous section, it was shown that an inter-
section point of the backbone curves can exist. If the
introduced eccentricity exceeds a critical value given
by Eq. (23), then a real, non-negative solution exists
for which the backbone curves intersect. Substitut-
ing the system parameters used in Fig. 6, it is found
that: rcri t = 0.0035m. Thus, selecting higher values
(r = 0.004m and r = 0.006m) and repeating the
steps to calculate the backbone curves, Fig. 8 shows
that above the critical value of eccentricity the back-
bone curves merge, no longer defining multiple peaks
in the FRC for every excitation amplitude. Instead, the
merged part of the backbone curve resembles the struc-

123



On the dynamics of a nonlinear energy harvester 1283

ture of a typical nonlinear oscillator. Therefore, for rel-
atively weak excitations the examined nonlinear har-
vester shows no advantage over a linear counterpart. In
this respect, rcrit is an important design parameter that
can enhance the harvester’s adaptability to low excita-
tion amplitudes. It is also noted that this curve results
from merging the system’s extrema in a way that the
locus of the local minima is now transformed to the
locus of the peak amplitudes.

The above characteristics of the proposed examined
system lead to a reduced frequency range for which
resonant response is observed. In Fig. 9, the case for
r = 0.006m is considered, with the depicted results
confined to the frequency range of the merging point.
It can be seen that a low damping ratio of ζ = 0.03
leads to multi-peak FRC, whereas an increased energy
dissipation with ζ = 0.07 forces the system to lower
response amplitudes. The latter response due to the
merging point of the backbone curves resembles the
low-energy response of a single linear oscillator. Thus,
apart from the classic dissipation resulting in lower
amplitudes, increased damping can convert the two-
peak FRC to a single-peak curve, essentially cancelling
the “additional harvester” that the multiplicity of the
backbone curves would offer. Nevertheless, this high-
lights the usefulness ofEq. (23). Should the eccentricity
be lower than its critical value (e.g. as in Fig. 4), the
FRC would still have a multi-peak structure regardless
of the increased damping content. The merging points
of the backbone curves can be computed, imposing
both conditions in Eq. (22a-b) on the system’s solution.
Figure 10 shows the frequency and response amplitude
of the intersection point for system parameters of Fig. 9
for ζ = 0.03. As the eccentricity increases, the back-
bone curves merge at higher amplitudes and frequen-
cies. This allows more space for the single backbone
curve, thus deteriorating the overall energy harvesting
opportunities.

4.3 Harvested energy

The electrical power of the circuit’s load is com-
monly considered as a measure of harvested electri-
cal energy. With the employed assumptions, the power
is proportional to the square of the response velocity.
For a typical example comprising an N42 magnet of
0.02 kg weight, multilayer coil with 1600 turns, inner
radius of 14.15 mm, outer radius of 20.25 and 15.5

Fig. 8 Backbone curves for the same parameters as in Fig. 6with
maxima (solid line) and minima (dashed line) for r = 0.004m,
as well as maxima (dashed line with dot) and minima (dotted
line) for r = 0.006m.

Fig. 9 Backbone curves (dashed line with dot) of the response
amplitude x1 and FRC for the asymmetric case (r = 0.006m),
m = 0.02 kg, k3 = 5 × 105 N/m3, ωn = 90 rad/s. Stable (solid
line) and unstable (dashed line) analytical solution from Eq.
(12a-c); (circle) forward sweep fromnumerical integration of Eq.
(4); (plus) backward sweep for a damping ratio, ζ = 0.03; stable
(dotted line) analytical solution from Eq. (12a-c) for ζ = 0.07
and results from numerical integration of Eq. (4) (×)

mm length, the coupling constant is calculated to be
Θ = 6.75Vs/m. Neglecting the coil’s resistance (for
which Ri � RL holds) and considering load resistance
of 1kΩ , then: cel = 0.0456Ns/m. Figure 11 shows the
electrical power load averaged over a period of motion
given by Eq. (10). The frequency response of the sys-
tem is calculated from Eq. (12a-c) (solid and dashed
lines) and is compared with the numerical integration
results, sweeping the excitation frequency forward (◦)

and backward (+). There is good agreement between
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Fig. 10 Intersection point of the backbone curves for m =
0.02 kg, k3 = 7×105 N/m3,ωn = 90 rad/s. Response amplitude
x1 (solid line) and eccentricity radius r (dashed line)

Fig. 11 Average power PL ,av of electrical load with RL = 1kΩ
for the parameters of Fig. 6 and electrical damping, cel =
0.0456Ns/m. Stable (solid line) and unstable (dashed line) ana-
lytical solution from Eq. (12a-c); (circle) forward sweep from
numerical integration of Eq. (4) and (plus) backward sweep

the analytical and numerical results, which shows that
the power follows the shape of the velocity frequency
response. This example demonstrates the potential of
the energy harvester in delivering tens of mW in a
broad range of frequencies without suppressing res-
onant peaks as is the case with a linear harvester. In the
latter case, broadband behaviour is achieved by increas-
ing damping at the expense of severely truncated peak
values.

5 Conclusions

The harmonic balance method is employed to anal-
yse the dynamics of a vibration energy harvester with

nonlinear magnetic restoring force. Due to the layout
of the rotary system, the oscillating magnet is excited
by the combined effect of centripetal force and grav-
ity, resulting in a constant and a harmonic excitation
component, respectively. The linear frequency of the
system varies with the excitation frequency due to the
action of the centripetal force. The aim of the analysis
is to investigate the structure of the system’s dynam-
ics. The overlapping boundaries of saddle-node bifur-
cations lead to the appearance of frequency regions
with up to seven coexisting solutions, even when a
small amount of eccentricity is present in the harvester.
Most of these bifurcations result in limited changes
in the amplitudes of oscillation with the frequency
response dominated by stable branches. Jump phenom-
ena account for the amplitude variations within a nar-
row frequency range only. Nevertheless, the possibility
of a part of the FRC detaching from the main branches
exists.

The FRC structure of the studied system is of par-
ticular interest. When the excitation is purely symmet-
ric, the frequency response is dominated by two dis-
tinct backbone curves, which induce the corresponding
resonant zones. The first curve concentrates the non-
linear normal modes, corresponding to oscillations in
a single-well potential for frequencies below the ωn

threshold. This incorporates a transition to cross-well
oscillations when the threshold, leading to a double-
well potential, is reached. The second curve describes
the nonlinear modes of in-well hardening oscillatory
characteristics. The damped response of the system is
then determined by the combined influence of these
modes. In regular bi-stable oscillators, in-well oscil-
lations exhibit softening characteristics, resulting in
interactions between the cross-well and in-well oscil-
lations over a confined frequency range. In the case
demonstrated here, the transition from single-well to
double-well dynamics occurs with cross-well oscilla-
tions as the continuation of the first backbone curve,
where the in-well oscillations follow hardening char-
acteristics. The result is two resonant zones, covering
relatively distinct frequency ranges, thus establishing
a coexisting frame of effectively broadening frequency
range of high response amplitudes. One can consider
the analogy of two nonlinear harvesters, the responses
of which cover different frequency ranges. With the
proposed concept, this is achieved through a SDOF
oscillator only. In fact, once the frequency is increased
beyond the first FRC peak, the low-energy branch is
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destabilized and the response follows the higher-energy
path, leading to the second peak.

In addition, the introduction of eccentricity in the
system layout (triggering asymmetric forcing of the
oscillator) results in the appearance of an additional
backbone curve. This is induced by the loss of symme-
try, yielding non-identical equilibria of in-well oscilla-
tions, unlike the previous case. A new multi-peak FRC
is created that can be conceived synergistically, as the
symmetric system was. Nevertheless, the response can
return to a single-peak form if higher energy dissipa-
tion is attained. The appearance of additional resonant
zones in the dynamics of this nonlinear system sig-
nificantly enhances the energy harvesting capabilities.
This is because high velocity response of the oscillat-
ingmagnet can be sustained through passage over sepa-
rate hardening resonant zones, thus resulting in broader
spectra of power load output.
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Appendix A

In order to verify the nature of the extrema, the sec-
ond derivative test is applied to the frequency response
curve given by Eq. (15a-b). Differentiating twice with
respect to �, setting the first derivative equal to 0 and
solving both expressions for d2x1/d�2 yields:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2x1
d�2 = 16x1(−4ζ 2ω2

n+3βx21−24Ω2+4ω2
n)

27β2x41+64ζ 2ω2
nΩ

2−96βΩ2x21+48βω2
n x

2
1+(8Ω2−4ω2

n)
2

or

d2x1
d�2 = 8x1(−8ζ 2ω2

n+15βx21−12Ω2+8ω2
n)

675β2x41+64ζ 2ω2
nΩ

2−240βΩ2x21+480βω2
n x

2
1+(4Ω2−8ω2

n)
2

(A1)

Substituting Eq. (16a-b) correspondingly where con-
venient, the expressions read:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d2x1
d�2 = − 24Ω2βx21

ω2
nζ

2
(
ω2
nζ

2+4Ω2+3βx21/2
)√

3β(ω2
nζ

2+2Ω2−ω2
n)

or

d2x1
d�2 = − 15Ω2βx21

2ω2
nζ

2
(
ω2
nζ

2+Ω2+15βx21/4
)√

15β(2ω2
nζ

2+Ω2−2ω2
n)

(A2)

Both expressions in (A2) are negative for any value
of the system parameters, indicating that the extrema
in the symmetric case are actually maxima. A simi-
lar test can be used to infer whether the extrema of
the asymmetric case are maxima or minima too (Eq.
(22a-b)). However, the resulting expressions are much
more complicated and a numerical approach is required
to solve for the sign of the second derivative.

Appendix B

Recalling that x0 and x1 are functions of Ω , differ-
entiating Eq. (12a-c) with respect to Ω , results in the
following expression:

dx0
dΩ

= −6x1x0β
dx1
dΩ

+ 4x0Ω + 4Ωr

3βx21 + 6βx20 − 2Ω2 + 2ω2
n

(B1)

Rewriting (A1) such that it resembles the equation of
a line as in Eq. (20), the following expressions are
obtained:

f1 (x0, x1,Ω) = 4x0Ω + 4Ωr

3βx21 + 6βx20 − 2Ω2 + 2ω2
n

f2 (x0, x1,Ω) = −6x1x0β

3βx21 + 6βx20 − 2Ω2 + 2ω2
n
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