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Abstract 

A tribo-dynamics model of a differential hypoid gear pair is presented, integrated with 

lubricated contact of meshing teeth pair with lubricants of varying rheological properties. 

Particular attention is paid to the effect of lubricant formulation and gear geometry on the 

system efficiency. The influence of gear torsional dynamic response is taken into account in a 

4-Degree of Freedom (DoF) model. The contact geometry and kinematics of the hypoid gear 

pair are estimated, using Tooth Contact Analysis (TCA). Two fully formulated gear lubricants 

of the same viscosity grade (SAE 75W-90) blended with the same additive pack, but with 

different types and concentration of viscosity modifier (VM) are considered. Conjunctional 

friction is predicted for viscous shear of fully characterised lubricants as well as boundary 

interaction of rough surfaces. The results show loss of friction resulting in resonant response 

of the gear pair with impact of meshing teeth exhibiting non-linear jump phenomenon. The 

predictions also show that lubricants with higher pressure – viscosity (PV) coefficients tend to 

exhibit increased power loss.  

Keywords: Hypoid Gear pair, Elastohydrodynamics, Gear Dynamics, Friction, Jump 

phenomenon, Resonance, Lubricant Rheology 

1-Introduction 

The hypoid gear pair is a major power transmitting system used in the differential units of 

trucks, vans modern passenger cars. Its function is to transmit the power provided by the 

engine through the main driveshaft to the axle half-shafts, connected to the driven wheels. 

Due to its position within the powertrain and its special geometrical features, the differential 

frequently operates under high loads and sliding velocities, applied to their teeth pairs in 
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mesh. Thus, the system is subjected to appreciable frictional power loss. The trends in 

automotive industry is focused on fuel efficiency and low emissions designs, thus design of 

power transmitting components such as hypoid gearing is increasingly subject to detailed 

design analysis [1, 2].  

There is a dearth of predictive analysis for hypoid gears relative to other form of gearing 

systems. Kubo et al [3] examined the effect of the lubricant viscosity grade and type of the 

friction modifier on the transmission efficiency of a typical vehicle drivetrain unit. A rear axle 

configuration was used and the experimental setup allowed measurement of power losses in 

the rear axle, comprising the differential hypoid gears. The results of this analysis indicated 

that the use of transmission fluids with reduced viscosity improved the efficiency of the rear 

axle at lower temperatures, although for higher temperatures this deteriorated, possibly due to 

the effect of teeth surface asperity interactions. The use of multi-grade oils was recommended 

as a counter measure. Despite the solid evidence of an experimental study, this study did not 

lead in isolation of the contribution of conjunctional power losses on the total efficiency of 

the rear axle, since this are other contributions due to contamination, as well as churning and 

bearing losses. Xu and Kahraman [4] developed a hypoid gear pair friction model which was 

able to calculate the conjunctional power losses of such gears. The trends of their results were 

in good general agreement with measurements of Kubo et al [3]. Karagiannis et al [5] as well 

as Mohammadpour et al [1,6,7] examined theoretically the lubrication of automotive 

differential hypoid gears under dynamic conditions. Their findings included the impact of the 

gear dynamics on the conjunctional power losses of the system, particularly for operating 

conditions near the resonant frequency where vibro-impact phenomena appear (single/double 

sided tooth impacts). The non-Newtonian tractive nature of teeth pair conjunctions was also 

demonstrated as well as the effect of inlet starvation [7]. They also noted the often contrary 

requirements between noise and vibration performance and transmission efficiency [6]. 

Recently, Talbot et al [8] presented a friction model, capable of predicting the conjunctional 

losses, the bearing losses and the churning losses in an automotive rear axle. Very good 

agreement with experimental measurement was demonstrated.  

There remains a gap in the open literature with regard to the influence of lubricant 

formulation on the conjunctional efficiency of hypoid gear pairs. In this paper particular 

attention is paid to the characterisation of lubricant viscosity in high shear, highs pressure and 

temperature, which are commonly encountered in hypoid gear pairs. The effect of several 
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lubricant-related viscosity parameters on the power losses is examined, highlighting the 

influence of the high pressure behaviour of the fluid and enabling the design of more fuel 

efficient gear lubricants. Furthermore, the effect of gear ratio on the system efficiency is 

investigated, suggesting that gear pairs with lower gear ratios exhibit improved efficiency 

characteristics under the same operating conditions. 

2-Theory and Governing Equations 

In order to predict efficiency of hypoid gear pairs the problem is decomposed into three 

subset problems, which are treated separately: (1) Tooth Contact Analysis (TCA), (2) 

development of a friction model and (3) development of a torsional gear dynamics model. 

TCA is performed in order to obtain contact geometry and kinematics of meshing teeth pairs. 

It is based on a quasi-static contact Finite Element (FE) analysis of the gear pair under 

investigation. TCA is performed using CALYX (Vijayakar [9]). In order to do so, the 

geometry of the hypoid gear pair needs to be described. The information describing the 

geometry and the assembly of a hypoid gear pair are contained in a file usually known as the 

Special Analysis File (SPA), which is then used in TCA. The SPA is provided by the gear 

manufacturer and it contains all the information required to create the solid model of the 

hypoid gear pair under investigation. The friction model is used to predict friction between 

the contacting flanks at each time step of time in the meshing cycle, assuming that the 

prevailing regime of lubrication is Elastohydrodynamic (EHD) (also referred to as piezo 

viscous – elastic). The high pressure, high shear rate and high temperature responses of the 

lubricant under investigation are essential inputs at this stage, because they can directly affect 

the lubricant film thickness, and thus the generated friction. Finally, the torsional gear 

dynamics model, coupled with friction would enable prediction of torsional oscillations, thus 

vibration performance of the system as a whole in the same manner as in [6].  

2.1-Tooth contact analysis (TCA) 

In terms of their geometry, hypoid gear pairs can be considered as the most general case of 

gearing, meaning that any other type of gearing (such as a spur or a bevel gear pair) can be 

represented as a simplified form of a hypoid gear pair [7]. Therefore, hypoid gears exhibit a 

rather complex tooth geometry, which is reflected in their geometry and the kinematics of 

contact. In order to perform a successful tribological and gear dynamics analyses, contact-

related parameters need to be known a priori. However, the rather complex teeth geometry 
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does not lend itself to simple analytical deduction of these parameters. Consequently, these 

are calculated through numerical techniques. TCA is used for this purpose. As it can be seen 

in Fig. 1a, b solid finite element model of the hypoid gear pair can be created, when a full set 

of geometrical parameters is available, usually through the SPA provided by the gear 

manufacturer. For the purposes of the present study, three gear sets are examined, with some 

of their geometrical characteristics listed in table 1. 

  

Figure 1: (a) FE model of a typical gear-set and (b) the corresponding Von Mises stress 

distribution  

The parameters listed in table 1, along with a plethora of others, are used in TCA to create a 

solid model of the hypoid gear pair, which is then discretised using solid elements (Fig. 1). 

Gear-set 1 is used as the baseline model to demonstrate the tribological performance of the 

system under different operating conditions (speed, load) and with the influence of different 

lubricant formulations. Gear-sets 2 and 3 are of very similar geometry, with the main 

difference being the gear ratio (2.73 for gear-set 2 and 3.41 for gear-set 3). Gear-sets 2 and 3 

are used to demonstrate the effect of gear ratio on the conjunctional efficiency. All the three 

gear sets are face-hobbed. 

Once TCA is completed for a given combination of pinion speed and input torque, outputs 

such as the von Mises stress distribution in the contact zone (Fig. 1b), as well as the point and 

the path of the contact between the mating teeth are determined. The parameters of interest, 

ought through TCA are: (1) the principal contact radii of the pinion and ring gear contacting 

teeth at any meshing location, (2) the unloaded static transmission error, (3) the meshing 

stiffness and its variation with applied load, (4) the load share per teeth pair contact, (5) the 

radii of curvature of the mating teeth at the point of contact along the semi-minor and the 

semi-major axes of the elliptical contact footprint, and (6) the instantaneous surface velocities 

(a) (b) 
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of the teeth along these principal axes. All the aforementioned quantities vary periodically 

with the pinion angle of rotation. The methodology followed to determine each of these 

parameters is described by Karagiannis at al [5]. 

Table 1: Main geometrical parameters of the examined gear-sets 

Parameter (unit) Gear-set 1 Gear-set 2 Gear-set 3 

 Pinion Ring Pinion Ring Pinion Ring 

Number of teeth (−) 13 36 15 41 12 41 

Face width (𝐦𝐦𝐦𝐦) 33.85 30 40.76 38.20 39.38 36.50 

Face angle (°) 29.05 59.65 27.77 61.60 22.74 66.70 

Spiral angle (°) 46 27.60 40 26.96 40 26.62 

Outer cone distance 

(𝐦𝐦𝐦𝐦) 

83.08 95.60 95.63 112.53 92.42 107.80 

Offset (𝐦𝐦𝐦𝐦) 24 24 20 20 20 20 

 

Fig. 2 illustrates the variation of meshing stiffness with the pinion rotation angle for the gear-

set 3 and for 3 different input torque values. Its mean value and the peak-to-peak variations 

vary with the input torque. This is also observed in the analysis of Karagiannis et al [10]. 

 

Figure 2: Variation of dimensionless meshing stiffness with pinion angle for the gear-set 

3 
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In order to account for the variation of the gear teeth meshing data, the TCA-determined teeth 

contact parameters with respect to the pinion angle are fitted with a Fourier series as: 

𝑅𝑅𝑝𝑝 = 𝑅𝑅𝑝𝑝,0 + �𝑅𝑅𝑝𝑝𝑝𝑝,𝑖𝑖sin�𝑖𝑖𝑖𝑖𝑝𝑝𝜑𝜑𝑝𝑝�
8

𝑖𝑖=1

+ �𝑅𝑅𝑝𝑝𝑝𝑝,𝑖𝑖cos�𝑖𝑖𝑖𝑖𝑝𝑝𝜑𝜑𝑝𝑝�
8

𝑖𝑖=1

            (1) 

𝑒𝑒0 = 𝑒𝑒0,0 + �𝑒𝑒𝑝𝑝𝑝𝑝,𝑖𝑖sin�𝑖𝑖𝑖𝑖𝑝𝑝𝜑𝜑𝑝𝑝�
8

𝑖𝑖=1

+ �𝑒𝑒𝑝𝑝𝑝𝑝,𝑖𝑖sin�𝑖𝑖𝑖𝑖𝑝𝑝𝜑𝜑𝑝𝑝�
8

𝑖𝑖=1

                (2) 

𝑘𝑘𝑚𝑚 = 𝑘𝑘𝑚𝑚,0 + �𝑘𝑘𝑝𝑝𝑝𝑝,𝑖𝑖sin�𝑖𝑖𝑖𝑖𝑝𝑝𝜑𝜑𝑝𝑝�
8

𝑖𝑖=1

+ �𝑘𝑘𝑝𝑝𝑝𝑝,𝑖𝑖sin�𝑖𝑖𝑖𝑖𝑝𝑝𝜑𝜑𝑝𝑝�
8

𝑖𝑖=1

             (3) 

𝑙𝑙𝑙𝑙𝑘𝑘 = 𝑙𝑙𝑙𝑙0 + �𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝,𝑖𝑖sin �
1
3
𝑖𝑖𝑖𝑖𝑝𝑝𝜑𝜑𝑝𝑝�

8

𝑖𝑖=1

+ �𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝,𝑖𝑖sin �
1
3
𝑖𝑖𝑖𝑖𝑝𝑝𝜑𝜑𝑝𝑝�

8

𝑖𝑖=1

      (4) 

The argument of the trigonometric functions in equations (1) – (3) is: 𝑖𝑖𝑝𝑝𝜑𝜑𝑝𝑝 = 𝑖𝑖𝑝𝑝𝜔𝜔𝑝𝑝𝑡𝑡 = 𝜔𝜔𝑚𝑚𝑡𝑡, 

where 𝜔𝜔𝑚𝑚  is the meshing angular frequency, which is related to the meshing period 𝑇𝑇𝑚𝑚 . 

Equations (1) – (3) assume that the contact load is the sum of the individual flank loads. This 

is applied at a single point. This assumption is accurate for the description of the torsional 

gear dynamics of the system [11]. For a tribological study contact kinematics and load carried 

by a pair of teeth, rather than the total contact load need to be known. Equation (4) describes 

the load sharing factor for 2-3 simultaneous teeth pairs in contact. The load share factor is 

defined as the ratio of the individual flank contact load over the total contact load carried by 

the gear pair at a any instant of time, hence: 𝑙𝑙𝑙𝑙𝑘𝑘 = 𝑊𝑊𝑘𝑘 𝑊𝑊𝑡𝑡⁄ = 𝑙𝑙𝑙𝑙𝑘𝑘�𝜑𝜑𝑝𝑝� (𝑊𝑊𝑡𝑡 = 𝑊𝑊1 + 𝑊𝑊2 +

𝑊𝑊3). 

2.2-Friction model 

Flank friction is calculated using an analytical model, assuming that the prevailing regime of 

lubrication is piezo-viscous – elastic (i.e. hard EHD). Both the viscous and boundary 

components of friction are accounted for in the calculation process, thus: 

𝐹𝐹𝑓𝑓𝑓𝑓 = 𝐹𝐹𝑣𝑣 + 𝐹𝐹𝑏𝑏      (5) 

where, 𝐹𝐹𝑣𝑣  is the contribution due to viscous friction, while 𝐹𝐹𝑏𝑏  is that due to asperity (or 

boundary) friction. The viscous component is:  
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𝐹𝐹𝑣𝑣 = �𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐴𝐴𝑎𝑎𝑝𝑝𝑝𝑝�𝜏𝜏      (6) 

where, 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸 = 𝜋𝜋𝑎𝑎𝑝𝑝𝑏𝑏𝑝𝑝 is the area of the elliptical contact footprint between the mating flanks 

and 𝐴𝐴𝑎𝑎𝑝𝑝𝑝𝑝 is the predicted area of asperity. The semi-major and the semi-minor axes of the 

contact footprint (𝑎𝑎𝑝𝑝and 𝑏𝑏𝑝𝑝) are calculated according to Hamrock and Dowson [12]. Finally, 𝜏𝜏 

is the average viscous shear stress:  

 𝜏𝜏 =
𝜂𝜂�𝑝𝑝,𝑇𝑇𝑝𝑝�
𝐹𝐹(�̇�𝛾) �̇�𝛾      (7) 

where, 𝜂𝜂�𝑝𝑝,𝑇𝑇𝑝𝑝�  is the low shear dynamic viscosity of the lubricant at pressure 𝑝𝑝  and 

temperature 𝑇𝑇𝑝𝑝, is the average temperature at the centre of the conjunction. Roelands equation 

[13] is used to describe the variation viscosity with pressure and Vogel’s for the variation of 

the same with temperature [14]. The parameter  𝐹𝐹(�̇�𝛾) is used to describe the shear thinning of 

the lubricant at higher shear rates (non – Newtonian response) and for the lubricants examined 

this is calculated according to the Havriliak – Negami model [15] as: 

𝐹𝐹(�̇�𝛾) = (1 + (𝜆𝜆�̇�𝛾)𝛼𝛼𝐻𝐻𝐻𝐻)𝛽𝛽𝐻𝐻𝐻𝐻       (8) 

In equation (8), 𝜆𝜆 is the relaxation time of the polymeric solution, while 𝛼𝛼𝐸𝐸𝐻𝐻  and 𝛽𝛽𝐸𝐸𝐻𝐻  are 

related to the distribution of the molecular weight of the blended polymers and the structure 

of the polymer chains. The high shear response of the viscosity is determined at ambient 

pressure and at 70 ℃, using an ultra-high shear viscometer (USV). 

Table 2: Lubricant properties 

Parameter (unit) OS265962 OS265963 

𝝀𝝀 (𝐬𝐬) 7.9 × 10−8 8.0 × 10−8 

𝜶𝜶𝑯𝑯𝑯𝑯 (−) 0.70 0.97 

𝜷𝜷𝑯𝑯𝑯𝑯 (−) 1 1 

𝜶𝜶∗ at 𝟒𝟒𝟒𝟒 ℃ (𝐆𝐆𝐆𝐆𝐆𝐆−𝟏𝟏) 16.09 19.31 

𝜶𝜶∗ at 𝟏𝟏𝟒𝟒𝟒𝟒 ℃ (𝐆𝐆𝐆𝐆𝐆𝐆−𝟏𝟏) 11.59 13.89 

𝜶𝜶∗ at 𝟏𝟏𝟒𝟒𝟒𝟒 ℃ (𝐆𝐆𝐆𝐆𝐆𝐆−𝟏𝟏) 9.38 12.28 

𝒌𝒌𝒇𝒇 (𝐖𝐖 𝐦𝐦.𝐊𝐊⁄ ) 0.18 0.80 

𝒄𝒄𝒑𝒑,𝒇𝒇 (𝐉𝐉 𝐤𝐤𝐤𝐤.𝐊𝐊⁄ ) 2090 2090 
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The high pressure viscosity is measured for pressures up to 0.5 GPa through a high pressure 

falling body viscometer at three different temperatures(40 ℃, 100 ℃ and 140 ℃), yielding 

the corresponding pressure viscosity coefficient; 𝛼𝛼∗ . All the viscosity related data are 

provided by the lubricant manufacturer. Table 2 lists the lubricant rheological parameters 

used in the current analysis. 

A comparison of the lubricant parameters in table 2 shows that the fluids under examination 

have different high shear and high pressure responses. The effect of those differences is 

investigated in the current study. Finally, the viscous shear rate �̇�𝛾 is calculated as: 

�̇�𝛾 =
|𝑉𝑉𝑝𝑝|
ℎ𝑝𝑝

      (9) 

where, 𝑉𝑉𝑝𝑝 is the sliding speed between the mating flank surfaces and ℎ𝑝𝑝 is the central lubricant 

film thickness [16]: 

ℎ𝑝𝑝 = 4.31𝑅𝑅𝑒𝑒𝑈𝑈𝑒𝑒0.68𝐺𝐺0.49𝑊𝑊𝑒𝑒
−0.073�1 − exp�−1.23(𝑅𝑅𝑝𝑝 𝑅𝑅𝑒𝑒⁄ )2 3⁄ ��      (10) 

The parameters in equation (10) depend on the operating conditions (lubricant entraining 

velocity, contact load, etc.) and the lubricant properties (low shear dynamic viscosity and the 

PV coefficient) and are calculated according to those stated by Chittenden et al [16].  

The boundary friction force is calculated according to as [17] 

𝐹𝐹𝑏𝑏 = 𝜏𝜏0𝐴𝐴𝑎𝑎𝑝𝑝𝑝𝑝 + 𝜍𝜍𝑎𝑎𝑊𝑊𝑎𝑎𝑝𝑝𝑝𝑝      (11) 

Eyring shear stress is 𝜏𝜏0 ≈ 2 MPa for most lubricant, indicating the onset of non-Newtonian 

behaviour of thin adsorbed boundary films [18], 𝜍𝜍𝑎𝑎 = 0.17 is analogous to the coefficient of 

friction (i.e. coefficient of shear strength of asperities on the softer of the two counter faces) 

[17]. This is usually measured using atomic force microscopy, operating in lateral force mode 

as shown by Styles et al [19] and Leighton et al [20]. 𝑊𝑊𝑎𝑎𝑝𝑝𝑝𝑝 is the share of contact load carried 

by the asperities. Quantities 𝐴𝐴𝑎𝑎𝑝𝑝𝑝𝑝 and 𝑊𝑊𝑎𝑎𝑝𝑝𝑝𝑝 are calculated according to Greenwood and Tripp 

[21], assuming a Gaussian distribution of asperity heights: 

𝑊𝑊𝑎𝑎𝑝𝑝𝑝𝑝 =
8√2
15

π𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸�𝜂𝜂𝑝𝑝𝛽𝛽𝑝𝑝𝜎𝜎𝑝𝑝,𝑝𝑝�
2
�
𝜎𝜎𝑝𝑝
𝛽𝛽𝑝𝑝
𝐸𝐸∗𝐹𝐹5 2⁄       (12) 
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𝐴𝐴𝑎𝑎𝑝𝑝𝑝𝑝 = π2𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸�𝜂𝜂𝑝𝑝𝛽𝛽𝑝𝑝𝜎𝜎𝑝𝑝,𝑝𝑝�
2
𝐹𝐹2                              (13) 

In equations (12) and (13) require the statistical functions 𝐹𝐹5 2⁄  and 𝐹𝐹2, which depend on the 

Stribeck lubricant film ratio 𝜆𝜆𝑝𝑝 = ℎ𝑝𝑝 𝜎𝜎𝑝𝑝,𝑝𝑝⁄  (𝜎𝜎𝑝𝑝,𝑝𝑝 = √2𝜎𝜎𝑝𝑝 for Gaussian surfaces having the same 

surface height distribution). The parameters 𝜂𝜂𝑝𝑝 , 𝛽𝛽𝑝𝑝  and 𝜎𝜎𝑝𝑝  correspond to the density of the 

asperity peaks per unit area, the average radius of curvature of the asperity tips and their root 

mean square (RMS) height above the mean line respectively. The magnitude of each one of 

those parameters has been determined through measuring the surface height distribution of a 

run-in hypoid pinion pair using an infinite focus white light interferometer; Alicona with 

vertical measurement resolution of 1 nm and horizontal resolution of 175 nm. Fig. 3 illustrates 

a 2D contour plot of the surface height distribution for a run-in hypoid pinion tooth.  

 

Figure 3: 2-dimensional contour plot of the surface asperity height distribution 

The post-processing of the surface height measurements (Fig. 3) yields the aforementioned 

surface topographical parameters.  𝜂𝜂𝑝𝑝𝛽𝛽𝑝𝑝𝜎𝜎𝑝𝑝,𝑝𝑝 is known as the surface roughness parameter and 

the ratio 𝜎𝜎𝑠𝑠
𝛽𝛽𝑠𝑠

 is a measure of the asperity slope (sharpness) [22]. For the run-in pinion tooth: 

𝜂𝜂𝑝𝑝𝛽𝛽𝑝𝑝𝜎𝜎𝑝𝑝,𝑝𝑝 = 0.0104 which is lower than the minimum range suggested by Greenwood and 

Tripp [21], indicating high polishing of the pinion flank during the running-in process.  

 Finally, an analytical thermal model is employed to estimate the temperature rise of 

the lubricant at the centre of the conjunction due to frictional heating. The average 

temperature at the centre of the conjunction can be calculated as: 
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𝑇𝑇𝑝𝑝 = 𝑇𝑇𝑖𝑖𝑖𝑖 + �𝛥𝛥𝑇𝑇𝑓𝑓�𝑎𝑎𝑣𝑣 + (𝛥𝛥𝑇𝑇𝑜𝑜𝑖𝑖𝑜𝑜)𝑎𝑎𝑣𝑣      (14) 

where, the inlet temperature is found as: 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑏𝑏𝑎𝑎𝑡𝑡ℎ + 20 ℃      (15) 

The 20 ℃  increase in the inlet temperature is an approximate value, valid for a wide 

combination of speeds and loads, according to Olver [23]. The average flash temperature rise 

�𝛥𝛥𝑇𝑇𝑓𝑓�𝑎𝑎𝑣𝑣  and the average temperature rise of the lubricant due to shear heating (𝛥𝛥𝑇𝑇𝑜𝑜𝑖𝑖𝑜𝑜)𝑎𝑎𝑣𝑣 are 

calculated as [23, 24]: 

�𝛥𝛥𝑇𝑇𝑓𝑓�𝑎𝑎𝑣𝑣 = 𝑅𝑅𝑓𝑓,𝑝𝑝𝑎𝑎ℎ�̇�𝑞 and  (𝛥𝛥𝑇𝑇𝑜𝑜𝑖𝑖𝑜𝑜)𝑎𝑎𝑣𝑣 = |𝑉𝑉𝑠𝑠|𝜏𝜏ℎ𝑐𝑐
8𝑘𝑘𝑓𝑓

      (16) 

where, �̇�𝑞 = 𝜇𝜇𝑓𝑓𝑓𝑓𝑊𝑊|𝑉𝑉𝑝𝑝| is the rate of frictional heat production between the pair of flanks under 

consideration. The heat partitioning coefficient 𝑎𝑎ℎ is calculated as: 

𝑎𝑎ℎ =
𝑅𝑅𝑓𝑓,𝑔𝑔 + 𝑅𝑅𝑝𝑝,𝑓𝑓

𝑅𝑅𝑓𝑓,𝑝𝑝 + 𝑅𝑅𝑓𝑓,𝑔𝑔 + 2𝑅𝑅𝑝𝑝,𝑓𝑓
      (17) 

The thermal resistances of the moving heat source corresponding to the pinion and the gear 

flank surfaces, 𝑅𝑅𝑓𝑓,𝑝𝑝  and 𝑅𝑅𝑓𝑓,𝑔𝑔  as well as the conductive thermal resistance (through the 

lubricant film) 𝑅𝑅𝑝𝑝,𝑓𝑓 are calculated as: 

𝑅𝑅𝑝𝑝,𝑓𝑓 = ℎ𝑐𝑐
2𝑘𝑘𝑓𝑓𝐴𝐴𝐸𝐸𝐻𝐻𝐸𝐸

  and  𝑅𝑅𝑝𝑝,𝑖𝑖 = 1.06
𝐴𝐴𝐸𝐸𝐻𝐻𝐸𝐸𝑘𝑘𝑠𝑠

�
𝜒𝜒𝑠𝑠,𝑖𝑖𝑜𝑜𝑖𝑖
𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖

      (18) 

where, 𝜒𝜒𝑝𝑝,𝑖𝑖  is the thermal diffusivity of surfaces 𝑖𝑖 (𝑖𝑖 = 𝑝𝑝,𝑔𝑔), whilst 𝑙𝑙𝑖𝑖  is the active length 

parameter according to Coleman [25]. For the present configuration (hypoid gear pair 

conjunction) the active length is calculated as: 

𝑙𝑙𝑖𝑖 = �
𝑎𝑎𝑝𝑝2𝑏𝑏𝑝𝑝

2[tan2(𝜃𝜃𝑖𝑖) + 1]
𝑎𝑎𝑝𝑝2 + 𝑏𝑏𝑝𝑝

2tan2(𝜃𝜃𝑖𝑖) 
      (19) 

where, 𝜃𝜃𝑖𝑖 = atan(𝑣𝑣𝑖𝑖 𝑢𝑢𝑖𝑖⁄ ) is the angle between the components of the velocity along the semi-

major and the semi-minor axis of the elliptical contact footprint of surfaces 𝑖𝑖 (𝑖𝑖 = 𝑝𝑝,𝑔𝑔). 

2.3-Gear dynamics model 
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A 4-DoF lumped parameter torsional gear dynamics model is developed (Fig. 4). The 

torsional compliance of the input and the output shafts (connected at the pinion and the ring 

gear respectively) is accounted for by substituting them with an equivalent 

spring/mass/damper element (torsional).   

 

Figure 4: 4-DoF torsional gear dynamics model 

The equations of motion are: 

�̈�𝜑𝑝𝑝 =
1
𝐼𝐼𝑝𝑝
�−𝑘𝑘𝑡𝑡,1�𝜑𝜑𝑝𝑝 − 𝜑𝜑𝑝𝑝� − 𝑐𝑐𝑡𝑡,1��̇�𝜑𝑝𝑝 − �̇�𝜑𝑝𝑝� + 𝑇𝑇𝑝𝑝�                                          (20) 

�̈�𝜑𝑝𝑝 =
1
𝐼𝐼𝑝𝑝
�−𝑅𝑅𝑝𝑝(𝑘𝑘𝑚𝑚𝑙𝑙 + 𝑐𝑐�̇�𝑥) + 𝑘𝑘𝑡𝑡,1�𝜑𝜑𝑝𝑝 − 𝜑𝜑𝑝𝑝� + 𝑐𝑐𝑡𝑡,1��̇�𝜑𝑝𝑝 − �̇�𝜑𝑝𝑝� + 𝑇𝑇𝑓𝑓,𝑝𝑝�      (21) 

�̈�𝜑𝑔𝑔 =
1
𝐼𝐼𝑔𝑔
�𝑅𝑅𝑔𝑔(𝑘𝑘𝑚𝑚𝑙𝑙 + 𝑐𝑐�̇�𝑥) − 𝑘𝑘𝑡𝑡,2�𝜑𝜑𝑔𝑔 − 𝜑𝜑𝑤𝑤� + 𝑐𝑐𝑡𝑡,2��̇�𝜑𝑔𝑔 − �̇�𝜑𝑤𝑤� + 𝑇𝑇𝑓𝑓,𝑔𝑔�      (22) 

�̈�𝜑𝑤𝑤 =
1
𝐼𝐼𝑤𝑤
�𝑘𝑘𝑡𝑡,2�𝜑𝜑𝑔𝑔 − 𝜑𝜑𝑤𝑤� + 𝑐𝑐𝑡𝑡,2��̇�𝜑𝑔𝑔 − �̇�𝜑𝑤𝑤� − 𝑇𝑇𝑤𝑤�                                        (23) 

A constant time step Newmark-beta scheme is employed for the numerical integration of 

equations (20) – (23). In equations (20) – (23) the backlash function 𝑙𝑙 is calculated according 

to Kahraman and Singh [26] as: 

𝑙𝑙 = �
𝑥𝑥 − 𝑏𝑏      when     𝑥𝑥 ≥ 𝑏𝑏

                0          when   − 𝑏𝑏 < 𝑥𝑥 < 𝑏𝑏 
𝑥𝑥 + 𝑏𝑏       when   𝑥𝑥 ≤ −𝑏𝑏 

      (24) 

The dynamic transmission error (DTE) 𝑥𝑥  is found according to Karagiannis and 

Theodossiades [27] as: 

𝐼𝐼𝑝𝑝 𝐼𝐼𝑝𝑝 

𝐼𝐼𝑔𝑔 𝐼𝐼𝑤𝑤 

𝑘𝑘𝑡𝑡,1 

𝑐𝑐𝑡𝑡,1 

𝑐𝑐𝑡𝑡,2 

𝑘𝑘𝑡𝑡,2 

𝑘𝑘𝑚𝑚 
𝑐𝑐 𝜑𝜑𝑝𝑝 

𝜑𝜑𝑝𝑝 

𝜑𝜑𝑔𝑔 

𝜑𝜑𝑤𝑤 

http://www.pmc2016.net/


3rd Biennial International Conference on Powertrain Modelling and Control (PMC 2016) 
Testing, Mapping and Calibration 

7th-9th September 2016, Loughborough University, UK 
 

12 
 

𝑥𝑥 = ��𝑅𝑅𝑝𝑝�̇�𝜑𝑝𝑝 − 𝑅𝑅𝑔𝑔�̇�𝜑𝑔𝑔 − �̇�𝑒0�𝑑𝑑𝑡𝑡       (25) 

The frictional moments acting on the pinion and the ring gear; 𝑇𝑇𝑓𝑓,𝑝𝑝 and 𝑇𝑇𝑓𝑓,𝑔𝑔 are calculated in 

each time step provided that the magnitude of the flank friction force and its corresponding 

lever arm to each of the members of the pair is known. The damping coefficients 𝑐𝑐𝑡𝑡,1, 𝑐𝑐𝑡𝑡,2 and 

𝑐𝑐 are calculated through the modal analysis of the linearised system of equations (20) – (23) 

by assuming 𝜁𝜁1 = 0 (rigid body mode), 𝜁𝜁2 = 0.02, 𝜁𝜁3 = 0.04 and 𝜁𝜁4 = 0.03. Table 3 lists the 

gear dynamics related parameters used in the present study. 

Table 3: Parameters used in the gear dynamics model 

Parameter (unit) Value 

𝑰𝑰𝒔𝒔 (𝐤𝐤𝐤𝐤.𝐦𝐦𝟐𝟐) 1.4 × 10−2 

𝑰𝑰𝒑𝒑 (𝐤𝐤𝐤𝐤.𝐦𝐦𝟐𝟐) 1.4 × 10−2 

𝑰𝑰𝒈𝒈 (𝐤𝐤𝐤𝐤.𝐦𝐦𝟐𝟐) 0.29 

𝑰𝑰𝒘𝒘 (𝐤𝐤𝐤𝐤.𝐦𝐦𝟐𝟐) 0.29 

𝒌𝒌𝒕𝒕,𝟏𝟏 (𝐍𝐍𝐦𝐦 𝐫𝐫𝐆𝐆𝐫𝐫⁄ ) 8 × 105 

𝒌𝒌𝒕𝒕,𝟐𝟐 (𝐍𝐍𝐦𝐦 𝐫𝐫𝐆𝐆𝐫𝐫⁄ ) 8 × 105 

𝒃𝒃 (𝐦𝐦) 70 × 10−6 

It should be noted that the parameters in table 3 are considered to be common between all the 

three gear-sets under investigation. This is intentional in order to be able to isolate the effect 

of contact gear geometry.  

Finally, the conjunctional efficiency obtained, corresponds to the RMS of the efficiency 

variation after 50 meshing cycles under steady state dynamics. 

 

3-Results and Discussion  

The results of the tribodynamics analysis for several operating conditions, lubricant 

formulations and gear-sets are presented. Fig. 5 illustrates a map suggested by Zhang and Gou 

[28] which can be consulted in order to obtain an estimation of the prevailing regime of 

lubrication between the mating flanks for a full meshing cycle. The dimensionless groups g1 

and g2  are calculated according to Zhang and Gou [28], and depend on the operating 

conditions and the properties of the lubricant used.  
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Figure 5: Lubrication regime map (Lubricant OS265962, 𝑻𝑻𝒃𝒃𝒃𝒃𝒕𝒕𝒃𝒃 = 𝟒𝟒𝟒𝟒 ℃, 𝒏𝒏𝒑𝒑 =

𝟏𝟏𝟒𝟒𝟒𝟒𝟒𝟒 𝐑𝐑𝐆𝐆𝐑𝐑, gear-set 1) 

In Fig. 5, the mode map for 2 complete meshing cycles, each under different operating 

conditions, has been plotted. The clouds of points (different colour) correspond to different 

levels of input torque. For both high and low torques, the clouds fall on the same line, 

although for lower input torques the cloud is shifted towards the lower end of the line, 

suggesting that a higher number of points within one meshing cycle fall within the iso-viscous 

rigid (hydrodynamic) regime of lubrication. However, for both cases, the majority of the 

highly loaded points of the meshing cycle fall within the piezo-viscous elastic (hard EHD) 

section of the map, indicating that the flank friction force is mainly driven by the mechanisms 

involved under elastohydrodynamic conditions.  

Figure 6a depicts the variation of predicted conjunctional efficiency of gear-set 1 for an 

increasing pinion speed for the two fluids examined. This shows that the predicted 

conjunctional efficiency for OS265962 is higher than that for OS265963, although both fluids 

are of the same viscosity grade (SAE 75W-90). This observation is valid throughout the speed 

range. 

𝐤𝐤 𝟏𝟏
 ( −

)  

𝐤𝐤𝟐𝟐 (−) 
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Figure 6: Conjunctional efficiency (𝑻𝑻𝒔𝒔 = 𝟏𝟏𝟒𝟒𝟒𝟒 𝐍𝐍𝐦𝐦 (gear-set 1)) (a) and MTM friction (b)  

(𝑻𝑻𝒃𝒃𝒃𝒃𝒕𝒕𝒃𝒃 = 𝟒𝟒𝟒𝟒 ℃ ) 

The predicted efficiency difference between the 2 fluids under investigation is further 

supported by the experimentally determined friction curves obtained using a sphere against a 

flat disk tribometer (i.e. a mini-traction machine; MTM), shown in Fig. 6b. The measured 

coefficient of friction for OS265963 is considerably larger than that for OS265962 for the 

entire slide-roll ratios (SRR). This explains the poorer predicted efficiency levels for 

OS265963, using the tribo-dynamics model, since this is a relatively higher traction fluid. 

Since both fluids under study are of the same viscosity grade (SAE 75W-90), the key 

difference between them being responsible for different tractive performance and 

transmission efficiency, should not be attributed to their viscosity at ambient conditions. It is 

hypothesised that (1)- high shear and (2)- high pressure piezo-viscous response of these fluids 

influence their tractive behaviour in hypoid gear pairs. In order to identify which of those two 

parameters has the greatest contribution, the conjunctional efficiency of OS265963 is 

predicted using the high pressure viscosity data of OS265962. The results of this analysis is 

shown in Fig. 7.  

(a) (b) 
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Figure 7: Comparison of the predicted conjunctional efficiency for lubricants OS265962 

and OS265963 both having a common high pressure response (𝑻𝑻𝒃𝒃𝒃𝒃𝒕𝒕𝒃𝒃 = 𝟒𝟒𝟒𝟒 ℃, 𝑻𝑻𝒔𝒔 =

𝟏𝟏𝟒𝟒𝟒𝟒 𝐍𝐍𝐦𝐦, gear-set 1) 

The results in Fig. 7 suggest that the predicted inefficiency of OS265963 with the high 

pressure viscosity data of OS265962 is almost identical to the inefficiency predicted for 

OS265962. Slight deviations are observed at higher pinion speeds which can be attributed to 

the fact that the shear thinning effect is more prevalent for OS265962 than in OS265963. The 

almost identical plots in Fig. 7 suggest that high pressure viscosity response of the lubricant, 

expressed through the PV coefficient (alpha value), is the key influential parameter for 

conjunctional efficiency. An observation of the lubricant parameters listed in table 2 indicates 

that the PV coefficient of OS265963 is indeed higher than that of OS265962 throughout the 

temperature range examined. The higher PV coefficient is responsible for a more dramatic 

increase in viscosity at the centre (highly pressurised) region of the contact. This yields 

excessive viscous shear stress, the increase of which does not seem to be compensated by the 

increase in intensity shear heating of the fluid, hence the increase in the frictional power 

losses. The different PV responses of the fluids can be attributed to the different type and 

concentration of the VM blended in each case. 

Further to the contribution of the lubricant formulation, the plots in Fig. 6a indicate a sudden 

decrease in conjunctional efficiency when the pinion speed reaches 2000 RPM. As shown in 

Fig. 8, this behaviour is amplified for a decreased input torque (50 Nm), whilst it ceases for 

higher torque levels (200 Nm, 300 Nm).  
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Figure 8: Variation of the conjunctional efficiency with the pinion speed at various input 

torques for lubricant OS265962 at 𝑻𝑻𝒃𝒃𝒃𝒃𝒕𝒕𝒃𝒃 = 𝟒𝟒𝟒𝟒 ℃  (gear-set 1) 

An explanation for this behaviour can be found in the dynamic response of the system, and 

particularly the appearance of resonance. Fig. 9 shows that for 100 Nm peak-to-peak response 

of the DTE at 2000 RPM  the characteristic jump phenomenon occurs, heralding the 

emergence of resonant conditions [29]. Furthermore, for the same operating conditions, the 

minimum amplitude of the DTE falls below the half backlash line, indicating that single sided 

tooth impacts would occur, meaning that for a certain period of time within the meshing 

cycle, the mating teeth lose contact. Other studies have shown that contact separation occurs 

with lack of friction, leading to noise and vibration phenomenon such as axle whine in vehicle 

differential systems [30]. Friction is the main source of system damping as it acts as an energy 

sink. The other source, squeeze film lubrication has shown to be minimal under 

elastohydrodynamic regime of lubrication [31, 32].     
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Figure 9: Peak response of the DTE (Lubricant OS265962 at 𝑻𝑻𝒃𝒃𝒃𝒃𝒕𝒕𝒃𝒃 = 𝟒𝟒𝟒𝟒 ℃, gear-set 1) 

The decreased conjunctional efficiency during resonance can be explained by the plots in Fig. 

10a-b, where the variation of flank contact load within one engagement cycle is plotted for 

two different input speeds, 2000 RPM  (close to resonance) and 5000 RPM  (away from 

resonance). During the onset of engagement at 2000 RPM  the contact load appears to 

diminish, corresponding to teeth pair separation. Despite the fact that the gear pair operates 

under the same torque level for both speeds (2000 RPM and 5000 RPM), the average contact 

load appears is higher for 2000 RPM (resonance) (Fig. 10a). At the same time, the average 

coefficient of friction for 2000 RPM is also higher than that for 5000 RPM (Fig. 10b) which 

accounts for reduced efficiency at lower speeds. Furthermore, the loss of friction (coefficient 

of friction of zero in Fig. 10b) indicates no instantaneous friction, thus the resonant conditions 

and the occurrence of jump phenomenon. 

 
(b) (a) 
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Figure 10: Flank contact load (a) and flank coefficient of friction (b) (Lubricant 

OS265962 at 𝑻𝑻𝒃𝒃𝒃𝒃𝒕𝒕𝒃𝒃 = 𝟒𝟒𝟒𝟒 ℃, gear-set 1) 

Finally, Fig. 11 compares the predicted conjunctional efficiency between gear-set 2 (2.73 gear 

ratio) and gear-set 3 (3.41 gear ratio). A non-uniform variation in conjunctional efficiency of 

gear set 2 is observed for pinion speeds ranging from 1000 RPM  to 2000 RPM. Again, these 

irregularities are attributed to the appearance of resonance, which is illustrated by the plots of 

Fig. 11b. For this range of pinion speeds, gear-set 2 experiences high DTE amplitudes, due to 

resonance with super-harmonic responses, while the DTE amplitude for gear-set 3 is reduced. 

This discrepancy is due to the different meshing stiffness characteristics of each gear-set, 

since their inertial properties are assumed to be the same.  

 
Figure 11: Conjunctional efficiency (a) and DTE amplitude (b) (𝑻𝑻𝒃𝒃𝒃𝒃𝒕𝒕𝒃𝒃 = 𝟒𝟒𝟒𝟒 ℃, 𝑻𝑻𝒔𝒔 =

𝟏𝟏𝟒𝟒𝟒𝟒 𝐍𝐍𝐦𝐦, lubricant OS265962, gear-sets 2 and 3) 

Fig. 11a shows improved efficiency for gear-set 2 relative 2 gear-set 3, at least for operating 

conditions away from resonance. This discrepancy can be explained by the increased contact 

load supported by gear-set 2 since the input torque is the same for both the plots as shown in 

figures 11a,b.  

4-Conclusions 

A hypoid gear pair tribodynamic model is presented. Particular attention is paid to the 

influence of lubricant formulation, the dynamic response of the system and the gear pair 

geometry upon the resulting conjunctional efficiency. The main findings of the study are: 

• The qualitative trends of simple laboratory measurements (MTM) can be potentially 

used as an indication of the relative efficiency performance of the lubricants 

(a) (b) 
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considered when these are used in a full scale system (such as the hypoid gear pair 

unit). 

• Gear lubricants of the same viscosity grade can potentially exhibit different 

conjunctional efficiency responses. 

• Different types and concentrations of VM in the same fluid can result in different 

conjunctional efficiency. 

• The high pressure viscosity response of the lubricant is the key parameter affecting 

transmission efficiency. 

• The appearance of resonance (torsional mode) deteriorates the conjunctional 

efficiency and is primarily cause by loss of contact and diminished friction, exhibited 

by the jump phenomenon.  

• For the same input torque, hypoid gear pairs of lower gear ratio exhibit improved 

conjunctional efficiency. This is due to the reduced contact load supported by the 

mating flanks for a given input torque. 
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Nomenclature 

𝑎𝑎𝑝𝑝 semi-major axis half-width (m) 

𝐴𝐴𝑎𝑎𝑝𝑝𝑝𝑝 area of asperity contact (m2) 

𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸 total area of elliptical contact footprint (m2) 

𝑎𝑎ℎ heat partitioning coefficient (−) 

𝑏𝑏 half backlash length (m) 

𝑏𝑏𝑝𝑝 semi-minor axis half-width (m) 
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[𝐶𝐶] damping matrix of the linearised dynamical system (Nm. s rad⁄ ) 

𝑐𝑐 mesh damping coefficient (Ns m⁄ ) 

𝑐𝑐𝑝𝑝,𝑓𝑓 heat capacity of the lubricant (J kg. K⁄ ) 

𝑐𝑐𝑡𝑡,𝑖𝑖 torsional damping coefficient of the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 1,2) shaft (Nm. s rad⁄ ) 

𝐸𝐸 Young’s modulus of elasticity of the gear material (steel) (Pa) 

𝐸𝐸∗ reduced Young’s modulus of elasticity of the mating teeth (𝐸𝐸∗ = 𝐸𝐸 (1 − 𝜈𝜈2)⁄ ) (Pa) 

𝑒𝑒0 unloaded static transmission error (m) 

𝐹𝐹 shear thinning function of the lubricant (−) 

𝐹𝐹𝑏𝑏 flank boundary friction (N) 

𝐹𝐹𝑓𝑓𝑓𝑓 flank total friction (N) 

𝐹𝐹𝑣𝑣 flank viscous friction (N) 

𝑙𝑙 backlash function (m) 

𝐹𝐹2 a statistical function  

𝐹𝐹5 2⁄  a statistical function  

𝐺𝐺 dimensionless material’s parameter (−) 

g1 mode of lubrication dimensionless parameter  

g2 mode of lubrication dimensionless parameter 

ℎ𝑝𝑝 central lubricant film thickness (m) 

𝐼𝐼𝑖𝑖 mass moment of inertia of the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 𝑠𝑠,𝑝𝑝,𝑔𝑔,𝑤𝑤) of the dynamical system (kg. m2) 

[𝐾𝐾] stiffness matrix of the linearised dynamical system (Nm rad⁄ ) 

𝑘𝑘𝑓𝑓 thermal conductivity of the lubricant (W m. K⁄ ) 

𝑘𝑘𝑚𝑚 meshing stiffness of the gear pair (N m⁄ ) 

𝑘𝑘𝑝𝑝 thermal conductivity of the material of the gear teeth (steel, 𝑘𝑘𝑝𝑝 = 30 W m. K⁄ ) 

(W m. K⁄ ) 

𝑘𝑘𝑡𝑡,𝑖𝑖 torsional stiffness of the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 1,2) shaft (Nm rad⁄ ) 

𝑙𝑙𝑖𝑖 thermal active length of the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 𝑝𝑝,𝑔𝑔) flank in the conjunction (m) 

𝑙𝑙𝑙𝑙𝑘𝑘 load sharing factor of the 𝑘𝑘𝑡𝑡ℎ (𝑘𝑘 = 2 ÷ 3) pair of flanks (−) 

[𝑀𝑀] mass matrix of the linearised dynamical system (kg. m2) 

𝑖𝑖𝑝𝑝 number of teeth of the pinion (−) 

𝑛𝑛𝑝𝑝 speed of the pinion (RPM) 

𝑝𝑝 pressure of the lubricant (Pa) 
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�̇�𝑞 frictional heat production rate between a pair of flanks (W) 

𝑅𝑅𝑝𝑝,𝑓𝑓 conductive thermal resistance through the lubricant film (K W⁄ ) 

𝑅𝑅𝑒𝑒 effective contact radius of curvature along the direction of entraining motion (m) 

𝑅𝑅𝑓𝑓,𝑖𝑖 conductive thermal resistance for the moving heat source on the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 𝑝𝑝,𝑔𝑔) flank 

surface (K W⁄ ) 

𝑅𝑅𝑝𝑝 contact radius of the pinion (m) 

𝑅𝑅𝑝𝑝 effective contact radius of curvature along the side leakage direction (m) 

𝑡𝑡 time (s) 

𝑇𝑇𝑏𝑏𝑎𝑎𝑡𝑡ℎ bulk temperature of the lubricant in the lubricant bath (℃, K) 

𝑇𝑇𝑝𝑝 average temperature of the lubricant at the centre of the EHD conjunction (℃, K) 

𝑇𝑇𝑓𝑓,𝑖𝑖 total frictional torque acting on the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 𝑝𝑝,𝑔𝑔) member of the gear pair (Nm) 

𝑇𝑇𝑖𝑖𝑖𝑖 inlet temperature of the lubricant in the EHD conjunction (℃, K) 

𝑇𝑇𝑝𝑝 torque applied on the pinion shaft (Nm) 

𝑇𝑇𝑤𝑤 torque applied on the gear shaft (Nm) 

𝑈𝑈𝑒𝑒 dimensionless speed parameter or rolling viscosity parameter (−) 

𝑢𝑢𝑖𝑖 surface velocity of the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 𝑝𝑝,𝑔𝑔) flank along the semi-minor axis of the contact 

ellipse (m s⁄ ) 

𝑈𝑈𝑡𝑡𝑜𝑜𝑡𝑡,𝑖𝑖 total surface velocity of the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 𝑝𝑝,𝑔𝑔) flank (m s⁄ ) 

𝑣𝑣𝑖𝑖 surface velocity of the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 𝑝𝑝,𝑔𝑔) flank along the semi-major axis of the contact 

ellipse (m s⁄ ) 

𝑉𝑉𝑝𝑝 total sliding velocity between the mating flanks of the flank pair under consideration 

(m s⁄ ) 

𝑊𝑊𝑎𝑎𝑝𝑝𝑝𝑝 load carried by the asperities (N) 

𝑊𝑊𝑒𝑒 dimensionless load parameter (−) 

𝑊𝑊𝑘𝑘 load carried by the 𝑘𝑘𝑡𝑡ℎ (𝑘𝑘 = 2 ÷ 3) pair of flanks (N) 

𝑊𝑊𝑡𝑡 total contact load (N) 

𝑥𝑥 dynamic transmission error (m) 

 

Greek symbols 

𝛼𝛼∗ reciprocal asymptotic iso-viscous pressure viscosity coefficient (Pa−1) 

𝛼𝛼𝐸𝐸𝐻𝐻 Havriliak – Negami exponent  (−) 
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𝛽𝛽𝐸𝐸𝐻𝐻 Havriliak – Negami exponent  (−) 

𝛽𝛽𝑝𝑝 average radius of curvature of the tips of the asperities (m) 

�̇�𝛾 lubricant film shear rate (s−1) 

�𝛥𝛥𝑇𝑇𝑓𝑓�𝑎𝑎𝑣𝑣 average temperature rise of the lubricant (K) 

(𝛥𝛥𝑇𝑇𝑜𝑜𝑖𝑖𝑜𝑜)𝑎𝑎𝑣𝑣 average temperature rise of the lubricant due to shear heating (K) 

𝜁𝜁𝑖𝑖 damping ratio of the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 1,2,3,4) mode shape of the linearised dynamical 

system (−) 

𝜂𝜂 dynamic viscosity of the lubricant (Pa. s) 

𝜂𝜂𝑝𝑝 asperity peak density per unit area of surface (1 m2⁄ ) 

𝜃𝜃𝑖𝑖 angle between the components of the surface velocity of the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 𝑝𝑝,𝑔𝑔) flank 

(rad) 

𝜆𝜆 lubricant relaxation time (s) 

𝜆𝜆𝑝𝑝 Stribeck’s lubricant film parameter for flank pairs (−) 

𝜈𝜈 Poisson’s ratio of the gear material (steel) (−) 

𝜎𝜎𝑝𝑝 RMS surface height of the asperity tips on the pinion flank (m) 

𝜎𝜎𝑝𝑝,𝑝𝑝 combined RMS surface height of the asperity tips between the mating flanks 

(m) 

𝜍𝜍𝑎𝑎 Shear strength coefficient of asperity pairs (−) 

𝜏𝜏 average conjunctional shear stress (Pa) 

𝜏𝜏0 Eyring shear stress (Pa) 

𝜑𝜑𝑖𝑖 rotation angle of the 𝑖𝑖𝑡𝑡ℎ (𝑖𝑖 = 𝑠𝑠,𝑝𝑝,𝑔𝑔,𝑤𝑤) member of the dynamical system (rad) 

𝜒𝜒𝑝𝑝,𝑖𝑖 thermal diffusivity of the gear material (steel) (m2 s⁄ ) 

𝜔𝜔𝑚𝑚 meshing angular frequency of the gear pair (rad s⁄ ) 

𝜔𝜔𝑝𝑝 angular velocity of the pinion (rad s⁄ ) 
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