
Development of an Autonomous, Self-Optimising Machine
Learning Framework for use in Manufacturing Applications

by

Carl Berry

A thesis submitted in partial fulfilment for the requirements for the degree
of Doctor of Philosophy at the University of Central Lancashire

October 2022

Declaration

I declare that while registered as a candidate for the research degree, I have
not been a registered candidate or enrolled student for another award of the

University or other academic or professional institution.

I declare that no material contained in the thesis has been used in any
other submission for an academic award and is solely my own work.

Signature of Candidate : Carl Berry

Type of Award : Doctor of Philosophy

School : School of Engineering

i

Acknowledgements

I would like to give my thanks to my supervisors; Geoff Hall, Lik-Kwan
Shark and Bogdan Matuszewski for their tireless help and advice
throughout this project, without whom this work would not have been
possible to complete.

I would also like to thank my family, Ruth, Andrew and Catherine for their
support and understanding whilst I completed this work. And finally, Ruby,
the family cat for sitting with me through late nights and long weekends.

ii

Abstract

Traditionally manufacturing processes have used a wide variety of sen-

sors to provide process control, quality and productivity metrics. Industry 4.0

introduces the concept of combining and analysing sensor derived production

data to offer greater insights into all aspects of manufacturing operations. A

key area of advancement is the ability to process and analyse large volumes

of data, in real-time, to provide to process control. The objective of this

thesis is to define a framework that enables adaptive, optimised production

control via the use of automated machine learning algorithm selection.

The complete framework is capable of adaptively processing streamed

production data directly from manufacturing processes along with other ap-

propriate sources. To achieve this, a second longer term channel is used to

autonomously evaluate and optimise competing algorithms and data strate-

gies to select the most appropriate solution for near real-time control. A

series of experiments demonstrates that the framework is suitable for pro-

duction control applications which benefit from a focus on single or multiple

accuracy metrics.

The framework can automatically switch algorithms via a supervisory

iii

mode. This allows it to take into account additional factors such as concept

drift, production changes, computational complexity and algorithm stability.

Algorithm switching is based on a flexible optimisation strategy for algorithm

performance over variable time periods. Experimental results are provided

for two optimisation methodologies.

Further development of the framework will involve full automation of the

real-time algorithm selection method. This will remove the need for specialist

data processing knowledge and hence allow the framework to be deployed in

a wide range of existing manufacturing companies.

iv

Contents

1 Introduction 1

1.1 Project Background . 1

1.2 Regression vs. Classification 3

1.3 Optimisation . 4

1.4 Research Motivation . 4

1.5 Aims and Objectives . 5

1.6 Contribution To Knowledge 5

1.7 Report Structure . 6

2 Literature Survey 8

2.1 Introduction . 8

2.2 Machine Learning in Industry 8

2.3 Metric Selection . 11

2.4 Machine Learning Algorithm Comparisons 12

2.5 Hyper-parameter tuning and Automated Machine Learning . . 12

2.6 Machine Learning and Highly Distributed Processing 13

2.7 Lifelong Machine Learning . 15

2.8 Round-up . 15

v

3 System Overview 17

3.1 Introduction . 17

3.2 Lambda Architecture . 18

3.3 Process Architecture . 22

3.4 Software Architecture . 23

4 Metric Measurement 24

4.1 Difficulties with Accuracy . 24

4.2 Regression Metrics . 26

4.2.1 Explained Variance . 26

4.2.2 Maximum Error . 27

4.2.3 Mean Squared Error 27

4.2.4 Median Absolute Error 28

4.2.5 R2 Score . 28

4.3 Current vs. Cumulative Metrics 29

4.4 Classification Metrics . 30

4.4.1 Receiver Operating Characteristics Area Under Curve

(ROCAUC) . 30

4.4.2 Band Accuracy . 31

4.4.3 Correlated Metrics . 33

4.5 Summary. 35

5 Prediction Algorithms Techniques and Implementation. 36

5.1 Introduction. 36

5.2 Least Absolute Shrinkage and Selection Operator (Lasso) . . . 38

5.3 Ridge Regression . 39

vi

5.4 Stochastic Gradient Descent (SGD) 40

5.5 Elastic Net . 41

5.6 Comparisons and limitations 41

5.7 Random Forests . 43

5.8 Implementation . 45

5.9 Training Strategies and Replication 50

5.10 Dataset . 51

5.11 Summary . 53

6 Prediction Algorithms Results. 55

6.1 Introduction. 55

6.2 Prediction Results . 56

6.3 Conclusion . 66

7 Optimisation Techniques and Implementation. 68

7.1 Introduction. 68

7.2 Bayesian Optimisers . 69

7.3 Artificial Bee Colony . 71

7.4 Firefly Algorithm . 75

7.5 Evaluation/Fitness Function 78

7.6 Comparison of ABC, FA and to other optimisation methods . 79

7.7 Implementation of Optimisation Algorithms 81

7.8 Implementation of Evaluation Function 82

7.9 Summary . 84

8 Optimisation Results and Conclusion 85

vii

8.1 Results. 85

8.2 Conclusion . 98

9 Supervisory System 102

9.1 Introduction . 102

9.2 Concept Drift . 103

9.3 Switching Time. 108

9.4 Algorithm Stability . 109

9.5 Cost Benefit Analysis of Switching 109

9.6 Conclusion . 111

10 Conclusions and Future Work 113

10.1 Conclusion . 113

10.2 Future Work . 114

viii

Abbreviations Used

ABC - Artificial Bee Colony

AI - Artificial Intelligence

ANN - Artificial Neural Network

ASIC - Application Specific Integrated Circuit.

BER - Balanced Error Rate.

CASH - Combined Algorithm Selection and Hyper-parameter (Opti-

misation)

EDM - Electronic Discharge Machining

FA - Firefly Algorithm.

GA - Genetic Algorithm.

MLP - Multi Layered Perceptron.

MSE - Mean Squared Error.

PPM - Parts Per Million.

PSO - Particle Swarm Optimiser.

ROCAUC - Receiver Operating Characteristics Area Under Curve.

SGD - Stochastic Gradient Descent.

SME - Small to Medium Enterprise.

ix

Chapter 1

Introduction

1.1 Project Background

As manufacturing moves towards the adoption of Industry 4.0 (Koshy

2019, Hiskey 2017) there is a desire to monitor manufacturing processes and

make predictions for control and/or predictive maintenance purposes. One

such framework developed for this problem is that of the Lambda framework

(Marz and Warren 2015). Here a control/prediction engine runs alongside

a longer term channel. The channel produces competitive output based on

the same inputs and conditions by trying different algorithms and input con-

figurations. In the standard Lambda setup these models are used by data

scientists to compare with the existing running model to see if they are a bet-

ter solution. For many industrial implementations this creates two problems.

First is that it is often the case, especially in a small to medium enterprises

(SMEs), that there is no-one on the staff qualified to undertake the analysis.

This, the lack of qualified staff, is a particular barrier to small manufacturers

1

already facing the daunting prospect of implementing Industry 4.0 technolo-

gies for the first time. It is the aim of this work to use a machine learning

solution to replace the data scientist / analyst role but this highlights even

further the second problem, how do we identify the “best” algorithm?

Combined Algorithm Selection and Hyperparameter Optimisation (CASH)

problems are an active area of research (Thornton et al., 2013, Feurer et al.,

2015, Golovin et al., 2017). These techniques use Bayesian optimisation to

tune algorithms and parameters to produce the best results, for many ma-

chine learning implementations. “Best” often means the most accurate and

this is often measured in terms of the mean absolute deviation, this being

the metric that measures the mean average of the magnitude of the differ-

ence between the predicted and observed values, this is often simply termed

”accuracy”.

The mean absolute deviation can hide a number of factors. For example

an algorithm that is consistently wrong by a small factor can score lower

using this than an algorithm that swings between being accurate and inaccu-

rate. This may be inappropriate in an industrial context where a large error,

even once, could have far reaching consequences. There are a wide range of

comparative metrics that can be used to rank regression algorithms and even

more if classification is considered.

2

1.2 Regression vs. Classification

The problem, as set, is a regression problem. The system is attempting

to predict the precise value of the Ethylene concentration and as such the five

algorithms being tested are all regression algorithms. In most manufacturing

processes, however, the goal is usually to keep a value within a given range

rather than predict an absolute value. This gives a margin of error for the

regression algorithms. After an initial visual inspection of the data three

classes were identified:

� Below expected limits (0-7 ppm)

� In tolerance limits (7-17 ppm)

� Above expected limits (17+ ppm)

This sets approximately 40% of the data to be within acceptable limits,

it is an entirely artificial set of borders, but it gives a reasonable simulation

of a running manufacturing process. So long as the regression estimate is

within the same class it is considered “within tolerance”. This allows the

work to include metrics that are more commonly used to measure classifica-

tion algorithms rather than regression algorithms. A brief look through the

literature will demonstrate that there are far more metrics concerned with

classification and that this is a much more widely studied area than regres-

sion. For this work the number of classification metrics has been limited to a

small number. The reason for this is that the process is still fundamentally a

regression problem and if the experimental phase included too many classifi-

3

cation measures there is a danger of over-powering the regression metrics and

biasing the results in terms of accurate classification over poor regression.

1.3 Optimisation

In order for the framework to select a best performing algorithm config-

uration over an extended period of time it needs to be able to evaluate a large

number of possible combinations. As the number of potential algorithms and

hyper-parameter increases this becomes impossible to do exhaustively so it

must utilise optimisation techniques to look for a good solution to the prob-

lem. There are many such techniques and they often take inspiration from

observed animal behaviour in nature, hence techniques such as bee colony

(Yuce et al., 2013), firefly (Fister et al., 2013), Particle Swarm Optimisation

(Yang, 2021) algorithms along with many others. The goal of these optimis-

ers is to conduct a search of the potential solutions in such a way as to find

good solutions in a reasonable amount of time and computation power (this

is discussed in section 7.1). The techniques used in this work are the bee

colony and firefly optimisation strategies.

1.4 Research Motivation

The motivation behind this work is to help develop the usage of ma-

chine learning in the industrial SME sector, where specialist knowledge of

data analytics and machine learning is scarce and the techniques found of-

ten in academic literature are not yet in general use. In order to do this a

4

framework has been created that will work with a wide variety of algorithms

and datasets and that has the capacity to run in a fully autonomous mode

once setup has been completed. Many of the systems available for use at

present that claim to help users with machine learning tasks either assume

a deep knowledge of the subject or make very broad assumptions that could

lead to poor performance on behalf of the system in being developed. This

work describes a framework that would genuinely allow a user with little to

no knowledge of the field to gain real benefits from machine learning.

1.5 Aims and Objectives

The aim of this work is to produce a software framework, suitable for

use in the manufacturing industry, that can autonomously evaluate, tune

and apply a machine learning algorithm to a process. The framework is

designed to remove the need for data specialists, beyond initial setup, to

allow for usage by SMEs. The framework considers current and previous

algorithm performance combined with environment information and system

performance to optimise the autonomous swapping of different algorithms.

The system does this to ensure that the optimal algorithm is being applied

to the process over a set amount of time.

1.6 Contribution To Knowledge

The work presented here has described and developed a framework for

autonomously handling machine learning control of an industrial process in-

5

cluding continued development and autonomous changing of controlling al-

gorithms. To that end the work has shown new contributions in the areas of

:

� Consideration of a combination of accuracy metrics for tuning perfor-

mances of a machine learning algorithms to best describe the desirable

properties required to maximise the outcome of an industrial process

rather than the selection or evaluation of a machine learning algorithm

based on a single accuracy measure common in most currently available

systems.

� Scalable testing of multiple machine learning algorithms and optimisa-

tion of the results for a time sensitive sequence.

� Consideration of factors outside of performance selection of machine

learning algorithms that take into account both the wider process un-

der consideration and the drifting of targets along with the impact of

changing a controlling / prediction algorithm mid-production and the

wider effects this would have.

1.7 Report Structure

This report begins by reviewing the current state of the art surrounding

machine learning in industry along with considerations of metrics for mea-

suring accuracy and a discussion of machine learning algorithms. The report

continues with a review of current methods of automated machine learning

6

tuning, machine learning applied to distributed processing and finally con-

siders the role of lifelong machine learning to the system. An overview of the

system follows exploring the architectures involved in the framework. Ways

of measuring the accuracy of the system are then discussed followed by the

algorithms used in the experiments. The report then describes a series of

experiments run to test the feasibility of the framework and discusses the

results. The report then looks at two methods of optimisation that were

trialled in order to ensure that the best performing algorithm is being used

at any given time. The environment around the process is then considered,

discussing topics such as concept drift, the time taking to change algorithms

and the benefits of doing so. The report concludes with final conclusions and

plans for future work.

7

Chapter 2

Literature Survey

2.1 Introduction

The work presented here covers a wide range of areas where previous

work has already been done, this chapter will review various parts of this

and explain where this new work is positioned in relation to the current

body of work.

2.2 Machine Learning in Industry

Machine Learning has long been an academic focus but more recently

there has been more interest in developing machine learning systems that

can be used in a variety of industries using a variety of algorithms. The

usage of Genetic Algorithms (GAs) in the design of new products (Hsiao,

Chiu and Lu, 2010). Abellan-Nebot and Subiron (2010) conducted a review

of areas where AI could be used to monitor systems in manufacturing includ-

8

ing sensors, feature extraction, treatment of signals and appropriate models

for industry. Deng et al., 2012 developed a framework for processing multi-

relational data streams in a manufacturing environment, this has a certain

commonality with the work presented here except that Deng’s system dealt

with data mining from traditional structured data sources and, as most sys-

tems here, left the final decisions up to a qualified human, Wang, (2007) also

looked into data mining for the manufacturing industry, concluding that this

was largely data that companies already had or could collect easily and that

there were huge opportunities to improve many aspect of manufacturing by

utilising them.

In examples of more specific applications, Ghosh and Sanyal, (2016)

looked at using Multi Layered Perceptron (MLP) Artificial Neural Networks

(ANN) in Electrical Discharge Machining (EDM) manufacturing. Alfaro-

Cortes et al., 2020 looked at using random forests to interpret out of control

signals.

Deep learning has gathered a lot of attention in AI research and Arellano-

Espitia et al., 2020 looked at using such methodologies for fault diagnosis in

electromechanical systems. This system used Deep Neural Networks and

similarly Yasutomi and Enoki, 2020 used the same to inspect conveyor belt

information in their paper.

In an extensive survey of the usage of data mining in manufacturing

(Choudhary, Harding and Tiwari, 2008) it was found at the time that it was

being used or had the potential to be used in many manufacturing areas

9

such as quality control, job shop scheduling, fault diagnostics, maintenance,

defect analysis, yield improvement, and monitoring of the process itself.

There are examples in the literature of discussions of where machine learn-

ing and AI fit into the space occupied by SMEs. An article published by

Forbes in 2020 (Forbes, 2020) looked at a number of ways in which small

businesses could benefit from machine learning, these included tasks such as

data driven decision making, simplifying reporting and forecasting, customer

prediction and others.

Despite this a survey amongst UK SMEs in 2017 found that less than a

third were using any form of AI in their operation (UKTN, 2018). This was

echoed in 2021 in a feature published by ForePaas, a cloud hosting company,

(ForePaas, 2021) that identified the need for data scientists and the time

taken to build models and infrastructure as barriers to SMEs from adopt-

ing machine learning techniques. An article by SME News in January 2022

(SME News, 2022) suggested that whilst upfront costs and the complexity

of machine learning systems can be an obstacle to SMEs they felt that due

to SMEs smaller sizes they had an advantage in the time taken to actually

deploy a system. The SME News article also identified competitiveness and

anticipating trends to move ahead of rivals as two of the key advantages of

machine learning. In the 2022 O’Reilly survey on adoption of AI in enter-

prises, in the manufacturing sector less than 20% of respondents had machine

learning in production, just over 45% were evaluating systems and 35% had

no intention of using AI or machine learning (Loukides, 2022), in comparison

the financial sector responded with 35% of respondents had AI in production,

10

45% were evaluating and around 25% were not considering it.

2.3 Metric Selection

When it comes to evaluating machine learning algorithms there are a

number of strategies for gauging the quality of a algorithm in the litera-

ture, Caruana and Niculescu-Mizil, (2006), state that ”...different perfor-

mance metrics measure different tradeoffs...” and that ”...it is possible for

for learning methods to perform well on one metric but be suboptimal on

other metrics...”, for their study they used a variety of eight different met-

rics to evaluate a number of different supervised learning methods. Gama

et al., (2011), further introduces the idea that streaming algorithms running

on real-time data need to be considered in a different perspective to the

traditional batch methods of evaluation. They consider the ideas of sliding

windows and forgetting mechanisms in order to cope with continual data and

how to accurately apply evaluation metrics in an environment where older

data may be of diminishing value.

Specifically for regression applications such as the implementation used in

this work, there is an interest in improving evaluations of algorithms beyond

simple mean squared error (MSE), a number of publications have suggested

alternatives, Torgo and Ribeiro, (2009), suggested an adaptation of the clas-

sification metrics of precision and recall for regression algorithms. Kaneko,

(2017), used the concept of applicability domains, where prediction values

are considered to be sufficiently accurate if they exhibit the same level of

11

performance as the training samples did.

2.4 Machine Learning Algorithm Comparisons

There are a number of papers where authors have compared one set of

machine learning algorithms with another in a variety of different applica-

tions; (Loza, Cisneros and Arreola, 2017) compared ANNs against regression

models for river pollution contaminants forecasting. In this work they mea-

sured the absolute error of the models along with the mean average absolute

percentage error. Sharif et al. , (2017) compared a number of regression

algorithms (particularly Ridge, Elastic net and Lasso, that were used in this

work) to try to predict oilseed rape yield under varying climatic conditions.

2.5 Hyper-parameter tuning and Automated

Machine Learning

The need to be able to find good sets of hyper-parameters in machine

learning algorithms is well established in the literature, (Drignei, Forest and

Nychka, 2008) looked at running surrogate models for computationally inten-

sive regression problems that helped to account for uncertainty in the more

complex models parameters. Grömping, (2009) looks at the importance of

hyper-parameters in regression algorithms both linear regression and random

forests.

There are examples of systems that attempt to automatically tune hyper-

12

parameters of machine learning algorithms. These systems are often termed

CASH (Combined Algorithm Selection and Hyper-parameter) optimisation

methods when the algorithm is selected as well. Thornton et al., (2013),

introduces Auto-WEKA, a system that selects both algorithm and hyper-

parameter values using Bayesian optimisation that looks to minimise cross-

validation error. AUTO-SKLEARN is introduced in Feurer et al., (2015),

and this time the system looks to minimise the balanced classification error

rate (BER) which they define as ”...the average of the proportion of wrong

classifications in each class.” again the method used is Bayesian optimisation.

Google use an in-house ”black-box” optimiser called Vizier (Golovin et al.,

2017) that runs on parallel Google data centres to allow for large scale testing,

it again uses Bayesian optimisation. The drawbacks of Bayesian optimisation

are discussed in section 7.2 of this work but also the author believes that one

of the main problems of these systems is the targeting of a single metric to

evaluate the success of optimisation.

2.6 Machine Learning and Highly Distributed

Processing

The testing of large numbers of algorithms and algorithm configurations

lends itself to the ideas of Big Data and large scale distributed processing.

This work utilised a small Hadoop cluster to carry out the experimental part

of the work but it is envisioned that a full scale industrial implementation of

this work would utilise a far larger distributed architecture. There has been

13

a great deal of work carried out to try and make machine learning applica-

tions more suitable for this type of environment. Yang, Liu and Fu (2010)

looked at using MapReduce to create association rules of a Hadoop architec-

ture, this work utilised the distributed nature of large numbers of processing

nodes to cope with the need for large amounts of memory required to run an

Apriori algorithm on very large datasets. Wang et al., (2014), similarly used

MapReduce and Spark to look at an implementation of the C4.5 decision

tree implementation on Big Data architecture. Shallue et al.., (2018) stud-

ied the effects of data parallelism and its effect on batch size and training

time when training Artificial Neural Networks (in this case Stochastic Gra-

dient Descent (SGD) models), the work in this paper was carried out using

GPUs and ASICs rather than the Big Data distributed Hadoop model but

the reasoning is the same. An overview of regression models using Hadoop

was provided by Saritha and Sajimon, (2017) who looked at linear regression

models and the effect of running on Big Data architecture.

Other work has focused on the ability of applications such as Apache

Spark (Apache Software Foundation, 2018) to run streaming operations across

highly distributed systems. Kupisz and Unold, 2015 looked at recommender

systems using the Mahout machine learning library (Apache Software Foun-

dation, 2014), this was done to attempt to create a recommendation system

for e-commerce applications. Bao et al., (2012) considered the issue of mas-

sive amounts of fast moving data being streamed from large numbers of

sensors in a manufacturing system. Bao et al.’s, (2012) goal was to solve one

of the problems around cloud manufacturing where users can select different

14

manufacturing services from different providers but there is an obvious need

to track the product across multiple sites and manufacturing processes.

The Lambda architecture, which is discussed in section 3.2 of this work,

was the subject of Kiran et al ’s., (2015) paper which looked at high speed

sensor analysis over an Amazon EC2 cloud setup.

2.7 Lifelong Machine Learning

A number of papers have appeared suggesting the idea of lifelong ma-

chine learning. This is the idea that a machine learning algorithm continually

tries to improve its performance over the entire lifetime of the application,

rather than the traditional idea that machine learning algorithms have a

training phase and, on conclusion, are then fixed and implemented, Silver,

Yang and Li (2013), Ruvolo and Eaton (2013) and Liu (2016) are all exam-

ples of this. This idea of continual development fits with the work presented

here and is particularly important when considered in light of the ideas such

as concept drift covered in section 9.2 where the targets of the system may

change over time, leaving previously well performing algorithms failing to

take account of changes.

2.8 Round-up

This work addresses the need for more applications of machine learning for

industrial processes. To do this it uses a distributed machine learning system

15

that compares multiple algorithms and configurations and selects the best

performing using a variety of target metrics rather than just relying on one

or two that can be biased in certain circumstances. The system is a lifelong

learning application that continually assesses new algorithm configurations to

look for better performances or changes in the target data. The system uses a

framework that performs all of these operations without human intervention

after the initial setup phase.

16

Chapter 3

System Overview

3.1 Introduction

The framework described in this work is an autonomous software system

based on a Lambda architecture. The purpose of the framework is to ensure

that at any given time the system being monitored/controlled is being done

so by the best performing algorithm configuration available. The framework

as described can perform a variety of operations but in this work the ex-

ample of a regression operation on an industrial process is presented. The

framework simultaneously runs a real-time stream and a second stream. The

second stream evaluates algorithm configurations by running alternatives,

evaluating against a wide range of accuracy metrics and using an optimi-

sation function to select the best performing algorithm configuration. This

section will describe the system design of the framework as presented includ-

ing the architecture it is based on, the change made to the architecture to

provide autonomous operation and the software used to achieve this.

17

3.2 Lambda Architecture

The Lambda architecture is described in Marz and Warren, (2015), the

principle behind the architecture is that there are two analytical channels.

The first channel is a real-time (or near real-time) streaming layer that is re-

sponsible for the control of the process in question. This could be a number

of different types of operation in industry ranging from control to monitor-

ing to predictive. The second channel is a batch layer that is responsible for

trying to improve the performance of the first channel. This is accomplished

by testing different configurations of the algorithm running in the streaming

channel or entirely different algorithms that are trying to achieve the same

task. The second layer has access to the full range of previous data that

has been through the system and runs as a series of batch processes taking

as long as is necessary to improve the algorithm results. The speed layer

has to deal with data at the speeds necessary to control the process. Data

is stored in the batch layer so that the algorithms being tested have access

to the data necessary whilst the speed layer does not need to store any of

the data going through the system. Outputs from the process (environment

readings, process results, etc.) are fed back into the system as inputs. In

addition to the two analytical channels there is a third serving layer. The

purpose of this third layer is to allow users to view the results of either of the

two analytical channels, this would be real-time results for the speed layer

and batch results for the batch layer, this may involve different visual tools

for each layer. Figure 3.1 shows the system.

18

Figure 3.1: Classical Lambda Architecture

The classical Lambda architecture uses a Big Data approach to data an-

alytics in the batch layer by utilising highly distributed architectures such

as Apache Hadoop to run multiple different configurations and algorithms at

once. The number of algorithm configurations that can be checked by the

system is only limited by the expandability of the available hardware, and

if on-line cloud services are used it is a matter of the monetary budget that

the organisation/company involved is willing to spend.

The serving layer allows users to view the results of the analytical layers

and make decisions regarding which algorithm configurations to run in the

speed layer. The lambda architecture helps to improve process analytics by

using current process data to build and refine models for the task at hand

but it does have some drawbacks:

� The need for specialist users.

� Manual switching of algorithms.

� Timing of algorithm change over.

19

Although the Lambda architecture uses a serving layer to produce in-

formation regarding the current and candidate algorithm configurations this

will generally require a data analyst to interpret the results As outlined ear-

lier many companies, particularly those in the small to medium enterprise

(SME) range are unlikely to have dedicated data analysts on staff to carry

out out this task. One of the outcomes of this work is to have the system

itself analyse its own results and to make intelligent decisions based on the

results produced by the two analytical channels.

If there are no specialists available to analyse the results of the data then

it is equally unlikely that there would be any dedicated software engineers to

deal with changing the algorithm once a necessary change is identified. Due

to this the framework is be able to swap the controlling algorithm out for a

better performing algorithm configuration. This requires the framework to

track more than just the accuracies of the current algorithm and the can-

didate algorithms, the framework will need to track other metrics to ensure

that the changeover is beneficial to the system as a whole and not a very

short-term change that will produce difficulties for the process.

Along with being able to decide whether a changeover would be beneficial

to the system the framework must also decide when to do the changeover.

In the traditional Lambda architecture model this would be determined by

data analysts interpreting the information produced in the clearing channel.

In the framework described by this work this decision is made autonomously

and can therefore be done in a much more timely manner in terms of adapt-

20

ing to changing conditions.

To this end the framework uses a modified version of a Lambda architec-

ture shown in Figure 3.2

Figure 3.2: Modified Lambda Architecture

The changes in the architecture relate to the replacing of the visual ana-

lytics section in the serving layer with a supervisory system. The supervisory

system (discussed in Chapter 9) is responsible for comparing the results of the

candidate algorithm configurations in the batch layer and comparing them

to the results from the current algorithm running in the speed layer. The

supervisory system is then responsible for making the decision as to whether

the algorithms should be switched and if so is tasked with performing this

switch. Despite the name the candidate algorithms running in the batch layer

are not necessarily running in batch mode, the system could, if it was felt to

be beneficial, also run the candidate algorithm configurations in streaming

mode. The naming of the batch layer simply indicates that either is feasible

and reflects that the system does not require the batch layer candidate algo-

21

rithms to be running in real-time with the process. The algorithm running

in the speed layer must, by necessity, be capable of running and returning

results in fast enough real-time to provide valid feedback to the process in

question, it is also part of the supervisory algorithm’s remit to ensure that

this is the case.

3.3 Process Architecture

In the work presented the task used as an example for both the speed

and batch layers is that of regression analysis of the chosen dataset. Whilst

the speed layer would perform the regression algorithm as expected the mech-

anisms in the batch and supervisory layer require some explanation. In the

batch layer a number of regression algorithms will be tested along with vari-

ations in their hyper-parameters (discussed in chapter 5). Each of these are

evaluated against a number of accuracy metrics to determine the best per-

forming algorithm configuration. Whilst this is taking place the performance

of the current algorithm configuration in the speed layer is also monitored

via the supervisory algorithm. The performances of the candidate algorithm

configurations are compared alongside the current speed layer algorithm us-

ing an optimisation technique to determine which will be the best performing

algorithm for the next predetermined amount of time. In this way the op-

timisation operation (discussed in chapter 7) can be run at predetermined

intervals and the best algorithm sequence can be determined until the next

result, E.G. If we decided that the optimisation routine should be run every

ten minutes then the optimisation algorithm would be set to determine which

22

algorithm configurations would be optimal for the next ten minutes. Once

the system has determined the best sequence via the optimisation algorithm

it is then left to the supervisory algorithm to handle timing and validity of

switching the different algorithm configurations in and out of the speed layer.

In the batch layer it would obviously be beneficial to run as many algo-

rithm configurations as possible. In order to be able to do this the intention

is that the framework would utilise a Big Data architecture to have a number

of distributed instances of the regression tests running at the same time. In

an industrial system this could either be achieved via an on premise clus-

ter, a public cloud service or a hybrid system of the two, depending upon

the operators needs, expertise and budget. In the work presented here the

prototype system was developed on a small, 4 node, Apache Hadoop cluster.

3.4 Software Architecture

For the prototype system developed for the work presented all code was

written using Python3 and utilising the Scikit-learn machine learning library

(Pedregosa et al., 2011) for the regression operators. 5GCraft Firefly (Twain

OpenAI Club, 2021) and BeeColPy (Oliveria, 2020) were libraries used for

the optimisation functions. The regression tests were conducted on a four

node Cloudera CDH6.2.1 installation (Cloudera, 2022) which implements

Apache Hadoop (Apache Software Foundation, 2010).

23

Chapter 4

Metric Measurement

4.1 Difficulties with Accuracy

In many CASH implementations (Thornton et al., 2013, Feurer et al.,

2015, Golovin et al., 2017) a significant effort is made to optimise the set

of hyper-parameters or algorithm used to produce a classification decision.

The method often described in the literature, is that of a Bayesian optimiser

(discussed in section 7.2). However, although a single accuracy measure is

used to determine the best performing algorithms or set of algorithm param-

eters, this has limitations when considering a system for use in an industrial

process. Under different circumstances any given industrial process may re-

quire an algorithm to have a certain type of accuracy and that certain error

criteria are more important than others. The most often used metric mea-

sure in the literature for classification methods is that of absolute accuracy,

this is simply a measure of how often the algorithm correctly predicts an

examples class. However a simple accuracy measure tells us nothing about

24

the distribution of the errors or whether particular classes are more often

misclassified than others. There are measures to examine these, such as con-

fusion matrices, but in terms of CASH implementations the final decision is

based on absolute accuracy.

Whilst most predictive industrial processes problems are classification

problems and many more could be reduced to a classification problem there

are also a large number of instances where the process is a regression prob-

lem and a specific value needs to be predicted. Regression problems are less

common in the literature being more complicated than classification prob-

lems but the most common metric used in those instances is that of mean

squared error (see section 4.2.3) or sometime simply the absolute error, which

is simply the magnitude of difference between the expected target value and

the observed value ignoring sign. The work presented here is a regression

problem as presented but also the data was repartitioned to be useful for

a classification problem (see section 5.9). This allows this work to build a

hybrid of regression and classification metric measures for experimentation.

In an actual industrial environment the process would dictate whether the

system would be using regression or classification metrics.

This work uses 10 regression based accuracy measures and 6 classifica-

tion based metrics, with an additional 5 metrics representing lag for cross

correlation prediction.

25

4.2 Regression Metrics

The 10 accuracy metrics associated with regression accuracy are :

� Current Explained Variance.

� Cumulative Explained Variance.

� Current Maximum Error.

� Cumulative Maximum Error.

� Current Mean Squared Error.

� Cumulative Mean Squared Error.

� Current Median Absolute Error.

� Cumulative Median Absolute Error.

� Current R2 Score.

� Cumulative R2 Score.

4.2.1 Explained Variance

The explained variance is defined as the variance in the model due to

included parameters, if this was one parameter it would directly measure

the effect altering that one parameter would have on our observed values but

more commonly it is the set of parameters that are included in the model. For

a model (y) with observed values (ŷ), with variance Var, explained variance

is defined as :

26

1− V ar(y − ŷ)

V ar(y)
(4.1)

4.2.2 Maximum Error

The maximum error is defined as the largest difference between an ob-

served result and the value predicted by the model. For the same model

stated in equation 4.1 the Maximum Error is defined as :

max(|yi − ŷi|) (4.2)

In this case the metric would give some indication of the largest error in

the model, a model with low variance may still contain large single errors and

it would depend upon the process involved as to whether this was acceptable.

4.2.3 Mean Squared Error

The mean squared error measures the magnitude but not the sign of the

error, it is defined bt the following equation:

1

n

n∑
i=1

(yi − ŷi)2 (4.3)

Where n is the number of observations.

This is a similar situation to the previously described maximum error

however in this case the metric tracks errors across a range rather than the

single largest error, this gives an indication of the errors as a whole rather

27

than whether there is a single underperforming prediction.

4.2.4 Median Absolute Error

The median absolute error tracks all the errors across the range in a

manner similar to the mean squared error but, similarly to the maximum

error, tracks a single prediction value. In this case the median vale from the

range of absolute errors. It is defined by the equation :

(|y1 − ŷi|)...(|yn − ŷn|) (4.4)

This metric gives another view of the data when combined with the max-

imum and mean squared errors.

4.2.5 R2 Score

The R2 score is closely related to the explained variance, it also measures

the variance in the model due to the included parameters. The R2 score is

defined as:

1−
∑n
i=1(yi − ŷi)2/n
V ar(y)

(4.5)

The difference between explained variance and R2 score is that as part of

the sum of squared residuals errors the mean of the errors is subtracted. If

the mean of the errors is 0 the both the R2 score and the explained variance

will give the same results. However if there is any bias in the data where

the model is either over or under predicting observations consistently then

28

the two measures will give different results. By tracking both measures we

can learn some information regarding the behaviour of the model and the

parameters informing it.

4.3 Current vs. Cumulative Metrics

For each of the metrics listed previously this work tracks two versions,

the cumulative version, which is the algorithm using all the data to that

point, and the current version, which is the data as a one minute rolling

window (previous 6000 data points). The reason for examining different

lengths of results is that the industrial process being modelled may be some

long standing process, where the conditions do not normally change and the

results are consistent, or it may have a rapidly changing environment, where

conditions result in large variations. In the former case the model might

need to track as many results as possible whilst looking out for slow drift

in the conditions leading to slowly rising errors whilst in the latter case it

would need to closely track and give emphasis to more recent results to catch

errors quickly. In practise the length of time needed to track the metrics for

comparison would be dependent on the process itself, the work presented here

looks at a short term (1 minute) and long term (all the data as presented at

the point of analysis) time scale.

29

4.4 Classification Metrics

Along with the regression metrics there are also 6 classification metrics.

These classification metrics are dependent on the data being split into the

three bands described earlier (see section 1.2):

� ROCAUC

� Total Band Accuracy

� Total Tolerance Accuracy

� Total Band 0 Accuracy

� Total Band 1 Accuracy

� Total Band 2 Accuracy

4.4.1 Receiver Operating Characteristics Area Under

Curve (ROCAUC)

ROCAUC (Receiver Operating Characteristic Area Under Curve) is a

metric that measures the distributions of true positives and false positives at

various test values. By sampling across the range of possible values a curve

can be constructed by plotting the false positive rate against the true position

rate for a classification target, this is the ROC curve. The ROCAUC metric

is the area under the ROC curve and this indicates the model’s performance

across the full classification range. The result of the ROCAUC is a value

between 0.0 (a model that always predicts incorrectly) and 1.0 (a model that

30

has a 100% accuracy). The ROCAUC measurement in this study looks at

the split between within tolerance and outside tolerance.

4.4.2 Band Accuracy

As described earlier (section 1.2) the entire dataset has been split into

three bands; band 0 represents values falling below the permitted range,

band 1 represents values falling inside the permitted range and band 2 rep-

resents values above the permitted range. A total of five band accuracies

are tracked, these are simple total accuracy metrics. The first of these is the

total band accuracy, this is the standard accuracy measure of how often the

model correctly predicts the band of the observed value against the number

of predictions, this is defined in equation 4.6 :

(ŷ0 + ŷ1 + ŷ2)

n
(4.6)

Where ŷx is the correct number of predictions for group x (for the three

bands) and n is the total number of predictions.

The second of the metrics is tolerance accuracy, in this metric the only

concern is with whether or not the model can predict whether the value will

be in or out of tolerance. The metric is not concerned with getting the band

prediction correct. In the case of a tolerance accuracy the algorithm need

only predict those in tolerance as band 1 and those out of tolerance as either

band 0 or 2, therefore a value of 6ppm (band0) predicted as band 2 would be

considered a success as both of these are outside tolerance range. The reason

31

for including both of these measures is that they track different behaviours

in the process, in terms of the overall accuracy the system is simply mea-

suring the model’s performance at prediction and in many cases this will be

the measure that is required, but in a number of other instances the process

may not care about the reason for a process failure (either below or above

a predetermined measure) just whether or not something will or won’t fail.

Failure itself may be easier to predict than the exact result of failure, in

which case the system should not penalise the model if all that is required is

a prediction that a process will result in success or failure.

The final three metrics are related to the model accuracy for predicting

the actual specific band for an observation; band 0, 1 & 2 accuracy. In this

case the metrics are interested in the model’s ability to accurately predict

a particular band. This would be of obvious value if there was a particu-

lar outcome that we valued over the others, for example if having values in

the over tolerance range (band 2) was particularly dangerous the framework

could prioritise this measure, band 2 accuracy, over some of the other metrics.

Similarly to the regression metrics this work tracks both the cumulative

metrics above as every result in the dataset to date and the value of each of

these metrics per minute. Again this is done to have a snapshot of the cur-

rent performance of an algorithm within the time frame of each test (in this

work 1 minute) but also to keep track of how an algorithm is performing over

the time that the monitoring is taking place as a whole. By monitoring both

the system can make decisions about what is the currently best performing

32

algorithm and set of hyper-parameters but also monitor for configurations

that start well but begin to perform poorly as time moves on. This can be

an important feature of time series data prediction known as concept drift

and will be discussed in section 9.2.

4.4.3 Correlated Metrics

As discussed later (section 5.10) three datasets were created for this work

from the one obtained from Fonollosa et al. (2015), the dataset as it was

obtained (referred to as the raw dataset in this work), the smoothed dataset,

that is an average of the previous 5 previous data points and the correlated

dataset. In terms of the first two datasets (raw and smoothed) the metrics

described above were the complete set of metrics applied, however in the case

of the correlated dataset there are an additional 5 metrics tracked :

� Offset

� Total Offset

� Total Absolute Offset

� Average Total Offset

� Average Total Absolute Offset

Every minute (6000 data points) the system calculates the cross corre-

lation value for the data, to find the best fit between the observed results

and the target results to calculate the lag between the two data sets. The

33

lag across the dataset was not expected to be uniform as observed by Zhao

et al., (2019). The first metric recorded is the offset of the two data sets

that produces the best cross correlation, given work in the literature it was

expected to see the offset value to be a positive number indicating that the

predicted values are lagging behind the target values. However the cross cor-

relation can produce a negative value which represents the predicted values

being ahead of the targets, in essence the system would be predicting future

values. The second metric is a sum of all the lag values in the signal to the

point in time being measured E.G. in the 4th minute of recordings the first

metric would give the current best lag value for the 4th minute and the second

metric would give the sum of the lags for minutes 1,2,3 and 4. By comparing

each individual minute and the total so far in the series it is possible to track

both the immediate performance of the algorithm along with the historical

performance. The third metric tracks the moving average through the series

and the fourth metric does the same but ignores the sign of the offset and

is only concerned with the magnitude. These different metrics are useful in

different circumstances, a set of predictions that are sometimes very close to

being at zero lag but at other times having a high value of lag will have a

different pattern in the metrics to one that is consistently a small fixed lag

behind the targets, these could however have similar total offsets or average

offsets.

34

4.5 Summary.

The set of metrics being used in this work cover a range of regression

and classification measures. They are not an exhaustive list nor necessarily

were the metrics chosen to produce the best results when paired with the cho-

sen dataset. The metrics were largely chosen as some of the most common

metrics found in the literature. A decision was made to trial both regression

and classification metrics in this work, as the framework being presented as

the focus of this work is able to be put to use for either classification or

regression operations. In a normal operating environment the framework

would utilise either a set of regression or classification metrics rather than a

combination but here both have been used to show that the framework can

cope with both. The multiple metrics replace the more usual practise of a

single target metric (often absolute accuracy) and allow the framework to be

flexible around different behavioural patterns we may want from the process

being modelled. A non-specialist user can adjust the targets by identifying

the characteristics of the process, as we know what each of the metrics mea-

sure the non-technical user does not need to have a knowledge of the metrics

themselves. The importance of each metric is controlled via a weighted vec-

tor, the framework uses this during the optimisation phase to determine, via

the use of the metrics, which algorithm is performing the best (see chapter

7). Now that the metrics have been defined for the framework these will be

used in the next phase of prediction and classification.

35

Chapter 5

Prediction Algorithms

Techniques and

Implementation.

5.1 Introduction.

The framework described in this work is to be able to continually eval-

uate and select machine learning algorithms based upon a set of metrics

described in the previous chapter. The evaluation and selection process will

be discussed later in chapter 7 and in this chapter the report will discuss the

machine learning algorithms being selected. As with the metrics discussed in

the previous chapter the algorithms described here are not meant to be an

exhaustive list of algorithms. Instead they are a representative selection of

potential machine learning algorithms that are likely to be used in industrial

processes such as the one being used as an example for this work. The algo-

36

rithms themselves will be discussed in this chapter along with a discussion

on why these particular algorithms were selected and in the next chapter we

shall look at the results of the implementations of these algorithms. Again

these algorithms are examples of potential solutions and in an industrial set-

ting these could be swapped for completely different algorithms depending

on what was deemed most potentially suitable for the process being modelled

in question. The goal of the framework being discussed is that it should be

agnostic in terms of the dataset being analysed, the machine learning algo-

rithms being used for prediction, classification or control and the optimiser

being used for selection.

The five machine learning algorithms selected for testing in this work are

as follows :

� Least Absolute Shrinkage and Selection Operator (Lasso)

� Ridge Regression

� Stochastic Gradient Descent (SGD)

� Elastic Net Regression

� Random Forest Regression

The main reason for the selection of these algorithms was that they are

very commonly used in the literature when comparing types of regression

algorithms, see Sharif et al., 2017 as an example. Linear regression is often

used as a predictive model and there are a number of variations, here this

work examines four types. The work also includes a non-linear method in the

37

form of random forest regression, which again is common in the literature

(Grömping, 2009).

The standard least squares linear model estimates the coefficients of the

parameters (β0..n) using the equation 5.1, many of the regression algorithms

used in this work modify this via a tuning parameter.

βi..n =
n∑
i=1

(yi − β0 −
p∑
j=1

xijβi)
2 (5.1)

Each xi = (xi1, xi2..., xip) is a vector of feature measurements for the ith

case

5.2 Least Absolute Shrinkage and Selection

Operator (Lasso)

Lasso regression was selected as one of four linear regression algorithms

being tested in this work. The Lasso algorithm is described in (Hastie, Tib-

shirani and Friedman, 2009) as a ”shrinkage method”, it works by minimizing

the function given in equation 5.2 for β values

βLasso =
1

2

n∑
i=1

(yi − β0 −
p∑
j=1

xijβi)
2 + λ

p∑
j=1

|βj| (5.2)

The tuning parameter used by the Lasso algorithm uses the L1 Norm

penalty, this uses the magnitude of the coefficients. Due to the shape of the

L1 Norm, a diamond (in 2-D, see Figure 5.1) this can lead to coefficients

38

being reduced to 0 (due to the edge of solution spaces hitting the corners of

the diamond) and therefore eliminated from the model giving a sparse model.

λ is defined to be a complexity parameter with a value greater than 0, the

larger the value of the complexity parameter the larger the shrinkage of the

coefficients will be.

5.3 Ridge Regression

Ridge regression is another ”shrinkage method” (Hastie, Tibshirani and

Friedman, 2009) and is related to the Lasso regression algorithm. Again this

algorithm works by minimising the β values for equation 5.3.

βRidge =
n∑
i=1

(yi − β0 −
p∑
j=1

xijβi)
2 + λ

p∑
j=1

β2
j (5.3)

As with the Lasso algorithm the λ parameter is a complexity parameter

and the bigger the value the smaller the β coefficients will shrink. Unlike the

Lasso algorithm the Ridge algorithm uses the square of the coefficient values

rather than the absolute value, this is known as the L2 Norm. The shape

of the L2 is circular in 2-D (Figure 5.1) which means the solution space for

the minimised solution equation will not touch the axis when it meets the

L2 contour therefore the β coefficients may become very small but will not

be reduced to 0.

39

5.4 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is an optimiser for training models

rather than a machine learning algorithm. Pedregosa et al., 2011 in their

documentation describe the function of SGD as ”minimising the training er-

ror”. Equation 5.4 shows for a set of training examples x1..n with targets y1..n

to achieve a linear function f(x) = wTx+ b , with model parameters w and

incept b.

E(w, b) =
1

n

n∑
i=1

(L(yi, f(xi)) + αR(w) (5.4)

Here L is a loss function and R is a regularization term that is imple-

mented to penalise complexity, α is a parameter used to weight the regular-

isation parameter. There are many choices available when choosing a loss

function for L and this will be discussed later in section 5.8, where the report

considers implementation of the algorithms. SGD as a method is more effi-

cient than others mentioned here but unlike the previous methods (Lasso and

Ridge) has more hyper-parameters that may require tuning. In the previous

methods both Lasso and Ridge only had the λ expression that could vary

whereas for SGD there are the terms for α and R as well as the choice of loss

function.

40

5.5 Elastic Net

Elastic Net is another shrinkage method, this time it combines both the

L1 and L2 Norms as shown in Equation 5.5.

βLasso =
n∑
i=1

(yi − β0 −
p∑
j=1

xijβi)
2 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j (5.5)

The corresponding contour is a combination of L1 and L2 as shown in

Figure 5.1, the Elastic Net is an approach to try and avoid some of the

issues found in both Lasso and Ridge regression approaches. λ1 and λ2 are

control parameters to reflect how much influence the L1 and L2 Norms have

respectively.

5.6 Comparisons and limitations

All four previously mentioned algorithms and methods are linear regres-

sion models, they attempt to fit a hyperplane through the dataset. Each of

the methods has a number of advantages and disadvantages that are widely

discussed in the literature, see, for example (James et al.., 2017, Hastie, Tib-

shirani and Friedman, 2009, Bishop, 2006). Ridge regression solves some

of the issues with ordinary least squares estimation (multicollinearity, where

some of the coefficients are correlated and are not independent which can

cause high variance), but because of the shape of the contour associated

with the L2 Norm the Ridge approach does not reduce the complexity of

41

Figure 5.1: Contours for Linear Regularisation terms as a 2-Dimensional
example

the model and maintains all of the associated coefficients. Lasso attempts

to address some of the problems of Ridge by allowing the coefficients to re-

duce to 0, creating a sparse version of the solution. Lasso can have issues

if coefficients are correlated leading to the method concentrating on one of

the correlated variables at the expense of others. Elastic Net attempts to

compensate for this by using the combination of Ridge and Lasso’s penalties

with the disadvantage of an increase in the computational cost. SGD, as

noted earlier, is an efficient algorithm at the cost of needing to tune more

hyper-parameters than the other three presented linear regression methods.

42

One disadvantage shared by all the methods so far described is that they

are all linear regressors, as such they are limited to attempting to fit a linear

hyperplane through the dataset to predict values. If the pattern (if a pattern

exists) that describes the relationship between the coefficients is non-linear

then none of the methods will be able to produce satisfactory results. One

approach that can model non-linear patterns in a regression environment is

that of the fifth approach detailed in this work, random forests.

5.7 Random Forests

Random Forests as described in James et al., 2017 are an ensemble ma-

chine learning method that use a number of individual decision trees and

produce a result via collective decision making. If they are being used to

perform classification then a vote is taken across the trees and the class that

is selected most often has the highest number of votes and is selected as the

result. In the case in this work where the goal is a regression prediction the

output from the numerous trees is taken and the mean from the predictions

is taken as the result.

When building the decision trees for the forest the random forest algo-

rithm will select a random sample of possible predictors and choose from

those candidates as the decision split. This allows a greater number of can-

didates to be considered across the forest and prevents a strong predictor

43

from dominating (as any individual predictor will not be in most of the split

considerations). Each individual tree is a weak regressor / classifier com-

pared with a traditionally built decision tree such as a C4.5 / J48 tree but

the strength of the approach is in the collective decisions of the multiple

trees. The major strength of the random forest approach compared with the

previously detailed approaches is that it is not dependent on the prediction

pattern being linear and can therefore approximate more potential patterns

than the previously mentioned approaches. Random forests do have sev-

eral drawbacks in that they are computational expensive, can take longer to

make a prediction (many trees have to be considered and the outputs aver-

aged rather than just a single function as in the previous methods) and can

have a tendency to over fit training data if training isn’t carried out care-

fully. The other drawback, that random forests traditionally have in some

applications, is that they are harder to interpret how the process arrived at

the target value. Due to this they are often considered black box solutions,

in the environment described in this work this is not necessarily a draw-

back that would hinder their usage. Although many applications find the

ability to dive deeper into the workings of the decision engine essential the

type of system described in this work is meant to be used specifically by a

non-specialist in machine learning. Given that the user is not of a nature to

example the algorithms finding in depth and is instead only interested in the

results, whilst the tuning and measurements are left to the autonomy of the

system it is not a drawback for the inner workings of the prediction engine

to be inaccessible or difficult to access for a normal user.

44

5.8 Implementation

For this work all the above algorithms have been implemented for testing

using Python and the Scikit-Learn machine learning library (Pedregosa et al.,

2011). Each implementation has a number of options and hyper-parameters

that are detailed below along with the values used in this work.

Lasso - The Scikit-learn implementation of Lasso has a number of options

including normalisation of the values before regression, maximum number of

iterations and some parameters for pre-computation to speed up calculations.

The main parameter as far as this work is concerned however is that of the

λ parameter from equation 5.2, Scikit-learn refers to this as the α parameter

and the default value is 1.0, this is a common starting point for implemen-

tations of the Lasso algorithm. It is noted that if α is set to 0 then the

algorithm is the same as performing ordinary least squares. For the purposes

of the work undertaken the parameter was left at the default value of 1.0.

Ridge - Again the Scikit-learn implementation has a number of parame-

ters, the most important for this work are the λ parameter from equation 5.3

(again referred to in the Scikit-learn documentation as α) and the type of

solver used in the computation of the algorithm. Scikit-learn has six different

settings for the solver:

� auto

� svd

45

� cholesky

� sparse

� lsqr

� sag

As the name suggests ’auto’ attempts to select the best of the other solvers

based on the data it is presented with, ’svd’ uses Singular Value Decompo-

sition. ’Cholesky’ uses a standard function within Scikit-learn’s library to

obtain a closed form solution. ’Sparse’ uses conjugate gradient solver also

native to the Scikit-learn library. ’lsqr’ uses dedicated least squares and

’sag’ is a stochastic average gradient descent method. More details on these

options can be found in the Scikit-Learn documentation (Pedregosa et al.,

2011). For the purposes of this work an example of a Ridge regression solver

was required and the default value of 1.0 for λ was selected once more and

Cholesky as the solution solver as this is the default solver in the library

for most general conditions (the auto feature will generally select Cholesky

except under specific circumstances).

SGD - A mentioned previously the SGD method has more hyper-parameters

than any of the other linear regression models used here and here the values

need to be set for the weight, α, the regularisation term, R and the loss func-

tion , L as shown in equation 5.3. The α parameter was left at its default

setting (as were many parameters in these tests) of 0.0001. R term has the

settings of ’none’, ’L2’, ’L1’ or ’elasticnet’, for the purposes of this work ’L2’

46

was selected (again this is the default setting in the library). With the reg-

ularisation term as an L2 norm we can directly compare the result of SGD

with that of our other L2 Norm regressor, Ridge. The loss function, L, has

the settings of:

� squared loss

� huber

� epsilon insensitive

� squared epsilon insensitive

For these loss functions, ’squared loss’ is the ordinary least squares fit

(and is the default value), ’huber’ is based on ordinary least squares but tries

to deal with outliers by switching to a linear loss past a set distance ε, ’ep-

silon insensitive’ ignores any errors less than ε and is a linear loss function

past that distance. Lastly ’squared epsilon insensitive’ again ignores any er-

rors less than ε but is a squared loss function past this value. If anything

other than squared loss is used then a value for ε also needs to be set, the

default value for this parameter is 0.1. In this work the loss function was

again set to the default value of ’squared loss’.

Elastic Net - Elastic Net shares many parameters with the related Lasso

and Ridge algorithms and the most important settings for this implementa-

tion are the settings for λ1 and λ2, in equation 5.5, that control the amount

of influence that the L1 and L2 Norm component have. Scikit-learn sets

these using a parameter that sets the value for both parameters and then

47

adjusting the influence of the L1 Norm parameter in relation to the L2 Norm

parameter. The default setting, and the one used for this work, is to set

the parameters both equal to 1.0 and have the L1 and L2 Norms have equal

influence.

Random Forest - The random forest regressor being a more complex re-

gression algorithm has more parameters to set. The following parameters are

ones that are key to the purpose of this work:

� n estimators

� criterion

� max depth

� min samples split

� min samples leaf

� min weight fraction leaf

� max features

� max leaf nodes

� min impurity decrease

� min impurity split

As with many of the other algorithms in this work many of the set-

tings have been set to the default library settings, this report will briefly dis-

cuss what effect each of these settings have what they relate to. ’n estimators’

48

is the number of trees created to produce the forest, the default value for this

is 100. ’criterion’ selects how the algorithm chooses the split at each node

by setting the measurement criteria, the options here are mean squared error

and mean absolute error, the default being mean squared error. ’max depth’

is the maximum depth (I.E. number of splits) each tree can expand to, the de-

fault setting for this parameter is max, this allows the tree to keep expanding

until the leaf nodes are either pure or contain less than the minimum number

of samples per split. ’min samples split’ this is used for the previous setting

max depth, default setting is 2. ’min samples split’, this is the minimum

number of values any node can contain after a split, if a split would lead

to the creation of a node with less than this number it is not performed,

the default is 1. ’min weight fraction leaf’, this is an optional parameter

that, if samples have been assigned weights, tracks the minimum amount of

weighted samples that need to be in a leaf node after a split, in the work

presented here samples are not weighted and this matches the default value

of this parameter which is set to 0. ’max features’, this parameter checks

the maximum number of features (inputs) considered for each split from the

total number of features, there are a number of options for this setting, it

can be a fixed integer value, it can be a fixed float value (which is then used

as a proportion of the total number of features, E.G. 0.5 would be half of the

total number of features), auto sets the value to the same as the number of

features, sqrt is the square root of the number of features, log2 is the log2

of the number of features and finally none which, again, sets the number of

features equal the total number of features. The algorithm will only restrict

the number of features being considered once all other criteria for producing

49

a valid split have been satisfied, I.E. if the parameter is set to 4 then the 4

features being considered will all have been checked to produce valid splits

by all other criteria. The default for this parameter is auto. ’max leaf nodes’

is a parameter that allows the setting of the maximum number of generated

leaf nodes, these are created in ’best first’ order. If the default, none, is

selected (as it was here) then no restriction is place on the number of nodes.

’min impurity decrease’, this is the minimum decrease in impurity (or gain

in purity) a split must obtain in order to be considered, default value is 0.

The impurity of a node is the ratio of classes within that node so a node con-

taining just one class will have minimum impurity (maximum purity) and

a node containing equal numbers of all classes will have maximum impurity

(minimum purity). ’min impurity split’ is a parameter for early stopping of

tree generation where a node will be considered a leaf (final end node) if its

impurity is below a given value (default is 1e-7).

5.9 Training Strategies and Replication

For each algorithm discussed above there were also a number of vari-

ations created regarding the training data. Algorithm testing was carried

out using several sizes of training set. Randomised entries were removed

from the full dataset and put aside into a training set. Each algorithm was

then trained using the training set and the remaining data was presented as

a time series to the algorithm. The goal of this was to preserve the order

of data from the original dataset when it came to testing, there were gaps

50

between test samples where training data had been removed, but the order

of observations was preserved. The sizes of training sets tested were 1000,

5000, 10000, 50000, 100000, 500000, 1000000, and 2000000. This represents

a range from just under 0.025% to just over 50% of the dataset being used

as training examples. Each algorithm was run 3 times for each training level

against each of the three variations of the dataset (raw, smoothed and cor-

related, see section 5.10).

5.10 Dataset

To conduct this study the experimental phase required a large, temporal

dataset that had features that were relevant or similar to those that might be

found in a manufacturing dataset. The dataset selected was from (Fonollosa

et al., 2015) and is available from the UCI machine learning repository. The

dataset is a mixture of gas concentrations (ppm), the set used was Ethylene

& Carbon Monoxide (CO) and the dataset consists of Ethylene and CO con-

centration levels along with readings of 16 gas sensors. The readings were

taken over a unbroken 12 hour period at a frequency of 100Hz with the gas

mixture concentration being changed randomly every 80-120 seconds. The

dataset consists of approximately 4.2 million samples and the defined goal

for the experiment was to predict the Ethylene concentration level using the

CO level and the 16 gas sensor readings as inputs.

Randomised entries were removed from the full data set and put aside

51

into a training set. The algorithm was then trained on the training set and

the remaining data was presented to the algorithm as a time series set for

purposes of testing. The goal here was to preserve the order of data from the

original set when it came to testing, there are gaps between test data sam-

ples where training data has been removed but the order of observations has

been preserved. Sizes of training sets tested were 1000, 5000, 10000, 50000,

100000, 500000, 1000000, and 2000000. This represents a range from just un-

der 0.025% to just under 50% of the data set being used as training examples.

Previous work (Zhao et al., 2019) noted that the sensors are prone to

lag in detection, drift in characteristics and to occasionally produce false

readings. To account for these effects three versions of the dataset were

produced; the original “raw” dataset, a smoothed data set and a correlated

dataset. The original dataset was presented to the algorithms as it stood

with no pre-processing, this represents the data coming live from monitored

machinery. The second data set was a smoothed version, in this case the

value presented to the algorithms was the average of the previous five data

points. This allows the framework to attempt to reduce single outlying val-

ues without falling too far behind in terms of batching readings.

In the case of the detectors lagging this will obviously produce a delayed

effect in the predictions produced by the algorithms. In order to look at

this a third data set was produced, in this case the “raw” data set was pre-

processed by calculating the cross correlation over each minute. This set is

referred throughout this work as the correlated dataset. The lag across the

52

data set is not expected to be uniform as observed by (Zhao et al., 2019). The

sensors in the original experiment struggled to cope, due to this a new lag

value is calculated for each minute of the experiment. Each minute’s worth

of data (6000 points) is compared with the predictions and offset according

to the best calculated cross correlation fit. This method does introduce

significant processing overheads and requires the full minutes’ worth of data

to be collected. In this manner it would appear difficult to envisage this

method being used in a production system. It would be possible to track

previous minutes and adjust for lag changes if sensor error drift was found to

be gradual but in cases where change is sudden and occur for a short period

of time before self-correcting (as is often the case with this dataset) this

would be of limited use. In the experiments for this work this was calculated

as a comparison with the other sets to see if there was a significant amount

of lag happening in the regression predictions.

5.11 Summary

In terms of the work presented here it would have been a simple task to

generate large numbers of variations for each of the regressors, particularly

for the SGD and random forest that have larger numbers of parameters. This

would have been the approach if the goal had been to achieve the best results

for the dataset involved, however as previously mentioned this is not the goal

of this work. The exercise here was to produce a number of competing algo-

rithms that would produce differing levels of differing accuracies (see section

4.1) across the range of the dataset in order to study how the system might

53

select a best performing predictor and how to alter this autonomously during

the framework’s runtime. For that reason having selected a number of dif-

ferent prediction algorithms it was not felt necessary to expand this further

by using different versions with altered hyper-parameters. In a production

system it would be desirable to maximise the number of both algorithms

and sets of hyper-parameters that the system architecture could cope with

in order to produce the best result possible for the industrial system. Such

a scenario is discussed in further depth in section 10.1 when the report looks

at scalability of the system.

54

Chapter 6

Prediction Algorithms Results.

6.1 Introduction.

The goal of the prediction phase in this work was not to necessarily

produce the best quality predictions based on the dataset but to produce

several sets of results that could be analysed in the next phase, the opti-

misation phase, to select a best performing algorithm and hyper-parameter

selection. In this section this report will look at some of the results from the

experimental prediction stage to show that the resultant prediction dataset is

varied enough for use with the optimisation phase. The results seen here are

the results of the many variations detailed in chapter 5 and this report will

discuss the nature of the results produced along with some characteristics of

interest from the dataset and how these might affect the framework and its

treatment of datasets and prediction results in general.

55

6.2 Prediction Results

Figures 6.1, 6.2 and 6.3 show an unsophisticated unweighted sum of

rankings for each of the five algorithms. For each algorithm the same 500,000

points were used for training and predictions made for the remaining points.

For each prediction, the result from each algorithm was compared with the

known result and the algorithms were ranked according to the various met-

rics outlined in chapter 4.

The method for ranking compared each algorithm at each minute for each

accuracy metric. For example the five algorithms in this work (Lasso, Ridge,

SGD, Elastic and Random Forest) are compared to each other at minute one

for the explained variance measure, the best performing algorithm is awarded

1 ranking point the next 2 and so forth. If two or more algorithms have the

same ranking then they are assigned the same ranking points. Once this

has been done, this is then repeated for the next accuracy measure (E.G.

Maximum Error) and this is repeated until all 11 accuracy measures have

been ranked. The ranks for all the accuracy measures at minute one are then

summed to produce an overall rank score for each algorithm after the first

minute. With 11 accuracy measures being summed the best possible score

an algorithm could have at each minute would be 11 (11*1) meaning that

it had performed the best across all metrics, similarly the worst score an

algorithm could have would be 55 (11*5) which it would achieve if it was the

worst ranked algorithm across all metrics. In reality, as this report shows,

no algorithm scored perfectly across all metrics not was any algorithm the

56

worst across all metrics at any time during the tests (see Figure 6.4). This

was then repeated for the next minute and so forth.

The ranking gives an overview of the performance of each algorithm

through the time of the experiment compared against the other algorithms,

this work is concerned in the relative performance of each algorithm rather

than an absolute performance rating. In this work it is assumed that all the

metric measures are of equal importance. In reality this would be unlikely in

an industrial setting, in which case the unweighted sum of rankings shown

here could be replaced with a weighted ranking favouring the metrics that

produce the desired behaviour in the process. Using a weighted ranking to

influence the selection of an algorithm based on a particular priority in terms

of accuracy metric is discussed in more detail in chapter 7.

The report will discuss these performance rankings next. Four figures

were produced (figures 6.1 to 6.4) to look at different aspects of the results.

The rankings can be considered in two ways; either as a single snapshot of

the algorithms at a particular minute in time, or the cumulative ranking

score of an algorithm throughout the experiment up to that point. These

cumulative and non-cumulative rankings can show different patterns in the

behaviour of the algorithms, figures 6.1, 6.2 and 6.3 consider the algorithms

as they progress using the cumulative ranks whilst figure 6.4 is a snapshot of

each algorithm at a particular point in time.

Figure 6.1 displays the first 100 minutes of the experiment, in this figure it

57

can be seen that there is very little separation in the 5 algorithms (the lower

the rank the better performing the algorithm is as discussed previously), the

only noticeable trend is that the Random Forest algorithm seems to have

the most variation. The random forest implementation begins as the worst

performing algorithm but by the 55 minute mark has tied with the Lasso im-

plementation as the best performing of the algorithms, before reverting back

to being one of the worst performing algorithms by the 100 minute mark.

Figure 6.1: Cumulative Rank Score of 5 Algorithms for first 100 minutes

Figure 6.2 shows the algorithms after 140 minutes until 240 minutes and

we can see that there is beginning to be some separation in the algorithm’s

performances with the algorithms swapping over less.

Figure 6.3 shows that by the time the full experiment has run there are

obvious differences between the algorithms’ performances, however although

58

Figure 6.2: Cumulative Rank Score of 5 Algorithms for minutes 140-240

Figure 6.3: Cumulative Rank Score of 5 Algorithms for minutes 140-240

there is some clear separation between groups of algorithms (SGD / Ran-

dom Forest vs. Elastic / Lasso) there is clear overlap between individual

algorithms (Elastic and Lasso overlap across the timeline) where for a time

one algorithm outperforms the other but the situation is reversed later on.

59

The three Figures 6.1, 6.2 and 6.3 all show cumulative error ranks but we can

look at the data from minute to minute without taking into consideration

any previous results.

Figure 6.4: Non-cumulative rank score for all 5 algorithms between 100 and
260 minutes

Figure 6.4 shows the ranks of the five algorithms during minutes 100

to 260, in this case this is the non-cumulative version which demonstrates the

amount of change between the algorithms for any minute to minute change,

in particular we can see that Random Forests in this instance often have

both very high and very low ranking scores meaning that within a few min-

utes they can be considered the most accurate and least accurate algorithm

for predictions. This demonstrates the problem the framework has trying

to decide which algorithm is actually producing the best results, in many

instances (such as the example here) there is not going to be an obvious can-

didate that does not resort to changing the algorithm every minute or so, this

60

is where the framework looks back at the cumulative results but this in itself

will have issues. Running with the cumulative results from the beginning of

the process can hide a declining pattern in an algorithm whilst it can take

an initially poorly performing algorithm some time to catch up, in this case

it may be appropriate to use some form of windowed timescale that allows

previous results to become less prevalent as time goes on. Again what size

of window would depend on the process being modelled with processes that

have output that react rapidly to changes of environment where significant

changes can happen quickly benefiting from shorter time frame windows.

The length and shape of these windows will then become another parameter

that would need to be determined by experimentation.

The variation in relative performances between two of the algorithms

more clearly in Figure 6.5. Figure 6.5 ranks the value (lower is better perform-

ing) of the Random Forest implementation versus the Lasso implementation

over the first 100 minutes of the experiment. It is interesting to note that in

Figure 6.1 it can be seen that during the first 100 minutes of the experiment

using the cumulative errors the Lasso implementation out performed Ran-

dom Forest implementation for most of the duration except for a time period

in the middle (between, approximately 50 and 75 minutes). However looking

at this figure of non-cumulative results it can be seen that the pattern is not

so simple and that there is a constant swapping over of the two algorithms

throughout the runtime. The peaks and lows of Random Forest are hidden

in our initial examination when we consider the algorithm just in terms of

ongoing and historical performance rather minute to minute evaluations.

61

Figure 6.5: Unweighted Ranking of Random Forest Algorithm vs. Lasso Al-
gorithm over First 100 minutes

Figure 6.6, shows the best lag time calculated up to 60000 seconds, this

was done by the absolute error as a quick measure of how well predications

where aligned against outcomes. The chart shows that the data has a large

degree of variance with large amounts of lag across some minutes and very

little lag in others, this is in keeping with the results found by previous

work (Dominguez-Pumar et al. 2016, and Ai et al., 2018) found that the

gas dataset is an extremely messy dataset large amounts of drift and lag

between sensor readings, due to the sensors being slow to recognise changes

in gas concentration both for initial detection of ethylene and the resetting of

the sensor readings once the gas has cleared. The unreliability in the sensors

mean the dataset, in this case, can not reliably be said to have a set time

lag with regard to predictions and in reality many real world datasets will

62

have substantial flaws along these lines. However in certain circumstances it

could still be beneficial to use a correlated dataset, to examine this type of

relationship between predictions and outcomes where one can reliably lead

the other.

Figure 6.6: Best fit lag on correlated signal for Ridge Regression (1000000
training points)

Figure 6.7 shows the effect of using the smoothing operation on the

dataset. As previously described the smoothed dataset is an average of the

previous 5 readings rather than a single reading. In this case the predictions

made by using the Elastic Net algorithm after training the model on 1000000

data points is being examined. Figure 6.6 shows the maximum error in parts

per million (ppm) between the predictions and the results. Because the max-

imum error calculation looks at the maximum error for the last minute we

see a very similar progression for both sets of data except that in this case

the smoothed dataset has a higher error throughout the experiment. At first

63

Figure 6.7: Smoothed vs. non smoothed data for Elastic Net (1000000 train-
ing points) based on maximum error per minute

this may appear counter intuitive as the point of producing the smoothed

dataset was to reduce the influence of spikes from outlying results but in some

of the metrics, such as this, we can see that smoothing the data just prolongs

an outlying results influence on the outcomes. An anomalous, single, large

outlying result is only used once in the non-smoothed dataset where in the

smoothed dataset it is included for five predictions. The effect of smooth-

ing the data can help for some of the metrics, such as explained variance or

median absolute error (see section 4.2.1 & 4.2.4 respectively), but it must

be highlighted that every change made to the dataset can have a different

influence depending on which metric is being examined, this further shows

the need to not rely on a single accuracy metric for evaluations.

Figure 6.8 details an investigation into the differing training levels

used in the experimentation phase. In this chart one of the algorithms (Elas-

64

Figure 6.8: Absolute Regression Accuracy for Elastic Net Cumulative Error
(mean) for 7 Training Point Values

tic Net) has been selected and the error between the predicted value in ppm

for the gas concentration and the actual gas concentration for that time has

been measured. The error is the arithmetic mean of three training runs.

The figure shows that the size of the training set has a marked effect on the

cumulative error at the beginning of the experiment, as might be expected

the experiments with larger training sets perform much better at the start of

the experiment. However the figure shows that as the experiment progresses

the training size has less of an influence on the cumulative error, all the

experiments converge to a similar sort of mean error value, with the higher

number of training points experiments just doing it quicker. Note that the

experiment lasts longer for the smaller training set data as obviously there

are more data points left in the test set to run against.

65

6.3 Conclusion

The results produced from the prediction experiments show a wide vari-

ety of features, there are numerous instances of algorithms switching places

in the ranking order, this behaviour is what was required in order to test out

the features of the next phase. On the behaviour of the algorithms tested it is

interesting to see that the Random Forest algorithm in particular varies quite

substantially in the raking order from minute to minute. It must be remem-

bered that, in these tests, many of the hyper-parameters for the algorithms

have been left at their default settings for Scikit-Learn. In an industrial set-

ting it is, of course, these hyper-parameters that we would wish to change

and tune as part of the process of generating predictions. Given capacity

there would be an opportunity to test out many variations of these parame-

ters to try and achieve the best from the predictive algorithms in question.

This report must be careful in this investigation not to try and draw too

many conclusions and strategies from the predictions, these are unique to

the algorithms and the particular dataset being examined and the treatment

of it. For example in this study the correlated dataset did not appear to sig-

nificantly improve development of the models, despite there being evidence

in previous studies of lag being a feature in the dataset (Dominguez-Pumar

et al. 2016, and Ai et al., 2018). For other processes and datasets lag could

have been a key factor and the purpose of the framework is to support a pro-

cess that is flexible enough to cope will any type of dataset, metric targets

or set of prediction algorithms.

The results generated in this section will now be used as inputs for the

66

optimiser described in chapters 7 and 8.

67

Chapter 7

Optimisation Techniques and

Implementation.

7.1 Introduction.

Once the ranking of the metric measures for the prediction algorithms

has been completed the system is potentially left with a very large matrix

of results. Finding the best performing algorithm at a given instance is a

fairly trivial matter and the system can do this with a simple weighted vec-

tor sum (discussed in section 7.8). However once we require finding the best

performing sequence of algorithms over a set period of time this becomes a

much more difficult challenge and one that potentially has too many potential

combinations to check every possible configuration. It is for this reason that

the next stage of the framework is to use an optimisation algorithm to find a

near optimal sequence. Optimisation strategies are used when the problem

involved is too large to check all or most of the possible solutions. The goal

68

of an optimisation algorithm is to intelligently search through the potential

solutions (feature space) in a manner that finds near optimal solutions.

7.2 Bayesian Optimisers

Many of the CASH implementations discussed earlier in section 2.5

(Thornton et al. 2013, Feurer et al. 2015, Golovin et al. 2017) use Bayesian

optimisers to find the value for the hyper-parameters of algorithms. Bayesian

optimisers (Frazier 2018) evaluate the function of hyper-parameters without

calculating derivatives of the function, which separates them from methods

such a gradient descent learners. Bayesian optimisers use a surrogate model

of the function being optimised by sampling values in the original function.

Points on the surrogate model are then evaluated and points that perform

well are sampled around to find better points. The surrogate model is then

updated to reflect the new samples. The choice of points to evaluate are

determined using an acquisition function, there are a number of options for

the choice of acquisition function including knowledge gradient and entropy

search but the most common is expected improvement (see Frazier, 2018 for

details).

Although currently commonly used Bayesian optimisers do have some

drawbacks, it is generally accepted that they scale badly with the number of

dimensions in the function to be optimised, with 20 being the most quoted

maximum, they also make assumptions that the membership of parameters

69

to the potential solutions is easy to evaluate and that noise is not present in

the evaluations. When these assumptions are not met the problem is termed

an exotic Bayesian optimisation problem and solving these is an ongoing are

of research.

In this work the framework does not use Bayesian optimisation as a so-

lution to the optimisation issue, instead we have opted to examine a pair

of bio-inspired optimisers as a general optimisation solver. Such optimisers

make no assumptions regarding the solution space and place no limits on

dimensions of the function being optimised (other than the the obvious as-

sumption that the greater number of dimensions the longer the optimiser may

potentially take to find a solution). Generally most bio-inspired (algorithms

that look at natural phenomena for inspiration) optimisation algorithms op-

erate through the same basic set of functions:

� Generate an initial set of solutions (sometimes referred to as an initial

population).

� Evaluate the solutions using an evaluation or fitness function.

� Rank the solutions based on the results of the evaluation function.

� Keep some portion of the better performing solutions.

� Use the remaining solutions to generate a new set of solutions.

� Repeat until some stopping conditions are met.

70

Depending on the type of optimiser we will often see particular terms that

perform the same function given different names E.G. evaluation functions

and fitness functions achieve the same purpose of rating potential solutions,

initial starting solutions can be termed as populations, locations, positions

etc. depending on the algorithm.

The variation in optimisation algorithms is down to how these particular

steps are accomplished. There are a large number of different approaches

to optimisation but for this work the author has chosen to examine two in

particular; Artificial Bee Colony algorithm (ABC) and the Firefly algorithm

(FA).

7.3 Artificial Bee Colony

The Artificial Bee Colony (ABC) Algorithm is described in Pham et al.,

2006 and Yuce at al., 2013 and is inspired by the way in which it is believed

honey bees find their food sources. In nature honey bees send workers to

search for potential food sources (in the algorithm this is assumed to be a

random flight path). Once a bee has found a food source they will return

back to the hive and perform a ”waggle” dance. The ”waggle” dance is

a series of figure of eight movements that, it is assumed, communicates to

other bees the direction, distance and quality of the food source discovered.

After this information has been passed on the hive collectively decides how

many bees to send to this newly discovered food source, the bees will con-

stantly update the hive on their return of the current state of the source so

71

that the hive can decide when to abandon the source as exhausted or move

to a relative better source (closer to the hive, better quality food etc.). In

terms of how this is implemented as an optimisation algorithm the honey bee

food search is mapped onto the algorithm search of the solution feature space.

The steps involved in the basic ABC algorithm are as follows:

� Step 1 - Randomly allocate bees at locations in the solution feature

space.

� Step 2 - Until stopping criteria are met perform the following.

� Step 3 - Evaluate the randomly selected locations using the evaluation

function.

� Step 4 - Rank the locations.

� Step 5 - Select locations that have the highest rank from the evaluation

function.

� Step 6 - For each location allocate a proportion of the remaining bees

not allocated to high ranked sites randomly to locations within a patch

region around the high ranked sites.

� Step 7 - For each location and the surrounding patch region evaluate

all the bees and keep the highest evaluated bee at each location.

� Step 8 - Recentre the location and patch region on the highest ranking

bee.

72

� Step 9 - Allocate any remaining bees not assigned to locations and

patch regions to a random location within the feature space.

� Step 10 - If stopping conditions have not been met return to step 5.

There are a number of parameters required for the ABC algorithm;

the total number of bees being used (n), the number of locations (sites) that

will be selected as viable solutions per iteration (m), number of locations

within the patch size of each site (e) and initial size of each patch (s). At

step 1 a decision is taken as to the size of m, and a bee is allocated to each of

these sites, this leaves the algorithm with (n-m) bees for steps 6 and 9. The

locations in the solution feature space are initially randomly selected, these

locations are then presented to an external evaluation function, in this step

the evaluation function takes the vector representing the location (which is

a combination of the input variables of the function being optimised) and

fits them to a model/algorithm to produce a single value. Taking the value

from the evaluation function the ABC then ranks the locations. The ranking

can either be in the form of a minimisation or maximisation effort depending

on what the evaluation function represents. The ABC then enters the iter-

ative portion of the technique, it will check against certain stopping criteria

whether to continue with the algorithm. The stopping criteria are typically;

a maximum number of iterations (maximum generations), the return value

from the evaluation function reaching a maximum or minimum value, new

iterations of the algorithm not producing better candidates than the previous

iterations or some combination of these.

73

Whilst the selected stopping criteria has not been met the algorithm will

next select the m locations that are the highest ranked by the evaluation func-

tion, at each of these locations e locations are selected at random within the

patch size, s, of the central location. This is done for each of the high ranking

m sites. After this operation the algorithm will have a total of n-(m*e) bees

remaining that have not been allocated to locations within the feature space,

these will be used at step 9. To this end when selecting the total number of

bees being used in the algorithm, the number of high ranking sites retained

and the number of extra locations within each patch the the algorithm must

ensure that n > (m*e). For each location and the locations in the surround-

ing patch s the framework uses the evaluation function to find the highest

ranking site. After finding the highest ranking site the algorithm re-centres

the patch on that site (or if the original location is still the highest ranking

site the patch remains in its current location). This operation represents a

local search close to the best currently known sites, it is the fine tuning part

of the search as the algorithm attempts to locate the best solution nearby.

The bees that remain unallocated are now sent to random locations within

the search space in a manner similar to the very first starting point. This op-

eration represents an attempt by the algorithm to avoid local minima. Local

minima occur when the algorithm finds a location that is locally the best so-

lution but where a better solution exists globally in the feature space. Many

machine learning algorithms struggle with local minima and include strate-

gies to prevent the algorithm from concentrating on the local best solutions

too quickly, often, as is the case with ABC, this involves a random search

elsewhere in the feature space for optimisation algorithms. Once this step

74

has been completed the algorithm will have bees at the best performing m

sites along with a number of randomly selected new sites and it will begin the

iteration again provided none of the selected stopping criteria have been met.

7.4 Firefly Algorithm

The Firefly Algorithm (FA) is described in Yang, 2010 and Fister et al.,

2013, this is another optimisation algorithm inspired by nature but this time

by the mating habits of fireflies. In nature fireflies attract mates by producing

a light in their abdomen through chemical bioluminescence. In terms of the

algorithm the light given off by each firefly attracts others to them hence

the individual fireflies move through the feature space to eventually converge

at a point which it is hoped is a good solution. The steps involved are as

follows:

� Step 1 - Randomly allocate fireflies at locations in the solution feature

space.

� Step 2 - Until stopping criteria are met perform the following.

� Step 3 - Evaluate the randomly selected locations using the evaluation

function.

� Step 4 - Rank the locations.

� Step 5 - Adjust each firefly’s attractiveness based of the evaluation

rank.

75

� Step 6 - For each firefly move it closer to every other firefly based on

the attraction between them.

� Step 7 - if stopping conditions are not met return to step 3.

Similarly to the ABC algorithm there are a number of variations on the

basic firefly algorithm, the standard model as described in Fister et al., 2013

follows the following procedures. In similar fashion to the ABC the FA

randomly allocates a number of fireflies around the feature space but where

the ABC reserves some bees for redistribution later in the algorithm the

FA distributes all the fireflies in the first instance. The FA then enters the

interaction loop, again it will stay in this loop until some stopping criteria is

met, typically for the FA this will be a maximum number of generations but

the algorithm could use other checks in a similar way to the ABC algorithm.

The algorithm uses an external evaluation function in the same manner as the

ABC algorithm to rank all the current positions of the fireflies. The algorithm

then uses the ranking of the position to calculate each firefly’s light intensity

value (I), different implementations of the algorithm use variations of this

relationship but the most simple is given in equation 7.1 where it is seen that

the light intensity is set to the outcome of the evaluation function (f).

I(x) = f(x) (7.1)

Other variations of this equation use a form that takes into account the

fixed light absorption coefficient (γ), this will also be used later when deter-

mining firefly movement. For each pairing of fireflies move the firefly with the

lowest light intensity value towards the firefly with a higher light intensity

76

(this represents fireflies moving towards attractive mates in nature). The

operation for moving one firefly towards another is given by the equation 7.2

below:

xi = xi + β0e
−γr2ij + αεi (7.2)

The movement of the firefly composes of 3 sections. The β0 term is the

attractiveness parameter, this is set at the beginning of the process and

according to Yang, 2010 is often set, initially, to a value of 1. The next

section e−γr
2
ij represents the light intensity (and therefore the attractiveness)

lessening over distance due to light intensity dispersing in the air. This is

represented by the parameter γ, which is the absorption coefficient (again

Yang, 2010 states this often initially begins with a value of 1) that represents

how much light intensity is lost and term r2ij which is the euclidean distance

between the two fireflies (i and j) given by the equation in 7.3.

rij = ||si − sj|| =

√√√√k=n∑
k=1

(sij − sjk)2 (7.3)

Here n denotes the dimensionality of the feature space, si and sj are the

positions of the two fireflies in question.

The final part of the firefly movement term is αεi, this term is a random

walk term that controls the step size with α being a random parameter be-

tween [0,1] and εi being another random number drawn from a probability

distribution (usually Gaussian). The random walk part of the movement is

the local minima avoidance function for the FA, by moving fireflies in a route

77

that isn’t directly at the most attractive firefly but allowing them to deviate

slightly this tries to sample parts of the feature space that otherwise would

not be visited. The top ranked firefly in each iteration will not find a firefly

whose attractiveness is above their own, in this circumstance the random

walk part of the movement function is the only part that takes place, again

this is a strategy to avoid local minima by not having fireflies simply converge

on the best location found in the first iteration of random location selections.

In terms of stopping criteria the common ones to use for the FA are either

a maximum number of iterations or the algorithm will converge as fireflies

move towards each other. If convergence is selected then a small threshold

can be used to prevent the final stages of the algorithm from not terminating

due to small oscillations.

7.5 Evaluation/Fitness Function

In both of the optimisation methodologies there is a requirement to rank

the solutions, in order to do this each method needs to pass the solutions

to an external evaluation / fitness function that can produce a single value

for the solution and allow the method to rank them in terms of the best

performing solution. This is often the bottleneck in terms of efficiency with

optimisation methods, we also have to take into account here that both the

ABC and FA are swarm methods that use multiple agents (locations) and we

have a trade-off to make between the amount of time taken by the evalua-

78

tion function to rank each agent and the accuracy and speed to convergence

gained by using more agents.

In the case study we are using for this work our evaluation function is a

combination of the results passed out of the prediction methods that show

the ranking of each prediction algorithm / hyper-parameter setup and a

weighted vector representing the relative importance of each of our metric

measures. The particulars of this will be discussed in section 7.8 when this

report examines the implementation of these methods.

7.6 Comparison of ABC, FA and to other op-

timisation methods

In terms of the framework itself there is no need for more than one opti-

misation method, this work trialled two to show that the choice of optimisa-

tion algorithm can be changed and customised to better suit the particular

industrial process that is being modelled. Comparing the two methods used

in this work there are differences between the ABC and FA methods that may

lead to one choice over the other. In terms of complexity the ABC method

is a more complex method with a larger number of adjustable parameters,

7 (number of bees, number of sites, number of bees allocated to best sites,

number of best sites, patch size, and number of bees allocated to random

location not best sites.) compared to the 4 (number of fireflies, attractive-

ness parameter, absorption coefficient and randomisation parameter) for FA.

79

This leads to the ABC method being more flexible in terms of adjustments

to better fit the application but does lead to an increased difficulty in terms

of fully optimising the optimiser.

As noted earlier either of these two methods could be replaced in the

framework by a different optimiser and there are a great many different

methods described in the literature, two of the most common are Genetic

Algorithms (GAs) and the Particle Swarm Optimiser (PSO). Pham et al.,

2006 concluded that under a number of circumstances the ABC method out-

performed that of GAs, again the drawback found was that the ABC method

has a large number of hyper-parameters that need to be tuned compared with

the much simpler GA method. In the work carried out here GAs were de-

cided to be an unsuitable method for testing as the default method requires

the inputs being considered be binary. Given that what is being optimised

in this instance is the ranking of particular regression algorithms and their

variations this would require an extra step of processing that isn’t necessary

for both the ABC and FA methods. In terms of the PSO method this is very

closely related to the FA method with both methods using almost the exact

same ideas and implementation. It is the case that if the FA algorithm is

used with an absorption co-efficient (γ) of 0 then both methods behave in

exactly the same way.

80

7.7 Implementation of Optimisation Algorithms

In the work presented here two Python libraries have been used for the

implementations of ABC and FA. For ABC, the library used was BeeColPy

(Oliveria, 2020) and the for FA, 5Gcraft FireflyAlgorithm (Twain OpenAI

Club, 2021). Both of these libraries are available under the MIT license.

The BeeColPy library is an implementation of the simple ABC algorithm

and takes as hyper-parameters the evaluation function, the boundaries and

dimensions of the feature space, the colony size, the number of scouts for

each patch, the maximum number of iterations and whether the evaluation

function is treated as a maximise or minimise function. The number of scouts

is taken as a value between 0 and 1 and represents the percentage of bees

from the main colony that will be allocated to the best performing patches.

The initial number of patches is always set to 50% of the total colony size.

For the initial trials this work began with the default settings of a colony size

of 40 bees, scouts set to 0.5, and a maximum of 50 iterations. In terms of

the boundary sizes of the feature space the experiment carried out for this

work uses the results of the previous experiments with the five prediction al-

gorithms so the boundary sizes were from 0 to 4 (one for each of the ranking

values).

The 5Gcraft FireflyAlgorithm is an implementation of the firefly algo-

rithm and takes parameters for the number of fireflies, maximum number

of iterations, α (randomisation parameter), β (attractiveness parameter), γ

81

(absorption co-efficient) and the boundaries of the feature space. Initially the

parameters used for this work were left with the default settings for α (0.5),

β (0.2) and γ (1.0) and the settings for the number of fireflies and maximum

iterations were set to match the settings used for the ABC algorithm (40

and 50 respectively). Again the boundary sizes were the same as the ABC

algorithm due to both methods being supplied with the same inputs.

7.8 Implementation of Evaluation Function

Both the ABC and FA methods, in keeping with most optimisation

methods, require an external evaluation function, this function takes each

solution presented to it by the optimisation method and produces a single

numerical rank value which the optimisation algorithm will then use to rank

the solutions depending on whether the goal is is maximise or minimise the

output. In the work presented here the evaluation function used is a com-

bination of the results obtained from the previous prediction rankings and a

weighted vector of the relative importance of the metric measures discussed

earlier. The ranking is calculated using equation 7.4 below.

Ranki =
n∑
j=1

(pij ∗ wj) (7.4)

Where:

i is the time period being ranked.

j is the jth metric ranking.

82

n is the total number of individual prediction rankings being considered per

time period.

p is the matrix of prediction result rankings.

w is the weighted relative importance vector.

In the work here, in the previous chapter the system considered 1 minute

intervals of predictions, this means that in our matrix of prediction result

rankings each row represents 1 minute of predictions. If the system now

wishes to optimise for 5 minute intervals it would need to consider the ranking

for five rows of combinations. The weighted relative importance vector is a

series of values that map directly to the row rankings in the prediction matrix.

By adjusting the values in this vector it is possible to increase the emphasis

placed on each of the metrics. A value of 0 in the importance matrix would

mean that particular metric would be ignored by the evaluation function

whilst any negative value would mean that having a poor metric score would

be beneficial to the ranking. It is not anticipated that a negative ranking

would ever be used in practice. In this work all values were used between

0 and 1, although as this is purely a ranking system the values could be

adjusted to any range of positive values.

.

The setting of the weights in the the weighted vector can either be done

directly, by a user that understand what each of the metrics represents, or in

the case of a non-specialist user it would be a simple matter to ask a series

of questions to guide the weighting of the metrics; is the process particularly

sensitive to large variations in accuracy? In which case the framework could

83

adjust the weights to favour metrics that penalise high variance (such as max-

imum error in this work), or if the process can cope with a few, occasional,

large inaccuracies provided the majority are within a prediction range then

the framework could prioritise metrics that favour more accurate predictions

(such as mean squared error in this work).

7.9 Summary

In this chapter the report has detailed the two bio-inspired optimisation

methods used as part of this work, in the final framework there would only be

the need for a single optimisation method and the selection of this would need

to be determined by the suitability of the method to the application being

modelled. The next chapter will detail the results of the trials performed

using the two chosen methods.

84

Chapter 8

Optimisation Results and

Conclusion

8.1 Results.

The initial set of tests were run against the default settings for the

BeeColPy ABC algorithm and 5Gcraft FireflyAlgorithm, the number of agents

(bees for ABC and fireflies for FA) and maximum iterations were varied in

order to gauge what influence changing these parameters had. Iteration val-

ues of 50 (default setting), 100, 500, 500 were used in combination with 40

(default setting), 100 and 500 agents. In terms of statistical significance a

one tailed ANOVA analysis was run against the various experiments shown

here to determine how different each of the sets of runs actually were, the

results are given in table 8.1.

The results here show varying levels of variance across the runs but with

85

Figure Method No. of Iterations No. of Agents F-Value P-Value
8.1 ABC 50 40 0.452181 0.715895
8.2 FA 50 40 2.922748 0.033796
8.3 ABC 100 40 0.663841 0.574680
8.4 FA 100 40 2.047476 0.106689
8.5 ABC 500 40 1.634690 0.180772
8.6 FA 500 40 5.291889 0.001377
8.7 ABC 5000 40 0.601309 0.614474
8.8 FA 5000 40 7.513479 6.663673e-5
8.9 ABC 100 100 0.288718 0.833552
8.10 FA 100 100 0.123331 0.946310
8.11 ABC 500 100 0.374625 0.771356
8.12 FA 500 100 0.486184 0.692063
8.13 ABC 5000 100 0.085960 0.967703
8.14 FA 5000 100 5.844240 0.000649
8.15 ABC 500 500 0.560239 0.641548
8.16 FA 500 500 0.642246 0.588224
8.17 FA 5000 500 0.239569 0.868736

Table 8.1: One-tailed ANOVA results for agent\iteration experiments
F-Value is the ratio of the Mean Squares Treatment vs. Mean Squares
Error, the larger this statistic the greater the variation between sample
means relative to the variation within the samples.

P-Value is measure of statistical significance of the group variation. Typically
values of less than 0.05 are considered of interest and may be statistically
significantly different.

very few exceptions show no statistical significance, the three that are worth

singling out are the tests at figure 8.6 (FA, 500 iterations, 40 Fireflies), figure

8.8 (FA, 5000 iterations and 40 fireflies) and figure 8.14 (FA, 5000 iterations

and 100 fireflies), these three have very low P-values that suggest these are

significantly different sets of results. These tests have in common that they

are all from the FA method.

86

With very little variation observed in changing the iterations and

number of agents the next set of tests were run against the default set-

tings for the BeeColPy ABC algorithm, the number of agents (bees for

ABC and fireflies for FA) and maximum iterations were replicated for the

5Gcraft FireflyAlgorithm (40 agents and 50 iterations), whilst all other set-

tings were again left at the default values for the library implementations

(see previous chapter). Each trial was run four times to see the spread of

results for each group of settings. With any optimisation algorithm there is

no guarantee that the algorithm will find the best solution, this can only be

made certain by testing every possible solution in the feature space, which

is what the optimisation strategy is trying to avoid. In some circumstances

there can be more than one solution that produces the same ranking score

and in order to see the variability of the optimisation methods each experi-

ment was run multiple times. The result set being used from the prediction

algorithms is the uncorrelated, smoothed set using 500000 training examples

(see chapter 6 previously for details). For all of the figures that follow the

prediction algorithms listed on the Y axis are as follows:

� 0 - Elastic Net.

� 1 - Lasso

� 2 - Ridge (Ridge)

� 3 - Ridge (SGD)

� 4 - Random Forest

87

Figures 8.1 and 8.2 show the results of the ABC and FA optimisation

algorithms respectively. In each case the experiment was repeated four times

and the first 100 values (minutes) were used for the optimisation.

Figure 8.1: First 100 minutes of prediction results optimised using ABC
algorithm

Figure 8.2: First 100 minutes of prediction results optimised using FA algo-
rithm

For both of the methods it can be seen from figures 8.1 and 8.2 a large

amount of variation in the results, neither method has managed to produce

a consistent series of prediction results. Figures 8.3 and 8.4 show the same

results after an increase for both methods of the maximum number of itera-

tions from 50 to 100.

Figure 8.3 shows that for the ABC algorithm increasing the number of

88

Figure 8.3: First 100 minutes of prediction results optimised using ABC
algorithm

Figure 8.4: First 100 minutes of prediction results optimised using FA algo-
rithm

iterations has very little effect on the results produced, there is still a great

deal of variation in the results produced. Figure 8.4 shows an interesting

feature of the FA method, in the four runs produced here FA never selected

either the Ridge (SGD) or Random Forest methods. Whilst it is possible

that neither of these prediction methods were the best choice for that par-

ticular minute it is unlikely, given results seen in other runs, that this was

the case throughout the entire first 100 minutes. What is more likely to have

happened is that no solution containing those two algorithms ranked well in

the first round of evaluations. The progression for the FA algorithm then

moves solutions towards each other, but if no attractive solution exists at

89

the edges of the feature space then there is a chance that those particular

areas will not be explored. The FA tries to mitigate this situation by having

the fireflies random walk component, the αε term discussed in the previous

chapter, however with this being a purely random factor that adjusts the

fireflies movement it is still possible for these edge areas to not be explored.

The ABC method is somewhat less prone to this problem as the random lo-

cal minima avoidance strategy for this method is not linked to the locations

of current solutions. The ABC minima avoidance strategy is purely random

in nature not having solutions moving away from certain areas does not de-

crease the probability of those areas being selected as random solutions in

future iterations.

In the next set of experiments the iterations are again increased, this time

to 500.

Figure 8.5: First 100 minutes of prediction results optimised using ABC
algorithm

Figure 8.5 shows that there is a decrease in the variation of the solutions,

increasing the number of iterations allows the ABC optimiser to move closer

90

Figure 8.6: First 100 minutes of prediction results optimised using FA algo-
rithm

to convergence. Figure 8.6 Again shows a situation were the FA method has

not selected either Ridge (SGD) or Random Forest algorithms. At this level

for iterations the FA method is not showing reduced variation in the same

manner as ABC.

Figures 8.7 and 8.8 are the final experiments with raising iterations at

5000 maximum iterations each.

Figure 8.7: First 100 minutes of prediction results optimised using ABC
algorithm

After 5000 maximum iterations, for this particular dataset the variations

in solutions in the ABC method have been reduced, by increasing the max-

91

Figure 8.8: First 100 minutes of prediction results optimised using FA algo-
rithm

imum iterations the effect on the ABC optimisation method is a reduction

in the number of possible solutions delivered by the method. The effect of

increasing iterations on the FA method is less noticeable and whilst there

is a definite difference between the first and last of these experiments (50

and 50000 iterations) the effect is not as noticeable as we might expect and

certainly less so than the ABC method. Some of this may be explained by

the FA method not selecting certain results in earlier experiments which of

course naturally limits variation.

After adjusting iterations of each methods the next variable to try was to

adjust the number of agents in combination with the iterations. To this end

the experiment increased the number of agents to 100 and again varied the

number of maximum iterations, figures 8.9 and 8.10 show the ABC and FA

methods respectively using 100 agents (bees and fireflies) at 100 maximum

iterations.

Comparing figure 8.3 and 8.9 it can be seen that this increase in the num-

ber of agents for the ABC method appears to have very little effect using

92

Figure 8.9: First 100 minutes of prediction results optimised using ABC
algorithm

Figure 8.10: First 100 minutes of prediction results optimised using FA al-
gorithm

this dataset. Comparing figures 8.2 and 8.10 again there is very little change

in the variability of the optimised solutions. Next the experiment tries in-

creasing the number of iterations to 500 along with 100 agents

Again the effects seen for the ABC method are not obvious, in terms of

the FA algorithm there is again a situation where the method did not choose

two of the prediction algorithms. Next the experiment tried 100 agents at

5000 iterations.

93

Figure 8.11: First 100 minutes of prediction results optimised using ABC
algorithm

Figure 8.12: First 100 minutes of prediction results optimised using FA al-
gorithm

Figure 8.13: First 100 minutes of prediction results optimised using ABC
algorithm

Again with a large number of iterations it can be seen that the ABC

algorithm has reduced the amount of variation whilst the FA method is still

quite varied in its range of results. Once again this is highlighted more than

94

Figure 8.14: First 100 minutes of prediction results optimised using FA al-
gorithm

the previous experiment as the algorithm has used the full range of predic-

tion algorithms in its selections. Next the experiment looks to see if a large

increase in the agent numbers has an effect on its own by running 500 agents

against 500 iterations.

Figure 8.15: First 100 minutes of prediction results optimised using ABC
algorithm

Comparing the results of the ABC method here with 500 bees and 500

iterations with the previous experiment in figure 8.5 where there had been 40

bees and 500 iterations it can be seen only a slight decrease in variability of

the solutions, especially when compared to the previous experiment (figure

8.15) which had only 100 bees but 5000 iterations and far less variation in

95

Figure 8.16: First 100 minutes of prediction results optimised using FA al-
gorithm

results. It would appear that increasing the number of bees does not imme-

diately lead to the method reaching a stable position. In terms of the FA

method when comparing figures 8.16 and 8.14 it can be seen that there is no

increase in stabilisation that can be attributed to agent increase.

With the ABC method responding to an increase of iterations over agents

a final experiment to look at the effect of these two parameters was attempted

for the FA method to see if a large increase in both would produce any ef-

fect. Figure 8.17 shows the FA method with 500 agents (fireflies) and 5000

iterations.

This final experiment for the FA method again does not select either the

Ridge (SGD) or Random Forest methods, however if this is compared to a

similar experiment (figure 14, 500 fireflies and 500 iterations) there is not

a noticeable level of change in the variation, from this it can be concluded

that, for this dataset, the FA method is much less quick to converge on a set

of solutions than the ABC method.

96

Figure 8.17: First 100 minutes of prediction results optimised using FA al-
gorithm

The final experiment undertaken was a demonstration of the way in which

a set of solutions could be affected by the choice of accuracy metric and dis-

cussed in chapter 5, the goal of the weighted vector in the evaluation function

is to be able to bias the results towards particular types of accuracy measure.

By adding weights to the prediction results the framework can optimise the

solutions towards the behaviour it wishes the process being modelled to ex-

hibit. In the example in figure 8.18 the weight vector has been altered to

favour metrics that result in a lower variance of the prediction results. To

that end the weights for the Expected Variance, R2 Score and Maximum

Error have been left as 1 and the values for all other metric tests have been

reduced to 0.1 for the 3rd and 4th runs. The first two runs have been left

with all the weights equal. 100 prediction values have again been used but

this time they were selected from the 2nd set of values from minutes 100 to

200. For this demonstration the ABC method was selected with 100 bees at

5000 iterations.

97

Figure 8.18: Minutes 100 to 200 of prediction results optimised using ABC
algorithm, with weight vector adjustments

Figure 8.18 shows that by altering the weight vector two different sets of

solutions are produced. Although there is still variation between all of the

results it is clear that runs 1 and 2 have more common selections with each

other than 3 and 4 and similarly the other way around.

8.2 Conclusion

The work presented here uses an optimisation method to produce an ac-

ceptable sequence of prediction algorithms using a combination of the results

and a weighted vector to prioritise certain aspects of the accuracy measure-

ment metrics. There are many different types of optimisation method and

this is still very much an active research area producing new methods and

variations on older methods all the time. The framework described in this

work would use one such optimisation method to take future predictions and

the weight vector to guide the process through which regression algorithm

would be the best performing at any given time and when to switch over

from one to another. The work here looked at two such methods the Arti-

98

ficial Bee Colony (ABC) and the Firefly Algorithm (FA) and various tests

where undertaken to look at the effects of the number of agents used and

iterations of the algorithms. The experiments that were carried out demon-

strate that some of the effects of changing parameters are common to all

optimisation algorithms. Each optimisation method on its own also has a

number of hyper-parameters that affect the performance of that particular

type of optimiser (these were discussed in the previous chapter). The work

presented here did not spend time looking at trying to tweak these hyper-

parameters as, has already been stated, the framework itself is not tied to

a particular method and the choice of optimiser would be something that

would be explored based on matters such as available hardware / software

requirements and the features of the process being modelled.

The examples shown here are simple demonstrations of what would be a

very small set of results in an actual industrial process, given the small num-

ber of prediction variations (5) it could be possible to brute force an actual

’best’ answer for the most accurate prediction algorithm at each minute in

time. However in a situation where there are potentially tens or hundreds

of possible regression models and associated hyper-parameters the need for

optimisation as an automated process becomes clear. There is an obvious

problem of how, having selected a preferred optimiser, we would optimise the

hyper-parameters of the optimiser (or even choose between several optimis-

ers), this becomes a recursive problem (an optimiser for the optimiser) and

at some point the framework will have to settle for either a ”good enough”

default set of parameters or accept that some amount of experimentation

99

would be necessary. By the nature of optimisers they will very often pro-

duce a different set of results every time they are run, this is due to them

containing random elements to help search the feature space for solutions.

The results presented here show that there can be quite a variety of different

solutions produced for the same set of parameters and inputs.

The set of experiments run for the purposes of demonstration here show

some interesting behaviour in the two selected optimisers. The ABC seems

to respond quite quickly to an increase in iterations and this can be a way

to try and move towards convergence if the process needs to produce the

optimal or very near optimal solution. Of course increasing the number of

iterations also has a large effect on runtime and increasing the iterations for

the ABC algorithm in this study greatly increased the amount of time it took

to run the process. The FA method here showed a much slower move towards

convergence with increased iterations than the ABC method, of course given

a large enough iteration size all methods would reach convergence as, at the

worst, each method would check every possible solution. Part of the reason

may be down to the default values used in the libraries used in this presented

work and an adjustment of the parameters can lead to faster convergence.

There has been an assumption made that the library authors used typical

generic values for their implementations but it may simply be the case that

those particular sets of hyper-parameters are unsuitable for this particular set

of results. Again there is little to be gained in spending time exploring these

parameters to produce an optimal set of hyper-parameters for this particular

set of results from this particular data set. The goal of this particular section

100

of the framework is to demonstrate where an optimiser fits into the framework

in general, why one would be used and what some of the issues are. One

of the observations that can be noticed from these results is that both the

optimisers do swap over the regression algorithms quite often and do not hold

on to using the same algorithm for extended periods of time, this could have

some consequences in an industrial environment and this will be discussed in

the next chapter.

101

Chapter 9

Supervisory System

9.1 Introduction

The goal of the optimisation algorithm is to produce a decision stating

which of the potential prediction algorithms (and hyper-parameters) are con-

sidered to be performing best over the selected time period. However just

because an algorithm is currently evaluated as the best performing option

this does not necessarily follow that it makes sense in an industrial environ-

ment to change to that particular configuration and algorithm. There are a

number of other factors that need to be taken into consideration. For this

the framework uses a top-level supervisory system that would manage the

exchange of algorithm from the test to live control system.

Factors that have not been considered to this point when selecting the

best algorithm include:

� Concept Drift.

102

� Switching Time.

� Algorithm Stability

� Cost Benefit Analysis of Switching.

9.2 Concept Drift

Concept drift is described in Gama, 2012 as ”...the concept about which

data is obtained may shift from time to time, each time after some minimum

permanence.” this means that for a continuous stream the underlying dis-

tribution of data changes over time. There could be many reasons for this

in an industrial setting E.G. a machine tool that is slowly drifting out of

alignment will start to produce a different profile of parts. In many instances

these are conditions that an industrial system would be trained to identify

and this would be the classification targets. In many circumstances drift can

occur and the only symptom would be an increasingly inaccurate prediction

system E.G. if the system was trained to predict the position accuracy of a

hole being drilled a wearing drill bit could cause the position to vary leading

to increasingly inaccurate estimations of positions. The system needs to look

for this concept drift by monitoring the inputs to look for changes in the

underlying distribution. One of the most used systems for this is that of the

Page-Hinkley test described in Gama, 2012. The Page-Hinkley test looks for

changes in the data which it assumes to be Gaussian in nature (this may

or may not be true for any given industrial process but will be for a good

number of them) and monitors if the mean of a distribution exceeds some

103

threshold. The metric mt is calculated as shown in equation 9.1:

mT =
T∑
t=1

(xt − x̂T − δ) (9.1)

Here t is the index of the observed value x, δ is a value used to control the

amount of change that will be allowed and x̂T is calculated using the equation

given in 9.2 :

x̂T =
1

T

T∑
t=1

xt (9.2)

In order to calculate the Page-Hinkley metric to determine whether drift has

occurred, the metric MT is calculated as shown in equation 9.3:

MT = min(mt, t = 1..T) (9.3)

and finally detect for drfit using the equation in 9.4:

PHT = mT −MT (9.4)

This final equation in 9.4 is compared to a threshold value λ, if PHT > λ

then it is assumed concept drift has occurred in the observations.

In the equations given T is the maximum period under consideration,

the length of T corresponds to the maximum number of observations until a

change in distribution is detected, at which point a new sequence is started

104

(t and T are reset to 0). The values used for the two values of δ and λ in

(Gama, 2012) are 0.1 and 100 respectively. To demonstrate this the values

from sensor 1 in the dataset were tracked, figure 9.1 shows the CO (ppm)

value detected by sensor 1 over the lifetime of the experiment:

Figure 9.1: Sensor 1 values over the lifetime of the experiment

Figure 9.1 shows a great deal of variation in signal, which is to be ex-

pected given the nature of the data and the random levels of CO throughout

the experiment. It is expected that the dataset will show an amount of con-

cept drift, particularly at the beginning of the experiment when the sensors

are first calibrating, but for this exercise was completed to see if the random

gas concentrations would mean that the data significantly drifted away from

a Gaussian distribution. The next figure (Figure 9.2) shows the mt values

105

throughout the experiment as calculated by equation 9.1.

Figure 9.2: Values of mt throughout the experiment

Then we apply the Page-Hinkley test from Equations 9.3 and 9.4 was

applied to detect when the values from sensor 1 drift from a one distribution

to another.

Figure 9.3 shows a large number of drift detections, figure 9.4 shows a

smaller section during the 10000 and 20000 seconds range, as a typical mid-

experiment time frame.

It is easier to see what is happening in Figure 9.4, there are sections of the

experiment where it takes the sensor data an amount of time to settle into a

new distribution, during this time it can be seen that the Page-Hinkley test

106

Figure 9.3: Page-Hinkley detection of Concept Drift

Figure 9.4: Page-Hinkley detection of Concept Drift (mid experiment)

registers that concept drift is occurring (shown as a value of 1.0 in Figures 9.3

and 9.4). As previously stated the particular dataset being used for this work

was expected to show a number of drift detections due to the random nature

of the gas additions in the original experimental design, in other applications,

such as an industrial process producing parts, we would expect to see much

less variation from the process, a breach of the Page-Hinkley threshold here

would constitute a genuine drift in the data. The reason why the system

needs to monitor for concept drift is that once drift has been detected any

107

models using previous data from the system are likely to be invalid for future

predictions, the system needs to be aware that previous results are invalid

and that all models being evaluated need to considered on data from the

point of concept drift detect into the future. At the point of concept drift

detection the models need to be reset.

9.3 Switching Time.

Once an algorithm, or new set of hyper-parameters for the currently selected

algorithm, have been identified the system needs to be able to factor in the

amount of time it will take to actually switch over from using the current

model to the newly selected one. The process of swapping between algo-

rithms will not be instantaneous in most real world instances, with the need

to load the new algorithm onto the live control system taking time. In terms

of an industrial process it is likely that we would want to have both the old

and new configurations running in parallel for a short period of time in order

to confirm a successful transfer had taken place. This transfer period may be

as short as keeping the old configuration running until the first observation

from the new configuration can be seen. The physical time period needed to

swap out the old configuration and substitute it with the new one will be ar-

chitecture dependent and would need to be established via experimentation

and piloting of an actual installation.

The reasoning for tracking a switching time for the algorithms is that it

was seen previously in the prediction results that some algorithms managed

108

to perform well but for brief periods of time. If swapping between configu-

rations was instantaneous it might be beneficial to change over every time

the system believed an algorithm would be the best performer, however in

the cases where this may only be for a brief period of time the system needs

to take into consideration the swap time so it does does not end up with

an autonomous system entering into thrashing behaviour trying to replace

algorithm configurations.

9.4 Algorithm Stability

Along with the time to switch over the system needs to consider how long

an algorithm configuration will remain the best performing. If an algorithm

configuration is switching between high and low performance constantly due

to environmental or process conditions the system may need to not use the

configuration unless it settles down into a more regular pattern regardless of

it being the best performing algorithm at a particular time. In the experi-

ment carried out here the tested configuration for Random Forest showed a

large amount of variations, in practise this configuration would likely be re-

jected as too unstable and the system would be testing other Random Forest

configuration looking for a more consistent set of results.

9.5 Cost Benefit Analysis of Switching

The supervisory system needs to establish what the benefits of switching

the algorithm or configuration are. This requires examining a previous set

109

of results. For most of the selection and optimisation process it was suf-

ficient to rank the candidate algorithm configurations and choose the best

performing. In the supervisory system it will be necessary to look back at

the raw results from the prediction algorithms. In terms of switching be-

tween algorithm configurations it is desirable to know how much the system

is gaining in terms of increased prediction accuracy. By referring back to

the raw results the system can look at the actual difference between two sets

of algorithm configurations. The system needs to make a decision between

how much accuracy is gained and how often switching occurs. If two con-

figurations are likely to be switching quite frequently then there would have

to be a significant gain in accuracy to make each switch worthwhile for the

system given the cost associated with switching. In a similar situation to the

optimisation process there would be a need to use the weighted vector from

the optimisation process to rank the importance of the metric results. The

specifics of this would be related to the physical switching time (as previously

stated this would be dependent on the hardware and software configuration

on which the framework would ultimately be deployed on) but the system

could be configured to only allow switching if a switch had exceeded a cer-

tain percentage accuracy increase since being tracked in testing stream (See

Equation 9.5)

T∑
t=1

Alg1t − Alg2t > S (9.5)

Where Alg1 and Alg2 are the algorithm configurations being considered

for switching, and S is some predetermined threshold set by the user. This

110

process would only need to track the two top ranked algorithm configura-

tions, if the two configurations being tracked changed before the threshold

was tripped then the process would begin again with the newer algorithm se-

lections. Once the threshold is exceeded the system would be clear to make

the exchange (provided all other supervisory criteria where met) and the

process would begin again monitoring the next best challenging algorithm

configuration.

9.6 Conclusion

This section details the additional checks required by an overseeing supervi-

sory system in order to ensure that an autonomous system selecting and

switching out algorithm configurations maintains feasible operation. Al-

though the previous chapters have detailed the processes of identifying and

selecting a best performing algorithm configuration, in this chapter we also

considered practicalities of this in an actual industrial system along with

the limitations that the implementation has to work under. Concept drift

looks for changes in the dataset that render previous observations obsolete.

Switching time considers the physical limitations of the architecture that the

system is running on. Algorithm stability looks at how long an algorithm

configuration is likely to be useful for. Cost benefit of switching tries to

determine whether the act of switching algorithm configurations is likely to

bring any real benefits to the system. For the system to perform at an ac-

ceptable level the supervisory system needs to be able to confirm that all of

these additional concerns are met before changing the prediction algorithm

111

currently running the process.

112

Chapter 10

Conclusions and Future Work

10.1 Conclusion

The work presented has met the goals set at the beginning of the work with

the one exception of not implementing a final switching mechanism in the

test, this would need to be developed before the framework could be made

available to SMEs. The goal of the project was to develop an algorithm,

data set and platform neutral architecture that would be highly adaptive to

any number of industrial processes that wished to use an autonomous set of

machine learning techniques, and in this case this has been accomplished.

The framework should not be confused with the experimental system that

was created to demonstrate and test the specifics of the framework. That a

regression task to predict the CO levels from a gas data set was developed

using Python3 and a particular set of machine learning libraries was not

the goal of the work, it was never the goal of this project to optimise this

particular task but to develop a framework under which such a task could

113

be done. The framework itself can be used to guide any number of industrial

projects towards a wider usage of machine learning in industrial, and in

particular manufacturing, sector where take up of these tools has remained

slow for SMEs.

10.2 Future Work

The work presented is capable of testing multiple regression algorithms

and using optimisation techniques to find near optimal sequences of the al-

gorithms. The work has also demonstrated the ability to identify concept

drift in the target signal and the ability to consider information outside of

the optimisation results such as algorithm stability, cost benefit of switching

the configurations and time taken to switch. The work stopped short of ac-

tually implementing the autonomous switching function, this would be the

most obvious next step as this was one of the major goals of the work, de-

pending on the hardware available the recommendation would be to run the

previous selected configuration and the new configuration in parallel briefly

until it could be established (again automatically by the system) that the

newer configuration was up and running, this would eliminate the potential

for gaps in process control.

The prototype framework developed in this work was done so using the

Python3 language, this was used due to the availability of libraries for the

various regressions and optimisation algorithms used during the tests, Python

is well known as a language that is well supported in the machine learning

114

field. Once the system built using the framework moves beyond the lab into

an industrial environment it is probable that a different language would be

more suitable, the prototype system run of a small Hadoop cluster for the

regression tests and a stand alone PC for optimisation operations but it is

anticipated that for a full industrial system this would be expanded to a

much larger cloud or on-premise Hadoop installation. Such a system would

allow for far more regression tests to take place simultaneously, in the exper-

iments in this work we restricted our tests to one set of hyper-parameters per

algorithm but in a full industrial system we would want to test far more than

these. Although Python is a supported language for Big Data and Hadoop

development it is not considered one of the faster languages and in a system

tracking real-time events we would likely need to develop programs in either

Java or more likely Scala as this is better supported under the current stream-

ing environments such as Apache Spark Streaming, Apache Storm or Apache

Flink. The framework as presented also left the storage of results and data to

the discretion of the user, it would be necessary in a fully autonomous system

to develop solutions for this. The work as it stands is fully scalable to what-

ever level we could allocate resources to, the main benefit from increased scale

would be being able to check increasing numbers of algorithm configurations.

One of the strengths of the framework presented is that it is not tied to any

particular language, architecture, data store or set of algorithms. It would be

useful, long term, if this framework was to be offered to industrial partners as

a template for developing autonomous machine learning system to develop a

variety of case studies using different algorithms for the prediction / control

115

channel (E.G. Try different classification algorithms rather than regression

algorithms), different optimisation techniques and different data sets. This

would allow us to have a suite of systems built around the framework pre-

sented here that would be available for any number of industrial processes,

Figure 12.1 shows a potential architecture for an industrialised version of the

framework, showing some potential tools that could be used for storage and

development.

Figure 10.1: Potential Industrialised Version of The Framework

116

References.

Ai et al., 2018 – Mingyao Ai, Jun Yu, Huiming Zhang, Hai Ying Wang,

Optimal Subsampling Algorithms for Big Data Generalized Linear Models,

arXiv:1806.06761v1 [stat.ME] 18th June 2018.

Abellan-Nebot and Subiron, 2010 - Jose Vicente Abellan-Nebot, Fernando

Romero Subiron, A Review of Machining Monitoring Systems based on ar-

tificial intelligence process models, International Journal of Advanced Man-

ufacturing Technologies (2010) 47:237-257

Alfaro-Cortes et al., 2020 - E. Alfaro-Cortes, J. Alfaro-Navarro, M. Gamez,

N. Garcia, Using random fores to interpret out-of-control signals,Acta Poly-

technica Hungarica, 17 (6), 2020

Apache Software Foundation, 2010 - Apache Software Foundation, Apache

Hadoop, https://hadoop.apache.org, 2010, accessed Oct. 2022

Apache Software Foundation, 2014 - Apache Software Foundation, Apache

Mahout, https://mahout.apache.org, 2014, accessed Oct. 2022

Apache Software Foundation, 2018 - Apache Software Foundation, Apache

Spark, https://spark.apache.org, 2018, accessed Oct. 2022

Arellano-Espitia et al., 2020 - Francisco Arellano-Espitia, Miguel Delgado-

117

Prieto, Victor Martinez-Viol, Juan Jose Saucedo-Dorentes and Roque Afredo

Osirnio-Rios, Deep-Learning Based Methodology for Fault Diagnosis in Elec-

tromechanical Systems, Sensors Vol. 20, Issue 14, 10.3390 , July 2020.

Bao et al., 2012 - Yuan Bao, Lei Ren, Lin Zhang, Xuesong Zhang,

Yongliang Luo, Massive Sensor Data Management Framework in Cloud Man-

ufacturing Based on Hadoop. IEEE International Conference on Industrial

Informatics (INDIN), 2012.

Bishop, 2006 - Christopher M. Bishop, Pattern Recogntion and Machine

Learning, Springer 2006.

Caruana and Niculescu-Mizil – Rich Caruana and Alexandru Niculescu-

Mizil, An Empirical Comparison of Supervised Learning Algorithms, Pro-

ceedings of the 23rd International Conference on Machine Learning, Pitts-

burgh PA, 2006.

Choudhary, Harding and Tiwari, 2009 - A.K. Choudhary, J.A. Harding,

M.K. Tiwari, Data Mining in Manufacturing: A Review Based on the Kind

of Knowledge, Journal of Intelligent Manufacturing, 2009, 20:501-521.

Cloudera, 2022 - Cloudera Inc, www.cloudera.com, 2022., accessed Oct.

2022

Deng et al. ,2012 - Hong Deng, Ying-long Wang, Jun Yang, Liang-

118

qing Feng, Framework of Service-Oriented Manufacturing Based on Multi-

Relational Data Stream Mining. International Conference on Computer Sci-

ence and Service System, 2012.

Dominguez-Pumar et al., 2016 – M. Dominguez-Pumar, L. Kowalski, R.

Calavia, E Llobet, Smart control of chemical gas sensors for the reduction of

their time response., Sensors and Actuators B: Chemical 229 (2106)

Drignei, Forest and Nychka, 2008 - Dorin Drignei, Chris E. Forest, Doug

Nychka, Parameter Estimation for Computationally Intensive NonLinear Re-

gression with an Application to Climate Modeling, The Annals of Applied

Statistics, 2008 Vol. 2 No. 4

Feurer et al., 2015 – Matthias Feurer, Jost Tobias Springenberg, Aaron

Klein, Manuel Blum, Katharina Eggensperger, Frank Hutter, Efficient and

robust automated machine learning, Advances in Neural Information Pro-

cessing Systems 28 (NIPS 2015).

Fister et al., 2013 - Iztok Fister, Iztok Fister Jr., Xin-She Yang, Janez

Brest. A comprehensive review of firefly algorithms, Swarm and EVolution-

ary Computation 13 (2013) 24-46, Elesevier.

Fonollosa et al., 2015 – Jordi Fonollosa, Sadique Sheik, Ramón Huerta,

Santiago Marco, Reservoir computing compensates slow response of chemosen-

sor arrays exposed to fast varying gas concentrations in continuous monitor-

119

ing, Sensors and Actuators B: Chemical 215 (2015) 618-529, Elsevier B.V.

Forbes, 2020 - Forbes Technology Council, 14 Smart Ways To Leverage

Machine Learning For Small Business, Forbes Magazine, Sep 24 2020

ForePaas, 2021 - ForePaas (no author), A Machine Learning Practical

Guide for SMEs, https://www.forepaas.com/en/blog/ml-practical-guide-for-

smes/ , July 2021, accessed Oct. 2022.

Frazier, 2018 - Peter I. Frazier, A Tutorial on Bayesian Optimization,

arXiv.1807.02811v1 [stat.ML], 10 July 2018.

Gama, 2012 - João Gama, Raquel Sebastião and Pedro Pereira Rodrigues,

On evaluating stream learning algorithms, Machine Learning (2013) 90:317-

346

Ghosh and Sanyal, 2016 - Indranil Ghosh, M.K. Sanyal, Machine Learning

for Predictive Modeling in Management of Operations of EDM Equipment

Product, 2016 Second International Conference on Research in Computa-

tional Intelligence and Communication Networks (ICRCICN)

Golovin et al., 2017 – Daniel Golovin, Greg Kochanski, Benjamin Sol-

nik, John Karro, Subhodeep Moitra, D. Sculley, Google Vizier : A service

for black-box optimization, KDD 2017 Applied Data Science Paper, August

13-17, 2017.

120

Grömping, 2009 - Ulrike Grömping, Variable Importance Assessment in

Regression: Linear Regression versus Random Forest, The American Statis-

tician, 63:4 308-319, DOI 10.1198/tast.2009.08199.

Hastie, Tibshirani and Friedman, 2009 - Trevor Hastie, Robert Tibshi-

rani, Jerome Friedman, The Elements of Statistical Learning : Data Mining,

Inference and Prediction 2nd Edition, Springer Series in Statistics, Springer

2009.

Hiskey, 2017 – Terri Hiskey, Industry Week, Preparing for Manufac-

turing’s Future with Industry 4.0, www.industryweek.com/technology-and-

iiot/article/22017916/preparing-for-manufacturings-future-with-industry-40 ,

26/05/17, accessed 11/07/20.

Hsiao, Chiu and Lu, 2010 - Shih-Wen Hsiao, Fu-Yuan Chiu, Shu-Hong

Lu, Product-form design model based on genetic algorithms, International

Journal of Industrial Ergomomics 40(2010) 237-246

James et al., 2017 - Gareth James, Daniela Witten, Trevor Hastie, Robert

Tibshirani, An Introduction to Statistical Learning with Applications in R,

Springer Texts in Statistics, Springer 2017.

Kaneko, 2017 - Hiromasa Kaneko, A new measure of regression model

accuracy that considers applicability domains, Chemometrics and Intelligent

121

Systems 171 (2017) 1-8.

Kiran et al., 2015 - Mariam Kiran, Peter Murphy, Inder Monga, Jon

Dugan, Sartaj Singh Baveja, Lambda Architecture for Cost-effective Batch

and Speed Big Data processing. 2015 IEEE International Conference on Big

Data.

Koshy, 2019 – Kevin Koshy, Capgemini, Why is Industry 4.0 important

in manufacturing?, www.capgemini.com/gb-en/2019/06/why-is-industry-4-

0-important -in-manufacturing/ , 13/06/19, accessed 11/07/20.

Liu, 2017 - Bing Liu, Lifelong machine learning: a paradigm for continu-

ous learning, Front. Comput. Sci. 2017, 11(3): 359-361.

Loukides, 2022 - Mike Loukides, AI Adoption in the Enterprise 2022,

O’Reilly Media, March 2022, https://www.oreilly.com/radar/ai-adoption-in-

the-enterprise-2022 , accessed Oct. 2022

Loza, Cisneros and Arreola, 2017. - Jose Miguel Moran Loza, Marco

Antonio Perez Cisneros, Alicia Garcia Arreola, Artificial Neural Networks

vs Regression Techniques in the forecasting of contaminants in the Santi-

ago River, based on the sample of a pollutant, through Data Fusion, 2017

International Conference On Smart Technologies For Smart Nation (Smart-

TechCon).

122

Marz and Warren 2015, - Nathan Marz James Warren, Big Data : Prin-

ciples and Best Practices of Scalable Real-Time Data Systems, Manning

Publications 2015.

Oliveria, 2020 - Samuel Oliveira (renard162), BeeColPy,

http://github.com/renard162/BeeColPy , V1.1 uploaded 30th May 2020, ac-

cessed Oct., 2022

Pedregosa et al., 2011 – Peregosa, F., Varoquaux, G., Gramfort, A.,

Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,

R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,

Perrot, M., Duchesnay, E., Scikit-learn : Machine Learning in Python, Jour-

nal of Machine Learning Research Vol.12, 2011, pp. 2825-2830.

Pham et al., 2006 - D.T.Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S.

Rahim, M. Zaidi, The Bees Algorithm - A Novel Tool for Complex Optimisa-

tion Problems, Intelligent Production Machines and Systems: 2nd I*PROMS

Virtual International Conference 3-14 July 2006, pp 454-459.

Ruvolo and Eaton - Paul Ruvolo, Eric Eaton, Active Task Selection for

Lifelong Machine Learning, Proceedings of the Twenty-Seventh AAAI Con-

ference on Artificial Intelligence.

Saritha and Sajimon, 2017 - Saritha K, Sajimon Abraham, Prediction

with Partitioning: Big Data Analytics Using Regression Techiques, 2017

123

International Conference on Networks & Advances in Computational Tech-

nologies (NetACT).

Shallue et al., 2018 - Christopher J. Shallue, Jaehoon Lee, Joe Antohnini,

Jascha Sohl-Dickstein, Roy Frostig, George E. Dahl., Measuring the Effcets

of Data Parallelism on Neural Network Training, arXiv:1811.03600v1 [cs.LG]

8 Nov 2018.

Sharif et al., 2017 - Behzad Sharif, David Makowski, Finn Plauborg,

Jørgen E. Oleson, Comparison of regressison techniques to predict response

of oilseed rape yield to variation in climatic conditions in Denmark, Euro-

pean Journal of Agronomy 82(2017) 11-20

SME News, 2022 - SME News (no author), Is the Value od AI & Machine

Learning Out of Reach for SMEs?, www.sme-news.co.uk/is-the-value-of-ai-

machine-learning-out-of-reach-for-smes, Jan 2022, accessed Oct. 2022.

Silver, Yang and Li, 2013 - Daniel L. Silver, Qiang Yang and Lianghao Li,

Lifelong Machine Learning Systems: Beyond Learning Algorithms, Lifelong

Machine Learning: Papers from the 2013 AAAI Spring Symposium.

Thornton et al., 2013 – Chris Thornton, Frank Hutter, Holger H. Hoos,

Kevin Leyton-Brown, Auto-WEKA : Combined selection and hyperparam-

eter optimization of classification algorithms, KDD ’13 Proceedings of the

19th ACM SIGKDD International Conference on Knowledge Discovery and

124

Data Mining, August 2013 pp 847-855.

Torgo and Ribeiro, 2009 - Luis Torgo and Rita Ribeiro, Precision and Re-

call for Regression, Discovery Science DS 2009, Lecture Notes in Computer

Science Vol 5808. Springer, Berlin, Heidelberg.

Twain OpenAI Club, 2021 - Twain OpenAI Club (OpenAIorg),

5Gcraft FireflyAlgorithm, github.com/OpenAIorg/5Gcraft FireflyAlgorithm,

uploaded 17th June 2021., accessed Oct. 2022

UKTN, 2018 - Salavtore Minetti, SMEs and AI: Fortune favours the early

adopters, UK Tech News, 13th April 2018.

Wang, 2007 - Keshend Wang, Applying Data Mining to Manufacturing:

The Nature and Implications, Jounal of Intelligent Manufacturing 18:487-

495, 2007

Yang, 2010 - X.-S. Yang,“Firefly algorithm, Lévy flights and global op-

timization”, in: Research and Development in Intelligent Systems XXVI

(EdsM. Bramer, R. Ellis, M. Petridis), Springer London, pp. 209-218 (2010).

Yang, Liu and Fu, 2010 - Xin Yue Yang, Zhen Liu, Yan Fu, MapReduce

as a Programming Model for Association Rules Algorithm on Hadoop, In-

formation Sciences and Interaction Sciences (ICIS) 2010, 3rd International

Conference. Chengdu, China 23-25 June 2010. pp99-102

125

Yang, 2021 - Xin-She Yang, Particle Swarm Opimization, Nature-Inspired

Optimization Algorithms 2nd Edition, Elsevier, 2021.

Yasutomi and Enoki, 2020 - A. Yasutomi, H. Enoki, Localization of in-

spection device along belt conveyors with multiple branches using deep neural

networks, IEEE Robotics and Automation Letters, 5 (2) (2020)

Yuce et al., 2013 - Baris Yuce, Michael S. Packianather, Ernesto Mas-

trocinque, Duc Truong Pham and Alfredo Lambiase, Honey Bees Inspired

Optimization Method: The Bees Algorithm, Insects, 2013,4,pp 646-662

Zhao et al., 2019 – Xiaojin Zhao, Zhihuang Wen, Xiaofang Pan, Wen-

bin Ye and Amine Bermak, Mixture Gases Classification Based on Multi-

Label One-Dimensional Deep Convolutional Neural Network, IEEE Access

2019.2892754

126

