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Abstract: Planetary hub systems offer desired speed and torque variation with a lighter, compact 

and coaxial construction than the traditional gear trains. Frictional losses are one of the main 

concerns. Generated friction between the mating teeth flanks of vehicular planetary hubs under 

varying load-speed conditions is one of the main sources of power loss. Modification of gear 

tooth geometry as well as controlling the surface topography are the remedial actions to reduce 

friction and hence the power loss.  

The paper studies the effect of tooth crowning and tip relief upon system efficiency. It includes 

an analytical elastohydrodynamic analysis of elliptical point contact of crowned spur gear teeth, 

also including the effect of direct contact of asperities on the opposing surfaces. Tooth contact 

analysis (TCA) is performed to obtain contact footprint shape as well as contact kinematics and 

load distribution. A parametric study is carried out with the expounded model to observe the 

effect of gear crowning and tip relief with different levels of gear surface finish upon planetary 

hubs’ power loss. 

Keywords— Transmission efficiency, Gear tooth modification, Planetary wheel hub system, 

Surface finish 

1-Introduction 

Planetary gear sets are used in many applications, ranging from gas turbines to automotive power 

trains. They provide a large set of different transmission ratios. Improved efficiency relative to 

fixed axes transmission systems is one of the most important advantages of planetary gear sets 

[1].  

Transmission losses are one of the main concerns in any gearing applications. Another concern is 

noise and vibration of gearing systems, mainly due to low damping characteristics of lubricant 
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film in gear teeth pair contacts under the usual elastohydrodynamic conditions in medium to high 

loads. This was first demonstrated by Dareing and Johnson [2], experimenting with a pair of 

representative wavy surfaced discs. Numerical analysis carried out under the same conditions by 

Mehdigoli et al [3] agreed with the findings of Dareing and Johnson [2] and showed the lightly 

damped nature of Elastohydrodynamic contacts. The study in [3] showed that a tribodynamic 

model is required to simultaneously study vibration and efficiency of gearing systems. A large 

number of numerical and experimental studies have been devoted to power losses of transmission 

systems of different configurations under transient dynamic conditions. These include the work 

of Li and Kahraman [4] for the case of spur gear pairs and that of De la Cruz et al [5] for the case 

of helical gears of vehicular transmission systems. In the case of the former a model based on 

mixed-elastohydrodynamic (EHL) regime of lubrication was used. In the case of the latter a 

transient elastohydrodynamic analysis was carried out.  

Mohammadpour et al. [6] proposed an integrated multi-body dynamics and lubricated contact 

mechanics model to predict the transient behaviour of efficiency and noise, vibration and 

harshness (NVH) for hypoid gear pairs of vehicular differential system. They showed that NVH 

refinement and transmission efficiency can lead to contrary requirements. As the regime of 

lubrication remained predominantly in non-Newtonian elastohydrdynamics, the tribological 

contacts could be represented by frictional characteristics obtained through combined analytical 

and experimental studies by Evans and Johnson [7], thus reducing the computational burden of 

numerical analysis of the meshing teeth pairs. In such an approach, the lubricant film thickness is 

estimated using extrapolated lubricant film thickness formulae, such as that presented by 

Chittenden et al [8]. This approach approximates the transient contact dynamics with 

instantaneous quasi-steady solution of the lubricated contact problem. This approach is 

computationally quite efficient [9] and as De la Cruz et al [5] show conforms well with the full 

numerical solution.   The same approach is reported by Fatourehchi et al. [10] to estimate gear 

contact power loss in high performance transmission systems, using different gear teeth 

modifications and their effects on gear power loss and system durability. 

With regard to planetary gears, Talbot et al. [1] investigated the power losses under various 

operating speeds and torques, inlet oil temperature, numbers of planets and surface roughness of 

meshing teeth pairs. Their experimental results indicated that mechanical power loss decreases 
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with a reduction in the oil sump temperature and improved surface roughness. Marques et al. [11] 

carried out experimental investigation of a wind turbine planetary gear system, measuring the 

system power loss with different gear oils and operating conditions. They compared the measured 

results with a numerical model. Inalpolat and Kahraman [13] presented a dynamic model of the 

planetary gears for automotive transmission, but used a dry contact model taking into account 

elastic deformation of mating teeth with their initial separation and their rigid body approach. 

Therefore, their model was suited for dynamic study, not for friction of lubricated contacts. 

Recently, Mohammadpour et al [13] presented a tribodynamic model of planetary gears for 

hybrid powertrain systems, studying the effect of power source mode upon transmission 

efficiency as well as NVH refinement.  

Planetary hub systems of trucks and off-highway vehicles are subject to high loads at low 

operating speeds. These promote the worst tribological conditions, resulting in contact pressures 

of the order of 1.2 GPa and sub-micrometre lubricant film thickness. Planetary hub systems are 

also particularly compact, yielding highly concentrated tooth meshing contacts. Therefore, a 

methodical approach capable of predicting the parameters which affect planetary hub gears 

efficiency is the key to achieve efficient systems.  

The current study presents a parametric analysis on the effects of different extents of tooth 

crowning and tip relief on the planetary hub gears’ power loss. It also takes into account the 

influence of roughness of meshing surfaces upon system efficiency.  

2- Planetary hub configuration  

Figure 1 shows a schematic representation of planetary gear wheel hub system, including the 

power flow from the differential gearbox through to the wheel hub. It also shows the transmission 

ratio, torques and speeds at the different stages of the axle system. Power is transmitted through 

the sun gear, attached to the input shaft. The ring gear is fixed to the housing. The output power 

is transmitted to the wheels through the carrier. The planetary system comprises three planet 

gears. It is assumed that there is no misalignment in the planetary system, and the input power 

from the sun gear is equally divided among the planets. 
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Figure 1: Schematic representation of the planetary wheel hub gears  

3- Methodology 

The integrated methodology combines Tooth Contact Analysis (TCA) and an analytical 

elastohydrodynamic contact model. For a complete meshing cycle, the instantaneous radii of 

curvature, rolling and sliding contact velocities and the normal meshing contact loads are 

obtained through TCA. These parameters form the input to the elastohydrodynamic model in 

order to obtain viscous and boundary friction contributions for the planetary hub system power 

loss for a complete meshing cycle. 

3.1 – TCA 

The developed TCA model is comprises contact analysis using finite elements, based on the 

approach of Vijayakar [14], and Xu and Kahraman [15]. The TCA model is used to obtain the 

instantaneous contact geometry, rolling and sliding velocities and load share per teeth pair [16] 

for simultaneous meshing of sun-planet and planet-ring contacts in the planetary hub system. 
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3.2 – The elastohydrodynamic contact model 

The planetary wheel hub system of trucks and off-highway applications are subject to high 

contact pressures up to 1.2 GPa, which can result in asperity interactions within the mating teeth 

pair contacts. Therefore, mixed regime of lubrication would be expected. Friction in the mixed 

regime of lubrication comprises two contributions; viscous shear of the thin lubricant film and 

direct interaction of asperities on the opposing boundary solid surfaces. Therefore, the 

instantaneous power loss is obtained due to these sources of generated friction as:  

𝑃𝑙𝑜𝑠𝑠 = (𝑓𝑣 + 𝑓𝑏)𝑈𝑠           (1) 

3.2.1 – Boundary friction 

The thin lubricant films in the elastohydrodynamic contact of gear teeth pairs are usually of the 

order of surface roughness of contacting surfaces, particularly due to the high generated heat and 

usually starved inlet boundary conditions in practice [17].  

Greenwood and Tripp [18] presented a method for prediction of boundary friction contribution 

with an assumed Gaussian distribution of asperity peaks under mixed or boundary regimes of 

lubrication. This is a function of the Stribeck’s oil film parameter: 1 < 𝜆 =
ℎ𝑐0

𝜎
< 2.5  which 

specifies the fraction of the load carried by the asperities in the contact footprint. Thus [18]: 

𝑊𝑎 =
16√2

15
𝜋(𝜉𝛽𝜎)2√

𝜎

𝛽
𝐸′𝐴𝐹5 2⁄ (𝜆)        (2) 

where, the statistical function F5/2(λ) for a Gaussian distribution of asperities is obtained as [9, 

19]: 

F5/2 = {
−0.004λ5 − 0.057λ4 − 0.29λ3 − 0.784λ2 − 0.784λ − 0.617    for λ < 2.5
0;                                                                                                                  for λ ≥ 2.5

  (3)  

For steel surfaces, the roughness parameter (ξβσ) is generally in the range 0.03–0.07. σ/β which 

is defined as average asperity slope [9], is in the range of 10-4 to 10-2. For the current study: ξβσ = 

0.055 and σ/β = 10-3.  
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Friction generated by asperities interaction should be taken into account in mixed and boundary 

regimes of lubrication. A thin adsorbed film at the summit of the asperities or entrapped in their 

inter-spatial valleys is subjected to non-Newtonian shear, thus boundary friction fb is obtained as: 

𝑓𝑏 = 𝜏𝐿𝐴𝑎           (4) 

where, τL is the lubricant’s limiting shear stress: 

𝜏𝐿 = 𝜏0 + 𝜀𝑃𝑚           (5) 

where, the mean (Pascal) pressure Pm is: 

𝑃𝑚 =
𝑊𝑎

𝐴𝑎
           (6) 

The asperity contact area is expressed as [18]: 

𝐴𝑎 = 𝜋2(𝜉𝛽𝜎)2𝐴𝐹2(𝜆)          (7) 

The statistical function F2(λ) is calculated as [9, 19]: 

𝐹2(𝜆) = {
−0.002𝜆5 − 0.028𝜆4 − 0.173𝜆3 + 0.526𝜆2 − 0.804𝜆 − 0.500    𝑓𝑜𝑟 𝜆 < 2.5
0;                                                                                                                     𝑓𝑜𝑟 𝜆 ≥ 2.5

  (8) 

3.2.2 – Viscous friction 

Evans and Johnson [7] developed an analytical method to obtain viscous friction in 

elastohydrodynamic contacts, where the coefficient of friction is calculated as: 

𝜇 = 0.87𝛼𝜏0 + 1.74
𝜏0

�̅�
𝑙𝑛 [

1.2

𝜏0ℎ𝑐0
(

2𝐾𝜂0

1+9.6𝜉
)

1

2
]       (9) 

where, 𝜉 is: 

𝜉 =
4

𝜋

𝐾

ℎ𝑐0 𝑅⁄
(

�̅�

𝐸′𝑅𝐾′𝜌′𝑐′𝑈𝑟
)

1 2⁄

 

The lubricant film thickness under the instantaneous operating conditions is obtained using the 

regressed extrapolated lubricant film thickness formula of Chittenden et al. [8]:  
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ℎ𝑐0
∗ = 4.31𝑈𝑒

0.68𝐺𝑒
0.49𝑊𝑒

−0.073 {1 − 𝑒𝑥𝑝 [−1.23 (
𝑅𝑦

𝑅𝑥
)

2 3⁄

]}               (10) 

where, the non-dimensional governing groups are expressed as: 

𝑈𝑒 =
𝜋𝜂0𝑈

4𝐸𝑟𝑅𝑥
 , 𝑊𝑒 =

𝜋𝑊

2𝐸𝑟𝑅𝑥
2 , 𝐺𝑒 =

2

𝜋
(𝐸𝑟𝛼) ,  ℎ𝑐0

∗ =
ℎ0

𝑅𝑥
 

 

Therefore, the generated viscous friction, using equation (9) becomes: 

𝑓𝑣 = 𝜇𝑊           (11) 

4- Results and discussion  

The planetary hub gear set of the JCB Max-Trac rear differential is studied here. The input torque 

to the sun gear from the differential is 609 Nm at the speed of 906 rpm.  

The results are presented in two parts. The first part deals with the effect of longitudinal 

crowning, whilst the second part shows the influence of gear teeth tip relief modification. Two 

parameters are involved in the tip relief modification: the extent of tip relief and the length 

relieved region. The results for cyclic meshing power loss are for both the axle’s planetary wheel 

hub sets.  

Figure 2 is a schematic representation of teeth longitudinal crowning and tip relief modification. 

In order to study the effect of surface roughness on the gear pair power loss, the gear tooth 

surface roughness for different longitudinal crowning and tip relief modification are varied from 

0.4 μm to 3.6 μm. 
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Figure 2: Schematic representation of gear teeth modification; (a) crowning (b) tip relief 

4.1- Effect of tooth profile longitudinal crowning 

Idealised spur gears with finite line contact geometry are very sensitive to misalignment and 

manufacturing errors which cause edge loading of their contacts, leading to edge stress generated 

pressure spikes, similar to the straight-edged roller bearings [20, 21]. One repercussion of this is 

localised wear or fatigue spalling (pitting) due to inelastic sub-surface stresses [22], another is 

increased gear noise. Like rolling element bearings, where their sharp edges are crowned or 

relieved by a dub-off radius to reduce the edge stress discontinuity [23], the simplest way to 

avoid the edge loading is through longitudinal crowning of gear teeth surfaces. Several 

investigators have studied improvements in the meshing contact stress distribution for misaligned 

spur gears through crowning [24, 25]. 

In order to study the effect of longitudinal crowning on power loss, the magnitude of longitudinal 

crowning is varied between 50% -150% of the current in-field design. The amounts of applied 

longitudinal crowning used in the current study are listed in Table 1.   

Table 1: Amount of applied longitudinal crowning for different scenarios 

  Crowning amount [%] 

Scenario Sun Planet Ring 

1 150 150 150 

2 125 125 125 

3 (current design) 100 100 100 
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4 75 75 75 

5 50 50 50 

In order to study the simultaneous effect of longitudinal crowning and surface roughness on 

power loss, a map of these values is generated. Figure 3 shows the total power loss with different 

longitudinal crowning and surface roughness. Figure 4 represents percentage change in the total 

power loss with respect to the current base design. Referring to Figures 3 and 4, the power loss of 

the planetary gear sets can be reduced by 5%. However, considering the high efficiency of these 

gear sets, the absolute value of this reduction only amounts to 45W per meshing cycle. This gain 

in efficiency should be set against the entailing manufacturing costs, indicating little incentive for 

implementation.  

 

Figure 3: Meshing cyclic power loss with different surface topography and crowning 

 

Figure 4: Percentage change in power loss with different crowning and surface roughness 
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Finally, Figure 5 shows the cyclic precession of contact footprint for different crowning cases for 

both the planet-ring and the sun-planet contacts. It can be noted that by increased crowning, the 

contact is concentrated in the centre of the teeth flanks. This is safer to avoid any edge stress 

discontinuity. Therefore, in terms of surface fatigue and useful life some gain can be expected 

due to reduced sub-surface stressing [22]. However, the reduced cross-section can lead to 

increased root stresses with higher contact pressures as the result of reduced contact footprint 

dimensions, requiring further in-depth analysis.   
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Figure 5: Contact footprints for different longitudinal crowning case studies 

4.2- Effects of tip relief  

At the beginning and the end of a meshing cycle with no tip relief, an impact and sharp rise in the 

contact pressure occurs as a pair of new teeth comes into contact. In order to attenuate this effect 

the involute profile in the tip region is relieved. The optimum length of tip relief region enables 

smooth load variation from one pair of teeth to the next. The extent of tip relief in length and 

amount should be determined (see Figure 2(b)).  

 

 

End of  
Meshing Cycle 

Start of  
Meshing Cycle 
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4.2.1- Effects of tip relief amount 

In order to study the effect of tip relief amount on the gear pair power loss, the amount of tip 

relief is changed from 25% to 150% of the current base design values. Amounts of tip reliefs for 

different cases are shown in Table 2. 

Table 2: Amount of tip relief for different scenarios 

  Tip relief amount [%] 

Scenario Sun Planet Ring 

1 150 150 150 

2 125 125 125 

3(Current Design) 100 100 100 

4 75 75 75 

5 50 50 50 

6 25 25 25 

The map of these results is illustrated in Figure 6. This figure shows the total power loss with 

different tip relief amount and surface roughness. Figure 7 represents percentage change in total 

power loss with respect to the current design. According to these results, the overall power loss 

can be reduced by 12% in comparison with the current design. This value, in absolute term, is 

nearly 70W. The results reveal that the effect of tip relief on the surface power loss is much more 

pronounced. 

 

Figure 6: Meshing cyclic power loss with different surface topography and tip relief amount 
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Figure 7: Percentage change in power loss with different surface roughness and tip relief amount 

4.2.2- Effect of tip relief length  

In order to study the effect of change in the length of tip relief (specified as h in Figure 2(b)) on 

the gearing power loss, the relief length is reduced from the current design (base value) by 25% 

of its value. Table 3 shows changes in the length of tip relief for different cases. 

 

Table 3: Length of tip relief for different scenarios 

Scenario 
Length of tip relief [%] 

Sun Planet Ring 

1(Current Design) 100 100 100 

2 75 75 75 

3 50 50 50 

4 25 25 25 

The results in Figure 8 show the total power loss with different length of tip relief and surface 

roughness. Figure 9 shows the percentage change in the total power loss with respect to the 

current design. It shows that the power loss can be decreased by up to 10%, representing a 50W 

reduction per meshing cycle. 
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Figure 8: Cyclic meshing power loss with different surface topography and tip relief length 

 

Figure 9: Percentage change in power loss with different surface roughness and tip relief length 

5- Conclusions 

The study investigates the effect of tooth longitudinal crowning and tip relief (length and amount) 

modifications on the power loss of planetary wheel hub gears of off-highway vehicles.  

The following conclusions are made: 

I. Better surface finish with both longitudinal crowning and tip relief modifications reduces 

the gear contact power loss. This is because of a reduction in boundary friction. 
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II.  Reduction of longitudinal crowning by 25% with respect to current design minimises the 

power loss. This is because of reduced contact pressures and an increased lubricant film 

thickness, thus reducing the extent of asperity interactions. 

III. In terms of tip relief modification, decreasing both the amount of tip relief (to 50% of the 

current base design value) and length (by 25%) leads to reduced power loss. This is 

mostly due to an increase in the duration of single contact time along the meshing cycle 

with the highest applied load. However, this effect can have adverse effect on the root 

stresses and potential adverse component reliability. Furthermore, applying tip relief 

decreases radii of curvature and rolling velocity within double contact region. These are 

the reasons for a decreased lubricant film thickness and a correspondingly increased 

friction. 

IV. Finally, the “optimum” scenario corresponds to the case of 75% longitudinal crowning, 

50% tip relief amount and 25% tip relief length with 0.4 μm surface roughness average 

with respect to the current base design, yielding a total power loss of 507 W for both the 

planetary wheel hub gearing of the axle. The total power loss for the current design is 583 

W. 
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9- Definitions/Abbreviations 

A Apparent contact area 

Aa Asperity contact area 

𝒄′ Specific heat capacity of the solid surfaces 

𝑬𝒓 Reduced elastic modulus of the contact 

𝑬′
 Reduced elastic modulus of the contact: 

(2Er)/π 

EHL Elastohydrodynamic Lubrication 

fv Viscous friction 

fb Boundary friction 

𝒉𝒄𝟎
∗

 Dimensionless central lubricant film 
thickness 

𝒉𝒄𝟎 Central lubricant film thickness 

𝑲 Lubricant’s thermal conductivity 

𝑲′
 Thermal conductivity of the solids 

�̅� Average (Laplace) contact pressure  

Pm Mean pressure 

R Effective radii of curvature  

Rx Radii of curvature along the direction of 
sliding  

Ry Radii of curvature along the direction of 
side leakage 

TCA Tooth Contact Analysis 

Ur Rolling velocity 

Us Sliding velocity 

U Speed of entraining motion 

Wa Asperity load share 
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α Pressure viscosity coefficient 

β Average asperity tip radius 

ε Slope of the lubricant limiting shear stress-
pressure dependence 

η0 Lubricant dynamic viscosity at atmospheric 
pressure 

λ Stribeck’s oil film parameter 

μ Coefficient of friction  

ξ Asperity density per unit area 

𝝆′ Density of solids 

σ Composite RMS surface roughness 

τ 0 Eyring shear stress 

τ L Limiting shear stress 


