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Abstract (250 words unstructured) 5 

Food supply chains are highly complex and involve numerous actors who influence food safety 6 

and the integrity of products and processes, both at individual points in the supply chain and 7 

more holistically throughout the chain as a whole. Provenance can relate to a particular source 8 

or origin of a food and its individual ingredients and/or relate to claims on how the product is 9 

produced and what marketing claims have been attached to the product. The aim of this review 10 

is to consider the recent advances in developing transparent data systems to demonstrate food 11 

provenance. One technological development is the use of Blockchain, a data handling structure 12 

which provides a secure network of information that cannot be changed or destroyed, 13 

distributed between supply chain actors. Other developments in information systems that can 14 

be used to monitor a range of criteria include geographic information systems (GIS) which can 15 

be linked with, for example, stable isotope analysis to provide an indication of provenance for 16 

a given product or ingredient. This technology is used as a case study in this paper to 17 

demonstrate the opportunities and limitations to such technological approaches. The review 18 

reflects on aspects of provenance and the actions that can be taken at organisational and supply 19 

chain level to demonstrate transparency so that consumers can have trust in those procuring, 20 

processing and supplying food. 21 

Key words 3-7 keywords 22 

Food Provenance; Product integrity and identity; Private Standards; Blockchain; Geographic 23 

information systems; Consumers and food provenance. 24 



Review methodology 25 

We searched the following databases: CAB Abstracts, Science Direct, Google Scholar, Google 26 

(to include grey literature) to primarily consider current information on provenance, product 27 

integrity and identity. The key search terms were provenance AND food AND integrity AND 28 

product integrity AND product identity AND traceability AND geographic indication AND 29 

packaging cues AND transparency AND trust AND blockchain. The terms were used in a range 30 

of combinations of the search terms i.e. through an iterative literature review method. Iterative 31 

literature review is grounded by a foundational literature search using a series of iterative 32 

searches. In undertaking the searches for a given combination of search terms the first 100 33 

items in each search are considered for relevancy and any duplication. All relevant papers were 34 

then collected and the titles and abstracts read.  The papers were then read in full (n=76) and 35 

screened for relevance and value in supporting a discursive narrative and argument. Forty-36 

seven papers were used to support the narrative in the paper 37 

1. Introduction 38 

In the European Union (EU), Regulation No. 1169/2011 on the provision of food 39 

information to consumers identifies the origin of a food as being either its country of origin or 40 

its ‘place of provenance’. Provenance encompasses the geographical origin of a product or its 41 

ingredients, aspects of the farm production system, and demonstrable transparency with regard 42 

to the product’s journey from the farm to the consumer's table (Monahan et al. 2018). 43 

Therefore, food provenance “relates to not only the geographic elements of where the 44 

ingredients and the final food are grown, processed and finally manufactured, but also how that 45 

food is produced and whether the methods of production and processes employed comply with 46 

certain standards and protocols.” (Manning, 2018: p121). Consumers’ interest in food 47 

provenance is influenced by patriotism, regional factors that affect culinary or organoleptic 48 



qualities; interests in local, ethical and sustainable foods; or a decreased confidence in the 49 

quality and safety of products produced outside a specific region or where the provenance of 50 

the product is unknown (Camin et al. 2017; Soon and Wallace, 2017). Consumers too often 51 

draw inference from provenance claims on packaging or associated marketing information such 52 

as the use of sustainability labels on food (Grunert et al. 2014). Tangible (constructivist) 53 

packaging cues e.g.  tamper-evident seals, 3D QR codes, icons/badges, or anti-counterfeiting 54 

holograms provide additional reassurance for consumers with regard to product integrity 55 

(Kendall et al. 2019). However, maintaining integrity through these claims requires food supply 56 

chains to manage information openly with transparent systems and protocols. In this context 57 

transparency needs to go further than simply the development of systems to assure traceability.    58 

The term traceability has also evolved in recent years to also include consideration of 59 

food authenticity and integrity (Charlebois and Haratifar, 2015) and this creates confusion 60 

when considered in the context of provenance. Traceability protocols which are linked to 61 

logistics management and product specifications were initially developed as part of a quality 62 

management system (Mol, 2014) so that customers could be assured of the inputs and outputs 63 

in any given process or activity. Traceability processes from source (one attribute of 64 

provenance) to final shelf provides security that in the event of a product recall a particular 65 

batch of material or finished product can be identified, isolated and controlled (e.g. removed 66 

from shelf or recalled, destroyed or reworked) and in so doing minimise food safety and quality 67 

risk to consumers (Leat et al. 1988).  68 

Many early, and current, approaches to assure provenance in food supply chains have 69 

been based on quality management systems, including development of specifications, quality 70 

assurance standards, supplier audit and 3rd party certification schemes (Wallace et al. 2018).  71 

The need to assure food safety “up and down” the supply chain was a major driver towards 3rd 72 

party certification, but the need to consider the potential for food fraud has extended 73 



provenance requirements such that additional criteria and guidance have been included on 74 

product authenticity and tighter supplier procurement controls in the associated market 75 

standards (e.g. BRCGS, 2018; ISO, 2018).  Business motivation for gaining 3rd party 76 

certification has largely been seen as gaining market access whilst demonstrating control of 77 

product safety (Manning et al, 2019); however, using factor analysis, Rincon-Ballesteros, et al. 78 

(2019) identified that ethical and legitimacy considerations are two of the four groups of 79 

motivating factors involved in Latin American food business decisions to achieve certification 80 

to the BRC standard (BRCGS, 2018), demonstrating that the wish to demonstrate ethical supply 81 

chains that meet governance and food safety requirements is crucial to business strategy. 82 

Transparency within food supply chains enables informed action by all stakeholders 83 

from primary producer through each stage until the final consumer. Transparent information 84 

about how food is produced and details about the innate characteristics of food products is 85 

essential. Information systems encompass data capture, storage, analysis and retrieval and, 86 

from the point of view of food safety management will enable timely decision-making and 87 

actioning of preventive or corrective action (McMeekin et al. 2006). Information systems can 88 

combine information from databases, sensors and smart identification tools. This drawing 89 

together of data from more than one source to give one result has also been termed data fusion 90 

(Callao & Ruisánchez, 2018).  91 

 According to Zhao et al. (2019), almost all the systems applied to the agri-food value 92 

chain are centralised, monopolistic, asymmetric and opaque, and this may result in serious trust 93 

problems between supply chain actors and between the supply chain and consumers. Certainly, 94 

food supply chains are highly complex and involve numerous actors (Figure 1).  Multiple steps 95 

and feedback loops may occur between animal and/or crop production stages and when the 96 

finished food product reaches consumers via food-service, retail store or other distribution 97 



channels.  Thus, whilst trust is essential between all supply chain actors to assure integrity and 98 

identity, the complexity and scale of food supply chains makes this difficult.  99 

Take in Figure 1 100 

The aim of this review is to consider the recent advances in developing transparent data 101 

systems to demonstrate food provenance. One technological development of contemporary 102 

interest is the use of Blockchain, a data handling structure which provides a secure network of 103 

information that cannot be changed or destroyed, distributed between supply chain actors. 104 

Other developments in information systems that can be used to monitor a range of criteria 105 

include geographic information systems (GIS) which can be linked with, for example, stable 106 

isotope analysis to provide an indication of provenance for a given product or ingredient. Thus 107 

this technology is used as a case study in this paper to demonstrate the opportunities and 108 

limitations to such approaches to offer potential for assurance of provenance and trust 109 

throughout food supply chains.  The remaining sections of this review will focus on provenance 110 

in the food supply chain from three perspectives: consumers and provenance, management 111 

systems and assurance, and finally the potential role for new technology in enabling trust. 112 

2. Consumers and Provenance 113 

Soon and Wallace (2018) investigated the role of provenance and ethical standards on 114 

consumers’ food choices and purchasing intentions and found that consumers recognised a 115 

good selection of provenance and ethical standards and perceived animal welfare as the most 116 

important aspect in ethical food products.  Consumers also reported that they supported their 117 

local economies and sustainable purchasing of food products but were undecided about 118 

reducing food miles (Soon and Wallace, 2018).  However conversion of recognition to 119 

consumer purchasing behaviour is limited and mediated by a number of demographic and 120 

cultural factors (Rees et al. 2019). Other studies have looked at consumer attitudes to 121 



genetically modified foods (Prati et al. 2012; Frewer et al. 2013; McFadden and Smith, 2019), 122 

food fraud (e.g. Kendall et al. 2019), local and sustainable foods (Ikerd, 2011; Birch et al. 2018) 123 

and alternative food networks that challenge the role and power of large retailers (Watts et al. 124 

2018).  In a systematic review on public perception of agri-food applications of genetic 125 

modification, including meta-analysis of 70 articles, Frewer et al. (2013) investigated the 126 

constructs of concern about ethical issues, trust, risk and benefit perception, attitude as well as 127 

intention and acceptance.  The study found that, whilst the majority of studies focused on 128 

Europe or North America, there were differences between these two regions, illustrated by 129 

European consumers generally having more negative perceptions, attitudes and intentions to 130 

purchase GM foods compared to North American consumers, possibly due to factors such as 131 

increased availability of GM foods in the USA, and more negative press coverage and lower 132 

citizen trust of regulators in Europe (Frewer et al. 2013).  Birch et al. (2018) discuss the balance 133 

of egoistic and altruistic motivations to purchase local food in ‘mindful consumers’ and 134 

conclude that egoistic motivations, i.e. issues of self-interest such as health consciousness and 135 

food safety, may influence local food consumption decisions more strongly than altruistic 136 

motivations relating to wider social concerns such as environmental issues. It is clear therefore, 137 

that provenance is a significant factor for food choice for some consumers and this creates 138 

challenges for the food supply chain to go beyond simply achieving “one step forward and one 139 

step back” traceability to demonstrating both proof of origin and proof of extrinsic methods of 140 

production for certain products and ingredients.  This relies on effective quality 141 

management/assurance systems, certification schemes and, increasingly, on the use of 142 

technology to support provenance claims.  143 

3. Management Systems and Provenance 144 

Supplier quality assurance programmes, generally including the use of multiple forms of 145 

documentation assessment, validation, monitoring and verification activities to not only assure 146 



food safety and product related quality attributes but increasingly assuring process criteria too.  147 

The use of specifications, certificates of conformance and supplier audits, has been the 148 

cornerstone of management approaches to provenance assurance in food supply chains.  149 

Supplier audits have traditionally been performed routinely by customers or their agents; 150 

however, the approach is resource-intensive and, therefore, not practical as a routine 151 

verification activity for most companies and so risk-based assurance strategies have been 152 

developed (Wallace et al. 2018).  Risk evaluation criteria often include history of food safety 153 

issues within the product category and consideration of whether the supplier is already working 154 

with other companies who are anticipated to have similar requirements, e.g. multinationals, as 155 

well as consideration of risks, e.g. hygiene standards, in the local supply context (Wallace et 156 

al. 2018).  Private food standards developed by various consortia of stakeholders have emerged 157 

in the last few decades (Manning et al. 2019) and this has led to a growth in third party 158 

certification. The focus of these standards is often food safety and quality assurance and the 159 

difficulties of businesses needing to comply with many slightly different requirements in these 160 

private standards has led to moves to standardise food safety requirements through the Global 161 

Food Safety Initiative (GFSI) benchmarking scheme (www.mygfsi.com ).  Requirements of 162 

private standards include aspects of food provenance such as traceability and prevention of 163 

food fraud (e.g. BRCGS, 2018) and thus offer possible solutions for demonstrating provenance, 164 

product identity and food integrity. However, challenges with audit-based verification systems 165 

such as audit and auditor fatigue and the rigid use of checklists can lead to ‘evaluation myopia’ 166 

(Manning et al. 2019) leading to the inability of the auditor to identify the impacts and effects 167 

of such approaches outside the strict line of questioning from a given systems checklist 168 

(Manning et al. 2019).  These limitations mean that, whilst still a major element of assuring 169 

provenance, verification of management systems via third party audits is not a complete 170 

solution and needs to be used in tandem with other approaches. The use of triangulation i.e. 171 

http://www.mygfsi.com/


determining veracity by comparison of data from different sources of evidence counterbalances 172 

the strengths and weaknesses of different verification methodologies and approaches and in 173 

doing so increases the credibility and depth of provenance verification processes (Yeasmin and 174 

Rahman, 2012; Carugi, 2016; Jespersen and Wallace, 2017; Manning, 2018; De Boeck et al. 175 

2019; Manning et al. 2019). One case study example that demonstrates this ability to triangulate 176 

is considering provenance in terms of geographic origin. 177 

A geographic information system (GIS) is a system developed to store, index and 178 

archive data, and allow its retrieval, and manipulation based on the geographic coordinates of 179 

its elements.  GIS based approaches can be used to determine geographic origin when 180 

combined with stable isotope analysis to provide a food isotope map or isoscape. Stable 181 

isotopes of elements such as carbon (C), hydrogen (H), nitrogen (N), oxygen (O) or Strontium 182 

(Sr) vary in their concentration in different land substrates, and so an understanding of their 183 

geographic and spatial location can allow an isoscape to be developed (Bowen et al. 2009) that 184 

links the isotopes in a given food to a location (Kelly et al. 2011). GIS driven isotope maps and 185 

isotope footprints have been developed for beer, cereal crops,  cheese, fruit juices, tea, coffee, 186 

must, olive oil, peppers, soft fruit, tiger prawns, tomato based products, vinegar, wine and 187 

asparagus (West et al. 2007; Flores et al. 2013; Carter et al. 2015; Stevenson et al. 2015; Bong 188 

et al. 2016; Chiocchini et al. 2016; Camin et al. 2017; Fragni et al. 2018; Perini et al. 2018; 189 

Eftimov et al. 2019; Gopi et al. 2019a, 2019b; Richter et al. 2019) so that provenance and thus 190 

authenticity can be clearly demonstrated through isotope analysis testing and then comparison 191 

of the results with pre-defined isotope maps (Danezis et al. 2016). In terms of extrinsic 192 

attributes isotope analysis can distinguish between farmed and caught from the wild fish 193 

products (Gopi et al. 2019a); and whether artificial nitrogen fertiliser has been used or organic 194 

fertiliser (Inácio et al. 2015; Stevenson et al. 2015; Perini et al. 2018; Manning & Monaghan, 195 

2019).  This would seem to offer an effective solution to verify provenance claims, at least for 196 



these product groups. Other studies have proposed the use of X-ray fluorescence (XRF) 197 

through Itrax to examine elemental profiles (Gopi et al. 2019a; 2019b) and also the use of 198 

inductively coupled plasma mass spectrometry (ICP-MS) to develop distinct fingerprints by 199 

geographic location for blue mussels (Bennion et al. 2019) and ground water (Voerkelius et al. 200 

2010). 201 

However to be effective, isotope analysis must be based on an authentic set of samples 202 

with irrefutable origin (Kelly et al. 2005; Eftimov et al. 2019). Camin et al. (2017) state that 203 

whilst some stable isotope ratio standard methods have been accepted for over 20 years, there 204 

is an argument that laboratories should be accredited to ISO17025 so that there can be 205 

confidence in the validity and repeatability of the results via proficiency testing approaches. 206 

As databanks are created for isotope ratio methods then there needs to be demonstrable 207 

assurance as to the representativeness of the dataset. The fusion of such dataset information 208 

with data from other sources to provide a view on the degree of adulteration of a foodstuff is 209 

gaining more widespread recognition as a quality control tool and in this context validation 210 

protocols and ongoing verification activity is key. (Callao & Ruisánchez, 2018).    211 

4. Technology and Provenance 212 

Distributed Ledger Technology (DLT), one example of which is Blockchain, can “provide 213 

a cryptographically secure and immutable record of transactions and associated metadata 214 

(origin, contracts, process steps, environmental variations, microbial records, etc.) linked 215 

across whole supply chains” (Pearson et al. 2019, p.145). Galvez et al. (2018) report that 216 

Blockchain first appeared in 2008 as a technology to provide transactional ledger functionality 217 

for Bitcoin.  The technology was designed to overcome issues of trust that arise in trading 218 

networks when transactions rely on one ‘trusted intermediary’ (e.g. a bank), where giving 219 

power and trust to that intermediary is needed to mitigate the potential for fraud. In Blockchain, 220 



transactions between network members are recorded in the ‘blocks’ and all members have 221 

copies of all the data such that all members agree the information in each transaction and 222 

following agreement records cannot be altered (Galvez et al. 2018). Blockchain can afford the 223 

ability for “high fidelity tracking and tracing” across supply chains (Pearson et al. 2019). The 224 

potential for Blockchain technology to deliver traceability systems and provenance assurance 225 

in the food supply chain is considerable (Figure 2).  Linking and data sharing/agreement among 226 

all the groups of actors in the food supply chain provides not only trust between suppliers and 227 

customers forming individual links, but also simultaneously transmitting trustworthy data 228 

through the entire supply chain.  229 

Take in Figure 2 230 

Applications of Blockchain in food supply are being examined by researchers across 231 

multiple scientific disciplines such as computing science, supply chain and food science 232 

perspectives and a variety of Blockchain based platform providers exist. This is a rapidly 233 

developing field in terms of research and business perspectives such that many specific food 234 

chain applications have been proposed and/or tested in practice. Some reported application 235 

models are general such as across agriculture or agri-food supply chains, large enterprises and 236 

fresh food (Casado-Vara et al. 2018, Galvez et al. 2018); other applications are more specific 237 

(Table 1).  Stated objectives in Blockchain trials and applications include traceability and 238 

transparency, brand protection, financial and performance improvement (e.g. speed of 239 

transactions), animal welfare, waste reduction, environmental impact, having an auditable 240 

system, trusted information, (improved) supervision and management and support for small 241 

farmers and growers (Kamilaris et al. 2019; Galvez et al. 2018). Various technologies could be 242 

used in combination with a Blockchain system including radio-frequency ID (RFID) based 243 

systems (Musa et al. 2014; Shin & Eksioglu, 2015) to reduce the risk of fraudulent behaviour 244 

(Yan et al. 2020). Several large retail and manufacturing chains have been active in Blockchain 245 



developments for the supply chain, notably Walmart, Unilever, Nestle, Cargill, Kroger and 246 

Coca Cola (Kamilaris et al. 2019). 247 

Take in Table 1 248 

Theoretically Blockchain offers advantages of assuring trust, transparency and 249 

traceability in food supply chains.  Specific food provenance issues such as identity and 250 

integrity of supply can be verified through a Blockchain network, and the immutability of the 251 

data, i.e. any alteration of data by one user is transparent to all users (Pearson et al. 2019), has 252 

obvious benefits in the prevention of food fraud as well as supply chain control of specific food 253 

safety hazards such as allergens. Linking consumers to supply chain information through 254 

scannable elements on food packaging and menus enables trust aspects and provision of 255 

necessary information. However, challenges remain in the application of Blockchain 256 

technology in the food supply chain to assure provenance, not least because all stakeholders in 257 

the chain must hold their data in digital form and then collaborate to adopt and implement the 258 

technology for it to work effectively (Galvez et al. 2018) and this will have inherent set-up 259 

costs that could be a barrier to market entry for some businesses.  Zhao et al. (2019) report six 260 

main practical challenges for applying Blockchain technology in the agri-food chain: 1. Storage 261 

capacity and scalability issues, relating to the large amounts of information that may need to 262 

be stored and size of network (and hence numbers of transactions); 2. Potential for privacy 263 

leakage, since all members of the network have copies of all of the data and this could cause 264 

problems where some members may be in competition; 3. Regulatory problems, since there 265 

are no global regulatory requirements for food chains or for Blockchain technology; 4. 266 

Problems of high cost, relating to money and resources such as time and computing power 267 

needed to be part of a blockchain network; 5. Throughput and latency issues, such as 268 

transaction capacity and limits on numbers of transactions possible per second or time to create 269 

blocks and validate transactions; and 6. Lack of skills and knowledge of how Blockchain can 270 



be used in the agri-food chain. From a food safety and quality perspective, a further challenge 271 

relates to quality of data (Creydt and Fischer, 2019).  Although data cannot be changed once it 272 

is timestamped and accepted into the Blockchain, the potential for poor quality, and possibly 273 

fraudulent, data at the beginning of the chain may still be possible, e.g. if a raw material  274 

produced using pesticides was falsely certified and declared as ‘organic’ (Creydt and Fischer, 275 

2019).  Thus, additional verification methods are still required for assuring data security and 276 

measures such as auditing and analytical tests should continue to be used with results then fed 277 

into the Blockchain data system by reputable service providers. Nevertheless, Blockchain and 278 

other DTL technologies offer potential for developing trust through transparent and traceable 279 

supply chains where product and ingredient identity information is securely maintained such 280 

that full history of information is accessible to retailers and foodservice businesses and could 281 

be passed on to consumers via scanning technology.  282 

5. Conclusion/Summary 283 

Recent advances in developing transparent data systems to demonstrate food provenance 284 

have been considered in this review including Blockchain, and the use of GIS and stable isotope 285 

analysis to provide provenance mapping and identification methods. Three perspectives have 286 

been used: consumers and provenance, management systems and assurance, and the role of 287 

technology in enabling trust. Whilst there are limitations in application of these and other 288 

technologies they offer the potential for greater transparency in supply chains and the ability 289 

to verify provenance claims more effectively.  Trust will be a major component of 290 

organisational value creation in the future. Assuring product integrity and identity underpins 291 

trust building and brand allegiance for consumers and at food supply chain and individual 292 

business level demonstrating provenance will be key to developing sustainable and resilient 293 

food businesses. 294 

  295 
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Table 1.  Selected food supply chain applications of Blockchain 466 

Sector Specific foods Reference  
Agricultural Crops • Soy beans1 

• Grains1 
• Mangoes1 
• Sugar cane1 
• Grapes1 
• Rice1 
• Fruits2 

1Kamilaris et al. (2019) 
2Galvez et al. (2018) 
3Creydt and Fischer, (2019) 
 
*Model of potential 
application only; All other 
foods listed were part of 
actual blockchains Meat and Fish • Turkeys1 

• Pork1,2 
• Beef1 
• Chicken1 
• Seafood1 
• Fish2 

Processed Foods • Canned Pumpkin1 
• Chocolate3 * 
• Wine2 
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Figure 1 Simplified Supply Chain Model (Adapted from Wallace, Sperber and Mortimore, 2018) 
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Figure 2 Blockchain Supply Chain Model (Adapted from Casadora-Vara et al, 2018; Galvez et al, 
2018) 
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