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Abstract 14 

Taste is a homeostatic function that conveys valuable information such as energy density, readiness to 15 

eat, or toxicity of foodstuffs. Taste is not limited to the oral cavity but affects multiple physiological 16 

systems. In this review, we outline the ergogenic potential of substances that impart bitter, sweet, hot 17 

and cold tastes administered prior to and during exercise performance and whether the ergogenic 18 

benefits of taste are attributable to the placebo effect. Carbohydrate mouth rinsing seemingly improves 19 

endurance performance, along with a potentially ergogenic effect of oral exposure to both bitter tastants 20 

and caffeine – although subsequent ingestion of bitter mouth rinses is likely required to enhance 21 

performance. Hot and cold tastes may prove beneficial in circumstances where athletes’ thermal state 22 

may be challenged. Efficacy is not limited to taste, but extends to the stimulation of targeted receptors 23 

in the oral cavity and throughout the digestive tract, relaying signals pertaining to energy availability 24 

and temperature to appropriate neural centres. Dose, frequency and timing of tastant application likely 25 

require personalisation to be most effective, and can be enhanced or confounded by factors that relate 26 

to the placebo effect, highlighting taste as a critical factor in designing and administering applied sports 27 

science interventions. 28 

 29 
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1. Introduction 34 

Taste is a homeostatic function that aids in deciding what to eat, and acts as a precursor for digestion 35 

[1]. Human taste and preferences are evolved due to nutrient availabilities within our ancestral 36 

environments [2], where they conveyed information such as energy density, readiness to eat, or toxicity 37 

[1,3]. Despite being the area most densely populated with taste receptors, taste is not strictly confined 38 

to the oral cavity, but frequently incorporates other sensory inputs from the upper digestive tract and 39 

auditory, olfactory and visual systems [1,4-9]. This is most evident in those who suffer with ageusia 40 

(loss of taste), or anosmia (loss of smell), and still respond physiologically to tastes [3,10], 41 

demonstrating taste as a chemical interaction between a chemesthetic agent and receptors, which drives 42 

either ingestion or aversion and accompanying hedonic sensations. 43 

Assessment of the physiological responses to taste has not escaped sports scientists, with many ‘tastes’ 44 

now investigated within the literature [11-15] with a view to attenuating fatigue or improving physical 45 

or cognitive performance. Depending upon the tastant investigated, impressions of energy availability 46 

[16,17], thermal perceptions [11,12,18] and central drive [15,19] may be altered. Secondary outcomes 47 

may also include modifications in autonomic function [20-22], thirst [23,24] and ventilation [25-27], 48 

with further downstream effects depending upon whether tastants are ingested or simply rinsed around 49 

the oral cavity and expectorated.  50 

These outcomes are likely useful to athletes, but depend heavily upon their exercise modality, prior 51 

exposure to and preference for specific tastants, as well as the availability of tastants during an exercise 52 

bout. Placebo effects associated with tastants cannot be excluded, and indeed may be maximised by 53 

including a carefully chosen taste component in personalised sports nutrition interventions, or matching 54 

tastes of interventions to other sensory expectations such as colour [28,29]. Previous work has asked 55 

whether “the [central] governor has a sweet tooth” [14]; in this review, we explore the ergogenic 56 

potential of different tastes administered prior to and during exercise performance. We also raise the 57 

question of whether the ergogenic benefits of taste are attributable to the placebo effect. 58 

Recommendations for athletes and practitioners, and future research directions are also provided 59 

throughout.  60 



2. Sweet and Bitter Tastants and Athletic Performance 61 

2.1 Carbohydrate 62 

The efficacy of carbohydrates as a means of supporting endurance performance is well established [30]. 63 

However, a clear, over-riding mechanism by which carbohydrate enhances performance is currently 64 

unknown; during exercise, only about a quarter of ingested carbohydrate enters peripheral circulation 65 

[31], with exogenous carbohydrate demonstrated to contribute only a small proportion of the 66 

carbohydrate oxidised during the late stages of prolonged exercise [32]. This lack of a clear metabolic 67 

mechanism lead to speculation that the consumption of carbohydrates during exercise may stimulate 68 

central pathways associated with sensations of reward or energy availability, which in turn has a 69 

performance-enhancing effect [33]. To test this hypothesis, researchers allowed subjects to rinse a 70 

carbohydrate solution around the mouth, but not ingest it, removing the metabolic effects of 71 

carbohydrate on performance. In the last decade, an exponential increase in research on this topic has 72 

been carried out, with a number of reviews [14,33-36] demonstrating a clear ergogenic effect of a 73 

carbohydrate mouth rinse on endurance performance, particularly in glycogen depleted participants.  74 

 75 

Given that little carbohydrate is absorbed in the oral activity during mouth rinsing, the mechanism(s) 76 

by which carbohydrate mouth-rinses enhance performance are likely central in nature [14]. The tongue 77 

contains a number of taste receptors capable of detecting sweet stimuli [37] and these taste receptors 78 

when stimulated activate dopaminergic pathways and reward centres within the brain [17,38]. In turn, 79 

this increase in reward may enhance motivation to exercise, allowing the athlete to self-select higher 80 

exercise intensities, and reducing the impact of peripheral fatigue-associated signals under both the 81 

Central Governor [39] and psychobiological [40] models of fatigue. There may also be a feed-forward 82 

effect, whereby the activation of oral carbohydrate receptors suggests that energy is being consumed, 83 

allowing for an increase in exercise intensity, although this hypothesis has yet to be experimentally 84 

tested.  85 

 86 



At present, it appears that the ergogenic effects of a carbohydrate mouth-rinse are not taste related per 87 

se. This is demonstrated by the fact tasteless carbohydrates, such as maltodextrin, are ergogenic in a 88 

mouth-rinse solution [35], and also activate brain regions similarly to sweet tasting carbohydrates such 89 

as sucrose [17]. Similarly, artificial sweeteners provide a sweet taste, but a far smaller activation of key 90 

brain regions compared to sucrose [41]. Accordingly, it seems likely that it is the carbohydrate binding 91 

to as-of-yet unidentified oral carbohydrate receptors, as opposed to taste itself, that drives the ergogenic 92 

effects of a carbohydrate mouth rinse [14].  93 

 94 

2.2 Bitter tastants 95 

Building on the potential ergogenic effects of a sweet taste, as mediated by carbohydrate rinsing 96 

(detailed in section 2.1), Gam and colleagues explored the use of bitter tastants on exercise performance 97 

(reviewed in Gam et al., [19]). The potential relationship between bitter taste and enhanced exercise 98 

performance has a strong molecular underpinning, given that bitter tastants activate similar areas of the 99 

brain as sweet tastes [42], with these brain areas being implicated in aspects such as motor control and 100 

the processing of emotions [19].  101 

 102 

In their first study exploring the ergogenic effects of a bitter tastant, Gam and colleagues [43] 103 

administered 14 competitive male cyclists with a bitter solution containing 2 mM quinine, which was 104 

rinsed in the mouth for 10 seconds, and then ingested. The quinine solution enhanced mean power 105 

output in a 30-second maximum cycle by 2.4% compared to an aspartame (sweet taste) mouth, and by 106 

3.9% compared to water. In a subsequent study [44], a stronger concentration (10 mM) of quinine was 107 

utilised, but the solution was only rinsed around the mouth, and not ingested. In this scenario, there was 108 

no ergogenic effect of the bitter solution on a 30-s cycle sprint, suggesting that the ingestion of the bitter 109 

solution is potentially important. The proposed mechanism underpinning the need for ingestion is that 110 

there are an increased number of bitter taste receptors beyond the oral cavity in the upper gastrointestinal 111 

tract [45] which are not activated following mouth rinse only. Outside the work of Gam and colleagues 112 

[43,44,46], there is little additional research exploring the ergogenic effects of a bitter tastant, and so 113 



further research in this area is warranted. This would be particularly pertinent from a practical approach, 114 

with strong bitter tastants—such as those used in the research by Gam and colleagues—able to induce 115 

nausea in some subjects upon ingestion [43]; given this information, further research exploring the 116 

optimal intensity of the bitter taste would likely be very useful.  117 

 118 

2.3 Caffeine 119 

Given the demonstrated ergogenic effects of an ingested bitter tastant [43,46], Pickering [15] recently 120 

reviewed whether caffeine—itself a bitter tastant [47] that has been shown to activate bitter taste 121 

receptors located in the oral cavity [48]—exerted some of it’s well established ergogenic effects [49] 122 

via its bitter taste. A small number of studies [50-56] have utilised a caffeine mouth rinsing protocol as 123 

a method to enhance performance. Studies that demonstrated an ergogenic effect employed a repeated 124 

6-s Wingate sprint protocol [50,53], or a self-paced endurance effort over 30-minutes [56]; whereas 125 

investigations that showed no effect employed either fixed work rate [51],  progressive running [55] or 126 

repetitions to failure [52] models. Whilst the results are currently equivocal, there is a trend for no 127 

demonstrated performance enhancement when caffeine is rinsed around the mouth for both endurance 128 

and high-intensity exercise [15]. The reasons for this are currently unclear; it may be that caffeine’s 129 

bitter taste is not ergogenic, that the caffeine solutions utilised were not sufficiently bitter to evoke an 130 

ergogenic effect, or that like quinine [44], ingestion of caffeine is required for its bitter taste to be 131 

ergogenic [54]. However, caffeine mouth rinses have been demonstrated to improve cognitive function 132 

during exercise [57] and limit mental fatigue [58] suggesting that there might be psychological 133 

ergogenic effect of caffeine mouth rinses—and therefore potentially caffeine’s bitter taste—for future 134 

research to uncover.   135 

 136 

2.4 Sweet and Bitter Tastes Section Summary 137 

Based on the research discussed here, there is a clear ergogenic effect of carbohydrate mouth rinsing on 138 

endurance performance [14], along with a potentially ergogenic effect of oral exposure to both bitter 139 



tastants [19] and caffeine [15] – although in the latter two cases, subsequent ingestion of the mouth 140 

rinse is likely required to enhance performance. Regarding bitter tastants, it is believed that this 141 

subsequent ingestion is required in order to further stimulate bitter taste receptors in the upper 142 

gastrointestinal tract [44]. These bitter taste receptors are not necessarily linked to gustatory neurons 143 

[59], meaning that this activation is not associated with “tasting” the bitterness. Additionally, tasteless 144 

carbohydrates evoke an identical ergogenic effect as sweet carbohydrates in a mouth rinse [35], whilst 145 

sweet tasting artificial sweeteners do not [33]. As such, it is important to note that the sensation of a 146 

particular taste may not be driving these ergogenic effects, but instead it is likely the stimulation of 147 

other receptors, which in turn act centrally to enhance performance [14].  148 

 149 

3. Thermal Tastants and athletic performance 150 

3.1 Chilli and Capsaicin 151 

For millennia, humans have included spices such as chili peppers in their diets, experiencing and often 152 

enduring the associated pungent sensation of oral heat [60,61]. Mechanistically the sensation of 153 

increased temperature derives from the interaction between the compound capsaicin (8-methyl-N-154 

vanillyl-6-nonenamide), and transient receptor potential vanilloid-1 proteins (TRPV1) [62]. TRPV1 is 155 

also stimulated when temperatures are elevated [63], hence foods containing capsaicin are perceived as 156 

being hot [62].  This perceptual heat is not limited to taste, with capsaicin also used in topical ointments, 157 

patches and sprays as a temporary but targeted analgesic [61].  The application of which is widely used 158 

by recreational and elite athletes to reduce joint and muscle pain, whereas the possible ergogenic 159 

properties of capsaicin taste and ingestion is an emerging field.  160 

 161 

To date only four studies have investigated the ergogenic properties of capsaicin ingestion [64-66] or 162 

mouth swilling [12] in humans, and as such an array of protocols, dosages and performance measures 163 

have been assessed. Three studies have investigated the effect of acute supplementation of capsaicin 164 

(12mg), 45-minutes prior to athletic performance; 1500m running time trial [65], four sets of 70% 1RM 165 



repeated squats to failure [13], and time to exhaustion during repeated 15 second treadmill running at 166 

120% VO2Peak with 15-second rest intervals [66]. Capsaicin supplementation improved 1500-m time 167 

trial performance (CAP 371.6 ±40.8 seconds vs. Pla 376.7 ± 39 seconds), total mass lifted (CAP 3,919.4 168 

± 1,227.4 kg vs. Pla 3,179.6 ± 942.4 kg) and time to exhaustion (CAP 1530 ± 515 seconds vs. Pla 1342 169 

± 446 seconds) compared to placebo. RPE was also significantly lower,  although no differences in 170 

blood lactate were shown [13,65]. Researchers suggested that capsaicin supplementation may have 171 

stimulated activation of TRPV1 in skeletal muscle increasing calcium release at the sarcoplasmic 172 

reticulum; a phenomenon seen in rodent studies [67].  This increased influx of calcium may have 173 

resulted in greater actin and myosin interactions leading to improved performance.  Alternatively, 174 

capsaicin has been shown to have an analgesic effect [61], which may have lowered RPE values and 175 

facilitated performance [13]. Increased endurance capabilities may also be facilitated by spared 176 

glycogen and concomitant increases in lipolysis through capsaicin ingestion [68-70]. 177 

 178 

The above literature suggests that ingesting capsaicin as a capsule is effective for improving sport 179 

performance. However, when capsaicin is ingested as food, the ergogenic effects are not consistent.  A 180 

7-day ingestion of cayenne herbal supplement totalling 25.8 mg.day-1 of capsaicin, did not result in 181 

improved 30m sprint times, nor a reduction in RPE or muscle soreness scores [64].  Whereas, Lim et 182 

al., [71] showed the ingestion of 10g of hot red peppers 2.5 hours prior to exercise (150w cycling for 183 

60 minutes) significantly elevated both respiratory quotient and blood lactate levels at rest and during 184 

exercise, suggesting increased carbohydrate oxidation. The differences in supplementation type 185 

(cayenne vs. red peppers), dose amount (25.8 vs. 12 mg) and protocol (repeated vs. acute) likely 186 

contributed to the variation in efficacy; the higher dose in particular, may negatively influence GI 187 

motility[13]. This is supported by a rodent study that found swimming endurance was optimal when 188 

mice were supplemented with 10mg/kg, 2 hours prior to performance [72]. This dose and ingestion 189 

timing appear to be a ‘sweet-spot’, with doses or timings that fall below or exceed these values proving 190 

ineffective or deleterious to performance, respectively [73]. It should be noted that a similar dosage in 191 



a human diet would equate to 100g of red chilli pepper consumption [74], which would be impractical 192 

and likely cause serious gastrointestinal (GI) discomfort [69]. 193 

 194 

As TRPV1 receptors are found in the oesophagus, stomach, intestine and colon [75], the possibility of 195 

GI discomfort is increased following capsaicin consumption. In a study where participants ingested 196 

capsaicin capsules, moderate visceral pain was reported following a median dose of 1mg [76]. Opheim 197 

& Rankin’s [64] repeated sprint study reported GI distress symptoms increased 6.3 times compared to 198 

placebo and resulted in 3 participants withdrawing from the study [64], thus capsaicin induced GI 199 

discomfort may deleteriously affect performance. A possible solution may be the use of a unique variety 200 

of chili pepper, CH-19 Sweet, which contains capsiate, a non-pungent capsaicin analogue that has been 201 

shown to activate TRPV1 [69,77] and return similar responses as capsaicin, including improving time 202 

to exhaustion in rodent studies [69,74]. Haramizu et al., [69] also observed no aversion to capsiate 203 

ingestion; like carbohydrate, efficacy of capsaicin supplementation may be less about the taste of the 204 

intervention, and more about the activation of desired receptors. 205 

 206 

In each of the aforementioned human studies [64-66], capsaicin was delivered via a capsule. As 207 

a result, receptors in the oral cavity were by-passed, eliminating capsaicin’s pungent oral 208 

sensation.  Recently, Gibson et al., [12], employed a 0.2% capsaicin mouth swill every 10-minutes 209 

during repeated 6-second cycle ergometer sprints in the heat (40°C, 40% relative humidity). This 210 

delivery method (mouth swill) directly targets TRPV1 channels in the mouth and reduces possible GI 211 

discomfort; yet, results showed no difference in peak power, work performed or RPE across 212 

experimental groups (control, placebo, menthol and capsaicin mouth swills).  Interestingly, thermal 213 

perception (comfort and sensation) was not altered after capsaicin mouth swill compared to control and 214 

placebo, but menthol trials reported significant improvements in thermal comfort [12].   215 

Despite many reported health benefits from the regular consumption of capsaicin (e.g. improved 216 

cardiovascular function, diabetes control, etc. [61]), the effect of capsaicin on sports performance is 217 



limited.  It would appear that acute supplementation (45-minutes prior to exercise) of low dose capsaicin 218 

(12mg) may induce an ergogenic response in near maximal exercise [65,66]. Further investigation on 219 

precise timing, dosage and delivery methods are required.  Minimising GI discomfort should be a 220 

primary consideration for researchers while still effectively stimulating TRPV1 channels. 221 

 222 

3.2 Menthol 223 

Menthol imparts its familiar minty flavour via stimulation of transient receptor melastatin 8 (TRP-M8) 224 

receptors. These sodium voltage gated ion channels are especially concentrated in the trigeminal nerve 225 

, which innervates the oral cavity, and when stimulated mimic a ‘cold’ temperature range (8-28ºC; [78]), 226 

feeling and tasting ‘cool’. The effects of menthol are inversely proportional to the thickness of the 227 

stratum corneum [11,79], hence application to the oral cavity often confers a greater stimulatory effect 228 

than topical menthol application [11,80]. Menthol can be experienced by anosmic individuals [81], 229 

emphasising its neurological mechanism [82,83], but the ability to detect menthol has been shown to 230 

decline with age [84] suggesting higher menthol concentrations may be required to elicit ergogenic 231 

effects in masters athletes.  232 

Menthol application to the oral cavity can be individualised by using a preferred menthol concentration 233 

and may be enhanced by using colour [29]. A relative dose is yet to be administered to athletes, but an 234 

experimental dose of 30mg/kg was prescribed by food scientists investigating the effects of carbonation 235 

and menthol upon oral cooling [85]. Partnering menthol’s chemosensory cooling effects with 236 

physiological coolants such as ice slurries may further enhance its efficacy [86-88], but there is an 237 

increased risk for overstimulation of the trigeminal system potentially resulting in “brain freeze” [89-238 

91]. 239 

Performance literature to date has assessed the effects of menthol mouth swilling upon cycling in 240 

intermittent [12] and time to exhaustion [25,26,92] models, as well as running time trial performance 241 

[27,93]. Intermittent performance was not improved, however time to exhaustion and time trial 242 

performance demonstrate trivial-moderate improvements (Hedge’s g: 0.40; 0.04 – 0.76 [18]). 243 



Concomitant improvements in thermal comfort and thermal sensation are noted following menthol 244 

exposure [12,25,27,92,93], with an increase in ventilation also reported [25-27]. These effects are likely 245 

mediated by TRP-M8 expression and stimulation of jugular and nodose neurons which provide 246 

interoceptive feedback from the alimentary organs and the cardiorespiratory system [94,95]. This may 247 

explain the increase in ventilation seen with menthol mouth swilling. The rate and volume of airflow 248 

passing through the nasal canal also increase TRP-M8 activity and ventilation [96-98]. Whilst this can 249 

be contrived in the laboratory, it is likely that this effect is more apparent in ecologically valid settings 250 

with faster wind and performance velocities. 251 

Despite participants reporting feeling cooler, no changes in body temperature have been reported to 252 

date following the oral application of menthol exclusively [12,25-27,92,93]. An emerging secondary 253 

effect of menthol use is an attenuation of thirst [23], however the potential ergogenic and contextual 254 

relevance of this is unknown as of yet, highlighting that menthol should be applied to sport cautiously. 255 

Thirst, more so than taste, conveys a homeostatic message regarding hydration status [99,100]; 256 

however, thirst can also be quenched by carbonated and cool/cold products [85,100-103] emphasising 257 

the role of TRP-M8 receptors in our somatosensory interpretation of cool and refreshing [104-107] and 258 

the potential for deception driven dehydration if water intake is attenuated in an event where hydration 259 

status is performance limiting e.g. ultramarathon [108,109], or in athletes with abnormally high sweat 260 

rates [110]. 261 

 262 

3.3 Thermal Tastants Section Summary 263 

Whilst the research pertaining to the TRP channel afferents capsaicin and menthol is in its infancy, in 264 

comparison to caffeine and carbohydrate, these thermal tastes may prove ergogenic under certain 265 

circumstances and likely serve to disrupt an athlete’s perception of their thermal state, which may be 266 

ergogenic of itself. Individual sensory thresholds for effective doses likely exist, and timing of 267 

administration requires further elucidation, with the potential impact of these strategies on GI 268 

discomfort an important consideration. What is clear though, is that if capsaicin and menthol are to be 269 



supplemented, attaining meaningful doses via wholefoods would either be impractical or ineffective 270 

[73,111] 271 

4. The sweet taste of placebo  272 

The ergogenic effect of taste could be influenced by the placebo effect. The placebo effect is a desirable 273 

outcome resulting from a person’s expected and/or learned response to a treatment or situation [28].  274 

Placebo effects have shown to improve sport performance [112-114], with a systematic review reporting 275 

small to moderate effects for nutritional (d = 0.35) and mechanical (d = 0.47) ergogenic aids [115]. 276 

Placebo effects are often created within a psychosocial context that influences a person’s response to a 277 

placebo. These include the interaction between the person receiving the placebo and the person 278 

administering it (e.g. participant and researcher), the environment in which it is delivered (e.g. 279 

laboratory) and sensory processes, such as colour, smell and taste [28]. The placebo effect is therefore 280 

a response to a signal, or set of signals, which convey information that trigger self-regulatory 281 

mechanisms.  282 

While there are many theories to propose the underpinning mechanisms of the placebo effect (e.g. 283 

expectancy theory, classical conditioning), in this paper we adopt a broader and general conception that 284 

the placebo effect of taste could be explained through an anticipation on resource allocation. Beedie et 285 

al., [116] recently argued that the brain modulates and anticipates the relationship between a signal (e.g. 286 

taste) and the body, which regulates subsequent resource allocation. Based on this understanding, the 287 

taste of glucose, for example, signals to the brain that resources will soon be available, which in turn, 288 

regulates the resources allocated. Theoretically, if a placebo tastes like glucose, the brain would 289 

anticipate that glucose has been received and subsequently offloads more resources. In short, the 290 

placebo effect may impact the ergogenic effect of taste through its application of signalling to the brain 291 



that more resources are available, which sets in motion a chain of self-regulatory responses that produce 292 

an improvement in performance1.  293 

Research into taste and the placebo effect on sport performance is limited. However, early research into 294 

the placebo effect provides compelling evidence of the significant role taste can have for inducing 295 

placebo effects and influencing physiological responses. Ader and Cohen [119] administered a 296 

distinctly flavoured drink followed by a toxic agent capable of suppressing the immune system. After 297 

repeat administrations of the drink and toxic agent, the taste of the drink alone resulted in an 298 

immunosuppression response. Similarly, Olness and Ader [120] reported a clinical case study of a child 299 

with lupus erythematosus (an autoimmune disease) after administering cyclophosphamide paired with 300 

taste and smell stimuli similar to Ader and Cohen [119]. After initial pairings of the drug with the 301 

sensory stimuli, the taste alone was administered and the patient’s symptoms improved after 12 months. 302 

The publication of these studies resulted in a proliferation of similar taste aversion research [121], which 303 

has demonstrated the influence of taste and anticipatory responses in inducing placebo effects. 304 

It is likely that placebo effects of taste are mediated by neurobiological pathways. While there are many 305 

neurobiological pathways associated with the placebo effect, a large amount of research has investigated 306 

the role of the endogenous opioid system [122]. This is not surprising given that μ-opioid receptors are 307 

located throughout the brain are critical for the reduction of pain [123]. Amanzio and Benedetti [124] 308 

exposed participants to a conditioning procedure of the opioid drug buprenorphine and measured pain 309 

tolerance and endogenous opioid release in the brain. After repeat trials of the opioid drug, when 310 

replaced with saline, pain tolerance significantly increased compared to baseline, which was mediated 311 

by increases in activation of the endogenous opioid system. Similar results have been reported 312 

 
1 Providing an explanation for why this occurs is outside the scope of the paper, but we refer the reader 

to the work of Humphrey [117] and Miller, Colloca and Kaptchuk [118], who offer a more thorough 

explanation.  

 



elsewhere [125,126], and highlight the significant mediating role the endogenous opioid system has for 313 

inducing placebo effects. 314 

Like placebo effects, taste receptors can also mediate the release of endogenous opioids [127,128]. 315 

Although the magnitude of the effect can depend on age and gender[129], the sweet taste of glucose 316 

and sucrose can modulate the production of endogenous opioid release [130], whereas administration 317 

of sucrose directly to the stomach has no effect [131]. This suggests that sweet taste can have analgesic 318 

effects. However, where the ergogenic effects of taste tend to report pain relieving effects, placebo 319 

effects are often the result of similar mechanisms e.g. pain, fatigue and perception of effort 320 

[113,114,132]. While taste could have direct neurobiological mechanisms, there is evidence that 321 

placebo effects can mimic the neurobiological pathways of a treatment [133]. It could be suggested that 322 

the same pathways activated by taste are also activated by the administration of a placebo. We are by 323 

no means implying that the ergogenic effects of taste are the result of a placebo effect, but we, like 324 

others [28,134,135], are suggesting that the mechanisms in which a nutritional ergogenic aid exerts it 325 

effect is likely to be a combination of both. As with most treatments and interventions on sport 326 

performance, the ergogenic effect of taste will be influenced via the placebo effect (see Beedie, Foad & 327 

Hurst [134]). It is likely that they are both components of a self-regulatory system that act as signals to 328 

the brain for resource allocation, which are likely mediated by neurobiological pathways, such as the 329 

endogenous opioid system. However, there is a lack of research in sport explicitly examining whether 330 

the ergogenic effect of taste and the placebo effect activate shared or distinct mechanisms. To help 331 

develop knowledge and understanding in this area beyond speculation, empirical research is needed 332 

that examines whether the placebo effect of taste is partially or fully responsible for its ergogenic effect.  333 

5. Practical Recommendations 334 

Tastants have the potential to be employed as ergogenic strategies during sport and exercise 335 

performance, with tentative evidence supporting the efficacy of sweet [14], bitter [19], spicy [65], and 336 

cooling [11] tastants. However, consideration of event demands, nutritional state of the athlete and 337 

athletes’ performance environment are strongly recommended to successfully employ taste related 338 

strategies in athletic settings. Developing taste related strategies with regular input from athletes also 339 



allows for maximisation of other sensory factors such as colour and odour, which may confer further 340 

psychological and performance benefits through placebo effects. At present, given the evidence 341 

discussed, we can tentatively suggest that athletes undertaking aerobic endurance and/or repeated high 342 

intensity efforts may benefit from the use of sweet-tasting carbohydrate or bitter-tasting beverages, with 343 

the addition of caffeine. Similar to carbohydrate and bitter tastants, athletes may benefit from menthol 344 

supplementation during endurance exercise, whereas capsaicin ingestion may be of use during activities 345 

that are near maximal in nature. Menthol may be administered as a mouth rinse, at concentrations 346 

between 0.01% and 0.1% [29] and can be employed throughout the exercise bout. Capsaicin may be 347 

ingested as a capsule containing a 12mg dose, 45 minutes prior to maximal effort exercise. All strategies 348 

should be trialled prior to use in competition, and the potential for GI disturbance using a validated tool 349 

[136]. In using these beverages, there may be additional advantages—and no obvious negatives—350 

gained by the athlete from rinsing the liquid around the oral cavity prior to ingestion. Furthermore, 351 

augmented ergogenic effects may occur if the athlete recognises a taste as performance-enhancing via 352 

expectancy and placebo effects [15]. 353 

6. Future Research Directions 354 

Future research in taste and athletic performance should consider investigating differences between 355 

tasting, swilling and ingesting, and their subsequent effects upon performance; this is especially 356 

important given the emerging research that ingestion of bitter tastants such as quinine and caffeine is 357 

required to maximise their ergogenic effects above those demonstrated through mouth-rinse only [15]  358 

Each strategy exposes tastants to different densities and volumes of taste receptors, and may be 359 

accompanied by other sports nutrition strategies, so the inclusion of tastants need to be weighed against 360 

established ergogenic strategies such as maintaining carbohydrate availability during an event. The 361 

optimal dose of each tastant, including their physiological tolerance and associated side-effects, also 362 

represent an important practical avenue for future research. Similarly, habituation to tastants is also 363 

worthy of investigation, as we must understand the time course of these strategies to maximise their 364 

efficacy. It is acknowledged that there is likely a strong genetic underpinning to preference and 365 

responses to tastes [137,138]. Some work has already begun in caffeine [139,140], carbohydrate 366 



[141,142] and TRP-M8 [143], but understanding the genetic contributions to liking, or tolerance for, 367 

thermal tastes and bitterness may confer further benefits beyond athletic populations. 368 

7. Conclusion 369 

This review synthesises the evidence from a variety of tastes that have shown ergogenic promise with 370 

respect to athletic performance. This efficacy is not limited to taste per se, but extends to the stimulation 371 

of targeted receptors in the oral cavity and throughout the digestive tract, which relay signals pertaining 372 

to energy availability and temperature to appropriate neural centres. Timing of tastant application, dose 373 

and frequency of application likely require personalisation to be most effective, and can be enhanced 374 

or confounded by factors that relate to the placebo effect. 375 

  376 
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