Construction Industry Offsite Production: A Virtual Reality Interactive Training Environment Prototype

Goulding, Jack Steven, Nadim, Wafaa, Petridis, Panagiotis and Alshawi, Mustafa (2012) Construction Industry Offsite Production: A Virtual Reality Interactive Training Environment Prototype. Advanced Engineering Informatics, 26 (1). pp. 103-116. ISSN 1474-0346

[thumbnail of Publisher's Post-Print for classroom teaching and internal training purposes at UCLan] PDF (Publisher's Post-Print for classroom teaching and internal training purposes at UCLan) - Published Version
Restricted to Registered users only

1MB

Official URL: http://dx.doi.org/10.1016/j.aei.2011.09.004

Abstract

The ‘traditional’ constructionindustry has constantly been challenged to improve its inherent problematic practices. Offsite production (OSP), under the umbrella of modern methods of construction (MMC), has been acknowledged as a means to help improve constructionindustry performance as well as meet new market demands through the provision of improved, adaptable, and sustainable buildings. However, the deployment of OSP systems, if not managed properly, may adversely affect the end result and be counterproductive. It is therefore imperative that the constructionindustry stakeholders learn and appreciate the specifics, merits, as well as the risks associated with OSP systems in order to achieve the desired outcomes and consequently improve industry performance.

On-the-job-training (OJT) is usually sought to facilitate ‘experiential’ learning, which is argued to be particularly effective where a great deal of independence is granted to the task performer. However, OJT has been criticised for being expensive, limited, and sometimes devoid of the actual training context. In order to address the problems encountered with OJT, several virtualreality (VR) solutions have been proposed. This paper introduces one such VR solution prototype, in order to provide a risk-free environment for learning without the ‘do-or-die’ consequences often faced on real construction projects. The proffered solution provides a unique VR environment for practicing new working conditions associated with OSP practices. While the ‘scenes’ of the VR environment take place on aconstruction site, the environment predominantly targets professionals, such as project managers, construction managers, architects, designers, suppliers and manufacturers, to allow multidisciplinary learning to occur, and hence overcome ‘knowledge silos’ or ‘knowledge compartmentation’. The VR environment enables unforeseen problems often caused by professionals’ decisions, faulty work, and health and safety issues to occur; where the implications of which can be evaluated in respect of time, cost and resources. The VR environment proposed does not aim to resolve problems associated with OSP per se, rather aims to allow ‘things to go wrong’ and consequently allows users not only to ‘experience’ the resulting implications but also to reflect on those implications as part of the learning process. This paper discusses and presents the prototype for the first development phase of the VR interactivetrainingenvironment. While the prototype was tested and validated with domain experts from industry, the research community, and academia from different EU countries, the data used in developing the prototype was constrained to one project in the UK which may limit the generalisability of results.


Repository Staff Only: item control page