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Abstract 12 

The microbiota of “chronic” periodontitis, particularly Porphyromonas gingivalis, have been 13 

implicated in Alzheimer’s disease (AD) because this bacterium has a range of enzymes 14 

(cathepsin B and gingipains) that are shown to interact with the amyloid precursor protein 15 

(APP) and neuronal tau resulting in the formation of amyloid-beta (Aβ) and neurofibrillary 16 

tangles (NFTs). These two lesions remain pivotal to explaining AD pathogenesis alongside of 17 

clinical symptoms. Deposits of Aβ in the brain can start 10-20 years before the clinical 18 

symptoms of cognitive decline and the diagnosis of AD is established. It is rarely mentioned 19 

that the AD risk doubles if the individual has received a diagnosis of periodontitis for around 20 

10 years. This editorial is a review of recent but salient literature supporting the idea that 21 

periodontal disease can contribute to a systemic Aβ pool that may enter the brain over time. In 22 

addition, intracerebral production of Aβ can be initiated by P. gingivalis, which occurs via 23 

host and bacterially derived cathepsin B acting as β-secretase to process the APP via the 24 

amyloidogenic pathway yielding Aβ3-42. These findings support a systemic and an 25 

intracerebral Aβ contribution from “chronic” periodontitis in subsequent AD development. 26 

 27 

Keywords Inflammation; microbiota; periodontitis; systemic; amyloid; Aβ3-42; cathepsin B;   28 
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Introduction 29 

 Generalized (“chronic”) periodontitis, a common inflammatory disease affecting the 30 

supporting tissues of teeth, has been associated with several systemic diseases, e.g. 31 

cardiovascular diseases, diabetes, adverse pregnancy outcomes, rheumatoid arthritis, 32 

respiratory diseases, and Alzheimer’s disease (AD).1-7 Bacteria of the periodontal pocket can 33 

spread through the blood stream, which is the common but not the only way of systemic 34 

bacterial dissemination in periodontitis.8 Dental treatment, tooth brushing, flossing, chewing, 35 

and use of tooth-picks in a patient with periodontitis will release a bacteremia.9 This can occur 36 

several times during the day and has been estimated to last for up to 3 hours.10 Tooth-related 37 

bacteremia contains a wide spectrum of bacteria11 among which the Gram-negative anaerobic 38 

rod Porphyromonas gingivalis seems to have a key role in the adult form of generalized  39 

periodontitis.12,13 40 

 A plethora of studies firmly place P. gingivalis but not its companion species (for 41 

example Tannerella forsythia and Treponema denticola in the red complex13) as a risk factor 42 

for AD. This is because P. gingivalis is adept at modifying the peripheral and intracerebral 43 

immune responses.14-16 Furthermore, this bacterium has a range of enzymes including 44 

cathepsin B17 and gingipains18 that are respectively shown to interact with the amyloid 45 

precursor protein (APP) and neuronal tau resulting in the formation of amyloid-beta (Aβ) and 46 

neurofibrillary tangles (NFTs),19,20 which are the cardinal hallmarks of AD. Prospective, 47 

retrospective population-based and nested control studies have shown that the risk of 48 

developing the sporadic form of AD doubles when periodontal disease persists for about ten 49 

years.21-23 This is evident from the fact that a large section of individuals who go on to 50 

developing clinical AD also suffers from periodontitis.  51 

Brain inflammation, characterized by increased activation of microglia and astrocytes, 52 

increases during aging and is a key feature of AD.24 This has been explained in terms of the 53 

hallmark lesions of AD, which are Aβ40/42 extracellular deposits in the form of plaques and 54 

hyperphosphorylated tau protein associating with intraneuronal lesions called NFTs. 55 

Accumulation of Aβ plaques results from the proteolytic cleavage of the APP by β- and γ-56 

secretase enzymes.25,26 These secretases are different in AD driven by bacterial infections 57 

compared to the classically described site-specific secretases in the mutated APP of AD.27, 28 58 

Similarly, toxic proteases from P. gingivalis called gingipains have been identified in the 59 

brain of AD patients, and the levels correlated with tau and ubiquitin pathology.15  60 
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Aβ is classically believed to be produced by neurons within the AD brain irrespective 61 

of the trigger that causes its release. However, this view is changing, as some researchers 62 

believe the peripheral/systemic Aβ pool is also a contribution from platelets, skeletal muscle 63 

cells, skin fibroblasts, and monocyte/macrophages29-31 and this has implications for AD 64 

pathogenesis over time. Production of inflammagens such as gingipains and 65 

lipopolysaccharide (LPS) secreted by P. gingivalis also occurs in the periodontal pocket 66 

where inflammatory macrophages are reported to bear Aβ.32 Gil-Montoya et al.33 have 67 

reported increased plasma Aβ1-42 levels in individuals who have severe periodontal disease. 68 

Thus Leira et al.34 found when experimental periodontitis was induced in Sprague-Dawley 69 

rats, a strong positive correlation between alveolar bone loss and Aβ1-40 serum levels at 7 days 70 

(r = 0.695, P = 0.012) and with serum Aβ1-42 concentrations at 21 days (r = 0.968, P = 0.002).  71 

Taken together, Aβ also being generated peripherally in platelets, skin fibroblasts and skeletal 72 

muscles 29, 30  may enter the circulating blood.31 The present editorial aims to discuss whether 73 

P. gingivalis can contribute to systemic and intracerebral pools of Aβ. 74 

 75 

P. gingivalis induces systemic Aβ production in infected mice 76 

Nie et al.32 recently reported that chronic, systemic P. gingivalis infection increased the 77 

inflammatory responses and proteins associated with Aβ-production in the liver of mice. The 78 

liver was chosen for the peripheral Aβ source in macrophages because of the general 79 

abundance of these cells.32 Nie et al.32 observed that P. gingivalis infection in mouse liver 80 

macrophages, caused a rapid production of interleukin 1-beta (IL-1β) and thereafter an 81 

intracellular accumulation of Aβ through activation of Toll like receptor 2 /nuclear factor 82 

kappaB (TLR2/NF-κB) signaling. NF-κB-dependent cathepsin B appeared crucial for 83 

cleaving pro-IL-1β and processing APP to induce the accumulation of pathogenic Aβ3-42, 84 

which was significantly increased in liver macrophages of the P. gingivalis-infected mice. 85 

This original study demonstrated peripheral pools of Aβ due to periodontitis in macrophages 86 

within the periodontal tissue and in mice hepatic macrophages following P. gingivalis 87 

infection. In a follow-up study, Zeng et al.17 induced systemic P. gingivalis infection in mice 88 

by intraperitoneal injections containing (1 x 108 CFU/mouse every three days) for three 89 

weeks. This significantly increased the expression of the advanced glycation end products 90 

(RAGE) receptor in the cluster of differentiation 31 (CD31)-positive endothelial cells. This 91 

implied that P. gingivalis systemic infection up-regulated RAGE expression in cerebral 92 

endothelial cells and facilitated Aβ entry into the mouse brain. Cathepsin B was suggested to 93 

be a contribution from the bacterium and the host with a critical role in regulating the NF-94 
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ĸB/RAGE expression and in the processing of APP. This study further supported the Nie et 95 

al.32 concept for the potential in systemic spread of peripheral Aβ to the brain from P. 96 

gingivalis infection. In a proof of concept study, Bu et al.31 had demonstrated the plausibility 97 

of peripheral Aβ entry to the brain being facilitated by the RAGE receptor within cerebral 98 

endothelial cells.17 An alternative mode of peripheral Aβ entry into the brain is via 99 

macrophages of the lymphatic system.35 100 

Another focus of Nie and colleagues32 was Aβ1-42, which is classically considered as 101 

the toxic form of Aβ. They observed that Aβ3-42 (Fig. 1) not only occurred earlier but was also 102 

two-fold higher than Aβ1-42 in the AD brain.32 In AD, Cathepsin B stimulated intracellular 103 

production of Aβ in the brain, including the Aβ3-42. Interestingly, Aβ3-42 following P. 104 

gingivalis-infection in mice generated IL-1β, which is a proinflammatory cytokine.32 IL-1β, 105 

participated in increasing the in vivo levels of Aβ3-42 in the hepatic macrophages of P. 106 

gingivalis-infected mice and in vitro P. gingivalis-infected macrophages. Furthermore, Aβ3-42 107 

was induced by P. gingivalis infection, which had caused significant death of macrophages 108 

and reduced their phagocytic capacity compared to that of Aβ1-42, suggesting Aβ3-42 is very 109 

toxic. Aβ3-42 was also detected exclusively in the AD brain, and this corroborates with the 110 

significantly more toxic form than Aβ1-42.
32 This study agreed with that of Leira et al.34 who 111 

reported that LPS from P. gingivalis increased Aβ protofibrils in the serum of rats. After 112 

experimental periodontitis had been induced in male Sprague-Dawley rats it caused an acute 113 

elevation of Aβ1-40 in serum that lasted during the whole experiment. Aβ1-42 peptide levels 114 

however, peaked at the end of the study.  115 

 116 

P. gingivalis also generates Aβ in the periodontium and within the brain 117 

Systemically produced Aβ probably occurs in addition to locally generated Aβ in the 118 

periodontium and in the brain induced by P. gingivalis. As mentioned, Leira et al.34 found a 119 

strong positive correlation between alveolar bone loss and Aβ1-40 serum levels at 7 days 120 

(r = 0.695, P = 0.012) and with serum Aβ1-42 concentrations at 21 days (r = 0.968, P = 0.002). 121 

Intracerebral production of Aβ generated by P. gingivalis has been seen in the brain of 122 

experimental wild type animals and with AD transgenes.19, 30-32 Ilievski et al.19 found that 123 

chronic oral application of P. gingivalis to wild type mice resulted in deposition of 124 

extracellular Aβ1-42 together with neurodegeneration and intracerebral inflammation, as 125 

demonstrated previously by Poole et al.36 Similarly, Wu et al.37 found that chronic exposure to 126 
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LPS from P. gingivalis for five consecutive weeks caused learning and memory deficits 127 

together with intracellular accumulation of Aβ in neurons of middle-aged wild-type mice. 128 

Taken together, these reports suggest that P. gingivalis can induce both a local periodontal 129 

and a systemic Aβ production, thereby contributing to a pool of Aβ that can enter the brain 130 

facilitated by the endothelial RAGE receptor. 131 

  132 

P. gingivalis interferes with components of the peripheral immune system aimed to 133 

defend the brain  134 

Unexpectedly, recent research has shown that even components of the peripheral immune 135 

system, such as macrophages can participate in defending the brain from insults occurring 136 

outside the brain.38 However, P. gingivalis has the ability to abolish the anaphylatoxin 137 

complement component 5a (C5a) in macrophages thereby undermining TLR2/4 immunity and 138 

degrade some of the complement receptor 1 (CR1) molecules that help clear amyloid via the 139 

spleen.39 Whether this affects other macrophages in a similar way is not known. Further 140 

immune evasion strategies of P. gingivalis in relation to AD are discussed elsewhere.40  141 

 142 

Concluding remarks 143 

We have communicated that monocytes/macrophages from the periodontium and the liver 144 

may provide an additional circulating pool of unique Aβ3-42 fragments in patients with 145 

periodontitis. Entry of P. gingivalis and/or its gingipains and LPS into the brain due to a 146 

defective blood-brain barrier can lead to intracerebral deposition of Aβ plaques. These 147 

findings support the notion that the adult form of generalized periodontitis via P. gingivalis, 148 

contributes to both an oral and hepatic cellular source of cells that add to the systemic pool of 149 

Aβ. This peptide can also be a contribution of other cell sources of peripheral organs like skin 150 

smooth cells and platelets which have the potential to transport Aβ to the brain and over time  151 

may play a role in AD pathogenesis. Deposits of Aβ in the brain can start 10-20 years before 152 

cognitive decline and the diagnosis of AD. This agrees with the timeline of at least 10 years 153 

required for periodontitis to initiate AD and emphasizes the need for meticulous dental 154 

hygiene as a feasible prophylaxis for AD.  155 

 156 
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Figure legend 298 

Fig. 1 summarizes the Nie et al.32 vision as interpreted by Olsen and Singhrao for the 299 

contribution to AD of peripheral pools of Aβ, specifically Aβ3-42. It is generated by P. 300 

gingivalis (Pg) oral infection that eventually reaches the liver and the brain. The proposed 301 

signaling pathway (TLR2,4/NF-ĸB) is also indicated where it is likely to act liberating 302 

interleukin-1β (IL-1β) cytokine that facilitates the amyloid precursor protein cleavage of Aβ 303 

via secretase enzymes, one of which is cathepsin B.  The low-density lipoprotein 304 

receptor-related protein 1 (LRP1) is the receptor for Aβ transport from the brain to the 305 

peripheral blood. The Aβ from the systemic circulation can enter the brain using the advanced 306 

glycation end products (RAGE) receptor. Nie et al.32 have shown Aβ within the gingival 307 

tissues of periodontitis patients and in the liver of middle-aged mice after chronic systemic P. 308 

gingivalis infection, thereby contributing to the peripheral pools of Aβ. Some researchers 309 

believe the peripheral Aβ also comes from platelets, skeletal muscle cells, skin fibroblasts, 310 

and monocyte/macrophages. The implications of the peripheral Aβ is that it can also enter the 311 

brain and contribute to AD pathology as shown by Bu et al.31 312 
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