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Abstract 

First isolated in 2009 from the ear canal of a Japanese patient, Candida auris has 

become a growing concern. It has been found to have a similar profile of virulence 

to Candida albicans. It forms biofilms and produces phospholipase and protease 

activity. The virulence of C. auris varies according to the strain, with aggregating 

strains showing less virulence than non-aggregating strains, though reports find 

it to be less virulent overall than C. albicans. Alarmingly, however, it has shown 

greater resistance to multiple drugs from all three classes of antifungals and 

routine cleaning protocols. Most at risk of invasive and systemic infections are 

severely immunocompromised patients in intensive care settings particularly 

those with a urinary catheter in situ. Due to impaired immunity and associated 

comorbidities, patients with diabetes mellitus are considered a high-risk group. 

The study investigated whether synthetic urine mimicking the high glucose and 

low pH conditions found in diabetic urine would increase the production of 

biofilms, protease and phospholipase of an aggregating (NCPF 8977) and non-

aggregating strain (NCPF 8971) of C. auris. C. auris was found to grow well in 

the synthetic urine media in its planktonic form where the culture medium is 

shaken to preventing biofilm formation, and the growth increased in line with 

glucose concentration and varied in respect to pH with pH 5.6 showing less 

growth than pH 5.2 or pH 6.3. The study found that there was no significant 

change in biofilm formation at any of the tested pH levels and glucose 

concentrations. However, variation in phospholipase and protease activity was 

seen when the conditions were altered, and this appeared to be in a strain 

dependent manner. Other studies have shown that C. auris produces protease 
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and phospholipase in a strain dependent manner, though this study has shown 

that this can vary with respect to glucose and pH.  
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1: Introduction 

1.1 Aim 

This MSc (by research), entitled “Determination of the role of glucose and pH in 

the production of biofilms, phospholipase and protease in Candida auris” aims to 

determine whether there is increased virulent activity in two strains of the fungal 

pathogen C. auris in synthetic urine supplemented with increasing glucose 

concentrations and varying pH levels. Biofilm formation, phospholipase and 

protease are recognised virulence factors, which aid the in vivo spread and 

colonisation of the organism. Here we will determine whether synthetic urine 

mimicking the raised glucose and low pH as seen in diabetes mellitus would 

increase the virulence of two strains of Candida auris.  

 

1.2 Diabetes mellitus 

1.2.1 Brief summary 

According to Zaccardi et al (2015), diabetes mellitus (DM), more commonly 

referred to simply as diabetes, is a group of diseases that occur as a result of 

impaired insulin production or impaired insulin sensitivity. Mayer1 et al (2007) 

describe insulin as a 51-residue protein consisting of two chains, an A chain and 

a B chain, connected by disulphide bonds. It is produced in β-cells in the Islets of 

Langerhans in the pancreas and its main roles are to stimulate the absorption of 

glucose and to suppress hepatic gluconeogenesis. Gluconeogenesis is largely 

performed in the liver and is a method of glucose regulation whereby glycogen 

stored in the liver is converted to glucose during periods of fast when systemic 

glucose levels are depleted. This process is regulated by insulin to maintain blood 
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glucose levels (Hatting et al., 2017). DM includes type I (DMI) which usually has 

its onset in childhood and is characterised by the failure of the pancreas to 

produce insulin or to produce it in sufficient quantities leading to insulin deficiency. 

Type II DM (DMII) usually has its onset in adulthood and occurs generally as a 

result of obesity, a high fat and sugar diet, and lack of exercise. DMII typically 

involves a resistance or reduced sensitivity to insulin. Gestational diabetes is a 

form of DM that occurs in pregnancy and is usually resolved following delivery of 

the baby. The insulin resistance or deficiency seen in DM leads to poor regulation 

of gluconeogenesis and raised blood glucose levels (hyperglycemia) (Zaccardi et 

al., 2015) above the normal fasting blood glucose of around 0.6 – 1.0 mg/mL 

(Güemes et al., 2015). Long-term hyperglycemia can have implications for health 

and can lead coronary heart, cerebrovascular, nephropathy, retinopathy and 

neuropathy complications. Prolonged high blood glucose levels can lead to the 

excretion of glucose into the urine, this process is regulated by the kidneys (Lofty 

et al., 2016). The kidneys are two bean shaped organs situated in the left and 

right retroperitoneal space. The kidney is highly vascularised and receives 

around 25% of cardiac output. It participates in the removal of toxins and balance 

of fluid and constituents of blood entering the kidney via the renal arteries and 

exiting via the renal veins. The nephron, of which there are around 1 million, is 

the functional unit of the kidney and is formed of a filtering unit called the 

glomerulus, which filters water and small solutes from plasma, and a tubular 

region made up of the proximal tubule, the loop of Henle, and the distal tubule 

which are responsible for the reabsorption of electrolytes, amino acids, proteins 

and glucose, any remaining water and solutes are excreted as urine (Hoenig & 

Zeidel., 2014). In a healthy person, the glomeruli filter around 180 g of glucose 
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from plasma each day and virtually all of this glucose is reabsorbed. The 

reabsorption is mediated by sodium-glucose linked transporter (SGLT) proteins 

present in the cell membrane of the proximal tubule and a healthy individual will 

have a zero-net excretion of glucose in the urine. The transporter proteins are 

only able to reabsorb approximately 375 mg glucose/min and when the blood 

glucose level exceeds 1.6-1.8 mg/mL and once the threshold for reabsorption is 

exceeded, the excess glucose is excreted in the urine (glucosuria) as seen in DM 

(Zaccardi et al., 2015). 

1.2.2 Urinary infections in diabetes 

Patients with DM are at an increased risk of urinary tract infections. The reason 

for the increased risk is largely unknown though it is proposed that glucosuria, 

impaired immune response and leukocyte function are amongst the possible risk 

factors (Nicolle., 2014). Tandogdu and Wagenlehner (2016) consider DM a 

primary risk of UTIs alongside age, previous history of UTI and sexual activity. 

UTIs are more common in women, though age increases the risk of UTI in men. 

DM is associated with comorbidities and according to the Public Health England 

(PHE) (2018), DM is the largest single cause of end-stage renal failure and 

excluding accidents, the greatest cause of lower limb amputations, in addition to 

higher rates of cardiac disease, foot ulcers and nerve damage. McAllister et al 

(2014) found that patients with high blood glucose levels of >11.1 mmol/L 

admitted to Intensive Care Units (ICU) for cardiovascular and respiratory 

diseases had prolonged hospital stays, poorer prognoses and higher rates of 

mortality than those with a blood glucose level of <6.1 mmol/L. According to the 

Health Innovation Network (2016), 56% of UTIs are associated with indwelling 

urinary catheters. Shackley et al (2017) report that catherization rates across the 
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UK vary amongst hospital sites and range between 12-26%, though the highest 

catheterisation rates are seen ICU settings where over 70% of patients have an 

in situ indwelling urinary catheter. Catheterisation is more prevalent in males than 

females is more common in patients aged >70 in a hospital setting. The rationale 

for catheterisation varies and detailed statistics are unavailable, though Shackley 

et al (2014) offers an explanation for gender variation and suggests that males 

are catheterised more than females due to their susceptibility to prostate 

disease and the increased likelihood of urinary retention following surgery. 

However, the presence of a urinary catheter increases the risk of a catheter 

associated UTI (CAUTI). Maxwell et al (2014) states that each day a catheter is 

left in situ increases the risk of CAUTI by 5%. In-dwelling medical devices such 

as urinary catheters are associated with biofilm formation and have been widely 

studied in relation to Candida albicans. Reports vary, though the use of urinary 

catheters is implicated in over 60% of cases of infection with C. auris (Snyder & 

Wright., 2019).  To date, there is little evidence to determine if C. auris is 

associated with increased risk of infection with respect to increasing 

concentrations of urine glucose.  

1.3 Structure of a typical yeast cell 

Yeasts are unicellular eukaryotic organisms and they contain almost the same 

organelles as those found in more complex eukaryotic organisms which include 

endoplasmic reticulum, Golgi apparatus, mitochondria, cytoplasm, ribosomes, 

cytoskeleton etc. Yeast cells also have a cell wall. The cell wall is mostly 

comprised of polysaccharides, proteins and lipids, and provides the cell with 
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rigidity and structure and protection from shearing forces. The cell wall plays a 

role in the adhesion of the cell to surfaces and in pathogenesis (Murray., 2016).  

1.4 Candida auris 

Candida auris, is a newly emerging yeast pathogen which was first identified in 

2009 in the ear canal of a Japanese. It can colonise the skin and mucosa and 

lead to invasive and systemic infections in immunocompromised patients (Satoh 

et al., 2009). The Center for Disease Control (CDC) (2018), the World Health 

Organisation (WHO) (2018), PHE (20171) and many other health organisations 

all consider C. auris to be an emerging concern as it has shown resistance to 

multiple drugs from all three classes of antifungal drugs used in Candida spp. and 

to standard cleaning regimens (Ku et al., 2018). 

1.4.1 Antifungal drugs 

Antifungal drugs are grouped into three main classes based on their site of action: 

azoles, polyenes and echinocandins. Azoles, such as clotrimazole and 

miconazole, inhibit the synthesis of ergosterol, a vital component in fungal cellular 

membranes. Polyenes, which include amphotericin B and nystatin, disrupt the 

formation of fungal cell membranes by binding to ergosterol. Echinocandins like 

capsofungin and micafungin inhibit the synthesis of (1,3)-beta-d-glucan synthase, 

a vital cell wall component of many fungi. Allylamines are another class of 

antifungal drugs which also target sterol synthesis, though they are not used in 

the treatment of Candida infections (Owens et al., 2010).  

According to the CDC, around 90% of C. auris isolates were found to show 

resistance to fluconazole, about 30% are resistant to amphotericin B and <5% 

have been resistant to echinocandins. 
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Analysis of the C. auris genome by Rossato and Colombo (2018) has revealed 

many uncharacterised proteins, though it has been shown to be closely related 

to four other Candida species: Candida heamulonii, Candida duobushaemulonii, 

Candida pseudohaemulonii and Candida lusitaniae. Around 40% of C. auris 

proteins are orthologus to those of C. lusitaniae which also has limited 

susceptibility to amphotericin B. C. haemulonii also has limited susceptibility to 

amphotericin B and azoles. The CDC (2019) also report that isolates have shown 

a mutation in the Erg11 gene responsible for encoding the azole target enzyme 

14-demethylase (Erg11p), which suggests that C. auris would be unlikely to 

respond to fluconazole. Erg11 mutations have long been associated with azole 

resistance in C. albicans (Xiang et al., 2013). The C. auris genome demonstrates 

genes well-characterised in the role of biofilm formations, the production of 

proteases, phospholipases and transporter proteins which likely contribute to its 

azole resistance as well as to its virulence (Cortegiani et al., 2018).  

1.4.2 Epidemiology of Candida auris 

There have been multiple confirmed cases of C. auris reported throughout the 

world including over 1500 cases in South Africa (Govender et al., 2018). By 

October 2018, there had been 433 confirmed cases in the United States of 

America with a further 30 probable cases (CDC, 2018). In April 2018, the 

European Centre for Disease Prevention and Control (ECDC) published the 

Rapid Risk Assessment, until that time there had been 620 reported cases of 

infection or colonisation throughout Europe. Of these, 221 incidences were 

reported in the UK at 35 hospital sites in patients who had been transferred from 

3 hospitals where the largest outbreaks were seen. Most of the cases of infection 
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or colonisation were detected through screening of swabs and samples taken 

from commonly colonised areas of the skin and mucosa. Approximately a quarter 

of the positives screens led to a clinical infection with 27 patients developing 

blood stream infections (candidaemia). In July 2017, PHE launched a pilot survey 

at 5 hospital sites to screen patients admitted to intensive care units to determine 

the origin of colonisation with C. auris and inform future surveillance (PHE., 

20172). It is acknowledged that C. auris is likely to be under reported due to the 

diagnostic limitations available in routine microbiology laboratories with C. auris 

often misidentified as other species or identified only to genus level (Snyder and 

Wright., 2019). According to Chowdhary et al (2017), the risk of a DM patient 

developing an infection from C. auris is similar to other Candida spp. at around 

18%. 

1.4.3 Aetiology  

Patients can become immunocompromised through a number of acquired and 

congenital mechanisms including DM (Zhou et al., 2018). Impaired immunity 

typically includes reduced immune surveillance, reduced capacity to clear 

pathogens and an increased susceptibility to infection (Nicholson., 2016). 

Commensal microbiota can be disturbed by the use of antibiotics, which, while 

targeting some bacterial species, allows other microbes to thrive due to reduced 

competition for resources (Langdon et al., 2016). In-dwelling medical devices, 

such as urinary catheters and central lines commonly used in intensive care units, 

and also provide a point of entry for microorganisms to invade the host as well as 

providing a substrate for them to proliferate (Raman et al., 2016). 
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1.4.4 Pathogenesis of C. auris 

Once a pathogen like C. auris has established colonisation, it has the various 

virulence factors which can cause damage to the host tissue. The host immune 

defences can detect infectious agents on the surface or within cells of the host 

mucosal epithelium and can activate the innate and adaptive immune response 

to clear pathogens (Caffrey and Obar., 2016). The immune system responds 

using an escalating manner to address threats posed by invading pathogens. The 

response includes symptoms associated with infection such as fever and 

increased white cell production. However, in the event of a systemic infection, an 

overzealous effort by the immune system to clear a pathogen can also lead to 

sepsis, a serious and often life-threatening complication of infection (WHO., 

2018). 

1.5 Pathogenic Candida 

1.5.1 How does Candida cause infection? 

Fungi are a diverse group of eukaryotic organisms that includes mushrooms, 

moulds and yeasts. Yeast typically grow as single cells and primarily multiply 

asexually occasionally via binary fission (fission yeast) as seen in the brewers’ 

yeast Schizosaccharomyces pombe whereby cells divide through mitosis similar 

to the cells of multicellular animals. Yeast cell division is most commonly via 

budding (budding yeast) where daughter cells (buds) emerge from the mother 

cell, enlarge and separate (Martin and Arkowitz, 2014). C. auris is an example of 

a budding yeast. The morphology of yeast varies amongst species, though they 

can exist as single cells (unicellular) or grow as filaments known as hyphae which 

can intertwine to form a mycelium.  There are an estimated 1.5-5.0 million fungal 

species, about 1500 are yeast species, most of which are harmless to humans 
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and only a few hundred are considered to be pathogenic (Köhler et al., 2015). 

Many are considered medically or commercially valuable and are used in the 

manufacture of a range of products including antibiotics, biodiesel, wine and 

bread. According to Brunke et al (2016), pathogenic fungi typically arise from two 

sources: environmental sources and host niches, with the majority coming from 

the environment. Brunke et al (2016) explain that environmental fungi are 

intermittently exposed to conditions similar to those found within human hosts 

which likely lead to evolutionary adaptations. Host microrelationships can be 

separated into two subgroups: obligate human pathogens and commensals. 

Obligate human pathogens can affect immunocompetent patients (patients with 

a healthy immune response) though the commensals usually colonise harmlessly 

in humans and are opportunistic pathogens which usually affect 

immunocompromised patients (Brunke et al., 2016). Candida spp. are 

opportunistic pathogens, the most common being Candida albicans (Borman et 

al., 2016).  Larkin et al (2017) have determined that C. auris has similar 

mechanisms of infection to C. albicans. C. albicans’ ability to colonise and invade 

host niches is largely due to its cell wall. The C. albicans’ cell wall contains 

specialised sets of proteins known as adhesins which mediate cell-cell 

adherence, and adherence between the host cell and abiotic surfaces, such as 

medical devices, which allow the C. albicans to colonise the skin and mucosa as 

well as materials such as urinary catheters (de Groot et al., 2015). Other 

specialised proteins known as invasins mediate induced endocytosis when they 

bind to host ligands triggering the host cell to engulf the yeast cell. Some yeasts 

such as C. albicans can alter their morphology and switch from yeast to hyphal 

cells, which can puncture the surface of the host cell and invade it in a process 
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known as active penetration (Mayer et al., 2013). The cell wall plays many roles 

in the virulence of Candida spp. Virulence describes the yeasts’ potential to cause 

disease in humans and Candida show many virulence factors or mechanisms to 

cause disease. Examples of these include the ability to secrete enzymes from 

within the cell wall, such as phospholipases and proteases (Larkin et al., 2017); 

which actively target attributes of the host cell membrane to facilitate the invasion 

of host cells 

1.5.2 Biofilms 

An important factor in the virulence of fungal pathogens is the ability to produce 

a biofilm. A biofilm is a consortium of microbes that can adhere to a surface such 

as epithelial cells or the surface of an in-dwelling medical device such as a urinary 

catheter and proliferate across the surface within an extracellular matrix (ECM) 

(Richardson et al., 2018). The ECM is comprised of water and extracellular 

polymeric substances (EPS) namely polysaccharides, proteins and DNA (Di 

Martino., 2018). The cells within the biofilm have a distinctive phenotype 

compared to their planktonic peers (free-floating cells) and a cell’s capacity to 

adhere to a surface to form a biofilm is mediated by regulatory adherence 

proteins. According to Gulati and Nobile (2016), the formation of a biofilm is 

largely influenced by the nature of the available surface, composition of 

environmental nutrients and quorum-sensing molecules. Quorum sensing is a 

method of microbial communication which utilises chemical signalling to regulate 

cell behaviours such as virulence and biofilm formation (Albuquerque and 

Casadevall., 2012). The development of a yeast biofilm begins with the seeding 

process. This starts with the initiation of a basal layer when a single yeast cell(s) 

begins to adhere to a solid surface such as an epithelial layer in vivo or a 
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microtitre plate in vitro. In C. albicans, adherence typically takes around 60-90 

minutes (Fox et al., 2015). The cells then begin to proliferate, usually through 

asexual processes, and the early biofilm begins to form. In some species, such 

as C. albicans, early stage filamentous growth can be observed which becomes 

more prominent as the biofilm matures (Gulati and Nobile., 2016). The mature 

biofilm contains layers of yeast cells and, depending on the species, hyphal 

(elongated thread like filaments) cells and pseudohyphal (formed of newly divided 

cells through budding) cells, which are surrounded by an ECM (Fox et al., 2015). 

A mature biofilm of C. albicans typically takes 24 hours to form. The final stage 

of biofilm development is the dispersal stage, where yeast cells are dispersed in 

order to seed new biofilm sites (Gulati and Nobile., 2016). The ability to form 

hyphae within a biofilm is considered important to provide structure and stability 

for the biofilm. This process is considered critical to the overall development and 

maintenance of the biofilm. The ECM is largely produced by the biofilm cells, 

though it also contains some environmental aggregates including some 

intracellular components of host cells, and the composition can vary depending 

upon the conditions (Fanning & Mitchell., 2012). A typical composition for a C. 

albicans biofilm is around 55% glycoproteins, approximately 25% carbohydrates, 

15% lipids and around 5% is nucleic acids.  It is worth noting that biofilms in vivo 

are not usually comprised of a single species and are typically a consortium of 

fungal and bacterial species (Alim et al., 2018). C. auris has not been reported to 

develop hyphae in its biofilm, though its biofilm is comprised of an ECM with a 

similar composition to C. albicans (Dominguez et al., 2019). Despite the absence 

of this critical biofilm component, Borman et al (2016) found the pathogenicity of 

non-aggregating strains comparable with C. albicans when they used the Galleria 
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mellonella infection model, a model which uses wax moth larvae as a host for 

infection. This contrasts with Larkin et al (2017) who found that C. auris showed 

weaker virulence in terms of biolfim formation and enzyme production than C. 

albicans and advise that the clinical significance of C. auris is largely due to its 

multidrug resistance. Biofilm formation in C. auris is also considered strain 

dependent with non-aggregating strains showing a greater propensity to form 

biofilms than aggregating strains (Singh et al., 2019). Another term for 

aggregation is flocculation which describes cell-cell adhesion where cells form 

clumps that settle out of suspension under the influence of gravity. Flocculation 

is a particularly sought-after quality in brewers’ yeasts like Saccharomyces 

cerevisiae which flocculate after the fermentation process is complete and settle 

to the bottom leaving the product clear of cells (Verstrepen & Klis., 2006).  

1.5.3 Phospholipase 

Phospholipases are a family of ubiquitous enzymes involved in a diverse range 

of biological processes. They are critical to cell survival and their actions are 

involved in cell membrane homeostasis, the digestion of nutrients, the formation 

of bioactive molecules, and they play a role in intracellular signalling pathways. 

Commonly, phospholipases also share the action of catalysing the hydrolysis of 

ester linkages in glycerophospholipids, the polar molecules which form the bilayer 

in cell membranes (Haas & Stanley., 2007). All phospholipases target 

phospholipids though they are categorised as A, B, C or D based on the specific 

bond they target (see Fig. 1.5.3.1). It is thought that phospholipases are 

employed by Candida spp. to facilitate invasion of host cells due to their ability to 

cleave phospholipids and disrupt the phospholipid bilayer (Ghannoum., 2000). 



13 
 

Figure 1.5.3.1 

 

Cleavage sites of phospholipase A1, A2, C and D. Phospholipases are enzymes that hydrolyse 
phospholipids into fatty acids. Each class of phospholipase targets a specific bond within the 
phospholipid. 

1.5.4 Protease 

The term protease refers to enzymes whose function is to degrade proteins, 

though proteases can be divided into two subgroups: exopeptidase and 

endopeptidase (also called proteinases). Exopeptidase show specificity for small 

peptides as the substrate (Rao et al., 1998). Proteases are ubiquitous and play a 

role in DNA replication, transcription, cell proliferation and differentiation. Their 

action regulates the activity of many proteins and generates amino acids and 

bioactive molecules. Proteases are essential in cell biology and are involved in 
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all areas of metabolism (López-Otín & Bond., 2008). Candida spp. produce many 

proteases and show proteolytic activity at a broad range of pH values which is 

likely to support survival in different host environments. Amongst the proteases 

produced by C. albicans are the secreted aspartyl proteases (SAP). There are 10 

forms that have be shown to have different optimum proteolytic activity in pH 

ranges from pH 2 up to pH 7 (Modrzewska et al., 2016). Candida spp. use 

protease to facilitate host invasion by degrading host mucins and extracellular 

membrane components such as the ECM and host endothelial cell tissues such 

as keratin and collagen. Candida spp. can also employ proteases to evade host 

immunity by degrading proteins involved in the immune response such as 

immunoglobulins, complement proteins and the proteins present in macrophages 

(Marcos., 2016). 

1.6 Diabetes and Candiduria 

Candida spp. can be recovered from urine and their presence can indicate 

colonisation of the urinary tract. Their presence in urine can be transient and 

asymptomatic, though the risk of infection is greater amongst 

immunocompromised patients (Falahati et al., 2016). DM is associated with 

immunological impairments and poorly controlled DM with glucosuria is 

associated with increased infection (Zhou et al., 2018). According to Falahati et 

al (2016), high blood glucose levels (hyperglycaemia) leave the gastrontestinal 

tract, urinary tract and mucous membranes vulnerable to infection. Mandal et al 

(2014) also state that high blood glucose reduces the effectiveness of anti-fungal 

agents. Their study found that glucose had a high affinity to bind with voriconazole 

thus decreasing its antifungal activity and indicating that poor glucose regulation 

in DM patients could result in a reduced response to anti-fungal treatment. 
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Mandal et al (2014) also suggest that the presence of glucose in urine may 

promote the growth of Candida, as glucose is a major carbon source for fungal 

species. In addition to a typically low pH, diabetic urine may provide a favourable 

medium for fungal propagation. Nyirjesy et al (2012) state that poor glycaemic 

control is associated with increased Candida species in urine, though it is not 

known whether this is a direct relationship whereby the excess glucose provides 

a carbon source for yeast species or if this is an indirect relationship as a result 

of the reduced immune response in the presence of high blood glucose in DM 

patients.  

1.7 Urine biochemistry 

The urine of DM patients typically has a lower pH (<5.5) than non-diabetic 

patients, though the mechanisms for this are not fully understood. Maalouf et al., 

(2010) considered a metabolic basis for low urine pH and found that the low pH 

persisted when factors such as diet, body size and age were controlled and 

concluded that the low urine pH was caused by a combination of greater net acid 

excretion and the impaired use of ammonia buffers in DM patients. A comparison 

of the urine of DM and non-DM patients within the study found there were 

significant differences in magnesium, ammonia, bicarbonate and citrate (Maalouf 

et al., 2010). The urine of diabetic patients is complex, though for the purposes 

of this investigation, only a change in pH and glucose will be considered though 

it is important to recognise that the other biochemical differences between DM 

and non-DM patient urine as discussed above which may impact upon the growth 

and virulence of C. auris.   
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1.8 Urine as a culture medium  

Microbial culture media is a solid (agar) or liquid (broth) which provides nutrients 

to support the growth of microbes. Culture media come in many forms, though 

they are broadly split into complex or defined media. Complex media contain a 

carbon source and a source of amino acids, though their exact composition is 

unknown. In a defined media, the exact chemical composition is known. For the 

purpose of this experiment, a defined synthetic urine (SU) medium was used. In 

order to support fungal growth, a culture medium must contain the following 

macroelements: carbon, hydrogen, oxygen, nitrogen, sulphur, calcium, iron, 

magnesium, phosphorus and potassium. Fungal species use these elements for 

numerous metabolic roles and in the synthesis of carbohydrates, proteins, lipids 

and nucleic acids. Fungal species also require growth factors in addition to some 

microelements (such as Mn, Zn, Co, Mo, Ni and Cu), which in vivo, form part of 

enzymes and cofactors (Basu et al., 2015). The SU was prepared to the 

specifications from Brooks (1997) and adapted to vary the pH and glucose levels. 

The SU contained yeast extract as a source of microelements and sources of all 

ten macroelements. Glucose provided the main carbon source, and urea and 

ammonia provided a source of nitrogen. In addition, peptone provided a source 

of proteins, peptides and amino acids (Abelovska et al., 2007).  

1.9 Measurement of growth 

This study will measure the growth of C auris using absorbance techniques. This 

technique has the advantage of being a fast way of ascertaining the bioload in a 

volume of liquid, however, it measures a pooled sample of cells and makes no 

distinction between live and dead cells (Nandy et al., 2015). To measure biofilm 

formation, biofilms will be stained with crystal violet which binds to cell proteins 
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and DNA staining them purple. The colour change can be observed by reading 

the absorbance at 600 nm when the biofilms are solubilised with a solvent such 

as glacial acetic acid (O’Toole., 2011). 

1.10 Assays to detect the enzymatic activity of C. auris 

To observe the phospholipase activity of C. auris in SU, an SU agar medium 

supplemented with egg yolk was used. The rationale for this method is that 

phospholipases degrade phospholipds in the egg yolk producing insoluble 

precipitates which can be observed as a halo around a colony of yeast cells 

indicating phospholipase activity (Aryal., 2019). To detect protease activity, an 

SU agar was supplemented with bovine serum albumin (BSA) which would be 

degraded by C. auris proteolytic enzymes. A stain was added to the agar to bind 

with proteins present in the media and the area around the colony of C. auris 

where protease activity had occurred would not absorb the stain (Ozkan et al., 

2005).  

1.11 C. auris strains 

This study used a non-aggregating strain (NCPF 8971) and an aggregating strain 

(NCPF 8977) acquired from PHE. The strains were selected as they had been 

used in a similar study of phospholipase, protease and biofilm production by 

Sherry et al (2017). The culture was managed to ensure that the same generation 

of the strains were used for all experiments. 

1.12 Experimental plan 

This study will focus on the growth and biofilm, phospholipase and protease 

production `of C. auris in a synthetic urine medium in the presence of varying 

concentrations of glucose and at different pH values. The glucose levels used in 
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the study were chosen based on those typically used in the diagnosis of 

glucosuria using semi-quantitative colorimetric assay or ‘dipstick.’ The glucose 

levels tested were 1, 2.5, 5. 10 and 20 mg/mL (Acon Labs., 2019). The pH levels 

used were 5.2, 5.6 and 6.3. A urine pH around pH 6 is considered normal, 

diabetics typically have a urine pH below pH 5.5. The pH values were selected 

as they were normal, at the threshold of normal and low. 
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2: Materials and Methods 

2.1 Preparation of media 

2.1.1 Preparation of agar 

Malt extract agar (Sigma-Aldrich, Gillingham, UK) was prepared according to the 

manufacturer’s instructions. 20 g of agar was dissolved in 400 mL of distilled 

water in a Duran (DURAN®, Mainz, Germany) bottle. The agar was then 

autoclaved using an electric bench top autoclave at 121 ⁰C for 15 minutes. The 

agar was tempered to 55 ⁰C before being poured into sterile petri dishes which 

were then stored in a refrigerator. 

2.1.2 Preparation of broth 

Malt extract both (MEB) (Sigma-Aldrich, Gillingham, UK) was prepared by adding 

4 g of MEB to 250 mL of distilled water. MEB was poured into universal bottles in 

10 mL aliquots or 25 mL was added to 250 mL conical flask which was sealed 

with a cotton wool bung and covered with four layers of aluminium foil. All 

preparations were autoclaved at 121 ⁰C for 15 minutes. 

2.2 Preparation of lyophilised culture 

The C. auris NCPF 8971 and NCPF 8977 were obtained from PHE. The capsules 

were broken using an appropriate tool and the paper strip containing the culture 

was added to 10 mL of sterile malt extract broth (Sigma-Aldrich, Gillingham, UK) 

in a universal bottle prepared according the manufacturer’s instructions. The 

cultures were allowed to rehydrate at room temperature for 3 minutes before a 

loop of the culture was streaked onto an MEA plate. Both the universal and the 

MEA plate were incubated without shaking at 37 ⁰C for 48 hours.  
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Primary cultures were stored in Brain Heart Infusion Broth (BHIB) (Sigma-Aldrich, 

Gillingham, UK), containing 20% (v/v) glycerol. Several colonies of a culture from 

the MEA plates were added to microcentrifuge tubes which were then frozen as 

the primary culture at -80 ⁰C. A further sub-culture of a colony of C. auris from the 

primary MEA plate was streaked onto another MEA plate which was incubated 

statically at 37 ⁰C for 48 hours. Several colonies of this sub-culture were added 

to 1.5 mL microcentrifuge tubes containing BHIB with 20% glycerol and they were 

frozen at -20 ⁰C. Each week, a sub-culture sample was defrosted and streaked 

onto a new plate. Once the sub-cultures were used, further sub-cultures were 

made from a frozen primary culture. 

2.3 Preparation of synthetic urine  

The synthetic urine media was prepared as shown in table 2.3.1 according to the 

method described by Brooks (1997), though the glucose and pH was adjusted 

according to the experimental design for this study. The media was prepared as 

a 10x concentrated stock which was diluted 1 in 10 when used in all experiments. 
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Table 2.3.1 Components of synthetic urine media 

Component Quantity g/L 
Peptone (bacteriological) 1 
Yeast extract 0.005 
Lactic acid 0.1 
Citric acid 0.4 
Sodium bicarbonate 2.1 
Urea 10 
Uric acid 0.07 
Creatinine 0.8 
Calcium chloride.2H2O 0.37 
Sodium chloride 5.2 
Iron II sulphate.7H2O 0.0012 
Magnesium Sulphate.7H2O 0.49 
Sodium sulphate.10H2O 3.2 
Potassium dihydrogen phosphate 

 

0.95 
Di-potassium hydrogen phosphate 

 

1.2 
Ammonium chloride 1.3 
Distilled water Topped up to 100 mL for 10x concentrated stock which 

was diluted to make 1 L 

 

The components were added as shown in table 2.3.1 to a Duran (DURAN®, 

Mainz, Germany) bottle, their total weight was calculated as 27.21 g. 60 mL of 

distilled water was added. The pH was then adjusted. Due to the buffers used in 

the SU, hydrochloric acid (HCl) 10M was required to alter the pH. The solution 

was then topped up to 100 mL with distilled water. Following preparation of the 

10x stock, the mixture was separated into universal bottles. Glucose was added 

to each to give concentrations of between1-20 mg glucose/mL. A control stock 

was prepared containing no glucose. The stock SU was then stored in a 

refrigerator. 
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2.4 Establishing growth of C. auris in synthetic urine 

The growth of both strains in SU was established by adding 1 mL of the control 

SU to a universal bottle and diluting with 9 mL of sterile distilled water. This was 

prepared in duplicate and each universal was inoculated with a loop of either C. 

auris NCPF 8971 or NCPF 8977. The process was repeated for each of the 

glucose concentrations. The bottles were incubated aerobically and without 

shaking for 18 hours at 37 ⁰C. Growth was confirmed visually after 18 hours in 

the control and all glucose concentrations. The process was repeated varying the 

pH between pH 5.2- 6.3 and growth was confirmed visually in the control at all 

pH levels and glucose concentrations.  

2.5 Overnight culture (OVC) 

2.5.1 OVC in MEB 

A 250 mL conical flask of MEB was prepared as above and inoculated with a loop 

of one colony of either C. auris NCPF 8971 or NCPF 8977. The flask was then 

incubated in an orbital shaker set at 180 rpm and 37 ⁰C for 18 hours. 

2.5.2 OVC in SU 

A 250 mL conical flask was used for each OVC. 22.5 mL of distilled water was 

added to a flask which was sealed with a cotton wool bung then covered with 

several layers of aluminium foil. The flasks were then autoclaved at 121 ⁰C for 20 

minutes. Following autoclaving, 2.5 mL of SU containing 1 mg glucose/mL was 

added to the flasks. The flask was then inoculated with a loop of one colony of 

the required strain of C. auris from an MEA plate. The flask was then incubated 

in an orbital shaker set at 180 rpm and 37 ⁰C for 18 hours. 
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2.6 Planktonic growth 

250 mL conical flasks were prepared as described above. To the autoclaved 

flasks, 2.5 mL of the required SU from the 10x concentrated stock was added. 

The flasks were inoculated with 1 mL of OVC in SU. Using a clean sterile tip, a 1 

mL sample was immediately taken and added to a cuvette and read at 600 nm 

using a spectrophotometer against a blank of diluted SU. The results were 

recorded, and the flasks were incubated in an orbital shaker set at 180 rpm and 

37 ⁰C for 24 hours. The flasks were sampled again. The initial absorbance was 

deducted from the final absorbance and recorded. 

2.5 Assays  

2.5.1 Biofilm crystal violet assay 

An OVC was centrifuged and diluted to a concentration to the equivalent of 107 

cfu/mL. This was an adaptation from the protocol by O’Toole (2011). Sterile 

filtered SU from the 10x concentrated stock at each glucose concentration was 

diluted with sterile distilled water with 1 part SU and 9 parts distilled water. Six 

wells of a 96 well plate were selected for each glucose concentration and an 

additional six wells for the positive control. To each well, 0.95 mL of the 

appropriate reconstituted SU was added. Each of the wells were then inoculated 

with 0.05 mL of the 107 cfu/mL culture. The plates were covered with an adhesive 

lid and incubated statically at 37 ⁰C for 24 hours. Following incubation, the 

supernatant was aspirated gently using a multipipette. 0.2 mL of distilled water 

was added to each well, the plate was agitated to dislodge loose cells and the 

water was then aspirated. This process was repeated three times. The biofilms 

were then stained with 0.125 mL of 0.1% (v/v) crystal violet solution. The plates 

were left to incubate at room temperature for 10-15 minutes before the crystal 
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violet was removed by aspiration and three rounds of washing with water. The 

plates were left to dry at room temperature for 18 hours. Once dry, 0.125 mL of 

30% (v/v) glacial acetic acid in distilled water was added to each well and left to 

incubate for 20 minutes at room temperature. The contents of each well were 

then transferred to a new plate using a multipipette. 0.125 mL of 30% (v/v) glacial 

acetic acid was added to an empty well to serve as a blank. The plates were then 

analysed using a Fluostar Omega optical density plate reader (BMG Labtech, 

Aylesbury, UK) at 550 nm. The absorbance of the blank well was deducted from 

the assay absorbance readings. 

2.5.2 Phospholipase assay 

The method was adapted from that described by Singh (2018). 2% (w/v) agar-

agar (Sigma-Aldrich, Gillingham, UK), 1% (w/v) bacteriological peptone (Lab-M, 

Heywood, UK), 5% (w/v) NaCl and 0.0006% (w/v) CaCl2 were dissolved in 

distilled water and autoclaved for 15 minutes at 121 ⁰C. The 10% (v/v) sterile egg 

yolk emulsion (Sigma-Aldrich, Gillingham, Germany) was prepared by 

centrifugation at 3000 rpm for 10 minutes in an Microcentaur (MSE, Heathfield, 

UK) centrifuge. The supernatant was removed and added to the molten agar 

together with 10% (v/v) sterile filtered synthetic urine (prepared as a 10x 

concentrated stock) at varying glucose concentrations. Inside a Class II Laminar 

Flow cabinet, the Duran (DURAN®, Mainz, Germany) bottle containing molten 

agar with added egg yolk and synthetic urine was placed in a beaker of hot water 

to keep molten until the pH was adjusted to either pH 5.2, 5.6 or 6.3 as required. 

The agar was then poured into sterile petri dishes and once set, stored in a 

refrigerator. An overnight culture was prepared as above. The cells were washed 

to remove MEB by adding 1 mL of the culture to the microcentrifuge tube and 
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centrifuging to pellet at 3000 rpm for 3 minutes. The supernatant was removed 

and 1 mL of sterile ¼ strength Ringer’s solution (Oxoid, Hampshire, UK) was 

added. The cells were resuspended using a Whirlmixer vortex mixer 

(Fisherbrand, Loughborough, UK) and centrifuged for a further 3 minutes at 3000 

rpm. The Ringer’s was removed, and a fresh 1 mL of sterile Ringer’s was added. 

The cells were resuspended using a vortex mixer. 0.1 mL of culture was added 

to a microcentrifuge tube containing 0.9 mL of Ringer’s to make a suspension 

equivalent to 108 cfu/mL. The agar plates were divided into four, and 0.01 mL of 

the culture was spotted onto the centre of each quarter of the agar. The plates 

were left to dry for around 20 minutes inside a Class II cabinet before they were 

sealed with parafilm and incubated statically upside down aerobically at 37 ⁰C for 

3 days. After three days, growth was confirmed visually at all pH and glucose 

levels. The phospholipase activity (Pz) was observed qualitatively by the 

presence of a precipitation zone around the colony (Larkin et al., 2017) and given 

a score of: 

- = no precipitation zone 

+ = precipitation zone 

2.5.3 Protease assay 

The method was adapted from a method described by Borst & Fluit (2003) and 

2% (w/v) agar-agar (Sigma-Aldrich), 0.5% (w/v) MgSO4, 1% (w/v) KH2PO4 were 

dissolved in distilled water and autoclaved for 15 minutes at 121 ⁰C. To the molten 

agar, 0.16% (w/v) BSA (Sigma-Aldrich, Gillingham, UK) (dissolved in water and 

filter sterilised) and 10% (v/v) sterile filtered synthetic urine (prepared as a 10x 

concentrated stock) was added. The pH was adjusted to either pH 5.2, 5.6 or 6.3 
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as required and the mixture was poured into petri dishes and stored as per the 

method used for the phospholipase assay preparation. An OVC was prepared in 

MEB and the cells washed above. The plates were quartered, and each quarter 

was inoculated with a 0.01 mL aliquot of cells at a concentration equivalent to 108 

cfu/mL. The plates were incubated for 5 days aerobically at 37 ⁰C without shaking. 

After 5 days, growth was confirmed visually at all pH and glucose levels. The 

plates were stained using an adapted method described by Vermelho et al 

(1996). The staining solution was prepared with 0.1% (w/v) Coomassie Brilliant 

Blue R250 (Life Science, California, United States), 10% (v/v) acetic acid and 

50% (v/v) methanol in distilled water. The plates were flooded with the staining 

solution and left to incubate at room temperature for 20 minutes. The plates were 

destained by flooding. The plates were flooded three times with a destaining 

solution prepared with 10% (v/v) acetic acid and 40% (v/v) methanol in distilled 

water and incubated at 37 ⁰C for 20 minutes and finally with distilled water for a 

further 20 minutes at 37 ⁰C. Following destaining the protease activity (Prz) was 

observed qualitatively by the presence of a clear zone around the colony and 

given a score of:  

- = no clear zone 

+ = clear zone 

2.6 Statistical analysis 

Normality testing using a histogram, Q-Q plot and Shapiro-Wilks was performed 

to confirm the data are normally distributed. One-way ANOVA was used to 

compare the means followed by Tukey’s post-hoc analysis where a result was 

significant. A significant level of α= 0.05 was used for all tests. 
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3: Results 

C. auris is an emerging fungal pathogen that was first identified in 2009. The 

pathogen is a cause for concern for world health organisations as it has shown 

resistance to antifungal treatments from each class of drugs and to routine 

cleaning regimes. Those most at risk are patients with impaired immunity, such 

as patients with DM, and those with an indwelling medical device, such as a 

urinary catheter, in situ. The study exposed an aggregating and non-aggregating 

strain of C. auris to conditions mimicking those found in the urine of patients with 

diabetes mellitus to observe if there was a difference in the production of biofilms, 

phospholipase and protease when the pH and glucose levels were altered. 

 

3.1 Planktonic growth  

The cells were grown over 24 hours by the method demonstrated in 2.6. Flasks 

were prepared (n=3) with 1-20 mg glucose/mL and a control without glucose at 

pH 5.2, 5.6 and 6.3. In the non-aggregating strain (NCPF 8971), at pH 5.2, the 

growth increases with the glucose concentration. At pH 5.6 (see Fig. 3.1.2), the 

growth increases with glucose, though the mean absorbance is significantly lower 

overall than pH 5.2. At pH 6.3 (see Fig 3.1.3), the growth appears to plateau after 

5 mg glucose/mL, though there is a large variation amongst the results. 
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Figure 3.1.1 
 

 
 

 

Figure 3.1.2 
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Figure 3.1.3 
 

 
 
 

Flasks were prepared (n=3) for the aggregating strain (NCPF 8977) using the 

same method described in 2.6. At pH 5.2 (see Fig. 3;1;4), the growth is similar to 

the growth seen in the non-aggregating (NCPF 8971) strain. At pH 5.6 (see Fig. 

3.1.5), the growth is comparable to the non-aggregating strain. At pH 6.3 (see 

Fig. 3.1.6), there was no measurable growth was seen in the control group. At 20 

mg glucose/mL, growth is comparable to pH 5.2. 

 
Figure 3.1.4 
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Figure 3.1.5 
 

 
 
 

Figure 3.1.6  
 

 
 
 

3.2 Statistical analysis for planktonic growth in SU 

 
Analysis for the non-aggregating (NCPF 8971) strain and aggregating (NCPF 

8977) strain. A one-way ANOVA was performed and demonstrated a significant 

difference and Tukey’s post-hoc analysis revealed significant differences. Table 

3.2.1 shows growth of the non-aggregating (NCPF 8971) strain (n=3) and shows 
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a significant difference from the control in 2.5-20 mg glucose/mL at all pH levels. 

Table 3.2.2 shows growth of the aggregating (NCPF 8977) strain (n=3) and 

shows growth was significantly different from the control in all glucose 

concentrations at pH 5.2 and pH 5.6, and in 2.5-20 mg/mL at pH 6.3. 

 

 

Table 3.2.1 Statistical analysis for planktonic growth in the non-aggregating 
(NCPF 8971) strain 
 

 pH 5.2 pH 5.6 pH 6.3 

Glucose 
(mg/mL) 

Mean 
absorbance 
at 600 nm p value 

Mean 
absorbance 
at 600 nm p value 

Mean 
absorbance 
at 600 nm p value 

Control 0.860 - 1.046 - 0.980 - 
1 3.200 0.057 2.062 0.209 1.730 0.975 

2.5 5.840 < 0.0001 3.316 0.001 5.000 0.022 

5 9.700 < 0.0001 4.792 < 0.0001 9.010 < 0.0001 
10 14.130 < 0.0001 8.519 < 0.0001 8.850 < 0.0001 
20 20.240 < 0.0001 13.393 < 0.0001 9.050 < 0.0001 

 

Table 3.2.2 Statistical analysis for planktonic growth in the aggregating 
(NCPF 8977) strain 
 

 pH 5.2 pH 5.6 pH 6.3 

Glucose 
(mg/mL) 

Mean 
absorbance 
at 600 nm p value 

Mean 
absorbance 
at 600 nm p value 

Mean 
absorbance 
at 600 nm p value 

Control 0.980 - 0.841 - 0.000 - 
1 3.150 < 0.0001 2.346 0.018 1.470 0.448 

2.5 4.860 < 0.0001 3.850 < 0.0001 4.660 0.001 

5 8.730 < 0.0001 6.109 < 0.0001 6.190 < 0.0001 
10 13.940 < 0.0001 10.015 < 0.0001 9.860 < 0.0001 
20 19.910 < 0.0001 14.180 < 0.0001 20.550 < 0.0001 

 

The SU media was shown to promote growth of planktonic cells (cells which 

remain in suspension and do not adhere to a surface) in both strains of C. auris. 

An increase in growth was generally seen in line with increasing glucose 

concentrations, although the absorbance showed some variation with respect to 
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a change in pH. The non-aggregating strain (NCPF 8971) saw the highest mean 

absorbance at pH 5.2 with the growth increasing significantly (p=<0.0001) as the 

glucose concentration increased. The same pattern of growth could be seen at 

pH 5.6, though the absorbance was much lower with a mean absorbance of 

13.393 at 20 mg glucose/mL at pH 5.6 compared with an absorbance of 20.240 

at pH 5.2 at the same glucose concentration. At pH 6.3, the mean absorbance 

was almost double that with 2.5 mg glucose/mL supplementation than at pH 5.2 

and 5.6 and growth at 5 mg glucose/mL was similar to pH 5.2, though almost 

double the growth seen at pH 5.6. The non-aggregating strain (NCPF 8971), 

showed comparable growth to the aggregating strain (NCPF 8977) at pH 5.2 and 

pH 5.6; however, some differences can be observed at pH 6.3 which showed no 

measurable growth in the control group but showed growth in the 20 mg/mL 

comparable to the growth seen at pH 5.2. The key findings showed that there 

was no significant difference in the control groups at pH 5.2 or pH 5.6, though SU 

inoculated with the tested strains at pH 5.6 produced significantly (p= <0.0001-

0.05) less growth than pH 5.2 once glucose was added at all concentrations 

(except 2.5 mg/mL at pH 5.6 which showed wide variability amongst the results). 

 

3.3 Determination of biofilm formation 

Biofilm formation was determined by the method described in section 2.5.1. The 

tested strains were grown in SU media (n=6) with varying glucose and pH and 

analysed after 24 hours. Fig. 3.3.1 and Fig. 3.3.2 show that though there was a 

difference in biofilm formation between the two tested strains, there was no 

significant difference with respect to a change in glucose concentration or pH. 
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Figure 3.3.1 Biofilm growth of tested strains at varying glucose concentrations 

 

 
 

 
 
 

Figure 3.3.2 Biofilm growth of tested strains at varying pH levels 

 

 
 
When viewed under an inverted light microscope at x400, the biofilm cells stained 

with 0.1% crystal violet (as per the method described in section 2.5.1) appeared 

to vary in morphology with the alterations in pH and glucose. 
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Figure 3.3.3 Images of non-aggregating (NCPF 8971) biofilm 
 

 

 
A. Control without glucose. Cells appear elongated or oval shaped and are joined in pairs 
or short chains. B. With 1 mg glucose/mL, cells appear larger and rounder than the control 
group and contains mostly single cells. C. With 2.5 mg glucose/mL, many budding cells 
can be seen. All cells were observed using an inverted light microscope at x400. 

 

Figure 3.3.4 Images of aggregating (NCPF 8977) biofilm 
 

 
A. Control without glucose, very few single cells can be seen with most cells seen in pairs 
or groups. Budding cells can be seen. B. with 1 mg glucose/mL, few single cells can be 
seen. C. with 2.5 mg glucose/mL, some single cells can be observed in addition to large 
groups. All cells were observed using an inverted light microscope at x400. 

A A 

A 

B 

B 

C 

C 
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The crystal violet assay has shown that, overall, the glucose concentration and 

pH level did not appear to have a great effect upon biofilm production after 24 

hours (Figure 1). Some differences could be seen when in the non-aggregating 

strain (NCPF 8971), particularly at pH 5.6 where the mean biomass was lower at 

some glucose concentrations (5, 10 and 20 mg/mL) than in pH 5.2 and pH 6.3. 

There are some notable differences in the morphology of the biofilm cells in 

response to the glucose concentration; in the control group, the non-aggregating 

strain (NCPF 8971) appeared to form chains (Fig. 3.3.3. A), though there are 

mostly single cells present at 1 mg glucose/mL (Fig 3.3.3. B). Very few single 

cells can be seen in the aggregating strain (NCPF 8977) in the presence or 

absence of glucose (Fig. 3.3.4). 

 

3.4 Determination of phospholipase activity 

The phospholipase assay was prepared using the method described in section 

2.5.2. The tested strains were inoculated onto the SU agar supplemented with 

egg yolk at varying glucose concentrations and pH levels (n=4). Qualitative 

analysis was used to determine if phospholipase activity was positive or negative 

(see Table 3.4.1) by a visually examining the colonies for the presence or 

absence of a precipitation zone (see Fig. 3.4.2). 
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Table 3.4.1 The phospholipase activity of the tested strains 

 pH 5.2 pH 5.6 pH 6.3 

Glucose 
(mg/mL) 

Non-
aggregating 
(NCPF 8971) 

Aggregating  
(NCPF 8977) 

Non-
aggregating 
(NCPF 8971) 

Aggregating  
(NCPF 8977) 

Non-
aggregating 
(NCPF 8971) 

Aggregating  
(NCPF 8977) 

Control + + + + + - 
1 - + + + + - 

2.5 - + + + + - 
5 - - + - + - 

10 - - + - + - 
20 - - + - + - 

 

 

Figure 3.4.2 Image of a colony positive for phospholipase 

 

  
Image shows a colony of C. auris NCPF 8971 positive for phospholipase activity (Pz). The colony 
was grown on an SU agar plate without glucose and supplemented with egg yolk at pH 5.6. 

 

At pH 5.6, the aggregating strain (NCPF 8977) showed similar phospholipase 

activity to pH 5.2, whereas the non-aggregating strain (NCPF 8971) showed 

activity at all concentrations of glucose including the control. At pH 6.3, the non-

aggregating strain (NCPF 8971) again showed phospholipase activity at each 

glucose concentration, though there was no significant difference between the 

Colony 

Pz 
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control and the groups with glucose. The aggregating strain (NCPF 8977) showed 

no activity at pH 6.3. 

3.5 Determination of protease activity 

The protease assay was prepared using the method described in section 2.5.3. 

The tested strains were inoculated onto the SU agar supplemented with BSA at 

varying glucose concentrations and pH levels (n=4). As per the phospholipase 

assay, qualitative analysis was used to determine if protease activity was positive 

or negative (see Table 3.5.1) by a visually examining the colonies for the 

presence or absence of a clear zone (see Fig. 3.5.2) following staining as per the 

method described in section 2.5.3. 

 

Table 3.5.1 The protease activity of the tested strains 

 

 

 pH 5.2 pH 5.6 pH 6.3 

Glucose (mg/mL) 

Non-
aggregating 

(NCPF 
8971) 

Aggregating  
(NCPF 
8977) 

Non-
aggregating 

(NCPF 
8971) 

Aggregating  
(NCPF 
8977) 

Non-
aggregating 

(NCPF 
8971) 

Aggregating  
(NCPF 
8977) 

Control - - - + - + 
1 - - + + + + 

2.5 - + + + + - 
5 - + + + + - 

10 - + - - + - 
20 + - - - + - 

 

The protease activity of non-aggregating (NCPF 8971) and aggregating (NCPF 8977) 
strains of C. auris. The cells were grown on SU agar supplemented with BSA at varying pH 
levels and glucose concentrations and incubated aerobically at 37 ⁰C for 5 days. A negative or 
positive result shows whether protease activity was observed. 
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Figure 3.5.2 Image of a colony positive for protease 
 

 
 

The image shows a colony of C. auris NCPF 8971 positive for proteinase activity (Prz). The colony 
was grown on an SU agar plate without glucose and supplemented with BSA at pH 5.6. The 
colony has been stained with Coomassie Brilliant Blue R250 and a destaining solution was used 
to reveal a clear zone around the colony. 

 

At pH 5.2, the non-aggregating strain (NCPF 8971) only showed proteolytic 

activity at the highest glucose concentration whereas the aggregating strain 

(NCPF 8977) showed proteolytic activity between 2.5 and 10 mg/mL. At pH 5.6, 

the non-aggregating strain (NCPF 8971) showed proteolytic activity between 1 

and 5 mg/mL and the aggregating strain (NCPF 8977) demonstrated proteolytic 

activity between the control group and 5 mg/mL. At pH 6.3, the non-aggregating 

strain (NCPF 8971) showed proteolytic activity in all glucose concentrations 

except the control group and the aggregating strain (NCPF 8977) showed activity 

in only the control group and 1 mg/mL. The non-aggregating strain (NCPF 8971) 

showed no proteolytic activity in the groups without glucose at any pH, whereas 

the aggregating strain (NCPF 8977) showed proteolytic activity in the control 

group at pH 5.6 and pH 6.3, though the activity was arrested as the glucose 

concentration increased. 

Colony Prz zone 
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4: Discussion 

This study aimed to investigate the role of pH and glucose in biofilm, 

phospholipase and protease production in C. auris. C. auris is an emerging 

species of Candida that was first isolated in 2009. It has been identified as a 

growing concern amongst health organisations worldwide because it is highly 

resistant to multiple drugs from all three antifungal categories and routine 

cleaning protocols. Those most at risk are severely immunocompromised 

patients with indwelling medical devices such as an in situ urinary catheter. 

Patients with diabetes have been identified as at risk due to their poor immunity 

and associated co-morbidities. This study aimed to determine whether a high 

glucose concentration and low pH associated with the urine of patients with 

diabetes increased the virulence of C. auris, thus increasing the risk of invasive 

infections. The study used a synthetic urine medium to mimic the conditions found 

in the urine of DM patients. The SU medium was shown to promote growth of 

planktonic cells of the two strains of C. auris with a low pH and high glucose 

concentration which provided good growth conditions. According to Ries et al., 

2018, glucose is an ideal carbon source as pathogenic fungi have a demonstrable 

preference for carbon sources that can be metabolised quickly and provide the 

energy required for growth and colonization in a host niche.  

4.1 Planktonic growth 

Larkin et al., (2017) found that C. auris had a similar planktonic growth profile to 

C. albicans when grown in RPMI (Roswell Park Memorial Institute) 1640 medium. 

In this study, there was some difference observed in the behaviour of the two 

strains with respect to both glucose and pH. After 5 mg glucose/mL, growth 

appeared to plateau in pH 6.3, though the variability amongst the 10 and 20 
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mg/mL groups questions the confidence in this result. The findings by Larkin et 

al., (2017) suggest that the non-aggregating strain (NCPF 8971) should have a 

similar pattern of growth to the aggregating strain (NCPF 8977) and the plateau 

seen in pH 6.3 may be an experimental error as indicated by the variation of 

results within the group.  

4.2 Biofilm production 

In this study, though not significant, a decline was also seen in the biofilm assay 

where there appeared to be a decline in biomass after 5 mg glucose/mL at pH 

6.3; however, again, the variability amongst the results in this study means that 

this cannot be commented upon with any certainty. It is worth noting that Larkin 

et al., (2017) did not alter the glucose concentration of the RPMI 1640 medium 

they used, which had a concentration of 2 mg glucose/mL which is lower than 

most of the concentrations used in this study. Larkin et al., (2017) also did not 

investigate the effect of pH on growth and if no adjustments were made to RPMI 

1640, when prepared according to the manufacturer’s instructions, the media 

would have a pH of 7-7.6 which is higher than the pH levels used in this study. 

Studies into the C. albicans have found that it has adapted mechanisms to thrive 

at a range of acidic pH levels such as those found in the vagina (pH 4-5) and oral 

mucosa (pH 6), it has also been observed to grow in pH levels as low as 2 such 

as those found in the stomach and as high as pH 10 (Sherrington et al., 2017).  

4.2.1 Biofilm production in response to environment 

Yeast cells like C. albicans prefer a slightly acidic pH which is largely driven by 

nutrient uptake. According to Polke et al., (2015) micronutrients such as iron are 

soluble at an acidic pH, and the stability and functionality of fungal proteins are 
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negatively affected by a raised pH. However, C. albicans has adapted 

mechanisms to respond to environmental pH where signalling pathways drive 

downstream responses allowing the species to survive at an alkaline pH (Polke 

et al., 2015). This study used 3 acidic pH levels which provide a favourable 

environment for C. albicans, though the ranges are much narrower than those 

seen in similar studies which have compared much more acidic and alkaline pH 

levels. This has allowed the opportunity to see alterations in growth a slight 

change in the pH can cause such as the difference seen between pH 5.2 and pH 

5.6. A normal urine pH is considered to be around 6.0 to 7.5 (Maalouf et al., 

2010). The results have shown that, overall, glucose and pH did not appear to 

have a great effect upon biofilm production after 24 hours. Some differences 

could be seen in the non-aggregating strain (NCPF 8971), particularly at pH 5.6 

where the mean biomass was significantly lower at some glucose concentrations 

(5- 20 mg/mL) than in pH 5.2 and pH 6.3. The low variation in the biofilm formation 

in the tested strains across the range of pH and glucose levels when compared 

to growth of planktonic cells could indicate that C. auris biofilms have an ability to 

tolerate and thrive in a wide range of conditions. Indeed, Modrzewska et al (2016) 

found that protease enzymes, for example, had optimum activity in varying 

conditions. Whilst the results did not show a statistically significant difference 

between the biofilm formation in the two strains, the consistently higher mean 

across all results may indicate that the non-aggregating strain (NCPF 8971) had 

a greater propensity for biofilm formation than the aggregating strain (NCPF 

8977) as demonstrated by Sherry et al (2017). This contradicts Oh et al (2011) 

who tested 15 strains of C. auris and found they did not produce a biofilm. 

However, Oh et al (2011) used Sabouraud Dextrose Broth (SDB) with 8% glucose 
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which is four-fold greater than the highest glucose concentration used in this 

study. The study by Oh et al (2011) does not indicate whether the pH was 

adjusted from a pH of 5.6 when prepared according to the manufacturer’s 

instructions. In this study, biofilm formation at pH 5.6 has the lowest biofilm 

formation overall, and the lowest for the non-aggregating strain (see Fig. 3.3.2). 

This observation is more pronounced as the glucose concentration was 

increased which indicates that high glucose and a pH of 5.6 may not provide ideal 

conditions for biofilm formation. In planktonic growth at pH 5.6, C. auris showed 

the lowest growth after 24 hours. Sherry et al (2017) also investigated NCPF 8971 

and NCPF 8977 and used RPMI-1640 medium which has 2 mg/mL of glucose 

and found that both strains produced a biofilm. The non-aggregating strain (NCPF 

8971) produced more biomass than the aggregating strain (NCPF 8977), which 

is consistent with the observations of this study.  

4.2.3 Biofilm production in response to glucose 

In a study on biofilm formation of Candida species other than C. albicans, Ng et 

al (2016) found that low glucose environments (0.1-2 mg/mL) promoted Candida 

glabrata biofilm formation significantly more (p= <0.05) than high glucose 

environments (10-20 mg/mL). They found that the optimal glucose concentration 

for biofilm production in C. glabrata was 2 mg/mL. A study of Candida parapsilosis 

by Pereira et al (2015) found that glucose enhanced biofilm formation, particularly 

at high glucose concentrations of 10% (100 mg/mL), though this was strain 

dependent with one of the tested strains showing no significant difference in 

biofilm formation across all tested glucose concentrations. Further studies of 

biofilms in C. albicans and C. glabrata by Hosida et al (2018) found that biofilm 

formation varied dependent on the strain, media, glucose concentration and 
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whether biofilms were composed of single or mixed species. As a single biofilm, 

Hosida et al (2018) saw that C. glabrata demonstrated no significant change in 

biofilm formation in RPMI 1640 regardless of the glucose concentration, though 

there was a significant difference when they used SDB supplemented with 1 mg 

glucose/mL rather than no glucose or 5 mg glucose/mL. This study is limited as 

it only used synthetic urine as a culture media and differences in biofilm formation 

may have been seen if other types of media had been tested. 

4.2.4 Biofilm production in synthetic urine  

A study by Uppuluri et al (2009) compared C. albicans biofilms grown in a SU 

media to those grown in RPMI 1640 and found that after 24 hours there was 

significantly less biomass in the SU group and that the SU biofilms were less 

mature than those grown in RPMI 1640. Studies of C. auris by Larkin et al (2017) 

and Borman et al (2016) have defined a clear difference between strains and 

identified them as aggregating and non-aggregating strains.  

4.3 C. auris virulence 

Larkin et al (2017) have noted that the aggregating strain (NCPF 8977) appears 

to produce less enzymatic activity and biofilm formation than the non-aggregating 

strain. Overall, C. auris appeared less virulent than C. albicans by producing 

around 50% less biomass in its biofilm and only 1 of the 16 isolates they tested 

had phospholipase activity comparable to C. albicans. They advise that C. auris’ 

multi-resistance to antifungal treatments has come at a cost to its virulence which 

is demonstrable by C. auris causing infection in severely immunocompromised 

patients rather than immunocompetent patients like C. albicans (Larkin et al., 

2017). However, its multi-resistance to antifungal drugs is concerning as it makes 
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infections difficult to treat and its resistance to routine cleaning means that 

outbreaks are more likely to spread (ECDC., 2018). In terms of planktonic and 

biofilm growth, this study has found no clear differences between strains. 

However, clear differences can be seen when viewing biofilm images (see Fig. 

3.3.3 and Fig. 3.3.4). The non-aggregating strain (NCPF 8971) consists of mostly 

single cells when in the presence of glucose, though it formed short chains in the 

control group. Its biofilm appeared to grow across the surface of the substrate 

rather upwards in a 3D structure. The aggregating strain (NCPF 8977) consists 

of few single cells, with most cells in pairs or groups. It appeared to have a 3D 

structure to its biofilm. It could also be noted that many cells in the images had 

not taken up the CV stain which could have impacted the measurement of the 

biomass. Larkin et al (2017) also observed the presence of oval, budding cells 

either as single cells or aggregates in a strain dependent manner.  

4.4 Aggregating vs non-aggregating 

Though not empirically tested, it was observed in this study that the aggregating 

strain (NCPF 8977) required continuous shaking to keep the cells suspended 

indicating that cells are settling as seen in species like Saccharomyces cerevisiae 

as discussed above. However, Borman et al (2016) suggests that the aggregation 

seen in the aggregating strain (NCPF 8977) is likely to be the result of budding 

cells not relinquishing their daughter cells rather than flocculation. When 

examining the images taken in this study, few single cells can be seen in the 

aggregating strain (NCPF 8977), though there are many pairs and groups (see 

Fig. 3.3.4).  
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A study by Verstrepen and Klis (2006) investigated flocculation of 

Saccharomyces cerevisiae and found that flocculating strains settled at the 

bottom of a liquid medium after 5 minutes, non-flocculating strains remained 

suspended, whereas a third strain formed microclumps of 2-10 cells resulting in 

some sedimentation. Though not as dramatic as the flocculating strain seen in 

the study by  Verstrepen and Klis (2006), the cells of the aggregating strain 

(NCPF 8977) used in this study did not remain suspended like that of the non-

aggregating strain (NCPF 8971) indicating that it could be flocculation contrary to 

the findings of Borman et al (2016). Borman et al (2016) also stated that they 

were unable to disrupt the aggregates despite intense vortex mixing. This was 

also an observation noticed in this study as a difference between the two strains 

when attempting to resuspend cells with a vortex mixer following centrifugation 

which took much longer to achieve in the aggregating strain. 

4.5 Phospholipase activity 

Generally low phospholipase activity was seen in both strains though this 

appeared to vary according to pH and glucose concentration. This is consistent 

with the findings by Larkin et al (2017) who tested 16 C. auris isolates and found 

they had limited or no phospholipase activity. Kumar et al (2015) tested a clinical 

isolate from a 28-year-old female and found that it had high phospholipase 

activity. However, Kumar et al (2015) gives no indication of the pH used in the 

case study and Larkin et al (2017) did not investigate multiple glucose 

concentrations and pH levels as seen in this study. Samaranayake et al (1984) 

studied the effect of pH and glucose on C. albicans isolates and found that the 

lower pH of 3.6 produced more phospholipase activity in the Pz positive strains 

than at pH 4.4, and they found no phospholipase activity at pH 5.1 or 6.3. They 
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also found that increasing concentrations of glucose, sucrose and galactose 

appeared to suppress phospholipase activity. Interestingly, Samaranayake et al 

(1984) found sucrose and galactose showed reduced phospholipase activity as 

the concentration increased, whereas glucose saw similar results at 50 and 100 

mM (same concentrations as 10 and 20 mg/mL), and activity diminished once 

further glucose was added. In this study, at pH 5.2, the non-aggregating strain 

(NCPF 8971) showed phospholipase activity in the control group, though it 

showed no activity once glucose was added. The aggregating (NCPF 8977) strain 

showed phospholipase activity in the presence of up to 2.5 mg/mL of glucose, 

but no activity at higher concentrations. In line with the findings by Samaranayake 

et al (1984) for C. albicans, the aggregating strain (NCPF 8977) also showed no 

phospholipase activity at pH 6.3, though activity was seen at all glucose 

concentrations in the non-aggregating strain (NCPF 8971) at the same pH. There 

was variability within the groups and phospholipase activity did not appear to 

increase in line with increased glucose concentration. However, Samaranayake 

et al (1984) reported that increasing the glucose concentration diminished the 

‘halo’ or zone of activity around the colony, which may have affected their ability 

to accurately measure the Pz zones.  Sanita et al (2013) tested the phospholipase 

and protease activity of C. albicans isolates from patients with oral candidiasis 

and healthy patients from groups of patients with or without diabetes. Although 

they found that phospholipase production was greater in isolates taken from 

patients with candidiasis, they found no significant difference between 

phospholipase activity in diabetic and non-diabetic patients. However, all strains 

were tested on the same egg yolk medium with 30 mg/ml of glucose to determine 

if patients with candidiasis harboured more virulent strains of C. albicans. 
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However, it is worth noting that in this study, the strains vary their enzymatic 

activity according to the pH and glucose levels of the culture media regardless of 

their source environment. The 30 mg/mL used in the study by Sanita et al (2013) 

is much higher than is typically seen in vivo (normal fasting blood glucose is 

typically 0.6 – 1.0 mg/mL (Güemes et al., 2015)), and as demonstrated by 

Samaranayake et al (1983), may have suppressed the phospholipase activity. 

Importantly, Sanita et al (2013) investigated whether the diminished 

phospholipase halo in the presence of glucose was due to inactivity of 

phospholipase or due to poor visualisation of the halo and they added potassium 

tellurite to the egg yolk medium to improve visualisation by staining the colonies 

black. Future studies investigating phospholipase in the presence of glucose 

might consider this as a method to improve visualisation. In this study, a 

qualitative measure was used to record enzymatic activity due to the relatively 

small zones around the colonies which were difficult to measure accurately, and 

a quantitative measure could be employed if visualisation was improved. Sanita 

et al (2013) also reported that visualisation of enzymatic activity was improved 

when colonies were incubated for 7 days, and this study only incubated 

phospholipase and proteinase plates for 3 days and 5 days respectively. 

4.6 Protease activity 

The aggregating strain (NCPF 8977) appeared to have less proteolytic activity in 

the presence of glucose as the pH increased. The opposite appeared to be the 

case for the non-aggregating strain (NCPF 8971) which showed more activity as 

the pH increased (see Fig. 3.5.1). In all cases, only weak protease activity was 

observed and there was no significant difference between the groups where 

activity was shown. Kumar et al (2015) found that their C. auris isolates produced 
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phospholipase and protease with zones that could be measured quantitively. This 

study produced very small precipitation and clear zones around the colony which 

were difficult to measure accurately and could be explained by the fact that this 

study substituted a typical rich media for SU media which has been shown to 

produce less growth and biofilms (Uppuluri et al., 2009). Kumar et al (2015) state 

they used a BSA agar in their experiment though the study does not specify the 

glucose concentration or the pH which has been shown to have some impact on 

the production of phospholipases and proteases. The media components can 

also impact on activity; Karkowska-Kuleta et al (2019) looked at the surface 

proteins of three non-albicans Candida spp. grown in six different media and 

found the lowest presence of surface proteins in C. tropicalis grown in a SU 

media. Interestingly, they found a wide variation of proteins across all media for 

all species used in the study. Though Sanita et al (2013) compared strains from 

diabetic and non-diabetic patients when they looked at phospholipase and 

protease activity, they did not consider the availability of a carbon source in vivo 

as a parameter and the diabetic patients included in the study had well-controlled 

type II diabetes. This study has considered glucose as a potential factor in the 

proteolytic activity of the two strains. The study by Sanita et al (2013) also 

investigated C. albicans which is used as a model for comparison in this study 

due to the lack of data available on C. auris, though it may offer a distinct virulence 

profile. Buu et al (2014) also studied C. albicans and found that lower rather than 

higher glucose concentrations were more potent in activating some SAP proteins 

and found higher concentrations of the protein Sap5 in the media containing the 

equivalent of 1 mg/mL of glucose than in the media containing the equivalent of 

20 mg glucose/mL. They also found that the higher concentration of 20 mg/mL 
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appeared to delay or have a suppressive effect on Sap5 production. In the 

aggregating strain, activity was generally seen at the lower glucose 

concentrations, though this varied according to pH. The study by Buu et al (2014) 

did not consider the pH of the culture media. As discussed above, there may have 

been some discrepancy when visualising protease activity. Sanita et al (2013) 

found visualisation was improved when the protease assay plates were incubated 

for 7 days rather than the shorter periods in other literature such as the 5 days 

used in this study, which could be considered in future studies. 

4.7 Limitations and future improvements 

There were a number of key areas highlighted by the study that could have 

clinical relevance. In terms of biofilm, the was no real difference in biofilm 

formation with respect to the concentration of glucose or the pH, though variability 

in the results indicate that more repetition is required to provide a more confident 

conclusion. However, the results could also suggest that C. auris biofilms can 

tolerate a range of pH and glucose conditions. With respect to phospholipase and 

protease, glucose concentration and pH did appear to be relevant. A normal urine 

pH of 6.3 may offer some protection from the aggregating strain (NCPF 8977) 

which showed no activity from either phospholipase or protease, though a 

reduction in the pH could mean the patient is at risk even if there is little to no 

glucose present. A high glucose concentration could provide some protection 

from the aggregating strain (NCPF 8977), though there are accompanying co-

morbidities associated with high glucosuria. A low urine pH may provide some 

measure of protection from this particular non-aggregating strain (NCPF 8971) in 

terms of protease, though a mid-normal pH could put a patient at risk. The wide 

variation of activity across pH levels and glucose concentrations indicate that 
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there is some mechanism by which C. auris can adapt to respond to its 

environment and invade the host niche by responding to pH and nutritional 

requirements. Certainly, Modrzewska et al (2016), have determined that there 

are SAP proteins which function at a range of pH levels.  In terms of treatment, 

these findings can give no indication if a patient with poorly controlled DMII is at 

greater risk of infection by C. auris than a patient with well-controlled DMII as the 

response to pH and glucose concentration appear to be strain dependent. 

However, as discussed above, there is evidence to suggest that high blood 

glucose has a detrimental effect upon immune response and patients with poorly 

controlled DMII may be at greater risk of infection regardless of the level of 

glucose excreted or the pH of the urine (Zaccardi et al 2015). By providing 

nutrients and conditions similar to those found in vivo, SU is a useful media to 

mimic the environments that pathogenic yeast isolates are found in (Uppuluri et 

al., 2009). However, there were some difficulties ensuring an even mixture in the 

SU due to the number of insoluble components, such as calcium carbonate in the 

SU, and this was particularly evident in the highest pH of 6.3. Goss et al (2007) 

studied the role of pH in the solubility of metals including calcium carbonate and 

found that it became soluble below pH 4.5. The pH levels used in this study were 

higher, meaning that some components were insoluble. It was necessary to 

separate the mixture so that the correct amount of glucose could be added before 

it was filter sterilised. If the mixture was not properly mixed, then this resulted in 

the remaining stock SU having a higher proportion of insoluble precipitates which 

also raised the pH. This was managed by using a magnetic stirrer to mix the 

solution thoroughly while a syringe was used to draw the required amount. 

Despite this, the pH could differ between the solutions by as much as +/- 0.1, 
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though any change in pH was corrected, the difference suggests there could be 

variation in the components of the SU media. Variation in the components could 

also arise from using syringe filtration as a method to sterilise the media. 

According to Pillai et al (2016) syringe filters provide a means to remove bacteria 

and any undissolved particles. Removing undissolved particles could alter the 

biochemical profile of the formulation. Autoclaving was not explored as a method 

of sterilisation because other studies using synthetic urine only used filtration, 

furthermore insoluble particles would need to be removed to ensure that an 

accurate absorbance was achieved. Measures to overcome this could include 

using a commercially available SU or by using pooled clinical samples, though 

there would still need to be adjustments made to the pH and glucose 

concentration. Though not tested empirically, several observations have been 

made regarding the difference in behaviour between the two strains which, are of 

interest. This has also meant that some adjustments have been made to account 

for them. There have been some observations made with respect to the longevity 

and robustness of the two strains. It has been noticed that an OVC could not be 

prepared from an agar plate of the aggregating strain (NCPF 8977) that has been 

stored in the refrigerator for more than three weeks, whereas cells can be cultured 

from an agar plate of the non-aggregating strain (NCPF 8971) of the same age. 

It has also been observed that there was no measurable growth in the control 

group at pH 6.3 after 24 hours when cultured in SU broth. Though this broth 

lacked the addition of glucose as the main carbon source, minimal growth was 

seen at pH 5.2 and pH 5.6 and a biofilm grew in the control group at pH 6.3.  As 

discussed, the aggregating strain (NCPF 8977) cells appeared to settle, and cells 

were required to be vortex mixed regularly throughout the experiment to keep the 
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cells suspended. Despite regular mixing, there could have been minor differences 

in the concentration of cells used in the experiments. 

5: Conclusion 

In conclusion, biofilm formation was not significantly impacted by changes in pH 

and glucose. There were interactions between pH and glucose where 

phospholipase and protease activity varied depending on the pH level and/or the 

glucose concentration, though more studies need to be conducted to determine 

the extent of these interactions. 
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