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Développement de méthodes biophotoniques appliquées aux biofluides pour le diagnostic
rapide et non-invasif du cancer

La spectroscopie vibrationnelle englobe les techniques optiques spécifiques de la spectroscopie infrarouge a
transformée de Fourier (IRTF) et Raman (RS). Ces techniques sondent les vibrations moléculaires de
I’échantillon lorsque la lumiere interagit avec celui-ci, ce qui représente des ‘empreintes moléculaires’ de la
composition chimique globale. Les deux techniques sont trés prometteuses pour le diagnostic en santé,
notamment dans le cadre des ‘biopsies liquides’, en particulier les biofluides. Cette étude a porté sur le
développement des méthodologies bio-spectroscopiques pour 1’analyse biochimique du sérum a visée
diagnostic rapide et détection de pathologies. Le but était double. i) développer des méthodologies IRTF et RS
pour étudier les variations pré-analytiques du sérum et ii) utiliser I’approche RS liquide couplée a une analyse
chimiométrique pour évaluer le potentiel diagnostique sur des cas réels de données patients. Au-dela de la
preuve—de-concept et des études sur les variations préanalytiques (qui n’ont montré aucun effet sur le profil
spectral sérique) par la congélation/décongélation du sérum et le séchage en milieu ambiant, trois études
diagnostiques ont été€ menées sur des sérums provenant de patients avec différentes pathologies : cirrhotiques
avec ou sans un carcinome hépatocellulaire, différents stades de fibrose et différents stades de tumeurs
cérébrales. Tout au long de cette thése, une série de techniques spectroscopiques IRTF et Raman ont été
développées/utilisées, telles que I’ATR, et IRTF a haut débit spectroscopie et Raman sur sérums humains
séchés et liquides. Des approches chimiométriques avancées ont été utilisées telles que cluster (PCA, HCA),
partial least squares, linear discriminant analysis avancé, support vector machine with leave-one-out cross
validation avec fonction de base radiale et classifieurs random forest, avec pour but de développer un
classificateur robuste de diagnostique d’une pathologie. Dans toutes les études de diagnostic, les résultats ont
montré une capacité diagnostique modérée a bonne. Ces travaux démontrent que la spectroscopie vibrationnelle
associée a des méthodes chimiométriques avancées peut constituer une approche complémentaire pour le
diagnostic clinique, tels que les zones de soins.

Mots—clés : Spectroscopie vibrationnelle ; biofluides, cancer ; diagnostique ; technologie point-of-care

Developing biophotonic techniques for the rapid and non-invasive diagnosis of cancer from
biofluids

Vibrational spectroscopy relates to the specific optical techniques of Fourier-transform infrared (FTIR) and
Raman spectroscopy (RS). These techniques probe molecular vibrations of the sample when light interacts
with it, which present ‘fingerprints’ of the global chemical composition. Both techniques hold great promise
in disease diagnostics, especially with ‘liquid biopsies’ for biofluids. This study developed bio-spectroscopic
methodologies to query the serum biochemistry towards rapid diagnosis and detection of diseases. The aim
was two-fold; i) to develop FTIR and RS methodologies to analyse sera for pre-analytical variation. Secondly,
to use liquid RS combined with chemometric analysis to interpret pathological data for its diagnostic potential.
Beyond the proof-of-concept, with investigations into preanalytical variations (which proved no effect is seen
on the serum profile) via serum freeze-thawing and environmental drying, three diagnostic studies were sought;
from patient cases, i.e. cirrhotic sera with and without hepatocellular carcinoma, sera with different levels of
fibrosis, and with varying stages of brain tumours. Throughout the thesis, a suite of FTIR and Raman
spectroscopy techniques were developed/employed, such as attenuated total reflectance, high throughput FTIR,
and Raman spectroscopy on liquid and dried human sera. Advanced chemometric approaches were employed
such as clustering (PCA, HCA), partial least squares, and forward linear discriminant anlaysis, radial basis
function support vector machine with leave-one-out cross validation, random forest classifiers, all towards
developing a robust disease classifier. Across all diagnostic studies, results showed moderate-to-good
diagnostic abilities. It was shown that vibrational spectroscopy combined with advanced chemometric methods
can provide a good adjunct to clinical screening settings, such as point-of-care areas.
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VIBRATIONAL SPECTROSCOPY FUNDAMENTALS
PRINCIPES DE SPECTROSCOPIE VIBRATIONNELLE
FONDAMENTAUX

I.1 RESUME

Ce chapitre présente les bases fondamentales de la théorie de la lumiere et de son interaction
avec la matiere. I traite aussi la spectroscopie de biofluides et illustre comment celle-ci est en
mesure de fournir un excellent complément aux parametres biomédicaux a visée diagnostic et
de dépistage d’une pathologie. Des maladies telles que le cancer, a savoir le cancer primitif du
foie (carcinome hépatocellulaire) et les gliomes cérébraux sont introduites et discutées. Les
étapes pathologiques telles que la fibrose hépatique et la cirrhose du foie en phase terminale sont
détaillées et le lecteur est guidé a travers les objectifs du projet doctoral et les objectifs
spécifiques de 1'étude. Le chapitre comporte une introduction et une discussion sur 1’état-de-

I’art des techniques IRFT et Raman dans le domaine de la biospectroscopie clinique.

I.1.1 Principes fondamentaux de la spectroscopie vibrationnelle

Les changements d'énergie détectés suite a 1’interaction du rayonnement incident avec une
molécule donnée dans la spectroscopie de vibration sont ceux qui sont nécessaires pour
provoquer un mouvement nucléaire, que ce soit par absorption, transmission, diffusion ou
réflexion [2-3]. C'est la base de la spectroscopie vibrationnelle [3-6]. Les spectroscopies IR et
Raman en font partie et elles sondent les vibrations moléculaires de 1’échantillon irradié par la
lumiere (monochromatique pour la diffusion Raman et polychromatique pour la spectroscopie
IR). Certaines fréquences de vibration, dites « fréquences de groupe », sont caractéristiques de
la présence d’un groupement chimique dans la molécule étudiée. La théorie mécanique des
vibrations permet de prévoir I’existence des fréquences de groupe a partir des ordres de grandeur
des différents types de constante de force. La fréquence vibrationnelle dépend de la nature des
liaisons, de la masse des atomes concernés et de 1’environnement proche du groupement
considéré. Ainsi, en utilisant ces techniques, on peut obtenir une empreinte chimique de
I'échantillon analysé.

Les spectroscopies IR et Raman sont complémentaires car elles fournissent toutes deux unes

« empreinte digitale » ou une «signature» des molécules d’un échantillon, selon que leurs
liaisons présentent des activités Raman ou IR. En raison des empreintes moléculaires
caractéristiques obtenues, les spectroscopies Raman et infrarouge sont trés prometteuses pour
le diagnostic des maladies. Elles sont largement utilisées dans la recherche et le développement
de nouveaux outils dans le domaine de la santé ; avec plus d'une décennie dédiée a chercher des

marqueurs spectroscopiques associés a des mécanismes pathologiques au niveau cellulaire et
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tissulaire [68]. Les recherches ont donné lieu aux concepts de la « cytologie spectrale » et de
« I'histologie spectrale » [8, 67-69]. Cependant, il y a un manque de standardisation, de
validation lors d'essais cliniques a grande échelle et d'actions multicentriques, associé aux
limites de I'approbation éthique des essais de données a grande échelle. Cela signifie que la
traduction clinique réelle est quelque peu entravée. Néanmoins, la recherche de marqueurs d’une
maladie via des ‘biopsies liquides’ devient rapidement une technologie émergente au potentiel
considérable.

Il est courant de dépister des maladies dans le sang et seules quelques études ont exploré les
approches spectroscopiques. Les avancées au niveau instrumentation, le gain de sensibilité des
détecteurs, 1’utilisation de nouvelles techniques de traitement des données plus pointues ont
amélioré la capacité de détecter rapidement et de facon non-invasive les signatures spectrales
liées a des maladies. Par conséquent, ces approches représentent un potentiel de s’intégrer a la
pratique clinique actuelle. En fin de compte, cela apporterait des services publics plus efficaces,
des économies substantielles, une prise en charge efficace pour les patients et une réduction

marquée de la morbidité et de la mortalité.

1.1.1-1 La spectroscopie infrarouge
Lorsque la lumiere infrarouge interagit avec la matiere, plusieurs phénomenes physiques
peuvent avoir lieu mais principalement, elle peut étre absorbée, transmise, réfléchie, réfractée
ou diffractée. Quand la lumiére incidente a la bonne énergie correspondant a la différence entre
deux niveaux d'énergie de vibration, elle sera absorbée. Ceci provoque le passage d'une
molécule a un état d’énergie plus élevé en raison du transfert d'énergie. Par conséquent, il est
décrit comme un processus quantifié¢ et donne lieu & un spectre composé de pics / bandes pouvant
étre interprété qualitativement (position du pic) et quantitativement (intensité / surface du pic,
intensité relative) [2,5]. De part sa nature, 1'énergie d'absorption du rayonnement infrarouge est

inférieure aux énergies mises en jeu en spectroscopie Raman, comme illustré dans la Figure 1.4.

1.1.1-2 La spectroscopie Raman
Lorsque des photons d’une lumiere monochromatique interagissent avec des molécules, le
faisceau incident est soit diffusé sans changement de longueur d'onde (diffusion de Rayleigh),
soit avec un changement de longueur d'onde, connu sous le nom de diffusion Raman. La
diffusion de Rayleigh (dite élastique) se produit lorsqu'un électron est excité de 1'état
fondamental a un état virtuel avec une énergie plus élevée, avant de revenir a 1'état fondamental.
Cet effet représente une proportion importante des interactions photoniques qui ne présentent
aucune information moléculaire car la méme longueur d’onde est recouvrée [6]. Lorsque les

photons transferent de 1'énergie aux molécules sous forme d'énergie de vibration, il se produit
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une perte d'énergie et un décalage vers une longueur d'onde plus longue avec une intensité
supérieure, par exemple, la lumiere est décalée vers le rouge. Ceci est connu sous le nom de
diffusion Raman-Stokes. Cependant, les photons incidents peuvent recevoir de 1'énergie de
molécules vibrantes, entrainant une augmentation fréquence / énergie, se déplagant vers une
longueur d'onde plus courte avec une intensité moindre, par exemple, la lumiere est décalée vers
le bleu. C'est ce que I'on appelle la diffusion Raman anti-Stokes, dont le signal est globalement
moins intense que celui des raies Stokes (différence de population des niveaux) car seules les
molécules déja excitées avant l'irradiation peuvent provoquer ce phénomene [6-7]. Les
diffusions Stokes et anti-Stokes sont appelées « inélastiques » et 1’information moléculaire
contenue est la méme. Dans la pratique usuelle, le signal anti-Stokes et la raie Rayleigh sont
filtrés pour ne garder que le signal Raman-Stokes. La Figure 1.4 montre les transitions

impliquées au cours de ces processus.

1.1.2 Biofluides et marqueurs de maladies

Les composants sanguins tels que le sérum et le plasma sont couramment utilisés dans en
analyse clinique car ils contiennent des biomarqueurs utiles au diagnostic de la maladie [7].
Dans le domaine du diagnostic du cancer, ils sont connus pour étre une source riche
d'informations et représentent une lecture des événements cellulaires et extracellulaires en cours
[70]. De plus, ils sont facilement accessibles et peu invasifs pour les patients, ce qui rend
possible des études plus grandes. Les tendances récentes indiquent que 1’utilisation d’un seul ou
de quelques biomarqueurs est en recul par rapport a I’utilisation de plusieurs biomarqueurs pour
la progression de la maladie [71]. Dans ce contexte, le rdle des méthodes de spectroscopies
vibrationnelles peut étre déterminant car les informations fournies par la signature spectrale du
biofluide refletent, via la composition biomoléculaire ou empreinte chimique, le statut
physiopathologique du patient. La capacité de détecter des changements biochimiques ou
morphologiques au stade prodromique de la maladie est essentielle pour une thérapie efficace.
De plus, la détection de biomarqueurs joue un rdle important dans cette exploration. Plus une
maladie est détectée précocement, plus le traitement peut tirer pleinement parti de l'intervention
thérapeutique. Pour le cancer en particulier, il existe un large éventail d'entités biochimiques,
notamment des protéines, des acides nucléiques, des lipides, des glucides, de petits métabolites
et des parametres cytogénétiques et cytocinétiques, ainsi que des cellules tumorales circulantes
(CTC) entieres logées dans des biofluides. La recherche de marqueurs de maladie émerge
rapidement en spectroscopie vibrationnelle. L'accent a été mis sur le sérum et le plasma, en
raison de la prévalence de ces échantillons dans les biobanques actuelles et du fait que
I'approbation éthique est déja bien établie pour la collecte et 1'utilisation de ces échantillons

biologiques dans la détection de nouveaux marqueurs associés a des maladies.
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I.1.2-1 Cancer
La prévalence du cancer a considérablement changé au cours des cinq dernieres années et devrait
atteindre 4 millions de personnes au Royaume-Uni d'ici 2030 [72]. A T'heure actuelle, 2,5
millions de personnes vivent avec le cancer au Royaume-Uni, dont 80% en Angleterre [73]. On
dit que la maladie sera diagnostiquée chez 1 personne sur 2 a un moment de leur vie et que la

survie au cancer est trois fois plus élevée lorsqu'elle est diagnostiquée tot [74].

Selon la Fondation mondiale de recherche sur le cancer, la France a la deuxieéme incidence la
plus élevée ; ayant l'incidence la plus élevée chez les hommes (360,6). C'est le 6°™ rang mondial
(300,4), alors que le Royaume-Uni se classe 22°™ (266,9) au niveau mondial [76]. Bien que les
taux de mortalité par cancer aient diminué en France au cours des vingt dernieres années, il reste

la principale cause de déces, avec 148 000 déces en 2012 [75].

Le cancer est la croissance incontrdlée des cellules, due aux mutations de notre processus de
renouvellement cellulaire normal. Des erreurs au stade de la réplication de 'ADN peuvent
entrainer une instabilité génétique et éventuellement des modifications physiques dans le corps.
De tels changements affectent les nucléotides. Ces molécules de sucre azoté fournissent les
éléments constitutifs de la vie et sont souvent désignées par A (adénine), T (thymine), C
(cytosine) et G (guanine) dans 'ADN. Une accumulation de changements au sein de ces
molécules peut conduire au développement d'un cancer qui se manifeste dans le cycle cellulaire
(voir Figure 1.23). Par conséquent, la plupart des médicaments anticancéreux ciblent des zones
sélectives du cycle cellulaire pour inhiber la croissance [77]. Notre appareil cellulaire interne a
mis au point des « points de controle » permettant d’appréhender de telles mutations avant et
apres la réplication génétique. Ces phases appelées G (lacunes / croissance) sont le signal des
cellules pour arréter tous les processus si des dommages génétiques sont détectés. Au
renouvellement cellulaire, le cycle cellulaire subit les phases suivantes G1, S, G2, appelées
collectivement Interphase, suivies de la mitose chez les eucaryotes. Avant d'entrer en mitose,
ces points de contrdle vérifient régulierement I'existence de modifications inconnues au sein de
l'architecture de I'ADN et proposent des modifications correctives ou un arrét cellulaire (GO).
Si des dommages a 'ADN ne sont pas observés, il en résulte souvent un ADN anormal avec un
nombre incorrect de chromosomes et une division aberrante continue menant a des mutations

géniques, d'ou la formation de tumeurs.
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1.1.2-2 Fibrose et cirrhose hépatique, carcinome hépatocellulaire et gliomes
La fibrose hépatique (FH) résulte de la réponse cicatrisante du foie & des 1ésions répétées [82],
telles que 1'hépatite virale ou la stéatohépatite non alcoolique (NASH) [83]. La défense naturelle
du corps déclenche une réponse inflammatoire, ce qui entraine une diminution des quantités de
protéines de la matrice extracellulaire au site de la 1ésion, permettant ainsi aux cellules
nécrotiques / apoptotiques d'étre remplacées par de nouvelles cellules parenchymateuses du foie.
Cependant, si la 1ésion persiste, la régénération du foie échoue éventuellement ; les hépatocytes
sont remplacés par une abondance de MEC, telle que le collagene fibrillaire. La FH passe des
bandes de collagene a la fibrose de pontage en cirrhose en phase terminale [84]. La fibrose est
caractérisée par une gradation sur une échelle allant de FO a F4. L'activité, qui correspond a la
quantité d'inflammation (en particulier l'intensité des 1é€sions nécro-inflammatoires), est notée

sur une échelle de 4 points allant de AO a A3 (Tableau 1.2).

La cirrhose se caractérise par une hypertrophie du foie, cicatrisante et difficile a toucher, qui est
élargie et correspond a la nécrose des unités fonctionnelles du foie ou des hépatocytes. En raison
des dommages au foie, les hépatocytes forment des nodules régénératifs (colonies de cellules),
entourés de tissu fibreux et d'un exces de collagéne. Les cellules responsables de cette formation
sont les cellules étoilées qui, dans les tissus en fonctionnement, sont des réserves de vitamine A
en sommeil. Habituellement, les cellules sont logées dans l'espace périsinusoidal (entre le canal
biliaire et la triade porte). Les hépatocytes sont situés autour du canal biliaire et d'un c6té de la
triade porte. La triade porte est la zone sinusoidale ol la veine porte et I’artere hépatique

convergent toutes les deux vers la veine centrale, située au centre de chaque hépatocyte [88].

Le carcinome hépatocellulaire (CHC) est un cancer primitif du foie. Il est considéré comme I'un
des cancers les plus répandus dans le monde et la troisieme cause de mortalité par cancer [89].
En France, il s'agit du deuxieme cancer digestif apres le cancer colorectal. Au cours des
dernieres décennies, son incidence a augmenté chez les deux sexes en France (4,8% chez les
hommes et 3,4% chez les femmes, respectivement) [89]. Le CHC est la principale cause de
mortalité en cas de cirrhose et se développe en plusieurs étapes : hépatite chronique, fibrose et
cirrhose (environ 80% des cas deviennent cancéreux) [89-91]. Connue pour sa pathogenese
moléculaire complexe, la durée de vie hépatocarcinogénétique est comprise entre 10 et 30 ans
[96-97] avec initiation primaire de stimuli externes excluant les modifications génétiques au

sein des hépatocytes.

Un diagnostic précoce équivaut a une meilleure fenétre thérapeutique et se traduit par un

pronostic plus probant de 1'évolution de la maladie. Il existe un protocole accepté pour classer
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une tumeur en fonction de la taille de la masse et de l'apparence histologique. Cependant, la
mise en scene du CHC présente de nombreuses autres distinctions. Selon les récentes directives
de I'EASL [101], quatre aspects connexes sont proposés en raison de 1'évolution trés complexe
du cancer et des patients atteints de cirrhose insidieuse. Celles-ci comprennent le stade tumoral,
la sévérité de l'altération de la fonction hépatique, le bien-étre du patient et 1'efficacité du
traitement [101]. Lorsque la tumeur est non résécable, elle ne peut pas étre complétement
enlevée par une chirurgie. Un plan de traitement en fonction des besoins nécessite d’étre mis en

place pour le patient.

Les néoplasmes intracraniens primaires (NIC ou tumeurs cérébrales) sont des tumeurs dont
l'origine est le cerveau, et les tumeurs gliales ou gliomes représentent 30 a 40% de tous les ICN
[106]. Les gliomes sont différenciés en fonction de 1'emplacement des tumeurs gliales [107]. La
Figure 1.26 présente un organigramme des différents types de gliomes et de non-gliomes a base

de tumeurs cérébrales primitives.

La plupart des cancers du cerveau résultent de 1'invasion de tissus voisins et de métastases
distales. Celles-ci sont environ 10 fois plus courantes que les tumeurs cérébrales primitives. En
regle générale, les ICN sont tres différents sur le plan histologique et sont classés en fonction de
leur degré de croissance élevé (croissance agressive et rapide / propagation) ou bas degré
(croissance lente controlée). Cependant, les tumeurs de bas grade peuvent ne pas Etre
caractéristiques et peuvent ne pas répondre efficacement au traitement. Par conséquent, la raison
enest qu'il n'y a pas de ligne de démarcation nette entre bénigne et maligne lors du discernement
des NIC Les tumeurs de bas grade sont les plus nombreuses, telles que les tumeurs
hypophysaires, les neurinomes de 1’acoustiques, les méningiomes et les tumeurs de la région
pinéale, tandis que les tumeurs de haut grade sont essentiellement des gliomes et du GBM, des
médulloblastomes et des lymphomes cérébraux primitifs, avec des croissances tres agressives

et une mortalité trés élevée. [107-109].

Dépendant de la présentation précoce des symptdmes de toute tumeur cérébrale, le patient est
soumis a une série de régimes de traitement. Celles-ci comprennent de nombreux tests sanguins,
techniques d'imagerie permettant de visualiser et d'aider au diagnostic, tels que 1'IRM, les
tomodensitogrammes, et la chirurgie invasive pour réaliser des biopsies ou une résection
tumorale. Celles-ci sont souvent suivies d'un cocktail de médicaments, de radiations (parfois de
thérapie par émission de positrons) et d'autres thérapies adjuvantes telles que la thérapie
photodynamique. Cependant, actuellement, il ne rentre pas dans les parametres définis par

d'autres études [110].
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1.1.3 Objectif de I’étude

L’ objectif principal de cette these est de développer une méthodologie spectroscopique capable

de dépister ou de diagnostiquer rapidement un état pathologique cancéreux a partir de biofluides.

Celle-ci pourrait éventuellement devenir un test de diagnostic utilisable au lit du patient. Cet

objectif est composé de plusieurs étapes comme mentionné ci-dessous :

1.

Effectuer une recherche documentaire approfondie dans le domaine d'étude proposé de
la biospectroscopie des biofluides

Etudier et analyser les effets pré-analytiques tels les cycles de congélation-
décongélation de sérum humain et du séchage du biofluide a I'air ambiant par les micro-
spectroscopies Raman et IRTF

Etudier et mettre au point une méthodologie rapide pour les tests sur sérums liquides et
par gouttes séchées par spectroscopies Raman et IRTF, a partir de sérums de patients :
hépatite avec fibrose hépatique et cirrhose et patients atteints d’une tumeur au cerveau
présentant divers degrés de gliomes primitifs de bas et de haut grade et de métastases
cancers

Choisir la technique optimale pour I’analyse spectroscopique du sérum liquide
développée et l'utiliser sur une large cohorte de patients : cirrhotiques présentant un

CHC ou non et différenciation des différentes étapes de la fibrose

22



CHAPTER OVERVIEW
This introduction explains the fundamental principles of vibrational spectroscopy along with the

principles of spectroscopic instrumentation, signal pre-processing and chemometrics for

biomedical analysis.

1.1 INTRODUCTION TO ELECTROMAGNETIC RADIATION

Electromagnetic radiation (EMR) consists of both electric and magnetic vectors, which oscillate
at right angles to one another as shown in Figure 1.1. The wave-particle duality theory states
that light can behave both as a wave and a particle. Particles of light or photons travel at 3 x 10
ms™ (c) and have discrete quantised energy. Photonic absorption promotes an electron shift in
energy levels. There is an inverse relationship between photonic energy and wavelength. Higher
energy photons produce shorter wavelengths. These photonic-wave interactions with matter are

of importance to the field of spectroscopy.

Electric Field

Figure 1.1 Electromagnetic fields oscillating at orthogonal sinusoidal
waves (L) wavelength (cm™). Recreated from [1].

EMR waves have certain characteristics, including amplitude, wavelength, and frequency as
shown in Figure 1.2. Light can travel through a vacuum and undergoes repetitive cycles, that is,
the wave travels from zero amplitude to zero amplitude after three passes through the zero
position, sinusoidally. EMR is grouped based upon its wavelength in to the electromagnetic

spectrum (EMS), as shown in Figure 1.3, i.e., visible, infrared (IR), ultraviolet (UV) etc.
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Since the field moves one wavelength in time A/c, the wavelength, frequency and speed of a

wave are related (eq. 1a) [1].

Maxima
Amplitude
Time‘
| | -
One Wavelength (A) Minima
Figure 1.2| Sine wave characteristics. Adapted from reference [1].
A
c=-
v
Eq. 1a

Frequency, v is defined as the number of cycles in a second and is measured in Hertz (Hz) or s°
!. The relationship between energy E and its frequency v, is proportional and is expressed using

Planck’s constant 4, (eq. 1b) [1-2]. Hence, the higher the frequency, the higher the energy.

Eq. 1b

Where,
E is energy (J),
h is Planck's constant, (h= 6.62607 x 10°* Js)

v is frequency (s™)

The energy of EM waves is proportional to the frequency or inversely proportional to the

wavelength (eq. 1c). This tells us that the shorter the wavelength of light, the higher the energy.

Eq. 1c
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Furthermore, wavelength is inversely related to wavenumber ¥, measured in reciprocal
. -1 . . .
centimetres (cm™), as it measures the number of cycles which a wave encounters per unit length

(eq. 1d) [1-2].

N
Il
>

Eq. 1d

Visible light wavelengths are expressed in nanometres, whilst the IR region is measured in
micrometres and has a longer wavelength with comparatively lower energy. The IR spectrum is

split into three regions named for their relation to the visible light spectrum (Figure 1.3).

Vibrational spectroscopy techniques such as Raman spectroscopy and IR spectroscopy allows
for the detection of chemical bonds or molecular vibrations from the visible light region, small

aspects of ultraviolet (UV) region, and the full IR spectrum, depending on the technique used.

Fundamental molecular vibrations often occur in the 2.5-25 um region, known as the mid-IR
(MIR) region and provides measurements across the 4000-400 cm™ [2-3]. In Raman
spectroscopy, which is based on light scattering rather than absorption of light, such vibrations

occur within the visible — NIR region (Figure 1.3).

NIR MIR FIR
(0.8-2.5 pm) (2.5-25 pm) (25-1000 pm)
14000-4000 cm! 4000-400 cm™! 400-10 cm!
(Harmonic or (Fundamental (Rotations/ low
overtone bands) vibrations) energy vibrations)
AY 7
\ IR ;
\ ;
Gamma X-Rays Microwave
Raman

Figure 1.3| A schematic of the EMS highlighting the wave frequency wavelengths with details of
infrared and Raman specific regions for analysis. NIR (near-IR), MIR (mid-IR) and FIR (far-IR).
Adapted from reference [1-3].
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1.2. PRINCIPLES OF VIBRATIONAL SPECTROSCOPY

The energy changes detected from incident radiation interaction with a given molecule are those
which are required to cause nuclear motion, either by absorption, transmission, scattering or
reflection [2-3]. This is the basis of vibrational spectroscopy [2-4]. IR and Raman spectroscopy
probe molecular vibrations of a sample when irradiated with light (monochromatic for Raman
scattering and polychromatic for IR spectroscopy). When employing these techniques, one can

derive a chemical fingerprint of the sample under observation.

1.2.1 Infrared Spectroscopy

When IR light interacts with matter, it can be absorbed, transmitted, reflected, refracted or
diffracted as well as with other properties. Light of the right energy that corresponds to the
difference between two vibrational energy levels will be absorbed causing a molecule to be
promoted to a higher vibrational state. Therefore, it is described as a quantised process and
results in a spectrum of peaks/bands that can be interpreted qualitatively (peak position) and
quantitatively (peak intensity/area, relative intensity) [2-5]. The absorption energy of IR

radiation is less than the Raman energies as shown in Figure 1.4.

1.2.1.1 IR Selection Rule
If photons of polychromatic light from the electric vector exactly matches that of a specific
molecular vibration of covalent bonds (i.e., in resonance with the specific energy gap between
the ground state and virtual excited states of the molecule), and it induces a change in dipole
moment, this causes an electron to jump to the outer higher energy shell and a photon is emitted
when the electron returns to its ground state [3-4, 7]. The IR signal intensity is equal to the

square of the change in dipole moment [2-3].

1.2.2 Raman Spectroscopy

When photons of monochromatic light interact with molecules the incident beam is either
scattered with no change in wavelength (Rayleigh scattering), or with a change in wavelength,
known as Raman scattering. Rayleigh (elastic) scattering occurs when an electron is excited
from the ground state to a virtual state with higher energy, before returning to the ground state.
This effect accounts for a high proportion of the photonic interactions that present no molecular
information [7]. When photons transfer energy to the molecules as vibrational energy, there is
a loss of energy and a shift to a longer wavelength with higher intensity, e.g., the light is blue
shifted. This is known as the Raman-Stokes scattering. However, the incident photons can
receive energy from vibrating molecules, causing an increase in frequency/energy, shifting to a

shorter wavelength with less intensity, e.g. the light is red shifted. This is known as Raman anti-
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Stokes scattering, which has an overall less intense signal than the Stokes line because only
molecules that are vibrationally excited prior to irradiation can give rise to this [5-7]. More often,
the anti-Stokes line is used in other Raman systems for intensely fluorescent models, whereas,
in conventional spontaneous Raman spectroscopy, Stokes blue shifted frequencies are seen.

Figure 1.4 shows the transitions involved during these processes.
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scattering scattering absorption
Figure 1.4] Energy level diagram showing transitions involved during Rayleigh (Avs = 0) and Raman
Stokes (Avs >0) and anti-Stokes (Avs < 0) scattering and infrared absorption. This Jablonski diagram
shows that the same vibrational states of a given molecule can be probed via two different routes;
one directly measures the absolute frequency (IR absorption) and the other the relative frequency or
Raman shift (Stokes and anti-Stokes). hvo= incident laser energy, hvyi, = vibrational energy, 4v =
Raman shift, vy, = vibrational frequencies. Adapted from reference [6-7].

1.2.2.1 Raman Selection Rule

Raman scattering is associated with a change in the molecular polarisability of the molecules,
that is, a net change in the electron cloud distribution surrounding the nuclei [7-8] when the
electric vector interacts with the molecular bond, which results in an induced electric dipole
moment in the molecule [2]. This is termed the selection rule for Raman scattering. Raman

intensity is equal to the square of the change in molecular polarisability [2, 4, 8].

1.2.3 Fundamental Molecular Vibrations

Molecular stretching, bending and rotations occur in a molecule undergoing interaction with
incident light, which give rise to specific frequency characteristics of a molecule’s vibrational
state. If the energy is in resonance with a molecular bond vibration, then as the molecule
transition to a higher energy level, the vibrational energies are quantised, meaning that specific

frequencies are needed to increase defined energy levels within a molecule [6-8].
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When a molecule is in a stable state, i.e., no incident external radiation, the chemical bonds of
a molecule are analogous to springs holding the atoms in place at their equilibrium position with
only minute oscillations occurring. However, any atomic displacement from such equilibrium
causes the molecular structure to vibrate and depending on the technique used for detection

(Raman or IR spectroscopy), the molecules are excited to a higher energy state.

For a fundamental understanding of the energetics of molecular vibrations, Hooke’s law is used.
For a diatomic heteronuclear molecule (homonuclear are IR inactive), it vibrates somewhat like
two masses on a spring, with a potential energy that is dependent on the square of equilibrium
displacement [2, 4, 7]. If the bond is considered to behave like a spring, then the restoring force

is proportional to the displacement from the equilibrium length, which is Hooke’s law (eq. 2a).

Eq. 2a

Where,

e  Fis the restoring force
e ks the force constant or a measure of bond stiffness, and
e  xis the internuclear distance

When the atoms are displaced from their equilibrium positions, an opposite restoring force is
produced, which increases proportionally with displacement. Equation 2b allows us to

understand the natural frequency vibration of a bond and radiation required to successfully

quantise diatomic molecules of two different atoms.

1 |k
2mc U

Eq.2b

Where,
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v is the vibrational frequency

u is the reduced masses of the atoms, i.e., mjmy/ (m;+my)

c is the velocity of light

k is a constant that varies from one bond to another, i.e., k is greater for triple bonds than single
bonds [7-8]

Importantly, a change to either the atoms’ masses or the bond force has the potential to alter a
molecule’s wavenumber position on a spectrum. Stronger bonds have a large k value and vibrate
at higher frequencies with more energy, and the greater the mass of the atoms, the lower the
vibrational frequency. With the harmonic oscillator, we can see that a transition is understood
in terms of the quantum number being 4v= #1, and a fundamental transition is defined as the
result of the molecular energy going from its ground state to the first excited vibrational state

(vo—1). See Figure 1.5 [highlighted in red].

However, Hooke’s law is not a strong approximation for real molecules and only holds true for
low values of the quantum number. As the force required to compress a bond by a definite
distance is larger than the force which is required to stretch a bond, the energy potential is rather
anharmonic. Perturbation theory is used to calculate the anharmonicity from the harmonic
oscillator model [7-8]. So, in contrast, the relationship between the force and displacement is
non-linear, but dependent upon displacement amplitude and thus has non-equidistant energy
levels. With this, the vibrational quantum numbers become (4v = >1) and decreases in
oscillation frequency are allowed, which explains the presence of overtone bands with lower
energies than twice the fundamental [2, 5]. The transition from vo- v, and vo- v3 are called first
and second overtones, respectively and decrease in energy progressively (see in Figure 1.5)

[highlighted in blue and green, respectively].

Combinations bands can also arise, whereby two vibrational frequencies (vi and v2) in a
molecule couple to give rise to a new IR active frequency. This band is the sum of the two

interacting bands (Veomy = vi+v2) [3, 7, 8].
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Figure 1.5| Simple harmonic oscillator (Green). Morse potential Anharmonic oscillator (Blue). Rebound
equilibrium, r is the nuclear distance, E is the energy of potential well. Adapted from reference [5,10].

1.2.3.1 Normal Modes and Bond Vibrations

The vibrational energy of a molecule can be divided into a number of parts, called ‘degrees of

freedom’. There are three coordinates to descibe the translational motion around the center of

mass, three coordinates for the rotational motion in non-linear molecules ; for linear molecules

only two are required. The remaining coordinates are used to describe the vibrational motion of

a molcule. Therefore, it can be stated that molecules with N atoms have 3N-6 vibrations for non-

linear molecules, whilst for linear molecules it’s 3N-5 vibrations (see Table 1.1).

There are 2 fundamental types of bond vibrations: stretching and bending. Stretching modes can

be further classified into symmetric or antisymmetric. Bending or deformation modes can be

sub-categorised into four actions as shown in Figure 1.6. Antisymmetric stretches occur at a

higher frequency than symmetric ones, which in turn occur higher up the spectrum than the

group of bending vibrations [2, 4, 10-11].

Table 1.1l Overview of degrees of freedom (DOF).

Total Translational DoF | Rotational DoF | Vibrational DoF
DoF
Non-linear Molecules 3N 3 3 3N-6
Linear Molecules 3N 3 2 3N-5
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Figure 1.6l Schematic representation of the different molecular vibration modes showing
bending and stretching vibrations. Adapted from [2-8].

1.2.3.2 Complementarity of Infrared and Raman Spectroscopy
If a molecule has a centre of symmetry or an inversion centre, then IR active vibrations are
Raman in-active and vice versa. There may be modes in-active in both. If a molecule has no
centre of symmetry, then some (not all) vibrations may be both IR and Raman active. This is

called the ‘principle of mutual exclusion’ in vibrational spectroscopy.

For example, carbon dioxide is a centrosymmetric molecule (CO»). It has 4 normal modes of
vibrations. The IR and Raman active modes are given in brief below:

e The Raman active mode is a symmetrical stretch as there is a change in polarizability, but it
is IR inactive as there is no change in dipole moment.

e The remaining three are IR active and Raman inactive modes (antisymmetric stretch, in-
plane bending and out-of-plane bending; but a degenerate, i.e they appear at the same
spectral region, as the vibrations are owed to a change in dipole moment [2-3,10].

CO; has 2 peaks on an FTIR spectrum: one antisymmetric (~ 2350 cm™) and two degenerate
deformation stretches (~ 666 cm™) and only one symmetric peak (~1330 cm™) on a Raman
spectrum [8, 10]. When the information gained from a Raman and FTIR spectrum is taken as
whole, one can see a fuller picture of biological spectra. Figure 1.7 shows an IR and Raman

spectrum that is assigned to the biological features of interest for biospectroscopy.
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Figure 1.71 FTIR and Raman spectra highlighting the regions of biomolecular interest in
biospectroscopy. FTIR spectrum (above) is taken over the range 3000-800 cm ! (both the functional
group and fingerprint regions). Raman spectrum is taken with 785 nm laser excitation and integration
time of 2 x 30 seconds and collected over 1800-600 cm™! region (fingerprint region only): NA —
nucleic acids; AA — amino acids, Tyr — tyrosine, Phe — phenylalanine. Adapted from references [6-
7, 11].
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1.3. PRINCIPLES OF SPECTROSCOPIC INSTRUMENTATION

1.3.1 FTIR Spectroscopic Instrumentation

A modern FTIR spectrometer consists of a source, interferometer, sample compartment,
detector, amplifier, A/D convertor, and a computer (see Figure 1.8). The source is usually a
Globar™ source (a silicon carbide rod). The Globar™ is supplied with an electric current, which

induces a rapid heating and emission of IR radiation [3, 11-13].

MIRNIRMS
SOURGE MICHELSON INTERFEROMETER
LASER [==P|
_1090
l’ INTERFEROGRAI\I‘
CELL 1 vlv
V
S | cowputER |
| F X
DETECTOR SPECTRUM

Figure 1.8| Block diagram representation of an FTIR spectrometer system. Adapted from reference
[12-15].

Infrared detectors are either thermal or quantum models. A thermal detector uses the IR beam
as heat, while the quantum mechanical detector uses it as light, which provides for an increase
in detector sensitivity. Upon detection, the signal is amplified and converted to a digital signal
by the amplifier and analogue-to-digital converter (A/D), respectively. The computer then

transforms the signal via a Fourier transform calculation.

1.3.1.1 Michelson Interferometer
A major component of modern FTIR spectrometers is the Michelson interferometer. It is used

to split one beam of polychromatic light into two so that the paths of the two beams are different,
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recombining the two beams and directing them into the detector where the difference in the
intensities are measured as a function of the difference of the path lengths. Figure 1.9 is a
schematic of the Michelson interferometer [13-15]. It consists of two perpendicular mirrors and
a beam splitter and acts to modulate the signal prior to Fourier transformation. One mirror is
stationary and the other is moving, this causes a difference in path length of the travelling
radiation (signal). The beam splitter functions to transmit half of the light and reflect the other
half. Basically, the transmitted light and the reflected light strike the stationary mirror and the
movable mirror, respectively. When reflected by the mirrors, two beams of light recombine with

different phase delays causing interferences with each other at the beam splitter.

Incident

Moving mirror

A
\d

In phase radiation
S directed towards
q

S
rd

Beam splitter

Stationary mirror

Figure 1.9] Schematic of a Michelson interferometer. Adapted from reference [13,15].

If the distances travelled by the two beams are the same, which means the distances between the
two mirrors and beam splitter are the same, this is known as zero path difference (ZPD).
However, if the distance from the moving mirror is greater or less than the distance travelled
from the stationary mirror, then the resulting signal produced is known as optical path difference
(OPD). This is a summation of cosine and sine contributions that display the signal intensity as
a function of path length. Then the interferogram is Fourier-transformed which produces the

sample spectrogram [15-16].

Optical retardation or OPD occurs when there is a phase difference in beams recombining. This

specific feature is the only dependant factor for FTIR spectral resolution, i.e., the larger the
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distance travelled by the moving mirror, the greater the spectral resolution. This is directly
related to an increase in scan time. Some scan times for an FTIR spectrometer are 0.25 cm, 5
cm and 1 cm, which are equivalent to spectral resolutions of 4 cm™, 2 cm™ and 1 cm™,

respectively [14-16].

The resulting interferogram is a measure of relative intensity against OPD. Fourier
transformation takes a signal in a time domain and converts it to get a frequency or spatial
domain, which is deconvolved to produce a spectrum of intensities per unit wavelength. Figure
1.11 shows the Fourier transform from an interferogram of polychromatic source to its spectrum.

In the absence of sample, this is what is known as a background reference spectrum (see Figure
1.10 (b)).

Fourier transform of the interferogram can be viewed as the inversion of OPD; since the units
of OPD is centimetres, the inversion of such has a unit of inverse centimetres (cm™) or

wavenumbers. This results as a plot of intensity versus wavenumbers (an FTIR spectrum).

Relative Intensity

Optical Path Difference Wavenumber cm-1

Relations

Figure 1.10! Fourier transform from interferogram (a) to its spectrum (b). Adapted from reference [14-
15, 19].

1.3.1.2 FTIR Sampling Modalities
There are three main sampling modalities of FTIR spectroscopy: transmission, attenuated total
reflectance (ATR) and transflection (see Figure 1.11). There are two more methods, namely
specular reflectance and diffuse reflectance modalities, but will not be detailed here in depth, as
they were not used in this biological research. Diffuse reflectance is commonly used for both
organic and inorganic samples that are finely ground in a powder (less than 10 microns) and

mixed in a matrix, i.e, KBr. Using an accessory to direct the IR beam into a sample cup filled-
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mixture, the IR energy interacts with particles and then reflects off their surface, causing the
light to diffuse as it passes through the sample. Specular reflection or reflection-absorption
spectroscopy requires the use of a reflective surface, i.e., gold, aluminium with a thin sample
layer surface coated. The beam then interacts with the surface at an angle and bouces off at a
different angle (in effect passing the sample layer twice ; hence reflection-absorption). For this
sampling technique, the angle of incidence is important for increased sensitivity. The steeper

the angle entering the sample, the longer it will interact with the sample [19].

1.3.1.2.1 Transmission mode
To measure a sample in transmission mode, the sample can be mounted onto an IR transparent
substrate; usually calcium fluoride (CaF,). The IR light is shone onto the sample and passes
through with some of the frequencies of light being absorbed. The transmitted light is detected.
Whist this method is effective for bulk analyses, sample preparations can be time-consuming,

and substrates are costlier than ones used in transflection mode.
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1.3.1.2.2 Transflection mode
In transflection mode, the sample is placed on an IR-reflective surface, which is usually coated
with a coated material that conducts, commonly a silver-tin oxide complex layered on glass,
known as low e (emissivity), or MirrIR (Kevely Technologies) substrates. The substrate is
reflective to IR radiation but transmits visible light. A Schwarzschild-Cassegrain objective is

used to both focus the beam on to the sample and capture the returning light.

a) b)

Incident IR Light

Cassegrain
Lens
Incident IR Light s ssssssslp 1R Light to Detector
Sample
Sample
IR Substrate
Condenser

IR Light to Detector
) d)
Incident IR Light
Cassegrain Sample
Lens . )
- Evanescent Wave
Sample IRE
Incident IR Light IR Light to Detector
IR Reflecting Substrate

Figure 1.11I Illustrations of the FTIR sampling modalities — a) transmission, b) transmission in micro-
spectroscopy, c) transflection, and d) ATR. Adapted from reference [19].
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The beam being bounced off the IR reflective window and transmitted back through the sample
and up to the same Cassegrain objective. Transflection mode does suffer spectral perturbations,
such as Mie scattering and the electric field standing wave artefact (EFSW) [18]. Mie scattering
is due scattering particles being larger than the wavelength of interacting light, whilst EFSW is
due to non-linear changes in absorbance with sample thickness differences, when in contact with

metallic surface [16-17, 19].

1.3.1.2.3 ATR mode
In ATR mode, the sample can be placed directly on to the internal reflection element (IRE), e.g.
diamond, germanium and zinc selenide crystal, as they all have a higher refractive index (RI)
than the sample, or a surface. The sample can be liquid or solid. The major benefit of using ATR
is the ease of analysis with liquid samples with a biomedical or clinical importance, as it is rapid,
non-destructive (exception of removal of dried biofilm build up upon drying of liquid), easy to

use, and cost effective.

1.3.1.2.3.1 Principles of ATR
In ATR mode, an IR beam is directed onto an optically dense IRE crystal with relatively higher
RI than the sample. The beam enters the crystal and is totally relected from its internal surace,
which creates an evanescent wave that penetrates the sample (on the crystal) by a few microns
(0.5 - Spm). The sample absorbs a small proportion of energy the evanescent wave becomes
attenuated. [17, 19]. In regions of the IR spectrum where the sample absorbs energy, the
evanescent wave becomes attenuated or altered; and the energy from the wave is passed back to

the IR beam and exits the opposite end of the IRE for detection via the detector.

Given that ATR is a surface-sensitive technique, to ensure the analyst is able to acquire quality

spectra the following two requirements must be met:

® An intimate contact between the sample and IRE is integral, because the evanescent wave only
extends up to 5 um max and between ~ 0.2-3 pm in MIR [19]

e The RI must be sufficiently greater for the IRE than the sample of interest for total internal
reflection to occur

Fundamentally, ATR spectroscopy is dependent on the critical angle 6, and the depth of
penetration (d,), which is wavelength dependent. d,, is technically defined as the distance
required for the electric field amplitude to fall to e”'of its value at the surface [17, 19]. Equation

3a demonstrates the calculation of the 8, based upon the RI of the sample (n,) and the IRE (n;).

n, (sample))

6, = sin~! (
¢ = St 1, (IRE)
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Eq. 3a

Total internal reflection can only occur if the 8. = 6; (angle of incidence). Thus, as the 6;
increases eventually no light is refracted, so does the 6,5 (angle of refraction), until it reaches
90°, where only reflection occurs. Now the light is totally internally reflected. So, taking

equation 3a [17, 19] to form the dp formula, we get:

A
d. =
y 2m(n?sin26 —n2) /2

Eq. 3b

We can see that d), entirely A dependent, RI n, (sample) ,n, (IRE) and both angles (6;, 6.).

This is shown diagrammatically in Figure 1.12.

I Sample

Figure 1.12| Schematic of ATR process, displaying 6., d, and RI of both media n, ,n,. Adapted
from references [16-17, 19].

1.3.2 Raman Spectroscopic Instrumentation

The Raman effect is a very weak phenomenon, due to the inelastic light scattering process that
accounts for the phenomenon. Rayleigh elastic scattering does not involve a change in energy
and is therefore a much more energentically favorable process. A monoschromatic laser is

employed, and sensitive detectors are required to capture the photons [4-5, 8, 20].

The difference in wavelength in between the incident and scattered visible radiation corresponds
to the wavelength in the MIR. Thus, the frequency difference is measured by the detector and is
presented as a spectrum of intensity vs. wavelength shift [20-24]. Raman instruments measure
wavenumber shifts over 4000-10 cm™ and can be dispersive or non-dispersive, such as Fourier

transform Raman spectroscopy, which comprises a Michelson interferometer [24].

Raman spectrometers are commonly coupled with an optical microscope to enable analysis at

the micron level. A Raman microspectrometer comprises an excitation laser, a beam expander,
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a series of mirrors, an optical microscope, filters and prism gratings and a charge coupled device
(CCD) detector. Figure 1.14 shows the basic components to a dispersive Raman spectrometer

coupled to an optical microscope.

1.3.2.1 Instrument Components
In Raman instruments, a laser source is nearly always used, this is owed to the high intensity
needed to produce the Raman scattering to be measured with a reasonable signal-noise ratio
(SNR). The Raman scattering intensity varies as the fourth power of the frequency [5, 22]. This
means the shorter the wavelength, the more intense the Raman scatter produced, but larger risk
of photodamage to the sample. Conversely, as one increases the wavelength (green — red), the
scattering efficiency decreases, and longer integration times are needed. Lasers often used in a
Raman experiment range from the UV to the NIR. The choice of laser source is vitally important
as it is not only directly related to the scattering intensity, but to spatial resolution and

confounding fluorescence perturbations.

CcCD

Focusing
Lens

Beam —y
Splitter

Notch
Filter

QMicroscope

\_/ Objective
Sample —p

Figure 1.13| Schematic representation of a dispersive Raman instrument coupled to an optical
microscope. Replicated from reference [24].

Some common laser sources include Argon ion (488 or 514.5 nm; Krypton ion (530.9 or 647.1

nm); Helium-neon (He-Ne) (632.8 nm); Diode (785 or 830 nm) or Neodymium-doped Yttrium

Aluminium Garnet (Nd-YAG) (1064 nm). Nd-YAG sources have an advantage of lessening the
fluorescence phenomenon as the energy required for a change in the excitation energy of the

molecule is lower than the energies of the organic systems [23-24].

The spatial resolution of Raman spectroscopy is based on the wavelength and the numerical

aperture used in a confocal system. It is given by equation 4a [5].
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Spatial Resoluti _ 1224
pala esowution = NA

Eq. 4a

The Raman spectrometer houses a range of optics including a beam splitter, mirrors, slits and
lenses, which are used to focus the laser into the spectrometer, to the sample and used to collect

the scattered light and direct it via a filter, a diffraction grating to be detected on CDD [24-26].

The two types of Rayleigh filters within a Raman system are notch and edge filters. The notch
filter blocks a range of wavelengths (a few nm wide) around the central absorption of laser line,
in effect blocking the laser line and allowing the Raman signal (both Stokes and anti-Stokes).
Whereas, edge filters only permit Stokes scattering, as all wavelengths are blocked a couple of

nm above that of the excitation wavelength.

Before the signal is sent to the CDD, it encounters a diffraction grating, which disperses the
light at varying angles based on the wavelength, separating the light from polychromatic to
monochromatic components [24-26]. There are many grating choices for Raman spectroscopy
and the number of lines/grooves is the deciding factor for spectral resolution. Common gratings
include 300 g/mm, 600 g/mm, 1200 g/mm and 1800 g/mm. The greater the groove density the
better the spectral resolution. Overall spectral resolution within a dispersive Raman system is
determined by four main factors, including the grating and wavelength:
e  Spectrometer focal length, which is the distance between the grating and CDD. The greater
the distance the higher the spectral resolution. Typically, focal lengths are between 200 mm

(low/medium resolution) to over 800 mm (high resolution). Such choice should be factored
in with grating choice, [25-26].

e Lastly, the detector pixel size has a bearing on spectral resolution. Essentially, the smaller
the pixel size the higher the spectral resolution achievable. Spectral resolution is the
resolving power to separate spectral features and bands into their separate components
within a spectrum [22-24, 26].

The signal is then passed on to the CCD; a silicon-based multichannel array detector of UV,
visible and NIR light. Fundamentally, each channel houses individual light-sensitive detector
elements (pixels) and when they interact with incoming light they build up a charge. The charge
is collected, registered then measured. When light is dispersed from the grating it is projected

on to the long axis of the CCD array, which means the first pixel will detect light from low
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wavenumber region, finishing with the highest wavenumber light captured at the corresponding

end (see Figure 1.14).

A fundamental requirement for successful Raman analysis is achievement of a usable SNR with
the highest scattering efficiency possible whilst avoiding photo-degradation of the sample. A
challenge to achieving this is often an overwhelming fluorescence contribution, which masks
the weak Raman signal in most cases. Fluorescence and Raman scattering are competing
phenomena; however, one is a ‘real’ electronic transition (fluorescence) and the other is a
‘virtual’ electro-vibrational transitions (Raman). Fluorescence is an absorption-emission
resonant process, i.e., energy of incident photon is equal to the energy difference between
ground energy state and one of the excited states of the molecules akin to IR spectroscopy.
Whereas, Raman is a non-resonant process and is instead almost instantaneous. Fluorescence

has a characteristic lifetime of nanoseconds; and can overwhelm the Raman signal.

My e
D

CCD DETECTOR

PIXEL1 PIXEL 1024
Low cm? HIGH cM?

Figure 1.14]1 Schematic of dispersing light projected on the CCD array.
Replicated from reference [25].

Raman spectroscopy can be used to analyse almost any type of sample. However, major
parameters to ensure a fully optimised and robust system are substrate choice, optical alignment
of laser beam, gratings and optical components, excitation laser choice, laser exposure and
confocal hole and slit size. Moreover, due to the sensitive nature of the instrument, prior to any
testing, a series of optical calibrations, power checks and instrument response measurements are

required to ensure correct signal alignment and no occurrence of band shifting.
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1.4. SIGNAL PRE-PROCESSING AND QUALITY ASSESSMENT
This section focuses on the pre-processing and data analysis methods performed during this
research project. Firstly, common methods will be described, followed by technique-specific

methods.

Data processing applied prior to univariate/multivariate analysis (MVA) is known as pre-
processing. It aims to eliminate the effects of unwanted signals such as detector noise,
calibration errors, cosmic ray artefacts (CRA), confounding fluorescence, Mie scattering, laser
power fluctuations, drift, stray light and possible substrate contributions and sample thickness
differences [26-27]. Spectral collection results in a combination of the pure signal that is

exploitable and residual degree of instrumentation and environmental effects.

As IR and Raman spectroscopies exploit fundamentally different phenomena, the extraneous
noise and unwanted signal are also different and as such pre-treatment of different steps are
required. However, there are some parallels in the data analysis workflow for both Raman
spectroscopy and FTIR spectroscopy. Ultimately, there is a myriad of techniques and
applications available for spectral pre-processing, but the most fundamentals steps across both
techniques are truncation of the spectral range and normalization of the signal to a common

scale, prior to exploitation with chemometrics.

1.4.1 Spectral Wavelength Truncation

One the simplest ways to pre-process spectroscopic data is to reduce the spectral range. Since
most of the salient biochemical information is found in the fingerprint region of the spectrum,
it is reasonable to remove any area of the spectrum that is not of interest for further analysis as
it is effectively computationally-redundant This usually includes the tail ends of the spectrum
whereby it could have interferences from the cut-off limits of the detector or transmission range
of the substrates [9, 11]. The FTIR fingerprint is reported to be 1800-950 cm™ for FTIR
spectroscopy and 1800-600 cm™ for Raman spectroscopy.

Accordingly, some studies show little differences between the application of spectral quality
tests, normalization methods, baseline correction or spectral filtering techniques across Raman
and FTIR datasets. However, the low SNR of biological Raman analysis should be considered

when applying smoothing filters/derivatives techniques according to some [25-27].

1.4.2 Normalisation
Variations owed to sample thickness or intensity differences cause slight changes to the data.
Following baseline correction, the data often needs to be scaled. Vector normalization (VN),

standard normal variate (SN'V), min-max and offset scale correction (OSC) are popular methods,
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as well as normalization to amide I band [11]. In this research, VN and SNV followed by an

offset correction were carried on all spectroscopic data.

1.4.2.1 Vector Normalisation
VN or (2-norm) reduces the thickness/width between the minimum and maximum spectra on

the absorbance axis across all spectra. Equation Sa demonstrates the formula for VN [31].

Eq. 5a

It achieves this by firstly mean centering the data and dividing by the square root of the sum of
the mean-centred intensities squared, meaning that the sum of all the intensity values squared is

equal to 1.

1.4.2.2 Standard Normal Variance
SNV normalization starts with mean centred data and divides it by the root mean square (RMS)
over the spectral intensities, resulting in spectra with a unit standard deviation of 1 [26-28]. This

is given by equation 5b.

Eq. 5b

1.4.2.3 Offset Scale Correction
OSC is an adjustment of the normalised spectrum so that at least one of the minima points goes

through the zero axes. This helps subsequent interpretation.
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1.4.3 FTIR Spectral Quality Assessment
An internal instrument calibration is carried out automatically within the spectrometer, plus and

a weekly external calibration following an in-house protocol.

1.4.3.1 FTIR Spectral Quality Assessment
Raw spectra from the FTIR experiments should be submitted to a spectral quality test to check
SNR, control absorbance intensity, and observe water vapour. The spectral quality test [27-28]
carried out with FTIR data is detailed below.
e Absorbance linearity check: FTIR Spectra should be discarded if the spectral absorbance < 0.35

a. uor > 1.8 a.u. For ATR-FTIR this is slightly amended based on the attenuation of the signal.
Spectral intensities between 0.02 —1.2 a.u are kept.

e SNR calculation threshold (S1, S2): The maximum absorbance of two characteristics bands are
chosen, i.e amide ~1700-1600 cm-1 (S1), and a sugar-ring vibration ~1260-1170 cm! (S2),
followed by a first-order derivation to assign the maximum values. Noise is evaluated at a
molecularly silent region within the mid-IR range ~2100-2000 cm™! and is calculated based on
its maximum value of the first derivative.

e Water vapour check (W): The water vapour content can be seen in the spectral range ~1847-
1837 cml,

Raw FTIR spectra should only pass this quality assessment if the SNR = >50 and 10,
respectively for each of the regions, and the S1, S2-W ratio =< 20 but > 4.

1.4.3.2 Baseline Correction for FTIR
Generally, an FTIR spectrum should lie on a straight baseline; however, occasionally some
perturbations can be seen, i.e a rising baseline owed to reflection, scattering, temperature,
concentration differences and some physical effects from the instrument [29]. Essentially,
variations from the background/sample and the interaction of light with matter give rise to

variations in the spectral baseline [9, 30-32].

Whilst there are many mathematical algorithms available for FTIR baseline correction, in this
research, a rubber-band correction was used with FTIR single point data and extended

multiplicative signal correction (EMSC) model algorithm with mapping and imaging data.

1.4.3.2.1 Rubber-band Correction
This technique defines a rubber-band of a given length, which is wrapped around the tail ends
of the spectrum or if a specific region is selected, to that. A convex curve profile based on a
polynomial approximation is carried out and subtracted from the raw spectrum to reveal a
baseline corrected spectrum. This method was employed for all FTIR data except mapping and

imaging.
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1.4.3.2.2 Extended Multiplicative Signal Correction (EMSC)
This model-based method is both a baseline and normalization approach to spectral pre-
processing, but as the added advantage of being able to quantify different types of chemical and
physical variations in vibrational spectra [29-31]. The EMSC method [28-30] deals with
additive, i.e., seen across the whole spectrum scale, and multiplicative effects, i.e., seen often as
variations in scattering at the higher wavenumbers, which can overwhelm FTIR signal. For
information, multiplicative effects in Raman are owed to variations in sampling volume, laser
intensity and positioning and focusing on the sample [31-32]. It does this by removing the
physical effects of particle size and scattering from the spectra. Here, an in-house written EMSC

method is given by equation 6a, b.
§; = ai§ + CiP + e;
Eq. 6a

It models the mid-IR light signal by a linear combination of the reference spectrum, i.e target
reference spectrum or mean of data (a;$), a polynomial model is fitted for the light scattering
(baseline) (c¢;P), plus an estimation of the residual error model (e;). Where a; and c; are the
coefficients, § is selected as the average of the dataset (when the correct estimation of a reference

spectrum is not available). The spectrum corrected by the EMSC is then calculated by equation

7b.

§+ei
a;

SiEMSC =

Eq. 6b

The model can be used as an outlier detection process as the residual e; must be smaller than an
empirically determined threshold, to exclude the spectra with noise and/or having a particularly

odd spectral shape.

1.4.4 Raman Spectral Quality Assessment
One of the fundamental steps for Raman analysis is ensuring that prior to any experimentation,
extraneous contributions from detector drift, noise (shot, flicker noise etc.), laser power

fluctuations are kept to a minimum, if not diminished completely.

1.4.4.1 Raman Spectral Quality Assessment
A Raman spectral quality test (QT) was designed to evaluate the S/N of the datasets on
MATLAB software (version R2015a, The Math Works, Inc., USA). Two spectral regions

(~990-1010 cm™ and 1720-1780 cm™") were respectively chosen to represent the spectral aspects
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for signal (S) and noise (N). A spectrum passed the QT threshold if it exceeded a ratio value of

30, which is accepted for biological data and in line with previous studies [137].

The noise is generally taken as being from the higher frequency part of the Raman fingerprint
region, where it usually devoid of any biochemical signal. Some regard the noise to be at the
base of the peak of the signal, that is the difference between the corrected baseline and the actual
baseline that the spectrum lies upon. However, here the 1720-1800 cm™ was chosen.
Additionally, sometimes, depending on the visual appearance of the spectrum, if such a region
did not have the lowest value, then another lower region was used; as was the case for the
fiberoptic testing. The signal was defined as one of the most bio-characteristic intense peaks
found within a Raman spectrum; i.e, the ring breathing mode of Phenylalanine at ~990-1010

cm’! (such a range was chosen to allow for potential minor peak shifts).

Raman spectra should only pass this quality assessment if the SNR if all spectra per test is

minimally varied and is generally above 30.

1.4.4.2 Wavelength/Intensity Calibrations and CCD Checks
This is usually done with an optimised, optically aligned instrument. Generally, the follow

spectral and intensity calibration steps are carried out:

e Dark current of the CCD detector: involves the subtraction of measured CCD signal in the
absence of laser light and sample. Dark current is the residual noise from the spectrometer and
components when no photons are present; often left over from the CCD detector.

e Optical response of the spectrometer: a signal is collected under laser illumination but in the
absence of any sample for subsequent signal correction.

e Detector response: atomic emission lines from a polychromatic source e.g. a Ne, Hg, Kr lamp
is read by the CCD and subsequently corrected [30, 32, 35].

e Intensity calibration: usually a national institute of standards technology (NIST) fluorescence
standard for the excitation wavelength is placed at the sample area for spectral collection and
subsequent signal correction.

Following routine detector and optical checks (above), it is necessary to complete power checks
of the laser line with a power meter and to note triplicate measurements at the start and close of
experimentation per day. Power checks are generally done with and without a microscope

objective.

Secondly, verification of the Rayleigh line by zeroing the spectrometer position is necessary to

monitor the spectrometer performance and observe shifts in the calibration of the silicon (Si
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~520.8 cm™) wavelength calibration; recording in triplicate to ensure a reliable Raman shift axis

and comparable intensity scale per day.

All routine calibration data is averaged and corrected in MATLAB later and the data pre-

processing stage.

1.4.4.3 Baseline Correction for Raman Spectroscopy
Sometimes inherent with Raman spectral collection are high-energy cosmic particles. These
cosmic ray artefacts (CRAs) are random events recorded on the CCD and manifest themselves
as non-reproducible, sharp and intense superimposed spectral spikes on the spectrum. Such
spikes represent unwanted signal and should be removed. Whilst there are a number approaches
which have been suggested for locating and removing CRA [32-36], signal averaging also works

to limit such occurrences, when spectra are repeated.

Whilst the literature supports many methods for background removal, such as time-gated Raman
spectroscopy, anti-Stokes Raman spectroscopy [37], and physical removal of fluorophores from
the sample by washing and filtering [38]. Most are accomplished using advanced mathematical
algorithms at the pre-processing stage. Such methods include baseline subtraction procedures
using polynomial detrends [39-40], derivatisation filters [42] and have the added advantage of
being efficient, relatively easy to perform and inexpensive in comparison for use of extra optical

components and or instrumentation [26, 32].

In this research, a polynomial baseline detrend was employed. This method finds a least squares
estimation of the baseline, ensuring the fit goes through the minima of the signal on the baseline.
Employing this approach has an advantage of preserving the Raman line shape, which makes
spectral interpretation easier, as the signal is not changed too drastically. User inputted values
of the points and polynomial order is generally done, or it can be automated, but it does allow a
good approximation for baseline correction. On the other hand, caution should be taken as not
to over or underestimate as this could introduce further aberrations in to the data [11, 32]. The
use of Savitzky-Golay [42] smoothing filter in combination with a polynomial detrend and
derivatisation was also undertaken. It should be noted that over-smoothing degrades the signal,

so caution should be taken.

1.5. CHEMOMETRICS FOR SPECTROSCOPY
Chemometrics are a branch of mathematics that deals with statistical evaluation methods to
extract pertinent and discriminating chemical information by finding patterns within the data

and aid the interpretation of biophysical /analytical chemistry data. Vibrational spectroscopies
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specifically produce many variables in multispectral domains, i.e., 100s to 1000s of variables,

whereby each wavenumber has a corresponding intensity associated.

Following initial quality checks, instrument response and pre-processing regimes, the data was
submitted to unsupervised and supervised clustering approaches, i.e., without and with a priori

group membership information.

1.5.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [43-44] is an unsupervised dimension reduction
technique, which finds classifications of data groups without a priori information. In
unsupervised learning, the requirement is to discover significant patterns of the data without the
use of labelling. PCA aims to find the underlying structure of the data, that is the directions
where there is the most variance, i.e., where the data is most spread. From a set of data points,
PCA deconstructs it into eigenvectors and eigenvalues. An eigenvector is a direction of the data
and its corresponding eigenvalue is an amount of variance within that direction. Principal
component 1 (PC1) is also known as the eigenvector with the highest eigenvalue. The total
number of dimensions or variables in a dataset is equal to the total number of eigenvector/value

pairing [45-47].

Within vibrational spectroscopy, the data sets are sometimes 100s or even 1000s of variables
that are measured simultaneously, thus spectroscopic PCA would demonstrate 100s or 1000s of
eigenvector/value pairs. These new underlying directions of the data are oriented orthogonally,
where by the first PC explains the greatest variance within the dataset, followed by the second,

third and so on, until all dimensions (eigenvector/value pairings) have been acccounted.

PCA reduces the overall data as it continues the eigenvector/value pairing, until a point whereby
such eigen vector/value pairing is no longer explaining anything meaningful. At that point
retaining only the meaningful latent components within the data best describes the data and the
meaningless values are redundant [47]. One can then reconstruct the data based on eigen

vector/value pairings that explain 99.99% of the data.

Extracting linear factors for relationship analysis is the fundamental theory behind PCA. By
finding the maximised sum of the squares within a data matrix of p x n (p = variables or columns
i.e wavenumbers, and n = observations (objects) or rows, i.e the associated IR absorbance/
Raman intensity, the original data is decomposed into new variables (V" and U), which best
describe the greatest variation in ascending order (see Figure 1.15), whereby the new variable

or dimension is termed principal component 1 (PC1) (k). Decomposition of the data matrix
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finds its pure components of the acquired spectrum, e.g. wavenumbers, spectrum of interest,

plus noise [44-47]. Generally, PCA describes the pattern of covariance between classes of data.

p variables
k principal ———

components —_ VT

—N—

nobjects | U X X = VT *U

Figure 1.151 The conversion of the original data matrix (p x n) into the new matrix of (X) to
formulate the k PCs. Adapted from reference [47].

For PCA interpretation, eigenvector plots can be termed ‘scores’ and correspondingly, its
eigenvalues are its ‘loadings’. To relate this back to spectroscopy, the superimposable and

complementary scores and loadings correlate to the row and column vectors, respectively [47].

PCA can achieve this by firstly taking the mean centre of the data, so to move the zero point to
the centre of the data cloud. It then transforms the cloud of data points in k space and rotates the
space until the data is uncorrelated and creates a new singular dimension (the eigenvector/value
pairings), acts like a ruler line, whereby the new data points lie on the planes’ direction. Figure

1.16 demonstrates how the new orthogonal directions are found in PCA.
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Figure 1.16] An illustration demonstrating how the PC are formed. (Top, left) finding the PC1 or
eigenvector direction, as the red line is indicative of the direction that explains the most spread. (Top,
right), rotation of feature space for formation of PC2, whereby PC1 is represented by the correlated
data points (blue circles on the new dimension). (Bottom) demonstrates the scores biplot. From this,
the loadings plot is determined (not shown), whereby the magnitude of all the blue dots can be
realised.

1.5.2 Hierarchical Cluster Analysis (HCA)

Hierarchical Cluster Analysis (HCA) is unsupervised ensemble clustering technique which finds
classifications of data groups without a priori information. It clusters the data into a dendrogram
(tree) and each object is compared with the each other via the Euclidean distance calculation
and in our case Ward’s algorithm for agglomerative dendrograms [48]. Essentially clustering
similar distance measurements under one branch of the tree until it finds the most heterogeneous
data clusters in a graphical representation. Figure 1.17 demonstrates a graphical representation

of HCA.
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Figure 1.171 An example of an HCA dendrogram using Ward’s algorithm [48]. The objects are
classified based on the degree of dissimilarity as a function of Euclidean distance; increasing
heterogeneity until convergence of both clusters is reached.

1.5.3 K means Cluster Analysis (KM)

K-means clustering (KM) [49] is an unsupervised data clustering technique, which aims at
partitioning the data into k clusters in which each data point belongs to the cluster with the
nearest mean. The initial k~-means are randomly assigned based on the user input of the number
of target k clusters. This indicates the number of centroids the model looks for, which then uses
the Euclidean distance in an iterative approach to group cases in a dataset into clusters. Such
clusters contain similar features/characteristics. The algorithm achieves this while minimising
the within-cluster sum of squares. The process is halted, and no more refinements of the
centroids are computed when a point of convergence is reached, or the algorithm completes the
target number. Once completed, for image analysis, the algorithm randomly assigns colours to
the clusters, building a visual representation of the physical/chemical homogeneities within the

sample. Figure 1.18 shows a step-wise approach to KM clustering.
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Figure 1.18] A schematic of a standard KM for image analysis, with a target (n=3). The step starts

at the top left and finishes at the bottom left in a clockwise rotation (indicated by the blue arrows).
Orange triangles = the data. Iterative regrouping of data is carried out via the distance of the nearest
means, until convergence is met, or iterations are completed, i.e n=3. The purple dotted lines =
Euclidean distance, and the black arrows = clustering of adjacent data points to the centroid.

1.5.4 Principal Components - Discriminant Function Analysis (PC-DFA)
DFA is a supervised data prediction technique, which uses linear combinations inherent within
the data matrix to help determine the greatest separation, whilst accounting for a priori
information, such as class, disease state, or sample differences due to pre-analytical variation,
i.e., freeze-thaw and drying etc. The orientation of the combinations means that it increases class
membership and reduces class variation, i.e., maximizes between (B) and minimizes within (W)
the data groups (Figure 1.19). DFA, canonical variates analysis (CVA) and linear discriminate

analysis (LDA) are all very similar as they are based on Fisher’s linear discrimination, but there
is no assumption of normally distributed classes in DFA [50].

As PCs are orthogonal aspects of the data, when combining with DFA, DFs are combinations

of those PCs that best describe an apriori class structure, or more simply, DFA identifies
proportions of the PCs that best match known classes of samples.
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Figure 1.191 DFA minimises within (W) group variance and maximises between (B) group variance.

PC-DFA is carried out by firstly, randomly forming testing and training groups (in our case — a
1/3 test and 2/3 train). The training data is used to build the model. The test data is then projected
in to the DF space and the correct matches of test on train per data/patient etc., are noted. It is
important to keep in mind that the user should define the number of PCs to be projected in to
the prediction, as well as the number of DF feature spaces. Like LDA, DFA has been heavily
debated in deciding which is the correct number to choose. One method to use is Cattell’s scree
plot, or selection of the PCs that account for a fixed level of variance, such as 99.99% explained
variance [51-52]. Additional methods include Kaiser’s rule or variable ranking methods;
whatever is employed, careful consideration is important, as the data will appear not as true in
some respects. For example, PC-DFA always aims to find some element of separation, that is
the basis of the algorithm, but one should keep in mind that a good choice of the correct

parameters will enable more robust predictions/classifications.

1.5.5 Support Vector Machine (SVM)

A Support Vector Machine (SVM) [53] is a supervised method for pattern recognition whereby
a hyperplane is fitted between the groups of data based upon the best discrimination of a training
set. This hyperplane can be visualised as a wave line but when transposed to the feature space
it represents a 3-dimensional plane between the groups. Figure 1.20 shows the hyperplane in

both 2-dimensional input space and 3-dimensional feature space.
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Figure 1.201 (Top) Hyperplane separation in a linear model, highlighting the support vectors for a
binary classification (Class 1 and 2). M = max margin between two groups. (Bottom) SVM
hyperplane from 2-dimensional to 3-dimensional feature space. Adapted from reference [53-56].

Support vectors are the boundary data points lying closest to the hyperplane. These eventually
become the training set for the classification. The hyperplane is significant as a choice lying
closest to one group and not the other does not generalise well and will easily misclassify. The

best hyperplane is found at the point furthest away from the groups.

Often in real world examples, data will not be so easily separated and a non-linear SVM is
required. To deal with this a kernel is used. A kernel is a similarity function that allows one to
observe how similar one class is to another. The most common kernels available are radial basis
function (RBF), polynomial and sigmoidal [55-56]. SVMs can be further divided into two
categories; hard and soft margin SVMs. The first requires two classes of data to be entirely
separable, whereas the latter allows more misclassification with the use of slack variables, whilst

still maintaining the robustness of the classification degree.

There are two additional features used with non-linear SVMs, which are beneficial; the
parameters cost C, and gamma y. The C parameter is a measure of the level of tolerance which
a model should allow a misclassification, i.e., a larger C value means a lower tolerance and the

more complex boundaries. A high C is often seen with hard SVMs and results in a higher
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misclassification rate [56]. The y parameter is a measure or degree of flexibility and curvature
of the hyperplane’s boundary. This should be married well with the C function as to ascertain
the best results for the classification. Ideally, what we want is for each of C parameter to be

explored with all the y values and vice versa, until the optimum tuning parameters are reached.

1.5.6 Random Forest Classifiers (RF)
Random Forest (RF) [57] is an ensemble machine learning algorithm of building a forest of
uncorrelated decision trees or classification and regression trees (CART). A classification

CART is of interest in this research.

RF builds many trees using a subset of data, i.e the training data set, of which a third of the data
is chosen at random (mtry =1/3). From this it generates random features and variables for
splitting the tree at the node level i.e., it asks itself a question to find a binary split. For
spectroscopic data, it may ask if datum x is greater in intensity/absorbance at specific
wavenumber, e.g. at 1000 cm ' is an aspect of the training data greater than 0.2 absorbance?
The node is then split into branches with a yes or no result. Each node then uses other
randomised variables and features to keep splitting the branches of the tree until all variables
are explored and eventually a decision tree based on classification is formed, e.g. what
percentage of the starting diseased group is seen to be ‘diseased’ based on spectral
decision/variables. It does this by taking the decisions at the ‘petals’ or terminal ends of the
trees/forest and aggregating a modal result. It continues to build ~ 500 trees, until a forest is
produced. Randomness is key to RF classifiers — each tree is trained using a random sample
with replacement from the training set. Plus, when training individual trees, randomised
variables and features subsets of features are used searching for splits. This reduces the
correlation among trees in the forest, which improves predictive performance. Figure 1.21

demonstrates how the RF classifier works with a K fold cross validation with bootstrapping.
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Figure 1.211 A schematic example of a RF classifier with internal 5-fold cross validation and external

out-of-bag (OOB) validation test.

In this research, an RF classifier was used to find the most salient wavenumber aspects to take
forward for an SVM analysis, using a Gini impurity importance index or Gini index [57]. As a
classifier, RF performs a strong feature selection using only a small subset of strong variables
for classification [57-58]. At each node within the binary split, the optimum split is found using
the Gini index —a measure of the node split of the two classes per node, as a reference of
impurity. The Gini index then aggregates all impurity measures of all trees/forest and produces

a modal frequency, as to ascertain only the salient features within the data, e.g. the most

discriminating wavenumbers.
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INTRODUCTION TO CLINICAL BIOSPECTROSCOPY

This section provides a review of current research in the field of clinical biospectroscopy and
its use towards biofluid analysis and disease characterisation. A large proportion of this content
was published in the Chemical Society Reviews, 2016, volume 45; 1803-1818,
DOI:10.1039/C5CS005857 [6].

1.6. BIOMEDICAL VIBRATIONAL SPECTROSCOPY

IR and Raman spectroscopies are complementary as they both provide a ‘fingerprint’ or
“signature” of the molecules within a sample depending on whether their bonds exhibit Raman
or IR activities. Due to the unique molecular fingerprints obtained, Raman and infrared

spectroscopies hold great promise in disease diagnostics.

The field has a rich history and the first disease-state diagnostic application was attempted by
physicians in the mid-1800’s [59]. The late 1940’ s saw work on nucleic acids and protein folding
by [60-62] to present day research on tissues, cells and various other small molecules by

pioneers, such as Mantsch, Naumann and Diem.

Vibrational biophotonic techniques are used widely in research and development of new areas
of healthcare; with more than a decade dedicated to discerning snapshots of disease mechanisms
probed in cells and tissues [62]. Meanwhile, a continuing effort for cell and tissue spectroscopy
has established the fields of spectral cytology and spectral histology [6, 63-64]. However, there
is a lack of standardisation, validation in large clinical trials and multicentre actions, combined
with the limitations of ethical approval for large scale data trials. This means true clinical
translation is hampered somewhat. Nonetheless, the quest for disease markers via ‘liquid

biopsies’ is quickly becoming an emergent technology with untold potential.

It is common practice to screen blood for disease states and only a few studies have explored
spectroscopic approaches. The coupling of Fourier transform to the spectrometer, affords gains
in detector sensitivity, advances in data processing techniques, and to rapidly acquire data for
signature of disease. Additionally, the field has the potential to perhaps embed into current
clinical practice. Ultimately, this would bring more efficient public services, significant

economic savings, improved patient outcomes and marked reduction in morbidity and mortality.

1.7. BIOFLUIDS AND DISEASE

Blood components like serum and plasma are routinely used in the clinics as they contain
biomarkers that are useful for disease diagnostics [6]. In the field of cancer diagnosis, they are
known to be a rich source of information and represent readouts of the ongoing cellular and

extracellular events [65]. Furthermore, they are easily accessible and minimally invasive for
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patients making large studies feasible. Recent trends indicate that the use of either a single or
few biomarkers have fallen out of favour for multiple biomarkers for disease progression [66].
In this context, the role of vibrational spectroscopic methods can be determinant as the
information provided contains pathophysiological readouts on biomolecular composition

providing a chemical fingerprint or biofluid ‘signature’.

1.7.1 Biofluids and Disease Markers

The ability to detect biochemical or morphological changes at the prodromal disease stage is
paramount for the effective use of the therapeutic window. Moreover, the detection of
biomarkers plays an important role in this exploration. The faster and earlier a disease can be
detected the better treatment can take full advantage of therapeutic intervention. For cancer
specifically, there is a broad range of such biochemical entities including proteins, nucleic acids,
lipids, carbohydrates, small metabolites, and cytogenetic and cytokinetic parameters, as well as
entire circulating tumour cells (CTCs) housed in biofluids. The search for disease markers is
fast emerging in vibrational spectroscopy. The focus has been on serum and plasma, owing to
the prevalence of these samples within current biobanks and that ethical approval is already well
established for their collection and use of these biological samples in the detection of novel

compounds associated with diseases.

1.8. CANCER

1.8.1 Cancer Prevalence, Survival and Mortality

Cancer prevalence has significantly changed within the last five years and is set to rise to 4
million people in the UK by 2030 [67]. Currently, within the UK there are 2.5 million people
living with cancer, with England accounting for 80% of this statistic [68]. It is said that 1 in 2
people will be diagnosed with the disease at some point in their lives and that cancer survival is
three times higher when diagnosed early [69]. Of the eight most common cancers (accounting
for 40% of all cancer in the UK), about 25% of them are diagnosed late (at stage 3 or 4) and

around 25% of patients survive for less than 10 years [70].

Global cancer rates are also on the increase, with Denmark having the highest incidence of
cancers in females (325.3 per 100 000) and an overall cancer rate of 326.1 per 100 000.
According to the World Cancer Research Foundation, France has the second highest incidence;
having the highest incidence in males (360.6). This is 6th in the world (300.4), whereas the UK
places at 22nd (266.9) globally [71]. Although cancer mortality rates have decreased in France
over the last twenty years, it remains the biggest cause of death, with 148 000 deaths in 2012
[70].
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1.8.2 Cancer Biology

Cancer is the unregulated growth of cells, occurring due to mutations in our normal cell renewal
process. Errors at the DNA replication stage can lead to genetic instability and eventually
physical changes within the body. Such changes affect the nucleotides. These nitrogenous-sugar
molecules provide the building blocks of life and are often denoted as A (adenine), T (thymine),
C (cytosine) and G (guanine) in DNA. A build-up of changes within these molecules can lead
to the development of cancer, which is manifested in the cell cycle (see Figure 1.22). Hence,
most cancer drugs target selective areas of the cell cycle to inhibit growth [72]. Our internal
cellular machinery has developed ‘checkpoints’ in which to apprehend such mutations both
before and after genetic replication. These so-called G (gap/growth) phases are the cells signal
to halt all processes if genetic damage is detected. At cellular renewal, it (cell cycle), undergoes
the following phases GI1, S, G2, collectively known as Interphase, followed by mitosis in
eukaryotes. Before entering mitosis, these checkpoints routinely check for unfamiliar changes
within the DNA architecture and provide corrective changes or cellular arrest (G0). If DNA
damage is unobserved, the result is often abnormal DNA with the wrong number of
chromosomes, and continued aberrant division leading to gene mutations, hence, tumour

formation.
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Figure 1.22] A schematic showing the cell cyclic phases during somatic cell division. These include
Interphase (G1, S and G2; if required GO or cellular arrest) and its automated genetic ‘checkpoints’
leading into cell division (Mitosis), which follows a series of known sequential steps; Prophase,
Metaphase, Anaphase and Telophase, to generate two sets of daughter cells. Adapted from references
[72-73].

1.8.3 Hallmarks of Cancer

Unregulated and uncontrolled cellular growth is due to the ‘molecular switch’ of two very
important regulatory genes (proto-oncogenes and tumour suppressors). These genes play
important roles in transcription and translation of genetic material. Oncogenes in their precursor
stage (proto-oncogenes) are responsible for the smooth running of cell division and replication
cycle, meaning the ‘switch’ is in normal operation, sending signals in the form of transcription
factors (myc), including signal transduction molecules (ras) or growth factors such as (HER-
2/neu) etc. This leads to an increase in cell proliferation, in a regulated way [73-74]. However,
when one of the two pairs of proto-oncogenes become defective or mutated, then the molecular
switch is left in the on-position. This means that the signals are sent from the oncogene to drive

the cell renewal process (unregulated), leading to masses of defective genes, thus resulting in
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tumorigenic cell growth. Tumour suppressor genes are the cells halting machinery. They
function to stop aberrant cell division, and when a single gene of a pair is defective, it still copes
with the task. However, when both pairs are defective by mutation or loss of gene function, then
the molecular switch is left on. Examples of tumour suppressor genes and their prevalence in
cancers are widely known, they include p53 (bladder, colorectal, breast, liver, brain tumours,
etc.,), BRCA1, BRCA?2 (inherited breast and ovarian cancers) and APC (familial adenomatous

and non-inherited colorectal carcinomas) [74].
Seminal works have indicated that cancer cells have six distinct capabilities [75].

Insensitive to inhibitory growth signals

Self-sufficient in growth signals

Avoids programmed cell death or apoptosis

Replication is indefinite

Induces angiogenesis/ vascularization spreading to adjoining tissues via metastasis
Deregulates of cellular metabolism and an innate ability to evade immune destruction [76]

SNl

1.9. LIVER DISEASE & PRIMARY LIVER CANCER
The liver is a large complex organ capable of regeneration, which has around 500 different roles,
such as blood cleansing and filtering, bile and amino acid production and toxin breakdown,

including drugs and alcohol and a whole of host of other major integral functions.

1.9.1 Hepatic Fibrosis and Cirrhosis

Hepatic fibrosis (HF or liver fibrosis, LF) is the result of the wound-healing response of the liver
to repeated injury [77], such as viral hepatitis or non-alcoholic steatohepatitis (NASH) [78]. The
body’s natural defence initiates an inflammatory response, which leads to the decreasing
amounts of extracellular matrix (ECM) proteins at the injury site, allowing necrotic/apoptotic
cells to be replaced with new parenchymal cells of the liver. However, if injury is persistent
liver regeneration eventually fails; the hepatocytes are substituted with an abundance of ECM,

such as fibrillar collagen. HF advances from collagen bands to bridging fibrosis to end-stage

cirrhosis [79].

Fibrosis is graded on a 5-point scale from FO to F4. The activity, which is the amount of
inflammation (specifically, the intensity of necroinflammatory lesions), is graded on a 4-point

scale from AO to A3 (Table 1.2).
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Table 1.2l METAVIR Score System.

Histological Activity: Fibrosis Stage

(Degree of Necrosis) (Degree of Inflammation/Scarring)

AQ = no activity FO = no fibrosis

Al = mild activity F1 = expansion of portal zones

A2 =moderate activity F2 = expansion of most portal zones and occasional
bridging

A3 = severe activity F3 = expansion of most portal zones, marked bridging
and occasional nodules

F4 = cirrhosis (end-stage irreversible scarring)

Chronic hepatitis C viral infection (cHCV) is the leading cause of liver cirrhosis and
hepatocellular carcinoma (HCC) worldwide [79]. In cHCV, liver biopsies are considered the
gold standard for diagnosing HF, however, it is an invasive diagnostic technique with associated
morbidity, possible mortality, relatively high costs, and potential sampling error/interobserver

variation [80-82].

The need for correct classification of LF is imperative as it is a precursor for more advanced
liver disease, such as cirrhosis and liver cancer. Current screening regimes are still without a
true gold standard [81] and warrant further development. Two techniques, Fibro Test and Fibro
Scan are routine, and to date have shown good diagnostic accuracy at advanced fibrosis stages

[82].

Cirrhosis is characterised by a think enlarged hard-to-touch, richly scarred appearance of the
liver, which is the necrosis of the liver functional units or hepatocytes. Because of liver damage,
the hepatocytes form regenerative nodules (colonies of cells), which are surrounded by fibrotic

tissue and excess collagen.

The cells responsible for this formation are the stellate cells, which in functioning tissue, are
dormant vitamin A stores. Usually, the cells are housed in the perisinusoidal space (between the
bile duct and the portal triad). Hepatocytes are situated around the bile duct and one side of the
portal triad. The portal triad is the sinusoidal area where the portal vein, hepatic artery both

converges towards the central vein, which is located at the centre of each hepatocyte [83].

Upon injury, however, the stellate cells become active and start to trigger a paracrinal response
for secreting TGF-f into the perisinusoidal space, which induces the overproduction of collagen
fibres and results in the formation of fibrotic networks. Eventually, with increased injury the
perisinusoidal space becomes thicker with scar tissue and leads to further compression of the
sinusoid, until pressure seeps out and causes fluid to build up in the peritoneal cavity. The

response of which causes anti-diuretic hormone (ADH) and aldosterone to be overstimulated,
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leading to various complication including ascites or swelling of the abdomen [84]. Ascites are

very common in chronic alcoholic patients.

1.9.2 Hepatocellular Carcinoma (HCC)

Hepatocellular carcinoma (HCC) is a primary cancer of the liver and is regarded as one of the
most common cancers globally, and the third leading cause of cancer mortality [84]. In France,
it is the second digestive cancer after colorectal. Over the last few decades, its incidence has
increased in both sexes in France (4.8% in males and 3.4% in females, respectively) [85]. HCC
is the biggest cause of mortality in cases of cirrhosis and is developed through stages from

chronic hepatitis, fibrosis and cirrhosis, (approximately 80% of cases become cancerous) [84-

86].

Its aetiology includes, viral inflammation from hepatitis B (HBV) and C (HCV), or aflatoxin B1
[87] (fungal epitope associated with peanuts stored for long periods), abuse of cigarette smoke
and heavy alcohol consumption [88-89]. Genetic factors are attributed to an iron-overloading
disease called haemochromatosis, Wilson’s disease [90] and various porphyrias (rare metabolic

abnormality of haemoglobin) [90-91].

1.9.2.1 Hepatocarcinogenesis
Known for its complex molecular pathogenesis, the hepatocarcinogenetic lifespan is between
10 and 30 years [92-93] with primary initiation of external stimuli precluding genetic changes
within the hepatocytes. It eventually causes cell suicide and up-regulation of the mitotic pathway
at stages of fibrosis and cirrhosis [93]. From pre-neoplastic transformation to moderately
differentiated HCC, the process is multi-stepped. It starts from focal hyperplasia (FH) due to
some stimulus, like viral (HBV or HCV), alcohol or NAFLD (non-alcoholic fatty liver disease),
etc., to low-grade and high-grade nodule dysplasia (LGDN and HGDN) [93-95]. Together, they

result in moderately differentiated HCC, which has metastatic tendencies (see Figure 1.23).
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Figure 1.23| The multi-stage process of human hepatocellular carcinogenesis from pre-neoplastic
aspects to full malignancy, which would infer metastases. FH — Focal Hyperplasia, LGDN — Low
Grade Dysplastic Nodule, HGDN — High Grade Dysplastic Nodule, N-NTHCC — Nodule-in-Nodule
Type Hepatocellular Carcinoma, WDHCC - Well Differentiated HCC, W-MDHCC - Well to
Moderate Differentiated HCC, MDHCC — Moderately Differentiated HCC. Adapted from [93-97].

1.9.2.2 HCC Tumour Staging
Early diagnosis of disease means a better therapeutic window and stronger prognosis of the
disease course. There is an accepted protocol to grade or stage a tumour based on the size of a
mass and histological appearance. However, HCC staging has further attributes to consider.
According to recent EASL guidance [96], owing to its highly complex cancer progression and
patients having insidious cirrhosis, four related aspects are proposed. These include tumour
stage, severity of liver function impairment, patient wellbeing and treatment efficacy [97].
Whilst the traditional TNM classification system is employed to demonstrate prognostic
relevance in hepatic cancers, it does not take it in to consideration the choice of therapy and
specific staging of HCC. In addition, whilst most patients often have unresectable tumoural
disease, then surgery is no longer an option. However, there is a collaboration of staging systems
that are currently under practise, but with no consensus. Such systems aim to treat the disease
based on the physiological status of the patient and the size of the growing tumour whilst
incorporation of clinical features. One of them is the performance status [98]. Europe-wide is
the Barcelona Clinic Liver Cancer system (BCLC) [98-99]. This system divides patients in to 5
stages of severity (0, A, B, C, D), with reliance from TNM, [I-IV staging, and status of liver
function with the CLIP (Cancer of the Liver Italian Programme), this includes the Child-Pugh’s
score, in combination with the WHO score, liver enzyme levels, and tumour morphology,
denoting a performance status of the individual by assigning a number between 0-5 (0 is healthy
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and 5 is death) [99-100]. With the derived algorithm, one can assign the best course of action at
whichever stage the disease course presents. There is no all-encompassing staging algorithm to
take in to consideration the umbrella aspects of liver function and tumour function (see Figure

1.24). Moreover, none of them take in to consideration the complex tumour biology.

French

Ascites
Alb

Ascites
ALP

[ Most used in Europe ]

Figure 1.24] The staging systems of HCC: TNM - tumour size, regional lymph nodes and
metastases; BCLC — Barcelona- Clinic Liver Cancer; CLIP — Cancer of the Liver Italian Program;
Okuda — (Okuda, K. et al, 1985); French — Groupe d’Etude et de Traitement du Carcinome
Hépatocellulaire (GRETCH); CUPI — Chinese University Prognostic Index; JIS — Japanese
Integrated Staging from the Liver Cancer Study Group of Japan (LCSGJ). Tumour related (green):
Met — metastases; AFP — alpha fetoprotein; PVT — portal vein thrombosis. Liver related (orange):
BiR - bilirubin; CTP- Child-Turcotte-Pugh; PS — performance status; Alb — albumin. Adapted from
[96, 98-99].

As shown above, in Figure 1.24, most staging classification systems focus on the tumour state
itself, with the majority incorporating some aspect of the TNM staging criteria. Whilst each
system has its merits as cited in the literature, there is none so well as described in a recent
review [99]. Nevertheless, this brings to the forefront the serious drawback amongst the

classifications.

1.10. PRIMARY BRAIN TUMOURS
There are about 130 different types of brain tumours, but the majority are benign, only a subset
becoming malignant [100]. Primary intracranial neoplasms (ICN or brain tumours) are tumours

whose origin is the brain, and glial tumours or gliomas account for 30-40% of all ICNs [101].
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Gliomas are differentiated depending on where the glial tumours are located [102]. Figure 1.25
demonstrates a flowchart of the different types of primary brain tumours based glioma and non-

glioma type.

In some cases, the tumour may originate outside of the brain, i.e., in the lungs, this is known as
a secondary metastatic ICN. The most common origins for secondary sites are the lungs, skin,

colon, breast and kidney [68].
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Figure 1.251 Flow chart of the different types of primary brain tumours differentiated based on
gliomas and non-gliomas. Showing low grade - high grade, mean prognosis, ABT - of all brain
tumours, and MBEN — medulloblastoma with extensive nodularity, GBM — glioblastoma multiform.
Adapted from references [102-103].

1.10.1 Tumour Classification and Grading
The WHO classification of ICNs is based on 4 main criteria. These include increased cellularity,
nuclear atypia, endothelial proliferation and necrosis, they are generally defined as stage I, II,

[T and IV, respectively. Figure 1.26 shows a modified version of the stages.
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Grade | Grade Il Grade il Grade IV
. Normal Atypical Abnormal Abnormal-rapidly
Cellulari and and and actively reproducing/growing
slow- relatively reproducing
growing slow-
growing
. Infiltrate
Malignancy No No adjacent Most malignant
tissues
Possibility Tumour Formation of new
Metastases No of spread to blood vessels and
invading neighbouring actively spreads
adjacent tissues
structures
. No/ Areas of dead cells
Necrosis/Recur No/No Possibility No/Yes in the center/N.A
PROGNOSIS DETERIORATES
Figure 1.26] Tumour grading in relation to visible observations according to the WHO (2007) for
intracranial neoplasms. Graded I to IV (shaded to demonstrate prognosis is worse as grade increases).
Adapted from reference [104].

Most cancers found in the brain are a result of the invasion of neighbouring tissues and distal
metastases. These are approximately 10 times more common compared to primary brain
tumours. Generally, ICNs are histologically quite different and are classified based on whether
they are high-grade (aggressive and rapid growth/spread) or low-grade (controlled (via
medication) slow growing). However, low-grade tumours can be uncharacteristic and may not
respond effectively to treatment. Hence, the reason is that there is no clear line between benign
and malignant when discerning ICNs. Low grade tumours account for the most numerate, such
as pituitary tumours, acoustic neuromas, meningiomas and pineal tumours, whereas high-grade
tumours are essentially gliomas and GBM, medulloblastomas and primary cerebral lymphomas,

these are very aggressive growing tumours with associated very high mortalities [102-104].

Dependent upon early presentation of symptoms for any brain tumour, the patient is pushed
through a series of treatment regimes. These include many blood tests, imaging techniques to
visualize and aid diagnosis, such as MRI, CT scans, efc., invasive surgery to perform biopsies
or tumoural resection. These are often followed by a cocktail of drugs, radiation (sometimes
proton beam therapy) and other adjuvant therapies such as photodynamic therapy. However,

currently, it does not fall within the parameters set by other studies [105].
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1.11. CURRENT CLINICAL VIBRATIONAL SPECTROSCOPY

1.11.1 Clinical Infrared Biofluid Spectroscopy

The use of IR and Raman spectroscopies to analyse and detect disease signatures from biofluids
is a relatively new field. Recently, the use of transmission high-throughput-Fourier transform
spectroscopy (HT-FTIR) has shown good diagnostic accuracy in disease classification. One
study used linear discriminant analysis (LDA) and random forest (RF) classifiers to discriminate
urinary bladder cancer from patients with UTIs with accuracy between 85% and 92% [106].
Backhaus et al. [107], using serum, successfully discriminated between breast cancer and
controls with 93% sensitivity and 96% specificity. Cirrhotic patients either with or without
hepatocellular carcinoma were successfully distinguished by combining support vector machine
(SVM) and leave-one-out cross validation (LOOCYV), achieving accuracy of between 85% and
87% [28]. Very high sensitivity (95.2%) and specificity (100%) values were achieved using
FTIR serum analysis to discern differences in the degrees of liver fibrosis using only
discriminant wavenumbers [29]. ATR-FTIR spectroscopy, coupled with classification machine,
discriminated ovarian [107] and endometrial cancers [109] with diagnostic accuracies of 93.3%
and 81.7%, respectively. Hands et al. [110] could differentiate between glioblastoma multiform
(GBM) and low grade gliomas from controls of serum, demonstrating accuracies between 87.5%
and 100%. They reported high percentage accuracies in the mid-90s for diagnosing low grade

and high-grade gliomas (GBM) and non-cancer controls [111].

To date, IR analysis of serum has allowed for the identification of markers of bovine spongiform
encephalopathy ante-mortem [112-114], rheumatoid arthritis [115], and beta-thalassemia [116].
In addition, it has been used as a prognostic tool to determine the severity of acute pancreatitis
[117]. All these studies have achieved diagnostic accuracies between 74% and 100%. More
recently, interest has also been reported for the determination of protein in the serum [118] and

the distinction of patients with a leukaemia from blood samples [119].

A range of samples of biomedical interest have been reported in recent times. Peuchant ef al.
[120] used the FTIR spectroscopy analysis of plasma from patients with Alzheimer’s syndrome
to demonstrate the possibility of delineating the disease from normal ageing subjects used as
controls. Hierarchical classification in the mid-IR region showed very good separation between
controls and Alzheimer’s, with spectral discrimination owed to biochemical nuances in lipid
and nucleic acid structures. This is indicative in oxidative stress mechanisms of Alzheimer’s. A
more recent study could grade severities of the disease using plasma, with high accuracies being

reported [121]. Griebe et al. [122] were able, using FTIR spectroscopy, to distinguish patients
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with Alzheimer’s disease from healthy controls using cerebrospinal fluid, with sensitivity and

specificity of 99% and 86%, respectively.

Most recently, a study showed good sensitivities (8§7%) and specificities (96%) for the detection
of neonatal galactosemia and diabetes from healthy controls using HT-FTIR combined with
SVM-LOOCYV machine learning [123]. Thus far, the focus for biofluid work has been on plasma
and serum, but some studies have shown efficacy using bile, urine, tears, synovial fluid, and
amniotic fluid. Combining HT-FTIR with SVM-LOOCYV, a study completed on bile samples
achieved sensitivities of 82% and 95% and specificities between 85% and 100% for
discriminating patients with and without malignant biliary strictures [124]. Work on synovial
fluid could differentiate samples from arthritic joints affected by rheumatoid arthritis,
osteoarthritis, spondyloarthorpathies and meniscal injuries using FTIR spectroscopy coupled

with LDA-LOOCYV, which demonstrated 96.5% correct classification [125].

FTIR spectroscopy associated with LDA on saliva, correctly classified diabetic patients from
healthy controls with 100% overall accuracy for the training set and 88.2% for the test set [126].
Additionally, an exploratory study demonstrated FTIR spectroscopy analysis of sputum could
be a useful approach for the diagnosis of chronic obstructive pulmonary disease (COPD), based

on slight alterations in the spectral regions of amide I and II plus the glycogen rich aspects [127].

Investigating the potential of human tears for the diagnosis of ocular diseases, Travo et al. [128]
have shown discrimination of patients with keratoconus from healthy controls. This is a
degenerative disorder affecting the cornea. They also discriminated between patients at an early
or advanced stage of disease by using HT-FTIR and PCA, with a statistical significance (p<
0.0001), owing to the lipid and carbohydrate regions.

Prenatal disorders from amniotic fluids have also been investigated by ATR-FTIR spectroscopy
revealing spectral profile changes between amniotic fluids from pregnancies with foetal
malformations, preterm delivery and healthy term pregnancies [129]. In other work, Liu ef al.
[130] investigated the amniotic fluid potential for foetal lung development assessments by IR
spectroscopy. They reported by way of a multivariate technique of PLS regression and

calibration models, good outcomes for two components (glucose and lactate).

Whilst there has been some considerable work in the field, unfortunately, only a few large
studies have been reported. A study by Petrich et al. [131], demonstrated the potential of mid-
IR spectroscopy for the triage of patients with acute chest pains from two hospitals in the United
States. The study included 1429 serum samples from 389 patients from the hospitals. The
samples comprised of 104 patients with acute myocardial infarction (AMI), 136 patients with

unstable angina pectoris and the remaining from patients with chest pains from different
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aetiologies. FTIR spectroscopy performed in transflection mode, combined with a threshold
value generated from a robust linear discriminant analysis, achieved high sensitivity and
specificity enabling successful triage of patients with AMI, (the most serious complication),
compared to the other sources of chest pain. They stated such discriminant features were due to
the presence of glycation and the appearance of carbohydrates. Interestingly, their results were
comparable to the performance of routine cardiac laboratory markers within the same study
population. They concluded that FTIR analysis had the potential to aid the diagnostic procedure

as early as within the first 6 hours after the onset of chest pain [131].

1.11.2 Clinical Raman Biofluid Spectroscopy

Few studies have evaluated the potential of Raman spectroscopy applied to serum for cancer
diagnosis. Pichardo-Molina et al. [132] demonstrated Raman serum spectroscopy combined
with PCA and LDA, could discriminate between controls and patients with breast cancer with
sensitivity 97% and a specificity of 78%. Similarly, Harris et al. [133] have shown the potential
of this technique for the detection of head and neck cancer with sensitivity and specificity of
75%. Additionally, serum work by Sahu et al. [134] showed differentiation of oral cancer
patients from controls, demonstrating moderate to good results (81% correctly classified). More
recently, Raman spectroscopy has been used to predict the probability of cancer recurrence. The
study showed that samples before surgery were ill-classified, but samples after classification

were approximately 78% [135].

In other work, Gonzalez-Solis et al. [136] showed the potential of Raman spectroscopy and its
capability in differentiating normal subjects from patients with cervical cancers. They found that
there were discrete differences in glutathione, tryptophan, B carotene, and amide III with
relation to cancer samples and controls using PCA. A recent proof-of-concept study showed a
viable alternative method for discriminating liver cancer patients and cirrhotic patients using
Raman spectroscopy. In this study, PCA failed to show discrimination but SVM-LOOCYV could
correctly classify. The results showed accuracies of 84.5% to 90.2% for serum sessile drop dried

depositions, and 86% to 91.5% for freeze-dried serum [137].

In other work, Neugebauer et al. [138] analysed dried drops of plasma using Raman
spectroscopy for the differentiation of samples of non-infectious systemic inflammatory
response syndrome (SIRS) and sepsis using PCA-LDA with a sensitivity of 100% and a
specificity of 82% and confirmed on an independent dataset with a prediction accuracy of 80%.
This work highlights the importance of stratification of at-risk patients for better advantage of

therapy.
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Differences in types of dementia, including Alzheimer’s was achieved using serum Raman
spectroscopy. This study demonstrated sensitivities and sensitivities exceeding 95% for near-IR

Raman spectroscopy [139].

Raman spectroscopies (RS) have also been applied on synovial fluid samples for disease
estimation. The study combined RS with a k-means analysis using band intensity ratios from
two regions (1080 cm™ /1002 cm™! and 1670 cm™'/1655 cm™). Both of which correspond to the
changes in the proteins. Such changes were attributed to severities of synovial joint ailments.
They could show discrimination between patients with osteoarthritis of low or high severity
with a sensitivity and specificity 74% and 71%, respectively [140]. Quantitative work by
Rohleder et al. [38] on serum and ultra-filtrate serum from 247 blood donors showed RS
enhanced discrimination between metabolites of serum components. Furthermore, this study
could discern between high density and low density lipoprotein for the first time using serum-
based Raman micro-spectroscopy. Moreover, RS analysis of urine combined with PCA and
quadratic discriminant analysis (QDA), allowed the discrimination of patients suffering from
diabetes mellitus and hypertension with low, high risk or with kidney failure. The results
revealed differentiation in the content of urea, creatinine, and glucose. They showed that the
amounts of urea and creatinine decreased in disease evolution, whilst glucose increased. Overall,
they presented a classification accuracy of 70% [141]. Likewise, analysis of several metabolites
in biological fluids such as tears [142] and bile acids [143] have been conducted. Such studies
have shown the efficacy of vibrational spectroscopy for the detection of important discerning

biological molecules for prospective disease detection.

Inherently, RS suffers sensitivity and fluorescence issues and to overcome these fundamental
drawbacks, enhancement of the Raman signal is an area of promising research. Surface
enhanced Raman spectroscopy (SERS) has been developed. This takes advantage of the benefits
of advances in nanotechnology. The potential applications of this technique have been
demonstrated for the detection of gastric cancer [144], colorectal [145] and nasopharyngeal
[146]. Interestingly, SERS of saliva showed the ability to predict lung cancer by monitoring the
decrease of proteins and nucleic acids with 80%, 78%, and 83% accuracy, sensitivity, and
specificity respectively [147]. Using silver and gold colloids as SERS substrates, Bonifacio et
al. [148] had shown that repeatable spectra could be obtained from protein-free blood serum
and plasma. Other investigations report on adenoviral conjunctivitis from tears [149] and
prostate cancer detection in urine [150]. Thus far, the development of biofluid SERS can
represent a potential for sensitive diagnosis. However, these technologies do not provide label-

free detection; which is seen in non-enhanced RS.
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1.12. SUMMARY, WORKING HYPOTHESIS AND MAIN AIMS/ OBJECTIVES

1.12.1 Summary

In summary, the introduction in the thesis has outlined and described comprehensively the basic
theory of vibrational spectroscopy, the governing molecular vibrational spectroscopy techniques
and their applications within the clinical environment and how it fits within the clinical world.
The introduction has now set the scene for the studies to be done on serum investigation via
both FTIR and Raman spectroscopies, with a range of modalities/applications.

The field remains a largely niche area with huge clinical and economic impact for the disease

and cancer diagnostic/screening world.

1.12.2 Working Hypothesis
Vibrational spectroscopy combined with advanced chemometrics can be used as a powerful
rapid screening tool for disease diagnostics for cancer from biofluids, such as serum, towards a

possible POC requirement.

1.12.3 Main Aim
To develop a spectroscopic methodology which can rapidly screen or diagnose a cancerous

disease state from biofluids, towards a point-of-care (POC) diagnostic test.

1.12.4 Specific Aims and Objectives
1. To conduct a thorough literature search in the proposed area of study of
biospectroscopy of biofluids
2. To investigate and analyse the effects of preanalytical variation by way of pooled
human serum freeze-thaw cycles and environmental air drying via both Raman and
FTIR microspectroscopy
3. To investigate and develop a rapid methodology towards dried and liquid testing via
Raman and FTIR spectroscopy to focus on patient cases (hepatitis with liver fibrosis
and cirrhosis, brain tumour patients with varying degrees of primary low-grade and
high-grade gliomas and metastatic cancers)
4. To down-select the optimum developed liquid spectroscopy technique and employ
on a large cohort of cirrhotic patients who had complications with primary liver cancer/
HCC for differentiation via liquid spectroscopy of disease states and severity

5. To analyse the data and write up the doctoral thesis
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IL.1 RESUME

Le chapitre 2 détaille les approches expérimentales et 1’instrumentation spectroscopique
utilisées dans le cadre de cette these. Plusieurs modalités spectroscopiques IRTF et Raman ont
été utilisées pour d'étudier le sérum pour la partie pré-analytique et pour les applications
cliniques. La variation pré-analytique décrit l'effet de cycles répétés de congélation /
décongélation et de séchage a I’air ambiant sur 1intégralité du pool de sérum humain. Pour la
spectroscopie IRTF les modalités suivantes ont été utilisées : méthode ATR (Réflexion Totale
Atténuée), en transmission via une analyse a haut débit (HTS-IRTF) de la goutte séchée et
imagerie de la goutte séchée. Pour la spectroscopie Raman, deux modalités en mode micro-
spectroscopie et mode macro-spectroscopie ont été envisagées sur la goutte séchée et la goutte

liquide respectivement.

2.1. CHAPTER OVERVIEW

Chapter 2 details the experimental approaches employed within this research project and the
spectroscopic instrumentation used. A range of modalities have been used for the both FTIR
and Raman spectroscopy to investigate serum for pre-analytical variation, followed by disease
applications.

The pre-analytical variation described the effect of repeated freeze-thaw cycles (FTC) and
environmental drying (ED) on the integrity of human pooled serum. FTIR spectroscopy of the
following modalities was employed: ATR and transmission via high throughput analysis (HT-
FTIR) and mapping/imaging both in the dried serum state. However, using Raman
spectroscopy, the serum was investigated in the dried and liquid phases with microscopic and

macroscopic analyses.

For the disease applications, a protocol was developed for a macro liquid Raman approach and
was used to investigate retrospective patient databanks (Reims, France —University of Reims
hospital centre, Reims, France) containing samples of hepatic fibrosis, cirrhotic and primary
liver cancer patients. An HT-FTIR approach was used to investigate two patient datasets
involving hepatic fibrosis patient’s biobank located in Reims in France. This study was approved
by the Comité de Protection des Personnes Est— agreement #2008/09 and by the Agence
Frangaise de Sécurité Sanitaire des Produits de Santé (AFSSAPS — agreement #2008-A00023-
52). The second series of experiments was from brain tumour patients from the Brain Tumour
Northwest biobank (BTNW) and Walton Centre, located in Preston, England; with ethical

approval (application #1108).
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2.2. SPECTRAL METHOD DEVELOPMENT & SERUM ANALYSIS

In the first instance, to investigate serum freeze-thaw (FTC) and environmental drying (ED)
FTIR spectroscopy was employed, followed by Raman spectroscopy. A range of modalities
were tried and tested, and parameters were developed for the analysis and subsequent data
analysis. A suite of FTIR and Raman spectrometers were utilised across the two laboratories

throughout the Ph.D project.

2.2.1 FTIR Spectrometers
2.2.1.1 Agilent Cary 670 FTIR Spectrometer

The Agilent Cary 670 FTIR spectrometer (Agilent Technologies, USA) (Figure 2.1) is equipped
with a Globar™ source, which emits light in the mid-IR frequency region (2.5 to 25um or 40
to 4000 cm™), a KBr beam splitter, which is a thin Ge film encased by two IR-transparent KBr
windows; providing a working transparency over a wide spectral window (400 cm™- NIR), and
a deuterated triglycine sulphate (DTGS) detector, which is the basic detector used in

macroscopic mode. This instrument was used for both ATR and transmission data collection.

2.2.1.1.1 ATR-FTIR Serum Approach

ATR data collection was carried out by coupling the spectrometer with a single reflection PIKE
MIRacle™ ATR accessory (see Figure 2.1). The ATR accessory comprises a Ge IRE, which

allows a transmission range of ~5500-780 cm'[151].

(&) Cary 670 FTIR Spectrometer
Cary 620 FTIR Microscope
@ MRacle'* single reflection ATR
Figure 2.1 Photographs of the Agilent Cary 670 FTIR spectrometer coupled with a Cary 620 FTIR

microscope and the PIKE MIRacle™ single reflection ATR accessory. (University of Central
Lancashire, Preston, UK).

Normal human mixed pooled serum (0.2 puL sterile filtered, CS100-100 (TCS Biosciences, UK)

arrived frozen and was used for the FTC and ED analysis. It was allowed to thaw at room
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temperature (RT). This was recorded at an average of ~23 °C. The serum was then aliquoted
(100 pL) and stored at -80 °C. From this 1 sample was left out and tested for the first freeze-
thaw (FTC1). Following spectroscopic testing, the remainder (FTC1) was returned to cryogenic

storage at -80 °C.

For spectral analysis, a volume of 1 uL of serum was deposited directly on the ATR crystal and
allowed to air-dry for ~ 8 mins. at RT [111]. General room humidity was noted to be around
40% within the controlled lab environment. Spectra were collected in triplicate from each spot
deposited (n=10) and for each FTC (n=15). Background spectra were collected before every
spot and analysed by a ratio method. Due to the intimate contact required between the biofluid
sample and IRE, between spots the serum biofilm debris was removed, and the crystal was
cleaned with a series of detergent and ethanol washes. Virkon disinfectant (Thermo Fisher
Scientific, UK) was used to remove the biofilm, followed by 70% ethanol solution (Thermo
Fisher Scientific, UK). The following parameters were used for ATR spectral collection using

the ProResolutions software, V2.1:

e Spectral range: 4000-400 cm’!

o Number of scans: 32 co-added

e Spectral Resolution: 4 cm™

e Sampling: pooled human serum (1 pL)

2.2.1.1.2 Transmission FTIR Serum Approach

Environmental drying (ED) effects were investigated via transmission FTIR by coupling the
Cary 620 FTIR microscope (Figure 2.2). A liquid nitrogen cooled mercury cadmium telluride
(MCT) detector was used to capture the photons.

Whilst investigating the FTC effect, the same normal mixed pooled serum was used to observe
ED changes. This study was performed to monitor dry drop heterogeneity over a 24 hour period.
Half a microliter of serum was deposited on to an IR-transparent calcium fluoride substrate
(CaF, — @ = 13 x 2 mm polished window, Crystran, Ltd., UK). The window was positioned
under the microscope objective (60 x NA = 0.75) of the 620 FTIR microscope. Spectra were
taken at random acquiring data from the centre and periphery of the drying serum spot. Spectral
collection was taken firstly at 10 mins after drying, followed by consecutive 30 minute intervals
until 3.5 hours had elapsed. The remaining spectra were collected at 7 hour, 14 hour, and 24
hour from spot deposition. All spectra were acquired in triplicate and a background spectrum
was taken prior to each time interval. The following parameters were used:

e Spectral range: 4000-600 cm™
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®  Number of scans: 32 co-added

o Aperture size: 120 um?

®  Microscope objective: x 60 (NA 0.75, LUMPlan FLN)
e Spectral Resolution: 6 cm’™

e  Sampling: pooled human serum (0.2 uL)

2.2.1.2 Bruker HT-FTIR Tensor 27 Spectrometer

The Bruker FTIR Tensor 27 spectrometer coupled with a high throughput screening XTension
(HT-XT or HT) module was employed in transmission mode (Bruker Optics GmbH, Ettlingen,
Germany) (Figure 2.2). The spectrometer is equipped with a Globar™ source, KBr beam splitter
and a DTGS detector covering the spectral ranges 400-7200 cm™. Spectral collection was
carried out using the OPUS v6.5 software (Bruker Optics, GmbH, Ettlingen, Germany). For
spectral acquisition, a 384 multiwell silicon plate was used to house the sample for HT-FTIR

spectroscopy (see Figure 2.2).

2.2.1.2.1 High Throughput Transmission (HT) FTIR Serum Approach

Following serum thawing at RT, all samples were diluted 3-fold using physiological water
(0.9% injectable Sodium Chloride, PROAMP®, Aguettant, France). Then, a volume of 5 uL of
each preparation were deposited on to a 384-well (@ = 4 mm) silicon plate and allowed ~1 h to

air-dry [152] in a controlled laboratory environment (~40% humidity).

@ FTIR Tensor 27 Spectrometer

HTS-XTension Module

Silicon plate (384-well @ 4mm)

e \

Figure 2.2| Photographs of the Bruker Tensor 27 FTIR spectrometer coupled to an HT-XTension
module and the silicon plate (384-well @ = 4mm) (Bruker Optics GmbH, Ettlingen, Germany).
(University of Reims, Champagne-Ardenne, France).
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Spectra were collected with 1 spectrum per well and 8 replicates per sample. A total of two
plates were prepared to repeat the results (15 x 8 x 2 = 240 spectra in total). A background
spectrum was acquired prior to sample acquisition before each well was tested and automatically

corrected by the software (OPUS v6.5 Bruker GmbH).

e Spectral range: 4000-400 cm™

®  Number of scans: 32 co-added

e Spectral resolution: 4 cm’

e Sampling: pooled human serum diluted (5 pL)

2.2.1.3 Perkin Elmer Spotlight 400 FTIR Spectroscopic Imaging System
The Spotlight 400 FTIR imaging system (Perkin Elmer, Courtaboeuf, France) consists of the

Spectrum One FTIR spectrometer coupled with the Spotlight 400 FTIR microscope (see Figure
2.3). Spectrum One has a DTGS detector and operates in transmission and reflectance modes.
The Spotlight 400 FTIR imaging system is equipped with a single-element detector for point
mode analysis and a multi-element MCT line detector with 16 pixels capable of operating at a

spatial resolution of either 6.25 um/pixel or 25 pm/pixel.

2.2.1.3.1 FTIR Microspectroscopy of Dried Serum Drops

To study serum drop heterogeneity throughout drying of a serum sample, a 24 hour kinetics
study was carried out using the Spotlight 400 FTIR imaging system. Human pooled serum was
left to thaw at RT and ~0.2 pL. was deposited on to a CaF, window (see Figure 2.3). A total of
198 spectra were recorded from 11 line scans. A background spectrum was collected and by a
ratio method prior to each of the 11 line scans. The following parameters were used:

*  Spectral range: 4000-750 cm’!

®  Number of scans (sample):32 coadded

®  Aperture size:100 um*

®  Modality: point mode transmission (line scan)
e Spectral resolution:4 cm’

e Sampling: pooled human serum (0.2 uL)
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@ Spotlight 300 FTIR Imaging System

Spectrum One Spectrometer
© Sample Holder

2.3I Photographs of the Spotlight 400 FTIR imaging system coupled to Spectrum One
spectrometer (Perkin Elmer, Courtaboeuf, France) and the sample holder (3x @ = 13 mm) for CaF,
windows. (University of Reims, Champagne-Ardenne, France).

2.2.1.3.2 FTIR Imaging of Dried Serum Drops

In a second experiment, the MCT 16-pixel multi-element detector was used to collect images
from the serum drying drop in line with the kinetics study. Both the point mode line scan and
imaging of the same area were carried out (at same time). The Spectrum Image software v1.6
(Perkin Elmer) collected an image in the same geometry of the diameter of the drying serum
drop (~0.2 uL). A single image was taken at each of the 11 time points over the course of 24
hour, after a background spectrum was collected from an area free of the serum on the substrate.
This was subsequently corrected by the software. The image size was ~ 1400 x 65 pm?®. The
image experiment was repeated in triplicate to check the reproducibility of the data. A total of

2178 spectra were recorded from 11 images. The following parameters were used:

e Spectral range: 4000-750 cm’!

®  Number of scans (sample):16 coadded

e Aperture size: 100 um*

®  Modality: Imaging

®  Spectral resolution:6 cm™

e Spatial resolution:25 nm/pixel

e Sampling: pooled human serum (0.2 uL)
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2.2.2 Raman Spectrometers
2.2.2.1 Horiba Jobin-Yvon LabRAM HR800 Microspectrometer
The Horiba Jobin-Yvon LabRAM HR800 (HR800) is a dispersive spectrometer with integrated

confocal microscope (see Figure 2.4). The spectrometer has a focal length of ~800 mm and the
confocal microscope is equipped with a range of short-working and long-working distance
objectives (SWD and LWD). An Andor electromagnetic CCD (EMCCD) detector is used to
capture the photons for the signal. The HR is coupled with two laser excitations from an air-
cooled 3 W Toptica Photonics source (532 nm — Nd:YAG and 785 nm NIR diode). There are a
range of dispersive holographic diffraction gratings (300, 600, 1200 and 1800 lines/mm). The

HR system has customizable confocal hole, slit size and laser power options.

MICROSCOPE X-Y-Z SAMPLING 785nm NIR X-Y-Z STAGE
OBJECTIVES PLATFORM LASER BOX 3W)  cONTROLLER
(Behind Door)
mr (TN
D =
BRI e J”-”L’L,,’-'\‘ CaF, polished window

- (@ =25x2mm)

Figure 2.4] Photographs of the LabRAM HR800 (Horiba Jobin-Yvon Ltd. UK) and sample substrate
used for serum preparation. Shown is an CaF, (@ = 25 x 2 mm polished window, Crystran, Ltd., Poole,
UK) holding 6 x 0.5uL pooled serum drops ready for air drying. (University of Central Lancashire,
Preston, UK).

2.2.2.1.1 Raman Microspectroscopy for Dried Serum

Human pooled serum was subjected to spectroscopic measurements via Raman confocal
microspectroscopy for further comparisons of serum FTC and ED effects. Every effort was
made to run the analysis in tandem with the FTIR assessment, so identical serum preparations

were made and to limit the potential for aberrant results across the systems.
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First, the serum was thawed at RT and then deposited on to a CaF, window (see Figure 2.5). For
the FTC, the measurements were taken from dried spots (drying time of 10 mins.) in a controlled
lab environment. For ED measurements, spectra were collected at 11 time points over a 24 h
period, with triplicate spectra carried out at each point. A total of n=450 spectra and n=33 spectra
for FTC and ED, respectively. Spectral acquisition was taken from random areas across each of
the drying/dried serum spots. The following parameters were used:

- Spectral range: 2000-500 cm’

- Excitation laser: air-cooled 30 W 785 nm diode
- Laser power: ~30 mW (at sample)

- Diffraction grating: 1800 lines/mm

- Spectral resolution: 3 cm™.

- Confocal hole: 400 pm

- Slit size: 100 pm

- Integrations: 2 x 15 seconds

- Modality: microspectroscopy -single point mode
- Microscope objective: x 50 LWD (NA 0.50, LUMPIlan FLN)
- Substrate: CaF, window

- Sampling: dried pooled serum (0.5 puL)

Figure 2.5 Photographs of a CaF, window deposited with 0.5 puL spots of thawed liquid serum
(image before dried on the left). Image on the right is x 40 magnification of 1 0.5 uL dried drop
(arrow identifies drop). The dried drop image demonstrates fern-like patterns radiating from the
centre to the peripheral aspects, the so-called ‘coffee-ring phenomena’.

Depositing liquid serum to dry on a substrate is called drop coating dried deposition (DCDD).
This method is one of the most used within spectroscopic biofluid analyses. This is due to the
negative or very little contributions of mid-IR transparent substrates [153, 20]. Figure 2.5 shows

the formation of serum drops on to the substrate prior to spectral collection.
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2.2.2.2 Horiba Jobin-Yvon LabRAM ARAMIS Microspectrometer
The Horiba Jobin-Yvon LabRAM ARAMIS (Aramis) is a dispersive spectrometer with

integrated confocal microscope (see Figure 2.6). The confocal microscope is equipped with both
SWD and LWD objectives. Spectra are captured on to a Horiba Synapse ® CCD 1024 x 256
pixels thermoelectric (TE) detector. The Aramis system is coupled with two laser excitations
from an Toptica Photonics air-cooled 3 W source (532 nm — Nd:YAG and 785 nm NIR diode).
There are a range of dispersive holographic diffraction gratings (300, 600, 1200 and 1800

lines/mm). The HR system has a customizable confocal hole, slit size and laser power options.

MICROSCOPE X-Y-Z SAMPLING 785 nm NIR
OBJECTIVES STAGE LASER (3W) 532 nm VISIBLE
(INSIDE) (INSIDE) LASER
(3W)
STAGE
CONTROLLER

l‘_ LabRAM ARAMIS
-
\|

A

CaF; polished
window
(@ =25 x 2 mm)

Figure 2.6l Photographs of the LabRAM ARAMIS system (Horiba Jobin-Yvon, Ltd, France) and
sample substrate used for serum preparation. Also shown in this Figure is an CaF, (@ = 25 x 2 mm
polished window, Crystan, Ltd., Poole, UK) holding 6 x 0.5uL pooled serum drops ready for air
drying. (University of Reims, Champagne-Ardenne, France).

2.2.2.2.1 Raman Microspectroscopy for Liquid & Dried Serum

Using the ARAMIS system, further comparative investigations with FTC and ED effects were
conducted. Prior to spectral collection, the background of each of the aluminium wells were
checked for contamination with a spectral signature, before and after washing with biological
detergent. Figure 2.7 shows the spectra before and after for checking the wells, and the video

capture of the well B2 of the aluminium plate.
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The following parameters were used with two substrates (CaF, and aluminium multiwell

aluminium plate). For dried analysis, 10 mins. air-drying was allowed before spectral

acquisition. For liquid analysis, optimisation of the volume of biofluid, plus depth of focusing
was tested to ensure the spectra was taken from the spot and not just the surface of the drop. A
total of n=450 spectra were taken from the FTC measurements and n=33 from the ED
measurements. The following parameters were used:

- Spectral range: 1800-500 cm’!

- Excitation laser: 532 nm (Nd:YAG), 785 nm diode

- Laser power: ~25 mW

- Diffraction grating: 600 lines/mm

- Spectral resolution: 3 cm™.

- Confocal hole: 500 pm

- Slit size: 150 pm

- Integrations: 2 x 15 s.

- Modality: single point mode

- Microscope objective: 100x LWD (NA 0.25, LUMPlan FLN)
- Substrate: CaF, window & a 96 well aluminium plate
- Sampling: pooled dried and liquid serum (0.5 - 5 uL)
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Figure 2.7| Top: A blank well spectrum taken from the aluminium 96 well plate (@ =7 mm) before
and after washing with SDS detergent (left and right, respectively). Bottom: Photograph of aluminium
plate highlighting cell B2 from which the spectra were acquired. Right: A video capture of cell B2. x
10 magnification (NA 0.25) (~25 mW laser power at sample).

84



2.2.2.3 Horiba Jobin-Yvon LabRAM 1 Microspectrometer

To circumvent the coffee-ring phenomena of the dried serum drop, investigations of the dry-
liquid phase were conducted. Sampling parameters were optimised using different volumes of
the liquid serum, as well as instrumental optimisations of grating choice, slit and confocal hole

size and integration times, plus Z-profiling depth of sampling.

The Horiba Jobin-Yvon LabRAM 1 (Horiba Scientific, Villeneuve d'Ascq, France) (LabRAM
1) is a dispersive spectrometer with integrated confocal microscope (Figure 2.8). The confocal
microscope is equipped with both SWD and LWD objectives. Spectra are captured on to a
Horiba Synapse ® CCD 1024 x 256 pixels thermoelectric (TE) detector. The LabRAM 1 system
is coupled with two laser excitations from an air-cooled 3 W source (532 nm — Nd:YAG and
785 nm Ti:Sa). There are a range of dispersive holographic diffraction gratings (600, 950, and
1200 lines/mm). The LabRAM 1 system has a customizable confocal hole, slit size and laser

power options.

785nm NIR MICROSCOPE X-Y-Z JOYSTICK
LASER (3W) OBJECTIVES SAMPLING CONTROL

Aluminium multiwell plate
(x 96 wells @ 7 mm)

cecececacceece
ececceddddes
tec6cceceedt |
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60600660 LE
6CCece¢eee
C60eE66666
(€ECE00060E

Figure 2.8| Photographs of the LabRAM 1 (Horiba Jobin-Yvon Ltd, France) and an Aluminium 96
multiwell plate (@ = 7 mm) for holding both dry and liquid samples (5 pL). (University of Reims,
Champagne-Ardenne, France).

2.2.2.3.1 Dried Centre vs. Periphery Measurements and Liquid Analysis

Using the LabRAM 1 system, FTC measurement were conducted in two phases, both liquid and
dried (centre vs. periphery measurements). Initially, serum was deposited, and spectra were
acquired within 10 mins to ensure a liquid phase was taken only. Following this, upon drying,
random spectra were collected in triplicate from the periphery of the drop and the centre aspect

to observe differences in chemistry and heterogeneity across the dried drop. The following
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optimised parameters were used with both substrates (CaF, and aluminium plate). A total of
n=450 liquid serum measurements were made and n=135 dried centre and periphery
measurements. The following parameters were employed:

- Spectral acquisition:1800-500 cm™

- Excitation laser: 785 nm diode (Ti: Sa)

- Laser power: 3 W and ~90 mW

- Laser exposure: 100% (75% for centre vs. periphery measurements)
- Diffraction grating: 950 lines/mm

- Spectral resolution: 3 cm™.

- Confocal hole:1000 pm

- Slit size: 150 um

- Integrations: 3 x 45 s.

- Collection: single point mode

- Microscope objective: x 50 SWD (NA 0.75)

- Substrate: 96 well aluminium plate

- Serum Sampling: pooled dried and liquid serum (5 pL)

2.2.2.4 Horiba Jobin-Yvon LabRAM HR300 Spectrometer
The Horiba Jobin-Yvon LabRAM HR300 (HR300) (Horiba Scientific, Villeneuve d'Ascq,

France) (Figure 2.9) is high resolution (focal length ~300 mm) dispersive microspectrometer
that employs an Andor EMCCD detector. It is capable of two laser excitations (632.8 nm —
He:Ne and 785 nm diode). There are a range of dispersive holographic diffraction gratings
available (300, 600, 900, 1200 and 1800 lines/mm) with customizable confocal hole and slit and

laser power options.
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JOYSTICK MACRO LENS X-Y-Z 785nm NIR
CONTROLLER (40 mm INSIDE) SAMPLING LASER BOX
ISEE FIGURE PLATFORM (5W max) Hellma Quartz SUPRASIL 10mm

(4mm and 2mm interior widths)

Figure 2.9 Photographs of the Horiba Jobin-Yvon LabRAM HR300 with two synthetic Quartz

cells (Hellma Quartz SUPRASIL, Heraeus Quarzglas GmbH) (both with 10 mm light paths). The left
one has a 700 uL (4 mm interior width) and the right has 500 uL volume (2 mm interior width)
(University of Reims, Champagne-Ardenne, France).

2.2.2.4.1 Macro Liquid Raman Serum Measurements

Using the LabRAM HR300 spectrometer combined with a 40 mm macro lens adaptor (Figure
2.10), the following optimised parameters were used with different volumes of serum (25-100
uL) and integrations tested (optimization testing: 1-6 accumulations and 15, 30, 60, 90, 120,
180 and 240 seconds). The spectral collection parameters are noted below:

- Spectral acquisition: 1800-500 cm™

- Excitation laser: 3 W 785 nm diode

- Laser power: ~75 mW

- Diffraction grating: 950 lines/mm

- Spectral resolution: ~1-2 cm™

- Confocal slit/hole: 1000 um

- Slit size: 150 um

- Integrations: 5 x 120 s.

- Collection:- single point macro mode

- Substrate:- Quartz cuvettes (seen Figure 9)
- Sampling:- pooled liquid and patient serum

Figure 2.10 demonstrates a schematic of the horizontal setup. Employing a 40 mm macro lens
adaptor, the light path (NIR 785 nm) was guided through internal lenses housed within the
adaptor and the 180° backscattered Raman signal was collected from the light interaction with

the serum and recorded with the HR300’s CCD detector.
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Figure 2.10l Ilustration of a macro Raman approach (beam size 3mm).

2.2.2.5 Horiba Jobin-Yvon HE Raman Spectrograph & Fiberoptic Raman Probe

A spectrograph is an industrial robust instrument which separates incoming light by its
wavelength or frequency and records the spectrum in a multichannel detector [154]. The Horiba
Jobin-Yvon high efficiency (HE) spectrograph was used coupled to the InPhotonics Raman
Probe™ for spectral data collection with non-moving optics (Figure 2.11). The basic
components to the HE spectrograph are:

- Entrance slit: eliminates unwanted light and fix spectral resolution
Collimator: a lens/mirror converts a diverging beam to a parallel one

- Disperser: a holographic grating to cause the interference of light

- Camera: alens/mirror focuses image of slit entrance on detector surface
Detector: an electronic device to capture the spectrogram image

Figure 2.11 demonstrates a schematic of the internal components of the InPhotonic Raman
Probe. In its most basic design it comprises the following components [155]:

I*" Lens: blocks unwanted laser light from excitation

Band-pass filter: blocks silica Raman bands and transmits pure signal
Dichroic filter: transmits the laser line focused by 2™ lens to the sample
2" Lens: gathers backscattered light from sample via the dichroic filter
Long-pass filter: removes Rayleigh & anti-Stokes, allows Stokes only

- 3" ]ens: focuses Raman light to the HE spectrograph for detection
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Figure 2.11| Top right: Illustration of the interior components of the InPhotonics Raman Probe™
coaxial 2 fibre. Top left: A photograph of the probe dimensions. Bottom: A photograph of the HE
spectrograph (Horiba Jobin-Yvon). The two single fibres (105 um excitation, 200 pm collection
fibre) with micro-optics, N.A 0.22, working distance ~5Smm, encased in a polyurethane jacket for
protection, then surrounded with a stainless steel outer protection. Photographs 1 and 2 (right), shows
the Raman ProbeTM dimensions and measurements. Image 1 shows the probe head length (101
mm). Image 2 shows probe head inclusive of outer casing (A = 180 mm), without casing (B = 130
mm), and laser hole size (C = 4 mm). Adapted from references [154-156].

2.2.2.5.1 Fiberoptic Raman Serum Measurements

Employing the Raman Probe™ in a top-down orientation, the following parameters were used:

- Spectral acquisition: 3200-200 cm™

- Excitation laser: 2.5 W 785 nm diode

- Laser power: ~60 mW

- Diffraction grating: 685 lines/mm (fixed optics)

- Spectral resolution: ~5 cm™

- Confocal slit/hole: fixed optics

- Integrations: 10, 15,20 and 30 s, accumulated x 1 or x 2
- Collection: single point fibre mode

- Substrate: Quartz cuvettes

- Serum Sampling: pooled liquid serum
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2.3. SPECTRAL QUALITY & VARIANCE ASSESSMENTS

Aforementioned in the introduction (Chapter 1), with Raman data specifically, there are some
fundamental steps required to ‘clean’ the signal prior to any analysis. Figure 2.12 demonstrates
the three signals used for correcting the dark current (A), optics (B) and NIST standards for the

785 nm excitation line (C). The corrected serum signal is shown as (D).

The standard reference materials (SRM) used in this project were #2241, #2243 for 785 and 532
nm excitations, respectively (SRM NIST, Gaithersburg, MD, USA). All pre-calibration and

A | D
I

W T |}“M Muﬁm i ].‘“l W\ l

Tl

i l,( »"r\'“"’.'q
il i 1o
Wil " ’%ﬂ.' ‘{f’l"j "Vh

x10™

-
(=21
T

-
»
T

B

-
N
T

W

" M“‘.‘l m

|mh

Intensity/ a.u.

e
o
T

0.4f

021
1800 1600 1400 1200 1000 800 600
Raman shift/ cm™

Figure 2.12| Examples of spectra from a dark current signal (A), optical detector response (B) 785nm
NIST calibration signal (C) and the serum spectrum after correction (D). Excitation = 785 nm.

calibration checks were later averaged for correction of the Raman signal in the pre-processing

phase (see Figure 2.13).

2.3.1 Spectral Quality Testing

As alluded to in Chapter 1, the spectral data from FTIR and Raman experiments were subjected
to a quality threshold. Spectral quality and variance analysis was conducted prior to pre-
processing the spectral data. Figure 2.14 demonstrates the serum spectrum and the important

quality bands highlighted to demonstrate how the in-house SNR algorithm works.
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Additionally, to compare with other methods used by the instrument manufacturers, a second
method was used as a quality check. This method is in line with the manufacturer’s guidance
(OPUS v6.5 Software, Bruker Optics GmbH, Ettlingen, Germany). Equation 7a was employed
for calculating of the root mean square (RMS) SNR.
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Figure 2.13I Normalised Raman serum spectrum indicating the (red) signal and (green) noise region
used for calculation of SNR within the QT. Spectra passed the QT when the SNR exceeded 30 [27].

RMS = (x4 _YiNRange)Z

Eq. 7a

This function calculates the SNR of a spectrum’s intensities over a given spectral range, i.e, any
flat or low value region, taken as molecularly silent. As the Raman shift is in the MIR region,
Bruker states that the SNR is calculated in the range 2100-1900 cm™ but may be adjusted based
on visual appearance of the spectra. RMS is calculated as the root of the mean square of
deviations (i.e., the STD). Then a quadratic function is fitted to the spectrum, defining the
(nominal) signal. The mean of which is divided by the newly calculated noise values and yields

the SNR (Eq.7b).
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S
(RMS) SNR = —

Eq.7b

These values were compared the same method for deionized water. Thus, the lower threshold
limit for samples had to be higher than that of the SNR of water. Further, a comparison with the
SNR profiling function on Lab Spec 4 was carried out, as the values were easily interpretable.
For our data, a threshold > 2.5-3 times the noise was acceptable for good spectral quality. There
are three SNR tests to be employed for the Raman spectral QT in this project, if necessary; all

is dependent on the instrument used and spectral signal recorded.

In contrast, using the FTIR spectral quality test, as stated previously, only minor adjustments to
the an already published quality parameter was necessary to differentiate HT-FTIR and ATR-
FTIR datasets. Figure 2.14 shows the specific regions for calculation of the QT used on the
OPUS software (v.6.5).
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Figure 2.14| Normalised FTIR serum spectrum indicating the (red) signal and (green) noise region
used for calculation of SNR within the QT. Spectra passed the QT when the SNR =>50 and 10
respectively for each for each of the regions, and S1, S2-W ratio = <20 but >4. The purple shaded
area demonstrates the ATR spectral absorbance thresholds. Adapted from reference [28].
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2.3.2 Variance Analysis

From the spectra that were successful in passing the quality test, the variability between spots
of the same sample were assessed by calculating descriptive statistics, such as mean and

standard deviations (average and median values). Examples of values attained are shown in

Table 2.1 below.

Table 2.11 An example of some descriptive statistical values for raw Raman spectral data from dried
serum drops, including the number of spectra passing quality testing and SNRs.

DCDD C/P | mS/N MIN MAX MEAN | MEDIAN
FTC_# QT STD STD STD STD
C/9 | 41.79 3806.7 6830.7 5934.7 6223.3
1 P/9 | 31.01 3807.4 5540.3 4996.6 5087.7
C/9 | 3451 2534.7 5030.2 4081.7 4418.8
2 P/9 | 29.67 6174.1 7339.0 6902.9 6952.5
C/9 | 30.01 2705.0 5955.7 4858.8 5185.9
3 P/8 | 21.02 2096.9 7728.1 5358.3 5624.0
C/9 | 42.68 4725.3 9418.9 7783.8 8159.2
4 P/9 | 28.88 1785.5 6846.4 4328.7 4314.2
C/9 | 3492 2600.6 4639.1 3852.6 3932.3
5 P/9 | 24.08 2022.6 4982.6 3678.4 3894.1
C/9 | 31.55 5159.5 7714.8 7045.7 7287.4
6 P/9 | 26.51 2134.9 4446.2 3498.3 3631.5
C/9 | 19.18 926.21 3666.1 2372.2 2429.5
7 P/9 | 40.77 3834.3 5729.7 4684.6 4743.3
C/8 | 38.90 2014.8 5057.3 3936.0 4118.6
8 P/ 8 30.29 2170.0 5153.2 4134.6 4368.5
C/9 | 31.58 1816.9 3212.6 2602.7 2679.0
9 P/9 | 4522 1851.4 3407.5 3005.9 31254
C/9 | 6798 460.6 1640.0 1107.3 1203.7
10 P/9 | 36.87 445.8 1819.7 1149.6 1174.7
C/9 | 35.61 1886.2 5257.2 3731.4 3877.0
11 P/9 | 20.27 1092.5 1616.8 1473.2 1517.1
C/9 | 3490 1875.9 2533.0 2316.7 2356.9
12 P/9 | 1431 491.5 1938.4 1189.0 1220.5
C/9 | 18.61 403.33 2356.4 1300.8 1257.2
13 P/8 | 36.67 2620.4 4331.9 3595.4 4152.6
C/9 | 27.08 3934.2 6009.2 5454.9 5621.1
14 P/9 | 1597 1068.9 2897.5 2083.4 21754
C/9 | 1796 199.5 803.1 517.08 531.35
15 P/9 | 72.80 1516.8 4271.2 3295.7 3595.8

#: number; DCDD: drop coated dried deposition; C/P acquired spectra from physical spot (centre or periphery);

STD: standard deviation; mSNR: mean signal-noise-ratio via RMS calculation
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The variance values plus the individual results for the quality assessments are carried out on all
spectroscopic data in all experiments but is shown here for purposes of not repeating tables for

every aspect in the results and discussion later.

Following both spectral quality and variance testing, the data is submitted to either a FTIR or
Raman pre-processing workflow. Figure 2.15 demonstrates the preprocessing regimes used for

analysis of the data within this thesis.

RAMAN SIGNAL PRE-PROCESSING

1. Spectral window 2. Cosmic ray artefact 3. SNR calculation and 4. Instrument and detector
truncation — spike removal, visual cluster analysis for |+ correction, i.e., dark
(650-1800 cm'!) check of signal outlier detection noise, optics & NIST
8.Vector normalisation 7. Spectral quality and 6 Additional spectral 5. SG smoothing and
& offset scale = variance assessment | — window truncation [ baseline correction
correction (mean & std., etc.) (850-1725 cm™) (4,13,3" polynomial)

FTIR SIGNAL PRE-PROCESSING

1. Atmospheric 2. SNR calculation and 3. Spectral window 4. Rubber-band baseline
correction — cluster analysis outlier truncation — correction (64 points)/
(image data only) detection (950-1800 cm™) EMSC correction

(image only)

I
5. SG smoothing and 2%

6. Spectral quality and | | derivatisation
variance assessment (with optional PC-based
(mean & std., etc.) noise reduction)

Figure 2.15| Spectral signal data pre-processing workflow for Raman and FTIR spectra employed in
this research project.

2.3.3 Statistical Data Analysis

All the data were processed using the SPSS statistical programme. Test and control data were
compared and analysed. All the data were expressed as mean + the standard error of the mean

(SEM) or Standard Deviation (SD). A value of p<0.05 was taken as significant.

24. FTIR & RAMAN SERUM DIAGNOSTIC APPLICATIONS
Selected FTIR and Raman approaches were employed as a screening application for disease
diagnostics. The following section will detail the methodologies employed for FTIR and Raman

diagnostics within this research project.

2.4.1 FTIR Serum Diagnostics
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Two proof-of-concept studies using the HT-FTIR approach developed previously, were carried

out for two different clinical contexts:

Study 1: Hepatic fibrosis patients stages I-1V (n=43)
Study 2: Brain tumour patients (BTNW) (n=70)

2.4.1.1 Patient Sera for HT-FTIR Spectroscopy

Following the HT-FTIR protocol for a 3-fold serum dilution described previously, both patient
groups were prepared for analysis and 5 uL of the preparations were deposited on to a 384-well
(@= 4 mm silicon plate). Following air-drying in a controlled laboratory environment the

following parameters were employed for spectral collection:

e Spectral range: 4000-400 cm’!
®  Number of scans: 32 co-added
e Spectral resolution: 4 cm™

Prior to data collection from the sample, a background spectrum was aquired and corrected by
the instruments’ software (automatically). For each patient, approximately 8-10 individual
technical repeats were produced. A total of n=430 spectra was collected from the fibrotic patient

set, and n= 700 spectra for the BTNW patient set.

2.4.1.1.1 Hepatic Fibrosis Patient Biobank

The study was conducted with a bank of serum samples stored at —80 °C, originally taken for
a FibroTest in patients with chronic hepatitis C (cHCV). Informed consent was obtained from
all patients for performing the diagnostic test as part of routine medical care. Following
biochemical analysis, the remaining serum was stored at -80 °C. The study was carried out

according to the principles of the Declaration of Helsinki (DoH).

A total of n= 400 spectra was acquired from 40 patients using the HT-FTIR spectroscopic
analysis of fibrosis stages (FO-FIV); where O indicates no presence of fibrosis or very early

stages, FI-FII (minimal fibrotic formation), and FIII-FIV (advanced fibrosis).

It should be noted that these samples were used for both FTIR and Raman analyses.

2.4.1.1.2 BTNW Patient Biobank

The brain tumour samples were obtained from the Walton Research Tissue Bank and Brain
Tumour North West (BTNW); all patients had given research consent. Only newly diagnosed
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patients with a histopathological diagnosis of GBM (WHO grade IV) were included. All blood
samples were taken preoperatively. The serum tubes were left to clot at room temperature for a
minimum of 30 minutes and a maximum of 2 h from venepuncture to centrifugation. Clot
separation via centrifugation was achieved at 1200xg for 10 mins. and 500 pL aliquots of serum
was dispensed into pre-labelled cryovials. Serum samples were snap frozen using liquid nitrogen

and stored at —80 °C.

Demographic data for each patient was also stored on the tissue bank database and could be
unblended by a member of the clinical team caring for the patient. The research described here
was performed with full ethical approval (BTNW and Walton Research Tissue Bank
Application number 1108).

For spectroscopic investigation, 70 patients’ blood serum was analysed with the HT-FTIR
spectroscopy. The gliomas and the severity of brain tumours were derived from patients with a
mix of normal, clinically confirmed GBM brain tumours and metastatic patients. A total of

n=700 spectra were acquired.

2.4.2 Raman Serum Diagnostics

To investigate the diagnostic potential of the macro Raman technique using the 40 mm lens
adaptor and cuvette approach developed, the HR300 was used in single point macro mode, as

previously described.
Two proof-of-concept studies were carried out for two different clinical contexts:
Study 3: Hepatic fibrosis patients (stages I-1V) (n=43)

Study 4: Cirrhotic patients with/without HCC (CiRCE) (n=250)

2.4.2.1 Patient Sera for Liquid Macro Raman Spectroscopy

For liquid macro Raman analysis 50 uL samples per patient were prepared and deposited in to
a Quartz cuvette with the interior width (4 mm) and subjected to the horizontal macro Raman
approach (Figure 11). The following parameters used for both studies are described (2.2.2.4.1).
This largescale patient population (n=250) were derived from clinically confirmed cirrhotic
patients with and without HCC. The aim of the study was to employ macro Raman serum
spectroscopy for classification of cancer from cirrhosis. Each patient sample was repeated 5

times and a total of n=1250 spectra were acquired.
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Patient serum samples from both HCC and cirrhotic cases were taken from a wider study called
CiRCE (Cirrhose et Risque de Cancer dans le Grand-Est), which is a case-control north-eastern
France study; ongoing for around 8 years, aiming to analyse many factors involved in
hepatocarcinogenesis amongst cirrhotic patients. In a wider aspect, environmental, nutritional
and metabolic factors have been investigated and interrogated using a suite of biochemical,
molecular biology and metabolomic tools, elsewhere by other researchers. This study was
approved by the Comité de Protection des Personnes Est; under the agreement: 2008/09, and by
the Agence Francaise de Sécurité Sanitaire des Produits de Santé (agreement no: 2008-A00023-
52), and patients gave their written consent for participation. All patient samples were taken
from 6 north-eastern France hospitals (Besancon, Dijon, Metz, Nancy, Reims and Strasbourg).
Besancon was later excluded from spectroscopic testing as the contributing centre revealed
incorrect protocol from sample inclusion. Sample provenance was from 24 hour fast-orientated
patients and immediately post venepuncture; the blood samples were processed, and the serum

was stored frozen at -80°C.

Clinical diagnosis of cirrhosis was made either by histology of a liver biopsy or by a combination
of clinic-biological signs of hepatic portal hypertension, and/ or endoscopy of portal
hypertension or imaging of cirrhosis. Cirrhotic patients were assessed for characteristics of HCC
at inclusion via ultrasonography (US) and/or computed tomography (CT) and/or magnetic
resonance imaging (MRI), plus clinical biochemistry, i.e., AFP levels < 100 ng/mL, and
subjected to routine follow-up regimes of up to 1 year revealed none of the cirrhotic patients

were suspected with HCC, i.e., 6-month hepatic ultrasonography and levels of AFP.

Confirmed diagnosis of HCC by the pathologists relied on the EASL guidelines [157], and
patients younger than 35 years were not included, nor were patients with HIV infection,
extrahepatic carcinoma, and unconsented patients (e.g. not been able to give written consent).
A full list of antecedent medical information was collected for the samples, including age, sex,
cirrhotic/HCC severity and grading, aetiology (alcohol/HVB, HVC), diabetes, plus levels of
bilirubin and AFP.
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I11.1 RESUME

Les résultats présentés dans ce chapitre concernent les études menées sur la stabilité du sérum
et le potentiel diagnostique a travers les différentes approches IRTF. Un des parametres pré-
analytiques suivi était la répétition des cycles de congélation / décongélation du sérum et le
séchage du sérum a I’air ambiant Ensuite, les applications sont portées sur deux études
diagnostiques. Le but de cette recherche est double. Le premier objectif était de comprendre les
variations pré-analytiques du pool de sérum humain, en comparant une approche en réflexion
ATR-IRTF et une approche en mode transmission HTS-IRTF en observant I’effet des cycles de
congélation et décongélation répétitifs et du séchage a I’air ambiant sur des sérums humains
congélés. Le second objectif était d’appliquer ces connaissances a I’analyse de cas diagnostiques
(fibrose hépatique et gliomes), pour une application potentielle au dépistage/diagnostic a haut

débit, associée a une analyse de données multivariée avancée.

II1.2 CONCLUSION

En résumé, cette étude en deux parties a analysé par différentes technologies IRTF le pool
humain de sérums pour évaluer la variabilité pré-analytique. Les profiles spectraux ont été
analysés pour analyser 1’effet des cycles répétés de congélation et de décongélation du pool de
sérum et pour déterminer sur les mémes échantillons les effets de séchage du sérum a 1’air
ambiant. L’analyse de données par ACP a montré tres peu de changements dans le profil spectral
sérique suite aux cycles de congélation/décongélation. Globalement, les cycles semblent mixtes,
sans véritable clustering logique ou pouvant &tre décrits expérimentalement via des
modifications pré-analytiques. L'ensemble de données obtenu par méthode haut-débit HTS-
IRTF pour les cycles decongélation/décongélation a également montré un résultat similaire,
quelque soit le type de technique IRTF utilisée. Ici, la collection spectrale était hautement
automatisée, ce qui en fait une bonne application & haut débit. L’analyse par ACP a montré une
autre combinaison complete de cycles de congélation et de décongélation, ce qui conforte que
cet aspect pré-analytique n’aurait pas d’incidence sur les profils spectraux. Pour les deux
techniques, des pics communs ont été montrés pour les sérums, les protéines ayant la plus grande
influence dans la région des bandes amide. Cette région reflete généralement deux contributions

principales: les bandes amide I 2 1580-1680 cm™ amide II 2 1500-1580 cm™.

Afin d'étudier plus en profondeur les effets du séchage ambiant, I'ACP a également été appliquée
aux données de séchage (prises sur 11 temps sur une période de 24 heures). La déshydratation
du sérum induit I’effet « coffee-ring » (anneau de café), I’épinglage des lignes de contact de la
goutte séchant entrainant la formation d’un gradient de concentration entre le sel, les ions, les
protéines et autres biomolécules. Cette étude a montré qu'un tel effet est observé avec 1'ACP,

car les mesures en fonction du temps semblent suivre un schéma séquentiel allant du point t=0h
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(sérum liquide en gouttes fraiches) au point t=24h suivant le séchage. Ceci est visible dans les
changements dans la région spectrale de vibration des liaisons C = 0 ~ 1655 cm™, a la

déformation des N-H ~ 1540 cm™! et la vibration des C = C ~ 1615 cm.

Comme il est de pratique courante de travailler rarement sur des échantillons non frais compte
tenu de la nécessité de stockage cryogénique, nous avons effectué dans cette étude préliminaire
une évaluation spectroscopique IR des variations potentielles dues aux cycles de congélation /
décongélation et au temps laissé a I’air ambiant ou au séchage de d’un pool de sérums humains,
explorant les différences potentielles intra-échantillon de la stabilité des échantillons de sérum,
sans la phase fraiche. Les facteurs importants, tels que les exigences de stockage, les aspects de
dilution et toutes les phases préparatoires clés au sein d'un laboratoire doivent étre pleinement
pris en compte. En regle générale, quelle que soit 'analyse de la variabilité, qu'elle soit pré-,
intra- ou post-analytique, le biofluide de choix doit respecter le processus analytique permettant

de suivre les erreurs.

La deuxiéme partie de cette étude consistait a tester ces méthodologies éprouvées pour leur
potentiel diagnostique. Deux banques de sérum de patients ont été interrogées (fibrose et
gliome). Les sérums de patients atteints d’une fibrose ont été mesurés a l'aide de la méthodologie
haut débit HTS-IRTF et analysés a 1'aide de deux approches chimiométriques, I’ACP et I' AFD.
Pour la fibrose, les résultats révelent un groupe divisé par spectres de patients, par stade de
fibrose et par un mélange de fibrose pour représenter les caractéristiques de la maladie de bas et

haut grades.

L’ACP n'a pas été en mesure de classer les groupes de patients. Les « loadings positifs »
observées sur DF1 ont démontré une légere séparation entre les patients F2 et F4 (fibrose 1égere
vs fibrose avancée, telle que la cirrhose). DF2 a en outre montré une 1égere différence entre les
fibroses modéré et élevé, comme 1'expliquent les loadings négatifs et positifs, respectivement.
Les pics présents sur les loadings négatifs de DF2 montrent des intensités accrues dans les
régions de 1530 cm™, 1635 cm™ et 1748 cm™. Ces pics sont identifiables a des liaisons amide
II, amide I (hélices alpha) et esters lipidiques, qui pourraient représenter un ensemble de bandes
« marqueur ». D’autres modifications pourraient étre associées a des bandes de protéines a
environ 1220 cm™, & environ 1550 cm™ et a des feuilles plissées / structures protéiques agrégées

[177].

Ces résultats démontrent que ’ACP et I’AFD peuvent faire ressortir certaines différences
biochimiques entre certains stades de la fibrose. Bien qu'une tentative de validation par PC-DFA

ait été tentée, cela n'ajoute rien au résultat. A l'avenir, il serait avantageux d'utiliser davantage
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les techniques MVA, telles que SVM, ANN ou PLS-DA pour tenter de mieux classer les

données, suivi d'un test a 'aveugle sur le modele retenu.

Les sérums de patients atteints de gliome ont été mesurés a I'aide de la méthodologie HTS-IRTF
et analysés a l'aide d’une validation croisée ACP, AFD et RBF-SVM. Tout d'abord, une analyse
bidirectionnelle des données a été effectuée a 1'aide d’ACP et I’AFD ; une premiere séparation
par patient, et en second lieu par catégories normale, métastases et gliomblastome multiforme
(le plus avancé et agressif). Ici, il a été¢ démontré que I’ ACP et I’ AFD peuvent montrer certaines

distinctions entre les états normal et pathologique, en combinant les deux stades de cancer.

Le facteur DF1 permet clairement une bonne séparation entre les patients sains (NORM) et
malades (MET) via des bandes de discrimination attribuées a la bande de la déformation -CH3
des lipides a 1348 cm-1 et de 1’élongation C=0 de la bande peptidique associée a la bande amide

I des structures protéiques alpha-hélicoidales 2 1640 cm™.

Les loadings positifs de DF1 permettant la séparation NORM/MET mettent en avant trois pics,
la déformation -CH2 des groupes méthyléne et des lipides & 1440-1462 cm™, l'amide I des
structures protéiques o-hélicoidales 2 1640 cm™, et 1'étirement CO des acides nucléiques, ADN
/ ARN dans la gamme 1075-1088 cm™. Les loadings négatifs de DF1 font ressortir deux pics 2
1348 cm™ et 1640 cm™, qui impliquent la déformation lipidique de CH3 et la structure protéique
en hélice alpha de l'amide I, permettant la séparation entre les patients sains et malades. Le
facteur DF2 permet un début de séparation entre MET et GBM. Les loadings positifs peuvent
étre attribués a la majorité des patients atteints de GBM et les loadings négatifs a la plupart des
patients atteints de MET ; les deux groupes étant influencés par la présence de patients sains.

DF?2 n’est donc pas aussi discriminant que DF1.

Dans I’ensemble, cette étude démontre que la variance globale de I’analyse IRTF a haut débit
est moins grande lorsque 1’on compare la RSD des approches méthodologiques ATR et HTS-
IRTF. En résumé, la présente étude montre que les variations précliniques peuvent Etre
minimisées avec de bonnes pratiques de laboratoire, ne dépassant pas une quantité importante
de congélations / décongélations répétitives, et que ces variances possibles, si bien prises en
compte, ont une influence minimale sur la capacité de diagnostic de la technologie IRTF en tant
qu’outil de classification / diagnostic des maladies lorsqu’elle est utilisée avec 1’analyse

multivariée des données.
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3.1 INTRODUCTION

Biofluid diagnostics or ‘liquid-biopsies’ is emerging as an interesting alternative to cell and
tissue analysis. The extraction of bio-fluids are minimally invasive to the patient and have great
ease of access at routine procedures, such as general screenings, blood donations or diabetic
glucose monitoring. Blood components such as serum and plasma are said to present a high
degree of diagnostic-rich information for the clinician [65]. Within the bloodstream alone, there
are over 20,000 different proteins and many proteomes. This information-rich liquid presents
extracellular biochemical information for spectroscopists. Such an approach enables the
acquisition of a biochemical fingerprint towards a global molecular biomarker screening regime,
surpassing the quest for single biomarkers of disease. To date, serum, plasma, saliva and bile
have demonstrated significant diagnostic and prognostic potentials within bio-fluid
spectroscopy [6, 27, 110-111, 131, 137, 152]. Some studies have demonstrated the efficacy for
its use in disease screening. Petrich et al. [131] analysed 1429 serum samples from 389 patients
to demonstrate the ability of IR spectroscopy to discriminate myocardial infarction from other
ailments pertaining to generic chest pain (sensitivity and specificity of 88.5% and 85.1%,
respectively we obtained). Backhaus er al. [107] used sera from breast cancer and healthy
patients and demonstrated a diagnostic accuracy of >95%. With this same analysis, they also
demonstrated close to 100% diagnostic ability of IR to differentiate between hepatitis C,
Alzheimer’s disease, and coronary heart disease. Hands et al. [27] demonstrated diagnosis of
gliomas from whole patient serum, resulting in 96% and 100% sensitivity and specificity,

respectively.

To fully realise biofluid FTIR spectroscopy however, some of its potential drawbacks warrant
further clarity. IR is a strong absorber of water, so the most common protocol for bio-fluid
analysis using FTIR vibrational spectroscopy is to collect spectral data from a drop-dried bio-
fluid. This technique is very simple but does suffer some minor drawbacks. Upon drying, an
evident chemical gradient occurs across the drying drop, the so-called ‘coffee-ring’
phenomenon [158,-161], meaning a heterogeneous sample deposition results as the internal
molecules migrate to the periphery of the drop. Few studies have tried to circuamvent this, but
Esmonde-White et al. [161] showed there is no substrate effect on the chemical content of the
periphery ring but evidence of spatial distribution of the intrinsic protein components. To
develop further understanding on this matter, more recently a HT-FTIR transmission serum
study was able to show that with increased dilutions, the ‘coffee-ring’ effect is more pronounced,
suggesting lipids, nucleic acids and proteins as the migrating components [152]. To date, a
variety of sample preparation techniques have surfaced to combat. Ollesch et al. [162] employed

a vacuum-controlled drying, demonstrating picolitre drop-drying with an automated
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transmission IR process. They reported significantly increased spectral resolution (comparative
to a non-automated approach) [162]. Ultimately, within the field, such studies have driven
efforts to develop disease pattern recognition. Currently research is underway towards a digital
assessment of the water content in ATR spectroscopy for the calculation and subsequent

removal from the IR signal in the pre-processing (un-published).

Pre-clinical or pre-analytical variability refers to the sample preparation/processing stages,
whereby differences could be derived from any aspect of the timeline from sample collection,
processing to final storage. This aspect seems to standout as the critical point severely
hampering large-scale, multi-centric studies from having good quality data. Overall, it seems
there is a need for robust standardisation and to diminish sample-related factors prior to
distinguishing diagnostic prowess. It is generally understood that most analytical errors often
originate at the pre-analytical level [163-165], which could influence any aspect of data pre- and
post-treatment. A recent small bio-fluid study employing HT-FTIR transmission spectroscopy
examined sample-related variation. They found sample collection modality, choice of substrate,
volume, dilution and manner of deposition, and freeze-thaw and drying conditions all are

sample-related factors that affect data quality and reproducibility [165].

3.1.2 Introduction to Hepatic Fibrosis

Hepatic fibrosis results from the constant formation of dead and regenerated liver cells, which
causes the liver to become inflamed and leads to the formation of scar tissue. The body’s natural
defence initiates an inflammatory response which leads to decreasing amounts of extracellular
matrix proteins at the injury site, allowing the necrotic/apoptotic cells to be replaced with new
parenchymal cells of the liver. With persistent/ chronic injury, liver regeneration eventually
fails, so the hepatocytes are substituted with an abundance of matrix proteins, i.e., fibrillar
collagen, leading to bridging fibrosis to end-stage irreversible cirrhosis. The grades of fibrosis

are shown in Table 3.1.
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Table 3.1l METAVIR F score system for assessing the extent of inflammation and
fibrosis by histopathological evaluation in liver biopsy of patients with hepatitis C. The
grade indicates the activity or degree of inflammation. The stage depicts the degree of
scarring/fibrosis [82, 166].

Histological Activity:  Fibrosis Stage

(Degree of (Degree of Scarring / Fibrosis)
Inflammation)

A0 = no activity FO = no fibrosis

Al = mild activity F1 = expansion of portal zones

A2 = moderate activity = F2 = expansion of most portal zones
and occasional bridging

A3 = severe activity F3 = expansion of most portal zones,
marked bridging and occasional nodules
F4 = cirrhosis (end-stage irreversible
scarring)

Chronic hepatitis (types B and C), heavy alcohol consumption, trauma, toxins or other factors
can all lead to hepatic fibrosis. Generally, fibrosis is seen as a precursor for more advanced liver
disease, such as cirrhosis and primary liver cancer or hepatocellular carcinoma. Therefore, it is
essential for correct staging and early classification. The liver does not contain any nerves,
meaning liver diseases and liver cancer can be asymptomatic. Meanwhile, current diagnostic
methods and screening techniques are still without a true gold standard [167] and are at their
core, time-intensive methods which are unfit for large screening programs. Additionally, they
are highly dependent on accurate interpretation by medical professionals and still are subject to
interpretable variances in opinion from clinician to clinician. Recently, a blood serum biomarker
test (Fibrotest) and an elasto-graphic technique akin to ultrasound, termed Fibroscan, has shown
a potential for good diagnostic accuracy; specifically, at advanced fibrosis (93% and 70%

sensitivity and specificity, respectively) [82].

3.1.3 Introduction to Gliomas

Gliomas account for ~ 2% of all diagnosed cancers per annum within the UK and represents 20
years of lives lost on average (breast cancer is 13.5 years) [168]. It is one of the deadliest human
diseases and has an appalling prognosis, e.g. 32% of 7000 people diagnosed with primary brain
cancer in the UK will be still alive at the end of the first year following diagnosis [168]. Moving
forward 5 years, this statistic drops to 14% [169]. Overall, the health burden that results from
diagnosis of the tumour of the brain is important, not only because of the diagnosis of cancer,
but because of the progressive neurological disease that accompanies it [170]. According to the
WHO, malignant gliomas are glioblastomas and are characterised at grade IV, anaplastic
astrocytomas, oligoastrocytomas and anaplastic oligodendrogliomas are all grade III [104, 171-

172]. The early diagnosis of glioma can be difficult. After a clinical suspicion the diagnosis is

104



made by imaging technologies, such as magnetic resonance imaging (MRI) and computer
tomography (CT) scanning, and when a patient is symptomatic, the diagnosis is obvious by CT
[172]. Confirmation of the diagnosis is made by histological examination of the part surgically
obtained. A biopsy of the brain involves a very painful drilling through the skull to sample under
microscopic examination. At this stage, there is no indication as to the nature of the tumour, i.e.,
benign or malignant. Histological gradation is not able to provide a precise prognosis and
therapeutic information for the individual treatment of patients [172]. Patho-diagnosis is to some
extent subjective. A study found disagreement between original and review data for clinical
diagnostic for 43% of cases [173]. Previous intraoperative spectroscopic glioma grading
research has shown the ability of FTIR for in situ classification of tumour margins and was able
to detect high-grade tumours with 100% and 97% sensitivity and specificity, respectively [28].
Additionally, Hands et al. [111] used ATR-FTIR to demonstrate the diagnosis of low-grade and
high-grade gliomas from non-cancer with 94% and 97% sensitivity and specificity, respectively.
More recently, they were able to show the power of differentiation between cancer vs. non-
cancer, cancer severity and the metastatic origin from serum with high diagnostic accuracy,
using feature extraction to improve overall diagnostic ability via discriminant features from a

stratified clinical approach [28].

The aim of this research is two-fold, the first aim was understanding of pre-clinical variations
on pooled human serum, using ATR-FTIR, HT-FTIR and a FTIR transmission by observing the
action of repetitive freezing and thawing cycles and environmental drying on non-fresh human
sera will be developed. The second aim was to apply this knowledge to the analysis of diagnostic
cases (hepatic fibrosis and gliomas), for a potential high-throughput screening application,

combined with advanced multivariate data analysis.

3.2 MATERIALS AND METHODS (for details see 2.2.1.1)

3.2.1 Serum Samples
Two sets of studies were conducted for this research chapter, a set for pre-analytical variation

and another set for high-throughput screening of disease biomarkers.

3.2.2 Pre-analytical Variation Studies

The pre-analytical variation set of studies was further subdivided into two studies: the freeze-
thaw cycle (FTC) analysis of pooled human serum, and the subsequent environmental air drying
of the serum (ED). In a first instance, research-grade mixed pooled ‘off the clot” human serum
(TCS Biosciences, Buckingham, UK) was used to study preclinical variation. Following passive
thawing at room temperature (RT), the serum samples (n=15) underwent repetitive FTC. The

samples were stored at -80° C until spectral acquisition, with a 24-hour period between each
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FTC. Prior to spectral collection, each of the FTC vials were manually inverted and vortexed to
ensure thorough mixing of all serum components. Secondly, the same samples were monitored

for air-drying effects on serum stability via an ED study.

A total of n=450 spectra were collected for FTC analysis (n=15 cycles, 10 spots and 3 spectra
per spot), and n=33 spectra across 11-time points throughout 24 hours serum drying (3 spectra

per time point).

3.2.2.1 ATR-FTIR Serum Analysis
ATR-FTIR spectral acquisition was carried out on the Cary 600 series FTIR spectrometer
(Agilent Technologies, USA), equipped with a single reflection diamond ATR accessory (PIKE
MIRacle™, UK) (see 2.2.1.1.1 for full details). One microlitre of sera was deposited on to a
diamond internal reflection element (IRE) and dried for ~ 8 minutes at RT. Spectra were
collected over the 4000-600 cm™ wavenumber range, a spectral resolution of 4 cm™ with 32 co-
added scans. Prior to spectral collection the ATR platform was wiped clean using Virkon
disinfectant (Fisher Scientific, UK) and 70% ethanol solution (Thermo Scientific, UK). This
was repeated prior to each spot and a background spectrum was acquired and automatically
subtracted prior to each spot deposition (Pro-Resolutions Software, Agilent Technologies,

USA).

3.2.2.2 HT-FTIR Serum Analysis
HT-FTIR spectral acquisition was carried out on the Bruker high-throughput screening (HT-
XT) extension coupled to a Tensor 27 spectrometer (Bruker Optics GmbH, Ettlingen, Germany)
(see 2.2.1.2.1 for full details). FTC serum samples were diluted 3-fold [165] with physiological
water (0.9% injectable sodium chloride, PROAMP®, Aguettant, France) and 5 puL was
deposited on to a 384-well silicon plate of 4 mm diameter per well, before leaving to dry at RT
for ~ 1 h. Spectral collection was carried out in the transmission mode via the OPUS v6.5
software (Bruker Optics GmbH, Ettlingen, Germany), with a spectral resolution of 4 cm™ over
the range of 4000-400 cm™ with 32 co-added scans. A background spectrum was acquired and
subtracted prior to each sample measurement. One spectrum was obtained per well, and the
experiment was repeated (n= 240). A zero-filling factor was applied, and a Blackman-Harris 3-
term function was employed for Fourier transformation. Between each of the experiments the

silicon plate was cleaned using distilled water, 40% SDS solution and 70% ethanol.

3.2.2.3 FTIR Transmission Micro-spectroscopy Serum Analysis
To investigate the kinetics of environmental ageing of the drop-dried serum the Cary 620
microscope FTIR spectrometer was employed. The 128 x 128-pixel liquid nitrogen-cooled focal

plane array (FPA) detector (Agilent Technologies, USA) was used (see 2.2.1.1.2 for full details).
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A small drop (0.2 uL) of undiluted serum was deposited on an IR-grade CaF, substrate and dried
at RT for 10 minutes. Serum kinetics was carried out by using point mode spectral collection of
specific time points over a 24-hour period. Spectral collection was carried out using the 4000-
600 cm™ range, a spectral resolution of 6 cm™, a background absorption spectrum acquired and
subtracted automatically and 32 co-added scans (Pro-Resolutions Software, Agilent
Technologies, USA). Spectra were collected after 10 mins, 30 mins, 1 h, 1.5h,2h, 2.5 h, 3 h,
3.5h,and at 7 h 14 h, and 24 h (n=33).

3.2.3 Diagnostic Screening Studies

These diagnostic studies that evaluated patient sera from two diseased populations were
acquired from retrospective UK and France biobanks. Firstly, a bank of serum samples stored
at -80°C, originally taken for a Fibrotest procedure in patients with chronic hepatitis C were
subjected to spectroscopic analysis. Informed consent was obtained from all patients for
performing the diagnostic test as part of routine medical care. Following biochemical analysis
by the bio-pathology team at Reims hospital CHU, the remaining serum was stored at -80°C.
The study was carried out according to the principles of the Declaration of Helsinki (DoH).
Secondly, brain tumour patient samples obtained from the Walton Research Tissue Bank and
Brain Tumour North West (BTNW) were investigated. The gliomas and the severity of brain
tumours were derived from patients with a mix of normal (NORM), clinically confirmed
glioblastoma multiforme brain tumours (GBM) and metastatic patients (MET). All patients had
given research consent for the study. Only newly diagnosed patients with a histopathological
diagnosis of GBM (WHO grade 1V) were included for the GBM cohort. For the MET
population, the cancer sources were from origins of breast, lung, melanoma, and renal (BLMR).
Full ethical approval from the BTNW and Walton Research Tissue Bank was granted
(Application number 1108). Tables 3.2a and 3.2b present the demographic clinical data for both

screening studies (fibrosis and gliomas).

Table 3.2al Brain tumour patient demographics, including tumour grade, number of
patients, age range/mean ages and gender.

Tumour Grading Patients Age Range /years Mean Age/ years Gender M; F

NORM 23 16-58 42.9 MI12; F11
MET 24 (BLMR) 35-84 62.5 M9; F15
GBM 23 43-79 63.4 M19; F4
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Table 3.2bl Fibrosis patient demographics, including disease stage (METAVIR F score),
number of patients, age range/mean ages and gender.

METAVIR F Patients Age Range /years Mean Age/ years Gender M; F
FO 12 18-57 39.6 MS5; F7
Fl1 9 43-60 54.2 M3; F6
F2 19 44-73 59.9 MS; F11
F3 4 50-69 59.8 M2; F2
F4 5 51-66 58.8 M3; F2

All blood samples for the diagnostic studies were stored in tubes and left to clot at RT for a
minimum of 30 minutes and a maximum of 2 h from venepuncture to centrifugation. Clot
separation via centrifugation was achieved at 1200 x g for 10 minutes and 500 pL and 1000 pL
aliquots of serum was dispensed into pre-labelled cryovials. Serum samples were snap frozen
using liquid nitrogen and stored at -80 °C until spectroscopic analysis. For the serum fibrosis
study, a total of n=410 spectra were acquired from 49 patients using the HT-FTIR spectroscopic
analysis of fibrosis stages (FO-F4); where 0 indicates no presence of fibrosis or very early stages,
F1-F2 (minimal fibrotic formation), and F3-F4 (advanced fibrosis/cirrhosis) (refer to Table 3.1
for more details). It should be noted that these samples were used for both FTIR and Raman
Spectroscopy analyses (Raman Spectroscopy analyses are covered in Chapter 4). For the serum
glioma study, a total of n=700 spectra were acquired from 70 patients using the same HT-FTIR
approach.
3.2.3.1 Diagnostic HT-FTIR Spectroscopy

The patient serum samples were analysed for high-throughput screening with FTIR, following
preclinical observations with normal pooled sera. Both patient groups were processed in the
same manner and employed the same HT-FTIR methodology with a 3-fold dilution. In brief,
the 5 uL preparation was loaded on a silicon plate, air-dried and subjected to transmission point
mode spectroscopy from each well; collecting 1 spectrum per well, with 10 technical repeats

per patient.

3.2.4 Spectral Quality Testing and Variance Analysis

Raw spectra from spectroscopic studies were submitted to a spectral quality test for the both
ATR and transmission FTIR, to check SNR, control absorbance intensity, observe water vapour
(OPUS v6.5 Software, Bruker Optics GmbH, Ettlingen, Germany). The quality test documented
previously [27, 28], discarded spectra from future analysis if the spectral absorbance was less

than 0.35 and more than 1.8 arbitrary units (a.u). To account for the low intensity of the ATR-
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FTIR data, a parameter change using 0.02 a.u as the lowest threshold and 1 a.u as the highest
was adopted. For calculating of SNR of the maximum absorbance of two characteristics bands
are chosen i.e., amide I (~1700-1600 cm™), and a sugar-ring vibration (~1260-1170 cm™)
followed by a derivation to assign the maximum values. Noise is evaluated at ~2100-2000 cm’
and is calculated based on its maximum value of the first derivative. Furthermore, the water
vapour content is evaluated on the spectral range which indicates strong water vapour
absorbance i.e., ~1847-1837 cm™. Spectra submitted passed the test if the SNR ratio was greater
than 50 and 10, respectively for each of the regions, and the signal to water ratio was less than
20 but greater than 4. (see Figure 2.14 from 2.3.1 for full details). The spectra that passed the
threshold test were analysed for the variability between spots of the same sample by calculating

basic statistics, such as mean and RSD.

3.2.5 Spectral Pre-processing & MVA Strategies
3.2.5.1 Pre-processing Strategies

The spectra were pre-processed using a MATLAB platform R2015b (The Math-Works, Inc.,
USA). Starting with a noise reduction via a principal component (PC)-based noise reduction
algorithm for non-linear iterative vartial least squares (NIPALS), the spectra were deconstructed
using the first 30 PCs of the signal to improve the SNR of the dataset. Essentially, the data is
deconstructed into orthogonally (uncorrelated) latent variables called PCs and then
reconstructed again negating the higher noisier PCs. After de-noising, the baseline was corrected
using the Rubber-band method and smoothed using a Savitzky-Golay process, followed by

vector normalisation to account for sample thickness variation.

It is noteworthy to state that all datasets were observed for principal component analysis (PCA)
via scores and loading differences using different manipulations of combinations of the
following processes: full spectrum, fingerprint only spectrum, non-derivatives and 2™ derivative

functions prior to moving forward with subsequent analysis.

3.2.5.2 MVA Strategies
All datasets were then submitted to PCA and then canonical variates analyses termed

discriminant function analysis (DFA).

PCA was originally developed as an invaluable unsupervised dimension reduction data analysis
technique that helped to find latent data patterns within a data matrix of m x n (m is the variables
(columns) i.e., wavenumbers, and n are the observations (rows), i.e., the associated absorbance.
Decomposition of the data matrix could find its pure components of the spectrum, e.g.
wavenumbers, spectrum of interest plus noise [47]. PCA transformed the data in to uncorrelated

variables that were orthogonal linear combinations arranged in the descending order of PCs, i.e.,
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most variation and in turn the greatest data separation was determined via the 1* PC. In

ascending order, each successive PC explains less and less of the data variation.

DFA was originally developed as supervised data reduction analysis technique, which used
linear combinations inherent within the data matrix to help determine the greatest data
separation, whilst accounting for a priori information, such as class, disease state, or sample
differences due to freeze-thaw and drying efc. The orientation of the combinations was
visualised as increases in class membership and reductions in class variation, i.e., the algorithm

maximises between and minimises within the data groups.
3.3 RESULTS & DISCUSSION

3.3.1 Freeze-Thaw Cycle Study
3.3.1.1 ATR-FTIR Spectral Variance

To investigate the pre-clinical variation seen within a serum sample, whether it is analytical,
‘human’ or biological differences, two series of experiments were designed to observe changes
in the freezing and thawing of human pooled serum and the ambient environmental drying of
serum. The spectroscopic data were collected and pre-processed for the removal and reduction
of extraneous background effects. The data were firstly de-noised using NIPALS algorithm for
PC-based noise reduction, using 30 PCs. The data were then vector normalised to account for
differences in path-length and variations within the sample that could be attributed to the

analytical operation of the instrument.

Table 3.3 demonstrates the freeze-thaw cycle data for the fingerprint region of the spectrum.
From each freeze-thaw cycle (n=15), 30 spectra were collected (n=450), the mean of each cycle
(n=10) showed a smaller overall variance. The variation between the freeze-thaw cycles is
shown by the relative standard deviation (RSD). The values displayed show the range of the
RSD, plus the overall mean and median RSD values per cycle. The analysed data represent the
mean values for each of the freeze-thaws across the spot deposited (n=150). A spectral quality
test (see 2.3.1 for details) was completed, which demonstrated a 100% of the mean spectra

succeeded (n=150).

From the whole of the biological spectrum analysed, the highest and lowest aspects of the region
in relation to RSD% were the 1799 cm™ region (316%), and 1534 cm™ region (0.31%),
respectively. The lowest region can be assigned to the amide II region, specifically the B-pleated
sheet structures, d(N-H) and v(C-N) 174-175], whereas the most varied region is suggestive of
a noise region, a somewhat molecularly silent area on the spectrum. The overall variation here

can be attributed to noise. The row highlighted in red in Table 3.3 shows the overall highest

110



values of mean/median RSD values (17.43% and 13.6%), respectively. Noticeably, the lowest
variance region across all the freeze-thaw cycles was ~ 1520 — 1645 cm™, indicative of protein

bands.

Table 3.3 Statistical values for variance analysis, demonstrating the relative
standard deviation between cycles of freeze-thaw using ATR-FTIR spectroscopy.

ATR-FTIR|Spectral QT | RSD% min | ¥/ cm! |RSD% max/| ¥/ cm™! Av. Med.
FTC passed RSD % RSD %
1 10 0.44 1635 316 1797 9.44 2.43
2 10 0.13 1534 187 1799 6.49 1.70
3 10 0.39 1631 316 1799 12.74 7.55
4 10 0.46 1531 316 1799 11.64 6.37
5 10 0.31 1577 316 1798 8.40 1.59
6 10 0.28 1635 210 1794 13.40 10.15
7 10 0.87 1535 316 1795 15.86 8.99
8 10 0.32 1541 247 907 9.97 4.75
9 10 0.28 1535 316 1795 8.99 2.18
10 10 0.67/ 1543 316 1799 13.63 7.55
11 10 0.58 1645 316 1799 17.43 13.56
12 10 0.37 1633 259 1799 13.33 8.36
13 10 0.77 1526 316 1798 14.52 6.55
14 10 0.42 1632 316 1793 8.32 3.62
15 10 0.49 1711 257 1794 10.86 5.50

As can be seen from Table 3.3, most of the cycles have a very low overall RSD value, the green
highlights all the cycles that have a mean RSD value of < 10 and <5 for mean and median,
respectively. From this, it can be asserted that there is very good reproducibility across the data
set for freeze-thaws and infer that any major variance shown in subsequent analysis could only

be owed to the composition of the sample itself.

3.3.1.2 ATR-FTIR Principal Component Analysis
Following variance analysis, the data were submitted for explorative clustering by PCA. Various
combinations of the pre-processing of the data were tried following the necessary noise
reduction, normalisation and offset to the baseline. The data were observed by PCA
scores/loadings for the full spectrum (1800-600 cm™), the fingerprint region (1800-900 cm™),
both with and without 2™ differentiation of the signal. All methods showed very little difference
in terms of the scores/loadings on PCs 1-5, so it was decided that subsequent analysis would be
carried out on the 2™ derivative fingerprint region going forward. Additionally, for clarity and
the fact that no difference was seen between the data points of the mean data spots and full data,
mean analysis was chosen for clarity of visualisation. Figure 3.1 demonstrates PCA results. The

scores (left) and loadings (right) for PC1 and PC2, show ~ 64% of the explained data variance
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overall. PC1 and PC2 loadings are respectively shown in black and red on the plot. As can be
seen here, explorative analysis with PCA was unable to show significant and logical separation
of the freeze-thaw cycles. One can see that PC2 is separating a few groups slightly away from
the central cluster. Cycles 9-12 are visible on the lower aspect of PC2, explained by the positive
loadings on the lower frequency region of the spectrum (red). Additionally, there are
stray/outliers within the data that appear to be very spread across the biplot. The tentatively
assigned component loadings are shown in Table 3.4 to the serum bio-profile. The loadings for

both PCs are seen clearly in Figure 3.2.
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Figure 3.1 PCA plots of PC1 vs. PC2 scores and loadings for the 2" derivative fingerprint mean
data of freeze-thaw cycles with human pooled serum.

Although it appears that some clustering is shown, one could argue this is quite insignificant
when we observe the clustering plot is shown in a space of x 10*. Overall, the cycles appear
mixed, with no real logical clustering seen, or that can be understood experimentally. One could
argue that such an observation is due to the inherent intra-sample variability, and perhaps
differences in spotting technique, and not related to the FTC effect, based on the illogical
sequence seen amongst the cycles. This also aligns well with previous research, whereby only
the fresh sera found complete separation from 5 repetitive FTC [165]. Based on these
observations, any further multivariate analysis would only highlight potential artefacts within

the data, so PCA was the endpoint for analysis.
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Figure 3.2 PC1 (top) and PC2 (bottom) component
loadings from PCA, showing minimum threshold (dotted
blue line) and applicable peak positions (red arrows).
Data is from 2" derivative fingerprint region of freeze-
thaw cycle analysis using the mean data points per spot.
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Table 3.4l Tentatively assigned FTIR serum biological peak assignments based
on the PC loadings (Figure 3.2), PC1 and PC2 from mean spot data in the 2"¢
derivative.

V/em! Tentatively assigned FTIR PC1 | PC2
serum peaks

1398 o(CH) (lipids), v(CO) + -
1452 0(CHy») /0(CH3) + -
1468 0(CH3) antisym. (protein) + -
1487 -
1496 d(CH,) /(CH3) -
1500 Amide II (proteins) (f-pleated - +
1506 sheets) o(N-H) (60%), v(C- + N
N) (40%)
1512 Tyr +

1522 Amide II (proteins) (f-pleated -
sheets) d(N-H) (60%), v(C-

N) (40%)

1527 - +
1539 Amide I ) SON-H) (40 +

mide II (proteins) 6(N-H -
1552 60%) / +
1556 WC-N) (18-40%) - +
1562 -
1603 -
1606 Amide I (proteins) (S-pleated N
1610 sheets) v(C-0O) (80%), v (C-N) -

10%), 6(N-H) (10%

T5E (10%), o(N-H) (10%) -
1620 -
1626 Amide I (proteins) v(C-O) (70— +
633 85%) / v(C-N), 6(N-H) " n
1647 Amide I of antiparallel /5 - +
1651 sheet/aggregated strand protein - +
1660 structures v(C-0) (76%), v(C-N)

(14%), 6(C-N) (10%)) v(C-O) -
1664 (76%), v(C-N) (14%), 5(C-N) -

(10%))

1676 | Amide I (proteins) antiparallel §- -
1678 pleated sheets and turns +
1684 | v(C-O) in nucleic acids, carbonic - +
1698 acid/ esters - +

Figure 3.2 shows the major peaks responsible for the observation seen in PCA (scores — Figure
3.1). It is worth noting, the region around 1500-1700 cm™ is generally dominated by amide
bands and the strong characteristic absorption band at ~1655 cm™ is formed from the stretching
vibration of v(C-O) of the amide I, whilst 3(N-H) bending vibrations, coupled to v(C-N)
stretching, appear around 1550 cm™ [175].
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3.3.1.3 HT-FTIR Spectral Variance
To further investigate the preclinical variation seen within a sample, a high throughput study
was devised, to see if one method was more able to see differences in freeze-thaw cycles, than
another. Using HT-FTIR spectroscopic data were collected in an automated way, pre-processed
and submitted to the same analysis as above. To keep in line with the previous experiment, the
data were submitted for PC-based noise reduction, using 30 PCs, and vector normalised prior to

any multivariate analysis.

Table 3.5 shows the HT-FTIR freeze-thaw cycle data for the fingerprint region of the spectrum.
From each freeze-thaw cycle (n=15), 2 lots of 8 spectra per well were collected (n=240), the
mean of each cycle (n=8) showed a smaller overall variance, as can be seen in the Table 3.3. As
before, the relative standard deviation (RSD) was used to assess overall variance. When
observing the fingerprint biological spectrum of the serum, the minimum RSD value (0.52%) at
1631 cm™, and the maximum (281%) at 1799 cm™. The lowest regions can be attributed to the
amide I band, specifically the v(C-O), with some attributes from v(C-N) and the 6(N-H) [27,47]
experiment. The largest mean and median RSD value is highlighted in orange in Table 3.5
(18.51% and 12.67%). In comparison to the values seen in Table 3.3, these appear overall
higher, but the maximum RSD values appear to be generally less i.e., an RSD mean/median
range difference between the studies are 10.98% and 11.86% (ATR), and 8.23% and 9.04%
(HT), respectively mean and median. Therefore, the data acquired from the automated HT-FTIR
seems to be more reproducible, suggesting less effects with this method. Alongside of this, a
HT spectral quality test (described in 2.3.1) was carried out and resulted in a 100% of the mean

spectra succeeding the test.
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Table 3.5 Statistical values for variance analysis, demonstrating the relative
standard deviation between freeze-thaw cycles using HT-FTIR spectroscopy.

Spectral | RSD% min/ [RSD% max/| Av. Med.
HT-FTIR | °F0 #/em “iem  |RSD %| RSD
FTC
passed %
1 8 1.54 /1626 106/1799 | 15.75 | 10.61
2 8 1.40 /1554 187/1799 | 17.50 | 10.67
3 8 0.92 /1562 92/1799 | 14.30 | 9.02
4 8 0.89 /1628 106/1800 | 12.54 | 7.20
5 8 0.52/1631 | 149/1799 | 13.00 | 5.90
6 8 1.28 /1638 92 /1791 10.28 | 10.19
7 8 1.24 /1631 11071796 | 15.05 | 11.10
8 8 1.58 /1560 | 101/1798 | 17.34 | 13.29
9 8 1.36/1457 | 200/1798 | 12.26 | 3.63
10 8 1.18 /1748 96/1790 | 18.51 | 12.67
11 8 1.41/ 1357 99/1790 | 16.01 | 11.26
12 8 0.56/1104 | 112/1791 | 14.16 | 6.12
13 8 1.08 /1387 | 103/1798 | 15.74 | 8.98
14 8 0.97/1631 | 281/1799 | 10.55 | 8.32
15 8 1.40/ 1733 105/1799 | 17.59 | 12.11

As can be seen (Table 3.5), most of the cycles have a very low overall RSD value, the green
highlights all the cycles that have a mean RSD value of < 15 and <10 for mean and median,

respectively.

3.3.1.4 HT-FTIR Principal Component Analysis
Explorative clustering via PCA was carried out in comparison with the ATR-FTIR study earlier
(3.3.1.2). Again, various combinations of the pre-processing of the data were tried following the
necessary noise reduction, normalisation and offset to the baseline, and revealed that the mean

data 2" derivative region would be moved forward for further PCA analysis.

Figure 3.3 shows the PCA results. The scores (left) and loadings (right) for PC1 and PC2, show
~ 75% of the explained data variance overall. PC1 loadings are shown in black and PC2 is
visible in red on the plot. Explorative PCA was unable to show significant and logical separation
of the freeze-thaw cycles as seen with the ATR results previously (Figure 3.2). Here, there
appears to a general mix of all freeze-thaws with no clear clustering, i.e., no cycles appear to be
segregated etc. The tentatively assigned component loadings are shown in Table 3.6. The

loadings for both PCs are displayed in Figure 3.4.
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Figure 3.3I PCA plots of PC1 vs. PC2 scores and loadings for the 2" derivative fingerprint mean
data of freeze-thaw cycles with human pooled serum.

As before, the PCA space is shown to be very small and insignificant (x10™). Although this
technique is automated for spectral data collection, it does require at this stage an operator to
spot the diluted serum samples in to the wells of the microtiter plate. This could indeed be a
source of variabilities. However, when we analyse the result obtained here, we can infer that
complete mix of the cycles suggests that freeze-thaw, albeit intra-sample differences, and
different FTIR modalities tried, there is very little distinction between the samples themselves
in terms of pre-clinical variation. Again, this result corroborates well with previous research,

aforementioned [165]. As with previous analysis, PCA was the endpoint to this analysis.

Figure 3.4 shows that the major peaks responsible for the observation seen in PCA (scores —
Figure 3.3). As can be seen the biggest influences within the loadings appear to be suggestive
of a high protein influence. The region around 1500-1700 cm™ is generally dominated by amide
bands. At the mid region of around 1500-1580 cm ' the amide II proteins S-pleated sheets are
seen in both PC1 and PC2 loadings. The region stretching 1580-1680 cm™ is showing a very
large indication from the antiparallel S-sheets and turns from aggregated proteins structures
influences from amide I band stretches and deformations. There is very little influence of the
scores from the low fingerprint region, which is characteristic of DNA/RNA and glycosylation
linkages [175]. Overall, it appears that PC2 shows the most peaks around the amide II region,
and PC1 demonstrates the largest peaks at the amide I bands.
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Figure 3.4l PC1 (top) and PC2 (bottom) component loadings from PCA,
showing minimum threshold (dotted blue line) and applicable peak
positions (red arrows). Data is from 2" derivative fingerprint region of
freeze-thaw cycle analysis using the mean data points per spot.
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Table 3.6l Tentatively assigned FTIR serum biological peak assignments based
on the PC loadings (Figure 3.4), PC1 and PC2 from mean spot data in the 2™
derivative fingerprint region using HT-FTIR [28, 47, 174-176].

V/em! Tentatively assigned FTIR peaks PC1 | PC2
1418 v(C-0) v(COO) +
1457 0(CH>) /(CHz3) +
1461 -
1507 Tyr, amide II (proteins) (f-pleated +
1512 sheets) d(N-H) (60%), v(C-N) -

(40%)

1538 -
1541 Amide II (proteins) (f-pleated sheets) 0 +
1544 (N-H) (60%), v(C-N) (40%) +

1559 Amide II (6 (N-H) (43%), v(C-N) + +
1563 (29%), 6 (C-0O) (15%), v(C-C) (9%), - -
1581 V(N-C) (8%)) -
1623 -

1636 - +
1640 Amide I of antiparallel S-pleated +

1647 | sheets/aggregated protein structures / a- +
1650 helical protein structures (v(C-O) +

1651 | (76%), W(C-N) (14%), 5(C-N) (10%)) §
1653 -

1654 - +
1657 + -
1662 +
1666 -
1667 -
1670 | Amide I of antiparallel S-pleated sheets +
1673 and turns /aggregated protein structures R

1679 -
1684 + +
1688 v(C-0) nucleic acids - -

3.3.2 Environmental Drying Study
3.3.2.1 FTIR Spectral Variance

A 24 h timed serum drying study was evaluated for changes in the serum profile throughout
drying and to ascertain whether such changes could affect the pre-clinical variation. The
spectroscopic data was collected following spotting (<1 uL) on CaF, IR transparent substrate
and pre-processed for the removal and reduction of extraneous background effects. Following
the standard FTIR pre-processing adopted (de-noised using NIPALS algorithm for PC-based
noise reduction, using 30 PCs and vector normalised), the data was offset. Figure 3.5 shows the

full spectrum data with the CO; region omitted for the full drying study, starting from time 0 —
119



10 mins at the bottom of the figure, culminating with the last time point (24 h after spotting) at
the top of the figure. As can be seen most the variance observed is within the fingerprint region
(right side of Figure 3.5), i.e., 1800 — 900 cm™. It was previously [27] noticed that the higher
frequency region is masking the lipid region (v(CHs) antisymmetric stretch of fatty acids at ~
2955 cm™) and the N-H stretch of proteins at ~ 3200 cm™'. Usually, when the biological sample
is drying these regions are observed as a large broadband from ~3600 — 3000 cm™ due to strong
water absorption. It is only as the sample dehydrates that these bands become apparent. Hands
et al. [28] showed a similar drying study but with smaller increments of time points. They dried
a sample from 0 — 32 mins taking spectra at shorter intervals within the 10 mins of dehydration,
showing the characteristic large band broadening at the earlier stages of drying. Other works

also shows the similar result of the biological spectrum [107, 158].
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Figure 3.5| Environmental drying study 0-24 hours over 11 different
time points showing the mean spectrum with the STD for each of the
different time points across the full FTIR spectrum 4000 — 800 cm’!
(CO; region removed). Spectra are offset for visual clarity.

Table 3.7 shows the environmental drying data for the fingerprint region of the spectrum. From
each drying stage time point (n=11), 3 spectra were collected (n=33). The RSD values were
calculated to observe the overall variance. Given the small number of spectra collected per time
point, as to ensure that spectra at a point x was only taken at that point, 3 spectra were only
collected. A 100% of the spectra passed the quality test. The highest value was found on the
ends of spectrum (1800 and 900 cm™) accounting for ~ 70 — 100% RSD. The lowest relative
varied region demonstrating a very low RSD of 0.1% was the amide I band region (~1660 cm’
1. It can be noted here that the overall values for RSD % were very low, suggesting very good

reproducibility of the experiment. The ends of the spectrum demonstrate the highest values are
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due to the possibility of the noise area or a slight artefact from the data truncation to the
fingerprint region. The row highlighted in orange on Table 3.7 demonstrates the overall highest

values of mean/median RSD values (15.47% and 7.79%), respectively.

Table 3.7| Statistical values for variance analysis, demonstrating the relative
standard deviation between cycles of serum drying using transmission FTIR

spectroscopy.

Transmission Spectral | RSD% min |RSD% max| Av. Med.

FTIR Drying QT passed i / ; i / ; RSD % | RSD %
V/cm V/em

0— 10 mins 3 0.67 /1631 81/912 14.02 4.94

30 mins 3 0.20/ 1635 87 /945 10.80 5.67

1 hr 3 0.12/ 1485 73 /955 15.07 7.21

1.5 hrs 3 0.1/1664 12/903 4.01 3.65

2 hrs 3 0.43 /1635 32 /960 8.70 4.48

2.5 hrs 3 0.23/1541 | 88/1800 11.87 4.39

3 hrs 3 2.11/1550 | 101/1799 | 12.05 11.21

3.5 hrs 3 0.19/1672 | 25/1799 8.45 6.59

7 hrs 3 0.58/1650 | 74/1799 15.47 7.79

14 hrs 3 0.16/1660 | 19/1800 5.81 3.22

24 hrs 3 0.12/1662 | 100/951 10.15 4.99

3.3.2.2 FTIR Principal Component Analysis
Figure 3.6 shows the PCA results with the scores (left) and loadings (right) for PC1 and PC2
that accounts for ~ 55% of the explained data variance overall. PC1 loadings are shown in black
and PC2 is in red on the plot. The time points have been highlighted graphically by ellipses for
better visibility and to demonstrate the variance shown intra-sample time point. As can be seen
the 24 h time point data is the most varied. At this point in serum dehydration, one can fully
assert that such a small amount deposited would have fully dried, so this variability could be
due to the water reabsorption from the 14 hours to 24 hour window. The so-called coffee-ring
phenomena states that upon drying, the salts and ions stay within the centre of the drops, as well
as the heavy molecular components and the lighter molecules, such as proteins migrate towards
the periphery of the drop. Figure 3.7 shows an image of the coffee-ring formation on one of the

dried drops after 24 hours.
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The component loadings are shown in Table 3.8. The loadings for both PCs are seen clearly in
Figures 3.6 and 3.8. The loadings on PC1 seem to show peaks assigned to the C=0 stretch
~1655 cm™, the N-H deformation ~1540 cm™ and the C=C stretch ~1615 cm™. PC2’s loadings
show the same attributes, with increased intensity on the protein B-sheet ~1640 cm™, and C=0
~1655 cm™! for amide 1. Notably, here PCA shows that the early time points (0-10 mins) data
appear to be clustered away from the rest of the data, suggesting that the internal chemistry
shows differences in the molecules. This is to be expected and given the coffee-ring effect taking
place has the molecule fully dehydrates, the physical presence of the centre and ring formation

starts to show a chemical gradient.
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Figure 3.6l PCA: The scores and loadings of the environmental drying study 0-24 hours over 11
different time points showing grouping via ellipses (visual purposes only).
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Figure 3.7: Microscopic visual image of a 0.2 uL serum drop fully dried at 24
h after spotting (from a 24 h environmental drying study). Visible coffee-ring
phenomena. Image taken with a Perkin Elmer FTIR Spotlight 400 microscope.
(Field of view: 2000 um x 2000 pum).

124




0.5 T

04r 1

031 _

PC1

-0.4r 1
05 . . . . . . . .
1700 1600 1500 1400 1300 1200 1100 1000
0.5 . . . T . . : :
v
0.4r 1
031 1

L L L L L

1700 1600 1500 1400 1300 1200 1100 1000

Wavenumber / cm-1

Figure 3.8 PC1 (top) and PC2 (bottom) component loadings from PCA, showing
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Table 3.8 Tentatively assigned FTIR serum biological peak assignments based
on the PC loadings (Figure 7), PC1 and PC2 from the 2" derivative fingerprint
region using transmission-FTIR for serum drying [27-28, 174-176].

v/em! Tentatively assigned FTIR peaks PC1 | PC2
923 0(C-0-C) carbohydrates, v(C-C) residue a-helix +
1506 w(C-C), Tyr + -
1520 v(C-C), amide II +
1539 -
1541 Amide II of proteins (5-pleated sheet structures) +
1549 J (N-H) (60%), v(C-N) (40%) -
1550 +
1558 | Amide II (6(N-H) (43%), v(C-N) (29%), 6(C-O) +
1564 (15%), v(C-C) (9%), v(C-N) (8%)) +
1628 +
1630 Amide I of antiparallel S-pleated -
1641 sheets/aggregated protein structures / a- +
1643 helical protein structures (v(C-O) (76%), -
1649 V(C-N) (14%), 5(C-N) (10%)) -
1653 -
1657 +
1662 Amide I of antiparallel S-pleated sheets and -
1674 turns /aggregated protein structures -
1684 -
1697 -
1709 v(C-O) of carbonic acid/nucleic acids +
1724 v(C-0) esters +

3.3.3 Diagnostic Serum Fibrosis Study
3.3.3.1 Fibrosis Spectral Variance

Table 3.9 depicts the results for the variance analysis for the fibrosis study conducted with HT-
FTIR spectroscopy. The fibrosis stage (0, 1, 2, 3, 4) is indicated for each patient. The results
presented are from the mean analysis of the RSD, demonstrating the minimum, maximum,
average and median values across the patient spectra. Additionally, the results of the FTIR
spectral quality test are shown with a maximum of 11 spectra taken at collection for each patient.
Overall, 94.25% of the spectra passed the quality test. The spectra that did not meet the
absorbance threshold were discarded. This was also visualised using cluster analysis with

explorative HCA (data not shown).
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Table 3.91 Statistical values for variance analysis, demonstrating the relative standard
deviation between mean patients of the fibrosis study using HT-FTIR spectroscopy.

HT-FTIR/ Fibrosis| Spectral | RSD% min {RSD% max| Av. Med.
Fibrosis Stud Stage |QT passed / / RSD % | RSD %
y om-l Slom-1
V/em V/em
1 0 10 0.17/1558 | 316/957 6.56 4.88
2 0 8 0.54 /1556 | 105/957 6.25 3.73
3 3 9 0.00/1550 | 47/958 4.47 4.01
4 0 10 0.34/1562 | 131/958 9.66 8.12
5 0 11 0.47 /1562 | 155/958 13.58 10.31
6 0 11 0.25/1562 | 260/957 6.98 5.12
7 0 9 0.22/1560 | 243/959 9.48 7.70
8 3 10 0.13/1566 | 225/959 8.29 5.79
9 3 11 0.28 /1560 | 229/957 6.41 5.11
10 3 11 0.27/1620 | 228/958 7.44 4.85
13 0 11 0.27/1620 | 138/957 8.26 6.33
14 0 10 0.46/1690 | 204 /957 8.24 6.66
15 1 10 0.17/1562 | 316/957 7.05 5.60
16 1 10 0.33/1556 | 70/957 7.30 5.63
17 0 10 0.70/1620 | 82/957 13.53 11.73
18 1 10 0.46/1624 | 157/957 8.26 6.33
19 1 10 0.49/1690 | 202/957 7.97 6.13
20 2 10 0.74 /1666 | 188/957 8.99 6.33
21 4 10 0.21/1563 | 110/958 11.81 6.84
22 4 11 0.27/1663 | 192/957 9.26 4.26
23 4 11 0.31/1620 | 120/958 8.26 4.13
24 4 11 0.30/1560 | 101/958 7.27 5.53
25 4 10 0.26/1566 | 75/957 8.26 6.23
26 2 11 0.40/1558 | 78/957 8.11 5.13
27 2 10 0.41/1621 98/958 8.02 433
28 2 11 0.41/1622 | 108/957 8.26 6.33
29 2 10 0.24/1620 | 100/957 8.16 7.03
30 2 11 0.27/1656 | 138/957 10.26 6.83
33 0 11 0.24 / 1655 124 /957 8.26 6.22
39 2 11 0.26 /1621 122 /957 9.26 5.43
40 2 11 0.17 /1623 158 /957 10.20 7.13
41 2 11 0.33/1556 | 70/957 7.30 5.63
42 2 10 0.20/1620 | 82/958 8.53 6.73
43 1 10 0.56/1634 | 157/958 8.26 6.33
44 2 11 0.39/1680 | 202/958 10.97 6.43
45 2 10 0.42/1666 | 188/957 8.22 6.73
46 2 11 0.71/1563 | 110/958 9.01 7.04
47 2 10 0.22/1663 | 192/957 9.16 5.26
48 2 11 0.38/1625 | 120/958 8.36 4.13
49 2 11 0.39/1566 | 101/958 7.17 6.53
50 2 10 0.33/1556 | 99/957 7.22 4.13
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As seen from Table 3.9, the minimum RSD value (0.00%) is at 1550 cm™ and the maximum
(316%) is at 957 cm™. The 1550 cm™ region is attributed to the amide II band, specifically the v
(C=0), v(C-N) and the d(N-H) [27, 175]. The region appears to be the least varied overall
throughout the spectra. The most varied region is found at the low end of the spectrum, close to
the cut off mark for spectrum truncation. This region is usually associated with v(C-C) residue
alpha-helix [27]. The largest mean and median RSD value is highlighted in orange (13.51% and
11.51%). The green highlight represents the sample that is below 5% on both mean and median
RSD. Overall, the basic statistics results highlight very good reproducibility of the dataset.

3.3.3.2 HT-FTIR Principal Component Analysis
Data were observed in three ways, by patient (n=425), by fibrosis disease stage (5 groups — (FO0,
F1, F2, F3 and F4) and finally by a melange of fibrosis disease (3 groups — A, B and C). For
information, the melange was composed of all the patients from stage 0 and 1 in group A, stage
2 in group B, and the remaining stage 3 and 4 in group C (Figure 3.9). As shown here, PCA
does not show any discernible differences between the fibrosis groups nor the mix of the groups.
The loadings highlight significant protein and lipid influences, but it is not possible to detect

any real separation.
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3.3.3.3 Discriminant Function Analysis
Figure 3.10 shows the DFA results. Two-way analysis was carried out; differentiation of fibrosis
stages as according to the METAVIR F score, followed by grouped fibrosis stages to represent
low-grade, mid-grade and high-grade patients. When one views the first DF plot (top), it appears
to show some degree of grouping or class membership. The positive loadings seen on DF1 show
the F2 patient spectra to be positioned away from F4 (the advanced fibrotic disease, such as
cirrhosis). Whereas DF2 more clearly shows; on the second plot (bottom), the slight split in
membership between low-grade and high-grade diseases, as explained by the negative and
positive loadings, respectively. The peaks situated on the negative loading of DF2 show

increased band intensities at ~ 1530 cm™, 1635 cm™ region and 1748 cm™.
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Figure 3.101 DFA: DF1 vs. DF2 taken forward the first 5 PCs for analysis 2-way explorative
observation. Scores: top left (fibrosis stage-wise), bottom left (graded grouped stage) Loadings: DF1
(bottom right) and DF2 (top right). The red dotted line indicates a minimum threshold for influencing
peaks. Anything below is considered too insignificant to be meaningful to the explaining the data.
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This is indicative of amide II, amide II (a- helices), and carbonyl bonds of lipids [33-35]. The
positive loadings are associated with a weak presence of amide III bands (~1220 cm™), a
significant intensity increase in amide II (B-pleated sheet structures) (~1550 cm™), and amide I
of antiparallel B-pleated sheets/aggregated protein structures [177]. Table 3.10 contains the DF

loadings for the fibrosis dataset.

Table 3.10] Tentatively assigned FTIR serum fibrosis biological peak assignments
based on the DF loadings (Figure 3.10), DF1 and DF2 from the fingerprint region
using HT-FTIR [29-35].

V/em! Tentatively assigned FTIR DF1 | DF2
Serum Fibrosis peaks
1221 Amide III (weak) +
1231 -
1501 - +
1516 - +
1530 Amide IT -
1551 -
1560 +
1614 +
1622 Amide I of a-helical protein +
1633 structures -
1639 | Amide I band (#-pleated shift) -
1660 Amide I of antiparallel - +
pleated sheets/aggregated
protein structures
1697 v(C-0), fatty acids, lipids
1748 + -

3.3.4 Diagnostic Serum Glioma Study
3.3.4.1 Spectral Variance Analysis of Serum Glioma

Table 3.11 shows the results for the variance analysis for the glioma serum study conducted
with HT-FTIR spectroscopy. The results presented are from the fingerprint region analysis of
the RSD, demonstrating the minimum, maximum, average and median values across the patient
spectra. Additionally, the results of the FTIR spectral quality test are shown. A total of 8 spectra
were taken per patient (n=70). Overall, 85.3% of the spectra passed the quality test (n=588). The
spectra that didn’t meet the absorbance threshold were discarded. This was visualised using
cluster analysis with explorative HCA. Both the highest and lowest RSD% is seen in the MET
patient group (high — 24.3%, low — 0.00%). The highest values were found at 1119 cm™, which
is attributed to the C-O stretch (antisymmetric), C-O-H bend of lipids [27]. The lowest relative
varied region is due to amide II of proteins (B-pleated sheet structures) ¢ (N-H) (60%), v(C-N)
(40%). It can be noted here that the overall values for RSD % were very low, suggesting very

good reproducibility of the data. The row highlighted in orange on Table 3.11 demonstrates the
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overall highest values of mean/median RSD values (10.53% and 9.33%), respectively. The
green highlights refer to the patients with the values lower than 5% RSD.

Table 3.11I Statistical values for variance analysis, demonstrating the relative standard
deviation between mean patients of the glioma study using HT-FTIR spectroscopy.

HT-FTIR/ |Disease Stage| Spectral | RSD% min/ | RSD% max/| Av. Med.
Glioma Study QT passed V/em! V/em! RSD % | RSD %
1 GBM 10 0.40/ 1568 9.25/903 4.79 4.75
2 GBM 6 0.41/1510 10.04 / 1137 3.05 2.67
3 GBM 10 0.07 / 1540 8.99 /1141 3.02 2.99
4 GBM 10 0.14 /1533 11.02 /904 5.12 4.55
5 GBM 10 0.40/ 1566 15/904 6.00 5.75
6 GBM 10 0.36 / 1562 20 /905 6.98 5.12
7 MET 10 0.20/ 1566 243 /1119 6.48 5.71
8 GBM 9 0.26 /1533 12.5/1123 5.29 5.11
9 GBM 10 0.42/1543 229/1124 5.31 4.51
10 GBM 10 0.41/1543 19/1021 4.41 4.11
11 GBM 10 0.39/ 1561 21.9/1141 6.31 4.81
12 GBM 10 0.29/ 1555 22.8 /1132 5.54 4.85
13 MET 9 0.33/1562 13.8/1127 8.26 4.33
14 MET 10 0.46 /1569 20.4 /1157 8.24 5.66
15 GBM 10 0.42 /1558 9.16 /907 8.15 4.60
16 GBM 8 0.40/ 1556 9.50/917 9.30 6.63
17 GBM 10 0.41/1510 7.2/920 5.53 4.73
18 MET 9 0.45/1512 15.7/1123 5.26 4.33
19 GBM 8 0.48 /1551 21.2/1142 7.97 6.13
20 MET 10 0.50/1562 18.8 /1125 6.99 5.33
21 GBM 10 0.36 /1556 11/1111 8.81 6.84
22 GBM 10 0.38 /1536 12/1142 9.26 4.26
23 GBM 10 0.42/1526 12.1/1132 8.26 4.13
24 GBM 10 0.39/1533 10.1/1131 7.27 5.53
25 GBM 10 0.29 /1536 9.75 /1099 8.26 6.23
26 MET 7 0.25/1548 7.8/1044 8.11 5.13
27 GBM 10 0.18 /1558 9.88 /1102 8.02 4.33
28 GBM 9 0.12/1522 10.8 /1125 5.26 6.33
29 MET 10 0.29/1512 10.01 /1125 5.16 7.13
30 MET 10 0.39/ 1566 13.8 /1125 4.26 4.23
31 MET 10 0.41/1556 9.50/ 1124 5.30 4.13
32 MET 7 0.28 /1510 7.21 /1175 5.53 3.93
33 MET 7 0.02 /1512 15.7 /1145 4.96 3.99
34 MET 10 0.00/ 1551 21.2/1146 5.97 5.85
35 MET 8 0.25/1562 18.8 /1147 5.97 5.39
36 MET 9 0.16/ 1556 11.10/ 1145 4.81 4.14
37 MET 6 0.14 /1556 9.50 /1123 8.38 6.83
38 MET 10 0.11/1510 7.2/1147 8.11 8.03
39 MET 10 0.38/1512 15.7/1114 7.26 6.23
40 MET 9 0.29/ 1536 243 /1119 3.05 2.67
41 MET 8 0.25/ 1548 12.5/1123 3.02 2.99
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42 NORM 6 0.18 /1558 22.9/1124 5.12 4.55
43 NORM 9 0.12/1522 24.3/1119 6.00 4.75
44 NORM 10 0.29 /1512 13.8/1125 3.05 2.67
45 NORM 9 0.39/1566 9.50/1124 4.96 3.99
46 NORM 4 0.41/1556 7.21/1175 5.97 3.85
47 NORM 10 0.29 /1536 13.8 /1125 4.97 4.39
48 NORM 10 0.18 /1558 7.2/1147 5.96 3.99
49 NORM 10 0.12/1522 15.7/1014 5.97 5.85
50 NORM 9 0.29 /1512 11.02 /904 3.94 2.39
51 NORM 8 0.17/1548 15/904 8.26 6.33
52 NORM 10 0.14/1533 20/ 905 8.24 6.66
53 NORM 9 0.40 /1566 12.1/1132 7.05 5.60
54 NORM 6 0.39/ 1566 10.1 /1131 7.30 5.63
55 NORM 10 0.41/1556 9.75 /1099 10.53 9.33
56 NORM 10 0.28 /1510 13.01 /1152 8.26 6.33
57 NORM 10 0.42 /1543 9.75 /1099 7.97 6.13
58 NORM 10 0.41/1543 7.8/1044 5.12 4.55
59 NORM 10 0.14 /1533 9.88 /1102 6.00 4.75
60 NORM 10 0.40/ 1566 11.02 /904 3.05 2.67
61 NORM 10 0.29/1512 15/904 5.12 4.55
62 NORM 10 0.17 /1548 20/905 4.25 4.02
63 NORM 8 0.42/1543 9.75 /1099 5.02 4.89
64 NORM 10 0.41/1543 7.8 /1044 3.05 2.55

3.3.4.2 Serum Glioma Principal Component Analysis
Figure 3.11 shows the PCA results. The scores (left) and loadings (right) for PC1 and PC2,
account for 89.3% of the explained data variance overall. The data was investigated using a two-
way explorative analysis, i.e., patient-wise and disease-wise observations, top and bottom plots
on the figure respectively. The bi-plots show the spread of the data across the patients (top) and
disease-stage (bottom). As can be seen, the latter shows better visualisation for discerning
different clusters within the data. It is apparent that the NORM group, i.e., no disease within the
serum samples analysed, show tight clustering as explained by PC2 component loadings. The
diseased groups (MET and GBM) represent two different staging grades within the classification
of gliomas (generally a medium and high-grade staging). On the figure, these two groups seem
to be represented by a mix of both, with no clear separation shown. The MET group appears
slightly more tightly clustered compared to the GBM patients, overall. The loadings for PC2
show the most influenced peaks are at 1657 cm™(+), 1595 cm™ (+), 1080 cm™ (+) and 1040 cm’
! (+), which are assigned on a positive loading and as amide I, amide II and C-O stretch
(DNA/RNA). Although PC1 explains ~80% of the data, it fails to show separation between the
classes of data. Overall with PCA alone, it appears to present a general mix of MET patients

with GBM patients, however, it does separate from NORM and cancer datasets, interestingly.
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Figure 3.111 PC1 vs. PC2 taken forward the first 10 PCs for analysis for a two-way explorative
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right demonstrates the component weight for PC2, whilst PC1 is shown on the bottom right. Data is
from the fingerprint region of the spectra and collected via HT-FTIR for the BTNW Glioma study.
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3.3.4.3 Serum Glioma Discriminant Function Analysis
Figure 3.12 shows the results of the DFA. Following PCA, the data was subjected to DFA with
the first 5 PCs that explains the biggest variance within the data, and the first three DFs were
observed. The data showed DF1 and DF2 to be the most discriminant. As can be seen here, the
three classes of data have shown increased tight clusters and overall demonstrates some
discerning groups between NORM patients as shown by DF1, plus DF2 is starting to show some
initial clustering amongst the MET vs. GBM patients. This result is interesting as it suggests
that the intrinsic biochemical differences between the two disease stages, plus the healthy and
disease are detectable using spectroscopy. Whilst this is not a perfect clustering separation, it

tends to suggest that DFA can discriminate between these three classes of patients.
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Figure 3.12|1 DFA: DF1 vs. DF2 taken forward the first 5 PCs for analysis. Scores bi-plot (left)
(glioma disease-wise). Loadings plots: DF1 (bottom right) and DF2 (top right). The red dotted line
indicates a minimum threshold for influencing peaks. Anything below is considered too insignificant
to be meaningful to the explaining the data.
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DF1 clearly finds a good separation between NORM and MET patients. NORM patients are
attributed to the negative loadings of DF1, which is the broad peak of -CH3 deformation of lipids
at 1348 cm™ and amide I of a-helical protein structures at 1640 cm™. The positive loadings of
DF1 demonstrate the MET from NORM separation and are due to three peaks, the -CH»
deformation of methylene groups and lipids at 1440-1462 cm™, amide I of o-helical protein
structures at 1640 cm™, and C-O stretch of DNA/RNA at 1075-1088 cm™'. The negative loadings
of DF1 are on two peaks, 1348 cm™ and 1640 cm™, which demonstrate the -CHj lipid
deformation and the a-helix protein structure of amide I, finding separation between healthy and
diseased (MET). In addition, DF2 finds some separation between MET and GBM. The positive
loadings can be attributed to the majority of GBM patients, and the negative ones to most of the
MET patients; both with an influence from NORM patients, unfortunately. DF2 in result is not
as discriminatory as DF1. Table 3.12 shows the tentatively assigned loadings for both DF
directions. To validate this result, PC-DFA was attempted but the data result did not add

anything to the current observation, so was not progressed further (data not shown).

Table 3.12| Tentatively assigned FTIR serum glioma biological peak assignments
based on the DF loadings (Figure 3.12), DF1 and DF2 from the fingerprint region
using HT-FTIR [27-28-176].

V/em™! Tentatively assinged FTIR DF1 | DF2
serum Glioma peaks
1024 v(C-O) RNA, ribose/glucose +
vibration
1075 v(C-0) deoxyribose/ribose, DNA, +
1088 RNA -
1348 J(CHs5) lipids
1440 J(CH>) methylene group, lipids +
1462 +
1550 Amide II (f-pleated sheet -

structures) d(N-H) (60%),
v(C-N) (40%)

1640 Amide I of a-helical protein - +
structures (V(C-0) (76%), v(C-N)
(14%), 6(C-N) (10%))

1674 Amide I of antiparallel S-pleated + -
sheets/aggregated protein
structures (V(C-0) (76%), v(C-N)
(14%), 6(C-N) (10%))

1740 v(C-0), fatty acids, lipids, proteins -
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3.4 CONCLUSION

In summary, this two-part study sought to analyse human pooled sera with a suite of FTIR
technologies, including ATR-FTIR, transmission (both traditional and high-throughput), for
preclinical variability. This was investigated by repetitive cycles of freezing and thawing, to
ascertain whether there is an effect on the data due to such procedures, and then to analyse the
same samples for environmental drying effects on the serum profile. Combining spectroscopy
with PCA demonstrated very little changes within the freeze-thaw serum profile; any changes
in the bi-plots were deemed to insignificant as the subspace has highly magnified. Overall, the
cycles appear mixed, with no real logical clustering or that could be described experimentally
via preclinical changes. PCA was the endpoint analysis for this dataset. The HT-FTIR dataset
for FTC also showed a similar result, irrespective of type of FTIR technique employed. Here
the spectral collection was highly automated, which makes it a good high-throughput
application. Subsequent PCA showed another complete mix of cycles of freezing and thawing,
which is reassuring to understand that moving forward to diagnostic capabilities of the
technique’s automation presents no extraneous data effect. Here again, PCA was the endpoint
analysis. For both techniques common spectral peaks were shown for the sera, as protein being
the biggest influence at the amide bands region. This region is generally due to two main

contributions, the amide II bands at 1500-1580 cm™, and the amide I band at 1580-1680 cm™

To further investigate the effects of ambient drying, PCA was also applied on the environmental
drying data (taken across 11-time points throughout 24 hours). Serum dehydration induces the
coffee-ring effect, whereby the pinning of the contact lines of the drying drop causes the salt,
ions and proteins to form a concentration gradient. This study showed that such an effect is seen
using PCA, as the time points seem to follow a sequential pattern starting from point O (fresh
drop liquid sera) towards 24 h post drying. This is seen within the loadings owed to the C=0
stretch ~1655 cm™, the N-H deformation ~1540 cm™ and the C=C stretch ~1615 cm’".

As it is routine practice, to seldom work on non-fresh samples given the requirement of
cryogenic storage, in this preliminary study we have carried out IR spectroscopic assessment of
potential variations owing to cycles of freeze-thaw and to the environmental ageing or drying
of a sample of human pooled sera, exploring potential intra-sample differences of serum sample
stability, without the fresh phase. Important factors, such as storage requirements, dilution
aspects, and all key preparatory phases within a laboratory setting need to be fully considered.
Generally, for any analysis of variability, whether it is intra-, pre- or post-analytical, the biofluid

of choice must dictate the analytical process for error-tracking.
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The second part of this study was to use the tried and tested methodologies for diagnostic
capabilities. Two patient serum banks were interrogated (fibrosis and glioma). The fibrosis
patient sera were measured using the HT-FTIR methodology and analysed using PCA and DFA.
A three-way split of the fibrosis data revealed, a group split by patient spectra, by fibrosis disease
stage and by a mix of fibrosis disease to represent low and high-grade disease characteristics.

PCA was unable to classify the patient groups.

The positive loadings seen on DF1 demonstrated a slight separation between F2 and F4 (the
advanced fibrotic disease, such as cirrhosis) patients. DF2 further showed a slight difference
between low-grade and high-grade diseases, as explained by the negative and positive loadings,
respectively. The peaks situated on the negative loading of DF2 show increased intensities in
the 1530 cm™' region, the 1635 cm™ region and 1748 cm™ profiles. This pinpointed amide II,
amide II (o- helices), and carbonyl bonds of lipids as marker bands. Such positive loadings could
be associated protein bands at ~1220 cm™, ~1550 cm™ and pleated sheets/aggregated protein
structures [177-188]. This study demonstrated the both PCA and DFA were able to show
biochemical differences between some of the patient disease stages. Although a PC-DFA
validation was tried, it did not add anything to the outcome. Moving forward with this, it would
be advantageous to further use MVA techniques, such as SVM, ANN or PLSDA to try to
classify the data further, followed by a blind test.

The glioma patient sera were measured using the HT-FTIR methodology and analysed using
PCA, DFA and RBF-SVM cross validation. Firstly, a two-way split of the data was analysed
using PCA and DFA; first split by patient, and second by normal, metastases and gliomblastoma
multiforme (the most advanced and aggressive). Here, it was demonstrated that both PCA and
DFA can show some distinctions between normal vs. disease states, when combining the two
cancer stages together. DF1 clearly finds a good separation between NORM and MET patients
via marker bands attributed to the broadband peak of -CH; deformation of lipids at 1348 cm’!
and amide I of a-helical protein structures at 1640 cm™. The positive loadings of DF1
demonstrate the MET from NORM separation and are due to three peaks, the -CH» deformation
of methylene groups and lipids at 1440-1462 cm™, amide I of a-helical protein structures at 1640
cm’', and C-O stretch of DNA/RNA at 1075-1088 cm™. The negative loadings of DF1 are on
two peaks, 1348 cm™ and 1640 cm™, which implicates the CH; lipid deformation and the alpha-
helix protein structure of amide I, finding separation between healthy and diseased (MET) states.
DF?2 started to separate between MET and GBM. The positive loadings can be attributed to the
majority of GBM patients, and the negative ones to most of the MET patients; both with an

influence from NORM patients. DF2 in found to be not as discriminatory as DF1.
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Overall, this study has demonstrated that high-throughput analysis has less overall variance

when comparing the RSD of ATR and HT-FTIR methodological approaches.

In summary, the present study has shown that preclinical variation can be minimised with good
laboratory procedures, not-exceeding a significant amount of repetitive freeze-thaw, and that
such possible variances, when well taken into account, have minimal influences in diagnostic
capability of FTIR technology as a disease classification/screening tool when employed with

MVA.
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IV.1 RESUME

Suite aux travaux précédents sur I'IRTF du sérum, il était nécessaire de faire sécher les sérums
avant de les analyser. La technique IRTF 1’avantage d’étre a haut débit, ce qui est intéressant
pour une approche clinique. Dans ce chapitre, le travail est focalisé sur le développement de la
spectroscopie Raman appliquée a I’analyse séchée ou en phase liquide. Dans un premier temps,
I’approche spectroscopie Raman est appliquée sur le méme pool de sérums humains traité dans
le chapitre précédent, pour étudier les effets de la variation pré-analytique. Deuxieémement, la
méthode Raman choisie est utilisée sur des sérums de patients pour évaluer, comme pour I'IRTF
son potentiel de diagnostic / dépistage. Cette recherche a un double objectif. Premierement, ces
travaux ont permis de mieux comprendre les variations pré-analytiques du sérum humain sur
des échantillons séchés et liquides et en observant 1’effet des cycles répétitifs de congélation /
décongélation et de séchage ambiant sur des sérums humains non frais. Enfin, la technique est
évaluée dans le cas de la fibrose hépatique en utilisant un protocole d’analyse des sérums a I’ état
liquide par macroscopie Raman. Cette nouvelle approche, récemment mis au point pour une

application potentielle de criblage Raman, a été associée a une analyse multivariée de données.

IV.2 CONCLUSION

En résumé, cette étude en deux parties visait a analyser un pool de sérums humains en phase
séche et en phase liquide avec différentes approches en spectroscopie Raman, afin d'évaluer la
variabilité pré-analytique. Comme pour I’analyse IRTF, des cycles répétés de congélation et de
décongélation ont été suivis afin de déterminer leurs effets sur 1'échantillon, puis d'analyser ces
mémes échantillons pour déterminer les effets du séchage ambiant sur le profil sérique. En
combinant la spectroscopie Raman avec des analyses chimiométriques exploratoires telles que
I’ACP et le CHA, les valeurs aberrantes suivant les évaluations de variance et de qualité des
données ont pu étre mises en évidence pour une suppression ultérieure. Dans I'ensemble, I’ ACP
a montré tres peu de changements dans le profil sérique suivant les cycles de congélation-
décongélation. Tous les changements ont été jugés insignifiants et aucun schéma spécifique des
données n'a été observé. Globalement, les données provenant des cycles de
congélation/décongélation semblent en général assez mélangées, sans véritable clustering
logique ou pouvant &tre décrit expérimentalement via des modifications pré-analytiques. Les
données acquises a la fois pour les cycles de congélation/décongélation et séchage a 1’air
ambiant sur différents instruments ne montrent aucun effet sur les spectres. Nous concluons que
cette variation pré-analytique a trés peu d’effet sur les données spectrales.

Comme il est de pratique clinique courante de ne travailler que rarement sur des échantillons
non frais compte tenu de la nécessité d’un stockage cryogénique, les facteurs importants, tels

que les exigences de stockage, les aspects de dilution et toutes les phases préparatoires clés dans
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un laboratoire, doivent &tre pleinement pris en compte. De maniere générale, pour toute analyse
de variabilité, qu’elle soit pré-, intra- ou post-analytique, le biofluide de choix doit respecter le

processus analytique permettant de suivre les erreurs.

Le dernier aspect de ce travail était d’évaluer le potentiel diagnostique de la méthodologie de
spectroscopie Raman sur des échantillons liquide de sérum de patients a différents stades de
fibrose. Les données ont été analysées a I'aide de 1’ ACP et I’ AFD. L’analyse a révélé un groupe
divisé par spectres de patients, par stade de fibrose et par un mélange de fibrose pour représenter
les caractéristiques de la maladie de bas et de haut grade. L’ ACP n'a pas pu faire ressortir des

différences.

Les loadings positifs observés sur DF1 démontrent une l1égere séparation entre les spectres des
patients sains et ceux des patients avec une fibrose au stade F4. Les différences sont attribuées
a la région 900-1300 cm™', qui englobe les acides aminés et la région amide III. Cette étude a
démontré que les deux AFD pouvaient montrer certaines différences biochimiques entre certains
stades de la fibrose (sain ou avancé). Bien qu'une tentative de validation CP-AFD ait été tentée,
cela n'ajoute rien aux résultats déja obtenus. Les données ont ensuite été soumises aux
classifieurs RF et LDA pour une analyse supplémentaire. Les meilleures sensibilités et
spécificités obtenues représentaient des résultats modérés et il est donc conclu qu'aucun des

algorithmes utilisés n'a été capable de fournir une discrimination claire de la maladie.

En conclusion, les résultats de cette étude montrent que I’exploitation des données Raman en
phase liquide par une analyse multivariée avancée en tant qu'outil de classification ne suffisait
parfois pas pour établir une discrimination si 1'évolution de la maladie est extrémement
complexe. Bien que les effets des cycles de congélation/décongélation et du séchage a I’air
ambiant semblent avoir des effets négligeables sur les résultats des données, il est toujours
important de ne pas sur-traiter les échantillons et il faut rester prudent pour limiter les effets
physiques sur les échantillons, comme avec tout échantillon biologique, il pourrait étre sensible
et se dégrader éventuellement. Les présents résultats ont clairement montré que 1'on pouvait
minimiser les variations précliniques avec de bonnes procédures de laboratoire, en ne dépassant
pas des quantités élevées de gel-dégel répétitif, et que de telles variances éventuelles ne jouent
aucun rdle significatif dans la capacité de diagnostic de la spectroscopie Raman, qui est une
classification de la maladie / outil de dépistage lorsqu'il est utilisé avec diverses stratégies MVA.

De plus, il repose uniquement sur la complexité de la maladie.

4.1 INTRODUCTION

Serum-based spectroscopic diagnostics is an interesting and emerging adjunct to the cellular-

histology arena for biomedical spectroscopy. It has gained specific diagnostic interest owing to
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its strengths; non-destructive testing, readiness and ease of sample availability, capability of
rapid testing and re-testing, and simple and minimally invasive acquisition making it an ideal
technique for routine testing/screening [108]. The biochemistry of human serum is known to
comprise a highly complex ‘peptidome’ composed of low molecular weight serum markers
amongst other macromolecules [65]. Serum accounts for approximately 55% w/v of blood when
combined with plasma and houses ~20, 000 proteins, from albumin to troponin, making it
information rich for disease processes [179-181]. This primary carrier of small molecules serves
as a ‘liquid information highway’ that bathes the tissues, and its metabolomics variation can be
attributed to a subject’s life-style and regime, inclusive of gender, stress levels and body mass
index (BMI). A recent study [182] demonstrated the richness of such chemical information via
molecular phenotypic profiles of 1200 UK respondents, for the serum metabolome. Such a study
provides a quantitative assessment of molecular activities that govern cellular processes [182],
which could shed new light on disease mechanisms. Ultimately, the use of biofluids such as
serum, semen, plasma, saliva and bile have demonstrated significant prognostic and diagnostic

potential within bio-spectroscopy, as recently reviewed by [6].

In a conscientious effort to lessen the research gap from bench to bedside, strict adherences to
good laboratory practice (GLP) and appropriate standard operating procedures (SOP), in line
with an effort to circumvent analytical errors, are necessary to see an increase in large clinical
trials or multicentre studies. However, there is a major challenge to ensure that all participating
hospitals must strictly follow pre-analytical procedures to ensure the best and most
discriminating outcome from testing. It is understood that clinical samples are often subject to
repeat testing and undergo potentially complex preparatory phases, so to limit such phases could
be problematic. Accordingly, understanding pre-analytical phases and their effects on serum
samples could actively control sample-related variation, which could be derived from dilutions,
serial sampling, repeated freezing/ thawing cycles and air-drying, amongst many others.
Overall, it seems there is a need to provide robust and standardised protocols, which seek to
diminish sample-related factors before any indication of diagnostic application can be made. A
factor of key importance to this study is that most analytical errors originate at the pre-analytical

stage which could then influence any aspect of data pre- and post-treatment [163-164].

Spectroscopic techniques are excellent analytical methods for an expanding range of materials
and provide an objective approach to classification on a molecular level [183]. Raman
spectroscopy (RS) analyses molecular excitations of biomolecules when irradiated with
monochromatic laser light. Biomolecules exhibit responses to differing wavelengths of light,
meaning the resultant spectra present a unique ‘fingerprint’ of the sample’s global biochemistry.

However, its major drawbacks are that it can be hampered by the high content of fluorophores
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in biofluids, and a whole host of non-chemical artefacts, such as Mie scattering, stray light and
cosmic ray artefacts (CRA) [20]. However, RS can also offer distinct advantages when dealing
with biofluids. Due to the low absorption coefficient across the visible spectrum, water obscurity
is not an issue, as is inherent with infrared spectroscopy (IR). Although, one of the most common
methods for biofluid analysis is the use of drop-coating dried deposition (DCDD) on
spectroscopically neutral substrates, such as CaF, [38, 184], RS makes analysis in the liquid
state still possible. Owing to the low concentration of serum analytes, and poorer signal-noise
(SN) with RS liquid analysis [185], when sample drying, a chemical gradient across the drop is
derived from the pinning of the contact line. Essentially, during this rheological process, the
centre zone of the drop feeds the peripheral zone, until full evaporation is achieved following
Marangoni flow [158-159], documented more recently, as the “coffee-ring” phenomenon [140,
159-160]. A heterogeneous sample deposition can result as the internal molecules migrate to the
periphery of the drop. Incidentally, there is no substrate effect on the chemistry of the periphery
but there is evidence of spatial distribution of the internal protein components [152]. There have
been some developments to improve this with the use of FTIR spectroscopy in recent times
[137]. However, any state analysis with RS means that liquid samples can be employed directly,
without the need for dilution and some work using immersion RS [185], as well as some work
on freeze-drying, has been conducted. They reported no differences between the methods when
applied on a diagnostic model [186]. Recently, there has been an effort to develop tear

rheological understanding on this matter also [128, 142, 165, 187].

Ultimately, within the field, such studies have driven forward the development of disease pattern
recognition (DPR). However, it should be noted that more studies are necessary to improve pre-
clinical findings, first. It is in this specific effort a recent study has been conducted [188]. As
mentioned in Chapter 3, this FTIR study aimed to provide an understanding of biofluid sample-
related factors. The authors of the study found sample collection modalities, substrate choice,
volume, dilution and drop deposition manner, plus consecutive freeze-thaw (with fresh versus
frozen) and drying conditions, all affect data quality and reproducibility. With that in mind, a
series of RS investigations on freezing and thawing cycles (FTC), and environmental drying
(ED) of normal pooled human serum have been conducted to aid the understanding of pre-
clinical variations, from the perspective of micro dried, liquid RS protocols. Further
developmental work has also been conducted to find the optimum Raman sampling

methodology, to take forward for future diagnostic works (see Chapter 5).

In a second series of experiments, the same samples from hepatic fibrosis patients described
previously, were analysed using a developed RS approach. The patient group details are found
in chapter 2. Generally, fibrosis is seen as a precursor for more advanced liver disease, such as
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cirrhosis and primary liver carcinoma. Therefore, the need to correctly stage and classify earlier
is vital in the effective treatment of complex diseases. These patients are all derived from a
voluntary group who underwent a ‘Fibrotest’ and ‘Fibroscan’ examination. Fibrotest is a blood
serum biomarker test and Fibroscan is an elastographic technique like ultrasound, and both have
previously shown a potential for good diagnostic accuracy; specifically, at advanced fibrosis
stages (93% and 70% sensitivity and specificity, respectively) [137]. The reference method here
is the Fibrotest and not METAVIR, however, the stages have been determined by a conversion
made from the Fibrotest results into a METAVIR score by a senior gastrohepatologist at the

Reims University hospital for the purposes of this research.

This research has a dual aim. Firstly, this work developed further understanding of pre-clinical
variations on pooled human serum through the use of RS on both dried samples and liquid
samples and by observing the action of repetitive freeze-thaw cycles and environmental drying
on non-fresh human sera. Secondly, this work interrogated hepatic fibrosis using a newly
developed macro Raman liquid sample protocol for a potential high-throughput Raman

screening application, combined with advanced multivariate data analysis.

4.2 MATERIALS & METHODS (for 2.2.2 for details)

4.2.1 Serum Samples
Two series of experiments were conducted, involving preanalytical variation and a set for a

development macro Raman liquid sample approach.

4.2.2 Preanalytical Variation Studies

The pre-analytical variation study was further subdivided into two studies: the freeze-thaw cycle
(FTC) analysis of pooled human serum, and the subsequent environmental air drying of the

serum (ED).

4.2.2.1 Freeze-Thaw Cycles (FTC)

Mixed pooled ‘off the clot’ human serum (TCS Biosciences, Buckingham, UK) was used to
investigate preclinical variation. Following passive thawing at room temperature (RT), the
serum samples (n=15) underwent repetitive FTC. The samples were stored at -80° C until
spectral acquisition, with a 24-hour period between each FTC. Prior to spectral collection, each
of the FTC vials were manually inverted and vortexed to ensure thorough mixing of all serum
components. Three spectra were collected from arbitrary positions from the 10 dried serum spots
per FTC (n=15). A total of n=450 spectra FTC measurements were acquired per experiment

across the three different instruments.
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4.2.2.2 Environmental Air-Drying (ED)

Secondly, the same samples were monitored for air-drying environmental effects on serum
stability via the ED study. Sample storage and handling were conducted in a sterile environment
to minimise contamination. Prior to spectroscopic assessment all samples were thawed at room
temperature (RT) and relative humidity ~ 40%. Three spectra were collected after leaving to
fully air-dry, from a random area located on the spot on the serum sample at 11-time intervals
throughout 24 h. Spectra were collected after 10 min, 30 min, 1 h, 1.5h,2h,2.5h,3h,3.5h,7
h, 14 h, and 24 h (n=33). A total of n=33 ED measurements were taken per experiment

4.2.3 Raman Microscopic DCDD Serum Analysis

A series of drop coated dried deposition (DCDD) and liquid phase (LP) analyses were carried
out. Table 4.1 shows the overview of instrumentation and parameters employed for micro
Raman analysis for FTC and ED studies. All DCDD work was done at the microscopic level (~
a few microns), whereas the liquid analysis was done with larger sample volumes and with

macro or semi-macro setups (~ a few millimetres).

Prior to use, all instrumentation was properly calibrated and checked according to laboratory
user guidelines and SOPs for each of the respective laboratories in the UK and France. It was
routine practice to perform a standardised laser power check of the source, and at the sample via
the microscope objectives. With this, the spectrometer was checked for the zero position
(Rayleigh line) and calibrated daily to check for spectral line drift. Spectrometer linearity was
checked using a warmed neon lamp before all pre-calibration checks, and later averaged for
subtraction and correction of the Raman signal in the pre-processing phase. Prior to any
sampling, there is always an assessment of dark current made by collecting spectra in the
absence of laser power. Dark current is the residual noise from the spectrometer and components
when no photons are present; often left over from the CCD detector. To verify the optical
detector response, spectra were then taken with laser power but in the absence of sample.

Additionally, spectra were calibrated in relative intensity with NIST calibration standards for
785 nm and 532 nm (standard reference material #2241, #2243; NIST, Gaithersburg, MD,
USA). Finally, the instrument was calibrated daily using a silicon (Si) sample (~ 520.8 cm™) to
verify the instrument’s performance and check for any band-shifting. All spectral acquisitions
were recorded using a suite of Horiba Jobin-Yvon LabRAM instruments and Lab Spec

proprietary software (v5/6) (Horiba Scientific Jobin-Yvon, Lille, France).
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Table 4.1| Overview of instrumentation and parameters employed for micro Raman
development and analysis for FTC and ED.

Horiba Grating Objective Laser (nm) Slit/ Sampling (uL) Substrate
LABRAM (lines/mm) Power (mW) Confocal
(um/ pm)
Instrument 1200 50x LWD, NA 785~30 100/0 0.5 CaF
1 0.25
HR800

Integration:  15sx2
Range: 1800 — 500 cm’!
Spectral Res: 4 cm’!
FTC Phase: DCDD (n=450)
ED Phase: DCDD (n=33)

Instrument 300, 600, 100x LWD, NA  532/785~25 10000 0.5, 1-10 CaF,, Alu
2 1200, 1800 0.75
ARAMIS

Integration: 15sx2
Range: 1800 -500 cm’!
Spectral Res: 4 ¢cm’!
FTC Phase: DCDD (n=450) / LP785 (n=450) / LP532 (n=450)
ED Phase: DCDD (n=33)

Instrument 950 50x LWD, ~90 1000/150 5 Alu
3 NA 0.25
One (1)

Integration: 15sx2
Range: 1800 — 500 cm’!
Spectral Res: 4 ¢cm’!
FTC Phase: LP (n=450) / DCDD (Centre vs. Periphery) (n=270)

NA — numerical aperture; LWD — long working distance; Res — resolution.

WD - long working distance; Res — resolution.

4.2.3.1 Instrument 1: LabRAM HR800

This instrument was used for both FTC and ED measurements. Transmission spectral

acquisition was carried out on the Horiba Jobin-Yvon LabRAM HR800 microspectrometer
HR800 (Horiba Scientific, UK). An air-cooled CLDS 300 mW 785 nm NIR excitation laser was
guided to the sample using a S0x LWD objective (NA 0.50).

The normal pooled serum sample (0.5 uL) was deposited on a Raman grade CaF; substrate and
dried for ~ 10 minutes at RT. Following preliminary optimisation work, spectral acquisition was
targeted to the spectral region (1800-500 cm™) with 1800 lines mm™ diffraction grating and a
spectral resolution of 4 cm™. A confocal slit/hole of 100/400 um and 2 x 15 s integrations were
used to collect in point mode with 100% laser exposure. The power at sample was ~30 mW.
The Lab Spec software was used to navigate and capture the data. Figure 4.1 shows a nominal
amount of serum drying down the lens of a microscope. The so-called ‘fern-like’ formation is

clearly visible.
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Figure 4.1 Raman grade CaF, support mounted with 0.5 uL thawed liquid
serum (image before dried) shown on the left. On the right is 40 x
magnification of just 1 drop (indicated with the arrow) after fully dried.
Image demonstrates fern-like patterns radiating from the centre to the
peripheral aspects.

4.2.3.2 Instrument 2: LabRAM ARAMIS

Further collections of FTC and ED measurements were repeated on a Horiba Jobin-Yvon
LabRAM ARAMIS micro-spectrometer with a Synapse thermoelectric (TE) CCD 1024 x 256
detector. Following the same procedure of depositing serum on to the substrate, and drying for
~ 10 minutes at RT, various preliminary optimisations were made by adjusting a whole host of
parameters seen in Table 4.1 above. Following preliminary optimisation work, spectral
acquisition was targeted to the spectral region (1800-500 cm™) with 600 lines mm™ diffraction
grating and a spectral resolution of 5 cm™. The 785 nm laser light was focused with 100 x LWD
objective (NA 0.75), and hole/slit confocal combination of 500/150 pm. The Lab Spec (v6.5)
software was used to navigate and capture the data. Spectra were collected using a 2 x15 s, over
the same 11 time points (for ED measurements), and arbitrarily across the spot 10 times with 30
spectra per collection for FTC measurements. Additionally, an aluminium plated (Al) well was
used for the FTC measurements which also resulted in n=450 spectra. The 7 mm diameter plate
was used for both liquid and dried state analysis of the serum. A 532nm and 785nm excitation
source was used for repeat FTC measurements. (n= 450 for each wavelength). To ensure the
aluminium substrate was contaminant and debris-free prior to use, blank spectra were taken
from all 96 wells, followed by continuous wash cycles with a mix of 0.5% SDS detergent,
distilled water and 40% ethanol. Repeat blank spectra of all wells and additional washes were

taken to ensure no trace material was left behind prior to any testing.

4.2.3.3 Instrument 3: LabRAM 1

Spectral collection was also carried out using a Horiba Jobin-Yvon LabRAM One (1) micro-

spectrometer with a Synapse thermoelectric (TE) CCD 1024 x 256, collecting spectra over the
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1800-500 cm™ mid-IR spectral region, employing a 50x LWD objective (NA 0.25). A NIR 785
nm laser excitation, 950 lines mm™ diffraction grating and slit/hole combination of 150/1000
um, were used. The Lab Spec software was used to navigate and capture the data.
Approximately 5 pL of thawed liquid sample was deposited on to selected wells of 96 well
aluminium plate and spectra were collected immediately to ensure the spectra were only
representative of a purely liquid phase). A total of n=450 spectra were acquired from the liquid

phase.

4.2.3.3.1 Dried Drop Spatial Distribution: Centre versus Periphery
Upon spot drying, the analyst can perform spectral acquisition with the use of the online video
camera mode and pinpoint data collection on the serum drop. Spectra were obtained after the
sample (5 pL serum spots) had dried, taking arbitrary triplicate spots from the centre and
peripheral zones, to observe any significant difference in the spatial chemistry. A total of n=135
for each centre and ring aspects were acquired. Figure 4.1 (above) shows dried result of serum
when observed down a microscope lens (highlighting the physical differences between centre

and peripheral zones).

4.2.3.3.2 Macroscopic Liquid Serum Development
The focus of this study was to develop a macro Raman liquid analysis protocol for future
diagnostic works. Given some of the widely understood drawbacks with DCDD, it was decided
to investigate liquid analysis at the macro level. Overall, a liquid macro Raman method was

developed bypassing the microscope objective for sample acquisition.

4.2.3.4 Instrument 4: LabRAM HR300
The Horiba Jobin-Yvon LabRAM HR300 was employed for this work. Liquid serum was

housed within quartz cells. The cells were composed of a synthetic quartz derived from silicon
(Hellema, Quartz SUPRASIL from Heraeus Quarzglas GmbH), which gives transmission
values of more than 80 % over a spectral range of between 200 nm and 2500 nm for an empty
cell, as advised by the manufacturer. Each cell had slightly different dimensions, one with a

narrow internal well, and the other without, meaning a difference in internal holding volume.

Employing a macro lens adaptor, the laser light-path (NIR 785 nm) was guided through lenses
and the 180° backscattered Raman signal was collected from the light interaction with the serum
using 600 lines mm™ diffraction grating. The feasibility of this method (Figure 2.1) was
observed by taking 20 spectra from the first cuvette, per different volumes, i.e., 25, 50, 75 and
100 pl, employing a range of integration times (60, 120, 180, 240, 300 s x 1, 2, 3, 4, 5
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accumulations). Finally, using both cuvettes spectra were collected (n=200). The data were

analysed to see which of the cuvette-sample spectra gave the best reproducibility and SNR).

4.2.4 Macroscopic Diagnostic Liquid Raman

From the development work carried out a diagnostic approach was taken to employ the new
macro liquid Raman methodology. The patient sera were derived from a bank of serum samples
stored at —80°C, originally taken for a Fibrotest procedure in patients with chronic hepatitis C,
in France. Informed consent was obtained from all patients for performing the diagnostic test as
part of routine medical care. Following biochemical analysis by the bio-pathology team at Reims
hospital CHU, the remaining serum was stored at -80 °C. The study was carried out according
to the principles of the Declaration of Helsinki (DoH). Table 4.2 shows the demographic clinical

data for the screening study (hepatic fibrosis).

Table 4.2| Table showing fibrosis patient demographics, including disease stage
(METAVIR F score), number of patients, age range/mean ages and gender.

METAVIR F Patients Age Range / Mean Age Gender M; F
(years)

FO 12 18-57/39.58 MS5; F7

F1 9 43-60/ 54.22 M3; F6

F2 19 44-73/59.89 MS; F11

F3 4 50-69/59.75 M2; F2

F4 5 51-66/ 58.80 M3; F2

All blood samples for the diagnostic studies were stored in tubes and left to clot at RT for a
minimum of 30 minutes and a maximum of 2 h from venepuncture to centrifugation. Clot
separation via centrifugation was achieved at 1200 x g for 10 minutes and 500 pL. and 1000 pL
aliquots of serum was dispensed into pre-labelled cryovials. Serum samples were snap frozen
using liquid nitrogen and stored at —80 °C until spectroscopic analyses. In brief, the 50 uL
patient sera was placed in the quartz cuvette and subjected to transmission point mode Raman
spectroscopy on the fully thawed liquid; collecting 5 acquisitions per patient. Forty-one patients
were investigated using the liquid approach. It should be noted that these samples were used for

both FTIR and Raman analyses.

4.2.4.1 Spectral Quality Testing and Variance Analysis
Raw spectra were subjected to a spectral quality test using MATLAB software (version 2015b,
The MathWorks, Inc., USA). The test looked at two spectral regions (~990-1010 cm™ and 1720-
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1780 cm™), as these were chosen to represent the spectral aspects for signal (S) and noise (N).
Spectra passed the QT if the SNR exceeded a value of 30, which is used in biological spectra
and is line with previous work [137]. The S was defined as one of the most bio-characteristic
intense peaks found within a Raman spectrum; i.e., the ring breathing mode of Phenylalanine at
region ~990-1010 cm™ (such a range was chosen to allow for potential minor peak shifts). Figure
4.2 demonstrates the two regions on a normalised Raman bio-spectrum used for calculation of

the SNR.

Alternatively, a second non-programmed method was used, which is in line with the
manufacturer’s guidance (OPUS v6.5 Software (Bruker Optics GmbH, Ettlingen, Germany).
This method was employed for calculation of the RMS SNR value. This function calculates the
SNR of a spectrum’s intensities over a given spectral range, i.e., any flat or low value region.
As the range is in the mid infrared, Bruker state that the SNR is calculated in the range 2100-
1900 cm™ but can be optimised based on visual appearance of the spectra. RMS is calculated as
the root of the mean square of deviations (i.e., the STD). Then a quadratic parabola is fitted to
the spectrum in the region of interest, defining the (nominal) signal. The mean of which is
divided by the newly calculated noise values and yields the SNR. This is shown in Chapter 2.
The results of which were compared with same method for deionised water, meaning that the

lower limit threshold for samples had to be higher than that of the SNR of water.

Finally, the spectra that passed the threshold test was observed for the variability between spots

of the same sample by calculating basic statistics, such as mean and RSD (see Table 4.3).
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Figure 4.2] Normalised Raman serum spectrum indicating the S (red) and N (green) regions used
the SNR calculation for the quality assessment. Ellipses used to highlight the two regions.
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4.2.5 Spectral Pre-processing and MVA Strategies

4.2.5.1 Pre-processing Strategies
The spectra were pre-processed using a MATLAB platform R2015b (The MathWorks, Inc.,
USA). After quality and variance assessment, a baseline subtraction was carried out using
polynomial fit along with a (3, 9) Savitzky-Golay smoothing model [42]. The data were then

vector normalised and finally offset-corrected to realign all spectra to a scale from 0 a.u.

It is noteworthy to state that all datasets were observed for principal component analysis (PCA)
via scores and loading differences using different manipulations of combinations of the
following processes: full spectrum, fingerprint only spectrum, non-derivatives and 1% derivative

functions prior to moving forward with subsequent analysis.

4.2.5.2 MVA Strategies

All datasets were then submitted to cluster analyses via HCA and PCA in the first instance for
outlier detection and sample removal prior to more advanced chemometric assessments. DFA
was used to ascertain clusters in to groups following PCA and then PC-DFA if necessary.
Following this, for the diagnostic study only, more advanced machine learning algorithms were
employed to find classification of the data groups, such as random forest classifiers (RF) and
Gini-SVM (Full explanations of all MV A techniques and details of statistical analyses are given
throughout Chapter 2).

4.3 RESULTS & DISCUSSION

4.3.1 Serum Sampling Observations

When working with human bodily fluids it is important to ensure that the integrity of the sample
is intact and that salient characteristics, whether used to highlight disease or not, are free from
extraneous sample-related contaminants. To ensure the correct usage of normal pooled serum,
upon correct thawing at RT and relative humidity, all serum aliquots were manually inverted
several times and subjected to automated vortex prior to analysis, to align with clinical protocols.
This is due to the sample’s physical appearance, i.e. sometimes visible with flocculent material.
Routine clinical SOPs state that such appearance is normal and is caused by remaining fibrin-
fibrinogen complexes [189], following repeated freezing and thawing cycles. It is already known
that the action of repeated freeze-thawing usually causes denaturation and cryo-precipitation of
serum components and the turbid appearance is more noticeable with increased FTCs [189]. It
is important to note that such turbidity of the serum was generally seen after numerous FTCs
and was free from precipitates in the first 2-4 FTCs. However, equally important is that the
presence of such precipitates does not negate the serum performance, and it is stated that the

removal of such precipitates could remove key nutrients and salts if filtered [190].
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4.3.2 Raman Spectral Variance

The data from both the FTC on CaF,, using the 785 nm excitation wavelength were compared
between two Horiba instruments (HR800 (I) vs. ARAMIS (II)). In a first instance, the datasets
were looked at in detail separately, before being compared using PCA and HCA clustering. An
overview of all values for both datasets is shown in Table 4.1. The results for the variance test
after pre-processing, along with the result of the QT and SNR are evident. For ease of
comparison later, the data is ordered so that the results from one dataset (II) are above the other
dataset (I). As can be seen below, approximately, more of the HR800 dataset passed the quality
testing (n=441), compared to the other (n=317). Additionally, the SNR values were slightly
better for the HR800 data (16.54 vs 8.71). This could perhaps be attributed to the 100% laser
power at 30 mW compared to the 25 mW with the ARAMIS. Over 90% (I) of the spectra
collected for each FTC passed; 27/30 being the lowest. In comparison, approximately 60% of
the spectra per FTC for the ARAMIS dataset passed quality testing; 18/30 being the lowest
value. The highest SNR values per FTC were seen to be with FTC 2 for the ARAMIS (10.58)
and FTC 13 for the HR800 (19.16). The median RSD range was larger for ARAMIS (10.45-
5.99 =4.46), with an average median point across all FTC of 8.59 whereas, the values for HR800
were 5.74 and 7.47, respectively.
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Table 4.3| Statistical values for variance analysis, demonstrating the relative standard

deviation between cycles of freeze-thaw using DCDD Raman microspectroscopy.

Raman FTC# Spectral | RSD% min/ | RSD% max/ Av. Med.
(Aramis / SNR| QT V/em! V/em! RSD % | RSD
HR800) passed %
1 Aramis 9.12 18 0.22 /1590 222 /1497 10.12 8.01
1 HR800 14.72 29 0.12 /1590 202 /1447 9.03 7.85
2 Aramis 10.58 20 0.23 /1591 188 / 1499 9.44 7.77
2 HR800 15.23 30 0.12 /1580 218 /1444 8.11 6.50
3 Aramis 10.11] 20 0.23 /1600 216/ 1499 12.34 9.12
3 HR800 14.97] 30 0.17 /1590 118/ 1447 10.22 8.75
4 Aramis 6.33 21 0.24 /1555 108 / 1499 11.55 9.03
4 HR800 18.10] 28 0.14 /1588 178 / 1447 11.21 9.58
5 Aramis 6.90 19 0.30/ 1575 300/ 1498 9.85 9.12
5 HR800 1597 30 0.12 /1590 222/ 1489 9.12 8.58
6 Aramis 8.72 30 0.30/ 1565 210/ 1494 12.40 | 10.45
6 HR800 15.00] 30 0.12 /1568 113 /1447 11.33 8.99
7 Aramis 10.44 20 0.38 /1575 214/ 1495 13.36 10.26
7 HR800 14.08 29 0.19 /1573 188 /1457 12.04 10.99
8 Aramis 8.95 19 0.37 /1581 147/ 1444 10.97 7.23
8 HR800 18.59] 30 0.14 /1575 150/ 1447 8.08 5.25
9 Aramis 8.90 20 0.48 /1588 200/ 1495 8.99 6.12
9 HR800 15.67 29 0.11/1573 212 /1447 8.91 4.82
10 Aramis 9.65 20 0.68 /1548 116/ 1479 11.54 9.48
10 HR800 15.27 29 0.18 /1575 112/ 1447 10.30 7.03
11 Aramis 8.64 20 0.49/ 1601 306/ 1499 11.43 8.99
11 HR800 16.35] 30 0.13 /1590 123/ 1485 9.09 6.12
12 Aramis 8.46 20 0.31/ 1595 259/ 1499 9.33 5.99
12 HR800 18.97] 30 0.17 /1575 299/ 1477 9.58 5.89
13 Aramis 7.68 20 0.24/ 1590 306/ 1498 10.45 8.56
13 HR800 19.16] 27 0.39/1575 108 / 1448 9.85 5.68
14 Aramis 7.33 20 0.41 /1590 304 / 1443 9.32 8.56
14 HR800 19.08] 30 0.18 /1575 112 /1447 9.00 8.45
15 Aramis 8.79 30 0.45 /1590 307/ 1444 10.16 9.12
15 HR800 16.99] 30 0.28 / 1565 222/ 1447 8.89 7.77

RSD: relative standard deviation; SNR: mean signal-noise-ratio via RMS calculation

Before any calculation of the variance, the data was submitted to routine detector optics
correction as mentioned, plus truncation to the wavenumber region of interest, followed by
Savitzky-Golay smoothing with 3-point smoothing to increase spectral feature contrast, a 5"

degree polynomial background adjustment and normalised with vector
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4.3.3 Instrument 1 Results
4.3.3.1 Principal Component Analysis

Figure 4.3 shows the results for the DCDD method for each of the FTCs carried out on the CaF,
support for the HR800 data. The spectra were pre-processed and cut to the fingerprint region
(1800-600 cm™). The PC scores plot for all individual spectra from all FTCs (la) and the
component loadings (1c) offer a clear visualisation of the datasets in n-dimensional space. An
offset of all mean spectra for FTCs, demonstrating the major bands seen within the spectra are
shown (1b). The HCA dendrogram (hierarchical cluster analysis) (c), demonstrates the degree
of dissimilarity as a measure of heterogeneity between each of the FTCs using the Euclidean
distance parameter with Ward’s algorithm [48]. There is very little clear separation between the
FTCs, except for FTC 5; which is shown to be away from the remainder of the FTCs in both the
PC scores and HCA plot. This could have arisen from slight changes in the environment at the
time of testing, or human error. Of the perceived variance, PC 2 is showing ~21% variance and
is responsible for the appearance of FTC 5. As seen within (14b) and the loadings (14c), the
significant peaks within the dried serum appear to be from the ring breathing mode of
phenylalanine (Phe) at ~1004 cm™ and 1033 cm™, the protein backbone structures amide I at
~1655 cm™, and amide I1I at ~1240-1278 cm™ (shaded for clarity). One can also observe smaller
intensities of Tyr/Phe bands (~640/643 cm™) and ring breathing mode of Tyr (~852 cm™). As
seen from the HCA plot, FTC 1 and 15 share a close degree of similarity. An expected result
would be that from FTC 1 and above, there would be some degree of variance, owing to the
natural ageing of the sample and the fact that the same sample has been subject to repeat passes
of freezing and thawing. This result is interesting as we can perhaps attribute it to the
heterogeneity of the drying process, meaning very little if any contribution is coming from the

action of freezing and thawing, it seems.
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Figure 4.3| PCA and HCA cluster analysis of FTC for instrument 1: PCA scores biplot (a). Raman
pre-processed spectra from all fifteen FTCs (deposits of 0.5 pL. DCDD sampling) (b). Tentatively
labelled Raman serum band assignments (c). PC1 (black) and PC2 (red) loading components from
(a) with regions of interest highlighted. HCA dendrogram showing degree of dissimilarity via
Euclidean distance measurements (d).

Generally, PCA results did not reveal anything. DFA was carried out on the data to further
observe potential group membership amongst separation of the data in DF-space. However, the
data did not identify any differences so no further analysis was undertaken. The DF and PCA

loadings showed the same information. Table 4.4 shows the loadings.
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Table 4.4 Most salient spectral bands and Raman bio-molecular
assignments of DF (1 & 2) loadings, after DFA [27, 132, 137, 191-194]

V/em! Tentatively assigned Raman peaks

620 Phe
640 Tyr

650-667 DNA (G)
714 Polysaccharides
757 Proteins

780-792 DNA/RNA (C, U, T)

829, 852- Tyr
854

877-897 v(C-O-C) Glycoside ring
938 Protein (o helix)
1003 Phe
1032 Phe (6(CH) in plane)
1061 v(C-N), v(C-C) in proteins
1155 v(C-N), v(C-C) proteins
1176 Tyr (6(C-H) bend)
1236 Amide III (protein)
1311 DNA (A)
1340 Trp, (A), phospholipids
1369- DNA (A, T, G)
1375
1446 Proteins, phospholipids
1557 Amide II (protein)
1609 Tyr, Phe
1658 Amide I (protein)

NS: Not Seen/Significant; A: Adenine; G: Guanine; C: Cytosine;
T: Thymine; U: Uracil; Trp: Tryptophan; Tyr: Tyrosine; Phe: Phenylalanine

4.3.4 Instrument 2 Results
4.3.4.1 Principal Component Analysis

Further analysis via PCA with all data points (n=317), seen in Figure 4.4 demonstrates the
spread in the data, along with the component weights or magnitudes (right) for the variation
observed across the new subspace direction (scores). There is some clustering of the FTC groups
based on the direction of PC1, which shows splitting of FTCs 1-3 and 7-9 (explained by PC3).
The rest of the higher number cycles, such as 10-15 appear to be more spread and mixed amongst
each other. It appears that both PCs are demonstrating some pattern separation of the data
overall, but with no clear distinction between all the groups. Notably, the results seen previously
with FTCs 5 and 9 completely separating is absent here, which could mean that such a result
was incongruent with the action of other FTCs. The magnitudes for each of the scores (PC1 and
PC3) (Figure 4.4, left), demonstrates that the pattern seen could be attributed mainly to the
positive loadings on both, whereas the negative ones show that contributions from Phe (1003

cm™), Tyr/ DNA/ proteins and polysaccharides (620-890 cm™, plus minor contributions from
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W(C-N), »(C-C) in proteins and amide ITI (1061 — 1236 cm ), which could explain what is shown
in PC1 negative and PC1 positive (Figure 4.4, left). Additionally, PC3 positive shows that FTCs
7-9’s separation could be owed to any of the major contributions PC1’s negative domain and
PC3’s positive aspects. Overall, there are little distinct features in the data from the PCA.
Further, DFA was carried out, but this did not add anything to understanding the data. From

herein, DFA wasn’t used for this study.
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Figure 4.41 PCA scores (on the left) plot of data collected for FTC from instrument 2. Pre-
processed spectra from all fifteen freeze-thaw cycles (deposits of 0.5 pL DCDD sampling).
Corresponding component loadings describing the formation (right). PC1 (black) and PC3
(blue).

The results from the PCA and DFA loadings plot are shown below in Table 4.5. The DFA scores
demonstrated the same orientation and information as the PCA above (Figure 4.4), so the data

was not shown; only the loadings values.
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Table 4.5 Most salient spectral bands and Raman bio-molecular assignments of
DF (1 & 3) loadings, after DFA validation [27, 132, 137, 191-194]

DF1 |¥/ cm! Tentatively DF3 |/ ecm?| Tentatively
assigned Raman assigned Raman
peaks peaks
+ 1033 Phe + 1003 Phe
+ 1311 DNA (A) + 1236 Amide II
+ 1447 Protein/ + 1447 Protein/
phospholipids phospholipids
+ 1609 Tyr, Phe
- 890 [v(C-O-C) Glycoside| - 890 v(C-0-C)
ring Glycoside ring
- 1003 Phe - 1035 | v(C-N) (protein)
- 1155 v(C-N), w(C-C) - 1420 Protein/
(proteins) phospholipids
- 1557 Amide IT - 1610 Tyr, Phe
- 1658 Amide | 1658 Amide [

Tyr: Tyrosine; Phe: Phenylalanine

It should be noted that the differences to the two datasets above across two instruments could
be human error in testing, or from a change in the chemical contributions of the molecules
responsible for such a separation. However, when the datasets are considered individually, there
is no real pattern to discern the FTCs with the HR800 dataset, whilst there are some patterns
forming in the dataset from ARAMIS. Overall, it can be said that here, the differences observed
here, presented no additional meaning within the data. The data could not demonstrate if the

variations were from the variability within the cycles or not.

4.3.5 Instrument 3 Results
4.3.5.1 Centre vs. Periphery Study
Table 4.6 shows the results for the variance test after pre-processing the data, along with the
result of the QT. More than 98.5% of the data for each of the regions tested passed the quality
testing, with only FTC 7 from the centre dataset having 8/9, and FTC 3 and 13 from the
periphery (8/9). The power at the sample here was ~90 mW, which meant that overall the SNR
was greater when compared to the HR800 and ARAMIS instruments (above). This also resulted
in better resolved peaks. The RMS calculated SNR values show that overall the centre aspect of
the dried serum spot had a marginally better signal to noise ratio (39.89: 31.61 mean ratio), with
actual values of 10 (C) versus 5 (P) having the highest values. Although the highest value (72.80)
did come from FTC 15 from the peripheral aspect, so did the lowest (14.31, FTC 13).
Additionally, the average SNR values for centre and periphery were 33.82 and 29.70,
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respectively. Furthermore, as seen (from Table 4.6), the median RSD standard deviation range
was larger for the centre region (10.03), with an average median point of 5.23. Whereas, the
values for the periphery region were 7.6 and 4.03, respectively. We can see that the data is
highly reproducible and ultimately, the centre region gives the best spectra signal, but has the
most amount of variability across the FTCs, demonstrating that the periphery region gave less
overall variation. The centre aspects give the overall highest RSD value (328, 1440 cm™), whilst

the same value was 321, 1477 cm™ for the peripheral aspect.

Table 4.6] Statistical values for variance analysis, demonstrating the relative standard
deviation between cycles of freeze-thaw using DCDD Raman micro-spectroscopy for centre
vs. periphery investigations

Centre/ |Spectral | RSD% min | RSD% max| Av. Med.

DCDD SNR | Periphery QT / / RSD % | RSD %
5 uL FTC I I
passed Y/ cm V/ cm
1 41.79 Centre 9 0.89 /1502 | 328/1440 13.85 8.11

31.01| Periphery
2 34.51 Centre
29.67| Periphery
3 30.01 Centre
21.02| Periphery
4 42.68 Centre
28.88| Periphery
5 34.92 Centre
24.08| Periphery
6 31.55 Centre
26.51| Periphery
7 19.18 Centre
40.77| Periphery
8 38.90 Centre
30.29| Periphery
9 31.58 Centre
45.22| Periphery
10 67.98 Centre
36.87| Periphery
11 35.61 Centre
20.27| Periphery
12 34.90 Centre
14.31| Periphery
13 18.61 Centre
36.67| Periphery
14 27.08 Centre
15.97| Periphery
15 17.96 Centre
72.80| Periphery

0.43 /1501 | 321/1447 19.88 12.85
0.53/1504 | 187/1449 11.05 7.84
0.68 /1500 | 208/ 1447 18.11 14.50
0.59/1501 | 316/1459 12.34 9.12
0.68 /1499 | 198/ 1447 10.22 8.75
0.46 /1499 | 316/1449 11.55 9.03
0.41/1505 | 258/ 1444 10.75 6.45
0.23/1500 | 289/147 10.85 8.25
0.29/1504 | 212/ 1447 11.14 9.00
0.12/1502 | 200/1440 | 10.99 9.85
0.17 /1499 | 114/ 1447 15.45 12.00
0.85/1499 | 289/ 1447 12.58 8.99
0.89 /1505 | 147/ 1444 14.52 10.25
0.57/1500 | 312/1447 9.85 7.88
0.74 /1506 | 132/1443 13.12 9.99
0.69 /1500 | 320/ 1445 9.99 6.89
0.71/1498 | 145/ 1448 12.12 10.44
0.89 /1500 | 210/ 1447 13.45 10.00
0.58 /1500 | 178/ 1445 12.47 8.79
0.74 /1501 | 147 /1447 17.45 12.12
0.42/1500 | 300/ 1447 9.85 6.45
0.74 /1500 | 189 /1447 14.47 11.10
0.41/1499 | 289/ 1447 10.00 8.99
0.46 /1499 | 158 /1447 14.52 9.87
0.47/1502 | 246/1447 14.45 11.00
0.54 /1500 | 149/ 1446 11.25 10.47
0.49 /1499 | 23471448 13.23 10.85
0.46 /1498 | 289/ 1447 10.85 8.87
0.23/1502 | 128/1458 12.32 11.10

=} iNa} Na} iNo} fo o} [N} N} i\ ) INo} INo} iNo } INo} N} INo} [o o} [o o} INo} INo} iNo} INo} No} INo} INo) INoj o o} lNo)l lNoj Noj iNe)

RSD: relative standard deviation; SNR: mean signal-noise-ratio via RMS calculation
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Figure 4.5 shows results from the centre and periphery study on dried serum drops on an Al
multi-well. The spectra per region are presented as an offset to visualise all 15 FTCs (8a and 8b,
for centre and periphery aspects, respectively). As a method of comparison and the relationship
between each of the FTCs from both regions, there is an HCA dendrogram (8c). It is clear to see
that there is a general mix of the data from both regions, as denoted by the red and blue blocks
(HCA dendrogram). The relatedness between the datasets/ and sample repeats can be
distinguished from the two large clusters plus individually between the regions from the key
(left of HCA dendrogram). Additionally, as can be seen, there is a slight difference to the peak
at ~610 cm™ (Tyr/Phe) for the peripheral aspect. It appears that it is more pronounced and at
some points reaches close to the intensity of the amide I peak. Further, there is a slight intensity
decrease on the Phe ring breathing mode at 1003 cm™. This could be a movement of protein
components under migration towards the contact line. These observations are consistent with
previous studies, using protein solutions and tear fluid [142, 194-195]. Some research suggests
that the periphery demonstrates a homogenous protein distribution [27, 137, 142, 195] whereas,
the central aspect retains minor protein contributions, urea components and some electrolytes
[194]. However, with the analysis of the mean of the periphery and centre aspects from the dried

spot [137], concluded that there was very little visual distinction between the two aspects.
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Figure 4.5| Pre-processed spectra from 15 FTC for centre (a) and peripheral locations of the dried
serum drop (b) of normalised offset spectra. Heterogeneity overview via HCA (c) dendrogram.

The data were then subjected to PCA to try to observe further patterns in the data by reducing
the overall dimensions of the data from n-dimensions to a select few. Figure 4.6 shows the
results from PCA scores and loadings for the periphery dataset. As seen, there is some minor
separation seen in the periphery dataset; PC1 providing the best response with differences
between 8 groups on the negative scores space and 7 groups on the positive. Such as FTC 1-2,
6-9, 13 and 15, compared with 3-5, 10-12 and 14. PC2 only finds very minor further distinction,
with less clear split of FTC 1, 13 and 14 vs. 2, 4, 9 and all but two reads of 15. The two could
be possible outliers. Overall, there is a similar pattern seen with the centre dataset, whereby FTC
2, 10, 15 on the negative domain of PC1, and 7 and13 on the positive. PC2 also finds less overall

separation, 14 on the negative, and 2, 4 and 12 on the positive.
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Figure 4.6 DCDD Raman signal of each centre and periphery aspect of SuL serum spot (top —
photographed top and bottom, respectively). PCA: scores of centre and periphery (left) and
corresponding component loadings PC1, PC2 and PC3 (right).

Additionally, a white light image was acquired from each of the respective physical positions
from which the spectra were collected. This shows the physical appearance and hence
differences owed to the process of drying a bio-fluid drop. The drops themselves were measured
post accumulation in the liquid phase. It is known that the refractive index changes as a sample
shifts from a liquid-phase to solid, as is the case in serum drying and we see the coffee-ring
effect [152, 187]. As the drop dries the process is incremental. The periphery starts to dry first,
followed by a growing fern-like pattern from the outer-edge to the centre of the drop, finishing
with the extremities of the ferns [187], (seen in Figure 4.1). Essentially, a concentration gradient
forms, whereby the heavier serum protein components migrate to the periphery, causing a ring
like formation and an overall sample heterogeneity [137, 191]. Furthermore, it has been reported
that spectral distortions occur within the drying cracks of the drop, attributed to differences in
baseline and the amide I and II regions [192]. Accordingly, it appears that the macromolecular
concentration has an impact on the spatial distribution of proteins [140]. This phenomenon
increases as a consequence of dilution [152]. When we observe the loadings on Figure 4.6, we
can see that there are a few contributing components (1375, 1609 and 1655 cm™, which could
be ascribed to the CH; and COO' region, the Tyr/Phe band and amide I. Some suggest that the

band at ~1375 cm-' could be attributed specifically to minute changes in the microenvironment,
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which has effect on the side aspects of COO™ and CH; containing glutamic and aspartic acids

[153].

4.3.6 Environmental Drying

The data from both ED studies on CaF., using the 785 nm wavelength were compared between
two Horiba instruments (HR800 (I) vs. ARAMIS (I)). As mentioned previously, the ED study
was conducted to see if the action of air drying affected the serum sample components. An
overview of all values for both datasets is shown in Table 4.5, which demonstrates the results
for the variance test after pre-processing, along with the result of the QT and SNR enumerations.
The data are ordered so that the results from one dataset (II) are above the other dataset (I). Both
datasets fully passed the spectral quality testing (100% of data), although, the SNR values were
slightly better for the HR800 data (average value being 16.72 vs. 10.90). This could attributable
to the slight differences in laser power. The highest SNR values were seen to be with the 2 h
time point for the HR800 (17.77) and 3 h for the ARAMIS (11.2). The median standard
deviation range was larger for instrument 2 (0.0019-0.0008 = 0.0011), with an average median
point across all ED points of 0.0011, whereas, the values for instrument 1 were 0.0019 and
0.0025, respectively. This indicates the high reproducibility between the each of the datasets.

From this, one can deduce that the method is transferable.
Calculation of the variance was done after routine instrument correction and data pre-processing

(CRA removal, 3-point SG smoothing, a 3" degree polynomial background correction and

vector normalisation and offset). The data were then submitted to PCA, HCA and DFA.
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Table 4.7I Statistical values for variance analysis, demonstrating the relative standard deviation
between cycles of two investigations (Aramis and HR800) using DCDD Raman
microspectroscopy for ED investigations

DCDD HR800/ |Spectral| RSD% min [RSD% max/| Av. Med.

0.5uL | SNR Aramis QT / ¥/ em! RSD % | RSD %
ED passed ¥/ em!

10 min | 10.16 Aramis 3 0.19/1504 | 222 /1440 15.12 14.45

15.66 HR800
30 min | 10.96 Aramis
16.51 HR800
1h 10.81 Aramis
17.55 HRS800
1.5h 10.98 Aramis
16.71 HRS800
2h 10.89 Aramis
17.77 HR800
25h 10.99 Aramis
16.51 HRS800
3h 11.2 Aramis
18.25 HR800
3.5h 10.96 Aramis

0.13/1504 | 174/1447 9.21 6.85
0.17/1501 | 200 /1449 16.78 14.20
0.16/1501 | 178/ 1447 10.77 8.75
0.19/1500 | 200 /1459 12.27 8.75
0.17/1501 | 188/ 1447 10.66 7.89
0.13/1501 | 258/1449 | 21.05 16.45
0.11/1500 | 147/ 1444 10.05 9.15
0.13/1501 | 202/ 1447 11.46 13.47
0.11/1502 | 178/ 1447 10.85 9.23
0.13/1501 | 274/ 1440 18.45 14.00
0.09/1502 | 199/ 1447 10.06 8.85
0.18 /1502 | 178/ 1447 18.00 14.25
0.11/1501 | 199/ 1444 10.58 7.05
0.17/1501 | 285 /1447 13.88 11.85

17.3 HR800 0.12/ 1500 | 142/ 1443 8.75 6.07
7h 10.96 Aramis 0.19/1500 | 220/ 1445 13.89 12.17
15.3 HR800 0.13/1501 | 175/1448 9.78 147

14h 10.98 Aramis
16.35 HR800
24 h 11.03 Aramis
16.03 HRS800

0.19/1501 | 208 /1447 16.44 14.79
0.13/1504 | 138/ 1445 11.41 9.80
0.14 /1504 | 220/1447 10.45 10.12
0.12/1504 | 158/1447 8.35 6.45

[OSERUSE LOSHEUSE RUSH LUV LOSE NUSE EUS R ROVE RUSE RUVH LUV RUSH ROV LUSH RUSH ROV N NUS R ROV ROV

QT: spectra passing quality testing; SNR: mean signal-to-noise-ratio; STD: RSD standard deviation;

Pre-processed: detector optics, background corrected, smoothed and normalised

Figure 4.7 shows the results for the environmental drying DCDD method for each of the 11 time
points tested across both instruments over 24 hours. The spectra were pre-processed and cropped
to the fingerprint region (1765-600 cm™) and offset for visualisation of all the data. This way, it
is possible to see specific differences in the spectra. The data are presented as a side-by-side
comparison of the datasets (instrument 1 and instrument 2) by all the 11 time points spectrally
assessed (n=33, respectively). Comparing instrument 1 and 2 (left and right respectively), there
is more variation visible at each of the time slots, which is most apparent at 30 mins and 1 hr.
In contrast, the only variance seen in with the 2™ instrument is at 10 min drying time; especially
around the amide I band (~1655 cm™). Given that water is a polyatomic molecule, the allowed
vibrations in Raman are usually only seen shifted at the high wavenumber region (~3600 cm™),
plus sometimes, a smaller contribution of the H-O-H bend at ~1600 cm’', which could be seen
if the intensity of the laser is strong enough. However, here it is possible to assign the variation

to slight intensity differences between replicates.
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Figure 4.7 | Pre-processed HR800 (left) and ARAMIS (right) (ED on CaF,) dataset displayed as offset
for comparison between mean and STD of spectral signatures of all ED times (observed as a black,
around the red mean).

Figure 4.8 displays the relatedness (how comparable it is) of the spectra per time point as a
comparison between instruments on an HCA dendrogram. As a function of heterogeneity
between the individual data collected throughout the 24-hour testing period, Ward’s algorithm
was used to present the Euclidean distance between the samples and as such presents a
visualisation of the relationship. The dataset from instrument 1 is displayed on the left and
instrument 2 on the right. As it can be seen, there are three data points per time, which is
indicated by colour, and generally the best observation would be to see all three of the colours
aligned with each other. When comparing the two datasets such a pattern is absent. However,
there are 4 and 5 cluster formations (as depicted by the ellipses) seen between the I (A) and II

(B), respectively.
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Figure 4.8] DCDD 785 nm Raman signal (5 uL serum spot): HCA: showing differences amongst the
two instruments for the same experiment, plus the intra-differences between the timed increments of
drying serum. Ward’s algorithm HCA was employed.

Generally, the data points from 10 and 30 min are similar as are the data from the last two time
measurements (14 h and 24 h). Overall, the greatest Euclidean value provided separation of 14
h and 24 h from all the other time points for the HR800 dataset. It can be seen that the remaining
‘middle’ time points are clustered together and are generally mixed, whereas, the biggest
difference in the ARAMIS was one cluster of 1 h - 3.5 h versus the rest. Additionally, the data
points (30 mins and 1 h (on the ARAMIS), appear to be more related than 10, 30 mins.
Essentially, the samples appear to be less uniform than first thought, according the differences
in times tested and the relatedness of the samples. It would be expected that with the action of
drying, there are spatial differences of the intrinsic molecules, which at the point of complete
evaporation and drying, would occupy fixed positions, and in turn the protein molecules migrate
to the periphery, seeing the ions and salts remain centre-wise. This supports previous literature,
that throughout serum drying, heavier components, such as proteins and nucleic acids, migrate
to the periphery [111, 152, 196]. Figure 4.9 shows both datasets after pre-processing offset to

one another for ease of comparison.
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4.3.6.1 Principal Component Analysis
Figure 4.10 shows the results of the PCA for the ED study. The scores (left) and loadings (right)
for PC1 and PC2, accounts for ~ 59% and 80% of the explained variance overall for each data
from the instruments, instrument 1 and 2, respectively. PC1 loadings are shown in black and
PC2 is visible in red on the plots. The time points have been highlighted in graphic ellipses for
visual ease. As can be seen, the larger the ellipses per group, the greater the degree of variance
within the data repeats. For instrument 1, there is no real pattern seen between the time points,
with 0-10 mins being separate from 30 mins and 1 hr in a triangle formation, plus the remaining
time points are all lying about the mixture of the triangle. For instrument 2, samples taken from
two time points (14 h and 24 h) have found some separation from the remaining groups. Here,
according to the loadings, it appears that the amide 1 and II bands seem to be responsible for
this formation, as highlighted by PC1 (bottom right). Whereas, PC2 on instrument 1 shows some
marginal separation of three data groups from the remainders (0-10 mins, 7 h and 24 h). This
formation is described by the red loading (top right). Here, the phenylalanine band (~1004 cm®
') and amide IIT (1320-95 cm™") appears to show some influence. Overall however, there is no

real formation and sequence shown between the timings via PCA. It was concluded that with
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DCDD Raman spectroscopy and the methodology employed here, there is no discerning

differences between the spectra across a drying drop of 24 h.
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Figure 4.101 DCDD 785 nm Raman signals (0.5uL serum spot): PCA of both instruments (HR800,
top), (Aramis, bottom) for the ED study. Scores are seen on the left and loadings on the right. Ellipses
are for visual appreciation only.

4.3.7 Preanalytical Variation Discussion

Combining light microscopy with a Raman Spectroscopy system enables micrometre analysis
of the sample of interest. Here, a series of experiments were devised to observe the pre-analytical
variability of freezing, thawing and drying of normal pooled human serum. FTCs are common
in clinical laboratory settings, as often it cannot be avoided given some initial sample volumes
taken from the patient. Additionally, clinically, samples are often in the non-raw phase when
they arrive for testing; that is, they have undergone some element of freezing to preserve the
sample’s biology. Furthermore, investigations to the pre-analytical variation from FTCs are few
and far between within the field of bio-analytical spectroscopy, compared to other fields of mass
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spectroscopy [43-46, 48]. Such a subject is important to ensure that pre-analytical variabilities
does not mask the clinical details, downstream. To conclude with regard to preclinical variation,
standardisation protocols go some way to actively control sample-bias and allow for a better
discovery of prognostic and diagnostic signature markers. Further still, it is known that protein
stability is problematic in bio-fluids and studies suggests that speeding up the freezing process
and slowing down the thawing, leads to severe protein damage [201]. Whereas, slow freezing
and fast thawing prevents such protein denaturation [202]. Some research studies have
suggested that negating repetitive freeze-thaw cycles and storing for long periods in frozen
conditions are advised [188]. That said, in the present study, careful attention was made to allow
freezing and thawing without any external catalyst (i.e., non-passive thawing), in the controlled
laboratory environment with relative humidity levels. The results were achieved using a suite of
research-grade benchtop spectrometers and devised protocols meant that such results were
easily reproducible, if necessary. However, although a non-destructive method, the very small
amounts of samples analysed, once dried were occupying sample space in the Al wells and
substrates, so would eventually have to be removed. The limitations of this study are that no
evaluation of the pH of the samples were taken to look for possible microbial growths within
the specimen, which may cause anomalous results. Additionally, the results are based on 15
different freeze-thaws but from one stock sample. Future work could look to compare freeze-
thaws of different research-grade normal serum and human diseased samples and maybe even
looked to automate the whole process for the clinical need. Overall, this work shows that liquid
samples demonstrate the same amount of variance when compared to dried sample analyses.
With this mind, it is more advisable to work only on liquid biofluid samples for micro-Raman
spectroscopy analysis in the future, to ensure that pre-analytical variations are kept to a
minimum and be safe in the knowledge that possible disease signatures are not overwhelmed
with analytical sample related consequences. Furthermore, not drying the sample means that
issues of the physical effects of separation and spacing of molecules and the coffee-ring effect
can be completely circumvented. Taken from the promising results for liquid macro testing;
especially with the macro adapter and cuvettes, it was deemed appropriate to proceed with the
batch of clinical samples in this approach. The benefits here would be twofold. The prolonged
drying times seen with biofluid samples, within spectroscopy, would be negated as well as the
physical separation effects of the analytes under investigation. This combined with having an

efficient SOP would go a long way to limit any preanalytical variation.
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4.3.8 Liquid Serum Fibrosis Raman Study
4.3.8.1 Spectral Variance Analysis

Table 4.8 shows the results for the variance analysis for the fibrosis study conducted with the
developed macro liquid Raman spectroscopy for the patients passing the spectral quality test.
The degree of fibrosis (0, 1, 2, 3, 4) is indicated for each patient. The results presented are from
the mean analysis of the RSD, demonstrating the minimum, maximum, average and median
values across the patient spectra. Additionally, the results of a Raman spectral quality test are
shown (a maximum of 5 spectra per patient was done). Overall, 94.25% of the spectra passed.
The spectra that did not meet the absorbance threshold were discarded. This was visualised using

cluster analysis with explorative HCA (data not shown).

Overall, there were more fibrosis patient samples included than revealed below. In total 80
patient samples were interrogated by Raman spectroscopy but due to bias linked to
transplantation issues as agreed by medial consultation, plus some patients were revealed to be
linked with hepatitis B and NASH, so were removed from the study for data analysis. In

summation, 49 patients were only taken forward (n=225).

Table 4.8l Statistical values for variance analysis, demonstrating the relative standard
deviation between mean patients of the fibrosis study using macro liquid Raman
spectroscopy

Raman Fibrosis| Spectral | RSD% min/ | RSD% max/| Av. Med.
Fibrosis Study | Staging |QT passed| ¥/ cm! v/ em! RSD % | RSD %
1 0 5 0.17 /1552 128 / 1060 8.18 7.12
2 0 5 0.13 /1555 222 /1055 9.22 7.11
3 3 5 0.10/ 1565 124 /1090 9.45 6.99
4 0 5 0.12/ 1562 131/1090 9.56 8.46
5 0 5 0.17/ 1562 155 /1090 10.12 9.47
6 0 5 0.15/1562 260/ 1100 8.25 8.11
7 0 5 0.12/ 1560 243/ 1090 8.14 8.04
8 3 5 0.13 /1566 225/ 1089 8.47 8.00
9 3 5 0.18/ 1560 229/ 1089 6.54 6.01
10 3 5 0.17 /1670 228/ 1058 7.87 7.08
13 0 5 0.17/ 1670 138 /1091 9.45 9.33
14 0 5 0.16/ 1670 204/ 1080 8.89 8.74
15 1 5 0.27/1572 289/1091 7.41 7.14
16 1 5 0.23 /1557 70/ 1082 7.14 7.08
17 0 5 0.40/ 1566 82/1092 10.12 8.88
18 1 5 0.16/ 1621 157 /1090 8.24 7.12
19 1 5 0.39/1691 202/ 1091 7.14 6.99
20 2 5 0.34 /1661 188 /1088 8.11 6.87
21 4 5 0.31/ 1560 110/ 1089 10.11 9.12
22 4 5 0.37/ 1660 192 /1089 9.17 9.08
23 4 3 0.21/1622 120/ 1098 8.77 7.89
24 4 5 0.20/ 1562 101 /1090 7.99 7.02
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25 4 5 0.16 /1567 75/1100 8.12 7.89
26 2 5 0.10/ 1557 78 /1097 8.11 7.51
27 2 5 0.31/1627 98 /1088 8.97 7.84
28 2 5 0.08 /1625 108 / 1087 8.99 8.14
29 2 5 0.25/1625 100/ 1098 8.19 7.56
30 2 5 0.16 /1655 138 /1090 9.32 8.47
33 0 5 0.23/1654 124 /1097 8.27 8.00
39 2 5 0.21/1652 122/ 1080 9.27 8.99
40 2 5 0.01/1655 158 /1090 9.99 8.55
41 2 5 0.31/1526 70/1090 7.45 7.02
42 2 5 0.21/1526 82/1090 8.88 8.45
43 1 5 0.51/1634 157 /1091 8.28 8.22
44 2 5 0.38/1526 202 /1089 10.78 10.09
45 2 5 0.22 /1523 188 /1088 8.85 8.15
46 2 5 0.28 /1525 110/1092 9.88 9.51
47 2 5 0.28 /1528 192 /1080 9.18 9.11
48 2 5 0.04/1675 120/ 1090 7.02 7.00
49 2 5 0.45/ 1577 101 /1090 7.89 7.06
50 2 5 0.47/1547 99/1091 7.01 6.20
106 0 3 0.38 /1680 111/1097 11.12 10.44
109 0 3 0.08 /1666 197 /1080 11.93 10.42
112 1 3 0.38 /1563 221/ 1090 10.01 9.25
118 2 3 0.28 /1663 121 /1099 11.91 11.12
127 1 3 0.25/1625 129/1100 11.02 11.00
134 1 3 0.24 /1566 130/1101 10.55 9.99
136 0 3 0.14 /1556 178 /1099 10.02 9.21
140 2 3 0.14 /1680 101/ 1098 10.09 9.88
141 1 3 0.19 /1666 99 /1090 9.55 8.89

From all patients with a patient number below 100, a maximum of 5 spectra were collected.
With patients with a patient number over 100, a maximum of 3 spectra were collected, due to
timing. As seen from Table 4.9, 99.08% of the spectra included for analysis passed the quality
testing. Only 2 spectra from patient 23 did not meet the quality threshold. The spectra from
patients not entering the quality testing due to issues linked to medical conditions (n=93 spectra)

were disregarded.

The minimum RSD value (0.01%) at 1655 cm™ and the maximum (289%) is at 1090 cm™. The
1655 cm™ region is attributed to the amide I band, specifically the v(C-O) (proteins), w(C-C)
(lipids) [193]. The region appears to be the least varied overall throughout the spectrum. The
most varied region is found around 1090 cm™, which is the v(C-N) of proteins [132]. The largest
mean and median RSD value are 11.93% and 10.44% Approximately, 81% of the median values

were all lower than 10.00, demonstrating a very good reproducibility.
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4.3.8.2 Principal Component Analysis
Prior to PCA a Kruskal-Wallis discrimination test (p=0.05) was carried to look for the regions
of the mean of each F group (FO, F1, F2, F3 and F4) spectrum which were considered the most
discriminant. Figure 4.11 demonstrates such regions in blue. As can be seen most of the bands
are shown to be most of the bio-spectrum, with most of them concentrated around the amide I,

IT and IIT and lipid regions, plus the amino acids and DNA region (highlighted on Figure 4.11).

Mean group spectra and discriminant features
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Figure 4.111 Mean group spectra for 5 METAVIR stages with most

discriminant features as highlighted by a Kruskal-Wallis test (p=0.05)

(in blue).

Moving forward, preliminary PCA clustering revealed some patients’ spectra to be still quite
noisy compared to the others. When looking closer to the spectra from these patients, it appeared
that these were outliers (based on their differences in spectral shape from the remaining), and
so a decision was made to remove them for further analysis. A total of 180 spectra were analysed

via PCA and subsequent data analysis.

With PCA, data were analysed firstly in three ways (Figure 4.12), by patient, by fibrosis disease
stage (5 groups — (FO, F1, F2, F3 and F4) and finally by a mix of fibrosis disease (3 groups — A,
B and C). For information, such a mix was composed of all the patients from stage 0 and 1 in
group A, stage 2 in group B, and the remaining stage 3 and 4 in group C. As shown here, PCA
does not fully show any discernible differences between the fibrosis groups nor the mix of the
groups. The loadings highlight significant protein and lipid influences, but we are unable to see
any real separation. Due to the divide of A, B and C groups, it was thought that a separation of
three groups would be shown. This was not the case, implying that the biology of these disease

cases is too complex to show differences at this stage of the testing.
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Figure 4.12] PCA: PC1 vs. PC2 for 3-way explorative observation analysis. Scores: top left (fibrosis
patient-wise), top right (fibrosis META VIR F score-wise), bottom left (combined METAVIR F score
disease) Loadings: PC1 and PC2 (bottom right). Data is with outliers removed.

4.3.8.3 Discriminant Function Analysis
Figure 4.13 contains the DFA results. As can be seen, two-way analysis was carried out;
differentiation of fibrosis staging as according the METAVIR F score, followed by grouped
fibrotic stages to represent low-grade, mid-grade and high-grade patients. The first DF plot (top)
generally appears to present some degree of grouping or class membership. DF1 separates a
100% of the F4 spectra based on the positive loadings. These are attributed to ~930, 1033, 1130
and 1265 cm™', which could be tentatively assigned to a collagen skeletal backbone (W(C-C)),
proteins (v(C-N)), carbohydrates and skeletal lipids, plus v(C-N)/v(N-H) stretch of amide III
(see Table 4.9 for details). F4 and FO is separate based on the negative loadings (DF1). Hence,
what is shown is separation between healthy (FO) and cirrhosis (F4). F2 and F3 appear to be
spread throughout the middle of the plot, meaning that the influence of their chemistry is
somewhat low in the scale. Whilst, descriptive, DF2 loadings do not greatly add anything to the

result. The second plot in Figure 4.14 does not show any further separation between the
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orientated groups. Due to the results found here, DFA was the end stage of analysis for this data,

meaning no PC-DFA is shown. The data were checked however, but not shown here.
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Figure 4.13I DFA: DF1 vs. DF2 taken forward the first 5 PCs for analysis 2-way explorative
observation. Scores: top left (fibrosis disease-wise), bottom left (graded grouped disease).
Loadings: DF1 (bottom right) and DF2 (top right). The red dotted line indicates a minimum
threshold for influencing peaks. Anything below is considered too insignificant to be meaningful to
the explaining data.
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Table 4.9 Tentatively assigned Raman peaks with DF 1 and DF 2 loadings for
most discriminate wavenumber regions only as revealed by Kruskal-Wallis
discriminant testing [27, 132, 137, 191-194]

DF1 [/ cm! Tentatively assigned Raman peaks
+ 032-57 v(C-C) skeletal of collagen backbone (proline,
hydroxyproline)

+ 1078-96  [v(C-N) proteins
+ 1114-71 v(C-N) (proteins); v(C-O) (carbohydrates); v(C-C)

skeletal (lipids).
+ 1155 B-carotene (v(C-C) ; v(C-C)/v(C-N) proteins
+ 1245 Amide 111 (C-N/N-H), v(C-C)/6(C-N)

(lipids/phospholipids)

- 851 Tyr, Pro and polysaccharides
- 1003, 1030 |Phe ring breathing mode (mainly collagen);
Carotenoids, Phe

- 1155 v(C-N), v(C-C)(proteins)

- 1447 0(CHy) (lipids and proteins), fatty acids

- 1688 Amide I (v(C-0)) — proteins. v(C-C) (lipids)
DF2 [/ cm! Tentatively assigned Raman peaks

+ 1078-96 v(C-N) proteins

+ 1114-71 v(C-N) (proteins); v(C-O) (carbohydrates); v(C-C)
skeletal (lipids).

+ 1447 Protein/ Phospholipids

+ 1310, 1355 [Triglycerides (fatty acids), 6(C-H), 6(CH,) d(CH,
/CH3) twisting, wagging, collagen, nucleic acids

+ 1554, 1581 |Carotenoid v(C-aC)/ conjugated v(C-C); v(C-C) -
porphyrins, Phe, hydroxyproline

- 1078-96  [v(CN) proteins

- 1114-71 v(C-N) (proteins); v(C-O) (carbohydrates); v(C-C)
skeletal (lipids).

- 1554, 1581 |Carotenoid v(C-C)/ conjugated v(CC); v(CC) -
porphyrins, Phe, hydroxyproline

4.3.8.4 Random Forest Classifiers & RBF-SVM
Due to the complexity within the data being easily undiscernible with PCA and DFA, a random
forest test for classifiers (RF) was sought. This was shortly followed by a Gini-SVM using an
RBF kernelisation.

The RF classifier was built in a 4-way analysis with a 1 vs all approach, then 2 vs rest, followed
by 3 vs remaining, until it was seen as each vs each class membership. The data orientation,
along with the wave numbers need to go forward for further testing are shown in Figure 4.14.
The results are shown in Table 4.10 below. As can be seen, the strongest sensitivity and
specificity taken together was 85% and 47%, respectively. This result was seen from a FO12 vs

F34 orientation; that is a low-grade disease vs high-grade.
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Figure 4.14] Random Forest results for a 4-way analysis: FO vs F1234 (top left); FO1 vs F234 (top
right); FO12 vs F34 (bottom left); FO vs F1 vs F2 vs F3 vs F4 (bottom right). Gini impurity index is
shown as the baseline black spikes. The greater the intensity of the spikes, the greater the importance
of describing an element of the data.

Table 4.101 Random forest results: Sensitivities and specificities for fibrosis
sera study on a patient and spectral level for all 4 stages of disease
progression in four dataset orientations.

Datasets RF RF SVM SVM
Sens % Spec % | Sens %  Spec %
FO vs F1234 36 75 42 75
FO1 vs F234 43 59 32 53
F012 vs F34 85 47 79 53
FO vs 24 73 18 70
F1 vs 10 80 13 78
F2 vs 5.8 49 7 53
F3 vs 3.8 93 2 90
F4 2 91 0 72

The RBF-SVM kernel analysis was done by taking the top Gini-impurity index for the top 30
wavenumbers as highlighted with RF. This information was then fed in to the SVM algorithm.

An automatic 3-fold cross validation was performed with the training data to ascertain the best

177



values for test for cost and gamma parameters. These values were utilised to train the SVM in a
one-vs rest mode firstly, followed by the same data pattern orientation used within RF
classifiers. The arbitrary selected training dataset consisted of two-thirds of the patient data. The
remaining data comprised the blind test set which was eventually projected in to the model. The

SVM results are also shown in Table 4.10.

4.3.8.5 Forward Linear Discriminant Analysis
The data were finally submitted to another chemometric algorithm; LDA. Firstly, a PLS-DA
was attempted but the results did not work correctly, due to the possibility of limited useful
information across the fibrosis groupings. Further to this, a forward LDA was attempted. This
method attempts to introduce select wavenumbers (from Kruskal-Wallis testing) in to the
algorithm, step-by-step, for discrimination. The second derivative averaged spectra proved to
be the best choice for moving forward for this analysis. The data were divided in 38 test spectra
and 5 validation steps. The validation spectra were randomly chosen in order to have the 5
classes represented. The test was repeated 100 times. Figure 4.15 shows the proportion of
correctly classified samples as a function of the number of introduced variables. The results are

compared with the one obtained with random allocation of the groups.
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Figure 4.15| Prediction of 5 separated groups by forward linear discriminant analysis

(LDA).
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Here, it is possible to see that with two variables the proportion of correct classifications of the

validation set is ~ 38%, whereas a random allocation gives only 20% correct classification.

From the same experiment, it is possible to look at the confusion matrices (still on the same 100
validation procedures). Figure 4.16 demonstrates the confusion matrices for the actual vs.
randomised results. The rows indicate the real classes and the columns are the result of the test

i.e., on the ‘actual’ test result 39 observations among 100 of the group FO were correctly
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identified. The same kind of results from the random allocations ‘randomised’ of the samples.

The difference in correct identification i.e., 205 among 107 demonstrates that the results are not

random.
FO F1 F2 F3 F4 FO FI F2 F3 F4
FOp 39 10 23 21 7 FOJp 28 20 42 17 24
FIp 31 39 11 16 3 FI 25 26 26 12 13
F2) 33 20 33 6 8 F2140 35 41 27 34
F3p 13 12 5 65 5 F3p 8 9 7 5 10
Fap 9 20 40 2 29 F4y12 14 10 8 7
| ACTUAL : 205/500 | | RANDOMISED : 107/500 |
Figure 4.16] Confusion matrices (100 validations): Actual data (41%) versus randomised data
(21.4%).

Figure 4.17 shows a scatter plot of two discriminating wavenumbers (1597 and 1679 cm™)
[amide 1 band assignment]. It is possible to see a slight tendency here to separate the F4 class

from the FO. F2 is rather in the middle.
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Figure 4.17I Scatter plot of two discriminant wavenumbers (1597 vs. 1679 cm™) as
revealed by Kruskal-Wallis testing
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When using the same procedure with only two groups, i.e., FO/F1 separated from F2/F3/F4, here
we achieve 6 best variables, giving more than 70% correct classification. When compared with

the random test we see a 50% correct classification. This is shown with Figure 4.18.
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Figure 4.18| Prediction of 2 separated groups by forward linear discriminant analysis
(LDA): FO/F1 against F2/F3/F4 (100 validation tests).

From this, it is possible to look at the confusion matrices (still on the same 100 validation
procedures). Figure 4.19 demonstrates the confusion matrices for the actual vs. randomised
results. In the ‘actual’ result, 140/200 (70%) were correctly identified, whilst in the ‘random’

result 48% was seen.
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FO/FL |69 31 FO/F1 |38 52
F2/F3/F4129 171 F2/F3/F4)52 58
| ACTUAL : 140/200 | | RANDOMISED : 96/200 |
Figure 4.191 Confusion matrices (100 validations): Actual data versus
randomised data (FO/F1 against F2/F3/F4).

Overall, forward LDA was able show minimal separation between some of the groups. It appears
that the information contained within these data is increasingly difficult to find. The two groups

noted above appeared to have given the best results possible amongst these data.
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4.4 CONCLUSION

In summary, this two-part study sought to analyse human pooled sera in both the dried and liquid
phase with a suite of Raman spectroscopy methodologies, to assess preclinical variability. This
was investigated by repetitive cycles of freezing and thawing, to ascertain whether there is an
effect on the sample, and then to analyse the same samples for environmental drying effects to
the serum profile. Combining spectroscopy with cluster analysis such as PCA and HCA, the
outliers following the variance and quality assessments of the data were able to highlight for
subsequent removal. Overall, PCA demonstrated very little changes within the freeze-thaw
serum profile; any changes in the biplots were deemed to insignificant and no specific data
pattern was seen. Overall, the cycles appear generally quite mixed, with no real logical
clustering or that could be described experimentally via preclinical changes. The data acquired
for both FTC and ED across different instruments did not show any effect on the spectra, even
after freezing and thawing and drying a few times. It is concluded that such pre-analytical

variation has very little effect on the data.

As it is routine clinical practice, to seldom work on non-fresh samples given the requirement of
cryogenic storage, this preliminary study carried out IR spectroscopic assessment of potential
variations owing to cycles of freeze-thaw and to the environmental ageing or drying of a sample
of human pooled sera, exploring potential intra-sample differences of serum sample stability,
without the fresh phase. Important factors, such as storage requirements, dilution aspects, and
all key preparatory phases within a laboratory setting, need to be fully considered. Generally,
for any analysis of variability, whether it is intra-, pre- or post-analytical, the bio-fluid of choice

must confer the analytical process for error-tracking.

The latter diagnostic aspect of this study was the investigation of fibrosis serum samples using
the developed liquid macro Raman spectroscopy methodology. The fibrosis patient sera were
analysed using PCA, DFA. A three-way split of the fibrosis data revealed, a group split by
patient spectra, by fibrosis disease stage and by a mix of fibrosis disease to represent low and

high-grade disease characteristics. PCA was unable show differences.

The positive loadings seen on DF1 demonstrated a slight separation between healthy vs. cirrhotic
patient spectra from F4 and FO. Such a result was attributed by peaks from 900-1300 cm™, which
encompasses the amino acids, amide III region. This study demonstrated the both DFA was able
to show some biochemical differences between some the patient disease stages (healthy vs.
advanced disease). Although a PC-DFA validation was tried, it did not add anything more to the
data already.
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Moving forward with this, the data were submitted to both RF classifiers and forward LDA for
further interrogation. The highest sensitivity and specificity were a moderate result and so it is
concluded that neither of the algorithms employed were able to provide a disease discrimination,

overall.

In conclusion, the results of this study have shown that combining advanced multivariate
analysis as classification tools, is sometimes not enough to find discrimination if the disease
course is highly complex and analysed in liquid phase. Although, freeze, thaw and drying appear
to have negligible effects on the data outcome, it is still important to not over-process samples
and caution is needed to limit the physical effects to the samples, as with any biological sample,
it could be susceptible to degradation eventually. The present results have clearly shown that
preclinical variation can be minimised with good laboratory procedures, not-exceeding high
amounts of repetitive freeze-thaw, and that such possible variances play no significant role in
the diagnostic capability of Raman spectroscopy which is a disease classification/screening
tool when employed with various MV A strategies. Moreover, it is based solely on the disease

complexity overall.
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V.1 RESUME

Ce chapitre concerne I’approche macro-Raman développée précédemment pour I’analyse du
sérum liquide, appliquée a I’étude des patients cirrhotiques atteints ou non d’un cancer primitif
du foie, le cancer hépatocellulaire (CHC) pour évaluer les capacités de dépistage de 1a maladie.
L’analyse directe du sérum liquide permet de contourner le temps de séchage et surtout
I'hétérogénéité chimique observée avec le phénomene de « coffee-ring ». Une séparation
spatiale de molécules a haut et faible poids moléculaires apparait dans la goutte de sérum
lorsqu'elle est laissée a sécher, régie par 1'effet Vroman [207], et fournit par la suite un parametre

physique supplémentaire dans la prise des données spectrales.

V.2 CONCLUSION

L’analyse du sérum par spectroscopie présente plusieurs avantages : elle est non invasive,
facilement réalisable a faible cofit et offre des capacités de surveillance, bénéfique a long terme
pour le patient. En raison de sa nature mé€me en tant que flux complexe de produits sanguins
extrémement intéressants, il peut étre un bon reflet du milieu interne du corps avec des lectures
biochimiques ou des « empreintes digitales » lors de 1’exploitation spectroscopique. En cas de
maladies telles que la fibrose, la cirrhose et I’'invasion tumorale, 1’analyse du sang donne un
compte rendu du microenvironnement, qui héberge des biomarqueurs de la maladie. Ici, cette
étude a utilisé une nouvelle approche macro-Raman pour interroger le profil sérique des
échantillons de sérum de patients cirrhotiques avec ou sans CHC. L’ approche est effectuée en
phase liquide du sérum, afin de développer un outil spectroscopique de diagnostic / dépistage
pour le bien-€tre du patient. La spectroscopie Raman peut fournir une empreinte spectrale de
toutes les molécules présentes dans le sérum. A partir de 13, plusieurs milliers de variables
spectrales ont ensuite été soumises a une analyse statistique multivariée par le biais
d’algorithmes d’apprentissage automatisés afin de déterminer les principales caractéristiques
des données. Suivant une procédure interne de prétraitement, des algorithmes de classification
tels que I’ ACP et ’'HCA ont été utilisés dans un premier temps pour cibler des valeurs aberrantes
au sein des données. Lors de 1I’avancement des spectres du patient viable, I’ ACP n’a montré que
les différences entre les patients FO en bonne santé et les patients malades (cancer + cirrhose).
Dans l'ensemble, aucune différence significative n'est observée lors de la comparaison d'un
ensemble de données binaires (cancer vs cirrhose) via ACP. La DFA montre des informations
similaires pour la classification binaire, mais avec une multiclass (toutes les données), une
séparation plus grande entre maladie et normale a été exprimée. En revanche, DF1 montre une
bonne discrimination entre le cancer et la normale (p <0.001) et de maniere similaire, DF2 a
montré certaines différences entre le cancer et la cirrhose via le test post-hoc de Tukey. La CP-

DFA démontre une sensibilité et une spécificité de 100% (ellipses de confiance a 99%) pour les
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maladies par rapport a la normale, mais une classification médiocre pour le cancer de la cirrhose.
Enfin, les méthodes RF et Gini-SVM présentent des résultats modérément bons pour cette
classification multiclassée dans les groupes de patients (55%, 62% (cancer), 54%, 55%

(cirrhose) et 99%, 100% (FO).

En résumé, il est tres difficile cliniquement et biologiquement de faire la distinction entre le
CHC et la cirrhose quand environ 80% de tous les cas de cirrhoses se transforment en CHC.
Ceci est également montré dans les résultats de cette étude, des différences distinctes dans le
profil sérique sont observables par spectroscopie Raman du sérum liquide. Cependant, discerner
le cancer d'une population malade atteinte d’une cirrhose’est révélé difficile. Ici, cette étude a
démontré la possibilité de 1'utilisation de la spectroscopie macro-Raman sur des échantillons

liquides sans l'utilisation d'un module de microscope a des fins de dépistage de maladies.

5.1 INTRODUCTION

Primary liver cell cancer or hepatocellular carcinoma (HCC) accounts for 65,000 mortalities per
annum and it is the third leading cause of cancer deaths worldwide. After colorectal cancer, it is
the second most prevalent digestive cancer with over two-thirds of patients being male [84-85].
In cases of hepatic cirrhosis, it is the biggest cause of mortality and it is developed through
stages from chronic hepatitis. Under normal physiological condition, the liver is capable of self-
regeneration. However, through cycles of repair and injury, the liver becomes inflammed and
scarred due to a build-up of regenerative nodules (colonies of cells), which are surrounded by
fibrotic tissue and excess collagen. Fibrosis or scarring of the liver tissue precedes end-
stage/irreversible liver damage (cirrhosis) [86]. HCC aetiology includes, viral inflammation
from hepatitis B (HBV) and C (HCV), or aflatoxin B1 [87] (a fungal epitope), abuse of cigarette
smoke and heavy alcohol consumption [86-87]. Moreover, the main problem faced by patients
today, is understanding the interface of when one disease stops and when another one is initiated
in complex disease cases with cirrhosis. Also, it is difficult to determine when the cirrhosis-
HCC margin begins, and ends is problematic. Whilst the biggest cause of HCC is metastases,
persons with cirrhosis have an increased risk of developing the cancer, as there is a strong
positive relationship with fibrotic stage. Moreover, it is said that ~80% of cirrhotic livers will

transform [88-89].

Hepato-carcinogenesis is a complex process and overall knowledge remains nebulous.
However, it is known to span ~10 to 30 years [90-91] with primary initiation of external stimuli

precluding genetic changes within the liver cells. Eventually, it induces cell suicide and up-
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regulation of the mitotic pathway with the continuation of fibrosis and cirrhosis [92]. This
complex disease pathway is a multistep process, starting with stimuli-induced focal hyperplasia.
Such stimulus could be viral (HBV or HCV), alcohol or non-alcoholic steatosis hepatitis
(NASH) including others. The process graduates from low-grade to high-grade nodule dysplasia
[92-93]. The result is moderately differentiated-HCC, which has metastatic tendencies. Other
genetic factors are attributed to an iron-overloading disease called haemochromatosis, Wilson’s
disease [89], a-1-antitrypsin deficiency, glycogen storage disease and various porphyrias (rare

metabolic abnormality of haemoglobin) [90].

To date, there has been a cohort of clinical guidelines that all advocate surveillance programs in
cases of patients with cirrhosis, for positive remedial curative treatments at early stages of
disease onset [98, 203]. Technological advances of physical methods of employing light at the
interface of medicine is not uncommon, as such clinical guidelines advocate ultrasound (US)
screening of cirrhotic patients at 6-month intervals. This is due to tumour doubling time of 6-12
months, plus blood biochemistry assays to detect the changes in serological biomarkers, such as
a-faeto-protein (AFP) and des-y-carboxy-prothrombin (DCP), and others i.e., glypican-3/a-1-
fucosidase. However, all are not without limitations as demonstrated by a 14 year-long study
monitoring AFP levels in cases of liver damage [204]. In the study the authors found that ~ 90%
of biomarker elevations were not associated with cancer, and only ~15% of patients with
elevated AFP were seen over the full duration [204]. Additionally, the DCP protein or abnormal
levels owed to a defect in the posttranslational carboxylation of the prothrombin precursor in
malignant cells, can confer some utility as a marker of advanced HCC [99]. Although, given the
known downfall, it is still widely used in Japan for diagnosis and surveillance. Additionally,
there is some knowledge to suggest the combination of the two biomarkers could provide further
evidence for such screening but the sensitivities and specificities for such testing, remain low,
or that the testing populations are regarded as too small/insignificant to warrant incorporation
to the tumour-node-metastases (TNM) staging system. This is the case with other HCC potential
biomarkers [205].

Above and beyond serum biomarkers, radiographic regimes, such as right upper quadrant
(RUQ) ultrasound assessment have been reported to have a sensitivity of 65-80% and specificity
of 87-94% and is currently one of the strongest screening regimes available for cirrhotic and
HCC surveillance [94-95, 206]. Nevertheless, the assessment is still operator-dependant and
does suffer difficulties with interpretation in persons who are obese or who have underlying
nodular cirrhosis. Moreover, whilst computed tomography (CT) and liver-magnetic resonance

imaging (L-MRI) can be employed, there is still no current evidence that routine screening with
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such assessments are viable and hence, they are still absent from recommended guidelines. That
said, they can be used to confirm tumoural nodes greater than 1 cm post-ultrasound. In
consideration of the above, it remains that there are no set biomarkers for HCC detection from
cirrhosis. According to the most up to-date clinical practice guidelines, accurate tumour
biomarkers for early detection still need to be developed [95, 98, 206]. Given that current routine
procedures are not fully adequate [6], other efforts have started to emerge within the bio-

spectroscopy field, specifically.

Biofluids are an attractive medium for disease diagnostics due to the ease of accessibility and
routine analysis of blood biochemistry, which means bio-fluid banks are well resourced [132].
Bio-fluidic vibrational spectroscopy is emerging as a potential candidate for disease screening
for point-of-care (POC) diagnostics. Raman spectroscopy (RS) is an analytical technique based
on the change of wavelength of light that occurs when a light beam interacts with certain
molecules. Fundamentally, RS has been exploited for structural and biochemical information
for diseased tissues, cells and bio-fluids within biomedicine to date. RS is rapid, non-destructive,
label-free and amenable to any state analysis, due to the very minimal effects from water or
aqueous environments. Moreover, liquid analysis is achievable without the drying stage of bio-
fluids on to mid-IR transparent substrates, such as CaF,. Hence, the well-known coffee-ring
phenomena are circumvented entirely. An early study demonstrated the utility for serum Raman
micro-spectroscopy for HCC diagnosis from cirrhotic patients [137]. This study employed drop
coating dried deposition (DCDD) of serum combined with support vector machine — leave-one-
out cross validation (SVM-LOOCYV), for global biochemical disease fingerprinting,
demonstrating a diagnostic accuracy of 85-92% [137]. However, in a bid to develop the
diagnostic potential, here this study proposes a macro-Raman liquid analysis directly on the wet
serum. This negates drying times and most importantly the chemical heterogeneity seen with
the coffee-ring phenomena. A spatial separation of dense and non-dense molecules appears
across the serum drop when left to dry as governed by the Vroman effect [207], and subsequently

provides an additional physical effect in spectroscopic data management.

In this chapter of the study, a RS approach was developed for wet analysis at the macro scale.
This proof-of-concept approach was used to analyse patients of cirrhosis with and without
primary liver cancer (HCC), and compared to a normal dataset, for disease screening capabilities

of Raman spectroscopy.

187



5.2 EXPERIMENTAL METHODOLOGY (For details, see 2.4.2)

5.2.1 Serum Biobank

This work was part of the Pro-Spec study, which aimed to identify biomarkers of HCC in blood
samples taken from cirrhotic patients. The Pro-Spec study was an ancillary project to the CiRCE
(Cirrhose et Risque de Cancer dans le Grand-Est) study; an 8-year ongoing case-control
assignment in the North East region of France; six centres inclusive of Besancon, Dijon, Metz,
Nancy, Reims and Strasbourg. Cirrhotic and primary liver carcinoma serum samples were
collected from all centres for the analysis of factors pertaining to hepato-carcinogenesis in
cirrhotic circumstances. Due to subsequent findings of an incorrect study protocol from sample
inclusion, one centre was fully omitted from spectroscopic analysis. All patients gave consent
in writing for the inclusion of their samples to the study. For each patient, the following clinic-
biological data were collected, and they included age, sex, cause of cirrhosis, staging of
cirrhosis, serum AFP measurement, and staging of the tumour in the case of HCC; (see Table
5.1 for pertinent information). The study was approved by the Comité de Protection des
Personnes Est; under the agreement: 2008/09 and by the Agence Francaise de Sécurité Sanitaire

des Produits de Santé (agreement no.: 2008-A00023-52).

Cirrhotic patients were assessed for characteristics of HCC at inclusion via US and/or CT and/or
L-MRI, plus clinical biochemistry, i.e., AFP levels < 100 ng mL"' and subjected to routine
follow-up regimes of up to 1 year revealed none of the cirrhotic patients were suspected with
HCC. This was achieved with 6 monthly right upper quadrant US (RUQ-US) and checked levels
of AFP throughout. Clinical diagnosis of cirrhosis was made either by histology of a liver biopsy
or by a combination of clinic-biological signs of hepatic portal vein hypertension (PVH), and/
or endoscopy of PVH or imaging of cirrhosis. Confirmed diagnosis of HCC by the pathologists
relied on the EASL guidelines [15], and patients younger than 35 years were not included, nor
were patients with HIV infection, extrahepatic carcinoma and unconsented patients (e.g. not

been able to give written consent).

5.2.2 Sample Processing

For closer scrutiny from the large cohort of 817 patients, clinical matching of age, sex, Child-
Pugh scores, and cause/severity was carried out by a senior medical consultant (see table 5.1).
This revealed matched pairs of n=130 for cirrhotic and cancerous patients. The removal of non-

matched cases was done to relieve the burden of confounding factors at the analysis stage.

All samples came from 24-hour fast-orientated patients and immediately post-venepuncture, the

blood samples were processed, and the serum was stored cryogenically at -80°C. Serum samples
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were collected from 2 sets of patients: cirrhotic patients without HCC (n=127) and cirrhotic

patients with HCC (n=120), irrespective of the liver disease cause.

The serum samples were blind sampled by the spectroscopist. The samples were stored in a
central biobank at the bio-pathology department of Reims Hospital (CHU). A secondary non-
diseased control group was added for testing. These serum samples were included for analysis
due to clinical inclusion by a chief gastro-hepatologist at Reims CHU. Samples were thawed at
room temperature in a controlled environment with recorded humidity. 50 uL of sera per patient

were transferred in to a quartz cuvette for analysis. No serum dilution was necessary.

Table 5.11 Patient sample demographics (cirrhotic, cancerous and normal), including
disease stage (METAVIR F), number of patients, age range/mean ages and gender
plus clinic-biological characteristics for diseased patients.

Age BMI HCV+ AFP OH+
Patients Spectra Range/Mean/yr M;F Ave % Ave %
CO 88 440 43.4-89.4/61.12 8513 277 17 56 722
1 19 48.3-75/  59.5 16;3 29.4 - - -
2 10 474-71/1 583 8;2 26.7 - - -
3 19 43.4-80.4/ 60.6 17;2 26.4 - - -
4 31 49.7-89.4/ 63.9 25:6 27.5 - - -
5 9 53.7-72.3/ 63.3 9; 0 28.4 - - -
HCC 103 515 45.4-82.5/62.86 97,7 287 14.7 1985 84.3
1 45 454-80/ 62.1 45;0 29.4 - - -
2 6 55.6-70.3/ 62.9 4;2 26.7 - - -
3 21 50.1-80.5/ 63.2 18;3 26.4 - - -
4 24 50.1-82.5/ 63.7 23;1 27.5 - - -
5 8 49.1-81.6/ 62.4 7; 1 28.4 - - -
FO 10 49 18-57/  39.58 5,7 - - - -

1,2,3,4,5 - centres included; CO — Cirrhotic only cases; HCC — Cancer cases; FO (non-fibrosis cases); Ave -average; information for

BMI, HCV+, AFP average (measured in ng/mL) and OH+ is only available for diseased case

5.2.3 Macro Liquid Raman Spectroscopy

Single point Raman spectra were recorded with a LabRAM HR 300 micro-spectrometer (Horiba
Jobin Yvon SAS, Villeneuve D’ Ascq, France) re-aligned to bypass the microscope objective. A
40 mm macro adaptor was coupled to the spectrometer for the 3 W NIR 785 nm diode excitation
laser (Toptica Photonics, Munich, Germany) to irradiate the sample (contained within the quartz
cuvette). The Raman signal was collected in 180° backscatter geometry. The laser power on the
sample was ~75 mW and the beam size was 3 mm. An Andor Tech CCD detector (1024 x 256
pixels, Andor Tech., Belfast, UK) was used to capture the signal. A holographic 600 lines/mm
diffraction grating was employed with a confocal hole of 1000 pm and slit size 150 pm. The
sample was acquired for 120 s with 5 integrations over the 1800-500 cm™ wavenumber range,

with a spectral resolution of 3 cm™. Prior to spectral collection, the spectrometer was calibrated
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with a silicon wafer and instrument dark noise and detector linearity was checked with an in

house-regime (see Figure 2.12 (2.31).

5.2.4 Raman Spectral Quality Testing

Prior to pre-processing, a Raman spectral quality test (QT) was used to evaluate the SNR of the
datasets on MATLAB software (version R2015a, The MathWorks, Inc., USA). In brief, two
spectral regions (~990-1010 cm™ and 1720-1780 cm™) were chosen to represent the spectral
aspects for signal (S) and noise (N). Spectra passed the QT if it exceeded a ratio value of 30,
which is used in biological spectra and is line with previous studies [137]. Refer to 2.3.1 for

details of the Raman quality assessments.

5.2.5 Spectral Pre-processing and Chemometrics

All spectra passing the standard quality and variance assessments were pre-processed in
MATLAB for exploiting the chemical information and reducing the physical interferences. An
outline of the spectral pre-processing steps could be seen below in Figure 5.1. All data were
normalised using the vector scaling method (vector normalisation): mean-centred spectra were
divided by the square root of the sum of the mean-centred intensities squared, meaning that the
sum of all the intensity values squared is equal to 1. All data were then completed with zero
offset, the value of which is chosen so that one spectrum point will equal to zero, often the ends
of the spectrum, prior to chemometric assessment. For advanced chemometrics such as Random

Forest and SVM, the data were implemented on R-Studio.

RAMAN SIGNAL PRE-PROCESSING

1. Spectral window 2. Cosmic ray artefact 3. SNR calculationand | | 4. Instrument and detector
fruncation = spike removal, visual = clusteranalysisfor = comection, i.e., dark
(630-1800 cnr?) check of signal outlier detection noise, optics & NIST
8. Vector normalisation 7. Speclral quallty and 6! Additional Spectral 556 SmOOIhiﬂg and
&offsetscale M varanceassessment H | window truncation |  baseline correction
correction (mean & std., efc.) (850-1725 e (4,13,3* polynomial)

Figure 5.11 An example of the Raman signal pre-processing workflow prior to chemometrics.
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5.2.6 MVA Workflow
All datasets were then submitted to cluster analyses via HCA and PCA in the first instance for

outlier detection and sample removal prior to more advanced chemometric assessments.

PCA was developed as an invaluable unsupervised dimension reduction and data transformation
technique that was used as the starting point in discerning spectroscopic data. HCA allowed the
observer to see similarities and differences amongst the data based on a dendrogram approach

(full explanations of all MV A techniques are given in Chapter 2).

DFA was used to ascertain clusters in to groups following cluster analysis. Following this, more
advanced machine learning algorithms were employed to find classification of the data groups,

such as random forest classifiers (RF) and Gini-SVM.

5.3 RESULTS & DISCUSSION

5.3.1 Spectral Quality & Variance Study

At the point of spectral collection and subsequent pre-processing, physical and spectral
anomalies were observed. Noted firstly at spectroscopic collection, there were some noticeable
differences in the collected spectra (in sifu) (Figure 5.2) and some visual differences when
observing the samples in the cuvette prior to Raman interrogation (Figure 5.4). Some samples
were cloudier and/ or darker in appearance to visual examination (by eye of the analyst) or had
some aspect of haemolysis (red in colour). This immediately manifested in the real-time spectra,
meaning some samples presented an aberrant baseline, some were recorded with extraneous

spikes and sharp peaks and some were intractable signal-wise. These are shown in both Figure

5.2 and Figure 5.3.
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Figure 5.2| Original raw Raman signal for three of the spectral and
visual ‘abnormal’ samples. Top is showing the unprocessed Raman
signal for a patient with a haemolysed visual appearance of the sample
vial. Middle is showing the unprocessed Raman signal for a sample
showing some visual turbidity and/ or cloudiness. Bottom is showing a
sample perceived as darker in appearance (n=10).

Following these instances, repeat Raman collection was carried out to ensure good robust data
collection. Such problematic samples were subsequently compared to the serum biochemical
profile (i.e., the very small standard deviation patients), and the clinic-biological characteristics
of each patient. It was decided that such samples would be removed from the dataset for further
analysis. Figure 5.3 shows the normalised and pre-processed spectra for the extra peak specific

spectra/patients. As one can see there appears to be three significant intense peaks (875 cm™,
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1025 cm™ and 1080 cm™), which were unexpected (compared to the average signal of the data).
Further investigations were carried out to examine and change different aspects of the
experimentation setup, such as grating choice (three different gratings were tested to see if the
same signal resulted). All gratings (600, 800 and 1950 lines mm™) showed the same intense
extra peaks. Secondly, the cuvette was changed as well as the depth of penetration for the laser
light hitting the sample, this again showed the same signal. Lastly, to ensure the cuvette was not
contaminated, a water test signal was carried out. This confirmed that only the signal of the
water/cuvette was seen. Observing the clinic-biological data for the patients that presented these
aberrant (compared to the bioserum profile — as seen across the general peak shape amongst all
the sample) peaks, it was decided that these patients seemed to show a higher
lipid/cholesterol/triglyceride reading (data not shown), so it was inconclusive whether this
subset of patients properly fasted prior to giving their sample; so, they were removed from
further testing. Figure 5.4 demonstrates this sample-patient data exclusion process in a
schematic with visual evidence of each vial and justification for exclusion. This secondary

spectral quality step was required as visual assessment of each individual sample.
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Figure 5.3 Original raw Raman signal for the samples containing intense extra peaks
(875 cm’!, 1025 cm™! and 1080 cm'.

Patient’s signal showed some inconsistencies that did not align well with the remaining signal

(when visibly observing the live spectrum on the instrumentation /computer screen). As
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demonstrated below (see Figure 5.4), four criteria were chosen based on both visual checks of
the sample vial, i.e., apparent haemolysis (n=3), turbidity owed to a cloudy appearance of some
sample vials (n=9), a darkened appearance (n=8) and the inclusion of extra bands in some
patients (n=12). Figure 5.5 and figure 5.6 demonstrate some preliminary cluster analyses (HCA

and PCA) which revealed the samples to be outliers.
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Figure 5.4 Spectral Quality Workflow: removal of poor-quality spectra data/ justifications
owed to physical/spectral quality assessment of serum data for HCC-cirrhosis investigation.

For explorative outlier detection, two sets of cluster analyses were carried out. The first (Figure
5.5) shows all spectra plotted, but with highlighted poor-quality spectral groups (inclusive of
patients with the so-called samples seen with aberrant peak). As can be seen here, the group of
patients with the extra peak morphology appears to find clustering separate to that of the
remainder of the patient spectra. Therefore, this result would significantly impact later MVA
analyses. The remaining poor-quality spectral groups were then highlighted to show
physical/chemical differences. The result is shown in Figure 5.5 (compared to all spectral
groups) and Figure 5.6, which demonstrates the same result without the inclusion of the ‘good

quality spectra’.

Secondly, HCA cluster analysis was carried out to ascertain the similarities/differences solely
between the groups of poor-quality spectra/patients. As can be seen from the dendrogram on
Figure 5.6, it appears that samples given the assignment of ‘turbid’ and ‘dark’ appear to have
similarities to one another (smallest branches on the dendrogram). These in turn are similar in

characteristics to the ‘haemolysed’ patients. The most different dendrograms are the ‘extra peak’
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samples which are shown as the longest branch. Additionally, these extra three peaks also appear
clearly in the loadings of the PCA and the plotted pre-processed normalised spectra (highlighted
in grey on Figure 5.6)
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Figure 5.5] Good quality spectra vs. poor quality spectra: Cluster analysis via PCA 3D
plot (top) showing all spectra with highlighted poor-quality spectra inclusive of aberrant
peak patients. Loadings are shown the right of each plot. PC1, PC2 and PC3 all explain ~
80% of the data.
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Figure 5.6l Diagrams showing further cluster analyses via PCA and HCA for outlier detection
of spectral abnormal spectra to confirming the differences and similarities of the poor-quality
spectral group. PC1, PC2 and PC3 all explain~81% of the data. Sample nomenclature: EP —
‘extraneous peaks’; H — ‘haemolysed’; T turbid/cloudy in appearance; D — dark in appearance.
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Figure 5.7 shows the total spectra (mean data) for the inclusion of further analyses, following
the quality assessments. As can be seen the there are three separate signals. The top signal
represents the HCC patients mean spectra, the middle is the cirrhosis only patients (diseased
control) and the bottom is the healthy control (FO patients). The latter group had the smallest
variance amongst the spectral groups (mean STD = 0.0065; median STD = 0.0057), followed
by the other groups being on par (0.0073-0.0075). The grey cloud around the red mean signals

is the STD values around the mean.
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Figure 5.7 Grouped patient fingerprint spectra demonstrating
overall variance/STD across the spectrum for (A) Cancer mean
+/- STD, (B) Cirrhosis +/- STD, and (C) Normal +/- STD. The
median STD is represented for comparison. The data are fully pre-
processed and normalised in intensity to zero for offset.

5.3.2 Explorative PCA of Cirrhotic, HCC and F0 Patients
Following variance analyses, the patient data was submitted for unsupervised explorative
clustering by PCA. The pre-processed non-derivative fingerprint Raman spectrum was used for

further MVA. Analysis of the derivatised spectra was attempted also but presented no
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observable differences at this stage, nor did it add any extra value to the data. Figure 5.8 shows
the PCA result by a three-way analysis in 3D space. The results from the three patient datasets
(HCC, Cirrhotic and FO) are clearly visible on the plot as represented by the colours (red, blue
and green). PCA was able to reveal two clusters (diseased vs. healthy), which is seen as the
green (healthy patients) separating from the red/blue mixture (cirrhosis/cancer). Together, the
three PCs explained ~62% of the data variance. PC loadings are shown in Figure 5.9. The
negative loadings on PC2 finds the separation between healthy and diseased (1365 cm™', 1348
cm™, 1041 cm™, and 956 cm™). The following can be tentatively assigned to a mix of the amino
acid, tryptophan, adenine, plus proteins and phospholipids [209]. The tentatively assinged

component loadings are assigned to the serum bio-profile (see Table 5.2)

® HcC
4 Cirrhotic (F4)
® Normal (FO)

PC3 (10.8%)

“ 06 PC1 (35.8%)

PC2 (15.4%) 0.4

Figure 5.8| Diagram showing a 3D PCA plot showing three grouping of
patients. PC1, PC2 and PC3 fully explain ~ 62% of the data variance.
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Figure 5.9 Component loadings plot from Figure 5.8,
demonstrating PC1, PC2 and PC3 (the most intense
peaks).

The Raman band at 1633 cm™ can be attributed to antisymmetric bending of -CHs which is
assigned to lipids presents in both healthy and diseased serum. The predominant bands
throughout the loadings (Figure 5.9) are observed at 1170 cm™ and 1344 cm™ are due to v(C-
0-C) antisymmetric stretching and 6(CH,) wagging, respectively, found in lipids and
phospholipids [210]. During hepatitis, such an occurrence is associated to activated enzymes by
the hepatic destruction processes [57, 211-212]. This process of alterations can occur in the
concentration of the various enzymes, proteins, lipids and phospholipids that are found in blood,
or here in the serum. The bands that occur at 1633 cm™ and 1041 cm™ could be due in part to

quartz cuvette Raman scattering, which was used to hold the blood serum samples.
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Table 5.2] PCA: Tentatively assigned serum loadings from PC1, PC2 and PC3 (Figure 5.7)
taken from the serum investigation for HCC-cirrhosis- normal patients [132, 209-210, 213]

¥/ em! Tentatively assigned Raman peaks PC1 | PC2 | PC3
931 v(C-C) skeletal of collagen backbone (proline, +
hydroxyproline)

956 v(C-0-C) glycoside ring (carbohydrate) -

999 J(C-H) bend lipids +

998 +
1002 Phe ring breathing mode (proteins — collagen); +

carotenoids

1004 Proteins, DNA/ Phospholipids, Phe -
1041° (vCH) str Phe/*Quartz contribution -

1170 v(C-0), v(C-O-C) antisym. and J(CH») wagging, +

(lipids/phospholipids)

1321 J(CH3) 6(CH») wagging of proteins/nucleic acids +

1339 v(C-0), v(C-0O-C) antisym. 6(CH») wagging, +

1344 (lipids/phospholipids) -

1365 J(C-H) proteins (collagen) and carbohydrates (glucose) -

1447 J(CH») bending, collagen/lipids +

1594 v(C-N), v(C-C) proteins +

1616 v(C-C) porphyrin +

1626 +

1633" Amide I v(C-0), proteins; v(C-C) lipids / “Quartz +

1656 contribution +

1668 +

5.3.3 Discriminant Function Analysis

Figure 5.10 shows the results for the DFA. The next step in the process was to submit the data
to DFA. The top 15 PCs were taken forward for the analysis that explained 99.9% of the data.
DF1 and DF2 showed the best clustering. DF3 was omitted as it did not add anything further to
the data. At first, when doing a binary data projection, i.e., cancer vs cirrhosis, the data did not
find any true separation (data not shown). However, when projecting in a third class (namely

the FO patients), the DFA algorithm found a very clear visible cluster split as shown in Figure

5.10. Here the non-diseased patients found 100% separation.
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Figure 5.101 DFA scores plots of DF1 and DF2 for the fingerprint data of from
the HCC-Cirrhosis macro Raman serum investigation.

Figure 5.11 demonstrates the two loadings with a minimum threshold value for significance of
inclusion (dotted line). Here, DF1 (top) shows that the phenylalanine bands around the 998-1010
cm’ demonstrates the most intense peaks. DF2 (bottom) shows the influence of amide III,
phospholipids, phenylalanine, and beta carotene bands (1001-1180 cm™). Table 5.3 lists the

tentative peak assignments.
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Figure 5.111 DFA loadings plots of DF1 and DF2 for the

fingerprint data of from the HCC-Cirrhosis macro Raman
serum investigation.

Figure 5.12 shows a linear formation of the PCA plot from Figure 5.11. Here the similarities
and differences between the patient groups are evident. DF1 (in blue) shows almost perfect
separation between healthy patients and diseased including cancer, whereas, DF2 struggles to
show anything. Further quantification was sought using Tukey’s multiple post-hoc comparison

statistical test (see Table 5.4). The results are shown below for each of the eigenvectors for DFA.
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Figure 5.12| PC-DFA 1D scores plots to better demonstrates the
likeness between the HCC and cirrhosis classes of patient data, and
the dissimilarity of that to FO patients.

Table 5.3 DFA: Tentatively assigned serum loadings from DF1 and DF2 (Figure 9) taken

from the serum investigation for HCC-cirrhosis- normal patients [132, 209-210, 213].

¥/ em! Tentatively assigned Raman peaks DF1 DF2
878 DNA, proteins, v(C-C) skeletal of collagen backbone +
893 (proline, hydroxyproline), v(C-O-C) glycoside ring +
901 (carbohydrate) +
938 +
992 -
997 +
1001 Proteins, DNA/ Phospholipids, Phe, 6(C-H) lipids - +
1004 +
1012 Phe ring breathing mode (proteins — collagen); -
1033 carotenoids +
1042 +
1055 Proteins/Phospholipids -
1087 -
1101 Phe +
1130 +
1154 Phe/p carotene, v(C-O), v(C-O-C) antisym. 6(CHy) -
wagging, (lipids/phospholipids)
1203 Amide III, Phospholipids +
1436 6(CH>) (lipids) - -
1572 Amide III/ B carotene, v(C-N), v(C-C) proteins -
1627 Amide I v(C-0), proteins; v(C-C) str lipids +
1702 -
1719 -
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Table 5.4] Tukey's multiple post-hoc comparison test: Results for the three
scenarios (cancer vs. cirrhosis, cancer vs. normal and cirrhosis vs. normal),
reported from a 1D DFA box plot (Figure 5.12).

U Eigenvector DF1 | U Eigenvector DF2

Mean Diff. pvalue | Mean p value
Diff.
Cancer vs. Cirrhosis -0.00405 >0.05 | 0.06367 <0.001
Cancer vs. Normal -0.5675 <0.001 | 0.02658 >0.05
Cirrhosis vs. Normal -0.5634 <0.001 |-0.03709 >0.05

The purpose of Tukey’s comparison test is to discern which groups in the sample differ. It uses
the “Honest Significant Difference”, a number that represents the distance between groups, to
compare every mean with every other mean. Here, for cancer vs. cirrhosis we can conclude that
the given result is not at all significant (p>0.05), whereas both the cancer vs. normal and
cirrhosis vs. normal results appear much more significant (p<0.001), when observing DF1; that
is less than 0.1% of the findings as such is by chance, therefore there is significance in the

separation between patient groups.

5.3.4 PC-DFA: Supervised Cluster Analysis

Moving forward, a PC-DFA was carried out on the datasets. PC-DFA is a supervised data
prediction algorithm based on canonical variates analysis. It aims to maximise the between
group distance and minimise the intragroup distance. The first 15 PCs that explained 99.9% of
the data variance were chosen for analysis, together with 2 DFs (number of DF is 1< number of
groups). The data were split in to randomised groups of 1/3 and 2/3 of all three groups of
patients, ensuring that no technical repeat spectra was in more than one division for the analysis.
Two-thirds of the data were used to train the model before blindly projecting the remaining 1/3
test data to validate the model. Figure 5.13 demonstrates the PC-DFA scores biplot. As can be
seen there is a significant cluster split between group 3 (FO patients), and the remaining group
1 and 2 (cancer and cirrhosis, respectively). This result only echoed what was seen with both
PCA and DFA methods. However, here a 95% confidence ellipsis was also projected around
the test data points. As can be seen there appears to be a mixture of both group 1 and group 2
data points (test — blue; train- red). Group 3 however, demonstrates a 100% positive
classification; that is all test subjects found perfect matching with the training patients. As the
other two groups were completely mixed, a classification accuracy was not relevant here. Figure
5.14 demonstrates the respective loadings profile for the PC-DFA completed. Table 5.5 lists the

full spectral loadings and their tenative peak assignments.
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Figure 5.13| PC-DFA scores plots of DF1 and DF2 for the fingerprint data of from the HCC-
Cirrhosis macro Raman serum investigation. 15 PCs taken forward for DFA (n=2).
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Figure 5.141 PC-DFA loadings plots of DF1 and DF2 for the
fingerprint data of from the HCC-Cirrhosis macro Raman
serum investigation.
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Table 5.5 PC-DFA: Tentatively assigned serum loadings from DF1 and DF2 (Figure 12)
taken from the serum investigation for HCC-cirrhosis- normal patients [132, 209-210, 213].

¥/ em’! Tentatively assigned Raman peaks DF1 DF2
879 Proteins (proline, hydroxyproline, tyrosine); v(C-C) -
collagen backbone
906 v(C-C) skeletal of collagen backbone (proline, +
945 hydroxyproline) -
997 v(COC) glycoside ring (carbohydrate) +
1001 Phe ring breathing mode (proteins — collagen); - +
carotenoids
1004 +
1039 Proteins, DNA/ Phospholipids, Phe +
1072 +
1096 v(C-N) protiens +
1140 v(C-N) (proteins); v(C-O) (carbohydrates); v(C-C) (acyl -
backbone — lipis)
1251 Amide IIT (v(C-N), v(N-H), 6(C-H) (lipids/phospholipids) +
1439 J(CH>) lipids, phospholipids/cholesterol +
1461 J(CHa>,), 6(CH3) proteins +
1517 v(C-C) porphyrins, carotenoid -
1525 v(C-N), v(C-C) proteins -
1628 Amide I v(C-0), proteins; v(C-C) lipids -
1634 -
1700 Amide I v(C-O) proteins, v(C-C) lipids -
1724 v(C-C) lipids -

5.3.5 Supervised Machine Learning: RF and SVM

The data were submitted to more advanced machine learning algorithms for comparison of the
result to previous analyses. The Random Forest (RF) [57] method utilised in this research was
implemented on R-Studio with the specific package [212]. Random Forest (RF) is an ensemble
machine learning algorithm of building a forest of uncorrelated decision trees or classification
and regression trees (CART). See Figure 1.22 in Chapter 1 to understand how the RF classifier
works. Figure 5.15 demonstrates the output for RF ‘Gini importance plot’. Gini importance
purity index results in a collection of the most interesting/discriminating wavenumbers as a
result from the RF decision trees. The plot itself shows the three patient groups (1-HCC, 2-
Cirrhosis and 3-Normal) as a function of their mean Raman signals, together with their most
discriminating wavenumbers. Moving forward with this allows one to explore Gini-SVM. In
this case, the top 30 wavenumbers are fed in to the SVM algorithm, the grid search is tuned over
and over with different iterations until the optimal cost and gamma parameters present the best
overall classification accuracy across the patient spectra. The results for both the RF classifier

and Gini-SVM are shown in Table 5.6.
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Figure 5.15| Gini importance purity index: RF classifiers results in a list of wavenumbers that are
important in describing the purity of the data. The plot demonstrates the tri-class mean signal with
the importance of each of the wavenumbers across the classification (below). The wavenumbers and

their importance are organised in ascending order (right).

Gini-SVM was carried out following a cost and gamma tune grid. All data frames were tried
until the best data frame was discovered (2°(20:10), 2(-14:16)). A radial basis function (RBF)
kernel was optimised and the results were tested three times and reported as an average. Inputted
to the SVM algorithm was 2/3 training dataset, with 80% divided for an internal test and 20%
of the remaining 1/3 test data as an external testing dataset. Finally, a cross validation (CV) was

done where k=5.

Prior to these results, a preliminary investigation was carried out to ascertain which machine
learning algorithm would be the best at describing the data by way of good classification
accuracies. Three algorithms were implemented (RF, SVM and genetic algorithm (GA)). Eight
different pre-processing regimes were evaluated, ranging from binning numbers, polynomial
baselines, vector, standard normal variate normalisations, derivatisations, wavelet de-noising
and offset scaling to determine which of these combinations garnered the best sensitivity and
specificity results across the three platform algorithms (data not shown). It was decided that a
combination of both RF classifiers and Gini-SVM presented equally mid-high results. GA was
then abandoned. Sensitivity is the ability of a test to correctly identify those with the disease

(i.e., true positive or ++ rate (TPR). Whilst, specificity is the ability of a test to correctly identify
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those without who are disease-free (healthy) (i.e true negative or -- rate (TNR)). The true
positive rate (TPR) and true negative rate (TNR) for a good classifier should be values closest
to the 100%. The formula for both is presented below in Figure 5.16. Both classifiers resulted

in three binary sensitivity and specificity results.

. TP
Sensitvity = 5 =N = diseased
Specificity = N N

TN+FP _ healthy
Figure 5.16] Formulae for sensitivity (se) and specificity (sp).

For ‘Cancer’ subjects the best sensitivity and specificity was seen with the Gini-SVM classifier.
For ‘Cirrhosis’ subjects, both classifiers show similar results, whereas, for the ‘Normal’

subjects, the Gini-SVM classifier was stronger (see Table 5.6).

Table 5.6l Classification sensitivity and specificity results for the two machine
learning algorithms implemented on the patient datasets.

Top 30 WVN- Gini-SVM
RF Classifier Classifier
Sens  Spec  Sens  Spec
% % % %
Cancer 55.1 53.5 62.3 553

Cirrhosis  46.3 58.6 45.6 66.3

Normal 94.3 99.2 94.6 100

The RF classifier method was chosen for this work due to its ease in scalability, meaning that it
is easily applicable to larger datasets, or if the cancer vs. cirrhosis was only tried first. In this
case a third FO patient was easily added. Second, the Gini results are easily interpreted when
discerning wavenumbers were easily identified. Additionally, according to Smith er al. [213],
RF is capable of handling outliers in the input space, which allows spectral classification without
overly-heavy pre-processing regimes. In turn, this can deal well with missing or truncated
values, i.e, wavenumber truncation to the fingerprint region, compared to other classification

methods [212].
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5.4 CONCLUSION

Serum sampling using spectroscopy has several advantages, namely being non-invasive, easily
attainable at low cost and has viable monitoring capabilities to the long-term benefit of the
patient. Owing to its very nature of a complex stream of highly interesting blood products, it
can reflect the internal milieu of the body with biochemical readouts or fingerprints when
spectroscopically exploited. In cases of diseases, such as fibrosis, cirrhosis and tumour invasion,
the analysis of the blood reveals an account of the microenvironment, which harbour biomarkers
of disease. Here, this study used a novel macro Raman approach to interrogate the serum profile
of cirrhotic patient serum samples either with and without HCC in their liquid formation,
towards the development of a spectroscopic diagnostic/screening tool for patient welfare. RS
can provide a spectral fingerprint of all molecules with the serum sample on a global scale. From
this, over 10 000 spectral variables were then subjected to multivariate analysis and machine
learning algorithms to ascertain the salient features amongst the data. Following an in-house
pre-processing regime, clustering algorithms such as PCA and HCA were used to establish
outliers within the data in the first instance. When taking forward the viable patient’s spectra,
PCA only showed differences amongst the healthy FO patients against the diseased (cancer +
cirrhosis) patients. Overall, no significant differences are seen when comparing on a binary
dataset (cancer vs cirrhosis) via PCA. DFA shows similar information for the binary
classification, but with a multiclass (all data), a greater separation between disease vs. normal
was expressed. In contrast, DF1 shows good discrimination between cancer vs. normal (P<
0.001) and similarly, DF2 showed some differences for cancer vs. cirrhosis via a Tukey’s post-
hoc test. PC-DFA demonstrates 100% sensitivity and specificity (99% confidence ellipses) for
diseased vs. normal, but poor classification for cancer from cirrhosis. Finally, both RF and Gini-
SVM demonstrate moderate-good results for this multiclass classification across the patient

groups (55%, 62% (cancer), 54%, 55% (cirrhosis) and 99%, 100% (FO).

In summary, HCC and cirrhosis are clinically and biologically very difficult to show distinctions
when approximately 80% of all cirrhotic cases transform to HCC. This is also shown in the
results of this study; that diseased vs. healthy shows distinct differences in the serum profile via
RS spectroscopy from a liquid serum perspective. However, discerning cancer from a diseased
population has proved challenging. Here, this study has shown the viability of using Raman
spectroscopy on liquid samples without the use of a microscope function for disease screening

purposes.
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VL1 RESUME

Ce dernier chapitre résume 1’objectif principal des recherches menées dans le cadre de la these
de doctorat. Il se termine par les aspects pertinents des recherches et met en évidence les
suggestions possibles pour améliorer la portée future de ces travaux. L’objectif principal de ce
doctorat de projet de recherche consistait a mettre au point une nouvelle approche
spectroscopique pour mettre en place un outil de dépistage utilisable en clinique pour la
détection du cancer a partir de sérum humain. Deux phases de cette recherche sont considérées
de maniere séquentielle: des études pour évaluer des conditions pré-analytiques et des études
sur des cas concrets de maladie pour évaluer le potentiel diagnostique. Pour les études pré-
analytiques, un pool de sérums humains commercialisé a été utilisé€. Pour les études
diagnostiques, trois groupes de patients rétrospectifs ont été étudiés ici; i) sérums de patients
présentant différents stades de fibrose hépatique (F1-F4) par rapport a des sujets sains (FO0), ii)
sérums de patients présentant différents stades de tumeurs primitives du cerveau (normal vs
glioblastome multiforme vs métastatique), et iii) sérums de patients cirrhotiques avec et sans

cancer primitif du foie (carcinome hépatocellulaire).

VI.2 CONCLUSIONS ET PERSPECTIVES

Le but de cette recherche était de développer la spectroscopie du biofluide, en particulier le
sérum, en vue de développer un test rapide du technologie de POC. Des efforts ont été consacrés
a la spectroscopie HTS-IRTF et a la spectroscopie Raman de préparations seéchées et liquides de
sérum humain. On pense que I’avenir de ce stade évoluera vers le développement de nouvelles
biopsies liquides en vue de la recherche des signes distinctifs des profils de maladie basés sur
une vaste gamme de produits. Il semblerait que la spectroscopie IR et la spectroscopie Raman
sont des candidats potentiels a une implémentation en tant qu’applications cliniques de routine
et que le principal point de vue de I’acces a ces applications s’orienterait vers des scénarios de
soins au chevet du patient, ou a haut débit et a grande échelle dans des plateformes cliniques.
Bien que cette thése se soit concentrée sur 1’analyse sérique pour identifier des processus
pathologiques, elle peut étre tres facilement adaptée a d’autres biofluides, tels que le plasma, la
salive, I’urine, les sécrétions biliaires, les larmes et le liquide céphalo-rachidien.

Un autre domaine de développement réside dans la réduction du volume d'échantillonnage et
dans la recherche de mesures permettant de gagner du temps, ce qui pourrait alléger la charge
pesant sur nos ressources économiques pour un systeme de soins de santé plus performant. Ici,
les domaines de la microfluidique et de la nanofluidique sont d’un intérét majeur. L’un des
principaux objectifs est de permettre la gestion des fluides lors de la séparation des composants
liquides, de sorte que davantage puisse €tre fait pour les tests / analyses a partir de la méme

acquisition d’échantillon. Développer des dispositifs micro-fabriqués compatibles avec les tests
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spectroscopiques de routine peut étre la solution pour une technologie sans marquage. De plus,
la tendance a la miniaturisation est la norme a I'heure actuelle, de sorte que 1'on peut voir les

dispositifs spectroscopiques mobiles dans un avenir trés proche.

Une étude prospective consisterait a examiner de grandes cohortes afin de créer de bons
classifieurs. Pour évaluer 1’efficacité d’une méthode, les cliniciens utilisent souvent la courbe
ROC (Receiver Operator Characteristic). Cela permettra a I’analyste d’illustrer graphiquement
le potentiel diagnostique d’un systeme de classification binaire, ¢’est-a-dire patient sain ou
patient malade. Ce type d’analyse est directement lié¢ au détriment / bénéfice des décisions de
diagnostic. Ceci peut également ajouter de la valeur aux données spectroscopiques et mieux
convaincre le milieu clinique de la richesse de 1’approche spectroscopique en tant qu'outil d’aide

au diagnostic, surtout dans un contexte de soins POC.

En résumé, cette these a comparé 1’application des diverses approches de spectroscopie
vibrationnelle a 1’analyse des divers échantillons sériques séchés et en phase liquide. Elle a aussi
évalué la capacité a les utiliser pour des applications diagnostiques. Ceci est basé sur un test de
diagnostic peu invasif (phlébotomie du patient) qui pourrait étre intégré au dépistage
systématique et aux scénarios associés, dans le but de réduire les taux de morbidité / mortalité
dans les systemes de soins de santé. Ces résultats sont préliminaires et des recherches

approfondies sont nécessaires pour bien évaluer le potentiel diagnostique de ces approches.

6.1 THESIS CONCLUSION

The aim of this Ph.D. research project was to ascertain a novel spectroscopic approach towards
a point-of-care (POC) screening regime for cancer detection from human serum. Two phases of
this research emerged sequentially; preanalytical and diagnostic screening studies. For pre-
analytical studies, commercial pooled serum was used. Diagnostically, three retrospective
patient groups were studied here; i) patient sera with varying stages of hepatic fibrosis (F1-F4)
compared to healthy subjects (F0), ii) patient sera with different stages of primary brain tumours
(normal vs. glioblastoma multiforme vs. metastatic disease), and iii) cirrhotic patient sera with

and without primary liver cancer (hepatocellular carcinoma).

Serum sampling via spectroscopy has several advantages, i.e., non-invasive, easily accessible at
low cost and has viable monitoring capabilities to benefit the patient. Blood and its products
have long since been the standard for routine clinically testing as it reflects the internal milieu
of the human body. Blood feeds the tissues and lies at the intersection of cellular-tissue
communication and as such, a perfuse stream of highly informative secretions enables
biochemical readouts or ‘fingerprints’ when combined with molecular spectroscopy. Such
readouts should inevitably reflect the patient’s healthy or diseased status. Therefore, it is for this
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reason that often advanced mathematical algorithms and chemometrics are combined to uncover
the fundamental descriptive and discerning variables for the analyst (out of many 1000’s of

variables from the spectroscopic serum profiles).

Prior to distinguishing the healthy vs. disease patterns, it is important to assure that variations
within the biology of the samples and the preanalytical steps are kept to an absolute minimum,
so as not to introduce further confounding influences in the data. To this end, various
preanalytical experiments were conducted for this research. Developmental approaches were
envisaged to wunderstand possible influences on the overall serum biochemistry.
Experimentations towards freeze-thaw cycles (FTC) and ambient environmental drying (ED)
were conducted. The preanalytical methodologies and subsequent results were seen in the first

part of chapter 3 and chapter 4.

In chapter 3, FTIR analysis via modalities of ATR and HTS spectroscopy were completed for
the effect of FT'C on pooled serum. Here, PCA demonstrated very little changes to serum profile.
The FTC appeared mixed with no logical clustering seen. For both techniques, common spectral
peaks were observed for the serum: proteins (amide I ~1580-1680 cm™; and amide II ~ 1500-
1580 cm™. It was concluded that non-pertinent serum influence from FTC effects were seen on
the spectral profiles. Further, the ambient ED results demonstrated the physical presence of the
fern-like formation. The time points were orientated showing a sequential pattern starting from
TO (fresh drop liquid sera) towards T24 (24 h post drying). PCA loadings highlighted the
prominent bands as proteins: amide I (W(C-O) stretch ~1655 cm™, the N-H deformation ~1540
cm’! and a v(C-C) stretch ~1615 cm™).

In chapter 4 the same study via Raman spectroscopy carried out for preanalytical variation
showed similar results. Hence, no influence was seen on both the FTC (data was mixed with
PCA clustering), and ambient ED study. The overall conclusion from the preanalytical studies
was to successfully progress to the diagnostic investigations with the knowledge of negligible
influence of FTC and ED on serum. However, both FTIR spectroscopy techniques were
discerning enough to demonstrate the coffee-ring effect upon drying. Although, freezing,
thawing and drying appear to have negligible effects on the data outcome, it is still important to
not over-process the samples in practice, and caution is needed not to exceed high amounts of
the physical effects to the samples in the first place. As with any biological sample, it could be

susceptible to degradation eventually.

The diagnostic approaches were investigated and discussed in chapters 3, 4 and 5. Following

down-selections of the methodological design towards diagnostic testing, focus was geared
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towards the investigative veracity of the approaches, i.e., macro Raman spectroscopy on liquid

serum samples and HTS-FTIR transmission spectroscopy on dried serum samples.

The last part of chapter 3 discusses the study for the HTS-FTIR diagnostic high throughput
approach towards dried serum analysis from two patient serum banks. Firstly, fibrosis patients
(FO — healthy; F1-F2 — early stage disease onset; F3-F4 — late stage disease onset and end-stage
irreversible cirrhosis) were investigated. The results demonstrated that PCA was weak in
showing differences between the data groups. However, DFA did show a slight separation
between early onset fibrotic disease (F2) from advanced fibrosis/cirrhosis (F4) via the DF1
loading. DF2 further showed this, as explained by the negative and positive loading profiles
(low-grade and high-grade disease respectively). Increased intensities in the 1530 cm™ region,
the 1635 cm™ and 1748 cm™! bands indicated amide II, amide I (a- helices), and carbonyl bonds
of lipids. Other influencing loadings could be associated protein bands at ~1220 cm™, ~1550
cm’ and pleated sheets/aggregated protein structures. Overall, this study demonstrated that both
PCA and DFA was able to show biochemical differences between some the patient disease

stages. Although a PC-DFA validation was tried, it did not add anything to the data.

In a second patient bank, glioma/brain tumour patients (normal vs. GBM vs. MET) were
analysed with the HT-FTIR method. Here, both PCA and DFA showed some distinctions
between normal vs. disease samples (GBM + MET). DF1 found good separation between
normal and metastatic patients, which is attributed to the broadband CHj; deformation of lipids
at ~1348 cm™ and amide I of a-helical protein structures at ~1640 cm™. More intrinsically, the
positive loadings differentiated the metastatic patients from controls based on J(CHa)
deformation of methylene groups and lipids at ~1440-1462 cm™, amide I of a-helical protein
structures at ~1640 cm™, and v(C-O) of DNA/RNA at ~1075-1088 cm™. The negative loadings
were on two peaks, 1348 cm™ and 1640 cm™, which correspond to the CHj lipid deformation
and the o-helix protein structure of amide I, conducting to separation between healthy and
diseased (MET). DF2 further demonstrated nuances between the metastatic and GBM patients.
The positive loadings were attributed to the majority of GBM patients, and the negative ones to
most of the metastatic patients; both with an influence from normal patients. DF2 in result was

not as discriminatory as DF1.

Whilst employing a range of chemometric techniques, such as RF classifiers and SVM the data
did not show any further discrimination, however when subjecting with PLS-DA leave-one-out
with 10 PLS directions, it was possible to show more than 96% of correct classifications and
increased sensitivities and specificities of dataset for cancer vs. normal (97.6% and 95.7%,

respectively). GBM vs. MET was slightly lower in diagnostic accuracy (71.4% and 65%).
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Whereas, GBM vs. NORM and MET vs. NORM presented 95.2%, 100%, 100% and 95.7%,
sensitivity and specificity, respectively. Overall, this study was able to show good to very good

diagnostic accuracy.

Chapter 4 of this study discussed the experimentation for the Raman diagnostic macro approach
towards thawed liquid serum analysis from the same glioma/brain tumour patients (chapter 3).
The DFA results (positive loadings on DF1) demonstrated a slight separation between healthy
vs. cirrhotic patient spectra from FO and F4 respectively. Such a result was attributed by loadings
from the 900-1300 cm™ region, which encompasses the amino acids and amide III region.
Although a PC-DFA validation was tried, it did not add anything more to the data. The data
were submitted to both RF classifiers, Gini-SVM using an RBF kernelization and finally to a
forward LDA for further interrogation. The highest sensitivity and specificity was a moderate
result and so it is concluded that neither of the algorithms employed were able to provide a
disease discrimination. Overall, this study demonstrated that combining advanced multivariate
analysis as classification tools, is sometimes not enough to find discrimination if the disease

course is highly complex and analysed in liquid phase.

In chapter 5, a large cohort of cirrhotic patients with / without complications of hepatocellular
carcinoma were interrogated using the macro-Raman methodology for liquid serum
preparations. The results revealed that only PCA demonstrated differences amongst the healthy
FO patients against the pathological (cancer + cirrhosis) patients. Overall, no significant
differences are seen when comparing on a binary dataset (cancer vs. cirrhosis) via PCA. DFA
showed similar information for the binary classification, but with a multiclass (all data), a greater
separation between disease vs. normal was expressed. While DF1 showed good discrimination
between cancer vs. normal (p< 0.001), DF2 revealed some differences for cancer vs. cirrhosis
via a Tukey’s post-hoc test. PC-DFA demonstrated 100% sensitivity and specificity (99%
confidence ellipses) for diseased vs. normal, but poor classification for cancer vs. cirrhosis. One
has to be cautious with such result as overfitting could be occurring. Finally, both RF and Gini-
SVM demonstrated moderate results for this multiclass classification across the patient groups

(55%, 62% (cancer), 54%, 55% (cirrhosis) and 99%, 100% (FO0)).

HCC and cirrhosis are clinically and biologically very difficult to distinct when approximately
80% of all cirrhotic cases transform to HCC. This is also shown in the results of this study
comparing diseased vs. healthy cases. The data show distinct differences in the serum profile
via Raman spectroscopy from a liquid serum perspective. However, discerning cancer from a

diseased population is a major limitation in this study. Nevertheless, this study has clearly
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attempted to demonstrate the viability of using macro-Raman spectroscopy on liquid samples

without the use of a Raman microscopy for disease screening purposes.

In summary, this thesis demonstrates the ability to employ various molecular vibrational
spectroscopies towards POC testing for rapid serum sampling in both dried and liquid phases.
This is based upon a minimally invasive (patient phlebotomy) diagnostic test that could be
embedded into routine screening and associated scenarios, in an active bid towards a reduction

in morbidity / mortality rates in healthcare systems.

6.2 SCOPE FOR FUTURE STUDIES

The direction of this research was to develop a biofluid/ serum spectroscopy approach towards
a rapid POC testing. Whilst concerted efforts have been towards HT-FTIR and macro-Raman
spectroscopy of dried and liquid preparations of human serum, it is believed that the future of
this arena will move towards the development of further liquid biopsies towards the search for
hallmarks of a vast range of disease profiles. It is common knowledge that both IR and Raman
spectroscopy are contenders to be implemented as routine clinical applications and the main
access vantage point for these would be towards bedside, or single — large scale high throughput
scenarios. Whist this thesis was focused on serum sampling for disease processes, it can be very
easily adapted towards other biofluids, such as plasma, saliva, urine, bile secretions, tears and

cerebral spinal fluid etc.

Another area of development lies in the scaling of the sampling volume and a further push
towards time-saving measures that could lighten up the burden on our economic resources
towards a brighter healthcare system. Here, the area of microfluidics and nano-fluidics are of
key interest. A major aim is to enable fluid handling for liquid component separations so that
more can be done for testing/analysis from the same sample acquisition. Developing micro-
fabricated devices that are compatible for routine spectroscopic testing can be the answer
towards an absolute label-free technology. Additionally, the trend for miniaturization is the
norm at present, so one can see mobile spectroscopic devices being something of the very near
future. A prospective study would be to look at large cohort studies to build good classifiers.
Clinicians often use receiver operating characteristic curve, i.e., ROC curve. This will allow the
analyst to graphically illustrate the diagnostic ability of a binary classification system, i.e.
normal vs. disease. This type of analysis is related in a direct way of the detriment/benefit of
diagnostic decisions. Whilst the benefit clinically based, it may also add added value to the
spectroscopic data and better convince the clinical area of the wealth of spectroscopic as an

adjunct tool at POC settings.
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Serum Spectroscopy:
Freeze-Thaw and Drying Sample Preparation
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To understand the effects of freeze-thaw and environmental drying using transmission, ATR-FTIR, and Raman micro-
spectroscopy on human serum content

= Biospectroscopy is guickly becoming an effective tm
within -~ medical diagnostics. Recent  global
developments within biomedical spectroscopy, means (
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analysis for rapid biochemical snapshots for underlying
disease functionality; an endeavour previously focused
on tissues.
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= Serum spectroscopy  sample preparation i ostill
unesplored. To date foous is towards  serum
diagnostics for health and pathology, however, little is
known about serum sample stability for freeze-thaw
and environmental drying.
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freeze-thaw cycles and serum envirenmental ageing
will be observed using both Raman and infrared Fig 1. Experimental § step procedural plan to test the effect of freeze-
Spectroscopy. thaw/drying on human mmxl:::::T samples. HE. Step & denobes

SPECTRAL & DATA ANALYSIS FLOW-THROUGH
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drying studies.
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DATA COLLECTION & PROCESSING
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the dotn =ctx, followed by standand
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Fig 2. FTIR Agilent Cary 600 series ot UCLan. Fig 3: Horiba Jocan-Ywon LabfAM HREOO
spectrometes at UCLan.
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. % Hepatic fibrosis (HF or liver fibrosis, LF) results from a wound-healing response to repeated injury!, ée. viral hepatitis or non-alcoholic steatohepatitis (NASH)? Tibroshs Suge
Degyree of Foflammiione Sccaring)
> Initiation of an inflammatory response leads 1o a decrease of extracellular matrix (ECM) proteins at the injury site. with of cells with
parenchymal cells in the normal response. However, persistent injury/liver regeneration, eventually hepatocytes replaced by more ECM proteins, such as fibrillar collagen T0 - o Ghausis.
~
B - Fibrosis — graded on u 5-point seale from FO to F4 (see Fig. 1), Differentiation of the fibrosis stages via non-invasive methods, such as vibrational ie. Raman | !
Q spectrascopy’, s vital for borh the cliniciuns' and pationt benefit, us fibrosis is a precursor for cirrhosis and hepatosellular carcinoma (HCC)*!. Chranic Hepatitis € viral (HCV) 5 i of most poatal sones andl occasicesd.
= infection is the leading cause of hepatic searring/fibrosis®*. fene
=
=] > Currently — no “Cold Standard” sereening regime? and biopsy is an invasive diagnosiic technique with associated with morbidity, passible martality, relatively high costs and T3 cxpansion ol most purlal zones, meked bradging
= has the potential for sample error , e, ohserver variation’” ard occasonsl nncikes
=
Bl - FibroTest & FibroScan arc routine biomarker and imaging diagnostic tests and have been shown to more accuratc at advanced fibrosis stages™ so further L
nesded, Hers, we proposc a macto Raman approach cmployed on liquid serum from paticats of varsing shies of fbrosis for discase fingerprint delcetion and HF singing 9 -
population of HF patients were investigated and analysed with multivariate analysis (MVA), such as PCA and PC-DFA. Fig. 1 METAVIR score
b - . - N PR s eps .
p Aim: To develop 2 macro Raman approach for hepatic fibrosis detection and staging from liquid biofluid N
DATA COLLECTION PRE-PROCESSING MULTIVARIATE ANALYSIS
® - ‘
Raman easurements with a Horiba Jobin-Yvon LabRam HR 300 spectrometer The following PCA
cetup was used: : * lnstument Respanse (Dark Noise. e
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= spestromoter Calibeation) Pre-processcd Rumun Flbrosh Datazet
=} (reetionof ight) = :
= K S)mcnnl acquisition:- 1800-500 E
=
— + Qually Variance Testing and 2
= B Fciacion aser - 785 mn S 25- 1 , A
5 divde (300 m¥) deme = o el + Wavenumber Truncation |:">
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¥ Forty-two patients were Investigated and pre-processed and analysed ot grouy spectra o disrisminm fiurrs »PC-DFA binary clas:
with Principal Companent Analysis (PCA) and Principal Component - e R R

Discriminant Function Analysis (PC-DFA). Fig. 3 to § demonsirates the
cation resulls.

on demonstrates a strong positive predictive value
for none (o low levels of fibrosis but poor values for advaneed staging. 50 PCs
were projected in to 3 1DFs® space with ttal explained variance of 99.87%.
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[ 3 Here, 42 librosis palients (FO-F#) were analysed based on their FibroTest resulis [or ¢HOV infection. For data analysis dilerent interrogation of the palicnl groups were assigned, bused on a fhree tier labl and

binary elassification. Routine data pre-processing and PCA for initial data clusiering was carried out. PC-DEA showed moderate (o g00d fesults for the binary elassification with F2 patients removed.

# These results demonstrate a strong positive predictive value for the FO-F1, but poor value for advanced stages. The most discriminant features of the fibrosis were found to be in the lower frequency region of the
fingerprint aspect, and contributions from lipids, proteins, DNA, tryptophan, phenylalanine, tyrosine and nuclcie acids (~900-1350 ).

% Future works indicated for this project are Random Forest (RF) classifiers ta determine the best discriminate features, which will then be tuned to a support vestor machine (SYM) model. Tt is believed that the
GINI-fed SVM from RF classificrs will be able to highlight a greater degree of separation with increases in sensitivity and specificity.
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Raman spectroscopy (RS) is a label-free, non-destructive and minimally invasive technique that has been used in a number of proof-of-principle studies to develop diagnostic biofluid
troscopic workflow. Clinical utility via RS is underway, however pre-analytical variabilitics need o be

0
'

. spectroscopy. However, little is known about serum stability prior o the s

H understood, first. Tn most studics fresh samples are not readily available and it is commanplace to work on Irozen stored samples. The effeet of freeze-thaw eyeles (FTC) is therelore an
' important parameter fo take into consideration and in the present study we seck to observe via micro-Raman spectroscopy (MRS) the related spectral variability and any associated
'
.
i
'
i
i

biochemical changes by employing two biofluid protocols: liquid seram and drop-coating deposition MRS (DCD-MRS).
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, 4. Conclusion & Future Perspectives

crimination between the FICs shows the potential of RMS coupled with PC-DFA. ‘The liquid showed less compared to DCD-MRS

Gmind). The DF loxdmg's (1 & 2) mst s et ek svsngnments ane sbone, zevging [ 620 1680 ¢ For he respaceve DI baioms 1 31

“T'he results obtained on the di
which appeared to show moderate to good FI'C separation. Furthermore, the center vs. ring zone data also gave similar sensitivities .md specificities: the center being marginally better. Overall,

structures of the serum, Given the results her, it could be suggested that serum viability at the pre-clinical level, is
mized when passible, in future cxperimentation.

such variability can be awributed to possible changes of the lipid and protei
structurally affected afier nominal FTCs, thus excessive FTCs should be r

'
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Developing and understanding biofluid vibrational

spectroscopy: a critical review
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\Vibrational spectrascopy can provide rapid label-ree. and objective analysis tor the dinical danmain
Spectroscopic analygs af biofuids such as blood companents j2.g. senum and plama) and others in e
presirvity of the diseased tissue or call je.g. bile, urine, and sputum) offers non-irvashe disgnosiclmonitonng
posibilties Tor future heslthears that are capable of rapd dagnosi of dissaces W gpedlic spectral mankers
or sgratues. Biofuids oller an ideal disgnoslic medium due 1o Beir 2age and low oo of colleckon and
daily 1E2 in clirical biclogy. Due o the low rek and invasveness of ther collection they ane widdy weloonmed
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by patients as a disgnosic medium. This review urderscores recent research within the Tield of biofuid
spectroscopy and IS use in myriad pathologies such a5 cancer and irfeclous diseaces It highlghts current

progeses, advents, and pilalls within the fidd and discuses fulure spectoscopt clinical polentals tor
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Introduction

Biophotonic techniques are widely used in research for develop-
ing new modalities with the aim to improve patent healtheare
vig better diagnosis, prognosis, and surweillance. Vibrational
spectroscopy holds such promises because the “molecular finger-
print” that it provides represents a snapshot of the sample
biomolecular compositon and variations therein can be exploited
toidentify different pathologies. ™ Its sensitivity to such variations
makes it possible to pmbe pathophysiokgical processes in cells
and tissues as demonstrated by many reports for more than a
decade,” leading to the concepts of “‘spectral cvtopathologye and
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diagnostics. The requiresments and Sses surounding clinical Fanslston are alio cormitenad

“spectral histopathology” *~ With the advances in spectroscopic’
imaging technologies and data processing techniques, cells and
tissues can be analysed rapidl and non-invasively to identify
disease-related abnormalities. Indeed, some promising smdies
have reported the added wvalue of vibmtional spectroscopy to
deliver an objective diagnosis but they were performed on a
limited number of patients.” In spite of these advances in cell
and tissue spectroscopy, the technique has not vet been able to
overcome the experimental research phase in order to be
ransferable from bench to bedside. This is mainly due to the
lack of standardisation and validation in large clinical trials
and multcentre actions. Access to large sample sets with ethical
approval is also a limitation. We believe that spectroseopic
diggmosis/prognosis vz biofluids represents an interesting alter-
native to cells and tissues. Presently, there is limited research
representing high-powered clinical stdies for biofluid spectro-
seopy, vet through the use of animal systemns several studies from
Naumann's group have set the precedent for sudies imoking
large sample numbers; instilling confidence in the high sensi-
tivity and specificity model outcomes by using several hundred
animals per smdy. "

The quest for disease markers through “liguid biopsies" isa
fast emerging field and has only been recently explored by
specimscopic approaches. Blood components like serum and
plasma are routinely used for blood testing as they contain
biomarkers that are useful for disease diagnostics. For example,
in diseases like cancer, they are known to be a rich source of
information and represent readouts of the ongoing cellular and
extracellular events.*® Further, they are easily accessible and
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minimall invashe for patients making large studies feasible.
Orther omgan-specific bioflulds in the prosimity of the dizeased
cells or tesmes like bile, urine, putum, and cerebrospinal fuoid
am aleo of interest for diagnostic purposes. Recent trends tend
o indicate that the use of single or few biomarkers has fallen
out in Ervour of muliple biomarkers™ and in this context the
mile of vibrational spectmecopic methods can be determ inant
as the informmaton provided containg data on global sample
biomolecular compositon providing a chemical ‘Angerprnt’
or ‘signature’ of the sample. We will focus on the ability of
vibratiom| spectroscopic ambsis o lluminate these disease
slgmat ures |disease pattern recognition) for diagnostic purpoees
as ppposed to the gquantiative determimation of specific macro-
malecules within the biofluid. ==

Thiz eritical review, from both the spectroseopic and clinical
points of view, considers the jssees e noountered during tmns-
latioral research aimed at assescing the potentale of infrared
amd Raman approaches as rapid and labeldfree dignostic
methods for biological Muids. Tn add tion, the technigues can
be adapted to a variety of dEeases and therefore mepresent a
oost-effective lmestment for healthcare systems. Thiz approach
oould provide a dymamle diagnoetic envirmment that will enable
mpid dingnostices leading to earlier treatment In addition, the
ahility to accurately and rapidly monitor disease will allow for
choser patient follow-ap and earl ler chamge in treatment (fneeded.
Thiz would ermble patients o access treatment earlier with
reductions in mortality and morbidity.

Vibrational spectroscopy

Vibrational spectroscopy melates o specilic optical technigues
of infrared (IR) and Raman spectroscopy. These technlgues

Viewr Amick Dl re
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probe intramolecular vibrations and rotations of the sample
when iradiated with light'® The light-mamer rehtonship
e underpinned by the electmmagnetic theony postulated by
Macwell '™ Vibmtional spect mscopy has been used for analys-
ing a myriad of samples in chemical, physical and biologeal
app lications.

The Raman effect constitutes the sponta neous inehstic lght
seattering prscess of photons follwing the intemction of a
monachmmatic radiation (eg, heer source) with the sample.
During this interaction both elastc and inelastic scattering
procesees take place. A high proportion of the photons ame
elastically scattered with no change in ene gy (20 no molecular
information), known az Raylkeirh scattering.” When photons
transfer ene gy tothe molecules as vibmtom] enemgy, the ene gy
e of the scattered photng comegponds o the vibmtional
enemgy kewls of the molecules. This is known as the Raman-
Sokes scaterng. The incident photons can in tum peoe e
ene gy Toomm vibrating molecules, amd therefore their freguencies
increaze, desoibed as the Raman ant-Stokes scattering. Fig. 1
shows the tansitons invohed during these thee prscesmes, In
spontanesus Baman, the Stokes scate dng i= generally used duoe
i its higher Sensithity.

Infrared spectroscopy (TR) is bmoadly defined as the stady of
abeorption characterstics arising from the molecular motion
of materals due to atomic displcement” upon intmate inber-
action with an infrared source.™ Depending on the modality
of choice, the mdiation can be either ransmitted, intemally
reflected, relected, or transflected (a combyinatdon of tanemission
and refllectanoce]l Durng the lght- matter interaction, infared light
causes a malecule to enter a higher vibmtional sate due to the
wansfer of ‘guanta’ o ‘packets’ of energy at cetain wanvelengths
dependent upm the compiton of the matter under anaksis,
Fig. 1 illustrates the enemgy level tmnziton invalved in the TR

Excited
shate
s i-" R i g :- """"" : """"""""" } Wirtual
E e ity et J——————-‘——Tq —————————————— state
] N F ot | [F 4| |F
hgf hiag |k by i‘
= =
Y Wibraticnal
F levels
Au I 1 a T Joe e
Ramsan Ranylelighi Ramuarn e siate
antl-Stomes scattering Stowes Infrared
scatiering scatiering  Absorption

Fgl Enemy dagram showng ranstons nwoked dunng nfered atsonption, Ragleigh, Raman Stokes and anté- Stoves scattesng. This Jablonsio
dizegrasm shows that The same wbrational stades of a given mobecube can be probed Wa tao different routes; one dinecty mezouee s the absolute fequency
IR @sorption) and the other Mexures the relative fasque ncy or Raman shift (Stooes and ant-Stoloes). he, = Incident eser energy, hag,, = vibratonal

energy, Av = Haman shift, e - vbatonal frequences.
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abzomption prscess oompared to Baman scattering showdmg
that vibrational energy kevels can be probed with both techink
gques using differemt plysical processes. These transitions
rezult in a speetrum constituted of peals/bands that can be
imempreted gualitt vely (peak position) and guantitatively
(peak intensity/ares, relathve iatensity]. For [R Spectioseopy
the bands arige from a change in the electric dipole maoment
of the molecu les, whe reas Baman is aseociated with a change in
the molecular polanzability.

Constituent ¢ bemical molecular bonds present many forms
of vibmtions which oeeur at different epempies oomesponding
toy different allowed transitions. TR and Baman spectrosooples
are oomplementary and provide a “fingerprint” o “signature’”
of the molkcules contined within the sample depending on
whether their bonds exhibit Baman or TR activities, Cerain
vibratione that are allowed in Raman may be forbidden in
IR and wee verma. For a full meatize of fundamental spectmo-
soopy studies, the authors direct the mader o bwo eviews by
Barth and Harz on IR spectmoscopy™ amd Long on Raman

spectmecopy.”

Biological and biomedical vibrational
spectroscopy

There is a continuing efort devoted to the exploration of new
technologies that can detect early signe of dizeases and there-
fore significanth redoce morality and modbid iy, This depends
on the ability to detect bioe bemical /mombological chamges at
an early stage of the dizseaze or before the dizease becomes
symptomatic. Detection of biomarkers plave an important mle
in this exploration, and in the case of cancer for example, they
cover a brsad range of bioche mical entities, such az nucleic
acids, proteing, carbohydrates, lipids, small membolives, and
ovtogrenetic and cytokinetic parameters, az well as entire cirew-
lating tumour cells found in body Auids. They can be used for
rgk ascecement, diagnosis, prognosiz, and for the pred icton of
treat meent efficacy and toxicity and disease mecurmenee.

e the kst 20 vears, there has been an exponential inemeae
in the number of studies dedicated to ide ntification of new cancer
(Fig. 2a) and infectious disease [Fig 2b) blomarkes, mainly
because of the tremendous development of high thooughput
malecular technokegies and asaeiated bioinformmatics. However,
among the huge amount of candidate biomarkers, only a
lirn ited mumber have been validated for use in medical practice.
A recent paper states that in DMA and protecmic research, out of
100 biomarkers dizscovered less than 100 have been validated
for routing clinical practiee ™

Vibmtional spectmecopy can contribute in bAnging a new
way for searching biomarkers, mmely “spectral sgmatures'
or “zpectml biomarkes”, which reflect the total bioche mical
compoeition of the studied sample as it has been em ploved for
cell and tzswe amb=is since the plonesdng work by Mantsch,
Maumann and Dien, to st just a few.

Biologrical samples am freguently analyeed wia the tmnsmis-
sion mode in the mid-TR region, where most molecules absorb

Thes powrnal = B The Boval Socety of Cherrestry 2015
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Fg.2 Humber of pubbcatons setumed in FubMed when nputtng the
fenms “cancer iomarioer” |J and “infection biomarkes” o)

and the molecular absorbance is proportional to concentration,
obeyving Beer-Lambert's law for non-scattering samples. Mid-TR
abzorption features between approsimately 4000 and 4040 cm™"
(2500 25 pm). Fig. 3 illustmates an example of an FTTR &pectram
of a breast Hzoee with the assgrment of some imporan bio-
malecules. The spectrum can be divided into four regions where
the main macmmoke cules abeorbh: -CH2 and -CH3 groups of fatty
acids and proteins (3050-2000 cm " C—=0 steehing vibraton s
ity Fromm Lipid esters (18001700 cm™" } C—0, N-H, and C-N
mwxdes from Amide T and II proein bands (1700-1500 cm™'
phosphate vibrations from nuckeie acids (1225 and 1080 cm )
and earbolydrate alsorptons (1200-900 cm—" ) Librades boosing
zpectra from bioksgical and bischemical samples have been
ocollected over the years.

wver the yeas, vadants of IR spectroseopic technologies
have been tested. A recent review highlights the use of TR tech-
nigues 0o probe the functionaliy of biological and biomime tie
systeme. ™ Their applications to study biological and bio-
medical specimens have continumisl increased 2 When
used to analee biofluids, the mid-TR o nearIR spec tmseopies
would be performed on drying samples to pegate the over
whelming water band from obecudng spectra and to increase
st oo ation, ™"

Another method of ocbhmining an IR spectrum is when the
sarmple & plced on a highly reflecting suface, typically ahamin am'
teflon coated substmtes or a glass slide with tn oclde-tased
silver reflective coating called low e<lides (e, MinIR). In this
cage the proess iz termed tmneflection because the IR beam
passing through the sample iz refllected off the slide and passes

Chevn 5oc. Rew
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Fg 5 FTIR Dioogecal spectnum showng frequent biomoieoular band
zmgnments from 5000- 800 omi~, where ¢ ~ streiching vibrations, & -
pendng wibaisons, 5 = symmeinc erstions and 25 = s wibe-
tions. Bushation Taoen fnom Tmn Smisson s pectra an hurman bresst ductl
carcinoma, peepamd on L mm thick BaFz sides” The 3000-2000 o™
reghon o inate s mostly from Bpds (CH, OHp and CHg steetching maode s),
but proien sonption of the wame Maodes also conirnbuie io these ahson-
i nds

again through the sample before detection. These substrates
lave very low cost bt recently they have been shown o cause
sigmificant spectral intensity variations, due to an electric free
standing wave artefact (EFSWFS which could be mizinter
preted as composition vadations while it is the sample thick-
mess variation that & questiomable. The fundamental guestion
when wing low ezlides 2 whether the spectral vadations
abee rved due to the EFSW impact on the diserdminant spectral
diferences. In case of thin samples such as air-dded cellular
mitolivers, moent reseamh by Cao of af. has shown that the
zame classification was obtained when pedorming tmnanis-
zion and tramsflection measurements **

Attennuated total reflectance (ATR) FTIR spectroscopy iz a
promising modality for bickglcal sample analysiz. The gulded
IR beam propagates thiough a high refractive index crystal
surface producing an evanescent standing wave that penet mates
the sample by a few micmns. However for appropriate wuse,
several Ezues need to be considered, such as contact between
the ATR crystal and the sample, the beam penst mton depth
and image distortion due o high efactive indices, -

Despite its molecular specificity, FTTR spectmecopy suffes
from some shortcomings which lmit its applicaton to the
measurement of biologeal samples and their dymamic beha-
viour. An imporant ope 8 sensitivity, in paticular in thin
zamples as a esult of the Beer- Lambert's lawv. Signal amplifics
toncan be achieved by the plasmonic resomanees of nanoseale
metallic pamticles,™ msultng in the phenomena of sufface
enhanced infrared absomption SEIRAL™ in analopy with surface-
enhanced Raman scatedng SERSL Early SEIRA studies utilised
petal fslnd Alms™"" and dried samples, but today plsmonic

Chem Soc. Rew
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chip-bazed technology enables the e by monibori g of protein
and manoparticle inte metions in agueous media, at high sensi-
tivity in real time ™

Ome method of choice for cell and tiEsue ambziz has been
IR micmepectmscopy. The coupling of an FTIR Spectmimmeter
with a micmecope has helped to perform micmanabziz and
jain in spatal esolution - 15-20 pm with a thermal soo e
and ~ 510 pm with a synchroton soure wsing single element
detectors. These systems ame Bmdved by low sensitivides and
time-consum ing expedments [everal howrs) as they remmin a
point by point acguizition. In the 19590, the advent of imaging
devices with multielement detectors combined with apeure
kss micmecopes, high-tech amtomation and faster computes,
lave drastically redoced the data acquisition tmes (few hours)
with resplution going down o ~2 pm per picel with lguid
nitrogren oooled focal plane army detectors. Mamy msearch
groups have demonstated the efficacy of emploving this to a
clinical etting on biopsy samples; ouniomizing subjectivity and
increadng dibgnostc accuracy. In spite of these progresses,
such instuments emmin esearch machines and are not
adapted to be used as benchiop technigues for mutineg analysis
in a clinbeal Setting.

The launching of new IR imaging devices incorpotating
high-intenzity tunable guantum cascade khszers [(QCL) could
revolstionize the way elinical TR images are asgquired ™ High-
timoughput IR chemical imaging = now in its el days, and
meeds to be tested and validaved. However, a gain of three orders
of magnitude i acguRiton e has ecentl been reported for
e samples by Bhargava's group.’™ Combining signal enbanee
ment from SEIRA and fast imaging using a QCL source with
gmall bandwidthe, a eeent study claimed a -~ 2040 fold fain in
imaging time ™

The Raman shift covers the range between 0 amd 3000 cm™ "
Faman spectroseopy can be used in the confocal mode and
with the mammance and surface-enhaned modalities. Applics
Haone of Faman micmepec troseopy for probi g biological syae me
lerve been continuously expanding over the years along with TR
spectmscspy.” 1t high spatial reeohtion (-~ 0.5 pm with green
lase =), compatibility with aguesus emimnment,”™ and in i
amenabiliny™ ™ makes it a good candidate for biokygical and
bismsedical research. Aldn o FTIR, it aleo provides high conbent
bismolecular information. Microgpectmeenpy with  imumersion
mensurements can be used to enhance the ignal w backgnoand
ratio ema bling b rher quality data scquiziton as demonsrated by
Bonnler of al M

Due to it advantages, labekfree, high spectral specificity,
livted warter sigrmal, and the Fact that mos biokgical molecules
are Baman active, Raman has been deploved to i wire eell and
teaie studies, but now significant developments of o W wark
due o the compatibility with Ghres has enabled Ransan endoseopy
i a kabelfree manner and o wvo Ranan probes/endosom e luve
made direct tissue amalsis possible. ™

Mew fields of measurement and impleme mation possbili-
tes have multiplied dise to recent hardware developime nts,
improved sampling methods, and advances in the design of
Raman techiology alongside developments and advances in
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multivariate data analysis. It has been possible to uncover
subitle disease-related spectral changes and exploit them in
chssification models. However, an impotant drawback of Eaman
spectroscopy is that the effect s inherentl weak as a very small
proportion of incident photons are scattered |~ 1 in 10%) with a
corresponding change in frequency.’™ This together with the
fact that to date maost of the commercial systems use dispersive
configurations adds another imitation compared to fast IR
imaging systems, and makes Raman imaging of biological
specimens a slower process. These limitations can be partly
circumvented with other Baman modalities based on Besonant
Haman Scattering (R RS ) and Surface-Enhanced Raman Scattering
[SERS) toenable gains in detection sensitivity.™ In SERS technol-
ogy, the use of functonalised metal nanosurfaces has allowed
optimising the enhancement to several orders of magnimde
depending on the metal substrate. Metal nanoparticle
arrays and single nanoparticles have been utilized for high-
throughput detection.™ $ERS has been applied in different
areas in the chemical and biological fields™ and its very high
sensitivity has allowed single molecule detection.™ Until recently,
SERES was not widely applied to biomedical research because of
izzues linked to complexity of the biological medium, biocompati-
hility, reproducibility, and short shelf life. However, using siver
and gold colloids as SERS substrates, Bonifacio ef ol recenth
showed that repeatable spectra could be obtained from protein-
free hlood serum and plhsma*®

Furthemmaore, non-linear Raman spectroscopy has  been
developed to be applied to hiomedical anaksis like Stimulated
Raman Scattering (SES) and Coherent Anti-Stokes Raman Scat-
tering [CARS), for rapid image acguisition [one BEaman band at
a time) with higher sensitivities than spontaneous Raman.™ ™
For non-linear Baman, it is important to know which marker
band|s] are useful, in analogy to the application of Dviscrete
Frequency-IR [[3F1R) as enabled by the use of QUL sources.

Other areas of current interest for Raman speciroscopy
are exploring the sampling depth and location of speciral
information. For instance, seminal research conducted by
Stone, Matousek and collaborators demonstrated the principle
of spatially offset Raman spectmscopy (S0ORS) for subsurface
analysis towards ir wive breast cancer™™ and deep Raman
measurements using liquid tissue phantoms to mimic non-
invasive cancer screening applications i vive.™ Throughtissue
sensitvity was increased wiz SES0RS measurements at several
millimetres depth, ie, combining S0ES with nano-tagged
SERS particles.™**

Building on the research described above, the field of
hiospectroscopy has continuously progressed and expanded
to complex biological systems such as biofhids™ with a major
focus on the development of a potential diagnos tic/ prognostic
tool with remarkable scope and future elinical promises.

With the global disease burden set to rise, a more rapid,
non-invasive, label-free, non-destructive, automatic and cost
effective disgnostic technigue like vibrational spectroseo p would
revolutionise the clinical envimmnment. s utlity as a biofluid
diagnostic tool is heavily reliant on the principle that cellular
and tissue dvsfunction or irregularities affect the biochemical
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make-up of biofluids, manifesting as protein, carbohydrate,
lipid, and nucdleic acid subtle differences.™

Owver the last decade, developments in this field have been
ongoing in order to fulfil these objectives and ultimately leading
to better diagnostics and tme to results to improve patient
outcomes, offer more efficient public services, and reduce
health eosts.

Biomarkers in body fluids

According to the National Instimates of Health definition, a
biomarker is “a characteristic that is objectively measured and
evaluated as an indicator of normal biologic processes, patho-
genic processes or pharmacologic responses to a thempeutic
intervention’” " In line with this definition, there is a large
range of clinical simations where the biomarkers are of para-
maount importance for the patient's management: screening of
patients at risk of the disease or with the disease at an early
stage, differential diagnosis of the disease with other condi-
tions, prognosis of the disease independently of the treatment,
prediction of the response to treatment, and monitoring of
disease evolution [Fig. 4).

Molecular biomarkers may be detectable in tissues and bio-
fluids. Fig. 5 illustrates the case for cancer where tissue hio-
markers can be used for cytological or pathological assessment
of the disease or for molecular or speciral imaging technigques.
The umour is vascularised and markers are shed into the blood-
stream Another health Esue i the eady detection of biomarkers
for the diagnosis of infectious diseases coming either from the
hostor from the pathogen. From the initial interaction onwards
the majority of biomarkers available to measure are derived
from the host sinee pathogen numbers are very low and the
haost is able to utilize components of both the innate and adaptive
host response to drive an appropriate response. In serious
infection, when pathogens are able to cvercome the early host
response to their presence, their numbers increase at an expo-
nential rate resulting in significant monality rates. In such cases,
the relative coneentration of microbia biomarkers increase over
time whilst biomarkers associated with the ongoing vet ineffective,

Fig. 4 Schematc of Domarkers use in dinscal pracioe
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Fig 5 Example of potential temour-site related biomarkers.

haost response are stll readily detectable [Fig. ). Preliminary
evidence has been produced which indicates that it is possible
to identify the presence of an infectious omganism through
analysis of host biomarker signatures before patients become
sympiomatic.** Thus, the concept of searching forsuch signanres
in host biofluids presymptomatically appears as a promising
avenue for exploration in order to enable eark therapeutic
intervention.

Begarding biofluids, blood and its constiments appear the
most convernient for hiomarkerbiosgnmature detection given its
ease of availability and the possibility to repeat the test as often as
necessary to monitor disease progression or response to treatment.

Pathogen Biomarkers

Fig & Therelative contibution of hast and micsobial derived bicmadoars
o enable diagnoss of mfecton
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Blood serum houses more than 20000 different proteins. It
perfuses all body organs meaning it contains a large range of
proteomes from surrounding tissues and cells, making it the
maost comple biofluid.™ The kow molkcular weight fraction
serum component of blood, known as the “‘peptidome’ is infor-
mation rich for diagnostic purposes.®® Other hiofluids (bile,
urine, sputum, pancreatic juice, and ascitic, pleural, cerebro-
spinal fluids), in direct contact with the diseased tissue, are
of great interest as media to detect biomarkers'biosignatures
that are secreted or shedded locally. These are expected to be
present in higher concentration in these fluids than in the
blood. In addition, their identification may be facilitated by
a less complex molecular composition of local biofluids
compared with blood. Although some biofluids such as urine
share with blood samples ease of availability and repeatahility,
analysis of other biofluids requires an invasive procedure,
which limits their repeated use in the clinical setting. An
example is cerehrospinal fluid which requires a lumbar punc-
ture for collection.

Whilst biomedical vibrational spectroscopy has been devel-
oped initiallk maink for cell and tissue analysis, it has been
also applied more recently to biofluids for biomarker discovery,
generating a number of pilot studies with promising results as
presented below. The challenge & now to oanslate the resulis
of these exploratory studies to the routine clinical practice.

Biofluid spectroscopy

The search for disease markers in biofluids wz photonic
approaches is a fast emerging field and has only been recently
explored by vibrational spectroscopic approaches. Biofloids are
easily accessible and minimall invasive for patients making
large studies feasible. Like cells and tissues, hiofluids exhibit
vibrational spectra that have characteristic bands reflecting their
biomolecular composition. Fig. 7 compares the FTTR spectra of
some dried biofluids (serum, plasma, and bile) obtained with a
highthroughput module in the transmission mode. [R spectea
of serum and plasma present very close profiles with subtle
differenees that are difficuk to depictvisibly. This is exphined by
the fact that serum is essentially plasma with the clotting factors
of blood removed. The assignment of the main bands is pro-
vided in Tahle 1.

The bile spectrum differs through a higher lipid and carbo-
hydrate content and by relative intensity changes of the protein
amide Ifamide I1 bands ™'

Baman speciroscopy gives complementary information to
K. Besides the main macmomalecules like proteins, lipids, and
carbohydrates, other modes onginating from amino acids for
example are active. The assignment of the main bands is indicated
in Fig. & showing an example of a typical Raman semum spectruim
taken from a dried drop.

Serum and plasma

At present, the majority of the biofluid spectmscopy research
has focused on serum and plasma. This is most likely due to
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Fig 7 Compaion betwesn HT-FTIR specira of differsnt bofluids: senum jeed cusve)], plasma fblue corve], and bile | green cunve]. Specina ane bac ogrowsmd
cormeched and nosmalzed Mot senum and bile were oolleched in diny tubes wihile for plasma samples Bhilem heparin tubes were used,

Table 1 Assgament of the mapor absoption bands of a plasma FT-IR
:l:-a:uu:n"

Bands {em™") Major assigaments for plhsma contents
3300 w{N-H) of proeins (amide A band )
A055-30940 = CH) of lipids

2950-2061) 15 JMCH Y oof lipidds

290-2930 15y MOHLY oof lipids

ZHRS—ZHAD 1 CH ) of lipids

ZH-ZH60 vig| CHz ) of lipids

1730-17640 W Con ) of fatty acids

Liaiel) W G0 of proteines (amide T hamd)
1550 N-H] of proteins (amide TT beanmd)
1420 CO0™ ) of aming acids

1230 1, JP=0 | of mucleic acids

117011240 W C-0) and 14C-0-C) of carbohydrates

1z st ngy vibrestions:, 8 bersding vibrations, €1 syrmomestric, as: aspmimettic
Taken fom Lacombe ef af., Anafpet, 3015, 1480, 2250,

the prevalence of these types of samiples within current hiobarnk
stocks or the fact that ethics are already established to collect
these samples and all that is required is an addendum stating a
separate use of the material.

Malignant diseases. Currently, in the field of oncology, maost
investigations are proof-of-principle studies showing the poten-
tiak of FTIR/Eaman spectroscopy to identify different tvpes
of cancer from serum samples with high degrees of accuracy.
HT-FTIR spectroscopy in ransmission mode was used to dis-
criminate urinary bladder cancer patients from patients with
urinary tract infection with linear discriminant analysis (LI
or mndom forest [RF) chss fiers.™ Using blood semam, Backhaus
et al distinguished berween breast cancer and controls with a
wvery high sensitivity and specificity.™ Chemometrics combining
suppor vector machine [$VM) classificaton and leave-one-out
cross validadon was emploved by Zhang ef ol to separate
cirhotic patients with or without hepatocellular carcinoma™”

This joumal & & The Royal Sodesy of Onemisry 2045

Equall imponant is the possibility to identify liver fibrosis
stages prior to the development of hepatocellular carcinoma,
which are crucial for the clinical management. A studv by Scaglia
et al. revealed that patients with extensive fibrosis [F1/F4 stages)
could be distinguished from those with no fibrosis [P0 stage)
on the basis of their FTIE serum spectra using a combination
of discriminant wavenumbers.™ Smdies using ATRFTIR
spectrascopy coupled with classification machine discriminated
ovarian® and endometrial cancers.™ It also allowed differentiat-
ing gliohhstoma multiforme [GEM) from healthy control and
low grade gliomas and GBM versus healthy contral. ™™

Applications of Eaman spectroscopy to the study of various
biofluids from cancer patients are in continuous progress. Sahu
e al. analysed serum samples and could differentiate oral cancer
patients from controls.”™ Maore recently, they reported that Baman
serumm spectroscopy was capahble to predict the probability of
recurrence in this cancer.™ Other studies have shown the
potential of Baman spectroscopy for differentiating normal
suhjects from patients with breast,™ colorectal ™ or cervical™
cancers. A proof-ofconcept study using micro-Raman spectro-
scopy applied to the sera of 71 cirthotic patients showed
that it could be an aliernative method for discriminating
cirrhotic patients with and without hepatocellular carcinoma. ™
Omn the other hand, SEES of serum or plasma has alkko been
shown as a promising tool for the diagnosis of various tvpes
of cancer auch as nasopharnyngeal, ™ digestive,"~"* and
prostate cancers,™

ron-malignant diseases. Serum and plasma have been also
emploved o diagnose other diseases using biospecroscopy.
For example, Eaman serum data allowed to differentate
Alzheimer's disease from other dementia™ and Carmona er al
used plasma Baman speciral data to grade mild, moderate, and
severe Alzheimer cases.™ Viz FTIR spectmscopy of plasma,
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Peuchant ef @l have shown that patients with Alzheimer's
disease could be well delineated from normal ageing subjects
used as controls ™

Recent plasma data published by Lacombe ef al cleady
showed that HT-FTIE speciroscopy could be an interesting
alternative technigue in necnatal screening of rare diseases
such as classic gabetosemia. Promising results indicated
that heathy/dishetic, healthy/'galactosemic, and diabetic/
galactosemic patients coukd be discriminated with good sensi-
tivity and specificip."™

Few large studies have been reported. An emample is the
study led by Petrich's group showing the potential of mid-
infrared spectroscopy in the triage of patients with acute chest
pain.® This smdy included 1429 serum samples from 389
patients reporting to two % hospitals (Massachusetts General
and Latter Day Saints, Utah) consisted of 104 suffering from acute
myocardial infarction (AMI), 136 from unstable angina pectoris,
and 149 from chest pain of other sources. FTIR measurements
were performed in the transflection mode. Using a threshold
value generated from a mobust linear diseriminant aralysis, they
achieved high sensitivity and specificity enabling triage of patients
with AML, those mostat need within the accident and emergency
setting, compared to the other sources of chest pain. They
hypothesize on the involverment of carbolydrates as discriminant
features, possibly a ghcation reaction. Interestingly, their resulis
were comparable to the performance of routine cardiac laborat ory
markers within the same study popultion. They conclude on the
potential of FTIE toaid the diagnostic procedure as early as within
the first & hours after the onset of chest pain.

Cherm. Soc. fev

Elood plasma from patients has been investigated with Raman
spectmscopy as dried drops to identify a reliable biomarker that
can differentiate sepsis patients from those with non-infectious
svstemic inflammatory response syndrome. Nengebaver ef al.
reporied on the high sensitivity and specificity that can be
achieved. ™ The possibility of separating the two groups of
patients i cmicial because a stratification of at risk patients
can be established for a rapid delivery of appropriate treatment.

Finally, following the results obtained in a model of infected
cultured cells, SERS appears as a promising approach for
malara parasite detection from whole blood.™
Other biofluids
Other biofluids non-invasively accessible (urine, saliva, sputum,
and tears) and invasively accessible (bile, synovial fluid, cerebro-
spinal fluid, and amniotic fluid) have been investigated by
vibrational spectroscopy for diagnostic purposes.

Somorjai ef al. were able to distinguish urine samples from
normal renal ransplanis and rejected allogmfis, applyving K
spectmecopy and a three-stage clhssification strategy.™ A Raman
spectmsecopic analysis combined with PCA and quadratic discri-
minant analysis (QDA) performed on urine, has allowed identifi-
cation of spectral biomarers predictive of complications and
kidney failure in the urine of diabeticand hyperensive ]:nﬁ-emx.q"
Finally, in the field of oncology, el Mistro er al reported that
SERS using Au nanoparticle subsirates had the potential to detect
in urine spectral biomarkers of pmstate cancer.™

Another approach by FTIR spectroscopy associated with LDA
on saliva has reported the correct classification of diabetic
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patients from healthy contml™ SERS of saliva showed the
ahility to predict lung cancer by monitoring the decrease of
proteins and nucleic acids with B0%, 7E%, and B3% accuracy,
sensitivity, and specificity res'pem:wel}l.w A preliminary study
using SERS on saliva suggested the possibilitv of a quick
detection of AL but these results obtained on a small number
of patients deserve to be eonfirmed on a larger population.™

An exploratory study has shown that FTIE spectroscopy
applied to sputum could be a useful approach for the diagne-
stic of the chronic obstructive pulmonary disease.™ Investigat-
ing the potential of human tears for the diagnosis of ocular
diseases, Travoeral have shown the discrimination of patients
with keratoconus |degenerative disorder affecting the cornea)
from healthy control and also between patients at an early or
advanced stage of disease by HT-FTIR and PCA™ Additionally,
Choi eral report that SEES can be used for diagnosis of adenoviral
conjunctivitis from tears."™

lging HT-FTIR spectroscopy in association with support
vector machine [SVM) classification and leave-one-out cross
validation |LOOHN), Untereiner ef al have shown that bile samples
of patients with malignant biliary strictures were differentiated
from those with benign bilian diseases **

Evsel e ol using FTIR spectmoscopy and LIDA with LOOCY on
synovial fluid were able o differentate samples from joints
affected by rheumatoid arthritis, ostecarthritis, spondylcarthre-
pathies, and meniseal injuries. ™ Also from smovial fuid samples,
a Raman speciroscopic siudy associated with a Bmeans analysis
has shown discrimination between patients with ostecarthritis of
low or high severin, ™

Liu er 2l have investigated the amniotic fluid potential for
fetal lung development assessments by IR spectroscopy. The
lecithin/sphingomyelin (lung surfactants) and lung sufactant/
albumin ratio measurements by [B spectroscopy were quantitathe by
and qualitatively correlated to those obtained by thin-layer chroma-
tography and Huorescence depdanization, two clinical methods
used to determine fetal hung surfactant matriy it amnictc
fluid. ™" Prenatal disorders from amniotic fluids have also been
investigated by ATR-FTIR spectmoscopy revealing spectral profile
changes between amniotic fluids from pregnancies with fetal
malformations, preterm delivery and healthy term pregnancies.*=*

Giriebe er al. were able by FTIR spectmoscopy to distinguish
patients with Alzheimer's disease from healthy controls using
cemhrospinal fluid. ™=
Translation
With a few ewceptions, all the mentioned proof-of-concept
studies have been carried out on rather small populations
and have shown promises for clinical utility and highlight the
potential of vibmtional spectroscopy for speciral disgnostics. To
our knowledge, two major programumes for lamge scale clinical
triale in remote settings are ongoing using hand-held FTIR
modalities. The first campaign led by Wood or 2l concems the
screening of population in Thailand for malaral diagnosis [hige /)
monash.edumews show/infrared-light-putsmalkria-to-the-test).

A similar approach is being taken in the UK with the
establishment of Glyeonics Lid. Gleonics is using sputum to
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diagnose Chronic Obstructive Pulmonary Disorder and are
maving towards clinical validation of handheld ATE-FTIE on
a subset of the UK population [http/www. glyveonics.comitech
nology.asp).

These steps towards actual cinical environment testing is
pushing the field to the forefront of the application and will
illuminate the utility of these techniques as well as barriers to
clinical implementation that need to be overcome.

Multivariate analysis

It is becoming more and more evident that vibrational spectro-
scopy represents an interesting approach to explore the diagnaostic
potentials of circulating bio markers/biosignatures in various body
fluids Along with the tec hnological development, the frontend
sample preparation challenges and approaches, and the data
acquisition procedures, the pre-processing and post-processing
of spectral data are equally important for the deplovment of
various biofluid classes into diagnostcs development. Vibra-
tional spectroscopic data are inherentl multivariate by nature
and their pre- and post-processing require multivariate data
analysis approaches.

Different instruments from different manufacturers have
different responses and spectral distortions and backgrounds
have to be taken into account viz pre-processing algorithms in
order to compare data from different smdies for esample. The
pre-processing should therefore be able to give accurate, robust
and mliable data. These considerations should also include
how the sample is prepared and conditioned, the optical sub-
strate used, and the acguisition mode used in order to post-
process reliable data. The way the sample is dried or acquired
(eg. transmission or reflection) will also preempt the pre-
processing procedures. For example, rapid drying of serum
can produce a granulating effect which then causes more
scattering/dispersion artefacts and a specific correction has
to be implemented. It is clear that pre-processing is not the
same for infrared and Raman spectra of biofluids because the
physical phenomena involved are, respectively, absorption and
scattering. In FT-IR spectroscopy the use of an interferometer
ensures an excellent intensity and wavenumber calibraton.
In addition, a background signal is regularly recorded and
automatically subtracted to obtain the sample spectmum. For
Raman, a day4o-day calibration procedure needs to be imple-
mented to correct for instrument response, and to calibrate the
wavenumber and intensity axes. Other experimental considera-
tions inchide the need to subtemct substeate contributions and
other physical phenomena such as fluorescence and heating.
Biofluid vibmtional spectra are therefore corrected, derived
(or not), then normalized. As a general rule, it is also important
to include prior to the pre-processing steps, a quality test to
remove spectra with a poor signal/noise ratio (threshold to be
defined depending on the sample natmre) and a validated
outlier removal routine before post-processing.

The post-proeessing step inclides data mining and the
construction of classifiers. Very often, the spectral differences
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between normal and pathological states are very subtle and the
next step is to perform data mining, e, a process used to
extract the salient information from the spectral data. By using
specific algorithms, patterns can be found in large batches of
data. Thus, such feature selection procedures can help to
identify discriminant spectral features to discriminate between
patient groups.*” However, it is important to note that data
mining depends on effective data collection, the size of the
datasets, and as well as their pre-processing.

To buid dassification models, several multivariate approaches
have been used and as of today there is no general consensus on
which method is the best. In other research fields, numerous
linear and non-linear supervised algorithms have been evaluated
and a combination of methods like 5VM and PLS-DA has
been shown to enhance the sensitivity and specificity of the
classifiers."™ Generally, building the classifier should inchide
a calibration phase (raining phase), an internal validation
phase, and an extemal validation phase (blind testing phase].
One of the important issues encountered is the size of the data-
sets used as a small dataset that does not accurately describe
the patient population can lead to under- or over-fitting and
impact the classifier outcome. For a classifier to be robust, it is
important to have a large number of classsepresentative
patient samples. In addition, the external validation requires
a dataset that has not been used in the two previous steps of
calibration and internal validation (based upon patient spectra
and not replicate spectra from the same patient ie. a spectrum
from the same patient should not be in the calibration/internal
validation and external validation phases). The leave-one-out
cross validation method is often used for these models. It is
important to note that all spectra from a given patient must be
removed in this process in onder to enable a valid outcome.
Considering all individual spectra, mean spectra or median
specira as input datasets of the classifier should also be taken
into considermtion although it has been found that when
spectra are highl repmducible and after applving a guality
control test plus an appropriate outlier remaoval, the results are
4:m'rL]:lcaln'l:l1.@.""'I

The workflow in Fig. @ illustrates different steps, for both [E
and Haman spectroscopies, starting from sample preparation
to data pre- and post-processing and the building of cdassifiers
for diagnostics. The issues dealing with preprocessing and
post-processing procedures generally used are described in a
more detailed manner in a dedicated review elsewhere in this
special issue.

Requirements for clinical
implementation

Over the last 20 vears, the number of studies dedicated to
identification of new biomarkers has increased exponentally,
mainly because of the tremendous development of high-
throughput molecular technologies and associated bioinformatics.
However, among the huge amount of candidate biomarkers, only a
limited number have been validated for use in medical practice. ™
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The origin of this discrepancy has been extensively analvzed
in the field of proteomics and genomics. Methodological flaws
have been identified in the process of their identification
and/or clinical wvalidation and recommendations have been
set forth to overcome these inadequacies. ™ """ Smdies based
on vibrational spectroscopy are subject to the same problems.
As for other high throughput technologies, the huge amount of
data generated v spectroscopic analvsis exposes this analvsis
to a significant risk of false positive findings. This risk should
be minimized by rigomusly controlling sample and patient
related factors in the exploratory phase and by standardizing
the conditions of spectral acquisition, processing and anaksis
{preanalytic/analytic validity). Subsequently, the findings from
pilot sudies need to be confirmed in independent large cohort
of samples [clinical validity) and finally the benefit of using
the biomarkerbiosignature in the clinical decision-making
setting should be clearly demonstrated as well asits favourable
medico-economic profile. Only after this process, a newly

discovered biomarker can pretend to reach the routine dinical
uﬂ_.m-ll'l

In the preanalytic step, attention should be paid to validate
zample-related factors and patient-related factors. Standardiza-
ton of specimen collection and storage is cmcial to reach
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experimental reproducibility not only in an individual labora-
tory but ako between different laboratories. In addition, inves-
tigators should be aware of the rsks of contamination during
sample handling. In a recent SERS study,'® EDTA, citrate and
Li-Heparin used as anteoagulants for phsma collection have
been shown to exhibit confounding peaks. When using filtered
plasma (with a 3 kDa cut-off), contrary to EDTA and citrate,
Li-Heparn was filtered out and no longer interfered with the
spectral information. FTIE studies have shown that EDTA and
citrate speciral contributions can be circumvented using dia-
lysed plasma. In contrast, no interference in FTIR spectra was
ohserved when directl analysing phsma from Li-Heparin
tubes."™ Due to these limitations, serum is often prefemed to
plasma in spectroscopic anaksis, Factors related to patients are
of paramount imponance to limit the risk of false positives.
Inappropriate selection of case patients and control subjects is
a commaon pitfall in spectmscopic studies as widely reported in
other high throughput technologies. WAL wWhen COTMpATIS0 N
groups are not matched for example for age, sex and physical
conditions such as hormonal status or pathologies other than
the disease of interest, the results may be biased and differences
identified between groups may be linked to these confounding
factors rather than to the disease of interest.”™

Analytic validity includes the technical aspects of the bio-
marker assessment. In the field of vibrational spectroscopy, the
interaction of light with biological molecules is subject o a
cerain number of drawbacks which should be owercome to
meet the criteria of accuracy, reproducibility and mbusiness,

The most common protocol for s pectral anaksis of biofluids
is the drving of drop deposits. A shortcoming of this method is
the heterogeneous drop deposition characterized by the well-
known coffeering effect, due to the migration of macromaole-
cules towards the periphery of the drop.'**** In order to darify
the dynamics of such deposition, Esmonde-White of 2l used
both imaging and FEaman spectroscopy to demaonstrate that
substeate and fluid concentration have a profound effect on
dried drop morpholgy. They showed that the substrate did not
affect the chemical composition within the outer ring of the
drop whereas the macromaolecular concentration has an impact
on the spatial distribution of proteins.'*® Using HT-FTIR,
Lovergne &f a2l have recentl confirmed the impact of serum
dilution on the deposition pattern as ilustmated in Fig. 10.°*
Without dilution, serum spectrs were saturated, due to the
acquisiton in the transmission sampling mode. The 3{fold
dilution was shown to be the most suitable for spectral analysis
with a good repmoducibilitv and absorbance intensity. The
signal'noise mtio was degraded with higher fold dilutions
which precludes the analysis of molecules present at a bow
concentration in the serum. The heterogeneous deposition of
macromalecules in the outer ring should be taken into account
when using mode point spectmscopic assessment. It has been
reported that this issue can be overcome by averaging spectra
taken at different points of the outer ring.'*" Another possibility
toavoid the coffee-ring effect is to perform an analysis on a film
composed of an array of reduced-size dry drops each formed
from 200 pL of serum.*** The striet control of experimental
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pammeters of drop deposition appears as a major prerequisite
to obtain reproducible resulis.** This may be obtained at best
by an automated sampling approach as described by Ollesch
et al. Using this approach, these authors have reporied a higher
reproducibility of spectral data compared to a non-automatic
sampling."**

ATR-FTE spectroscopy has been shown to be an interesting
approach for the analysis of biofluids as samples can be directly
applied onto the ATE cryvstal without any dilution. However,
currently there is no automated device available so that spectral
acquisition is fime consuming, about % tmes longer than with
automated HT-FTIR spectroscopy.* The lack of automation is
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a limiting factor for the transposition of ATH-FTIR speciroscopy
intoa highthmughput clinical application.™ This mayalso be
possible when using a high throughput souree such as a QUL
during a DF-IE approach. However, for imited patient cases, in
a hand-held mode it offers advantages of ease of use and ease of
sample preparation with no modificaton/adulteration of the
sample. Identically, Raman spectroscopy is also of great inter-
est for biofluid spectroscopy particularly due to developments
in hand held technology and immersion Eaman which could
enable hand held analsis of “wet" serum, negating the need
for a drying step.

The technical standardization of spectral acquisition makes
sense if reproducible results ean be obtained in different
laboratories. This external validation is essential on the way
towards clinical validity. The inter-instrument transferability is
also a challenge that needs to be faced. Finally, the need for
automated instruments underline the necessity of a close
collaboration between research scientists, cinical practitioners
and industrial partners in order to optimize currently availble
products according to a specific biomedical purpose.”

Beside the need of standardized spectral acquisition, there
iz also a need to validate the design of pilot studies incuding
the chemometric analysis. Proof-of-concept studies raise the
question of appropriate selection of case patients and controls
as discussed below and also the question of sample size. In
contrast with classical statistics, there is no simple method to
calculate sample size in biospectroscopic studies. However,
Beleites ot al. have proposed in a recent report to use learning
cumves to determine the approprate sample size needed to
build good classifiers with specified performances.”™ When
the number of patients is too limited to divide the population
in one training set and one independent validation set, cross
validation methods should be used to avoid the high rsk of
overfitting. ">
Clinieal validity
The next step after the phase of pre-analytic/amalytic validation
iz to confirm the diagnostic performance of the biomarker on
an independent population of a large number of patients. This
means large multicenter randomized control triak where the
sensitivity and the specificity of the putative biomarker may
be evaluated against the gold standard diagnostic/screening
procedure. These studies, particularly the criteria to inchde
case patients and controls, should be carefully designed to
demonstrate whether the biomarker is applicable to its specific
purpose which may be screening, differential diagnosis,
prognosis, reatment response prediction or monitoring of a
diseasze (Fig. 4).

A commaon mistake is to validate a marker in the diagnostic
setting of a disease and then to extrapohte its peformance to
the screening context. Candidate biomarkers are tested in pilot
studies performed in small numbers of patients with patent
disease already diagnosed using golden standard methods. Itis
crucial to validate the value of these markers in the screening
context Le for early diagnosis in large populations of patients
at nisk of the disease. The biomarker sensitivity and specificity
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in the screening target population are usually much lower than
in patients with patent disease. In the context of population
screening, high specificity is of paramount importance to avoid
false positive results, which means patients will be subject to
additional diagnostic procedures, potentially invasive and costly
for the society. This underlines the necessity of selecting case
patients and control subjects according to the clinical setting
where the hiomarker is intended to be used **

A methodology to avoid patient selection bias in screening
studies has been proposed by Pepe af ol In the
so-called PROBE study design, samples are collected prospec-
tively in a cohort of patients before the knowledge of the final
diagnosis. Once the outcome data becomes available and the
diagnosis established, the sample cohort can be used retro-
spectively by randomby selecting cases and controls. This
methodology is promoted by the research consortium *Early
Detection Research Metwork' from the Mational Cancer Insti-
tute to establish specimen reference sets, [thas proved efficient
for mpid evaluation of potential biomarkers, ™

Clinical wiility

A crucial point in the process of biomarker validation before
its adoption in routine clinical practice is to demonsirate its
clinical decisionr-making usefulness at an acceptable cost for
the mde’t}l.'m This means that the positive and negative pre-
dictive values of the biomarker should be evaluated in the “real
life'" patient population since these indicators are dependent
on the prevalence of the disease of interest. The difference
between clinical validity and clinical utility is illustrated by the
debate about the usefulness of Prostatic Specific Antigen (F5A)-
based screening program. It is well established that PSA-based
sereening programs sgmificantly increase the detection of prostate
cancer at an early stage.'™ However, there i also evidence that
PEAv-based screening carries a high risk of over-diagnosis leading
to overtreatment in a significant number of men with early cancer
that will never become symptomatic during their life time. "™
Whether the benefits of early detection of asymptomatic prostate
cancer outweigh the harms related to cverdiagnosis and over-
treatment is highly controversial. There is no consensus regard-
ing the clinical relevance of a PSA-based screening program. '™
Thisemphasizes that, in addition to its diagnostic performance,
the biomarker clinical utility has to be demonstrated before its
clinical implementation. The dinical utility refers to the balance
of benefits to harms and the medicosconomic evaluation For
this purpase, a validation study should be performed in a large
number of unselected patients with clinical endpoints cleardy
defined todemonstrate the benefit of using a biomarker inchd-
ing quality of life for the patient and socioeconomic aspects for
the society."™

Conclusion
The difficulty in translating biomedical spectroscopy to the

clinic is fundamentally based on the fact that after over more
than two decades of research, not enough has been done to
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fully understand the accumey of these tests with appropriate
considerations applied to control groups and limitations of the
clinical environment. In addition there is a need to peform
large-scale studies to evaluate the spectroscopic tests' efficacy
within the dinic. These approaches would enable this technology
to be acceptable to the medical community through a “hears
and minds" approach. The pardcular requirements of a dinical
spectrometer should be implemented for different clinical set-
tings. Its instumental requirernents (&g detector sensitivity and
source throughput | and how accurately it can diagnose disease or
pedorm treatment monitoring must be validated.

This review has highlighted the potential of biomedical
vibrational spectroscopy to analvse biofluids. However, care
should be taken for bicfluid spectroscopy not to suffer from
the identified pitfalls. As the field of biofluid spectroscopy is
further researched, a lot of commitment from different stake-
holders [researchers, clinicians, and instrument manufacturers
will be necessary to demaonsirate its real potential as a rapid,
novel, and robust technology to pinpoint “spectral biomarkers/
sigmatures” that can be useful for diagnostic purposes and to
predict cinical outcomes, with the promise that the test can be
done periodically at low eost for monitoring care.

The initiathes wiz cument netwo ks like the EPSRC CLIRSPEC
|httpiclirspec.orgs, the RamandClinics European COST action
| bt/ A marma el inie s ew'mmandel inics-a-su ropean-cost-action,)
and the 1** Intemational Society for Clinical Spectroscopy
[CLIESPEC) are currently gearing research, facilities and com-
munities in the dinical spectmoscopy arena to achieve these
ohjectives.
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