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ABSTRACT 

Zeolites constitute a multi-billion pound industry, with no indication of diminishing in value. 

Preliminary studies at the University of Central Lancashire discovered that the regeneration of a 

sample of coked mordenite via microwave plasma extended the catalytic life of the zeolite when 

used in the toluene disproportionation reaction. As a joint-venture between the University of 

Central Lancashire and Johnson Matthey, this research was designed with the purpose of 

investigating the effects of microwaves and plasma to determine whether they could be used as 

novel methods of zeolite modification. 

The application of microwaves in synthetic zeolite chemistry is well established, however the 

application of microwaves for post-synthesis modification of zeolites is much more limited. 

Microwave regeneration has been reported to display higher efficiencies and reduced regeneration 

times compared to conventional regeneration. However, there are, to this author’s knowledge, no 

studies performed on the regeneration of coked zeolites using microwaves. Dealumination of 

zeolites using microwaves is also very limited, with results reporting faster dealumination rates 

and a more pronounced decrease in crystallinity compared with conventional methods. 

The application of plasma in zeolite chemistry is limited to zeolite calcination, regeneration and 

surface modification. Plasma regeneration of a coked zeolite is, to this author’s knowledge, 

limited to a single study, where focus was on removing the carbon. There are limited studies on 

the effect of plasma on zeolite acidity. Results suggest plasma can be used to increase the density 

of Brønsted acid sites, which can alter product selectivity within a reaction. 

This research investigated the effects of microwaves and plasma on the zeolite mordenite. 

Microwaves, microwave plasma and dielectric barrier discharge plasma were applied to samples 

of virgin and coked mordenite. Using toluene disproportionation as the probe reaction, changes 

in catalytic activity were observed. Characterisation methods including pyridine and collidine 

infrared studies, ammonia temperature programmed desorption and solid state nuclear magnetic 

resonance were used to explain the changes in catalytic activity. Results showed microwave 

plasma regeneration extended the catalytic life of mordenite due to the destruction of Brønsted 
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acid sites caused by dealumination, without loss of crystal structure. Whilst the loss of Brønsted 

acid sites was also seen in microwave treated mordenite and microwave plasma treated virgin 

mordenite, it was accompanied by the loss of catalyst crystallinity. 

These results have shown that microwave plasma can be used to fully regenerate coked mordenite 

and can dealuminate the sample without loss of catalyst crystallinity. In the toluene 

disproportionation reaction, this reduces the amount of cracking which occurs, subsequently 

leading to less coke deposition and therefore an extended catalytic life. 
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CHAPTER 1: INTRODUCTION 

1.1. BACKGROUND TO THE STUDY 

Zeolites constitute a multi-billion pound industry, with no indication of diminishing in value (1). 

Preliminary studies at the University of Central Lancashire (UCLan) discovered that the 

regeneration of a sample of coked mordenite via microwave plasma extended the catalytic life of 

the zeolite when used in the toluene disproportionation reaction. As a joint-venture between 

UCLan and Johnson Matthey (JM), this research was designed with the purpose of investigating 

the effects of microwaves and plasma to determine whether they could be used as novel methods 

of zeolite modification. 

The primary focus of this research was to understand the cause of the extended catalytic life 

produced upon microwave plasma regeneration. The application of microwaves in the 

regeneration of zeolites has been performed (2-4), reportedly achieving higher efficiencies, 

reduced regeneration times and requiring less energy. However, reports of microwave 

regeneration of coked zeolites have, to this author’s knowledge, not been published. This is also 

true of microwave plasma. Whereas limited studies of regeneration of coked zeolites have been 

performed using other types of plasma (e.g. glow discharge, dielectric barrier discharge), the 

results were focused on achieving 100 % coke removal (5) or as a tool for identifying the type of 

coke formed during a reaction (6). If any modifications to the zeolites were seen, they were not 

reported. 

To understand the cause of the extended catalytic life seen from microwave plasma regeneration 

of a sample of coked mordenite, this research explores other novel methods of regeneration 

including microwave heating and dielectric barrier discharge plasma. It links the source of 

reduced coking to changes seen in the structural and/or acidic properties of the regenerated 

catalyst samples. It then extends the study to the pre-treatment of mordenite by microwave 

heating, dielectric barrier discharge plasma and microwave plasma. Finally, the research 
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concludes with a preliminary study of microwave plasma optimisation, specifically the effect of 

increasing the input microwave power.  

1.2. AIMS 

This research will address: 

(1) The regeneration of mordenite, coked during the toluene disproportionation reaction, via 

novel methods involving microwaves, microwave plasma and dielectric barrier discharge 

plasma 

(2) The pre-treatment of mordenite, via novel methods involving microwaves, microwave 

plasma and dielectric barrier discharge plasma 

(3) The investigation of optimising microwave power input during microwave plasma 

regeneration of mordenite, coked during the toluene disproportionation reaction. 

1.3. LAYOUT OF THE THESIS 

As described above, this thesis investigates the effects of microwaves and plasma on the zeolite 

mordenite, to explore their potential for zeolite regeneration and pre-treatment, as well as probing 

the possibility for optimisation of these processes. The effects of which are measured via catalyst 

characterisation techniques and the impact on the activity of the zeolite in the probe reaction, 

toluene disproportionation. As such, the thesis is divided into 12 chapters.  

Chapters 1-3 aim to introduce the reader to the subject matter and current research. Chapter 4 

is a description of the methods and techniques used in this research. Chapters 5-10 are the results 

and discussion chapters, separating regeneration (Chapters 5-6), pre-treatment (Chapters 7-8), 

and modification of power (Chapters 9-10) into three parts. Chapter 11 consists of an overall 

discussion, bringing together all the findings from this research, before Chapter 12 explores 

where these new discoveries might lead to next. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. CATALYSIS 

2.1.1. Introduction 

The first use of the term catalysis is often attributed to the Swedish chemist Berzelius, who in 

1835 described it as the decomposition of chemical bodies by a “catalytic force” (1). It was almost 

60 years later before Ostwald provided the more familiar definition of “the acceleration of a slow 

chemical process by the presence of a foreign material” (2). Today we understand this “foreign 

material” is a catalyst, and the acceleration of a slow, or even thermodynamically improbable 

reaction is achieved by reducing the activation energy via chemical interactions with the reactants 

(3). Ideally, the catalyst is not consumed within the reaction, but is instead restored to its original 

state after each catalytic cycle, whereby small amounts will catalyse large quantities (2). More 

than 90 % of chemical industry production is based on catalysis (3).  

2.1.2. Heterogeneous Catalysis 

Catalysis is often categorised by the form the catalyst takes compared to the reactants it is 

transforming. When catalyst and reactants take the same state (i.e. liquid, solid or gas) as the 

reactants, it is referred to as homogeneous catalysis. Heterogeneous catalysis is where the states 

of catalyst and reactants differ (i.e. gas-solid, liquid-solid, or liquid-gas). 

Where heterogeneous catalysis involves a solid catalyst, the reaction takes place on the catalyst 

surface, therefore large surface areas are likely to improve efficiency. Porous materials are 

particularly interesting as, despite their typically large surface areas, the catalytic active sites may 

include pores and exterior surfaces, or may be restricted to the outer surface, depending on 

transport limitation of the reactants and products (2). Fundamentally, catalysis can be reduced to 

the interaction of reactants with the active centre of the catalyst (3). Heterogeneous catalysis can 

be described as a three-step process: (i) substrate adsorption, (ii) catalytic reaction, (iii) product 

desorption (2). 



 
5 

 

2.1.3. Zeolites 

Zeolites are 3-dimensional microporous crystalline alumino-silicate structures. Built from 

tetrahedral aluminium and silicon building blocks bridged via oxygen atoms, their framework 

comprises of a 3-dimensional network of channels, intersections and cavities, with a pore diameter 

often comparable to the cross-section of molecules (4,5). The structure of each zeolite (formula 

given in Equation 2.1.) is unique, with a variety of channel, intersection and cavity sizes, 

providing the basis of their shape-selectivity and leading to their identity as molecular sieves (2). 

In 2007 there were 176 discrete zeolite frameworks which had been identified (6), with new 

structures being reported every year, including three new frameworks (AVE, SOV, PWN) in April 

of 2019 (7). These should not be confused with zeotypes. Whilst characteristically similar, 

zeotypes are formed from the incorporation of alternative atoms, e.g. phosphorus or gallium; 

producing structures such as aluminophosphates or gallosilicates (4). 

Equation 2.1. - Structural Formula of a Zeolite 

xM2/nO.xAl2O3.ySiO2.wH2O 

Where:   M is a group I or II cation 

   n is the valence of the cation 

   w is the water contained in the zeolite voids 

Zeolites are derived from the incorporation of aluminium into a silicate (SiO4) framework by 

replacement of the silicon atoms (3). As aluminium is tetrahedrally co-ordinated, it is electron 

deficient, and thus creates a negatively charged framework. In order to balance this charge, readily 

exchangeable cations are present, and where these are exchanged by hydrogen atoms, it leads to 

the formation of Brønsted acid sites (2). Therefore, the number of acid sites generated is equal to 

the number of Al3+ ions, with their strength dependent on the type of framework and number of 

sites (3). 

The tetrahedra may be linked to different structural frameworks, producing zeolites of different 

shapes and sizes, which by careful control can lead to specifically designed shape-selectivity. 
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Furthermore, by careful control of the chemical composition of the framework and exchangeable 

ions, zeolites of specific acid site strength and distribution can be produced (3). With that said, 

there are limitations on the degree of control permitted during zeolite modification or synthesis 

as dictated by Löwenstein’s rule. Löwenstein’s rule states that where oxygen bridges two 

tetrahedral species, only one of the centres can be aluminium; the other can be silicon or a 

similarly small ion with a valence ≥4 (8). Should oxygen possess two aluminium ion neighbours, 

at least one aluminium requires a coordination number greater than 4. This limits the silicon-to-

aluminium ratio (Si/Al) of a zeolite to ≥1. Dempsey (9) attributed Löwenstein’s rule to instability 

in the formation of Al-O-Al due to electrostatic effects; where aluminium ions assume positions 

as far from each other as possible. Whilst Löwenstein’s rule holds true in most cases, the 

formation of non-Löwensteinian distributions in sodalite materials have been published, albeit 

under high temperatures (10).  

2.1.4. Zeolite Acidity 

If a zeolite only contained SiO2 tetrahedral units, the material would be electrically neutral and 

possess no acidity on its surface. The Brønsted acidity of zeolites arises from the substitution of 

the Si4+ with the isomorphic trivalent Al3+, and the resulting formation of a negative charge in the 

lattice which is compensated by a proton. The proton is attached to an oxygen atom connected to 

neighbouring silicon and aluminium atoms, forming what is referred to as a bridging hydroxyl 

group and is the site responsible for the Brønsted acidity of zeolites (4,11) (Figure 2.1.). 

 

Figure 2.1. - Zeolite Brønsted Acid 

Site 

+ 



 
7 

 

In synthesised zeolites, the negative charge present on the Al-substituted framework is 

compensated by organic and inorganic alkaline cations. As a consequence, these zeolites possess 

no Brønsted acidity. However, the application of zeolites as catalysts often requires the acidic 

form of the zeolite. Therefore, to produce acidic zeolites, calcination (thermal treatment) is 

required to remove any organic cations and the alkaline cations are removed via ion exchange 

followed by calcination. The ion exchange is typically carried out using ammonium or lanthanum 

ions (Figure 2.2) (12). Consequently, the Brønsted acidity of a zeolite catalyst will depend on the 

framework silicon-to-aluminium ratio. Theoretically by careful control of the Si/Al, it should be 

possible to prepare a zeolite with a specific acid strength required for a given reaction. However, 

one drawback is that during zeolite treatments, e.g. activation, regeneration etc., dealumination 

can occur, generating extra-framework aluminium species and altering the Si/Al ratio (4). 

Both Bronsted and Lewis acid sites occur in zeolites, however there has been some debate on the 

nature of how Lewis acid sites arise. The simplest explanation for the production of Lewis acid 

sites is the dehydroxylation of Brønsted acid sites, creating framework Lewis acid sites via the 

formation of positively charged tri-coordinated silicon (13) (Figure 2.3.). However, it was 

reported that after the dehydroxylation of Brønsted acid sites, the silicon remained tetra-

(a) 

(b) 

Figure 2.3. - Proposed Framework Lewis Acid Site 

Figure 2.2. - Reaction Schemes of (a) Ammonium Ion Exchange; (b) Lanthanum Ion Exchange 
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coordinated (12). From this it was suggested that Lewis acid sites arise from unsaturated extra-

framework aluminium species, formed by cation exchange or steaming, including species such as 

Al(OH)2
+, Al(OH)2+ and Al3+ (14-16).  

Catalytic activity in zeolites was widely understood to be attributed to Brønsted rather than Lewis 

acidity (12). However, reports have emerged claiming that a synergistic interaction occurs 

between Brønsted and Lewis acid sites, which enhances zeolite acidic activity (16). This was also 

reported to occur in the toluene disproportionation reaction (17). Nevertheless, the nature of this 

remains an area for discussion.  

Two prominent theories exist: (i) Lewis acid sites directly participate in the reaction (16), and (ii) 

there is an electron density transfer from Brønsted to Lewis acid sites, increasing the acid strength 

of Brønsted acid sites (16,18,19), forming what has been referred to as ‘super acid’ sites (18). 

Research in this area is ongoing and it is apparent that although extra-framework aluminium will 

affect each different reaction individually, there are some common features. The effects of Lewis 

acid sites on toluene disproportionation has been studied using ZSM-5 (15,20) and HY (17,21) 

modified zeolites. In the modified ZSM-5 study (15), the increase in Lewis acid sites led to an 

increase in p-xylene selectivity, attributed to a decrease in the zeolite inner volume. In another 

modified ZSM-5 study (20) however, no significant effect of Lewis acid sites on toluene 

disproportionation was seen. In the HY zeolite studies, the modified zeolite removed the 

activation period seen in the unmodified zeolite, allowing the reaction to proceed immediately 

(17). An increase in initial conversion was also reported (21). However, in all four studies, the 

increased presence of Lewis acid sites elevated the deactivation rate via coking and promoted 

dealkylation as a by-product. Similar side effects were also reported in Lewis acid site studies of 

other zeolite-catalysed reactions including m-xylene transformation (22), and ethylene alkylation 

(16). 

Studies focusing solely on Lewis acid sites are scarce, and where an attempt has been made, it 

was unsuccessful (21). Further research is required to demonstrate the impact of Lewis acid sites 

on acid-catalysed reactions. However, current knowledge suggests that increasing the 
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concentration of Lewis acid sites possesses the disadvantages of increasing catalyst deactivation 

and side reactions, outweighing the benefits of a slight increase in selectivity or initial activity. 

2.1.5. Zeolites Within Industry 

The application of zeolites as industrial catalysts developed heavily after the production of 

synthetic zeolites had been realised, ca. 1948-1955 (12). One of the largest impacts being the 

application of synthetic faujasites in fluid catalytic cracking (FCC) of heavy petroleum distillates 

in 1963. In recent years, FCC still makes up over half of the zeolite application within industry 

(23,24), with other applications for zeolites including isomerisation and transalkylation of 

aromatics (5,23). The development of using zeolites for toluene disproportionation is discussed 

in Chapter 3. 

The added value to industrial processes from the use of early synthetic zeolites, by increasing 

activity and product yields, remains a focus in modern development of novel zeolite catalysts. 

Therefore, it is unsurprisingly to find that today’s global market predicts an increase of 4.8 % in 

zeolite catalysts by 2025 with an expected market value of over £6 billion (25). 

2.1.6. Mordenite 

Mordenite zeolites are important catalysts for many industrial applications, including alkylation, 

transalkylation and disproportionation reactions (26,27). As such, it is the catalyst of choice used 

within this research. Mordenite is a naturally occurring zeolite, consisting of 8- and 12- membered 

oxygen containing rings with pore openings of 2.6 x 5.7 Å and 6.5 x7.0 Å, respectively (Figure 

2.4) (5). The chemical structure for mordenite is given as: 

Equation 2.2. - Structural Formula of Mordenite (6) 

Na8[Al8Si40O96] · 24H2O 

Despite its dual pore system, it is often considered as a one-dimensional large pore zeolite, with 

a single 12-membered oxygen containing ring channel. This is a result of the 8-membered oxygen 

containing ring often being too small to transport most molecules and therefore referred to as a 

“side pocket” (26,28). As such, the transport of molecules within the zeolite can only occur along 
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the c axis, therefore making this type of zeolite highly susceptible to pore blockage via coking 

(2,26). 

2.1.7. Catalytic Deactivation 

Catalyst deactivation is the process by which catalytic activity is reduced over time during a 

reaction. Deactivation can be a lengthy process, where the catalyst remains active for many years, 

or a rapid one, where the catalyst lasts minutes or even seconds (29). The nature of the 

deactivation may be chemical, physical or thermal, each proceeding via numerous mechanisms. 

However, it is often categorised into poisoning, coking, sintering and phase transformation (30). 

Poisons are species (often reactant impurities) present within the reaction system, which 

chemically bond to the catalyst. Deactivation occurs as the poison directly competes with the 

reactants for active sites, and when bound, they can alter the reactivity of nearby sites, reducing 

the absorptivity of the reactants (30). Sintering is the structural modification of the catalyst, 

caused by high temperatures and results in the reduction of active surface area (30,31). In 

supported metal catalysts, this occurs via the formation of larger, more stable crystallites from the 

migration of metal atoms in smaller crystallites. Typically, a metal begins to sinter at a 

temperature half of its melting point (32). Phase transformation can be considered as a severe 

form of sintering, whereby very high temperatures transform crystal phases from one form into 

another, leading to the collapse of the crystal structure, and a decrease in active surface area 

(30,32). The fourth category, coking is the mechanical deposition of carbonaceous material 

(commonly referred to as ‘coke’), formed from hydrocarbon side reactions (30,31). It is the 

method by which mordenite is known to deactivate during the toluene disproportionation reaction 

(33). 

Figure 2.4. - Structure of Mordenite Viewed Along the c Axis (102) 
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2.1.8. Coking 

Carbon deposition is one of the fundamental challenges for industrial processes. Coke can build 

up on internal equipment surfaces, reducing the flow of gas in pipes or changing the heat transfer 

of heat exchangers (34). Furthermore, carbon deposition on a catalyst can block the accessibility 

of reactants to the active sites, leading to catalyst deactivation (35). 

Catalyst deactivation via coking has been reported to occur via different mechanisms, including 

external methods such as pore mouth plugging, and internal methods such as acid site coverage 

(31,36,37). Pore mouth plugging involves the deposition of coke at the pore mouth, resulting in a 

reduction of reactant diffusivity to and from the active sites (37,38), whereas acid site coverage 

typically refers to the deposition of coke covering the acid sites, reducing the available acid site 

number (30,37). Acid site coverage has also been suggested to involve the adsorption of coke, 

poisoning the catalyst (31). However, the method of coking which occurs is dependent on reaction 

type, operating conditions, catalyst structure and acidity (31,37,39,40).  

Gates et al. (41) suggested coke formation may comprise of olefins which have undergone 

dehydrogenation, polymerization or cyclization, or of benzene (or aromatics) forming polynuclear 

aromatics. These mechanisms have been suggested to proceed via carbonium intermediates, 

catalysed by Bronsted acid sites (30). Strong Bronsted acid sites have been reported to deactivate 

first (37), with the coke deposited on them held responsible for the rapid decrease in initial 

catalytic activity (42). 

The type of coke formed has been categorised in various ways, including reaction temperature 

used to produce the coke (43), temperature at which the coke is removed via TGA (37) and the 

composition of coke by ratio of hydrogen to carbon (44). It has been proposed that coke formed 

at lower temperatures is more susceptible to hydrogenation, forming methane and thus leaving 

the catalyst surface at relatively low temperatures (38). At high temperatures however, the coke 

formed will gradually become inert, graphitic carbon (29).   

Reports suggesting coke composition is dependent on the space available for its formation (31), 

and coke yield being linked to pore size (29), lead to the wide understanding that coking is a 



 
12 

 

shape-selective process. As such, zeolites, with their porous nature, are especially susceptible to 

deactivation by coke (45), with rapid deactivation more common in zeolites with a mono-

dimensional structure, such as mordenite (46). Zeolite deactivation via coking is mainly attributed 

to the formation and retention of heavy aromatics within their pores or pore intersections (29). 

Acid-site poisoning predominantly occurs at high temperatures, with low coking rates and 

coverage (<2 % by weight), whereas pore blocking is known to predominantly occur at high 

reaction rates at low temperatures with high coke coverage (29). As such, where pore size and 

structure are likely to be more important than acid strength and density under typical commercial 

conditions (29), the conditions used in this thesis, mean it will consider both, with a slight 

emphasis on the latter. 

However, it must be recognised, not all coke is harmful. Coke deposition may not affect catalytic 

activity (spectator coke), and contrarily, some coke may be beneficial to a reaction, altering 

selectivity towards a desired product (38,47). Therefore, the amount of coke present on a catalyst 

is not necessarily as important as the structure, morphology or location of it (38). 

2.1.9. Catalytic Regeneration 

When a catalyst is deactivated, activity for the reaction needs to be restored. This can be 

accomplished by replacing the catalyst, however it is an expensive and time-consuming process, 

involving the temporary shut-down of the operating plant (48). For this reason, catalyst 

regeneration, whenever possible, is preferred.  

As this thesis is concerned with the deactivation and regeneration of mordenite by toluene 

disproportionation, this section will exclusively focus on the regeneration of coked catalysts. 

When regenerating a catalyst, changes to the internal structure are often undesirable as it will 

change the activity of the catalyst towards the reaction (35). The typical industrial regeneration 

process involves the thermal regeneration of the catalyst via combustion – removing the coke as 

carbon dioxide and water (44). This can be a periodic or continuous process (40), with 

temperatures ranging from 400-800°C (35,48), however under these conditions, the exothermic 
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process can lead to sintering of the catalyst, loss of crystal integrity and thus catalytic activity 

(40,44). 

Novel methods of catalyst regeneration which do not affect the internal structure of the catalyst 

are therefore sought after. Alternative regeneration methods which have been explored include 

the use of ozone (49,50) , solvent extraction (51) and gas stripping (44). Hutchings et al. (49,50) 

demonstrated the successful regeneration of coked pentasil zeolites deactivated by the conversion 

of methanol to hydrocarbons. They reported a rapid regeneration process of 80 minutes under 

mild temperature conditions (150°C) with an ozone/oxygen mixture, fully restoring catalytic 

activity to that displayed by the virgin catalyst. With that said, they also reported the presence of 

some coke remaining post-regeneration. Liang et al. (51) studied the application of solvent 

extraction as a successful means of removing coke on zeolite HY from the alkylation of benzene 

with dodecane. However, the alkylation process was in liquid-phase, resulting in the 

carbonaceous deposits being “liquid coke”, which could be easily extracted. Tsai et al. (44), 

investigated gas stripping as a regeneration treatment of coked mordenite deactivated via toluene 

disproportionation. They found that by regenerating under hydrogen at a temperature 30°C above 

the reaction temperature, the zeolite could be successfully regenerated. They also reported that 

the limitations of this were at reaction temperatures of 420°C, after which the regeneration 

treatment became increasingly less effective. There are limited studies which have been 

performed to regenerate coked zeolites using microwaves and/or plasma. These will be discussed 

in their respective sections. 
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2.2. MICROWAVES 

2.2.1. Fundamentals 

Microwaves are a form of electromagnetic radiation, with frequencies ranging from 0.3 to 30 

GHz, and wavelengths between 1 mm and 1 m, placing them amidst IR and radio waves on the 

electromagnetic spectrum (52) (Figure 2.5.). The application of microwaves for domestic use 

began in 1950 with the patent filed by Arthur Welch (53), but it was in the 1980s when research 

involving the use of microwaves for chemistry applications began to significantly develop. Today 

this includes chemical synthesis (54,55), drying (56,57) and microwave-assisted reactions 

(58,59). 

 

Figure 2.5. - Electromagnetic Spectrum (60) 

Microwave Heating 

The heating effect of microwave radiation proceeds through dielectric loss processes, namely the 

absorption and conversion of electromagnetic energy by a material into heat (61,62).  If a material 

is an electrical insulator and can also be polarised, it is called a dielectric material. Different 

materials have different dielectric properties, based on their ability to absorb and convert 

electromagnetic energy to heat (dissipation factor), the efficiency of this energy conversion 

(dielectric loss factor) and the ability of a molecule to be polarised by the electromagnetic field 

(dielectric constant) (52,61). The quantification of these properties can be expressed as shown in 

Equation 2.3.. 
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Equation 2.3. - Dielectric Loss Tangent 

tan δ = ε” / ε’ 

Where:   tan δ   is the dissipation factor  

ε”   is the dielectric loss factor  

ε'   is the dielectric constant  

The total polarisation of any particular material is the sum of the components given in Equation 

2.4.. 

Equation 2.4. - Polarisation of a Material 

αT = αe + αa + αd + αi 

Where:   αT  is the total polarisation 

   αe  is the electronic polarisation 

   αa  is the atomic polarisation 

   αd  is the dipolar polarisation 

   αi  is the interfacial polarisation 

When a dielectric material is exposed to an applied electromagnetic field, the atoms or molecules 

within the material attempt to align and realign with the oscillation of the electromagnetic field. 

In the case of atom and electron polarisation and depolarisation, microwave frequencies are 

comparably much slower, therefore atom and electron polarisation does not contribute to 

microwave dielectric heating (63). However, microwave frequencies are comparable to the 

polarisation associated with permanent dipole moments and some interfacial processes. 

In dipolar polarisation, low frequencies are too slow, where the resulting energy generated is too 

small to heat the material. At high frequencies, the oscillation rate is too fast, and the dipole is 

unable to realign, therefore no heat is produced (64). However, when the oscillation rate is 
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comparable to the response time of the dipole, a phase lag develops between the polarisation of 

the material and the electric field, which causes thermal energy to be produced (61). 

Interfacial polarisation (also known as Maxwell-Wagner polarisation) occurs between the 

interface of two materials with different dielectric properties, resulting in the build-up of charge 

due to a difference between the charge carrier relaxation times of the materials (65). 

The processing of industrial materials within the microwave frequency range is a result of both 

dipolar and interfacial polarisation (66).  

Types of Microwaves 

The application of microwaves for heating purposes requires an applicator to focus the 

microwaves. Two common applicators are multi-mode and single-mode (61). Multi-mode 

microwaves possess non-uniform electric field distribution, e.g. domestic microwave oven. The 

dimensions of the cavity are carefully controlled and often accompanied by a mechanical mode 

stirrer to prevent any standing wave pattern from forming inside the cavity. This results in the 

heating of microwave absorbing materials anywhere inside the cavity and allows for multiple 

materials to be irradiated simultaneously (63) (Figure 2.6.). In contrast, single-mode microwaves 

produce a single standing wave within the cavity, typically focused using waveguides. The 

dimensions of the cavity are carefully controlled to correspond to the wavelength of the 

microwave at the frequency used (for 2.45GHz the length of a single full wave is 12.24 cm) (52). 

Whilst the radiation from a single mode cavity is typically at a much higher field strength which 

makes it ideal for research purposes, the area of irradiation is much smaller. Careful placement of 

materials for irradiation is required to avoid standing wave nodes (areas where no heating will 

occur) and to ensure the standing wave is not disrupted by the material to be treated. As such, 

only a single material is typically irradiated at any one time (63) (Figure 2.7.). 

Although microwave frequencies range from 0.3-30 GHz, industrial applications typically utilise 

microwaves in the 2.45, 5.8, 9.15, and 22.13 GHz region, with academic research often conducted 

using 2.45 GHz microwaves (52). 
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Benefits of Using Microwaves 

Microwaves are becoming more desirable within academic research over conventional methods 

as their advantages include rapid internal heating, direct energy transfer from source to reaction 

molecules, uniform heating (for homogeneous samples), and selective heating (for heterogeneous 

samples) (52,55,67). In terms of results, these features lead to reduced side reactions, reduced 

reaction times, and enhanced yields with improved conversion and higher selectivity (55,64). 

Additionally, reduced reaction times (often at lower temperatures) equate to less input energy 

required and consequently reduce the cost of the process (55,62,68). It should be recognised 

however, that the energy of a microwave photon (~1 J mol-1) is significantly smaller than the 

energy needed to break a typical chemical bond (~ >300 J mol-1), and so any effect seen during a 

microwave-assisted process is most likely due to thermal processes and not microwave radiation  

(52). Finally, one drawback of microwave heating is thermal runaway, which in zeolites, results 

in the loss of crystal structure (69). 

Figure 2.6. - Multi-mode Microwave 

Figure 2.7. - Single-mode Microwave 
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2.2.2. Zeolites and Microwaves 

The application of microwaves in zeolite chemistry dates back to the 1980s, where the 

dehydration of zeolite 13X was first reported (70). However, it was in 1990s with zeolite 

synthesis, where the benefits of microwave heating were most effective (59). Today, a search for 

microwave zeolite synthesis will render over 700 results on Web of Science (accessed 06/2019), 

with syntheses including zeolites A (71), X (72), Y (73), MFI (74), CHA (75) and MOR (54) to 

name but a few. 

Post Synthesis Modification of Zeolites 

Microwave post-synthesis modification of zeolites, however, is much less common, with limited 

studies published on microwave ion exchange, desilication, regeneration, and dealumination.  

Examples of studies on ion exchange of zeolites which have been performed, include nickel or 

copper exchanged mordenite (76,77), and sodium exchanged ZSM-12 (78). Limitations should 

be recognised where not all studies performed have been compared with conventional 

counterparts, however, those that were, reported faster exchange rates over conventional methods 

(76,77), the formation of new weak acid sites not seen in conventional methods (76) and enhanced 

dealumination (without framework destruction) (77). 

Desilication studies have primarily involved microwave assisted treatments of zeolites including 

mordenite and ZSM-5 with NaOH or NH4OH (79,80). Benefits included reduced reaction times, 

lower energy consumptions without affecting zeolite crystallinity, acid strength or density. 

Moreover, narrow pore size distribution was found to be produced irrespective of the base used 

(80). 

Microwave regeneration has been compared with conventional regeneration of zeolite A (68) and 

X (62), and compared as a direct versus indirect regeneration treatment of ETS-10 (81). Results 

on zeolite A reported higher efficiency, reduced regeneration time and reduced energy inputs (68), 

zeolite X was considered for industrial scale regeneration (62) and the direct versus indirect 

regeneration, concluded that direct regeneration at a constant microwave power was more 
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efficient than prior water desorption followed by microwave drying (81). However, there are, to 

this author’s knowledge, no studies performed on the regeneration of coked zeolites solely using 

microwaves. 

Studies of using microwaves for the dealumination of zeolites is very limited and has so far only 

included the use of microwaves with HCl on mordenite (82), zeolite Beta and ZSM-5 (83,84), 

and the use of microwaves with toluene-4-sulphonic acid on BEA (85). The results of these 

studies have reported faster dealumination times and a more pronounced decrease in crystallinity 

compared with conventional methods. An increase in surface area for mordenite was also seen 

(82), (produced as a result of higher mesoporosity from the loss of structural aluminium). 

However, for all dealuminated samples (microwave-assisted and conventional alike), similar 

amounts of BAS were seen (82-84). 

2.3. PLASMA 

2.3.1. Introduction 

Plasma is often referred to as the “fourth state of matter”. Just as an increase in energy will 

transform a solid into a liquid, or a liquid into a gas, if the energy supplied is sufficient, the 

collision processes will become strong enough for gaseous atoms to break apart into their charge-

bearing sub-atomic particles (86-88). This ionised gas may be partially or fully ionised, containing 

electrons, ions, and neutral atoms or molecules. However plasmas are quasi-neutral, meaning the 

concentration of positively and negatively charged ions is equal (88,89). The free electric charges 

make plasma electrically conductive, internally interactive and strongly responsive to 

electromagnetic fields (88). 

Plasma was first discovered as far back as the 18th Century when G.C. Lichtenberg observed brush 

like patterns on insulating surfaces following discharges from a pointed electrode. Although Sir 

William Crookes was able to produce plasma and understood it to be due to the existence of 

electrically charged particles, and Werner von Siemens may have been the first person to apply 

plasma for chemical applications, it was only after the discovery of electrons by Sir J.J. Thomson 
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in 1897, that plasma could be fully understood (86). The scientist attributed to naming plasma, is 

Irving Langmuir, who in 1928 described plasma as an “ionised gas…containing balanced charges 

of ions and electrons”, in his paper entitled, “oscillations in ionised gases”(90). 

Plasma is thought to constitute more than 99 % of the visible universe (88), including the interior 

of stars or intergalactic space. However, plasma does not occur naturally on Earth, with some 

exceptions, e.g. lightning and the aurora borealis (86). 

On Earth, plasmas are man-made, produced in a laboratory or industrial environment by 

subjecting a gas to an electric field, either of constant or alternating amplitude (87). The plasma 

can be produced over a wide range of pressures, electron temperatures and densities, where the 

temperature of the plasma can range from ambient to temperatures comparable with stars (88). 

Plasma can be produced from various energy sources including thermal, electric, and microwave 

frequencies, where the type of plasma formed is dependent on the conditions used to produce it 

(86,87). 

2.3.2. Types of Plasma 

Plasma is often categorised into two types: thermal and non-thermal plasma. 

Thermal plasma is typically produced at under high temperature and pressure conditions and it is 

characterised by a single temperature across the plasma (86,88,91). It is considered the more 

powerful of the two types, and has applications within materials processing amongst others (91), 

but as it is not the type of plasma used within this research, further information on this type of 

plasma is not provided. 

Non-thermal plasma typically produced under reduced pressure and comparatively lower 

temperatures (88). Unlike thermal plasma, non-thermal plasma does not exist in local 

thermodynamic equilibrium. The temperature of the electrons far exceeds the temperature of the 

“heavy” particles, i.e. the gas molecules and ions, and it is these energetic electrons which are 

responsible for initiating chemical reactions through collision-induced energy transfer (86). As a 
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result, they tend to be more selective than thermal plasmas, which makes them more attractive for 

chemistry applications (88). 

The main benefit of non-thermal plasma for chemistry applications is the ability to produce very 

high concentrations of chemically active species, where energy density and electron temperature 

can significantly exceed conventional methods, whilst retaining an ambient bulk temperature 

(88). In zeolite chemistry, maintaining a low bulk temperature is highly desirable as high 

temperatures lead to the loss of catalyst structure which can severely affect activity and selectivity 

(44). 

This research will utilise two different types of non-thermal plasmas, categorised by the nature of 

their energy input. These are: microwave plasma and dielectric barrier discharge (DBD) plasma. 

2.3.3. The Role of Plasma in Catalysis 

The application of plasma in catalysis primarily involves plasma-assisted catalysis. This typically 

involves the use of plasma in a known catalytic reaction to provide advantages over conventional 

methods. Often these advantages include lower reaction temperatures or enabling 

thermodynamically unfavourable reactions (92). Examples of plasma-assisted reactions include: 

CO oxidation over Au/TiO2 catalyst (93), oxidative methane coupling over Ag/SiO2 catalyst (94), 

and catalytic dry reforming of butane over Ni-γ-alumina (92). 

Often these reactions are accompanied by deactivation, which has led to plasma being applied in 

the regeneration process of these catalysts. Mok et al. (92) regenerated a deactivated Ni-γ-alumina 

catalyst using a DBD plasma for 120 minutes at 500°C. This was reported to have fully restored 

both the surface area of the catalyst and its original activity. Kim et al. (93) successfully 

regenerated Au/TiO2 catalyst deactivated by volatile organics. An oxidative DBD plasma 

treatment of up to 120 minutes at 15 Watts was able to restore the catalyst to its original activity. 

Lee et al. (94) used a DBD plasma to regenerate an Ag/SiO2 catalyst deactivated by oxidative 

coupling of methane. A successful plasma treatment of 30 minutes at 375°C was compared with 

thermal regeneration, where a minimum regeneration temperature of 500°C was required. 
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Plasma has also been applied in the preparation or pre-treatment of catalysts. Examples of this 

include: a novel method of producing supported catalysts via plasma torch (95), an alternative 

method of calcining catalysts (96) and the promotion of catalytic activity on CuO/TiO2 catalysts 

towards NOx reduction via exposure to microwave plasma (97). 

2.3.4. Plasma and Zeolites 

The application of plasma in zeolite chemistry is relatively similar to the plasma-catalysis 

applications previously described. Plasma has been utilised for zeolite calcination (98), 

regeneration (36,48) and additionally for surface modification (99). 

Furukawa et al. (99) explored the effects of radiofrequency plasma on H-Y zeolite, subjecting the 

catalyst to a 30 minute plasma treatment of 75 Watts with a temperature of 450°C and carbon 

tetrafluoride as the gas. The results indicated the plasma had destroyed some of the crystallinity 

of the catalyst via dealumination, however the treatment had also increased the hydrophobic 

character of the zeolite, via the replacement of surface OH- groups by CFn or F- groups. 

Bibby et al. (36) applied an oxidative plasma to selectively remove surface coke as a tool to 

exploring coke formation on ZSM-5 and Khan et al. (48) exposed a coked zeolite to a glow 

discharge to evaluate its success at regeneration, which they found under their conditions to be 

60 %. 

Although very few, there are studies which have explored the effect of plasma treatment on the 

acidity of a zeolite. Zhu et al (100) applied a glow discharge to a Mo-Fe/H-ZSM-5 zeolite to 

improve the catalytic activity for methane aromatisation. Their results exhibited a change in the 

products produced after treatment with plasma. There was no apparent change to the structure 

seen, however the density of Brønsted acid sites had increased, which was attributed to the shift 

in products produced.  

Plasma has been shown to dealuminate zeolites (99), and induce changes to acidity (100). 

However, to this author’s knowledge, there are currently no studies which investigate how plasma 



 
23 

 

regeneration on a zeolite may not only restore catalytic activity, but also impacts the acidity of 

the zeolite. 

The application of microwave plasma in zeolites is extremely limited, with this author knowing 

of a single study (101). The findings of this study however reported the benefits of microwave 

plasma as a technique for the zeolite activation, producing higher activity, stability and selectivity. 
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CHAPTER 3: TOLUENE DISPROPORTIONATION 

3.1. FUNDAMENTALS 

Toluene disproportionation (TDP) is an acid-catalysed reaction, converting two molecules of 

toluene into benzene and a mixture of xylene isomers in equimolar quantities (Figure 3.1.) (1-4). 

Benzene, toluene and xylene (often referred to as BTX) are raw materials used in the production 

of commodity and fine chemicals in industry (2). They are predominantly formed from catalytic 

naphtha reforming and naphtha pyrolysis, however as these are typically thermodynamically 

controlled, there is often a mismatch between production and market demand, creating a surplus 

of toluene (Figure 3.2.) (2,5). Therefore, transforming toluene into benzene and xylene is more 

economically favourable. 

Xylenes are used to manufacture polyesters, plasticisers and engineering plastics, and of the three, 

para-xylene (p-xylene) is the most valuable. p-Xylene is converted into terephthalate and 

polyester, meta-xylene (m-xylene) is an additive in polyester as well as a key material in the 

synthesis of isophthalic acid, and ortho-xylene (o-xylene) is used to produce phthalic anhydride 

- a component in plasticisers. Their relevance within industry has led to research and 

modifications of conditions and catalysts for this reaction, with a focus on increasing rate of 

reaction, reducing deactivation and shifting xylene selectivity in favour of the para isomer (2). 
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Figure 3.1. - Reaction Scheme for Toluene Disproportionation 



 

 
32 

 

3.2. MECHANISM OF TOLUENE DISPROPORTIONATION 

The mechanism for toluene disproportionation has been suggested to operate either via an 

intermolecular methyl transfer (Figure 3.3.) or a bimolecular reaction involving a carbonium ion 

intermediate (Figure 3.4.) (6-8). It is believed that toluene disproportionation proceeds via the 

intermolecular methyl transfer over ZSM-5, but via the bimolecular reaction mechanism when 

carried out over most 12-membered oxygen ring zeolites (9). 

It is thought p-xylene is the primary product leaving the zeolite pore mouth, where isomerisation 

to m- and o-xylene occurs on the external surface of the zeolite, generating the thermodynamic 

equilibrium that is produced (Figure 3.2.) (2,10). 
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Figure 3.2. - Comparison of Thermodynamic Equilibrium with Market Demand for BTX (2) 
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Figure 3.3. – Intermolecular Methyl Transfer Mechanism (8) 
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Figure 3.4. – Bimolecular Reaction Mechanism (8) 
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3.3. CATALYSTS USED IN TDP 

Historically, toluene disproportionation was carried out in the liquid phase using Friedel-Crafts 

catalysts such as AlCl3-HCl. However, these carried many drawbacks as they were corrosive, 

difficult to handle, and often used as slurries which generated mechanical problems during use 

(1,2). These difficulties brought about research into alternative acid catalysts, including but not 

exclusively alumina-boria (6,11), silica-alumina (11,12), and zeolites (1-5,13).  

Studies undertaken on alumina-boria however, highlighted disadvantages including low catalytic 

activity towards toluene disproportionation, carbon deposition and subsequently a short catalytic 

life; ultimately finding the catalyst to be unsuitable for commercial use (11). 

Alkali containing zeolites have been found to have no activity towards toluene disproportionation, 

however when replaced with divalent or trivalent cations, zeolites show significant activity for 

disproportionation reactions (14). Large pore zeolites such as faujasite and mordenite have shown 

to be more favourable for toluene disproportionation than amorphous silica-alumina catalysts (3). 

Studies have been carried out on cation exchanged Linde 13X zeolites, using cadmium and 

lanthanum (1). From this cadmium was found to be unsuitable as when toluene disproportionation 

was carried out under H2, the cations were sublimed from the catalyst – something that has been 

reported to happen with reducible metals such as mercury, zinc and cadmium (15). In the 

lanthanum exchanged zeolite however, an increase in toluene conversion was seen, attributed to 

the acidity of the catalyst and availability of cations in accessible sites (1), demonstrating in order 

to catalyse toluene disproportionation, some acidity is imperative. Nevertheless, mordenite was 

reported to show a higher activity towards toluene disproportionation than Y-faujasite (16). 

Zeolites are the catalysts currently used in the commercial toluene disproportionation process. Of 

these, mordenite is the large-pore zeolite favoured and ZSM-5 is the medium-pore zeolite used 

(4). However, due to mordenite’s large pore size, it can suffer from lower selectivity due to 

dealkylation and cracking as well as being prone to deactivation via coking (3), thus commercial 

use may favour ZSM-5 (2). 



 

 
35 

 

3.4. DEVELOPMENT OF THE TDP PROCESS 

3.4.1. Development of Industrial Catalysts for the TDP Process 

As an industrial process, there has been a focus on improving the efficacy of toluene 

disproportionation. Early attempts focused on improving purity, yield and minimising coke 

deposition. To achieve this, modifications or syntheses of novel catalysts have often been the 

focal point. 

Sato et al. (11) filed a patent on toluene disproportionation, with claims of improved conversion 

and minimised coke deposition, by performing the process using a dealkylated mordenite catalyst 

containing aluminium fluoride. Mitsche et al. (17) filed a patent on an improved process for 

transalkylation using a novel catalyst composition, where the catalyst contains a 60-90 % by 

weight mordenite crystal structure combined with alumina. 

In contrast, Otani et al. (18) filed a patent using catalysts typical of toluene conversion, such as 

silica-alumina, boria-alumina and mordenite, instead focusing on the process itself. They 

proposed a toluene conversion to benzene and xylene process, claiming to have improved purity 

and yield, by carrying out both disproportionation and dealkylation as separate steps whose 

products could be separated out and then combined. Toluene produced could then be recycled 

back into the feed and the process could be performed several times. 

3.4.2. p-Xylene Selectivity 

As the isomer with the highest market value, it was inevitable that later research of toluene 

disproportionation would focus on selectively producing para-xylene. This has led to an increased 

understanding of the factors involved and the development of novel selective toluene 

disproportionation processes. 

It has been proposed that there are two key factors in achieving p-xylene selectivity: diffusivity 

and the deactivation of external surface sites (2). Diffusivity of zeolites is dependent on molecular 

structure, such as crystal size or tortuosity (19). By increasing the diffusion resistance, the more 
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mobile p-xylene, with a reported 1000 times faster diffusion rate than the other isomers (2), will 

be selectively produced. The external surface sites are the location for p-xylene isomerisation, 

producing m- and o- isomers (2,10), therefore deactivating the external surface sites would inhibit 

this reaction, leading to preferential p-xylene formation. 

Research into producing novel selective toluene disproportionation processes often focuses on 

the development of a modified catalyst; patents including silica (20-24), magnesium (25), 

phosphorus (26) and pre-coking (27) modifications to zeolites have been filed, all claiming to 

preferentially produce p-xylene over the other xylene isomers. To-date, both silica-modified and 

pre-coking-modified ZSM-5 catalysts have been used in commercial toluene disproportionation 

(2). 

The silica-modified catalysts include patents from Chang et al. (20), Rodewald et al. (21,22), and 

Beck et al. (23,24). They all claim to have successfully synthesised various zeolites and have 

tested their modification techniques on ZSM-5. Chang et al. (20) proposed combining a zeolite 

with an organosilicon compound by dissolving the organosilicon compound in an organic solvent, 

adding the zeolite and then heating the mixture to boil off the solvent whilst calcining the residue. 

Rodewald et al. (21,22) proposed depositing a silica coating on the external zeolite surface by 

treating the zeolite with a silicone compound with a molecular size incapable of entering the 

zeolite pores, followed by heating in an oxygen-containing atmosphere. Beck et al. (23,24) 

proposed a selectivation sequence involving multiple impregnations of the zeolite with a 

compound such as silicon, where after each impregnation, the catalyst is calcined. The catalyst 

could then be further modified to enhance the p-xylene selectivity by subsequent steaming or in-

situ trim-selectivation – the process of using either a silicon compound or a thermally 

decomposable organic compound to be fed simultaneously on-stream with the reactant, until the 

desired selectivity is attained. Despite their different methods of incorporating silica into the 

zeolite, all the patents described above achieve p-xylene selectivity by the same means: 

deactivation of the external surface sites. 
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Similarly, a p-xylene selective toluene disproportionation method via pre-coking the zeolite was 

filed by Haag et al. (27). It describes a methodology of pre-coking the surface of a zeolite by 

exposing it to a thermally decomposable organic compound (preferably the feed source) under 

conditions that enable a deposit of at least 2 % coke on the surface of the catalyst. In contrast, 

Haag et al. (28) filed a patent claiming to achieve p-xylene selectivity by modifying the diffusivity 

of the zeolite. This could be achieved by combining the catalyst with small amounts (2-30 % by 

weight) of a reducible oxide such as antimony, boron, phosphorus or magnesium. 

3.5. INDUSTRIAL PROCESSES 

One of the leading companies for research into and commercialisation of selective toluene 

disproportionation was, and still is: Mobil Oil Corporation (now ExxonMobil). The company was 

the assignee for all the patents referenced previous in the p-xylene selectivity section, and 

developed the commercial processes known as Mobil Selective Toluene Disproportionation 

Process (MSTDP), Mobil Toluene to ParaXylene (MTPX) and Toluene Disproportionation 

Process Version 3 (TDP-3) (2).  

ExxonMobil (at time of writing) currently offer two methods of toluene disproportionation on 

their website (29). Their older MTDP-3 toluene disproportionation process that has been licensed 

for over twenty years (30) and their revolutionary PxMaxSM selective toluene disproportionation 

process replacing their MTPX and MSTDP processes (31,32). 

The MTDP-3 process is not p-xylene selective and so uses an unmodified ZSM-5 catalyst. The 

operation instead focuses on a high yield of benzenes and xylenes, claiming to achieve a 99.9 % 

benzene purity, superior xylene/benzene ratio and concentrates on keeping costs down (30). 

The MSTDP process was introduced in 1991 (33), using a pre-coked catalyst to achieve a p-

xylene selectivity of 82 % (34). One drawback of the MSTDP catalyst was that after each 

regeneration the catalyst had to undergo pre-coking selectivation. However, this also allowed for 

a level of control over p-xylene selectivity, as the amount of coke deposited on the zeolite could 

be adjusted (27), resulting in a range of p-xylene selectivity up to 90 % (34), but at the cost of a 
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shorter catalytic life. In contrast, the MTPX process which was originally commercialised in 1996 

(35), used a silica-modified ZSM-5 catalyst in order to selectively produce p-xylene at a rate of 

90 % (2). The silica modification was permanent (20), and so eradicated the need for in-situ 

selectivation after regeneration. 

The current PxMaxSM process was made available for licensing in 2000 (36). It claims a p-xylene 

selectivity of 96 %, a catalytic life of 15 years (31), and uses the same fixed-bed silica-modified 

ZSM-5 catalyst developed in the MTPX process (32). Further information on the process and the 

conditions used is limited. 

Other companies such as Universal Oil Products (UOP, now Honeywell UOP) and Petrofina 

(FINA) have developed their own commercial toluene disproportionation processes: PX-Plus and 

T2BX respectively (2). The T2BX process, developed in the 1980s by FINA was not p-xylene 

selective, but instead produced high amounts of C9 aromatics with a selectivity of up to 14 % (2). 

The Px-Plus process developed by UOP is a p-xylene selective toluene disproportionation process 

that achieves a p-xylene selectivity of up to 90 % (37). However, as with the PxMaxSM process, 

information on these commercial processes is not readily available to the general public. The 

reaction conditions known about the processes mentioned are given in Table 3.1.. 

3.6. LAB SCALE CONDITIONS 

Although toluene disproportionation is an industrial process, operating under the scale of a 

commercial process is outside of the remit of this research. Factors such as a 3-15-year catalytic 

cycle length and quantities of catalyst known to be up to 3700 Kg (34) are understandably 

impractical when conducting bench-top scale experiments. Therefore, it is important to 

understand the conditions used in lab-scale experiments published in the literature. 

Experiments reported in the literature include (but are not limited to) studies on the effects of 

toluene disproportionation due to catalyst composition, including factors such as catalyst binder, 

cation exchange, impregnation and dealumination of the catalyst (1,3,5,38,39). There have been 

studies on the  effect zeolite structure and acidity may have on toluene disproportionation (39,40), 
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as well as the contribution framework and extra-framework aluminium and iron cations may have 

on the reaction when using ZSM-5 (41). The scale and duration of these experiments was varied, 

and reaction conditions were often diverse, with parameters such as temperature ranging between 

250°C and 550°C, and pressures of 1.03-29.2 Kg cm-2 being used. The conditions used in a 

selection of reported literature is given in Table 3.2.. 
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Table 3.1. - Commercial Toluene Disproportionation Process Conditions (2) 

 

Toluene Disproportionation Process 

TDP-3 MSTDP MTPX PxMaxSM Px-Plus T2BX 

Developer Mobil Mobil Mobil Mobil UOP FINA 

Catalyst ZSM-5 ZSM-5 pre-coked ZSM-5 silica-modified ZSM-5 silica-modified Not disclosed Not disclosed 

Cycle length / years >3 >1.5 - 15 - >1 

Reaction Conditions       

Reactor Type Fixed bed Fixed bed Fixed bed Fixed bed Fixed bed Fixed bed 

Temperature / °C 435 455-470 ~420 - - 390-495 

Pressure / kgcm-2 24.5-28.2 21.1-42.3 ~21.1-42.3 - - 49.3 

H2/HC / mol 1-2 2-4 ~2-4 - - 4 

WHSV / h-1 6 2-4 - - - 1.2-2.3 

Conversion / % 45-50 30 30 - 30 44 

Product Selectivity / %       

C5
- gas 2.7 6.6 3.7 - 5.3 8.1 

Benzene 42.3 44.9 44.7 - 46.4 35.0 

Xylenes 50.4 43.5 48.0 - 44.7 40.8 

EB 1.3 2.5 2.0 - 1.9 2.4 

C9
+ aromatics 3.3 2.5 1.6 - 1.7 13.7 

Xylene Distribution / %       

p-xylene 25.2 82.2 89.8 96 90.2 25.1 

m-xylene 52.8 15.1 8.2 - 8.5 50.1 

o-xylene 22.0 2.7 2.0 - 1.4 24.8 

B/(X+EB) / mol 1.1 1.3 1.2 - 1.4 1.1 
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Table 3.2. - Literature Toluene Disproportionation Process Conditions 

 Toluene Disproportionation Process 

Author 

Chen, W-H., 

et al. (2003)a 

(39) 

Wu, J-C. & 

Leu, L-J. 

(1983) 

(3) 

Bawa, J.S., 

et al.  

(1973) 

(1) 

Yashima, T., 

et al. (1969) 

(5) 

 

Rhodes, 

N.P. & 

Rudham, R. 

(1994) 

(38) 

Cejka, J., 

et al. 

(1995) 

(41) 

 

Odedairo, 

T., et al. 

(2011) 

(40) 

 

Catalyst Mordenite Mordenite 13 X Mordenite Zeolite Y ZSM-5 

Mordenite 

ZSM-5 

SSZ-33 

TNU-9 

Reaction 

Conditions 

 

Reactor 

Type 

Fixed bed Fixed bed Fixed bed Fixed bed Fixed bed Fixed bed 

Fluidised 

bed 

Temperature 

/ °C 

280-470 370-550 450-525 250-450 280-450 497 300-400 

Pressure 

 / Kg cm-2 

21.4 8.1-29.2 5-40 1.03b 1.03b 1.03b 9.25 

H2/HC  

/ mol 

3.0 2-3 3.8-10.94 0.2c - - - 

WHSV  

/ h-1 

0.8-5.6 1.7 - - - 2.7 - 

Carrier Gas H2 H2 H2 N2 He N2 H2 

a TDP carried out in a commercial pilot plant 

b Atmospheric pressure 

c N2 as carrier gas so molar ratio is of N2/HC rather than H2/HC 

 

The effect of temperature on toluene disproportionation has been reported for a variety of 

catalysts. Yashima et al. (5), described an increase in toluene conversion with increase in 

temperature over synthetic mordenite within a certain temperature range. Temperatures of 250°C 

and below did not produce sufficient reaction, and temperatures of 450°C and above suffered 

from a decrease in xylene yield as more dealkylation and cracking occurred. Bawa et al. (1) 

studied the effect of temperature on conversion and selectivity over Linde 13X catalysts. They 

reported an increase in conversion between 475-500°C from 27-30.9 %, but a decrease in 
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conversion between 500-525°C falling from 30.9-26 %. This may be linked to the linear increase 

of hydrodealkylation with temperature that was described. Wu and Leu (3) studied the effect of 

temperature on conversion and selectivity over copper impregnated mordenite. They observed an 

increase in toluene conversion over temperatures between 420-550°C, and a decrease in 

selectivity over these temperatures. Table 3.3. shows that although there is a significant increase 

in conversion between 420°C and 480°C, the increase in conversion between 480°C and 550°C 

is not as significant. Similarly, for selectivity there is a smaller decrease between 420°C and 

480°C and a slightly larger decrease between 480°C and 550°C, however this is not as significant 

as the changes in conversion. 

Table 3.3. - Toluene Disproportionation Conversion and Selectivity Values at Different Temperatures (3) 

Reaction Temperature / °C Toluene Conversion / % Reaction Selectivity / % 

420 18 94 

480 45 92 

550 50 85 

 

The effect of pressure on toluene disproportionation was also considered in the studies of Bawa 

et al. (1) and Wu, J-C. and Leu, L-J. (3), previously described. Bawa et al. (1), reported a 

beneficial increase in pressure between 5-40 Kg cm-2, with toluene conversion increasing from 

23.2-38.5 % by weight at 500°C. Wu and Leu (3), also reported an increase in toluene conversion 

with pressure, where 7-28 Kg cm-2 produced an increase in toluene conversion from 12-48 % at 

480°C.  

The effect of carrier gas on toluene disproportionation was reported by Schulz-Ekloff and Jaeger 

(42) over HZSM-5. The study investigated hydrogen, argon, nitrogen and helium as potential 

carrier gases at temperatures of 299-324°C, and pressures of 1.02-10.20 Kg cm-2. From their 

research, they found toluene disproportionation activity decreased in order of argon > nitrogen > 

helium > hydrogen. They surmised the effect of carrier gas on toluene disproportionation activity 

could be associated with the size of the carrier gas molecules, with activity decreasing with 

decreasing diameter of the gas molecule or atom. A possible explanation was physical shielding 
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of catalytic active sites, where the smaller molecules can approach closest to the sites, rendering 

them inaccessible. With respect to selectivity, xylene isomer distribution was close to 

thermodynamic equilibrium under all conditions used, however they reported a benzene deficit 

with a B/X ratio of ~0.8, attributing this to possible further reactions of a benzenium ion 

intermediate (42). It is important to note however, Schulz-Ekloff and Jaeger (42) operated under 

extremely low conversion rates of 2-15 % to minimise coke deposition. In other studies, Yashima 

et al. (5) reported that over mordenite, under their toluene disproportionation conditions, choice 

of carrier gas (H2 or N2) did not appear to make a difference. Gnep and Guisnet (43) however, 

reported hydrogen having a stabilising effect on mordenite during toluene disproportionation 

when under pressure, as it inhibited coke deposition and produced spectator coke or coke with 

less deactivating properties. 

In summary, there are a wide range of conditions used within the literature for carrying out toluene 

disproportionation, as would be expected in studies investigating effects of catalyst modification. 

There appears to be a trend in temperature across the studies, whereby an increase in conversion 

is seen within a specific temperature range, dependent on other conditions and the catalyst used. 

Lower temperatures are unable to facilitate a reaction, and higher temperatures promote 

competing side reactions. An increase in pressure is suggested to improve conversion over the 

range reported regardless of catalyst type. However, effect of carrier gas appears to be dependent 

on the specific reaction conditions and catalyst used, with literature reporting contradictory 

effects. 
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CHAPTER 4: CHARACTERISATION AND 

EXPERIMENTAL METHODS 

The characterisation and experimental methods provided in this chapter appear in their final form 

for ease of replication. However, during research challenges occur and methods are often 

optimised to improve accuracy and replicability to achieve best possible results. Details of where 

this has occurred within this research, and the optimisation processes implemented are given at 

the end of the chapter for reference. 

4.1. EXPERIMENTAL METHODS 

4.1.1. Toluene Disproportionation 

Toluene disproportionation was carried out via two different methods, referred to within this 

thesis as small-scale and large-scale. Both processes were performed at bench-scale, with small-

scale toluene disproportionation producing approximately 700 mg and large-scale producing 

approximately 3 g of coked catalyst. All activity data contained herein was measured under small-

scale toluene disproportionation. The large-scale method was introduced in order to rapidly 

produce greater quantities of coked catalyst for dielectric barrier discharge regeneration and 

microwave regeneration. Differences between the methods and apparatus used are given in Table 

4.1..  

Materials  

All catalyst samples consisted of commercially available extruded (1.6 mm cylinders) ammonium 

mordenite (Zeolyst CBV21A), with a silicon to aluminium ratio (Si/Al ratio) of 20 and contained 

~ 20 % alumina binder. The samples were provided by Johnson Matthey. Prior to use, they 

underwent size modification at UCLan (cutting extrudate to ≤ 0.5 cm) to minimise dead space in 

the reactor. The toluene feed was analytical grade (99.99 % purity) manufactured by Acrôs 

Organics and was used as supplied by the manufacturer. Nitrogen gas was supplied by Energas 

and was used as supplied by the manufacturer. 
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a
 85 mL min-1 used to produce the same space velocity as the small-scale reaction 

Small-Scale 

Virgin mordenite (~700 mg) was packed into a fixed-bed borosilicate microreactor containing a 

thermocouple well and plugged with glass wool (total reactor bed volume: 1.79 cm3) (Figure 4.1.). 

The microreactor was enclosed within a temperature programmed furnace and connected to a gas 

line regulated by a mass flow controller via Swagelok stainless steel vacuum fittings with O-ring 

seals. The output gas line was heated using heating tape (to 150°C ± 3°C) which was connected 

to a controller. A Pyrex® gas saturator fitted with a sinter (Figure 4.2.) was attached to the gas 

line before the microreactor, so that toluene could be fed over the catalyst when the valves Va and 

Vb were opened (Figure 4.3..). During the reaction, the saturator was submerged in an ice bath to 

regulate the temperature of the toluene. A schematic of the small-scale toluene disproportionation 

set-up is given in Figure 4.3.. 

 Small-Scale Large-Scale 

Apparatus   

Furnace Leco Laboratory Equipment Corporation 

furnace; Vertex VT4830 temperature 

controller 

Carbolite VST 12/60/200 

clamshell furnace; Eurotherm 

2408 temperature controller 

Mass Flow Controller MKS type 1179A Mass Flo® controller; MKS type 247D four-channel readout) 

Heating Tape and Controller Electrothermal MC227 one-way heating controller 

Gas Line Swagelok rubber core hose rayon fiber reinforced hose 

Swagelok Fittings ¼ inch ¾ inch 

Reaction Conditions   

Mass of Catalyst / g 0.6 3 

Carrier Gas N2 N2 

Flow Rate / mL min-1 20 85a 

Calcination Temperature / °C 300 300 

Calcination Duration / hours 1 1 

Temperature / °C 500 500 

Duration / hours 16.5 46 

Total Reactor Bed Volume / cm3 1.79 7.85 

Coke Content / % 3.89 ± 0.63 2.91 ± 0.64 

Table 4.1 - Laboratory Toluene Disproportionation Apparatus and Conditions 
Table 4.1. - Laboratory Toluene Disproportionation Apparatus and Conditions 
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Figure 4.3. - Schematic of Small-Scale TDP 

Va and Vb designate two-way valves that can be opened to allow gas to travel over the toluene contained in the gas saturator or closed 

to divert gas flow directly from source to microreactor. 

Figure 4.1. - Microreactor for Small-Scale TDP 

Figure 4.2. - Schematic of Gas Saturator for TDP 
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Large-Scale 

Virgin mordenite (~3 g) was packed into a fixed-bed borosilicate reactor tube plugged with glass 

wool (total reactor bed volume: 7.85 cm3) (Figure 4.). The reactor tube was enclosed within a 

temperature programmed furnace and connected to a gas line regulated by a mass flow controller 

via Swagelok stainless steel vacuum fittings with O-ring seals. The output gas line was heated 

using heating tape (to 150°C ± 3°C) which was connected to a controller. A Pyrex® gas saturator 

fitted with a sinter (Figure 4.2.) was attached to the gas line before the reactor, so that toluene 

could be fed over the catalyst when the valves Va and Vb were opened (Figure 4.5.). During the 

reaction, the saturator was submerged in an ice bath to regulate the temperature of the toluene. A 

schematic of the large-scale toluene disproportionation set-up is given in Figure 4.5.. 

Figure 4.4. – Reactor for Large-Scale TDP 

Figure 4.5. - Schematic of Large-Scale TDP 
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4.1.2 Regeneration Methods  

Three regeneration methods involving microwaves and plasma were undertaken.  A thermal 

regeneration method was also employed, acting as a facsimile to industrial regeneration methods, 

although on a much smaller scale. This allowed for a like-with-like comparison between the 

commonly used thermal regeneration with the novel microwave, plasma and combined methods. 

Materials  

All coked catalyst samples were produced from deactivating the virgin catalyst supplied via 

toluene disproportionation (as previously described in Section 4.1.1.). All gases were supplied by 

Energas and were used as supplied by the manufacturer. 

Thermal 

Coked mordenite (~700 mg) was packed into a fixed-bed borosilicate reactor tube plugged with 

glass wool (total reactor bed volume: 1.79 cm3). The reactor was enclosed within a temperature 

programmed furnace and connected to a gas line regulated by a mass flow controller via Swagelok 

stainless steel vacuum fittings with O-ring seals. Regeneration was performed under air (20 mL 

min-1) at 500°C (heating rate: 60℃ per minute) for a period of 24 hours. The furnace was then 

switched off and the sample was left in the furnace to cool (approximate cooling rate: 0.13℃ per 

minute). A schematic of the thermal regeneration equipment is given in Figure 4.6.. 

 

Figure 4.6. - Schematic of Thermal Regeneration 
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Microwave 

The apparatus for microwave regeneration and microwave plasma regeneration are largely 

identical and details can be found in Table 4.2..  

a Wave guide aperture was minimised for microwave plasma to focus the microwaves for ease in producing the plasma. 

b Power was altered to maintain temperature because the total energy of the system was affected by the catalyst; i.e. amount of coke 

remaining in the system. For further information on challenges and considerations when carrying out this experiment, please refer to 

Section 4.3.2 at the end of this chapter. 

Coked mordenite (~3.5 g) was packed into a fixed-bed quartz reactor tube plugged with glass 

wool (total reactor bed volume: 5.50 cm3). The reactor tube was enclosed within a cavity with a 

viewing port and connected to a gas line regulated by a mass flow controller via Swagelok 

stainless steel vacuum fittings with O-ring seals. The cavity was part of the microwave apparatus, 

consisting of a 2.45 GHz half-wave rectified microwave generator connected to a variable power 

 Microwave Regeneration Microwave Plasma Regeneration 

Apparatus   

Microwave Generator 2.45 GHz half-wave rectified, supplied by Industrial Microwave Systems Ltd. 

Wave Guide Aperture Dimensions / 

cm 

9.0 x 4.7 3.1 x 2.1a 

Mass Flow Controller MKS type 1179A Mass Flo® controller; MKS type 247D four-channel readout) 

Gas Line Swagelok rubber core hose rayon fiber reinforced hose 

Swagelok Fittings ½ inch ¾ inch 

Vacuum Pump N/A Vacuubrand PC3001 VARIO Pro 

vacuum pump fitted with Vacuubrand 

CVC3000 Detect compact vacuum 

controller 

Thermocouple Omega Precision I/R Thermocouple with k-type output signal 

Multimeter TENMA® Dual Input Thermometer 

Reactor Tube Quartz Quartz 

Reaction Conditions  

Mass of Catalyst / g 3.5 0.7 

Total Reactor Bed Volume / cm3 5.5 1.57 

Gas(es) Used Argon Oxygen Argon Oxygen 

Flow Rate / mL min-1 10 5 20 10 

Powerb / Watts  ~200 ~200 

Temperature /°C 250 ± 50 230 ± 10 

Pressure / mbar 1013.25  

(Atmospheric) 

5 

Reflective Power / % 25 ± 5 10 ± 5 

Duration / hours 7 7 

Table 4.2. - Microwave and Microwave Plasma Regeneration Apparatus and Conditions 
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supply (max: 1 kW), wave guide, water cooled circulator and manual tuning stage. A reflective 

power meter and infrared thermocouple were used to measure reflected power and temperature 

respectively. In order to ensure homogeneity of the treatment across the sample, the reactor tube 

was periodically removed and rotated 90°. A schematic of the experimental apparatus is given in 

Figure 4.7.. 

Microwave Plasma 

The apparatus for microwave regeneration and microwave plasma regeneration are largely 

identical and details can be found in Table 4.2.. 

Coked mordenite (~700 mg) was packed into a fixed-bed quartz reactor tube containing a glass 

sinter (total reactor bed volume: 1.57 cm3). The reactor tube was enclosed within a cavity with a 

viewing port and connected to a gas line regulated by a mass flow controller via Swagelok 

stainless steel vacuum fittings with O-ring seals and connected to a vacuum pump. The cavity 

was part of the microwave apparatus, consisting of a 2.45 GHz half-wave rectified microwave 

generator connected to a variable power supply (max: 1 kW), wave guide, water cooled circulator 

and manual tuning stage. Reflected power and temperature were measured using a reflective 

Figure 4.7. - Schematic of Microwave Regeneration 
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power meter and infrared thermocouple respectively. A schematic of the experimental equipment 

is given in Figure 4.8.. In order to ensure homogeneity of the treatment across the sample, the 

reactor tube was periodically removed and vigorously shaken. 

Dielectric Barrier Discharge Plasma 

Experiments using dielectric barrier discharge plasma were performed at Johnson Matthey 

Technology Centre, Chilton by Dr. Vladimir Demidyuk, Dr. Alkis Gkelios and Dr. Peter Hinde. 

Conditions of the DBD treatment are given in Table 4.3.. 

Coked mordenite (~1 g) was packed into a quartz reactor tube (total reactor bed volume: 50 cm3). 

The reactor tube was enclosed within the plasma chamber that contained the stainless-steel mesh 

electrodes, dielectric barriers and gas inlet and outlet. A schematic of the dielectric barrier 

discharge apparatus is given in Figure 4.9.. 

 

Figure 4.8. - Schematic of Microwave Plasma Regeneration 
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Table 4.3. - Conditions Used in DBD Regeneration 

Mass of Catalyst / g 1 

Total Reactor Bed Volume / cm3 50 

Gas(es) Used Argon Oxygen 

Flow Rate / mL min-1 80 20 

Power / Watts  14 

Pressure / mbar 1013.25  

(Atmospheric) 

Voltage / kV (peak-to-peak) 20 

Frequency / kHz 10 

Discharge Gap / mm 5 

Duration / hours 8 

4.1.3 Pre-Treatment 

Pre-treatment involved the exposure of size-modified virgin catalyst to microwaves, plasma or a 

combination of the two. Methods of pre-treatment were, for all practical purposes, identical to 

their regeneration counterparts, allowing for a comparison between the two. Any observed 

differences between the pre-treatment methods with their corresponding regeneration 

experiments are discussed in the challenges and optimisation section at the end of this chapter 

(Section 4.3.3.). 

Figure 4.9. - Schematic of Dielectric Barrier Discharge Regeneration 
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4.2. CHARACTERISATION TECHNIQUES 

4.2.1. Gas Chromatography Mass Spectrometry 

Background 

Gas Chromatography Mass Spectrometry (GC-MS) is the amalgamation of two analytical 

techniques, combining the separation technique of Gas Chromatography (GC) with the structural 

identification properties of Mass Spectrometry (MS) (1). GC uses a stationary phase (e.g. the 

silica coating on the GC column) and an inert mobile phase (typically hydrogen or helium), in 

order to separate a mixture of compounds (2). The mobile phase carries the sample to the column, 

where the affinity for a compound to remain on it (determined by its properties) is different 

between species; leading each compound to elute at a different time. Detection of these eluted 

compounds was performed by a mass spectrometer and displayed as a function of time, resulting 

in production of the chromatogram. MS works by ionising gaseous species (leading to 

fragmentation) and then measuring the mass-to-charge ratio (m/z) of these ions (3). Identification 

is then made by matching the fragmentation patterns to those stored in a library. By combining 

the two techniques, identifying a mixture of compounds can be performed quickly and efficiently 

and when calibrated against known standards, these compounds can be quantified (1). A 

schematic of a GC-MS is given in Figure 4.10.. 

Figure 4.10. - Schematic of GC-MS 
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Application and Procedure 

GC-MS was used to periodically monitor the catalyst activity during toluene disproportionation. 

By calibrating toluene and the disproportionation products, the technique could be used to 

quantify the amount of products (and unreacted toluene) to determine catalytic activity throughout 

the experiment. The detector was calibrated over a range of concentrations comparable with those 

observed during the toluene disproportionation experiments. A multi-point calibration using 5 

concentrations was performed to produce calibration curves. This multi-point calibration 

procedure was carried out periodically, however two-point calibrations were performed daily to 

maintain accurate quantification and compensate for small changes in detector sensitivity. The 

GC-MS apparatus and conditions used is given in Table 4..  

Table 4.4. - GC-MS Apparatus and Conditions 

GC Thermo Scientific Focus GC 

MS Thermo Scientific DSQ II 

Column Supelco SupelcowaxTM 10 fused silica capillary column 

Column Dimensions 30 m x 0.2 mm x 0.2 µm 

GC Gas  He 

Flow Rate / mL min-1 1.5 

GC Inlet Temperature / °C 200 

Split Ratio 200 

Injector Loop / mL 1 

Transfer Line Temperature / °C 250 

Ion Source Temperature / °C 200 

 

The GC was coupled to an MS and fitted with a column specifically chosen for its resolution of 

xylene isomers. The GC operated under constant flow and samples were injected via an 

autosampler (Figure 4.11.) at 0.10 mins for 0.50 mins into the injector loop. The GC programme 

operated as described in  

Table 4.5.. The programme was set to run a total of 50 times in order to monitor samples 

throughout the duration of the experiment. 
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Table 4.5. - GC Programme 

 Ramp Rate 

/ °C min-1 

Initial Temperature 

/ °C 

Final Temperature 

/ °C 

Hold Time 

/ mins 

Isotherm n/a 40 40 2 

Ramp 1 3 40 70 0 

Ramp 2 20 70 200 0 

 

Under these conditions, base line separation (Figure 4.12.) was obtained for products from toluene 

disproportionation: toluene, benzene, and para- meta- and ortho- xylenes. Common side reaction 

products – ethylbenzene and trimethylbenzene – were also recorded. 

Products from the GC were transferred via a line to the MS. The MS ran a full scan with a mass 

range of 15-400 at a scan rate of 1.2610 scans per second with a total scan time of 0.79 seconds. 

The output from the detectors was recorded using Thermo Scientific XCaliburTM software 

(Version 2.0.7.) and transferred to Microsoft Excel for data analysis. 

Figure 4.11. - Schematic of Autosampler 
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Figure 4.12. - Example of a TDP Chromatogram 

 

4.2.2. Thermogravimetric Analysis 

Background 

Thermal analysis operates under the principle that the physical and/or chemical properties of a 

material can change as a product of temperature. Thermogravimetric analysis (TGA) is a type of 

thermal analysis which measures the change in mass as a function of temperature (4). The 

apparatus consists of a sensitive recording balance housed inside a temperature-controlled 

furnace, connected to a computer. The atmosphere is controlled via a gas inlet and can either be 

inert (e.g. N2) or reactive (e.g. O2). When heating a compound under a controlled temperature 

programme, phase transitions, drying (i.e. loss of solvent) or oxidation reactions may occur, 

leading to a recorded mass loss. As such, this apparatus is commonly used in thermal stability 

studies. A schematic of TGA apparatus is given in Figure 4.13.. 
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Figure 4.13. - Schematic of TGA 

Application and Procedure  

Carbon content of deactivated and regenerated catalysts was determined using TGA, with the 

mass loss at 500°C attributed to loss of coke. Details of apparatus and conditions is given in Table 

4.6.. The TGA operated under constant flow of purge gas and oxidising carrier gas regulated by 

rotameters. Extrudate samples were heated in an open alumina pan. The TGA programme 

operated as given in Table 4.7. - TGA Programme.. Under these conditions, all visible carbon was 

removed. Blank TGA runs were subtracted to minimise any buoyancy effects. Mass loss was 

recorded using Mettler STARe Software (Version 13.00.) and transferred to Microsoft Excel for 

data analysis.  

 

 Ramp Rate 

/ °C min-1 

Initial Temperature 

/ °C 

Final Temperature 

/ °C 

Hold Time 

/ mins 

Ramp 1 10 25 400 n/a 

Isotherm 1 n/a 400 400 30 

Ramp 2 5 400 500 n/a 

Isotherm 2 n/a 500 500 300 

Ramp 3 5 500 600 n/a 

Isotherm 3 n/a 600 600 120 

Ramp 4 5 600 800 n/a 

Isotherm 4 n/a 800 800 60 

TGA Mettler Toledo TGA1 STARe System 

Rotameters CT Platon NG Series GTF1CHD-5-100 cm3 min-1 

Pan Mettler Toledo TGA Crucible Set, Alumina Crucible 51140843, 70 µL 

 

Gases 

Purge Oxidising 

N2 Compressed Air 

Flow Rate / mL min-1 20 20 

Table 4.6. - TGA Apparatus and Conditions 

 

Table 4.7. - TGA Programme 
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4.2.3. Powder X-ray Diffraction 

Background 

Powder X-ray diffraction (XRD) is an analytical technique that can be used to identify and 

characterise crystalline materials. When X-rays meet an obstacle, the electron cloud surrounding 

the atoms causes the x-ray beam to scatter (5). The resulting constructive beams give a unique 

diffraction pattern specific to that material. Bragg’s law applies this theory, introducing an integer 

to ensure all waves are constructive (thus producing a diffraction pattern), and by measuring the 

angle of incidence (ɵ), interlayer spacing (d) can be calculated. Bragg’s law can be expressed as 

Bragg’s equation given in Equation 4.1. (6).  

XRD apparatus consists of an X-ray source focused onto a sample, a detector connected to a 

computer that records diffracted X-rays from the sample, and a method of varying angle ɵ. In the 

Bruker D2 Phaser, this is accomplished via movement of the detector through 2ɵ in an arc. A 

schematic of XRD apparatus taken from Powder Diffraction: Theory and Practice (7) is given in 

Figure 4.14.. 

Equation 4.1. - Bragg's Law 

nλ = 2dsinɵ 

Where:   n  is an integer 

λ  is the wavelength of the X-ray 

d is the interlayer spacing of the atoms 

ɵ is the X-ray angle of incidence 
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Application and Procedure 

XRD analysis was carried out on catalyst samples to determine any crystalline changes that 

regeneration or pre-treatment may have had on the sample. Details of apparatus and conditions 

used is given in Table 4.8.. 

Catalyst samples were ground from extrudate into a fine powder before being packed into a 

specimen holder. The prepared sample was loaded into the XRD instrument, where the X-ray 

generator produced Kα 1 and 2 X-rays. Measurements were taken between 5-80° at 2.5° per 

minute and recorded by the detector. Data was analysed using Bruker DIFFRAC.EVA (V3.0.) 

software. 

Table 4.8. - XRD Apparatus and Conditions 

XRD Bruker D2 Phaser 

Detector Bruker Lynexeye 

Specimen Holder PMMA 8.5 mm height, sample reception ø 25 mm 

Source Cu 

Wavelength / Å 1.5418 

Filter  Ni 

Measurement range / ° 5-80 

Measurement rate / ° min-1 2.5 

 

Figure 4.14. - Schematic of XRD (7) 
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4.2.4. Gas Adsorption 

Background 

Gas adsorption is one of the fundamental techniques used to determine surface area and pore size 

of porous materials. It involves the interaction between an adsorbent (solid) and an adsorbate 

(gas) at the gas/solid interface (8). The amount adsorbed on a solid surface is dependent on 

temperature, pressure and the interaction potential between the surface with the gas. Adsorption 

can be a chemical or physical process, depending on the strength of the interaction between 

adsorbent and adsorbate (8). Chemisorption is irreversible and involves the chemical bonding of 

the gas with the solid. In contrast, physisorption is reversible, and occurs whenever an absorbable 

gas is brought into contact with the surface of the solid. Physisorption may involve multilayer 

coverage, can completely fill pores and absorbed molecules are not site specific, allowing for 

surface area measurements to be made (8). 

IUPAC have published six isotherms illustrating the possible sorption profiles arising from 

different materials with various pore sizes (Figure 4.15.) (9). It is not within the remit of this thesis 

to discuss the isotherms in detail, but a brief description of each isotherm and the conditions 

involved to produce them is given in Table 4.9.. 

Figure 4.15. - IUPAC Classification of Sorption Isotherms (9) 

Point B represents full monolayer coverage and the beginning of multilayer adsorption 
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Table 4.9. - Description of Isotherm Profiles (8) 

Isotherm Adsorption Found In 

I Few Monolayers Microporous Materials 

II Unrestricted monolayer-multilayer adsorption Non-porous Materials 

Macroporous Materials 

III Weak adsorbate-adsorbent interactions 

Adsorbate-adsorbate interactions important 

Uncommon 

IV Initial monolayer-multilayer adsorption as in Type II 

Hysteresis loop associated with pore condensation 

Limiting uptake over a range of high P/Po results in a plateau indicating complete pore 

filling 

Mesoporous Materials 

V Hysteresis loop associated with pore condensation 

At lower relative pressures profile relates to adsorption isotherms of type III indicating 

relatively weak attractive interactions between adsorbent and adsorbate 

Water on Charcoal 

VI Stepwise multi-layer adsorption where sharpness of steps is dependent on homogeneity 

of adsorbent surface, adsorptive and temperature. 

Uniform non-porous 

surface, particularly 

spherically symmetrical 

non-polar adsorptives 

 

Langmuir developed a theory for monolayer adsorption which described the Type I isotherms (8). 

This was then built upon by Brunauer, Emmett and Teller (BET) to extend to multilayer 

adsorption. The BET equation (Equation 4.2.) enables the experimental determination of the 

number of molecules required to form a monolayer, by assuming the uppermost adsorbed 

molecules are in dynamic equilibrium with the vapour (8). This dynamic equilibrium means that 

although the surface sites covered by one or more layers may vary, the number of molecules in 

each layer will remain constant. Plotting P/V (𝑃o – P) vs P/Po for values of P/Po between 0.05 and 

0.35 should give a linear relationship, with a gradient of C-1/VmC and a y-intercept of 1/VmC. The 

volume of gas needed to form a monolayer can therefore be written as 1/(gradient + intercept) 

(8).  

Correcting the volume of the monolayer to STP, the number of adsorbate molecules contained 

within it can be calculated. Density can be used to calculate the effective area occupied by each 

adsorbed molecule, assuming a close-packed sphere model. The total area of the monolayer can 
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hence be calculated, which, when divided by the mass of the adsorbent, will give the specific 

surface area of the solid. 

Equation 4.2. - BET Equation 

1/V [P/Po-1] = 1/VmC + C-1/VmC(P/Po) 

 

Where: V is total volume adsorbed at pressure 

  Vm is the volume of gas needed to form a monolayer 

  P is the pressure 

  Po is the saturation vapour pressure of the adsorbate 

  C is a constant 

Application and Procedure 

Gas adsorption was used to determine the amount of surface area lost during coking or restored 

during regeneration, and any changes in pore size that may impact active site availability. The 

BET method was used to determine surface area of the catalyst. The measurements were carried 

out using a Micromeritics ASAP2020 Accelerated Surface Area and Porosimetry System. A 

schematic of the apparatus is given in Figure 4.16.. The sample was evacuated at 90°C for 60 

minutes and for a further 360 minutes at 250°C. It was backfilled with helium before subsequent 

measurements and analysis was run. The adsorbate used was N2. 
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4.2.5. Raman Spectroscopy 

Background 

Raman spectroscopy is an analytical technique used to study molecular vibrations, often to 

determine the identity of a compound from its unique structural fingerprint (10). Whenever light 

meets matter, the light may be absorbed, scattered or pass straight through it. The fundamental 

interaction in Raman spectroscopy is scattering. 

Scattering involves the distortion of the electron cloud and can be categorised into three types: 

Rayleigh, Stokes and anti-Stokes. Rayleigh scattering is elastic – there is no net change in energy. 

Stokes and anti-Stokes scattering however, is inelastic as it involves the transfer of energy either 

from photon to molecule (Stokes scattering), or molecule to photon (anti-Stokes scattering) (10). 

Figure 4.16. - Schematic of Gas Adsorption Apparatus 
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Raman spectroscopy records the shift in energy of inelastic scattering, the intensity of the 

scattered light is proportional to the amount of material present. Fundamentally, Raman apparatus 

consists of a monochromatic light source (often a laser), a focussing lens and a detector. Modern 

equipment often uses a microscope as the optic lens, a charge coupled device (CCD) detector, 

mirrors, and notch filters or additional monochromators to aid separation of incident and scattered 

light, which subsequently focuses the scattered light (10). A schematic of Raman apparatus is 

given in Figure 4.17..  

 

Carbon, with its symmetric covalent bonds and lack of dipole makes it especially sensitive to 

Raman spectroscopy. Each band in the Raman spectrum corresponds to a specific vibrational 

frequency of a bond within a molecule. This technique is therefore particularly useful to carbon, 

as carbon allotropes, composed entirely of C-C bonds, can be differentiated using Raman 

spectroscopy (11). The carbon atoms in diamond give a signature band at 1332 cm-1. In 

comparison, graphite has several bands in the Raman spectrum, and instead of a band at 1332      

cm-1 the main band has shifted to 1582 cm-1 (11). This shifted band is known as the G band (as a 

reference to graphitic carbon) and the shift occurs because graphite is composed of sp2 bonded 

Figure 4.17. - Schematic of Raman Apparatus 
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carbon rather than sp3 bonded carbon which is present in diamond. The sp2 bonds in graphite have 

a higher bond energy. This pushes the vibrational frequency and consequently the frequency of 

the Raman spectrum higher. The presence of additional bands in graphite indicates different bond 

energies within the sample, which is a result of the non-uniformity of graphite. Another common 

band observed with carbonaceous materials appear around 1350 cm-1 and is referred to as the D 

band (11). This band originates from defects or disorder within a graphitic structure. 

Application and Procedure 

Raman spectroscopy was used to investigate the type of carbon formed on the regenerated 

catalysts and to identify any changes in carbon formation post-regeneration. The analysis was 

carried out on a Horiba Jobin Yvon LabRAM HR800 confocal Raman microscope. The 

conditions and apparatus used are given in Table 4.10.. The apparatus was calibrated daily using 

a silicon wafer reference. Data was recorded using the Horiba LabSpec 6 software before being 

transferred to Microsoft Excel for analysis. 

Table 4.10. - Conditions and Apparatus for Raman Spectroscopy 

Apparatus  

Laser Power Supply Laser Quantum DPSS Laser System With 

mpc6000 Power Supply 

Optic Light Source Euromex Holland Fiber Optic Light Source Ek-1 

Instrument Setup  

Objective x50 

Grating / gr mm-1 600 

Filter / % 25 

Laser / nm 532 

Slit 200 

Hole 200 

Acquisition Parameters  

Range / cm-1 400-4000 
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4.2.6. Infrared Spectroscopy 

Background 

Infrared spectroscopy (IR) is an analytical technique used for structural identification based on 

the characteristic absorption bands of specific functional groups. It measures the change in 

intensity when light is absorbed. When a molecule is irradiated by a photon with the exact energy 

corresponding to the difference between a lower energy level (often the ground state) and a higher 

energy level (excited state), the photon may be absorbed (12). This absorption causes the 

molecules to vibrate in a specific manner determined by the identity of the molecule. The various 

vibrational modes and their corresponding infrared bands at specific wave numbers have been 

recorded, enabling rapid identification of functional groups. Additionally, infrared spectroscopy 

can also be used for quantitative analysis by applying Beer-Lambert’s law (Equation 4..) (12). 

Equation 4.3. - Beer-Lambert's Law 

A = εcl 

Where: A is the absorption 

ε is the molar coefficient 

  c is the concentration of the sample 

  l is the path length 

 

When light is absorbed by a sample, the amount absorbed is dependent on how many molecules 

it interacts with and the identity of the molecule. By applying Beer-Lambert’s law, absorption of 

different samples can be directly compared, and the amount of a specific compound or molecule 

can be quantified. 

In catalysis, acid sites are often of great importance. Infrared spectroscopy is beneficial to 

catalysis as it can be used to determine the number of Brønsted and Lewis acid sites within a 

sample. By introducing a known concentration of a base to the catalyst sample, an infrared 

spectrum can determine the number of acid sites and their type, Lewis Acid Sites or Brønsted 

Acid Sites (13). Two common bases used are pyridine and collidine. Pyridine (5.7 Å) is a 



 
70 

 

relatively small molecule and so can easily fit into the pores of medium- and large-pore zeolites, 

such as ZSM-5 and mordenite. Collidine (7.4 Å) is bigger and so often cannot fit inside the pores, 

instead interacting with the surface acid sites (14). This is beneficial as carrying out infrared 

spectroscopy using the two probe molecules can help to identify not only how many acid sites are 

present on the catalyst, but also give an indication of their specific locations. A schematic of the 

infrared apparatus for zeolite characterisation is given in Figure 4.18.. 

Application and Procedure 

Pyridine and collidine infrared spectroscopy experiments were carried out at Keele University 

with the help of Dr. Vladimir Zholobenko. Calibration experiments and preliminary calculations 

were carried out by Dr. Vladimir Zholobenko, with calculations and identification of acid sites 

for pre-treatment being carried out by the author. Apparatus of the infrared studies are given in 

Table 4.11. 

Table 4.11. - Infrared Spectroscopy Apparatus 

Infrared Spectrometer Thermo Scientific Nicolet iS10 FT-IR Spectrometer 

Vacuum Pump Pfeiffer HiCube 80 Eco, DN 63 ISO-K, MVP 015-4 

Infrared Cell Quartz 

Number of Scans 64 

Resolution 4 

Figure 4.18. - Schematic of IR Apparatus 
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Catalyst samples (~10 mg) were ground into a fine powder before being pressed into self-

supporting discs (~0.05 mm thickness). The sample was placed inside a sample holder and 

enclosed within the infrared cell. The sample was pre-treated in situ at 450°C for 5 hours under 

vacuum. Following this the temperature was lowered to 150°C whereupon an infrared spectrum 

was collected before an excess of the probe molecule (1µL) was injected into the cell. After 10 

minutes the cell was evacuated removing any unbound or physisorbed probe molecules and the 

infrared spectrum inclusive of the probe molecule was collected. The obtained infrared data was 

analysed (including integration, subtraction and determination of peak positions) using Thermo 

OMNIC software (Version 9.). 

To determine the concentration of acid sites, Beer-Lambert’s law (Equation 4.3.) was modified 

because the pathlength of the sample is undefined (Equation 4.4.). 

Equation 4.4. - Modified Beer-Lambert's Law 

n = A x S / ε 

Where  n is the number of moles per sample 

  A is the absorption 

  S is the physical sample size 

  ε is the molar absorptivity coefficient 

The molar absorptivity coefficient is dependent upon the type of acid site and type of zeolite used. 

For the calculations carried out in this research and contained within this thesis, the molar 

absorptivity coefficients used were provided by Dr. Vladimir Zholobenko from Keele University 

and are not currently published in the literature. For absorption values, 1544 cm-1 is used to 

calculate BAS and 1453 cm-1 is used to calculate LAS when using pyridine as the probe molecule, 

and 1636 cm-1 is used to calculate BAS when collidine is the probe molecule (15,16). A copy of 

the calculations for the results produced herein are found in the Appendix. 
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4.2.7. Solid State Nuclear Magnetic Resonance 

Background 

Nuclear Magnetic Resonance (NMR) is an analytical technique that applies the principle of 

nuclear spin to determine the composition of a material (17). When an external magnetic field is 

applied to a nucleus with a nuclear spin, the magnetic moment of the nucleus will align or oppose 

the external field. NMR utilises this property by introducing electromagnetic radiation in the form 

of radio waves to cause the nuclei to undergo energy transitions, where the energy absorbed in 

the spin-flips is re-emitted as the nuclei undergo relaxations back to their more 

thermodynamically stable state (17). This process is referred to as nuclear magnetic resonance, 

and it is this re-emitted energy that is measured by the detector to form the NMR spectrum. 

Solid State NMR (ssNMR) differs from classical NMR, where samples are typically liquids or in 

solution. Various interactions between nuclei exist in both types of NMR, however where in 

classical NMR the molecules can rotate freely and so act isotropically, in solid samples the nuclei 

are more restricted (17). As a result, the nuclei interactions in liquid samples cancel each other 

out, but in solid samples they remain dominant and create broad, unintelligible spectra. To 

overcome this, the magic angle spinning (MAS) technique was introduced. By rotating the sample 

at high velocity at a critical angle of 54.74° to the applied magnetic field, the interactions that are 

geometrically dependent (i.e. chemical shift anisotropy and dipolar interactions) are negated (17). 

In practical terms, using MAS, ssNMR produces clearer, more defined peaks. 

Application and Procedure 

ssNMR was performed in order to determine the composition of the catalyst, specifically 

concerning the ratio between silicon and aluminium. 1H, 27Al and 29Si MAS ssNMR was 

performed. The experiments were carried out at Johnson Matthey Technology Centre, Sonning 

Common, by Dr. Nathan Barrow and Dr. Johnathon Bradley, and they subsequent produced 

reports on the results (found in the Appendix). Details of the apparatus and conditions used is 

given in Table 4.12.. 
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Table 4.12. - Conditions and Apparatus used in ssNMR 

Apparatus  

NMR Apparatus Bruker Avance III Bruker Avance NEO 

Software TopSpin Version 3.1 TopSpin Version 4.0 

Reaction Conditions  

Magnetic Field Strength / T 9.5 14.1 

Nuclei Detected 1H 27Al 29Si 

Probe Frequency / MHz 400.16 600.22 104.27 156.41 79.49 

Reference Material D16 Adamantane YAG Kaolinite 

Reference Material Chemical Shift / ppm  1.73 0.0 -91.2 

 

Powdered samples (~100 mg) were packed into zirconia MAS rotors with Kel-F caps, with mass 

being recorded before and after the experiment. The rotors were spun using room-temperature 

purified compressed air. Data was recorded on TopSpin (Version 3.1. or 4.0.). 

4.2.8. X-ray Photoelectron Spectroscopy 

Background 

X-ray photoelectron spectroscopy (XPS) is a surface analysis technique used to determine the 

elemental composition and chemical environment of the outer 10 nm of a material (18). By 

irradiating a sample with X-rays, photons with sufficient energy are able to eject an electron 

bound to an atom or ion, and even from the material itself. The electrons emitted from the material 

are detected and their remaining kinetic energy is measured. It is the kinetic energy of the electron 

which can determine the atom and chemical environment which it came from, as electron binding 

energy is element and environment specific (18). The binding energy can be calculated, assuming 

the element exists at >0.05 atomic %, as shown in Equation 4.5.. 

Equation 3.5. - XPS Binding Energy Equation 

K.E.xps = Eph – Фxps – B.E.xps 

Where   K.E.xps   is the kinetic energy of the emitted electron 

Eph   is the energy of the photon 
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Фxps   is the work function of the instrument 

B.E.xps   is the binding energy of the electron 

In order to obtain accurate results, XPS is carried out under high vacuum. As such, it is usually 

limited to solid samples, although it is possible to run liquid or gaseous samples using specialist 

equipment (18). A schematic of XPS apparatus is given in Figure 4.19.. 

 

Application and Procedure 

XPS was carried out on regenerated catalysts to investigate any changes to the catalyst surface. 

The procedure and data analysis were carried out at Johnson Matthey by Dr. Tuğçe Eralp Erden, 

using Johnson Matthey’s standard procedure. Details of this were not disclosed. A copy of the 

report produced by Dr. Tuğçe Eralp Erden can be found in the Appendix.  

4.2.9 Ammonia Temperature Programmed Desorption 

Background 

Ammonia Temperature Programmed Desorption (NH3 TPD) is a widely used analytical technique 

for the determination of acid site strength in zeolites (19). It operates by exposing a small amount 

of clean catalyst to ammonia and monitoring the desorption of the gas as a function of temperature 

(20). The temperature at which the ammonia desorbs can be used as an indicated of the relative 

strength of the acid site (21). Typically, in H-zeolites such as mordenite, two peaks are observed. 

Figure 4.19. - Schematic of XPS Apparatus 
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These represent low (l-peak) and high (h-peak) temperature desorbed ammonia. However, only 

the h-peak is a result of directly bound NH3, whereas the l-peak corresponds to weakly adsorbed 

NH4
+ species (22). The intensity of such peaks is dependent on experimental conditions such as 

the contact time of the carrier gas. This can be referred to as W/F, the mass of the sample / the 

flow rate of the carrier gas (22). Therefore, to directly compare results, mass and flow rate should 

be the same. A schematic of NH3 TPD apparatus is given in Figure 4.20.. 

 

Application and Procedure 

NH3 TPD was carried out on regenerated and pre-treated catalysts to determine any changes to 

the distribution of acid site strength on the mordenite samples. The procedure and data analysis 

were carried out at Johnson Matthey by Dr. John West. Details of the programme used as provided 

by Johnson Matthey are given in Table 4.13.. No sample preparation was carried out. Samples of 

100 mg were used, and the procedure was carried out under helium at a constant flow rate of 40 

mL min-1. 

 

 

 

Figure 4.20. – Schematic of NH3 TPD Apparatus 
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Table 4.13. – Temperature Programme for NH3 TPD 

 Ramp Rate 

/ °C min-1 

Initial Temperature 

/ °C 

Final Temperature 

/ °C 

Hold Time 

/ mins 

Ramp 1 10 25 400 n/a 

Isotherm 1 n/a 400 400 120 

Cooldown 1 n/a 400 40 n/a 

Isotherm 2a n/a 40 40 240 

Isotherm 3 n/a 40 40 240 

Ramp 2 10 40 1000 n/a 

a Addition of NH3 (5000 ppm) over this period 

4.3. CHALLENGES AND OPTIMISATION 

The following section details the optimisation and modification processes which occurred in order 

to produce the final experimental procedures detailed in this chapter. 

4.3.1. Toluene Disproportionation 

Toluene disproportionation was originally carried out under small-scale conditions detailed at the 

beginning of this chapter. Therefore, the following optimisations and modifications were 

performed at small-scale, however the final conditions and experimental set-up was applied to 

large-scale toluene disproportionation where possible. 

The main challenge for toluene disproportionation was preventing toluene and the products from 

condensing along the apparatus, causing an inconsistent amount of products reaching the GC-MS 

for detection. This was first seen under the original conditions, where the gas saturator was not 

temperature controlled, the line was not heated, and the results were very much dependent upon 

the weather and temperature of the laboratory of any particular day. To overcome this challenge, 

heating tape was applied from the end of the reactor tube to the GC-MS detector at a temperature 

of 150°C. The gas saturator was temperature controlled using a water bath set to 35°C, however 

this led to detector saturation, so the water bath was instead replaced with an ice bath. 

Other modifications included: 

• Using the same amount of toluene in each reaction to prevent change in the degree of 

saturation 
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• Routine leak testing 

• For large-scale TDP, the flow rate was altered to match the space velocity of the small-

scale reactor 

4.3.2. Regeneration 

Thermal 

In order to determine the required regeneration time, initially thermal regeneration was performed 

for durations of 1, 2, 4, 8, 12, 16, 20, and 24 hours. Visual observation was used as a first measure 

of regeneration and final confirmation was determined by TGA. 

Microwave 

Microwave regeneration proved difficult initially, as the microwaves had to be focussed on a 

small section of reactor tube containing the catalyst. Modifications made to overcome this 

challenge included: using a smaller aperture to narrowly focus the microwaves and using a reactor 

tube with a smaller diameter to increase reactor bed height.  

These modifications enabled the microwaves to heat the catalyst sufficiently for regeneration 

(confirmed via TGA), however upon removal of the catalyst post-regeneration, it was apparent 

that the microwaves were directional and not all the catalyst had regenerated (Figure 4.1.). For 

this reason, rotating the reactor tube every 105 minutes was introduced. 

Figure 4.21. – Photos of Incomplete Microwave Regeneration (Left); Fused Microwave Treated Catalyst 

(Right) 
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The final challenge, and probably the most detrimental to the microwave studies, was temperature 

control. The power was controlled manually, and the amount of coke or water within the reactor 

tube had a large impact on the energy within the system. This meant temperature could fluctuate 

by over 100°C using the same power in under 30 seconds. The result of this was ultimately 

catalyst destruction, with parts of the sample losing crystallinity, some to the point where the 

sample fused together (Figure 4.21.). Therefore, to produce sufficient quantities of sample for 

activity testing, a larger amount of catalyst was used in the microwave studies. The sample was 

then manually separated after treatment before further testing. 

Microwave Plasma 

By using a non-equilibrium plasma in microwave plasma regeneration, it was unsurprising to see 

that initial regenerations produced samples where the majority of the regeneration was complete, 

but not absolute. This was because the plasma was not uniform across the reactor tube, so parts 

of the reactor would have plasma of a lower energy than others. To overcome this, vigorous 

shaking of the reactor tube was introduced. 

To determine the sufficient power required for microwave plasma regeneration, experiments were 

undertaken at various powers ranging from 50-500 Watts. 200 Watts was decided on as the 

standard power, as below this did not guarantee full regeneration within a reasonable time-frame, 

and above this led to partial destruction of the catalyst. Similarly to other regeneration methods, 

complete regeneration was initially determined visually before final confirmation via TGA. 

4.3.3. Pre-Treatment 

Pre-treatment was carried out after the modifications of the regeneration techniques had been 

applied. However, it is worth mentioning for the microwave and microwave plasma pre-

treatments, the water content of virgin catalyst had an impact on initial temperature control of the 

treatment. Furthermore, restarting the experiments after the rotation/vigorous shaking of the 

reactor tube became progressively more difficult. In this author’s understanding, this was likely 

due to a lack of water and coke, both of which readily absorb microwaves. 
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4.3.4. Gas Chromatography Mass Spectrometry 

As the method used to monitor catalytic activity, it was imperative to ensure clear separation of 

the products, especially the xylene isomers. Programme optimisation and testing was carried out 

using a mixture of the products. Initially an Omegawax® column was used, which displayed a 

clear separation for most of the products with the exception of p- and m- xylene (Figure .22.). 

This persisted during the development of various programmes involving changes to split ratio and 

temperature profile (Table 4.14.). Therefore, the column was replaced with a Supelco 

SupelcowaxTM column, specifically advertised to separate xylene isomers. Once fitted, 

optimisation of split ratio and temperature profile was repeated, producing a distinct base line 

separation. 

 

 

 

 

Figure 4.22. - Chromatograph of Unresolved Xylene Peaks (2.01, 2.09 & 2.15 mins) 
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Table 4.13. - Conditions of GC Programmes Tested During Optimisation 

Method Initial 

Temperature 

/ °C 

Hold Time at 

Initial 

Temperature /°C 

Ramp Rate 

/ °C min-1 

Final 

Temperature 

/ °C 

Split Ratio 

1 

 

60 8 8 130 40 

2 

 

40 2 5 130 40 

3 

 

40 2 5 130 100 

4 

 

40 2 3 130 100 

5 

 

 

40 2 3 70 40 

70 0 20 200  

6 

 

 

40 2 3 70 200 

70 0 20 200 

7 

 

 

40 2 3 70 300 

70 0 20 200 

8 

 

40 2 3 70 200 

 70 0 20 200 

 

4.3.5. Thermogravimetric Analysis 

Often in TGA, a linear temperature programme is used to reduce time and give general results on 

the thermal stability of a compound. However, when a scan-type programme was used for the 

coked catalyst samples, it was apparent the coke had not been fully removed (Figure 4.3.). For 

this reason, various programmes of different length isotherms were tested to create a temperature 

programme which could determine the mass of any carbon oxidised at 500°C.   
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Figure 4.23. – Linear Programme TGA (Temp: 25-600°C; Ramp Rate: 10°C min-1) of Coked Sample 
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CHAPTER 5: REGENERATION STUDIES I - RESULTS 

5.1. INTRODUCTION 

Using toluene disproportionation as a probe reaction and as a means of providing carbon lay 

down, virgin mordenite samples were deactivated (as described in Section 4.1.1.). Three novel 

regeneration methods were proposed. Studies were then performed in order to evaluate the 

efficacy of these processes, namely microwave heating (MW), microwave plasma (MWP) and 

dielectric barrier discharge (DBD) plasma. These novel regeneration technologies were compared 

to conventional heating (referred herein and henceforth as thermal regeneration). Details of these 

processes are given in Section 4.1.2.. This chapter presents the findings of these studies which 

will be discussed in the following chapter (Chapter 6). 

5.2. CATALYST TESTING 

5.2.1 Toluene Conversion as a Function of Time 

Regenerated mordenite was subjected to a second toluene disproportionation. The regenerated 

activity represented as toluene conversion as a function of time has been plotted in Figures 5.1.-

5.4.. The data for each regeneration treatment has been plotted alongside virgin mordenite in order 

to assist in the visualisation of any differences which may have resulted. 

As can be seen in Figure 5.1., the initial toluene conversion over the virgin catalyst was 60 %, 

which decreased over time. After 450 minutes, catalytic activity had dropped to a 10 % conversion 

and remained in a pseudo-steady state with activity only reducing a further 4 % after an additional 

500 minutes. Rapid deactivation occurred between 180 minutes and 325 minutes at a rate of 0.30 

% min-1. 

The activity data for a sample of spent mordenite which had undergone thermal regeneration is 

also shown in Figure 5.1.. Whilst the catalyst exhibits very similar activity to the virgin material, 
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including the same rate of deactivation (0.30 % min-1), it should be noted the initial activity is 

slightly reduced (58 %). 

In contrast, the deactivation profile of a sample of spent mordenite which had undergone 

microwave regeneration (Figure 5.2.), was significantly different from both the virgin and the 

thermally regenerated materials. In terms of toluene conversion, the sample did not undergo a 

rapid deactivation. In contrast, the profile displays a much more gradual deactivation with a rate 

of 0.088 % min-1, when measured over the same period as the virgin material. 

The sample of spent mordenite which had undergone microwave plasma regeneration displayed 

an activity profile for toluene disproportionation (Figure 5.3.) very similar to the microwave 

regenerated sample. The initial activity was slightly reduced compared with the virgin material 

(58 %) and the rate of deactivation over the measured period (180-350 mins) was calculated to be 

0.085 % min-1. 

The sample of spent mordenite which had undergone DBD plasma regeneration (Figure 5.4.) 

proceeded to deactivate rapidly, similar in profile but even more pronounced than the virgin and 

thermally regenerated catalysts. Rapid deactivation occurred between 71-214 minutes with a rate 

of deactivation of 0.523 % min-1, reaching a pseudo-steady state where toluene conversion was 5 

%. 
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Figure 5.1. - Activity Plot of Virgin Catalyst Compared with Thermally Regenerated Catalyst 
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Figure 5.2. - Activity Plot of Virgin Catalyst Compared with Microwave Regenerated Catalyst 

Figure 5.3. - Activity Plot of Virgin Catalyst Compared with Microwave Plasma Regenerated Catalyst 
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5.2.2 Effect of Regeneration on Catalyst Selectivity 

When investigating how the regeneration treatments have affected catalyst selectivity, both the 

more desirable toluene disproportionation and the competing toluene dealkylation (cracking) need 

to be considered. Reaction selectivity between disproportionation and cracking can be studied 

through observation of the benzene-to-xylene ratio (B/X), whereas the product selectivity of 

disproportionation can be examined through xylene isomer selectivity, in terms of quantities of 

the individual isomers produced.  

The B/X as a function of reaction time for the regenerated catalysts is shown in Figure 5.5., 

excluding the initial data point, which is instead provided in Table 5.1.. As can be seen in Figure 

5.5., the B/X decreases as a function of reaction time, reducing to a pseudo-steady state of ~0.2 

for all samples. From Table 5.1. it can be seen that the initial B/X of the samples is significantly 

higher than their subsequent values, and therefore the reason the initial data point for each sample 

was excluded from Figure 5.5.. The virgin catalyst had an initial B/X of 0.57, whereas the 

regenerated catalysts (with the exception of the DBD plasma regenerated sample) had lower B/X 

values. The initial B/X of the thermally regenerated sample had decreased by 14 %, whereas the 

microwave and microwave plasma regenerated samples had both decreased by a third compared 
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with the virgin sample. In contrast the initial B/X of the DBD plasma regenerated sample had 

increased by 7 % compared with the virgin sample. 

 

 

 

 

 

 

Figure 5.5. - B/X of Regenerated Catalysts 

 

Regeneration Method Initial B/X 

None (Virgin) 0.57 

Thermal 0.48 

Microwave 0.36 

Microwave Plasma 0.35 
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The individual xylene isomer selectivities as a function of reaction time for the regenerated 

catalysts are given in Figures 5.6.-5.8.. The data has been plotted alongside the thermodynamic 

equilibrium (T.E.) and grouped by similarity of xylene selectivity profiles for ease of discussion 

and interpretation. 

Figure 5.6. presents the individual xylene isomer selectivities for a sample of virgin and a sample 

of thermally regenerated mordenite. Initial values of p- and o-xylene are slightly higher than the 

thermodynamic equilibrium. During the first 400 minutes, the amount of p- and o-xylene slowly 

decreases (whilst the amount of m-xylene correspondingly increases) towards thermodynamic 

equilibrium. However, after this period, the amount of p-xylene begins to move away from 

thermodynamic equilibrium, slowly increasing for the remainder of the reaction, whilst m- and o-

xylene values slowly decrease accordingly.  

Figure 5.6. - Plot of Individual Xylene Isomer Selectivities for Virgin and Thermally Regenerated 

Catalysts 

Figure 5.7. presents the individual xylene isomer selectivities for a sample of microwave 

regenerated and a sample of microwave plasma regenerated mordenite. Similar to the virgin and 
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thermally regenerated samples, the initial amounts of p- and o-xylene are slightly elevated 

compared with the thermodynamic equilibrium, whilst the amount of m-xylene is lower 

accordingly. Over the duration of the first 400 minutes, the amount of p-xylene decreases slightly, 

moving towards thermodynamic equilibrium, after which it remains constant for the remainder of 

the reaction. m-Xylene increases throughout the duration of the reaction towards thermodynamic 

equilibrium, almost reaching it by 800 minutes. o-Xylene remains relatively constant throughout 

the reaction, before slowly decreasing after 630 minutes proportionately in accordance with 

changes in p- and m-xylene.   

Figure 5.8. presents the individual xylene isomer selectivities for a sample of DBD plasma 

regenerated mordenite. Initially the xylene isomer selectivities of the DBD plasma regenerated 

sample are in thermodynamic equilibrium. However, after 200 minutes, the xylene isomers move 

away from thermodynamic equilibrium, with a slight increase in p-xylene and corresponding 

decrease in m- and o-xylene. 

Figure 5.7. - Plot of Individual Xylene Isomer Selectivities for Microwave and Microwave 

Plasma Regenerated Catalysts 
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Figure 5.8. - Plot of Individual Xylene Isomer Selectivities for DBD Plasma Regenerated Catalyst 

5.3. SURFACE AREA AND AMOUNT OF COKE 

The surface area and coke present for each of the coked and uncoked catalysts was determined 

according to the method described in Section 4.2.4. and is given in Table 5.2.. 

Table 5.2. - Surface Area and Coke Present on Regenerated Catalysts 

 BET Surface Area / m2g-1 Coke Present / weight % 

 Uncoked Coked Uncoked Coked 

Virgin 348 189 0.30 4.55 

Thermal Regenerated 352 190 0.36 3.37 

Microwave Regenerated 259 210 0.19 2.39 

Microwave Plasma Regenerated 333 158 0.32 3.05 

DBD Plasma Regenerated 290 186 2.20 4.49 

As can be seen from Table 5.2., the BET surface area of the catalysts is reduced upon coking, 

with virgin mordenite losing almost half of its surface area post-deactivation. Upon regeneration, 

a large proportion of surface area is recovered, ranging between 74-100 % depending on the 

regeneration method. Both the thermally and microwave plasma regenerated catalysts recovered 
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over 95 % of their surface area, with the DBD plasma regenerated mordenite having recovered 

83 % and the microwave regenerated sample recovered the least surface area (74 %). Post-

deactivation, the regenerated catalysts lost similar amounts of surface area to virgin deactivation 

(54 %), with microwave plasma losing the most surface area with respect to virgin (45 %). 

From the coke data given in Table 5.2., it can be seen that the amount of coke deposited on the 

regenerated catalysts during toluene disproportionation was significantly less than the virgin, with 

the exception of DBD plasma regenerated mordenite, where the difference is negligible. There is 

only a slight decrease in the amount of coke formed in the thermally regenerated sample, however, 

the microwave and microwave plasma regenerated coked samples show considerably less coke, 

with values approximately half or two thirds respectively, when compared with virgin. 

5.4. COKE COMPOSITION 

The deactivation of the catalyst in this reaction is attributed to coking. Therefore, determination 

of the coke composition may offer an insight into whether the regeneration process affects the 

coking mechanism. Raman and solvent extraction (coupled with GC-MS) were used to aid 

identification of any structural alterations which may be present in the coke. 

5.4.1. Raman Spectroscopy 

Raman spectra of virgin (both coked and uncoked), coked thermally regenerated and coked 

microwave plasma regenerated samples are given in Figure 5.9.. However, Raman studies 

involving zeolites and/or coke are known to suffer interference due to fluorescence of the sample 

(1). This drawback can affect the interpretation of the Raman data, leading to higher intensities 

than would be seen with no interference. The (uncoked) virgin sample exhibits a significant 

amount of fluorescence between 2000-1200 cm-1. In contrast, fluorescence does not appear to be 

present on the coked virgin sample, however it is present on the thermally and microwave plasma 

regenerated coked samples, most noticeably in the 2000-1700 cm-1 region. Therefore, to interpret 

the Raman data taking fluorescence into consideration, the (uncoked) virgin sample was 

subtracted from the thermally and microwave plasma regenerated coked samples between 2000-
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1200 cm-1. The subtraction result plotted with the unaltered coked virgin sample are given in 

Figure 5.10.. 
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Figure 5.9. - Raman Spectrum of Regenerated Coked Catalysts 

 

Figure 5.10. – Subtracted Raman Spectrum of Regenerated Coked Catalysts 
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In the 2000-1200 cm-1 region (Figure 5.10.), three distinct peaks can be identified at 1350 cm-1 

(D-band), 1575 cm-1 (G-band) and 1900 cm-1 (2), although the latter only appears in the 

microwave plasma regenerated sample. The intensity of the microwave plasma regenerated 

sample is significantly lower in the d- and g-bands compared with the virgin and thermally 

regenerated samples. In Figure 5.9., the (uncoked) virgin sample exhibits peaks in the lower 

wavenumber region <1000 cm-1 characteristic of the crystallinity of the zeolite (3). These appear 

broader and less defined in the microwave plasma regenerated sample, whereas in the coked 

virgin and thermally regenerated samples, the peaks become broad and muted, with very low 

intensities. This is due to coverage of the zeolite by the carbonaceous species. 

5.4.2. Solvent Extraction 

Identification of carbonaceous species is often determined using solvent extraction (4). Studies 

have shown coke deposited during toluene disproportionation to consist of various hydrocarbons, 

some readily soluble and others insoluble to common solvents such as dichloromethane (DCM) 

(5).  A typical solvent extraction performed on a zeolite can involve multiple extraction stages, 

ultimately leading to treatment with hydrogen fluoride (HF), resulting in the destruction of the 

zeolite (5). For this research, a milder solvent extraction involving DCM was performed, to 

investigate any difference in the proportion or type of DCM soluble coke species upon 

regeneration.  The solvent extraction process was as follows: 100 mg coked catalyst was 

submerged in 20 mL DCM and vigorously shaken for a period of 72 hours. Following this, the 

samples were removed, and the effluent was injected into the GC-MS for analysis. Figure 5.11. 

gives a photograph of the effluent post-extraction, and Figure 5.12. gives the results of the GC-

MS analysis. 
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Whilst all the catalyst samples post-DCM extraction were still completely black, Figure 5.11. 

shows some colouration of the effluent compared with the blank (solely DCM), illustrating some 

DCM soluble species. In particular, the virgin and thermally regenerated effluent showed a darker 

colour compared with the microwave and plasma samples. 

Figure 5.12. presents the GC-MS data of the effluent, with relative abundance referenced to the 

solvent. The GC-MS programme used was the same used for the detection of TDP products on-

stream during the deactivation process and the species elucidated were preliminarily identified 

through the NIST library. 

There were no significant peaks below 15 minutes with the exception of the solvent. All the 

samples appeared to have DCM soluble species. The virgin sample exhibits a similar amount of 

DCM soluble coke to the thermally regenerated sample, both of which appear to have less DCM 

soluble coke present than microwave plasma and DBD plasma samples. The microwave 

regenerated sample exhibits almost no DCM soluble coke. 

The preliminary identification of the DCM soluble coke species using the NIST library, 

determined the carbonaceous species to be similar in structure, with up to 3 rings and molecular 

weights ranging from 165-340 g mol-1, similar to those reported by Magnoux et al. (6). 

Figure 5.11. - Photo of the Effluent Post-Extraction 
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Figure 5.12. – Chromatogram of DCM Soluble Coke 
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5.5. X-RAY DIFFRACTION 

One of the main concerns of catalytic regeneration is loss of crystallinity during the process, 

which often results in heavily reduced activity, selectivity or both (7-9). XRD was carried out on 

the regenerated samples to determine whether the microwave, microwave plasma and DBD 

plasma regeneration processes had any significant effect on the catalytic crystal structure. The 

results of this are given in Figures 5.13.-5.16., with the regenerated samples laid over virgin 

mordenite to aid in visualisation of any changes which may have occurred. 

There is little difference in the diffractograms of the virgin and regenerated samples, with the 

exception of microwave regenerated mordenite. All the diffractograms show characteristic 

mordenite peaks (10), with negligible change in peak position and very little peak broadening. 

Loss of relative intensity is suggestive of a loss in crystallinity or less sample present in the beam. 

Whilst difficult to determine where only marginal losses are seen (i.e. thermal, microwave plasma 

and DBD plasma regenerated samples), the considerable loss in relative peak intensity of the 

microwave regenerated sample compared with the virgin sample suggests a loss of crystallinity 

to be more likely in this case. This would elude to changes in the cell coordinates or composition. 

However further analysis such as Rietveld refinement would need to be performed to confirm 

this. 

 

Figure 5.13. - XRD Diffractogram of Thermally Regenerated Mordenite 
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Figure 5.14. - XRD Diffractogram of Microwave Regenerated Mordenite  

 

Figure 5.15. - XRD Diffractogram of Microwave Plasma Regenerated Mordenite 
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Figure 5.16. - XRD Diffractogram of DBD Plasma Regenerated Mordenite 

5.6 X-RAY PHOTOELECTRON SPECTROSCOPY 

XPS was carried out to determine any changes in the surface structure which may have been 

caused by the regeneration processes. The results are given in Table 5.3.. 

Table 5.3. - Surface Composition (Surface Atom %) of Regenerated Catalysts  

Element Virgin Thermally Regenerated Microwave Plasma Regenerated 

Oxygen 60.5 59.2 60.4 

Aluminium 25.5 24.9 22.7 

Silicon 7.9 8.5 11.6 

 

From Table 5.3., a change in the number of aluminium and silicon surface composition can be 

seen between the virgin and regenerated catalysts. There is a minor decrease from 25.5 % to 24.9 

% for the thermally regenerated catalyst and a slightly more pronounced decrease to 22.7 % for 

the microwave plasma regenerated catalyst. There is also a corresponding increase in silicon, 

although no significant change in the amount of oxygen present.  
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5.7. CATALYST ACIDITY 

5.7.1. Magic Angle Spinning Solid State Nuclear Magnetic Resonance 

As an acid catalyst, the activity of mordenite is heavily linked to availability and strength of its 

acid sites. ssNMR and IR studies were carried out to determine any impact the microwave or 

plasma regeneration processes may have had on catalytic acidity. Figures 5.17., 5.18. and 5.19. 

depict the results of 29Si, 27Al, and 1H MAS ssNMR on the regenerated catalysts respectively. 

The 29Si NMR in Figure 5.17. displays three peaks in the region of -95 and -115 ppm. These are 

characteristic of mordenite, representing the oxygen bridged tetrahedrally bound silicon to 

aluminium atoms. Typically, these peaks are -100 ppm (2 bound Al atoms), -106 ppm (1 bound 

Al atom) and -113 ppm (0 bound Al atoms) (11). The most significant of the three peaks is the 

peak at -106 ppm, as this has been recognised as highly sensitive to the presence of aluminium 

and the change in intensity can be correlated to the amount of dealumination occurring on a given 

mordenite sample (11). The -106 ppm peak in Figure 5.17. shows a decrease of intensity in both 

the thermally regenerated and microwave plasma regenerated samples compared with virgin. 

The 27Al NMR in Figure 5.18. exhibits two peaks: 54 ppm and 0 ppm, representing framework 

and extra-framework aluminium (EFAl) respectively (12). The shoulders seen to the left of both 

peaks are attributed to the γ-alumina binder (12). Figure 5.18. shows a decrease in framework 

aluminium for both thermal and microwave plasma regenerated samples, however there is still 

less EFAl for both samples than seen in the virgin.  

The 1H NMR in Figure 5.19. displays 4 peaks: 4.0, 2.6, 1.8 and 0.0 ppm. The peaks at 4.0 and 1.8 

ppm are widely known to represent Brønsted acid sites and silanol group protons respectively 

(13-16). The peaks at 2.6 and 0.0 ppm are less established within the literature as results can often 

produce broad peaks, where resolution of individual peaks can be difficult to identify (13). What 

is present in the literature attributes these peaks to EFAl species (15). Figure 5.19. shows a 

decrease in Brønsted acid sites for the regenerated samples compared to virgin, with the 
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microwave plasma sample losing significantly more Brønsted acid sites. There is an increase in 

EFAl at 2.6 ppm (although this is not seen at 0.0 ppm). 

 

 

  

 

                                                      Virgin                            Thermally Regenerated Mordenite 

                              Microwave Plasma Regenerated Mordenite 

                                                      Virgin                            Thermally Regenerated Mordenite 

                              Microwave Plasma Regenerated Mordenite 

 

Figure 5.18. – 27Al MAS ssNMR of Regenerated Catalysts 

 

Figure 5.17. - 29Si MAS ssNMR of Regenerated Catalysts 
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5.7.2 Infrared Spectroscopy 

Results from the infrared studies using probe molecules are given in Figures 5.20.-5.25.. Figure 

5.20. depicts the IR spectra of the virgin sample prior to and post pyridine adsorption in the 4000-

3500 cm-1 region where the O-H stretching frequencies appear (17). Peaks of interest include 3742 

cm-1, 3653 cm-1 (Si-OH and Al-OH groups) and 3606 cm-1 (acidic Al-OH-Si groups). The 

additional peak at 3775 cm-1 is a result of the γ-Al2O3 in the binder. These peaks were also present 

in the regenerated samples but were omitted for simplification.  

The subtraction result ((spectrum of the sample after pyridine adsorption) – (the spectrum of the 

activated sample prior to adsorption)) of the regenerated samples is given in Figure 5.21.. The 

interaction of pyridine with the catalyst samples can be seen from the presence of negative peaks 

appearing at 3608 cm-1, 3660 cm-1, 3744 cm-1 and 3775 cm-1. 

                                                      Virgin                            Thermally Regenerated Mordenite 

                              Microwave Plasma Regenerated Mordenite 

- - - The dashed line represents the microwave plasma scaled to the SiOH peak height of the other samples. 

 

Figure 5.19. - 1H MAS ssNMR of Regenerated Catalysts 
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Virgin 

Virgin with Pyridine Adsorbed 

Virgin 

Thermally Regenerated Mordenite 

Microwave Regenerated Mordenite 

Microwave Plasma Regenerated Mordenite 

Figure 5.20. – IR Spectra of Virgin Sample Pre- and Post-Pyridine Adsorption 

Figure 5.21. – IR Spectra Subtraction Result of Pyridine Adsorbed Regenerated Catalysts 

(4000-3400 cm-1) 
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Figure 5.22. depicts the IR subtraction result of the regenerated catalysts in the 1700-1400 cm-1 

region where the pyridine frequencies appear (17). Peaks of interest include 1454 cm-1 (strong 

LAS), 1489 cm-1 (BAS and LAS), 1544 cm-1 (BAS), 1621 cm-1 and 1633 cm-1. The peaks at 1544 

cm-1 and 1454 cm-1 were used to calculate the concentration of Brønsted and Lewis acid sites (as 

described in section 4.2.6) respectively (Table 5.4). 

Figure 5.23. depicts the IR spectra of the virgin sample prior to and post collidine adsorption in 

the 4000-3500 cm-1 region where the O-H stretching frequencies appear (18). Peaks of interest 

include 3743 cm-1, 3657 cm-1 (Si-OH and Al-OH groups) and 3607 cm-1 (acidic Al-OH-Si 

groups). The additional peak at 3775 cm-1 is a result of the γ-Al2O3 in the binder. The subtraction 

result of the regenerated samples is given in Figure 5.24.. The interaction of collidine with the 

catalyst samples can be seen from the presence of negative peaks appearing at 3608 cm-1, 3663 

cm-1, 3745 cm-1 and 3775 cm-1. 

 

Virgin 

Thermally Regenerated Mordenite 

Microwave Regenerated Mordenite 

Microwave Plasma Regenerated Mordenite 

Figure 5.22. – IR Spectra Subtraction Result of Pyridine Adsorbed Regenerated Catalysts 

 (1700-1400 cm-1) 
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Figure 5.25. depicts the IR subtraction result of the regenerated catalysts in the 1800-1500 cm-1 

region where the collidine frequencies appear (19). The peak of interest appears at 1636 cm-1, 

corresponding to the BAS present (19). This peak was used (as described in Section 4.2.6.) to 

calculate the concentration of Brønsted acid sites (Table 5.4.). 

Virgin 

Thermally Regenerated Mordenite 

Microwave Regenerated Mordenite 

Microwave Plasma Regenerated Mordenite 

Virgin 

Virgin with Collidine Adsorbed 

Figure 5.23. – IR Spectra of Virgin Sample Pre- and Post-Collidine Adsorption 

Figure 5.24. – IR Spectra Subtraction Result of Collidine Adsorbed Regenerated Catalysts 

(4000-3400 cm-1) 
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The concentration of Brønsted and Lewis acid sites determined using the probe molecules is 

reported in Table 5.4., taking surface area into account. As can be seen from Table 5.4., virgin 

mordenite possessed the highest number of total Brønsted acid sites, followed by thermally, 

microwave plasma and microwave regenerated mordenite. In comparison, microwave plasma 

regenerated mordenite had the most Lewis acid sites, followed by thermally regenerated, virgin 

and microwave regenerated mordenite. The collidine data (also shown in Table 5.4.), illustrates 

virgin mordenite has the most surface Brønsted acid sites, decreasing by 25 % for thermally 

regenerated mordenite and decreasing by ~40 % for both microwave and microwave plasma 

regenerated samples. 

  Virgin Thermally 

Regenerated 

Microwave 

Regenerated 

Microwave Plasma 

Regenerated 

Pyridine BAS 0.5 0.42 0.32 0.37 

LAS 0.45 0.47 0.43 0.50 

B/L 1.1 0.9 0.7 0.7 

Collidine BAS 0.24 0.18 0.15 0.13 

 

Virgin 

Thermally Regenerated Mordenite 

Microwave Regenerated Mordenite 

Microwave Plasma Regenerated Mordenite 

Figure 5.25. – IR Spectra Subtraction Result of Collidine Adsorbed Regenerated Catalysts 

 (1700-1400 cm-1) 

Table 5.4. - Number of Acid Sites (µmol m-2 g-1) in Regenerated Catalysts 
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5.7.3 Ammonia Temperature Programmed Desorption 

Results of the NH3 TPD studies of the regenerated catalysts are given in Figures 5.26-5.28, plotted 

alongside a sample of virgin mordenite to assist in the visualisation of any differences which may 

have arisen. Typically, relative acid site strength can be determined by peak temperature, where 

increasing temperatures are indicative of stronger acid sites (20).  

The NH3 TPD data for a sample of virgin mordenite, given in Figure 5.26., displays two peaks; 

the first at 225°C and the second at 560°C. The peak at 225°C exhibits a peak maximum of 7 

µmoles g-1 min-1 ammonia, twice as much as the peak at 560°C (3.37 µmoles g-1min-1 ammonia). 

The NH3 TPD data for a sample of thermally regenerated mordenite is also shown in Figure 5.26. 

and exhibits two peaks in the same region as the virgin sample. However, there is a minor decrease 

(~0.5 µmoles g-1min-1) in the intensity of the two peaks. 

 

Virgin 

Thermally Regenerated Mordenite 
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Figure 5.26. – NH3 TPD Spectra of Virgin Catalyst Compared with Thermally Regenerated Catalyst 
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The NH3 TPD data for a sample of microwave regenerated mordenite is given in Figure 5.27.. In 

contrast to the virgin sample, the microwave regenerated sample exhibits a single broadened peak 

at 300°C peak maximum ~ 1.25 µmoles g-1 min-1 which reduces to 0 µmoles g-1 min-1 at 950°C.  

Virgin 

Microwave Plasma Regenerated Mordenite 

 

0

1

2

3

4

5

6

7

8

50 150 250 350 450 550 650 750 850 950

A
m

m
o

n
ia

 (
µ

m
o

le
s 

/ 
g
.m

in
)

Temperature (°C)

0

1

2

3

4

5

6

7

8

50 150 250 350 450 550 650 750 850 950

A
m

m
o

n
ia

 (
µ

m
o

le
s 

/ 
g
.m

in
)

Temperature (°C)

Figure 5.27. – NH3 TPD Spectra of Virgin Catalyst Compared with Microwave Regenerated Catalyst 

 

Virgin 

Microwave Regenerated Mordenite 

 

Figure 5.28. – NH3 TPD Spectra of Virgin Catalyst Compared with Microwave Plasma Regenerated 

Catalyst 
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The NH3 TPD for a sample of microwave plasma regenerated mordenite is given in Figure 5.28.. 

This sample is similar to the virgin and thermally regenerated samples, as it exhibits two peaks, 

however the position of these have shifted slightly, appearing at 215°C and 555°C. The intensity 

of these peaks is slightly lower than the virgin sample, with the 215°C peak displaying a 

concentration of 6 µmoles g-1min-1 ammonia, and the 555°C displaying a concentration of 2 

µmoles g-1 min-1
 ammonia.  
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CHAPTER 6: REGENERATION STUDIES II - 

DISCUSSION 

 

6.1. SURFACE AREA AND AMOUNT OF COKE 

Catalyst deactivation is by definition the loss of catalytic activity. In toluene disproportionation, 

deactivation can be produced via the deposition of carbonaceous material on the surface, in the 

channel intersections and cavities of the zeolite (1-3). Deposition of coke has been shown to result 

in a loss of surface area (4-7). This study confirms these findings as can be seen from the data in 

Table 5.2.. A virgin sample of mordenite exhibited a surface area of approximately 350 m2 g-1, 

which reduced to 189 m2 g-1 during the course of the reaction, with a deposition of approximately 

4.5 % by weight of carbonaceous material. Both the thermal and microwave plasma regenerations 

resulted in almost complete restoration of the initial surface area, 352 and 333 m2 g-1 respectively, 

with less than 0.5 % by weight of carbon remaining in the zeolite structure. 

The microwave regenerated sample exhibits significantly different results. While the carbon 

appears to be removed effectively by the regeneration process, the surface area does not appear 

to be restored. The reason behind this can be seen from the X-ray diffraction data (Figures 5.13.-

5.16.). While the other regeneration techniques do not appear to have any significant effect of the 

zeolite structure, the microwave regeneration shows significant loss of zeolite structure. This was 

seen despite attempts to select sample which visually appeared unaltered. The microwave 

regeneration is a harsh regeneration technique due to the significant thermal gradients that are 

established within the catalyst bed during the regeneration. Control of temperature is difficult, 

this is exacerbated by rapid exothermic loss of carbon and the loss of the high dielectric loss 

carbon means there are sudden changes in the dielectric properties of the sample, and hence the 

microwave power required to maintain controlled heating changes dramatically. This is coupled 

with the increase in the dielectric loss tangent as a function of temperature. The result of all these 

competing factors is a sample which is difficult to maintain at a constant temperature. The 
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excessive local temperatures generated in the sample lead to loss of structural integrity and hence 

loss of surface area. 

Dielectric barrier discharge plasma did not appear to be an effective means of regenerating the 

sample under the test conditions employed. While the coke appeared to have been removed 

effectively from the exterior of the sample, sectioning the catalyst pellet showed the centre 

remained black due to ineffective removal of the carbon (Figure 6.1.). This manifested itself in 

that after regeneration 2.2 % by weight of carbon remained in the sample and had a surface area 

of 290 m2 g-1. The reason for this could be that at atmospheric pressure and using only 14 Watts 

of power the active radicals may not have been generated deep within the structure of the zeolite, 

resulting in only surface regeneration. 

 

Figure 6.2. indicates there is a correlation between surface area and the amount of carbon 

deposition, with certain exceptions (shown by red circles). The first of those being the microwave 

regenerated sample where there is loss of zeolite structure. The second being samples where there 

are high amounts of carbon, virgin (4.55 % by weight) and DBD (4.49 % by weight). This may 

result from the carbon being present in sufficient quantities to form its own porous structure 

resulting in an unexpected increase in the observed surface area (189 and 186 m2 g-1 respectively). 

However, perhaps the most interesting phenomenon is the rate of deactivation. The DBD plasma 

sample deactivates rapidly (0.5 % min-1) (Figure 5.4.) which is as would be expected as the initial 

surface area is reduced (Table 5.2.) and hence consequently the number of active sites. However, 

the results of most interest are those produced from the microwave regenerated and microwave 

plasma regenerated samples. These catalysts deactivate much slower than might have been 

predicted. The following sections will discuss possible origins of this reduced rate of deactivation. 

Figure 6.1. - Photo of Cross-Section of DBD Plasma Regenerated Catalysts 
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Figure 6.2. - Coke Present on Regenerated Samples as a Function of Surface Area 

6.2. COKE COMPOSITION 

Table 5.2. expressed the total amount of coke present on the regenerated catalysts pre- and post- 

deactivation. However, studies have shown coke deposited during toluene disproportionation to 

consist of various hydrocarbons (8), some readily soluble and others insoluble to common 

solvents such as DCM (9). Those readily soluble have often been identified, whereas the insoluble 

species are presumed to be bulkier aromatics (10). The solvent extraction studies of coke 

performed (as described in Section 5.4.2.) identify only the DCM soluble carbon present on the 

regenerated catalysts (Figure 5.10.). As would be expected, there is a difference between the total 

amount of coke and the amount of DCM soluble coke. 

The microwave regenerated sample possessed almost no DCM soluble coke despite having a total 

amount of 2.39 % by weight of coke. This is probably due to sintering of the catalyst, seen by the 

significant loss of zeolite structure in the X-ray diffraction (Figure 5.14.) and surface area data 

(Table 5.2.). Coke deposition on the sintered catalyst is likely to be produced at the external 

surface, where the absence of shape selectivity allows for the formation of bulkier, insoluble coke 

species. 
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Whilst the virgin sample possessed the highest total amount of coke, this was not reflected in the 

amount of DCM soluble coke present. The highest concentration of DCM soluble coke was 

detected in the microwave plasma sample, closely followed by the DBD plasma sample. In 

contrast, minimal amounts of DCM soluble coke were seen in the virgin and thermally 

regenerated samples. The increase in soluble coke exhibited by the DBD and microwave plasma 

regenerated samples, may indicate a shift in the type of coke deposited. In the Raman studies 

(Figure 5.10.), the microwave plasma regenerated sample exhibited lower intensity D- and G-

band peaks than the virgin and thermally regenerated samples, but an additional peak appeared in 

the 1900 cm-1 region. The origin of this additional band has not, to this author’s knowledge, been 

previously identified, but the position of the peak would suggest it may be due to polyaromatic 

species and considering the solvent extraction data, this peak might be attributed to DCM soluble 

coke species. 

The decrease in the intensity of the D- and G-bands for the microwave plasma regenerated sample, 

may explain the retention of crystalline character seen in the lower wavenumber region (Figure 

5.9.). Although a reduced coking rate leads to less deactivation, and therefore less coverage of the 

crystalline structure (seen in the 1000-400 cm-1 region on the Raman spectrum), the difference in 

coke deposited on the virgin (4.55 weight %) and thermally regenerated (3.37 weight %) samples 

compared with the microwave plasma regenerated sample (3.05 weight %), does not account for 

the difference seen. If a 1.18 % by weight difference between virgin and thermally regenerated 

catalysts appears to have no effect on the intensity of the crystalline structural region of the Raman 

spectra, why would a 0.32 % by weight difference in coke deposited between the thermally and 

microwave plasma regenerated samples have such an effect as is seen? It is more likely, that some 

of the coke deposited on the microwave regenerated catalyst, possibly the species seen at 1900 

cm-1 is non-deactivating or spectator coke. This would still be identified by TGA but would not 

have an effect on the rate of reaction, and therefore explains why some crystalline character is 

still seen on the Raman spectrum. 
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6.3. CATALYST ACIDITY 

6.3.1. Magic Angle Spinning Solid State Nuclear Magnetic Resonance 

The MAS ssNMR studies performed on the regenerated catalysts (Figures 5.17.-5.19.) display a 

shift in the amount of aluminium present compared with the virgin sample. 

29Si NMR  

The three peaks displayed on the 29Si NMR represent the silicon environments containing 2 (-100 

ppm), 1 (-106 ppm), and 0 (-113 ppm) bound aluminium atoms (11). Whilst there appears to be 

little to no change in the number of Si(OSi)2(OAl)2 species, there is a difference in both the 

number of Si(OSi)3(OAl) and Si(OSi)4 environments. The -106 ppm peak is recognised to be 

highly sensitive to aluminium and changes of its intensity are often correlated to the amount of 

dealumination occurring (11). Therefore, the decrease of intensity for Si(OSi)3(OAl) species 

exhibited in the regenerated samples indicates dealumination has taken place, and occurs more 

prominently in the microwave plasma regenerated sample. This is supported by the XPS results 

(Table 5.3.), which show a decrease in aluminium for the regenerated catalysts, with more 

aluminium lost from the microwave plasma regenerated sample. 

27Al NMR 

The 27Al MAS ssNMR data (Figure 5.18.) exhibits two peaks arising from framework (54 ppm) 

and extra-framework (0 ppm) aluminium (12). There is a significant decrease in framework 

aluminium seen in the microwave plasma regenerated catalyst, and to a lesser extent, in the 

thermally regenerated catalyst. During dealumination, tetrahedral aluminium is removed and a 

proportion of it is known to be deposited in the pores as octahedral extra-framework species (13). 

Therefore, it is surprising to see less EFAl in the microwave plasma and thermally regenerated 

samples than present in the virgin, raising the question of its location. Upon careful consideration 

of the 27Al ssNMR spectra, a perceptible increase of intensity can be seen at ~30 ppm in the 

regenerated samples. Although this does not exhibit a peak-like structure, EFAl has been reported 

to develop here under conditions such as steaming (14,15). Whilst EFAl at 0 ppm is attributed to 
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octahedral species (14,16,17), there are conflicting reports of the type of EFAl located at 30 ppm 

(14,17,18). These differences aside, EFAl is recognised as the source of Lewis acidity (19), and 

with the limited understanding of its impact in acid-catalysed reactions (Section 2.1.4.) it may be 

overlooked. Instead, focus is often given to the reduction of framework aluminium and changes 

in activity are therefore linked to the reduction of Brønsted acid sites. However, consideration of 

the impact the regeneration process has had on the concentration of both Brønsted and Lewis acid 

sites in this research, will be looked at in more depth when discussing the infrared spectroscopy 

data. 

1H NMR 

The 1H MAS ssNMR data (Figure 5.19.) exhibits a decrease in Brønsted acid sites for the 

regenerated catalysts, shown as a reduction of the 4.0 ppm peak (20). This is more pronounced in 

the microwave plasma regenerated sample. The peaks attributed to EFAl species (2.6 and 0.0 

ppm) (17), might therefore be expected to increase in intensity, corresponding to the amount of 

dealumination occurring. However, this only occurs for the peak at 2.6 ppm, with the regenerated 

catalysts exhibiting a less intense peak at 0.0 ppm than virgin. This result may support the absence 

of EFAl seen in the 27Al data at 0 ppm, whilst the 1H peak at 2.6 ppm may correspond to the EFAl 

suggested at ~30 ppm in the 27Al data. This would appear to confirm the expected increase in 

EFAl species; however, the nature of these species remains to be agreed upon (14,15,18). 

6.3.2. Infrared Spectroscopy 

The infrared spectroscopy data for both pyridine and collidine studies (Figures 5.20.-5.25.) 

provided an insight to the concentration of BAS and LAS present in the different regenerated 

catalysts. A preliminary inspection of the OH-stretching region (4000-3500 cm-1) can identify 

which of the acid sites are available to the probe molecule, before quantification of the 

concentration of acid sites is performed using the 1700-1400 cm-1 region where the pyridinium 

and collidinium ions appear. 
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OH Region 

In the OH-stretching frequency region (4000-3500 cm-1), the IR spectra of the samples (Figures 

5.20.-5.24.), exhibited four peaks prior to the adsorption of the probe molecule. The peaks at 

~3742 cm-1 and ~3655 cm-1 are readily identified as Si-OH and Al-OH groups respectively, and 

the ~3606 cm-1 peak corresponds to acidic Al-OH-Si groups (21). The ~3775 cm-1 peak is 

attributed to the γ-Al2O3 in the binder (21). Interactions of the probe molecule with the zeolite 

acid sites reduces the peak intensities. The extent of such interaction across the regenerated 

samples can be seen in the subtraction result (Figures 5.21. and 5.24.). There appears to be a 

stronger interaction between the probe molecules and the acidic Al-OH-Si groups (3600 cm-1) of 

the virgin and thermally regenerated samples compared to the microwave and microwave plasma 

regenerated samples. This may be indicative of the presence of more Brønsted acid sites in the 

virgin and thermally regenerated samples. 

Acid Site Concentration 

The 1700-1400 cm-1 region of the IR spectra using pyridine as the probe molecule (Figure 5.22.) 

exhibited five peaks. The peaks appearing at 1633 cm-1 and 1544 cm-1
 correspond to the 

pyridinium ion (PyH+) and the peaks appearing at 1620 cm-1 and 1453 cm-1 correspond to pyridine 

co-ordinated to Lewis acid sites. The peak exhibited at 1489 cm-1 is a result of interactions 

between both PyH+ and LAS. To calculate BAS and LAS concentration, the 1544 cm-1 and 1453 

cm-1 peaks are used (as described in Section 4.2.6.). The results are given in Table 5.4.. 

The 1700-1400 cm-1 region of the IR spectra using collidine as the probe molecule (Figure 5.25.) 

exhibited a peak at 1636 cm-1. This peak is attributed to the collidinium ion (CollH+) (22) and is 

used to calculate the concentration of Brønsted acid sites (as described in Section 4.2.6). The 

results are given in Table 5.4.. 

The results (Table 5.4.) display more BAS in the virgin and thermally regenerated samples, as 

suggested previously from the IR spectra in the OH-stretching frequency (Figures 5.21. and 

5.24.). Furthermore, it distinguishes between the samples, showing the virgin sample to have the 
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highest number of BAS (0.5 µmol m-2 g-1) and the microwave regenerated sample to have the 

least (0.32 µmol m-2 g-1). Interestingly, the order of decreasing BAS correlates to the rate of 

deactivation, and amount of coke deposited, where a higher concentration of BAS present in the 

zeolite, leads to a higher concentration of coke deposited and hence a faster rate of deactivation 

(Table 6.1.). The single exception to this is the thermally regenerated sample, where the rate of 

deactivation has not been effected, however when referring back to the activity profile (Figure 

5.1.), a decrease in the initial activity can be seen, which can be attributed to the slight decrease 

in BAS present in the sample. 

Table 6.1. - Summary Table of BAS, Rate of Deactivation and Amount of Coke 

 

Additionally, the pyridine results (Table 5.4.) provide the concentration of LAS present in the 

regenerated catalysts. Whilst the concentration of BAS has decreased upon regeneration, the 

number of LAS has remained relatively similar to the virgin sample (0.45 µmol m-2 g-1). Although, 

the microwave plasma regenerated sample (0.50 µmol m-2 g-1) may be considered to have a slight 

increased concentration of LAS compared with the virgin sample, suggesting the formation of 

EFAl (23). 

The collidine data should provide only the number of surface BAS (24), which for a porous 

zeolite, should only form a proportion of the catalytic active sites. Whereas the more mobile 

pyridine would be expected to access all the BAS (24). 

 

 

 BASpy 

 / µmol m-2 g-1 

Rate of Deactivation  

/ % min-1 

Coke Present (Coked)  

/ Weight % 

Virgin 0.5 0.30 4.55 

Thermally Regenerated 0.42 0.30 3.37 

Microwave Plasma 

Regenerated 

0.37 0.085 3.05 

Microwave Regenerated 0.32 0.088 2.39 
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Considering the previous two statements: 

BASTotal – BASexternal = BASinternal 

If               BASTotal = BASpy 

And                BASexternal = BAScoll 

                                                   BASinternal = BASpy – BAScoll 

 

Where:   BASpy  is the concentration of BAS determined using pyridine  

as the probe molecule 

   BAScoll  is the concentration of BAS determined using collidine 

as the probe molecule 

   Table 6.2. - Concentration of Internal and External BAS 

 

From the Table 6.2., it can be suggested the dealumination caused by the regeneration process 

was surface specific, with the exception of the microwave regenerated sample. The reason for this 

exception is most likely due to the harsh nature of the regeneration process, seen from the loss of 

crystal structure by XRD (Figure 5.14.) and surface area data (Table 5.2.). Reasons for the surface 

specificity of the thermal and microwave plasma regeneration processes may lie in the amount of 

energy used and/or its penetration depth. Whilst both regeneration methods appeared to have 

sufficient energy to oxidise the carbonaceous deposits, there was not ample energy to remove the 

aluminium from the bulk of the catalyst. In the case of the microwave plasma regeneration process 

 BASTotal 

/ µmol m-2 g-1 

BASexternal 

/ µmol m-2 g-1 

BASinternal 

/ µmol m-2 g-1 

Virgin 0.50 0.24 0.26 

Thermal 0.42 0.18 0.24 

Microwave Regenerated 0.32 0.15 0.17 

Microwave Plasma Regenerated 0.37 0.13 0.24 
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where the plasma may penetrate the catalyst (25), the presence of coke may have affected the 

exposure of the zeolite to the plasma energy. This is something which will be discussed in further 

detail in the forthcoming chapters regarding pre-treatment. 

6.3.3. Ammonia Temperature Programmed Desorption 

The ammonia TPD results (Figures 5.26.-5.28.) of the regenerated catalysts give an insight into 

possible changes of acid site strength due to the regeneration process. The virgin, thermal and 

microwave plasma samples exhibited two peaks, one at a lower temperature (215-225°C) and one 

at a higher temperature (555-560°C), corresponding to l- (lower temperature) and h- (higher 

temperature) peaks (26). Whilst the h-peak is attributed to directly adsorbed ammonia on the 

zeolite, the l-peak is attributed to weakly adsorbed NH4
+ species and is therefore not quantifiable 

(26). However, from the h-peak, it can be seen that there is a similar strength of acid sites between 

virgin and thermally regenerated mordenite samples (Figure 5.26.). In contrast, there is a decrease 

and slight shift in the h-peak of the microwave plasma sample when compared with the virgin 

sample (Figure 5.28.). This is indicative of a reduction of acid site strength, as weaker bound 

ammonia will desorb at lower temperatures (27). The decrease in peak area supports the reduction 

of BAS concentration in the microwave regeneration seen from the IR data (Figure 6.2.). The 

surface specificity seen by the IR explains why, although there is a shift in desorption temperature 

and peak height, only minor changes to acid strength have been seen. From this, it might be 

presumed that the internal acid site strength of the microwave plasma regenerated sample has not 

changed. 

The microwave regenerated sample (Figure 5.27.) expresses a different profile from the other 

samples as upon initial observation there is only one peak identifiable. However, due to the 

desorption temperature of the peak, it is more than likely that the h-peak has overlapped with the 

l-peak. Whilst this makes it extremely difficult to differentiate between the two peaks, the 

overlapping of the peaks heavily indicates that there is a considerable reduction in acid site 

strength. When considering the heavy reduction of acid site concentration seen from the IR data 
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(Table 5.4. and 6.2.), this further supports that the regeneration process has destroyed the acidity 

of the catalyst. 

6.3.4. Summary 

Overall, the acidity data suggested the regeneration process had resulted in dealumination of the 

catalyst samples. The MAS ssNMR data of the regenerated catalysts (Figures 5.17.-5.19.) 

exhibited a decrease in framework aluminium, and the formation of EFAl species, consistent with 

dealumination. The XPS results (Table 5.3.) supported this, showing a decrease in aluminium for 

the regenerated catalysts with more aluminium lost from the microwave plasma regenerated 

sample, as was seen in the NMR data. The infrared data (Table 5.4.) exhibited a higher 

concentration of BAS for the virgin sample, which decreased in accordance with the amount of 

dealumination seen in the NMR and XPS data, i.e. virgin > thermal > microwave plasma. With 

that said, there was no significant difference in the concentration of LAS. If the slight increase in 

LAS concentration for the microwave plasma regenerated sample was to be considered 

significant, it only further supports the presence of EFAl and thus dealumination. The 

regeneration processes were found to be surface specific, with no significant change in the 

concentration of internal BAS, with the exception of the microwave regenerated catalyst. This 

decrease was attributed to the harsh conditions of the regeneration process, resulting in the 

destruction of the crystal structure. The concentration of external BAS was consistent with the 

NMR and XPS data, where virgin > thermal > microwave plasma. Finally, the strength of the acid 

sites seen by NH3 TPD, demonstrated that whilst the thermally regenerated sample remained 

similar to virgin, the microwave and microwave plasma regenerated catalysts exhibited changes 

in acid site strength. The surface specificity of the microwave plasma regeneration process seen 

by the XPS and IR data indicates the slight shift in the acid site strength exhibited by the NH3 

TPD, may also be surface specific. In contrast, the penetrating destruction microwave 

regeneration process, was seen by NH3 TPD to significantly weaken the acid site strength of any 

acid sites remaining. 
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6.4. CATALYST ACTIVITY 

6.4.1. Thermal Regeneration 

The activity of the thermally regenerated catalyst (Figure 5.1.) was similar in profile and 

deactivation rate to the virgin sample. This was expected, as the method was a replication of the 

regeneration process typically used within industry (8), although on a much smaller scale. The 

thermal regeneration process undertaken in this research was shown to restore the surface area 

lost upon coking (Table 5.2.) with no loss to catalytic structure (Figure 5.13.). Raman and solvent 

extraction data (Figures 5.10. and Figure 5.12. respectively) indicated no change in coke 

composition compared with the virgin sample and the TGA results (Table 5.2.) confirmed the 

majority of the coke had been successfully removed, albeit some residual carbon may have 

remained. This residual coke may have contributed to the minor loss of initial activity seen in the 

thermally regenerated activity profile (Figure 5.1.). 

As the NH3 TPD results (Figure 5.26.) exhibited no change in acid site strength, the decrease of 

initial B/X (Table 5.1) is most likely explained as a result of the reduction of BAS (Table 5.4.), 

as fewer acid sites are available for cracking. This would also give rise to the slightly lower coking 

rate exhibited by the TGA results (Table 5.2.), as cracking is a major contributor to coking (28). 

The regeneration process probably produced the decrease of BAS, as the thermal treatment is 

known to suffer from hot spots which lead to dealumination of the catalyst (8,29). The NMR 

results demonstrated a shift in the type of aluminium present, with the loss of framework 

aluminium seen (Figures 5.17.-5.19.) and the formation of EFAl species identified in the 1H NMR 

(Figure 5.19), consistent with dealumination. The 1H NMR also exhibited a decrease of intensity 

for the 4.0 ppm peak attributed to BAS (20). The XPS data (Table 5.3.) supported the NMR 

results, exhibiting a decrease in aluminium and corresponding increase in silicon, for the 

thermally regenerated sample compared with the virgin sample. As XPS is surface specific, the 

results indicated the dealumination occurred on the catalyst surface. This, in conjunction with the 

combination of pyridine and collidine infrared results (Table 6.2.), demonstrates the reduction of 

BAS to be surface specific. 
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Given the reduction of Brønsted acidity in the thermally regenerated catalyst is surface specific, 

a shift in individual xylene selectivity might be expected. As p-xylene is predominantly formed 

during TDP before being rapidly isomerised to m- and o-xylene on the surface (30,31), less BAS 

on the surface should lead to an increase in p-xylene selectivity. However, as shown by Figure 

5.6., this is not the case. A possible explanation for this is, whilst the concentration of BAS has 

decreased, there remain BAS on the surface of the catalyst available for isomerisation. 

Furthermore, the absence of change in coke composition seen by the Raman and solvent 

extraction results (Figures 5.10. and 5.12. respectively), and only minor decrease in coking rate 

(Table 5.2.), would suggest the remaining strength of the acid sites has not changed, and would 

therefore be strong enough to isomerise the xylenes. The NH3 TPD results (Figure 5.26.) confirm 

this. 

6.4.2. DBD Plasma Regeneration 

The activity of the DBD plasma regenerated catalyst (Figure 5.4.) was similar in profile but with 

a much faster deactivation rate compared to the virgin sample. The rapid deactivation rate was 

not unexpected, as although during a preliminary inspection of the sample it appeared white, the 

regeneration process had not fully restored the surface area of the catalyst (Table 5.2.), and 

remaining coke had been measured by TGA (Table 5.2.). Furthermore, a cross-section of the 

sample had shown there to be internal coke (Figure 6.1.). As the majority of remaining coke 

appeared to be on the internal surface, initially the reaction proceeded the same as the virgin 

sample. There was a minor loss of initial activity, but this was also seen in the thermally 

regenerated sample and can be attributed to residual coke on the external surface. However, as 

coke formation is known to proceed via a nucleation-pathway (32), the presence of coke on the 

internal surface of the catalyst exacerbated the coking rate compared to the virgin and thermally 

regenerated samples, producing the rapid deactivation seen (Figure 5.4.). The shape of the activity 

profile was unlikely to differ from the virgin and thermally regenerated samples, as the XRD 

results (Figure 5.16.) demonstrated the regeneration process had not damaged the crystal 

structure. 
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With coke deposited on the internal surface of the catalyst, a shift in xylene selectivity may be 

expected. As the surface is known to be where p-xylene rapidly isomerises into m- and o-xylene 

(30), a catalyst with a coked surface would be expected to produce an increased amount of p-

xylene, as seen in Figure 5.8.. Initially the rate of p-xylene is approximately at thermodynamic 

equilibrium, as the external surface appeared to be uncoked and is available for isomerisation. 

However, as this rapidly becomes coked, the concentration of p-xylene increases. 

6.4.3. Microwave Regeneration 

In contrast to the thermally and DBD plasma regenerated catalysts, the activity of the microwave 

regenerated sample (Figure 5.2.) greatly differed in both profile and deactivation rate compared 

to the virgin sample. The deactivation rate for the microwave regenerated sample was 

approximately 3.5 times slower than the virgin sample. This is reflected in the amount of coke 

deposited seen in the TGA data (Table 5.2.). Unlike the virgin, thermally and DBD plasma 

regenerated catalysts, the microwave regenerated sample deactivated gradually. This is probably 

caused by the harsh nature of the regeneration process. Whereas the removal of coke during the 

other regeneration methods had restored surface area, in the microwave regeneration a significant 

proportion of surface area was lost. This was despite the TGA data determining the success of the 

method in removing all the coke (Table 5.2.), hence why initial activity was the same as the virgin 

sample. The other regeneration processes appeared to leave the crystal structure intact, however, 

the XRD corresponding to the microwave regenerated sample (Figure 5.14.) exhibited a 

significant loss of crystalline character. Furthermore, and what was most likely the direct cause 

of the gradual deactivation and reduced deactivation rate, the microwave regeneration process 

destroyed a significant proportion of the BAS, and the remaining acidity was shown to be 

significantly weaker. Unlike the thermal and microwave plasma regeneration methods which 

appeared to be surface specific, the microwave regeneration process included the destruction of 

both internal and external BAS, determined by the infrared data (Table 6.2.). Furthermore, the             

NH3 TPD results displayed an overlapping of the l- and h-peaks indicative of a significant loss of 
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acid site strength for the remaining acid sites. Without acid sites, cracking and therefore coking 

will not occur. 

In accordance with the considerable loss of Brønsted acidity, the initial B/X of the microwave 

regenerated sample was correspondingly lower than the virgin sample, as can be seen in Figure 

6.3.. Additionally, the lack of DCM soluble coke present on the coked microwave regenerated 

sample, determined by solvent extraction is likely to be due to the change of acid site strength, 

exhibited by the NH3 TPD results (Figure 5.27.).  

Figure 6.3.- Summary of B/X and Total BAS for Virgin and Microwave Regenerated Catalysts 

 B/X at t=0 % Difference BASTotal 

/ µmol m-2 g-1 

% Difference 

Virgin 0.57  

37 

0.5  

36 
Microwave 

Regenerated 

0.36 0.32 

 

In terms of individual xylene selectivity, as there is less coke deposited on the microwave 

regenerated catalyst, no preference of any individual isomer would be expected, which is the case. 

However, the absence of selectivity could also be attributed to the loss of some pore structure, as 

p-xylene is known to rapidly diffuse out of the zeolite channels at a rate 1000 times faster than 

the other isomers due to steric effects (30). With the destruction of some of the crystal structure, 

seen by the XRD (Figure 5.14.) and supported by the loss of surface area upon regeneration (Table 

5.2.), the steric constraints may be significantly reduced, and would therefore increase the rate of 

diffusion for the m- and o- xylene isomers. 

6.4.4. Microwave Plasma Regeneration 

In comparison to the virgin and other regeneration methods, the activity of the microwave plasma 

regenerated sample (Figure 5.3.) is very similar in both profile and deactivation rate to the 

microwave regenerated sample. The deactivation rate for the microwave plasma regenerated 

sample was also approximately 3.5 times slower than the virgin sample, which was reflected in 

the amount of coke deposited seen in the TGA data (Table 5.2.). Unlike the virgin sample, but as 
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was the case with the microwave regenerated catalyst, the microwave plasma regenerated sample 

deactivated gradually. However, whilst this is probably caused by the regeneration method, it was 

not as destructive as the microwave regeneration process.  

Similar to the thermal and DBD regeneration processes, the removal of coke during the 

microwave plasma regeneration process resulted in the restoration of the surface area (Table 5.2.), 

with no loss to catalytic structure (Figure 5.15.). In contrast to the thermal regeneration process 

however, the Raman and solvent extraction data (Figures 5.10. and 5.12. respectively), indicated 

a change in the coke composition. There were lower amounts of D- and G-band carbon for the 

microwave plasma regenerated catalyst compared with the virgin sample, and the presence of an 

additional peak at ~1900 cm-1 (Figure 5.10.). The identity of this peak was suggested to be the 

formation of a DCM soluble, less-deactivating or spectator coke, which would explain the gradual 

deactivation and slower deactivation rate seen for this regeneration process. The cause of this 

change in coke formation is most likely linked to the change in catalyst acidity, with the NH3 TPD 

data (Figure 5.28.) indicating a slight change in acid site strength. 

The NMR (Figures 5.17.-5.19.) and XPS (Table 5.3.) results were strongly indicative of 

dealumination having had occurred. Although this was seen in the thermally regenerated catalyst, 

the loss of framework aluminium and formation of EFAl was much more prominent in the 

microwave plasma regenerated sample, as was the decrease in aluminium seen in the XPS data 

(Table 5.3.). The surface specific XPS indicated dealumination on the catalyst surface, which was 

confirmed by the combination of pyridine and collidine infrared results (Table 6.2.), which 

expressed a reduction of external BAS, whilst the concentration of internal BAS remained the 

same. Compared with the virgin sample, the decrease in external BAS was almost half. A 

combination of the reduction of external BAS (Table 6.2.) and the partial shift in remaining acid 

site strength (Figure 5.28.) also had a significant impact on the initial B/X (Table 5.1.), with fewer 

acid sites available or strong enough for cracking, reducing the coking rate seen by the TGA 

results (Table 5.2.). 
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Additionally, with less coke laydown, individual xylene isomerisation would not be expected as 

the surface is available to isomerise p-xylene to m- and o-xylene, which is what is seen (Figure 

5.7.). Yet, the lack of selectivity may also arise from a reduction of coke in the channels and 

cavities, reducing the steric effects and thus increasing the rate of diffusion for the m- and o- 

xylene isomers. 

6.5. SUMMARY 

The regeneration studies found that by regenerating coked mordenite using microwave heating, 

DBD plasma or microwave plasma, this could affect the coking rate when the catalyst was used 

in toluene disproportionation. Whilst the different regeneration methods had varying levels of 

success in removing carbonaceous deposits, the microwave and microwave plasma regeneration 

methods were also shown to affect the concentration of BAS via dealumination. This was also 

shown to have an effect on the strength of the remaining acid sites. In reducing the concentration 

and strength of external BAS, a reduced rate of cracking can be achieved, which leads to a 

reduction in the coking rate of regenerated mordenite in toluene disproportionation. This is 

beneficial as it extends the catalytic life of the zeolite, and toluene disproportionation is more 

favourable than cracking, however the drawback is that the lack of coke also removes p-xylene 

selectivity of the reaction. 
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CHAPTER 7: PRE-TREATMENT STUDIES I - RESULTS 

7.1. INTRODUCTION 

Following the novel regeneration studies of microwave heating, microwave plasma and DBD 

Plasma on deactivated mordenite, the same procedure was performed on virgin mordenite to 

evaluate the efficacy of these technologies as novel pre-treatment processes. As in the 

regeneration studies, toluene disproportionation was utilised as the probe reaction. 

7.2. CATALYST TESTING 

7.2.1. Toluene Conversion as a Function of Time 

Virgin mordenite was pre-treated (as described in Section 4.1.3.) before the materials were 

subjected to toluene disproportionation. The activity represented as toluene conversion as a 

function of time has been plotted in Figures 7.1.-7.3.. The data for each pre-treatment has been 

plotted alongside virgin mordenite in order to assist in the visualisation of any differences which 

may have resulted. 

As can be seen in Figure 7.1., the initial toluene conversion over the virgin catalyst was 60 %, 

which decreased over time. After 450 minutes, catalytic activity had dropped to a 10 % conversion 

and remained in a pseudo-steady state with activity only reducing a further 4 % after an additional 

500 minutes. Rapid deactivation occurred between 180 minutes and 325 minutes at a rate of 0.30 

% min-1. 

The activity data for a sample of mordenite which had undergone microwave pre-treatment is also 

shown in Figure 7.1.. The deactivation profile was significantly different from the virgin sample, 

where, in terms of toluene conversion, the sample did not undergo a rapid deactivation, but instead 

the profile displays a much more gradual deactivation with a rate of 0.087 % min-1, over the 

measured period (77-458 mins). Initial toluene conversion was slightly reduced (56 %) compared 

with the virgin sample.  
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Figure 7.1. –Activity Plot of Virgin Catalyst Compared with Microwave Pre-treated Catalyst 

The sample of mordenite which had undergone microwave plasma pre-treatment displayed an 

activity profile for toluene disproportionation (Figure 7.2.) very similar to the microwave pre-

treated sample. The initial activity was slightly reduced compared with the virgin material (57 %) 

and the rate of deactivation over the measured period (175-561 mins) was calculated to be 0.087 

% min-1. 

The sample of mordenite which had undergone DBD plasma pre-treatment (Figure 7.3.) 

proceeded to deactivate rapidly, similar in profile to the virgin catalyst. Rapid deactivation 

occurred between 153-275 minutes with a rate of deactivation of 0.33 % min-1, reaching a pseudo-

steady state where toluene conversion was 10 %. 
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Figure 7.2.- –Activity Plot of Virgin Catalyst Compared with Microwave Plasma Pre-treated Catalyst 

 

Figure 7.3.- –Activity Plot of Virgin Catalyst Compared with DBD Plasma Pre-treated Catalyst 

7.2.2. Effect of Pre-treatment on Catalyst Selectivity 

When investigating how the pre-treatments have affected catalyst selectivity, both the more 

desirable toluene disproportionation and the competing toluene dealkylation (cracking) need to 

be considered. Reaction selectivity between disproportionation and cracking can be studied 

through observation of the B/X, whereas the product selectivity of disproportionation can be 
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examined through xylene isomer selectivity, in terms of quantities of the individual isomers 

produced.  

The B/X as a function of reaction time for the pre-treated catalysts is shown in Figure 7.4., 

excluding the initial data point, which is instead provided in Table 7.1.. As can be seen in Figure 

7.4., the B/X decreases as a function of reaction time, reducing to a pseudo-steady state of ~0.2 

for all samples. From Table 7.1. it can be seen that the initial B/X of the virgin and DBD Plasma 

pre-treated samples is significantly higher than their subsequent values, and therefore the reason 

the initial data point for each sample was excluded from Figure 7.4.. The virgin catalyst had an 

initial B/X of 0.57, whereas the pre-treated catalysts (with the exception of the DBD plasma pre-

treated sample) had B/X values half of the virgin. In contrast the initial B/X of the DBD plasma 

pre-treated sample had virtually the same B/X of the virgin sample. 

Table 7.1. - Initial B/X of Pre-treated Catalysts 

 

 

 

 

Figure 7.4. - B/X of Pre-treated Catalysts 

Pre-treatment Method Initial B/X 

None (Virgin) 0.57 

Microwave 0.27 

Microwave Plasma 0.32 

DBD Plasma 0.58 
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The individual xylene isomer selectivities as a function of reaction time for the pre-treated 

catalysts are given in Figures 7.5. and 7.6.. The data has been plotted alongside the 

thermodynamic equilibrium (T.E.) and grouped by similarity of xylene selectivity profiles for 

ease of discussion and interpretation. 

Figure 7.5. presents the individual xylene selectivities for a sample of virgin and a sample of DBD 

plasma pre-treated mordenite. Initial values of p- and o-xylene are slightly higher than the 

thermodynamic equilibrium. During the first 400 minutes, the amount of p- and o-xylene slowly 

decreases (whilst the amount of m-xylene correspondingly increases) towards thermodynamic 

equilibrium. However, after this period, the amount of p-xylene begins to move away from 

thermodynamic equilibrium, slowly increasing for the remainder of the reaction, whilst m- and o-

xylene values slowly decrease accordingly.  

Figure 7.5. - Plot of Individual Xylene Selectivities for Virgin and DBD Plasma Pre-treated Catalysts 
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Figure 7.6. presents the individual xylene selectivities for a sample of microwave pre-treated and 

a sample of microwave plasma pre-treated mordenite. Similar to the virgin and DBD Plasma pre-

treated samples, the initial amounts of p- and o-xylene are slightly elevated compared with the 

thermodynamic equilibrium, whilst the amount of m-xylene is lower accordingly. In comparison 

to the virgin and DBD plasma pre-treated samples however, this increase is more gradual. Over 

the duration of the first 400 minutes, the amount of p-xylene decreases slightly, moving towards 

thermodynamic equilibrium, after which the amount of p- begins to move away from 

thermodynamic equilibrium, slowly increasing for the remainder of the reaction. m-Xylene 

increases throughout the duration of the reaction towards thermodynamic equilibrium, almost 

reaching it by 800 minutes, whilst the o-xylene value slowly decreases proportionately in 

accordance with changes in p- and m-xylene. 

 

 

Figure 7.6. - Plot of Individual Xylene Selectivities for Microwave and Microwave Plasma Pre-

treated Catalysts 
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7.3. SURFACE AREA AND AMOUNT OF COKE 

The surface area and coke present for each of the catalysts (as determined according to the 

methods described in Sections 4.2.2. and 4.2.4.) is given in Table 7.2.. 

Table 7.2. - Surface Area and Coke Present on Pre-treated Catalysts 

 BET Surface Area / m2g-1 Coke Present 

 / weight %  Uncoked Coked 

Virgin 348 189 4.55 

Microwave Pre-treated 188 153 1.32 

Microwave Plasma Pre-treated 335 245 2.28 

DBD Plasma Pre-treated 339 194 5.09 

 

As can be seen from Table 7.2., the BET surface area of the catalysts is slightly reduced upon pre-

treatment, with microwave pre-treatment possessing a surface area almost half of the surface area 

of virgin mordenite. Upon deactivation, a proportion of surface area is lost, ranging between 18.6-

45.7 % depending on the pre-treatment method. Both the virgin and DBD plasma pre-treated 

catalysts lost the most surface area during deactivation, with a loss of over 40 %. The microwave 

plasma pre-treated sample only lost 27 % of its surface area upon deactivation, and the microwave 

pre-treated sample lost only 19 % of its surface area. With this said, the pre-treatment had 

considerably reduced the surface area of the microwave sample prior to deactivation (56 %) when 

compared to virgin. 

The coke data given in Table 7.2. presents the amount of coke present on each of the pre-treated 

catalysts following their deactivation. The DBD plasma pre-treated sample possessed a higher 

amount of coke (5.09 % by weight) to the deactivated virgin sample (4.55 % by weight), whilst 

the microwave and microwave plasma pre-treated materials showed a considerable drop in the 

amount of coke present. The microwave plasma pre-treated sample had a coke value half of the 

virgin, and the microwave pre-treated sample possessed even less, with a value of 1.32 % by 

weight. 
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7.4. COKE COMPOSITION 

The deactivation of the catalyst in this reaction is attributed to coking. Therefore, determination 

of the coke composition may offer an insight into whether the pre-treatment process affects the 

coking mechanism. Identification of carbonaceous species is often determined using solvent 

extraction (1). Studies have shown coke deposited during toluene disproportionation to consist of 

various hydrocarbons, some readily soluble and others insoluble to common solvents such as 

DCM (2).  A typical solvent extraction performed on a zeolite can involve multiple extraction 

stages, ultimately leading to treatment with HF, resulting in the destruction of the zeolite (2). For 

this research, a milder solvent extraction involving DCM was performed, to investigate any 

difference in the proportion or type of DCM soluble coke species upon regeneration.  The solvent 

extraction process was as follows: 100 mg coked catalyst was submerged in 20 mL DCM and 

vigorously shaken for a period of 72 hours. Following this, the samples were removed, and the 

effluent was injected into the GC-MS for analysis. Figure 7.7. gives a photograph of the effluent 

post-extraction, and Figure 7.8 gives the results of the GC-MS analysis. 

 

From Figure 7.7. the extracted effluents can be seen to have a slightly different colour compared 

with the blank, however only the virgin sample appears to have a considerable darker, yellow 

colour indicating the presence of DCM soluble coke. 

Figure 7.7. - Photo of the Effluent Post-Extraction 
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Figure 7.8. presents the GC-MS data of the effluent, with relative abundance referenced to the 

solvent.  The GC-MS programme used was the same used for the detection of TDP products on-

stream during the deactivation process and the species elucidated were preliminarily identified 

through the NIST library. 

There were no significant peaks below 15 minutes with the exception of the solvent. Of the 

samples, all appeared to have DCM soluble species. The virgin sample displayed the most peaks 

and had the earliest retention time of 15 and a half minutes, although maximum abundance of any 

single peak was only ~ 8 %. Similarly, the DBD plasma pre-treated sample had significantly less 

DCM soluble coke species than the other samples, where the maximum abundance of any single 

peak was <5 %. In contrast, the microwave and microwave plasma pre-treated samples had higher 

relative abundances of up to 15 and 22 % respectively. Whilst both had a considerable number of 

peaks, resolution declined in comparison to the virgin and DBD plasma pre-treated samples. The 

microwave pre-treated DCM soluble coke species began to elute just under 16 and a half minutes, 

whereas the microwave plasma pre-treated sample only eluted after 17 minutes. 

The results of the NIST library search determined the DCM soluble coke structures to have 3 

rings and molecular weights ranging from 165-340 g mol-1. The NIST results were all very 

similar: polyaromatic ringed structures, similar to those reported by Magnoux et al. (3). 



 
140 

 

Figure 7.8. – Chromatogram of DCM Soluble Coke 
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7.5. XRD 

XRD was carried out on the pre-treated samples to determine whether the microwave, microwave 

plasma and DBD plasma pre-treatment processes had any significant effect on the catalytic crystal 

structure. The results of this are given in Figures 7.9.-7.11., with the pre-treated samples laid over 

virgin mordenite to aid in visualisation of any changes which may have occurred. 

All the diffractograms show the characteristic mordenite peaks (4), with very little peak 

broadening. There is some shift in peak position and loss of relative intensity in the microwave 

and microwave plasma pre-treated samples which is not present in the DBD pre-treated material. 

These changes indicate a change in unit cell coordinates and/or composition. However, further 

analysis would need to be performed, such as Rietveld refinement to confirm this.  

Figure 7.9. - XRD Diffractogram of Microwave Pre-treated Mordenite 
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Figure 7.10. - XRD Diffractogram of Microwave Plasma Pre-treated Mordenite 

Figure 7.11. - XRD Diffractogram of DBD Pre-treated Mordenite 
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7.6. CATALYST ACIDITY 

As an acid catalyst, the activity of mordenite is heavily linked to availability and strength of its 

acid sites. IR and NH3 TPD studies were carried out to determine any impact the microwave or 

plasma pre-treatment processes may have had on catalytic acidity. 

7.6.1. Infrared Spectroscopy 

Results from the infrared studies using probe molecules are given in Figures 7.12.-7.17.. Figure 

7.12. depicts the IR spectra of the virgin sample prior to and post pyridine adsorption in the 4000-

3500 cm-1 region where the O-H stretching frequencies appear (5). Peaks of interest include 3742 

cm-1, 3653 cm-1 (Si-OH and Al-OH groups) and 3606 cm-1 (acidic Al-OH-Si groups). The 

additional peak at 3775 cm-1 is a result of the γ-Al2O3 in the binder. These peaks were also present 

in the pre-treated samples but were omitted for simplification.  

The subtraction result ((spectrum of the sample after pyridine adsorption) – (the spectrum of the 

activated sample prior to adsorption)) of the pre-treated samples is given in Figure 7.13.. The 

interaction of pyridine with the catalyst samples can be seen from the presence of negative peaks 

appearing at 3608 cm-1, 3660 cm-1, 3744 cm-1 and 3775 cm-1. 

Figure 7.12. – IR Spectra of Virgin Sample Pre- and Post-Pyridine Adsorption 

Virgin 

Virgin with Pyridine Adsorbed 
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Figure 7.14 depicts the IR subtraction result of the pre-treated catalysts in the 1700-1400 cm-1 

region where the pyridine frequencies appear (5). Peaks of interest include 1454 cm-1 (strong 

LAS), 1489 cm-1 (BAS and LAS), 1544 cm-1 (BAS), 1621 cm-1 and 1633 cm-1. The peaks at 1544 

cm-1 and 1454 cm-1 were used to calculate the concentration of Brønsted and Lewis acid sites (as 

described in section 4.2.6.) respectively (Table 7.3.). 

Figure 7.13. – IR Spectra Subtraction Result of Pyridine Adsorbed Pre-treated Catalysts 

(4000-3400 cm-1) 

Figure 7.14. – IR Spectra Subtraction Result of Pyridine Adsorbed Pre-treated Catalysts 

 (1700-1400 cm-1) 
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Figure 7.15. depicts the IR spectra of the virgin sample prior to and post collidine adsorption in 

the 4000-3500 cm-1 region where the O-H stretching frequencies appear (5). Peaks of interest 

include 3743 cm-1, 3657 cm-1 (Si-OH and Al-OH groups) and 3607 cm-1 (acidic Al-OH-Si 

groups). The additional peak at 3775 cm-1 is a result of the γ-Al2O3 in the binder. 

The subtraction result of the pre-treated samples is given in Figure 7.16.. The interaction of 

collidine with the catalyst samples can be seen from the presence of negative peaks appearing at 

3608 cm-1, 3663 cm-1, 3745 cm-1 and 3775 cm-1. 

Virgin 

Microwave Pre-treated Mordenite 

Microwave Plasma Pre-treated Mordenite 

Figure 7.15. – IR Spectra of Virgin Sample Pre- and Post-Collidine Adsorption 

Figure 7.16. – IR Spectra Subtraction Result of Collidine Adsorbed Pre-treated Catalysts 

(4000-3400 cm-1) 

Virgin 

Virgin with Collidine Adsorbed 
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Figure 7.17. depicts the IR subtraction result of the regenerated catalysts in the 1800-1500 cm-1 

region where the collidine frequencies appear (5). The peak of interest appears at 1636 cm-1, 

corresponding to the BAS present (6). This peak was used (as described in Section 4.2.6.) to 

calculate the concentration of Brønsted acid sites (Table 7.3.) 

The concentration of Brønsted and Lewis acid sites determined using the probe molecules is 

reported in Table 7.3., taking surface area into account. As can be seen from Table 7.3., virgin 

mordenite possessed the highest number of total Brønsted acid sites, followed by microwave and 

microwave plasma pre-treated mordenite. This trend was seen for both probe molecules, however 

the pre-treated samples had less than half the concentration of BAS of the virgin sample when 

using pyridine as the probe molecule. In terms of Lewis acidity, virgin possessed the highest 

concentration followed by microwave plasma and microwave pre-treated samples. In contrast to 

Brønsted acidity, the concentration of LAS decreases by a quarter in the pre-treated samples. 
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Microwave Pre-treated Mordenite 

Microwave Plasma Pre-treated Mordenite 

Figure 7.17. – IR Spectra Subtraction Result of Collidine Adsorbed Pre-treated Catalysts 

 (1700-1400 cm-1) 
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Table 7.3. - Number of Acid Sites (µ mol m-2 g-1) in Pre-treated Catalysts 

  Virgin Microwave Pre-treated Microwave Plasma Pre-treated 

Pyridine BAS  0.50 0.18 0.10 

LAS 0.45 0.33 0.37 

B/L 1.1 0.5 0.3 

Collidine BAS 0.24 0.17 0.07 

 

7.6.2. Ammonia Temperature Programmed Desorption 

Results of the NH3 TPD studies of the pre-treated catalysts are given in Figures 7.18.-7.19., plotted 

alongside a sample of virgin mordenite to assist in the visualisation of any differences which may 

have arisen. Typically, relative acid site strength can be determined by peak temperature, where 

increasing temperatures are indicative of stronger acid sites (7). 

The NH3 TPD data for a sample of virgin mordenite, given in Figure 7.18., exhibits two peaks; 

the first at 225°C and the second at 560°C. The peak at 225°C possesses 7 µmoles g-1 min-1 

ammonia, twice as much as the peak at 560°C displays. 

The NH3 TPD data for a sample of microwave pre-treated mordenite is also displayed in Figure 

7.18.. Similar to the virgin sample, there are two peaks exhibited, the first at 225°C and the second 

at 530°C, slightly lower than the corresponding virgin peak at 560°C. Both of the microwave pre-

treated peaks possess significantly lower intensities than the virgin sample. The peak at 225°C 

has a concentration of 3.5 µmoles g-1 min-1
 ammonia, and the 530°C peak has an ammonia 

concentration of 1.25 µmoles g-1 min-1
.  

The NH3 TPD data for a sample of microwave plasma pre-treated mordenite is given in Figure 

7.19.. In contrast to the virgin sample, the microwave plasma pre-treated mordenite exhibits a 

single peak at 225°C with a 3.5 µmoles g-1min-1 concentration of ammonia. However, the peak 

also displays a broad shoulder which declines in intensity to 0 µmoles g-1min-1
 at 950°C. 
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Virgin 

Microwave Pre-treated Mordenite 

 
Figure 7.18. – NH3 TPD Spectra of Virgin Catalyst Compared with Microwave Pre-treated Catalyst 
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Figure 7.19. – NH3 TPD Spectra of Virgin Catalyst Compared with Microwave Plasma Pre-treated 

Catalyst 
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CHAPTER 8: PRE-TREATMENT STUDIES II - 

DISCUSSION 

8.1. SURFACE AREA AND CATALYST CRYSTALLINITY 

Pre-treating the catalysts was performed to investigate the efficacy of microwave and plasma 

technologies for extending the catalytic life of mordenite for toluene disproportionation. 

However, the pre-treatment processes have been shown to cause a loss of crystallinity to varying 

degrees. The XRD results (Figures 7.9.-7.11.) displayed no loss of crystalline structure to the 

DBD plasma pre-treated sample, a minor loss of crystallinity to the microwave plasma pre-treated 

sample and a significant loss of crystal structure to the microwave pre-treated sample. The extent 

of the loss of crystallinity caused by the microwave pre-treatment was also seen visually by the 

fusion of the extrudate into an amorphous glass-like material (Figure 8.1.) and was also reflected 

in the change in surface area (188 m2 g-1), compared with the virgin sample (348 m2 g-1) (Table 

7.2.). Similarly, the non-destructive properties of the DBD plasma pre-treatment on the crystal 

structure are seen by the absence of change in the surface area (339 m2 g-1) compared with the 

virgin sample, whereas the minor loss of crystallinity in the microwave plasma pre-treatment 

process did not appear to significantly impact the surface area of the catalyst, with only a 4 % 

reduction (335 m2 g-1) compared to the virgin sample (348 m2 g-1). 

 

 

 

Figure 8.1 - Photo of Microwave Pre-treated Mordenite 
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8.2. COKE AMOUNT AND COMPOSITION 

Upon deactivation, the surface area of the pre-treated catalyst samples reduced in accordance with 

the amount of coke deposited. Table 8.1. expresses the loss of surface area as a percentage for 

each of the pre-treated samples. The greater % loss of surface area is consistent with the samples 

where the most coke was deposited, and the sample with the least coke exhibited the smallest 

reduction of surface area. 

Table 8.1 - Surface Area and Coke Deposited on Pre-treated Catalysts 

 Loss of Surface Area / % Coke Deposited / weight % 

Virgin 46 4.55 

Microwave Pre-treated 19 1.32 

Microwave Plasma Pre-treated 31 2.28 

DBD Plasma Pre-treated 43 5.09 

 

In terms of coke composition, the solvent extraction results (Figure 7.8.) indicated no significant 

amount of DCM soluble coke on the DBD plasma pre-treated sample and minimal DCM soluble 

coke on the virgin sample. Alongside the TGA results (Table 8.1.), this indicates the majority of 

coke formed on the DBD plasma pre-treated sample is insoluble in DCM. In contrast, the 

microwave and microwave plasma pre-treated samples exhibited significantly stronger peaks with 

longer retention times. This is indicative of higher molecular weight aromatics, suggestive of the 

pre-treatment affecting the coke deposition mechanism. This difference is likely to be attributed 

to a change in the concentration, strength or a redistribution of the acid sites present. 

8.3. CATALYST ACIDITY 

8.3.1. Infrared Spectroscopy 

The infrared spectroscopy data for both pyridine and collidine studies (Figures 7.12.-7.17.) 

provided an insight to the concentration of BAS and LAS present in the pre-treated catalysts. A 

preliminary inspection of the OH-stretching region (4000-3500 cm-1) can identify which of the 

acid sites are available to the probe molecule, before quantification of the concentration of acid 
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sites is performed using the 1700-1400 cm-1 region where the pyridinium and collidinium ions 

appear. 

OH Region 

In the OH-stretching frequency region (4000-3500 cm-1), the IR spectra of the samples (Figures 

7.12.-7.17.), exhibited four peaks prior to the adsorption of the probe molecule. The peaks at 

~3742 cm-1 and ~3655 cm-1 are readily identified as Si-OH and Al-OH groups respectively, and 

the ~3606 cm-1 peak corresponds to acidic Al-OH-Si groups (1). The ~3775 cm-1 peak is attributed 

to the γ-Al2O3 in the binder (1). Interactions of the probe molecule with the zeolite acid sites 

reduces the peak intensities. The extent of such interaction across the regenerated samples can be 

seen in the subtraction result (Figures 7.13. and 7.16.). The interaction between the probe 

molecules and the acidic Al-OH-Si groups (3600 cm-1) of the pre-treated samples appears to be 

considerably weaker compared with the virgin sample. This may indicate a significant decrease 

in the presence of Brønsted acid sites in the pre-treated samples compared with the virgin sample. 

Acid Site Concentration 

The 1700-1400 cm-1 region of the IR spectra using pyridine as the probe molecule (Figure 7.14.) 

exhibited five peaks. The peaks appearing at 1633 cm-1 and 1544 cm-1
 correspond to the 

pyridinium ion (PyH+) and the peaks appearing at 1620 cm-1 and 1453 cm-1 correspond to pyridine 

co-ordinated to Lewis acid sites. The peak exhibited at 1489 cm-1 is a result of interactions 

between both PyH+ and LAS. To calculate BAS and LAS concentration, the 1544 cm-1 and 1453 

cm-1 peaks are used (as described in Section 4.2.6.). The results are given in Table 7.3.. 

The 1700-1400 cm-1 region of the IR spectra using collidine as the probe molecule (Figure 7.17.) 

exhibited a peak at 1636 cm-1. This peak is attributed to the collidinium ion (CollH+) (2) and is 

used to calculate the concentration of Brønsted acid sites (as described in Section 4.2.6.). The 

results are given in Table 7.3.. 

The results (Table 7.3.) display more BAS in the virgin sample and a significant decrease in BAS 

for the pre-treated samples, as suggested previously from the IR spectra in the OH-stretching 
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frequency (Figures 7.13. and 7.16.). Furthermore, the significant loss of BAS for the pre-treated 

samples has occurred both internally and externally, with the microwave pre-treated sample 

retaining a slightly higher concentration of BAS than the microwave plasma-pre-treated sample. 

Therefore, more coke deposition might be expected from the microwave pre-treated sample than 

the microwave plasma pre-treated sample, however this is not the case. A cause for this may be 

due to the significant loss of surface area from the microwave pre-treated sample, possibly 

reducing the availability of the acid sites. 

8.3.2. Ammonia Temperature Programmed Desorption 

The ammonia TPD results (Figures 7.18.-7.19.) of the pre-treated catalysts give an insight into 

possible changes of acid site strength due to the pre-treatment process. The virgin sample 

exhibited two peaks, one at a lower temperature (225°C) and one at a higher temperature (560°C), 

corresponding to l- (lower temperature) and h- (higher temperature) peaks (3). Whilst the h-peak 

is attributed to directly adsorbed ammonia on the zeolite, the l-peak is attributed to weakly 

adsorbed NH4
+ species and is therefore not accurately quantifiable (3). 

The microwave pre-treated sample exhibits two peaks in the same region as the virgin sample, 

however the peak maximum of both peaks is considerably lower. This is indicative of a decrease 

in acid site concentration, although as the peaks appear at the same temperatures as the virgin 

sample, the strength of the acid sites remaining can be considered the same (4). This supports the 

heavily reduced acid site concentration seen in the IR results (Table 7.3.). 

In contrast, the microwave plasma pre-treated sample appears to exhibit only a single broadened 

peak, as the h-peak has a significantly reduced peak maximum. This makes it difficult to 

determine whether the acid site strength has changed compared to the virgin sample. However, 

the heavily reduced h-peak peak maximum indicates a significant reduction in acid sites, 

supporting the IR data (Table 7.3.).  
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8.4. CATALYST ACTIVITY 

8.4.1. Dielectric Barrier Discharge Plasma Pre-treatment 

The activity of the DBD plasma pre-treated catalyst (Figure 7.3.) was similar in both profile and 

deactivation rate to the virgin sample. There was no loss of crystalline structure seen from the 

XRD results (Figure 7.11.) and no considerable change to the surface area (Table 7.2.) of the 

catalyst. There was a slight increase in the amount of coke present, but this was not reflected in 

any change of B/X or individual xylene selectivity. Overall, the DBD plasma pre-treatment under 

the conditions used appears to have had no effect on the mordenite sample. 

8.4.2. Microwave Pre-treatment 

The microwave pre-treatment was shown to be a harsh process, destroying the crystal structure 

(Figures 7.9. and 8.1.), leading to a loss of surface area (Table 7.2.) and acidity (Table 7.3.). 

Therefore, the activity of the microwave pre-treated catalyst (Figure 7.1.) differed from the virgin 

sample, exhibiting a more gradual deactivation profile with a correspondingly much reduced 

deactivation rate. This is explained by the reduction of coke deposition seen in the TGA data 

(Table 7.1.) as a direct result of the heavily reduced concentration of BAS seen from the IR and 

NH3 TPD data (Table 7.3. and Figure 7.18.). The decrease in acid site concentration meant there 

were less BAS available for cracking, resulting in the reduction of B/X compared with virgin by 

almost half (Table 7.1.).  

As expected, the individual xylene selectivity did not favour any one isomer, as the absence of 

coke present would allow the rapid isomerisation of p- to m- and o-xylene on the catalyst surface. 

However, the absence of selectivity could also be attributed to the loss of pore structure, as p-

xylene is known to rapidly diffuse out of the zeolite channels at a rate 1000 times faster than the 

other isomers due to steric effects (5). With the considerable destruction of the crystal structure, 

seen by the XRD (Figure 7.9.) and supported by the loss of surface area (Table 7.2.), the steric 

constraints may be significantly reduced, and would therefore increase the rate of diffusion for 

the m- and o- xylene isomers. 
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8.4.3. Microwave Plasma Pre-treatment 

Similar to the microwave pre-treated sample, the activity of the microwave plasma pre-treatment 

(Figure 7.2.) exhibited a more gradual deactivation profile with a much-reduced deactivation rate 

than the virgin sample. This is likely due to the reduction of carbonaceous deposits seen on the 

catalyst, which can be attributed to the considerable loss of Brønsted acidity seen from the IR data 

and NH3 TPD data (Table 7.3. and Figure 7.19.). A strong reduction in acidity would lead to less 

cracking which would in turn produce less coke. This is further supported by the reduced initial 

B/X (Table 7.1.). 

In contrast to the microwave pre-treated sample, the microwave plasma pre-treated sample 

exhibited no significant loss to crystal structure (Figure 7.10.), which is reflected in the retention 

of surface area (Table 7.2.). Therefore, alongside a reduced amount of coke, a shift in individual 

xylene selectivity would not be expected, which is the case (Figure 7.6.). 

8.5. SUMMARY 

Overall, the pre-treatment of the mordenite samples under the conditions used has little to no 

impact on the catalyst properties in the case of the DBD plasma pre-treated sample. In the 

microwave pre-treated sample the impact was harsh, destroying crystallinity, surface area and 

acidity, whereas the microwave plasma pre-treatment was milder, only severely affecting acidity. 

In terms of activity, none of the pre-treatments shifted individual xylene selectivity towards any 

one particular isomer, although the destruction of acidity in the microwave and microwave plasma 

pre-treatments had an impact on the B/X, shifting the reaction in favour of toluene 

disproportionation. Finally, this loss of acidity also reduced the production of carbonaceous 

deposits, leading to the extended catalytic life which was seen in the microwave and microwave 

plasma pre-treated samples.  
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CHAPTER 9: POWER STUDIES I - RESULTS 

9.1. INTRODUCTION 

In previous chapters, the regeneration and pre-treatment of coked mordenite samples has been 

investigated, comparing thermal methods with a microwave plasma process amongst others. 

Further studies on microwave plasma regeneration, i.e. varying the input power, have been 

investigated and the results are provided in this chapter. The microwave plasma regenerations 

were performed as described in Section 4.1.2., varying only the microwave input power so as to 

create a specific wall temperature. The power input required for the wall temperatures is given in 

Table 9.1.. 

Table 9.1. - Microwave Power Required to Produce Set Wall Temperatures 

Wall Temperature / °C Microwave power / Watts 

150 125 

250 195 

350 400 

450 650 

 

9.2. CATALYST TESTING 

9.2.1. Toluene Conversion as a Function of Time 

Regenerated mordenite was subjected to a second toluene disproportionation. The regenerated 

activity represented as toluene conversion as a function of time has been plotted in Figures 9.1.-

9.4.. The data for each regeneration treatment has been plotted alongside virgin mordenite in order 

to assist in the visualisation of any differences which may have resulted. 

As can be seen in Figure 9.1., the initial toluene conversion over the virgin catalyst was 55 %, 

which decreased over time. After 350 minutes, catalytic activity had dropped to a 5 % conversion 

and remained in a pseudo-steady state with activity only reducing a further 3 % after an additional 
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500 minutes. Rapid deactivation occurred between 118 minutes and 260 minutes at a rate of 0.29 

% min-1. 

The activity data for a sample of mordenite which had undergone microwave plasma regeneration 

(MWPR) at a wall temperature of 150°C is also shown in Figure 9.1.. Whilst the catalyst exhibits 

a similar activity profile to the virgin material, the rate of deactivation is slightly higher (0.31 % 

min-1), and the initial activity is slightly reduced (51 %). 

In contrast, the deactivation profile of a sample of spent mordenite which had undergone MWPR 

at a wall temperature of 250°C (Figure 9.2.), was significantly different from the virgin and 150°C 

MWPR materials.  Whilst the initial activity was the same as the virgin sample (55 %), in terms 

of toluene conversion, the sample did not undergo a rapid deactivation but instead the profile 

displays a more gradual deactivation with a rate of 0.16 % min-1, over the measured period (98-

324 mins). 

The sample of mordenite which had undergone MWPR at a wall temperature of 350°C (Figure 

9.3.) displayed a similar deactivation profile to the 250°C MWPR sample, with a deactivation rate 

of 0.035 % min-1, and a reduced initial activity (22 %) compared to virgin (55 %).The sample of 

mordenite which had undergone MWPR at a wall temperature of 450°C (Figure 9.4.) had a 

significantly reduced initial activity (6 %) compared to virgin, which was reduced to 2 % as the 

reaction progressed (at a rate of 0.0069 % min-1). 
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 Figure 9.1. –Activity Plot of Virgin Catalyst Compared with 150°C Microwave Plasma Treated Catalyst 

Figure 9.2. –Activity Plot of Virgin Catalyst Compared with 250°C Microwave Plasma Treated Catalyst 
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Figure 9.3. –Activity Plot of Virgin Catalyst Compared with 350°C Microwave Plasma Treated Catalyst 

Figure 9.4. –Activity Plot of Virgin Catalyst Compared with 450°C Microwave Plasma Treated Catalyst 
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9.2.2. Effect of Power Used During Regeneration on Catalyst Selectivity 

When investigating how the change in power used in the regeneration treatments have affected 

catalyst selectivity, the reaction selectivity between the more desirable toluene disproportionation 

and the competing cracking reactions can be studied through observation of the B/X.  

The B/X as a function of reaction time for the regenerated catalysts is shown in Figure 9.5., 

excluding the initial data point, which is instead provided in Table 9.2.. As can be seen in Figure 

9.5., the B/X of the virgin material decreases as a function of reaction time, reducing to a pseudo-

steady state of 0.2. This is also seen for the B/X of the 150°C and 250°C MWPR samples although 

at a much-reduced gradient. The B/X for the 350-450°C MWPR samples appears as a constant 

value of 0.17 (350°C MWPR sample), and 0.25 (450°C MWPR sample). 

From Table 9.2. it can be seen that the initial B/X of the virgin and MWPR samples between 150-

250°C is significantly higher than their subsequent values, and therefore the reason the initial data 

point for each sample was excluded from Figure 9.5.. The virgin catalyst had an initial B/X of 

0.74, whereas the regenerated catalysts had B/X values much reduced than the virgin. 

 

Table 9.2. - Initial B/X of Microwave Plasma Treated Catalysts 

 

 

 

 

 

 

Pre-treatment Method Initial B/X 

None (Virgin) 0.74 

150°C Treatment 0.40 

250°C Treatment 0.55 

350°C Treatment 0.16 

450°C Treatment 0.26 
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Figure 9.5. - B/X of Microwave Plasma Treated Catalysts 

9.3. SURFACE AREA AND AMOUNT OF COKE 

The surface area and coke present for each of the coked microwave plasma regenerated catalysts 

(as determined according to the methods described in Sections 4.2.2. and 4.2.4.) is given in Table 

9.3.. 

Table 9.3. - Surface Area and Coke Present on Microwave Plasma Regenerated Catalystsa 

 BET Surface Area  

/ m2g-1 

Coke Present  

/ weight % 

Virginb 348 4.55 

150°C Treated 212 3.15 

250°C Treated 229 2.34 

350°C Treated 159 0.15 

450°C Treated 155 0.14 

        a Surface areas given are prior to second deactivation 

    bUncoked virgin BET Surface Area: 189 m2 g-1 
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As can be seen from Table 9.3., the BET surface area of the microwave plasma treated catalysts 

regenerated with a wall temperature between 150-250°C displayed a higher surface area 

compared with the coked virgin sample. In contrast, the microwave plasma treated catalysts 

regenerated with a wall temperature between 350-450°C displayed a lower surface area compared 

with the coked virgin sample. All samples possessed a lower surface area than the uncoked virgin 

sample. 

From the coke data given in Table 9.3., it can be seen that the amount of coke deposited on the 

regenerated catalysts decreased with regeneration wall temperature. Furthermore, in the 

regenerations at a temperature of 350°C-450°C, coke deposition is almost negligible. 

9.4. X-RAY DIFFRACTION 

XRD was carried out on the microwave plasma regenerated samples to determine whether the 

exposure of mordenite samples to microwave plasma regeneration at increasing energy input 

levels had any significant effect on the catalytic crystal structure. The results of this are given in 

Figures 9.6.-9.9., with the regenerated samples laid over virgin mordenite to aid in visualisation 

of any changes which may have occurred. 

There is little difference in the diffractograms of the virgin and lower temperature MWPR 

treatments shown in Figures 9.6. and 9.7. (i.e. wall temperatures of 150°C and 250°C). The 

diffractograms show characteristic mordenite peaks (1), with negligible change in peak position 

and very little peak broadening. Any minor loss of intensity in these materials might be attributed 

to a systematic sample displacement and for the purpose of this analysis is insignificant. 

There is however a considerable difference in the diffractograms of the higher temperature 

MWPR treatments shown in Figures 9.8. and 9.9. (i.e. wall temperatures of 350°C and 450°C) 

compared with the virgin material. These diffractograms display a significant decrease of peak 

intensity and although the main characteristic mordenite peaks can be seen, there is noticeable 

peak broadening, at the larger angles (i.e. 35-80°) in particular. 
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Figure 9.6. - XRD Diffractogram of MWPR Mordenite at a Wall Temperature of 150°C 

Figure 9.7. - XRD Diffractogram of MWPR Mordenite at a Wall Temperature of 250°C 
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Figure 9.8. - XRD Diffractogram of MWPR Mordenite at a Wall Temperature of 350°C 

Figure 9.9. - XRD Diffractogram of MWPR Mordenite at a Wall Temperature of 450°C 
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9.5. SOLID STATE NUCLEAR MAGNETIC RESONANCE 

ssNMR studies were performed to determine the impact the exposure of mordenite samples to 

microwave plasma regeneration at increasing energy input levels had on catalytic acidity. Figure 

9.10. depicts the 27Al ssNMR data of the MWPR materials treated, labelled by their respective 

wall temperatures.  

The 27Al NMR in Figure 9.10. displays two crucial peaks for each sample: 54 ppm and 0 ppm, 

representing framework and extra-framework aluminium (EFAl) respectively (2). The peaks seen 

at 100 ppm and -75 ppm are spinning side bands, and the broader peaks at 75 ppm 10 ppm are 

attributed to the aluminium in the γ-alumina binder. The EFAl is over-shadowed by the aluminium 

from the γ-alumina binder, therefore a magnified image of the EFAl peak at 0 ppm is given in 

Figure 9.11.. 

From Figure 9.11., a decrease in framework aluminium corresponding to increasing wall 

temperature can be seen. Figure 9.11. exhibits a significant decrease in EFAl for the MWPR 

catalysts, with no EFAL seen in the 350°C and 450°C samples. 
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Figure 9.10. – 27Al MAS ssNMR of MWPR Catalysts 

 

Figure 9.11. – Magnified 0 ppm Region of 27Al MAS ssNMR of MWPR Catalysts 
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CHAPTER 10: POWER STUDIES II - DISCUSSION 

 

10.1. INTRODUCTION 

Studies on the application of plasma for the regeneration of catalysts is limited. The investigations 

which have been performed cite speed as a key advantage (1). The power studies performed 

explored the impact of increasing the input energy to determine whether power could be optimised 

for rapid and efficient regeneration of deactivated mordenite samples. 

10.2. SURFACE AREA AND AMOUNT OF COKE 

The deactivation of mordenite samples in toluene disproportionation can be produced via the 

deposition of carbonaceous material on the surface, in the channel intersections and cavities of 

the zeolite (2-4). Typically, the deposition of coke leads to a decrease in surface area (5-8), 

however this is not necessarily the only cause. The surface area and amount of carbonaceous 

deposits of coked MWPR mordenite samples are given in Table 9.3.. A deactivated virgin sample 

of mordenite exhibited a surface area of approximately 190 m2 g-1, with a deposition of 

approximately 4.5 % by weight of carbonaceous material. The MWPR coked samples of 

mordenite regenerated with a wall temperature of 150°C and 250°C, underwent less coking than 

the virgin deactivation, with approximately 3.2 and 2.3 % by weight of carbonaceous material, 

respectively. Correspondingly, these samples also exhibited a surface area higher than the 

deactivated virgin sample. In contrast, the MWPR coked samples of mordenite regenerated with 

a wall temperature of 350°C and 450°C exhibited a lower surface area compared with virgin, 

albeit these samples displayed negligible amounts of coke (< 0.2 %). The reason behind this can 

be seen from the X-ray diffraction data (Figures 9.6.-9.9.). Whilst the lower wall temperature 

MWPR catalysts (i.e. 150-250°C) exhibited little change in crystal structure, the higher wall 

temperature MWPR catalysts (i.e. 350-450°C) displayed a significant loss of intensity and some 

peak broadening. This demonstrates a considerable loss of crystallinity to the higher wall 

temperature MWPR catalyst samples, which would partially destroy the catalyst surface area. The 
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loss of zeolite structure and surface area would heavily suggest a loss of surface acidity, which 

would also account for the negligible amount of coke deposited on these samples. 

10.3. SOLID STATE NUCLEAR MAGNETIC RESONANCE 

The 27Al MAS ssNMR performed on the MWPR catalysts (Figures 9.10. and 9.11.) display a shift 

in the amount of aluminium present compared with the virgin sample. Figure 9.10. exhibits two 

peaks arising from framework (54 ppm) and extra-framework (0 ppm) aluminium (9). There is a 

significant decrease in framework aluminium seen in the MWPR catalysts compared with the 

virgin sample, corresponding to increase in wall temperature. This is indicative of dealumination. 

Moreover, the higher wall temperature MWPR samples do not exhibit any tetrahedral framework 

aluminium. During dealumination, tetrahedral aluminium is removed and a proportion of it is 

known to be deposited in the pores as octahedral extra-framework species (10). However, the 

EFAl of the zeolite samples is overshadowed by the aluminium found in the γ-alumina binder 

making it difficult to determine the amount of EFAl species formed. Nevertheless, Figure 9.11. 

displays a higher amount of EFAl species for the virgin sample compared to the MWPR samples. 

There is some EFAl species present in the lower wall temperature MWPR samples, however no 

EFAl species can be identified for the higher wall temperature MWPR samples. Whilst the lack 

of EFAl species for the higher wall temperature MWPR samples could be attributed to the 

destruction of the zeolite structure seen from the XRDs (Figures 9.8. and 9.9.), it is somewhat 

surprising not to see more EFAl for the lower wall temperature MWPR samples. Further studies 

would need to be performed to explain this, e.g. XPS, Pyridine IR or NH3 TPD. 

10.4. CATALYST ACTIVITY 

10.4.1. Sample of Mordenite Regenerated at a Wall Temperature of 150°C 

The activity of the sample of mordenite which had undergone MWPR at a wall temperature of 

150°C, had a similar activity profile as the virgin sample, although the rate of deactivation was 

higher, and the initial activity was reduced. These differences can be attributed to incomplete 

regeneration, which was seen visually from cross-sectioning the catalyst (Figure 10.1.). The shape 
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of the activity profile was unlikely to differ from the virgin sample as the XRD results (Figure 

9.6.) and retention of surface area (Table 9.3.) illustrated the regeneration process had not 

damaged the crystal structure. 

The initial B/X of the MWPR sample with a wall temperature of 150°C (Figure 9.1.) was 

approximately half the value of the virgin sample (Table 9.2.). This might be attributed to the 

significant loss of framework aluminium seen from the NMR results (Figure 9.10.), indicating a 

possible loss of acid sites. Fewer acid sites available for cracking, would reduce the B/X and 

would also explain the reduction in the coking rate seen by the TGA results (Table 9.3.). However, 

further studies would need to be performed to confirm this, e.g. Pyridine IR. 

10.4.2. Sample of Mordenite Regenerated at a Wall Temperature of 250°C 

The activity of the sample of mordenite which had undergone MWPR at a wall temperature of 

250°C (Figure 9.2.), exhibited a different activity profile from the sample regenerated at a wall 

temperature of 150°C and the virgin sample (Figure 9.1.), with a much-reduced deactivation rate. 

The initial activity was the same as the virgin sample (55 %), indicating the microwave plasma 

treatment had fully regenerated the catalyst. As the surface area was retained (Table 9.3.) and 

XRD results (Figure 9.7.) exhibited no destruction of the crystalline structure, the reduction in 

deactivation rate is most likely attributed to a reduced concentration of acid sites, likely to be 

produced from the significant dealumination seen by the ssNMR results (Figure 9.10.). A 

reduction in acid sites would lead to the lower coking rate seen by the TGA (Table 9.3.), and the 

Figure 10.1. - Cross-Section of Mordenite Sample MWPR at a Wall Temperature of 150°C 
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reduction of the initial B/X compared with the virgin sample. As the sample which was MWPR 

at 250°C exhibited a greater amount of dealumination than the sample which was MWPR at 

150°C, the initial B/X would be expected to be lower for the sample which had undergone more 

dealumination, i.e. MWPR at 250°C. However, the results show that the initial B/X of the 250°C 

MWPR sample was higher. The reason for this, is likely due to the incomplete regeneration of the 

150°C MWPR sample, where the remaining coke could be blocking the acid sites, reducing their 

availability for cracking. 

10.4.3. Sample of Mordenite Regenerated at a Wall Temperature of 350°C 

The activity of the sample of mordenite which had undergone MWPR at a wall temperature of 

350°C (Figure 9.3.), exhibited a similar activity profile to the sample of mordenite which had 

undergone MWPR at a wall temperature of 250°C (Figure 9.2.), although with a much-reduced 

initial activity. The heavily reduced surface area (Table 9.3.) and XRD results (Figure 9.8.) 

illustrate the destructive nature of the regeneration treatment on the crystal structure of the 

catalyst. The loss of crystallinity leads to destruction of the acid sites, seen from the significantly 

low B/X ratio compared with the virgin sample and corresponding lack of coke deposition seen 

from the TGA results (Table 9.3.). The NMR results support this, displaying a negligible amount 

of framework aluminium. 

10.4.4. Sample of Mordenite Regenerated at a Wall Temperature of 450°C 

Similarly, the destruction of the crystal structure seen in the sample of mordenite MWPR at a wall 

temperature of 350°C (Figure 9.3.) was echoed in the sample of mordenite MWPR at a wall 

temperature of 450°C (Figure 9.4.). However, in this case, the activity of the sample of mordenite 

which had undergone MWPR at a wall temperature of 450°C was effectively completely 

destroyed (toluene conversion <5 %). 
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 CHAPTER 11: OVERALL DISCUSSION 

11.1. INTRODUCTION 

  Results from the novel regeneration and pre-treatment methods were given and discussed in 

comparison to virgin and thermal methods in previous chapters. This chapter aims to discuss any 

differences between the novel regeneration and pre-treatment processes in comparison to one 

another. Through this, an understanding of the interactions the novel processes have on the 

catalysts with or without coke can be developed. For ease of comparison, the surface areas of the 

regenerated and pre-treated catalysts are given in Table 11.1., the coke present on the deactivated 

regenerated and pre-treated catalysts is given in Table 11.2., and the concentration of acid sites 

determined via pyridine and collidine IR is given in Table 11.3.. 

 

 Regeneration Pre-treatment 

 Uncoked Coked Uncoked Coked 

Virgin 348 189 348 189 

Thermal 352 190 N/A 

Microwave 259 210 188 153 

Microwave Plasma 333 158 335 245 

DBD Plasma 290 186 339 194 

 Regeneration Pre-treatment 

Virgin 4.55 4.55 

Thermal 3.37 N/A 

Microwave 2.39 1.32 

Microwave Plasma 3.05 2.28 

DBD Plasma 4.49 5.09 

 Virgin Thermally 

Regenerated 

Microwave  Microwave Plasma  

Regenerated Pre-treated Regenerated Pre-treated 

Pyridine BAS 0.5 0.42 0.32 0.18 0.37 0.10 

LAS 0.45 0.47 0.43 0.33 0.50 0.37 

B/L 1.1 0.9 0.7 0.5 0.7 0.30 

Collidine BAS 0.24 0.18 0.15 0.17 0.13 0.07 

Table 11.2. – Coke Present (% by Weight) on Deactivated Regenerated and Pre-treated Catalysts 

 

Table 11.3. – Concentration of Acid Sites (µmol m-2 g-1) on Deactivated Regenerated and Pre-treated 

Catalysts 

 

Table 11.1. - Surface Area (m-2 g-1) of Regenerated and Pre-treated Catalysts 
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11.2. DIELECTRIC BARRIER DISCHARGE PLASMA 

11.2.1. Surface Area 

The surface areas of the DBD plasma regenerated sample and the DBD plasma pre-treated sample 

are given in Table 11.1.. The difference between the surface area of the uncoked DBD plasma 

regenerated sample (290 m2 g-1) and DBD plasma pre-treated sample (339 m2 g-1) can be attributed 

to the presence of coke on the regenerated sample. Whilst the XRD data for the DBD plasma 

samples (Figure 11.1.) shows no difference between the two treatments, the DBD plasma 

regenerated sample was shown to retain 2.20 % by weight of coke (Table 5.2.) after regeneration, 

in comparison to the pre-treated sample which possessed no coke. Whilst it might therefore be 

expected that the DBD plasma regenerated sample would exhibit more coke upon deactivation 

than the DBD plasma pre-treated sample, this is not the case. Furthermore, the surface area of the 

deactivated DBD plasma regenerated sample (186 m2 g-1) compared with the deactivated DBD 

plasma pre-treated sample (194 m2 g-1) is surprisingly similar in comparison to their difference in 

coke deposited (4.49 and 5.09 % by weight, respectively). Whilst the cause of this is unknown, it 

might be due to the mechanism of coke deposition. Coke deposition is a shape selective process 

(1), and as there is already coke present on the DBD plasma regenerated catalyst, it may act as a 

barricade, blocking access to areas of the catalyst which might hamper further coke lay down. 

0

20

40

60

80

100

5 10 15 20 25 30 35

C
o

u
n
ts

2 Theta Angle (Degrees)

DBD Plasma Regeneration DBD Plasma Pre-treatment

Figure 11.1. – XRD Diffractogram of DBD Plasma Regenerated and Pre-treated Catalysts 
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11.2.2. Catalyst Activity 

The activity of DBD plasma regenerated and DBD plasma pre-treated samples of mordenite are 

given in Figure 11.2.. Virgin data was omitted as it was identical to the DBD pre-treatment. From 

Figure 11.2. it can be seen that the rate of deactivation of the regenerated sample (0.523 % min-1) 

is much more rapid than the rate of deactivation of the pre-treated sample (0.33 % min-1) (Table 

11.4.). This is explained by the incomplete regeneration of the regenerated sample, as compared 

with the virgin sample (Figure 7.3.), the DBD pre-treated sample is almost identical. Furthermore, 

the initial B/X (Table 11.4.) of the DBD plasma treated samples is very similar, both to each other 

and the virgin (Tables 5.2. and 7.2.) indicating no change in acid sites, although this would need 

to be confirmed, e.g. NH3TPD or pyridine/collidine IR studies. 
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Figure 11.2. – Activity Plot of DBD Plasma Regenerated and Pre-treated Catalysts 

 

Table 11.4. – Rate of Deactivation and Initial B/X of DBD Plasma Regenerated and Pre-treated 

Catalysts 
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11.2.3. Summary 

From the results of the DBD plasma treated catalysts, it can be seen that there is very little 

difference produced between them, and similarly compared with the virgin catalyst. The 

discrepancy between the amount of coke present on the regenerated and pre-treated samples is 

due to the incomplete regeneration of the DBD plasma regenerated catalyst, which also affected 

the surface area of the catalyst. The absence of change in initial B/X (Table 11.4.) suggests no 

change in acid sites, and the XRD results (Figure 11.1.) indicates no loss of crystalline structure. 

It appears, under the conditions used, that the DBD plasma treatments were insufficiently strong 

enough to penetrate the zeolite, leading to incomplete regeneration of the catalyst. In all other 

conditions, the zeolite remains effectively unchanged in comparison to the virgin catalyst.  

11.3. MICROWAVE HEATING 

11.3.1. Surface Area 

There is a significant difference between the surface areas of both coked and uncoked mordenite 

samples exposed to microwave processes, as shown in Table 11.1.. The microwave regenerated 

catalyst retained more surface area (259 m2 g-1) compared with the virgin catalyst (348 m2 g-1) 

prior to deactivation, than the microwave pre-treated catalyst (188 m2 g-1). This would suggest a 

more significant loss in the crystal structure for the pre-treated catalyst. However, whilst both 

microwave treatments have noticeably lost structural integrity compared with the virgin sample, 

seen from the XRD results (Figures 5.14. and 7.9.), there is no visible difference on the 

diffractogram to distinguish between the two microwave treatments (Figure 11.3.). With that said, 

observations during the experiments would suggest the pre-treatment was a harsher process, as 

catalyst sample was seen to fuse together (Figure 8.1.). This fusion of sample was not observed 

for the microwave regeneration. However, observations during preliminary microwave 

regeneration highlighted the non-uniformity of the microwave treatment (Figure 4.21.). Although 

best efforts were taken to analyse the extrudate which wasn’t visibly sintered, the methods use 

only a fraction of the sample, assuming uniformity across the sample which was not the case. To 
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conclusively compare the microwave regeneration and microwave pre-treatments, these 

characterisation techniques would need to be repeated multiple times with the entirety of the 

sample.

11.3.2. Catalyst Acidity 

The amount of coke present on the microwave treated catalysts (Table 11.2.), whilst lower than 

the virgin catalyst (4.55 % by weight) was significantly different. The microwave regenerated 

sample was subjected to a higher amount of coking (2.39 % by weight) than the microwave pre-

treated sample (1.32 % by weight). The decrease in coking compared with the virgin was 

explained, in the previous discussions, as a result of sintering. However, the difference between 

the two microwave treatments can be seen from the acidity data. The IR results (Table 11.3.) 

display a higher concentration of BAS for the microwave regenerated sample (0.32 µmol m-2 g-1) 

than the microwave pre-treated sample (0.18 µmol m-2 g-1). The higher concentration of BAS seen 

in the microwave regenerated sample would produce more cracking, leading to a higher amount 

of coke deposited, compared with the microwave pre-treated sample. In contrast, the NH3 TPD 
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Figure 11.3. – XRD Diffractogram of Microwave Regenerated and Pre-treated Catalysts 
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results (Figure 11.4.), may suggest a lower concentration of acid sites in the microwave 

regenerated sample. However, the h-peak in the microwave sample is not clearly visible and could 

be seen as overlapping with the l-peak. Further studies would need to be undertaken to confirm 

the difference in acid sites between the two samples, e.g. ssNMR. 

 

11.3.3. Catalyst Activity 

The catalytic activity for samples of microwave regenerated and microwave pre-treated mordenite 

are given in Figure 11.5., with the rate of deactivation and initial B/X given in Table 11.5.. From 

this data it can be seen that the microwave pre-treated catalyst has a lower initial toluene 

conversion (54 %) compared with the microwave regenerated catalyst (63 %). This is most likely 

a result of the degree of sintering caused, where fewer active sites remain to catalyse the reaction. 

The rate of deactivation was the same for both samples, despite their difference in the amount of 

coke deposited (Table 11.2.). This is not unexpected as it would take less coke to block the fewer 

number of acid sites in the microwave pre-treated catalyst than in the microwave regenerated 

catalyst. This is furthermore supported, by the difference in the initial B/X (Table 11.5.).   

 

0

1

2

3

4

5

6

7

8

50 150 250 350 450 550 650 750 850 950

A
m

m
o

n
ia

 (
µ

m
o

le
s 

/ 
g
.m

in
)

Temperature / °C

Microwave Regeneration 

Microwave Pre-treatment 

 Figure 11.4. – NH3 TPD of Microwave Regenerated and Pre-treated Catalysts 



 
180 

 

 

 

11.3.4. Summary 

The differences between microwave regenerated and microwave pre-treated samples of mordenite 

were discussed. There were differences in the surface areas of the catalysts, the amount of carbon 

deposited and the concentration of BAS. However, the activity of the catalysts was similar. The 

differences seen could be attributed to varying degrees of sintering caused by the harsh processes, 

where the microwave pre-treatment appeared to be harsher, seen from the lower surface area 

(Table 11.1.), lower concentration of BAS (Table 11.3.) and visually (Figure 8.1.). This might be 

expected, as the direct interaction of the microwaves with the catalyst, would not be reduced by 

the presence of coke. Ultimately, the use of microwaves as a method of pre-treatment or 
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Rate of Deactivation 

/ % min-1 

0.088 0.087 
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Figure 11.5. – Activity Plot of Microwave Regenerated and Pre-treated Catalysts 

Table 11.5. – Rate of Deactivation and Initial B/X of Microwave Regenerated and Pre-treated 

Catalysts 
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regeneration of mordenite for toluene disproportionation, under the conditions used is too harsh 

to be considered viable. 

11.4. MICROWAVE PLASMA 

11.4.1. Surface Area 

From Table 11.1. no significant changes can be seen in the surface areas of the uncoked 

microwave plasma regenerated (333 m2 g-1) and pre-treated (335 m2 g-1) samples. In contrast, 

there is a considerable difference between the surface areas of the coked microwave plasma 

samples. A third of the surface area is lost during toluene disproportionation in the pre-treated 

sample (245 m2 g-1), whereas the surface area of the regenerated sample decreased by half (158 

m2 g-1). The change in surface area is reflected in the difference of coke deposited on the samples 

(Table 11.2.), with more coke present on the regenerated sample (3.05 % by weight), and less 

coke present on the pre-treated sample (2.28 % by weight). The retention of surface area of the 

microwave plasma samples prior to deactivation can be explained by the XRD results (Figure 

11.6.). There is little difference seen between the diffractograms of the two samples, indicating 

no significant structural changes between the two samples, which was also true when compared 

with the virgin sample (Figures 5.15. and 7.10.). 



 
182 

 

Figure 11.6. – XRD Diffractogram of Microwave Plasma Regenerated and Pre-treated Catalysts 

11.4.2. Catalyst Acidity 

The NH3TPD and infrared studies reveal differences in acidity between the microwave plasma 

regeneration and pre-treatment processes. The NH3TPD results (Figure 11.7.) exhibit a difference 

in the concentration of acid sites, with the reduced h-peak peak maximum of the microwave 

plasma pre-treated catalyst displaying fewer acid sites than the regenerated catalyst. Furthermore, 

the reduction of h-peak peak maximum of the microwave plasma pre-treated catalyst makes it 

difficult to determine whether a shift in the acid site strength has occurred. This was not the case 

for the microwave plasma regenerated sample (as seen in Figure 5.28.), where a minor shift 

towards weaker acid strength in comparison to the virgin sample was identified. The infrared 

studies further support a change between the microwave plasma processes, as shown in Table 

11.3.. Whilst there is a considerable decrease of Brønsted acidity in the microwave plasma 

regenerated sample (0.37 µmol m-2 g-1) compared to the virgin sample (0.5 µmol m-2 g-1), this is 

much more exacerbated in the microwave plasma pre-treated sample (0.10 µmol m-2 g-1). 
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Furthermore, whilst the loss of Brønsted acidity in the microwave plasma regenerated catalyst 

was shown to be surface specific (Table 6.2.), the microwave plasma pre-treatment was able to 

penetrate the catalyst with sufficient energy to destroy internal and external Brønsted acid sites 

alike. One plausible explanation for this is that during the microwave plasma regeneration 

treatment, the microwave plasma interacted with the carbon, oxidising it to carbon dioxide and 

water. In the microwave plasma pre-treatment however, there was no carbon involved, therefore 

the microwave plasma could only interact with the catalyst. Without the interaction of the 

microwave plasma with the coke, the catalyst was exposed to the full energy of the plasma, 

resulting in the destruction of both the internal and external BAS. In terms of the destruction of 

external BAS during the microwave plasma regeneration, the external surface area of the catalyst 

was most likely regenerated first. This meant that once the coke had been removed from the 

surface, the microwave plasma would interact directly with the external surface of the catalyst, 

causing the destruction of the external BAS. The destruction of the acid sites is most likely due 

to dealumination, as seen in the ssNMR for the microwave plasma regenerated catalyst (Figures 

5.17. – 5.19.). Whilst ssNMR was not carried out on the pre-treated catalyst, the likelihood of 

dealumination can be speculated from the ssNMR carried out on the power studies (Figures 9.10.-

9.11.), where an increase of input energy corresponded to an increased amount of dealumination.  

It is the reduction in acidity between the microwave plasma regenerated and pre-treated catalysts 

which caused the change in the amount of coke deposition between the two samples. With more 

acid sites, the microwave plasma regenerated catalyst could produce more cracking than the 

microwave pre-treated sample. A higher cracking rate would be expected to lead to a higher 

amount of coke deposited, which is what is seen in Table 11.2.. 



 
184 

 

 

 

Figure 11.7. – NH3TPD of Microwave Plasma Regenerated and Pre-treated Catalysts 

11.4.3. Catalyst Activity 

The activity data for a sample of microwave plasma regenerated and a sample of microwave 

plasma pre-treated mordenite is given in Figure 11.8.. From this it can be seen that the activity 

appears to be the same for both microwave plasma processes. This is confirmed by the rate of 

deactivation and initial B/X given in Table 11.6., where there is a negligible difference between 

the samples. 
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Table 11.6. - Rate of Deactivation and Initial B/X for Microwave Plasma Regenerated and Pre-treated 

Catalysts 

 Regenerated Pre-treated 

Rate of Deactivation 

/ % min-1 

0.085 0.087 

Initial B/X 0.35 0.32 

 

11.4.4. Summary 

The results of microwave plasma regenerated mordenite and microwave plasma pre-treated 

mordenite samples were compared. From this it can be determined, that although coke deposited 

on the catalyst during toluene disproportionation reduces the activity of the catalyst, the difference 

in the amount of coke deposited on the microwave plasma regenerated and microwave plasma 

pre-treated samples has not had a significant impact. The plasma treatments have not destroyed 

any crystalline character of the mordenite samples, but they have significantly effected the 

Brønsted acidity of the catalysts. Whilst the microwave plasma regeneration only destroyed the 

BAS on the surface of the catalyst, the microwave plasma pre-treatment destroyed the internal 

BAS as well. This accounts for the difference in coke deposited, as cracking is known to occur 
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Figure 11.8. – Activity Plot of Microwave Regenerated and Pre-treated Catalysts 
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on BAS (2). However, it also demonstrates that the presence of strong BAS, even in diminishing 

numbers, is sufficient to produce a 60 % toluene conversion under the conditions used in this 

research. The destruction of BAS is beneficial for this reaction, under these conditions, as it 

reduces the amount of cracking and thus coking which occurs, seen from the decrease in B/X 

compared to virgin (Tables 5.1. and 7.1.), and the TGA results (Table 11.2.). The preferential 

formation of toluene disproportionation is desirable, especially with the extended catalytic life 

exhibited by the microwave plasma treated samples. However, under the conditions used, no 

individual xylene selectivity was seen. To preferentially produce the much-desired p-xylene 

isomer, structural modifications would be required. This might include changing the catalyst used, 

or as mentioned in Chapter 3, by selectively pre-coking the catalyst (3). 
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CHAPTER 12: CONCLUSIONS AND FUTURE WORK 

12.1. CONCLUSIONS 

The research contained within this thesis focused on the modifications of the zeolite mordenite as 

a result of microwave and plasma treatments. Structural modifications and changes to acidity 

were characterised using post-mortem techniques including XRD, IR and NH3TPD amongst 

others. Catalytic activity was measured using toluene disproportionation as a probe reaction. 

In Chapters 5 and 6, the regeneration of coked mordenite via novel microwave and plasma 

methods was explored. Under the conditions used, the results exhibited an extended catalytic life 

for microwave and microwave plasma regenerated samples, compared with virgin and thermally 

regenerated samples (Figures 5.1.-5.3.). In contrast, the DBD plasma regeneration, under the 

conditions used, was unsuccessful at removing all the coke (Table 5.2.) and therefore exhibited 

an accelerated deactivation rate compared with the virgin material (Figure 5.4.). 

Following this, Chapters 7 and 8 employed these novel methods in the pre-treatment of mordenite. 

Under the conditions used, the results exhibited an extended catalytic life for microwave and 

microwave plasma pre-treated samples compared with the virgin catalyst; however, no change 

was seen for the catalyst treated with DBD plasma. 

The development of extended catalytic life was seen in both regeneration and pre-treatment of 

mordenite samples via microwave and microwave plasma methods. The absence of this effect 

from the DBD plasma treatments indicated, under the conditions used, that the plasma was not 

sufficiently strong to remove all the carbonaceous deposits or penetrate the catalyst structure. That 

the effect was present in both microwave and microwave plasma regeneration and pre-treatment 

processes, revealed the presence of (residual) coke was not required to produce this effect, but 

that the extended life was a result of catalyst modification.  

Characterisation of the catalyst samples demonstrated the extended life to be due to a change in 

the acidity of the mordenite samples, rather than a change in the crystalline structure. However, 
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structural changes were seen for the microwave treatments (Figures 5.14. and 7.9.), with heavily 

reduced surface areas (Tables 5.2. and 7.2.), where the processes had been too harsh and destroyed 

the integrity of the catalyst. This was observed visually in the pre-treatment (Figure 8.1.). 

The Brønsted acidity of mordenite provides the active sites for toluene disproportionation but is 

also the site where cracking occurs. As cracking is one of the main processes for coke deposition 

in toluene disproportionation (1), the reduction in acid site concentration of the microwave and 

microwave plasma treated catalysts led to less cracking and hence less coke deposition. The 

diminished amount of coke deposited meant the catalyst pores were not blocked and therefore the 

acid sites remained available for toluene disproportionation, therefore extending the catalytic life 

cycle, as seen in the activity data (Figures 5.2.-5.3. and 7.1.-7.2.). 

The strength of the acid sites in the microwave regeneration and pre-treatment appeared to 

become weaker, which would shift the reaction in favour of toluene disproportionation over 

cracking. However,  the acid site strength did not appear to significantly change in the microwave 

plasma regeneration, and it was difficult to determine if the acid site strength had changed in the 

microwave plasma pre-treatment due to poor h-peak resolution. 

The source of the loss of acidity was most likely dealumination of the catalyst, seen from the 

ssNMR data (Figures 5.17.-5.19.), and XPS results (Table 5.3.) of the microwave plasma 

regenerated catalyst. In the case of the microwave treated catalysts, the dealumination was 

certainly accompanied by sintering of the catalyst, seen in Figure 8.1.. However, ssNMR studies 

of the pre-treated samples and microwave regenerated sample would need to be run to confirm 

this. 

Whilst the pre-treatment results illustrated that residual coke was not required to provide extended 

catalytic life, the microwave plasma pre-treatment demonstrated the benefit of treating a coked 

catalyst with microwave plasma treatment over a virgin sample. During the microwave plasma 

pre-treatment of the virgin catalyst, the internal and external BAS were destroyed (Table 7.3.). In 

contrast, the microwave plasma regeneration of a sample of coked mordenite only destroyed BAS 

on the surface of the catalyst (Table 6.2.). Whilst this may not have had an overall effect on the 
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catalytic activity of toluene disproportionation (Figure 11.8.), the surface specificity may have 

applications in other reactions or on other zeolites. 

Chapters 9 and 10 explored the possibility of optimisation, by varying the microwave power input 

to produce the microwave plasma. The results illustrated a correlation between power input and 

dealumination (Figures 9.9.-9.10.), where too much power resulted in the destruction of the 

catalyst structure (Figures 9.6.-9.9.) and as a result, loss of catalytic activity (Figures 9.1.-9.4.).  

In summary, under the conditions used, DBD plasma was not a viable method for complete 

regeneration of coked mordenite. Microwave and microwave plasma regeneration methods, under 

the conditions used, successfully regenerated the coked mordenite samples, restoring toluene 

conversion and led to an extended catalytic life. This was achieved by the destruction of BAS 

through dealumination, however in the microwave plasma regeneration, this destruction was 

surface specific. In terms of pre-treatment, the DBD plasma did not appear to have had any effect 

on the catalyst, under the conditions used. In contrast, the microwave and microwave plasma pre-

treatments produced an extended catalytic life through the destruction of BAS, both internally 

and externally. Additionally, the microwave pre-treatment caused the catalyst to sinter. Under the 

conditions used, the microwave and microwave plasma treatments extended the catalytic life and 

decreased the concentration of acid sites, thereby shifting the reaction in favour of toluene 

disproportionation over cracking. However, whilst the heavily reduced coking rate extended 

catalytic life, it also meant there was no individual xylene selectivity. Finally, there potentially 

exists a matrix between the input power, concentration of oxygen, and pressure when using 

microwave plasma to regenerate a coked catalyst. Within the time constraints of this research, 

input power was exclusively investigated. From the preliminary studies performed varying the 

microwave input power, it was shown that there is a balance between dealuminating mordenite 

to extend the catalyst life cycle, and too much dealumination resulting in the destruction of the 

catalyst structure and its activity. 
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12.2. FUTURE WORK 

The research contained within this thesis is built upon the phenomenon of extended catalytic life 

of mordenite in the toluene disproportionation reaction observed when a sample of coked 

mordenite was subjected to microwave plasma. Through the application of DBD plasma, 

microwave plasma and microwaves as novel regeneration methods, an understanding of the cause 

for the extended catalytic life was developed. This then led onto pre-treatment studies and the 

preliminary studies of microwave plasma optimisation. However, this research is still in its 

infancy with much more to explore. This chapter lists some of the future possibilities to continue 

developing this project. 

12.2.1. Multiple Regenerations 

The successful regeneration of a sample of coked mordenite using microwave plasma or 

microwaves may have extended the catalytic life of the catalyst, but eventually the zeolite would 

need regenerating once more. The indisputable questions which arise from this are: 

• Does this extended life remain after a second microwave/microwave plasma 

regeneration? 

• Would the extended life remain if this second regeneration was a conventional thermal 

regeneration? 

• How many catalytic regeneration cycles would be possible before the catalyst structure 

was compromised, and activity was no longer restored? 

Preliminary studies were performed on multiple catalytic regeneration using microwave plasma, 

although under different deactivation conditions from those described within this thesis. The 

results (provided in the Appendix) exhibited an even longer extended life upon a second 

regeneration, when compared to the first regeneration. In further studies, conditions would be 

identical to those contained within this thesis for reproducibility, repeatability and direct 

comparison with the other regeneration processes. Characterisation would include those 
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contained within this research, i.e. ssNMR, pyridine and collidine IR, BET, TGA, XPS, XRD and 

NH3 TPD. 

12.2.2. Further Characterisation 

With additional time, characterisation would have included the following to develop an improved 

understanding: 

• ssNMR for microwave regenerated, DBD plasma regenerated and pre-treated samples 

- This would give an indication of the degree of dealumination occurring 

- From the data shown in this thesis, the expectation would be to see a higher 

degree of dealumination on the microwave regenerated sample than seen in 

the microwave plasma regenerated sample and little to no dealumination on 

the DBD plasma regenerated sample 

- More prominent dealumination would be expected for the pre-treated 

samples 

• Pyridine and collidine IR for the DBD plasma samples 

- This would complete the data set and would show whether there was any 

change in acid site concentration.  

- From the data shown in this thesis, the expectation would be no change in 

acid site concentration 

• Raman for microwave and DBD plasma regenerated samples 

- This would give a clearer impression of whether the coke deposited post 

microwave or DBD plasma regenerated changes 

- Is there a third peak as seen in the microwave plasma regenerated sample? 

• A more reliable and in-depth solvent extraction 

- This would aid in building an understanding about whether the coke 

deposited on the microwave and plasma treated catalysts is different than on 

the virgin catalyst, e.g. is the coke less deactivating or spectator coke? 
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• XPS on pre-treated samples and DBD plasma regenerated sample 

- This would complete the data set for the regenerated samples, where the 

results would be expected to show very little difference for the DBD plasma 

regenerated sample 

- For the pre-treated samples, the results would most likely support the ssNMR 

studies which would be carried out (suggested above, showing the loss of 

aluminium from the structure) 

- Combined with the ssNMR, this could potentially be used in support of the 

IR results already displayed in this thesis  

• NH3 TPD on DBD plasma samples 

- This would complete the data set 

- Based on previous data, this would be expected to show little to no change 

in the acid site strength or concentration 

• Determination of TGA coke effluent via MS 

- This would be a confirmatory test to demonstrate the combustion of coke into 

carbon dioxide and water 

12.2.3. Oxygen Concentration Studies 

As mentioned previously, it is thought that a matrix involving oxygen concentration, pressure and 

power input exists when investigating microwave plasma regeneration. Optimisation studies 

would be performed to determine the efficiency and any additional effects of regenerating a 

sample of coked mordenite under increasing concentrations of oxygen. Theoretically this may 

lead to a faster regeneration process as there would be a higher concentration of oxygen radicals 

in the plasma. 

12.2.4. Pressure Studies 

Similar to the oxygen concentration studies, optimisation of pressure may affect the regeneration 

process of microwave plasma. Preliminary studies were performed ranging from 5 mbar – 50 

mbar (included in the Appendix), which found pressure did not appear to have an effect on the 
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regeneration process. Characterisation on these catalyst samples, e.g. BET, XRD and pyridine 

and collidine IR, could be run to confirm this. 

12.2.5. Dielectric Barrier Discharge Studies 

Under the conditions used, the DBD plasma did not appear to have an effect on the catalyst. It 

also proved under these conditions, unsuccessful at removing all the coke from the mordenite 

sample. Further studies could be performed using a more energetic DBD plasma to endeavour to 

replicate the successful regeneration of the microwave and microwave plasma processes. If this 

was possible, DBD plasma may offer a more viable method of selective dealumination as it can 

be tuned more accurately than the microwave plasma. 

12.2.6. Varying Coke Amounts 

The extent of dealumination in the microwave plasma treated catalysts has been assumed, in this 

research, to arise from the coke species preferentially interacting with the plasma active species 

over the zeolite. The coke was suggested to protect the zeolite, leading to surface specific 

dealumination in the microwave plasma regenerated sample. To support or disprove this theory, 

experiments could be carried out by controlling the amount of coke deposited on the virgin zeolite, 

followed by microwave plasma regeneration. If true, an inverse correlation between the amount 

of coke and the degree of dealumination would be seen. 

12.2.7. Different Zeolite 

This study was exclusively performed on mordenite. However, the zeolite modification, by 

microwaves and microwave plasma, seen in this study might be extended to other zeolites. For 

example, ZSM-5 is a medium-pore zeolite which is also used in toluene disproportionation. It 

would be a natural extension to this research to repeat it using this zeolite. 

12.2.8. Template Removal 

Following optimisation of the microwave plasma, and repeating the experiment with a different 

zeolite, it might be possible to explore the viability of using the microwave plasma as a means of 
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selectively removing a template from a catalyst. If this could be performed by microwave plasma, 

with the conditions optimised to avoid damage to the catalyst structure, it may be a desirable 

alternative to conventional methods. 
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1 Introduction & Executive Summary 
 
1.1 Summary 

❼ Brønsted acid quantity was highest for Virgin, then Conventional, then Plasma 

samples. 

❼ Framework aluminium quantity was highest for Virgin, then Conventional, 

then Plasma samples. 

❼ A large amount of γ-alumina was seen. 

 
❼ SAR was lowest for Virgin, then Conventional, then Plasma samples. 

 
 

1.2 Aims & Background 

We are looking at the modifications on coked H-mordenite caused by an exposure 

to an argon/oxygen plasma. By using the oxygen containing plasma to regenerate 

the catalyst, we have seen the activity (toluene disproportionation) of the catalyst 

is not only restored, but has increased. One possibility is that the plasma may 

have caused dealumination to occur. The virgin mordenite sample was provided 

by JM. The conventionally regenerated sample has been deactivated via toluene 

disproportionation (TDP) and regenerated in a furnace under air. This process was 

performed twice. The plasma regenerated sample has been deactivated via TDP 

and regenerated in an oxygen-containing plasma. This process was performed twice. 

The samples covered by this requisition are given in table 1. The unique ID 

refers to the data location on the spectrometer as a folder name and experiment 

number. The date each experiment finished is also shown. 
 

 

2 Results & Discussion 
 

2.1 1H MAS NMR 

The processed spectra are given in figure 1. The Plasma sample appeared to have a 

lower than expected intensity for some reason (spectra are normalised by mass and 

number of scans), but scaling all spectra to the SiOH peak allows a comparison to 
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Table 1. Datasets and samples covered by this requisition. 
 

Unique ID Sample Acquired On 

W/1H/20180778/7 440-SP1 Mordenite virgin 2018-04-13 

W/1H/20180778/8 440-SP2 Mordenite conventional regeneration 2018-04-13 

W/1H/20180778/9 440-SP3 Mordenite plasma regeneration 2018-04-13 

W/27Al/20180778/1 440-SP1 Mordenite virgin 2018-04-12 

  W/27Al/20180778/2 440-SP2 Mordenite conventional regeneration 2018-04-12  

W/27Al/20180778/3 440-SP3 Mordenite plasma regeneration 2018-04-12 

W/29Si/20180778/2 440-SP1 Mordenite virgin 2018-04-14 

W/29Si/20180778/4 440-SP2 Mordenite conventional regeneration 2018-04-15 

W/29Si/20180778/6 440-SP3 Mordenite plasma regeneration 2018-04-16 

 

be made. Both Conventional and Plasma samples contained slightly more AlOH 

sites than the Virgin sample. The Virgin zeolite gave the most Brønsted acid sites, 

followed by Conventional and then Plasma. There did not appear to be a significant 

shift in Brønsted acid strength, but pyridine FTIR or ammonia TPD experiments 

would be more sensitive to that characteristic. 

Saturation-recovery data fitted to stretched exponentials are given in figure 2. 

Whilst the Virgin and Plasma had similar rates the Conventional zeolite relaxed 

faster, which could indicate greater local disorder. 

 
2.2 27Al MAS NMR 

The processed spectra are given in figure 3. The framework and extra-framework 

zeolite peaks sit on top of a broad background of AlO4 and AlO6 environments, 

probably from γ-alumina. Nevertheless, the Conventional and Plasma samples 

showed less framework aluminium compared to the Virgin zeolite, which is consis- 

tent with dealumination. Interestingly, less EFAl was seen for the Plasma zeolite 

compared to the other samples. 

 

2.3 29Si MAS NMR 

The processed spectra are given in figure 4. Although the mordenite framework 

has four T-sites, they are appear close enough to each other that the spectra 

can be deconvoluted into three environments; Si(OSi)4 (−114 ppm), Si(OSi)3OAl 
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Figure 1. Normalised 1H solid-state MAS NMR spectra. Dashed line is the “Plasma” 

scaled to the SiOH peak height of the other samples. 
 

 

Figure 2. Saturation-recovery data fitted to stretched exponentials. 
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SiOH 
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Figure 3. Normalised 27Al solid-state MAS NMR spectra. Dashed ellipses highlight 

areas where zeolite signal appear. 

 
(−108 ppm) and Si(OSi)2(OAl)2 (−100 ppm). The spectra were deconvoluted 

using DMFit, to three Gaussian lineshapes. Silica to alumina ratios (SAR) were 

found using equation 1. As Si(OAl)n and Si(OH)n sites may overlap, SAR values 

found using this method may be underestimated. An increase in SAR was observed, 

with Plasma having the highest, then Conventional, then Virgin. Again, this is 

consistent with dealumination. All 29Si T1 values were similar, around 1.7 s. 
 

 

 

3 Experimental  Method 

SSNMR spectra were acquired at a static magnetic field strength of 9.4 T (ν0(1H) = 

400 MHz) on a Bruker Avance III console using TopSpin 3.1 software. For 1H, the 

 
Conventional 
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Figure 4. Normalised 29Si solid-state MAS NMR spectra. 

 

probe was tuned to 400.16 MHz and referenced to d16 adamantane at 1.73 ppm. 

For 27Al, the probe was tuned to 104.27 MHz and referenced to YAG at 0.0 ppm. 

For 29Si, the probe was tuned to 79.49 MHz and referenced to kaolinite at −91.2 ppm. 

Powdered samples were packed into zirconia MAS rotors with Kel-F caps, with be- 

fore and after weighings providing the sample mass. The rotors were spun using 

room-temperature purified compressed air. Sample advised hazards were assessed. 

The total experiment time to acquire these spectra was 67 hours. 

To enable reproducibility and quantification, the experimental parameters for 

each dataset are given in table 2. An explanation of the variables is available on 

myJM. 
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Table 2. Experimental parameters for solid-state MAS NMR experiments performed 

on a Bruker Avance III spectrometer. 
 

 
Unique ID 

 
Sample 

MASR 

in Hz 

D1 

in s 

 
Scans 

Mass 

in mg 

W/1H/20180778/7 Virgin (vacuum dried) 14 000 37.9 64 61.5 

W/1H/20180778/8 Conventional (vacuum dried) 14 000 14.2 64 68.0 

W/1H/20180778/9 Plasma (vacuum dried) 14 000 47.6 64 68.5 

W/27Al/20180778/1 Virgin (hydrated) 14 000 0.1 8192 81.5 

W/27Al/20180778/2 Conventional (hydrated) 14 000 0.1 8192 85.3 

W/27Al/20180778/3 Plasma (hydrated) 14 000 0.1 8192 78.9 

W/29Si/20180778/2 Virgin (dried 110 ◦C) 4000 18.3 4136 154.1 

W/29Si/20180778/4 Conventional (dried 110 ◦C) 4000 12.3 6168 157.8 

W/29Si/20180778/6 Plasma (dried 110 ◦C) 4000 14.6 5356 159.3 
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I.B. Microwave Plasma Regeneration Using Varying Amounts of Input 

Power 

 

Table 1. 27Al quantification at 14.1 T. Total integral from 80 ppm to −15 ppm and 

AlO6 integral from 15 ppm to −15 ppm. 
 

 

Total Relative AlO6 Intensity 

  Sample Intensity (±3%) (±3%)  

Virgin 100% 52% 

150C 91% 52% 

250C 87% 54% 

300C 96% 56% 

350C 91% 57% 

450C 91% 57% 
 

 

Virgin 
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δ(27Al) / ppm 

Figure 1. Normalised 27Al solid-state MAS NMR spectra. 

 

The processed spectra are given in Fig. 1 and extra-framework aluminium “quan- 

titation” is given in Tab. 1. Although steps were taken to avoid errors in quanti- 

tation (short pulse length, soft pulse power, long relaxation time, fast spinning), 

the sites still overlap. Furthermore, the intensity of the spinning sidebands from 

the 4-coordinated aluminium have been neglected. Hence, the “quantitation” is 

merely an integration of two areas of the spectra, which is thought to be physically 

meaningful. 
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Overview 
 
External and internal surfaces of three samples were studied, a general comparative 

study was carried out. 

Samples submitted for XPS analysis 
 

Req ID Customer label Description Notes 

1 RT/GB/18/SP/439-SP1 Virgin (V)  

2 RT/GB/18/SP/439-SP2 Conventional Regeneration (C)  

3 RT/GB/18/SP/439-SP3 Plasma Regeneration (P) Dark and Light Int parts 

 
 

 

Analysis Requested 
 

Al : Si ratios and oxidation states, general surface quantification. 
 
 

Sample Preparation and Area of Interest 
 

The samples were placed onto carbon tape and thereby attached to a sample stub. 

Care was taken to avoid signals from the tape contributing to the study. Sample 

advised hazards were assessed prior to analysis. 

 
Data Analysis 

 

Energy scales were corrected to the aluminum 2p signals (74.5 eV). 
 
 

Data Collection and Further Information 
 

The data were collected using the standard method (see MyJM XPS Report page). 

For further information about the technique please see the MyJM XPS page. 

https://myjm.sharepoint.com/teams/JMTCAnalytical/SurfaceAnalysis/SitePages/Report%20Information.aspx?csf=1
https://myjm.sharepoint.com/teams/JMTCAnalytical/SurfaceAnalysis/SitePages/Home.aspx
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Results and Observations 
 

Quantification Tables 

 
Table 1. Surface At%’s. 0.0* in the table represents At%’s < 0.05%. 

 

 Element 1V Ext 1V Int 2C Ext 2C Int 3P Ext 3P Int 
D 

3P Int 
L 

Comment
s 

Oxygen 60.5 60.2 59.2 59.5 60.4 59.4 58.7 Various 

Aluminiu
m 

25.5 27.8 24.9 27.2 22.7 28.0 27.2 Al-O 

Silicon 7.9 6.4 8.5 7.1 11.6 6.1 7.3 Si-O 

Carbon 3.5 3.5 4.4 3.9 3.7 3.8 4.1 C-C and C-
O Fluorine 2.0 1.9 2.5 2.1 1.4 2.5 2.3 Inorganic 

Nitrogen 0.2 0.2 0.3 0.3 0.2 0.2 0.2 Ammonium 

Sodium 0.2 0.0 0.1 0.0 0.1 0.0 0.0  

Chlorine 0.1 0.1 0.1 0.1 0.1 0.1 0.1  

Al : Si 3.2 4.3 2.9 3.8 2.0 4.6 3.7  

Al : C 7.3 8.0 5.6 6.9 6.2 7.5 6.7  
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Interpretation of Surface Chemistry 
 

For all the samples, Al : Si ratios for the externals surface of the samples are lower 

compared to the internal surfaces (Table 1). There is sodium present on the surface 

of all the external surfaces for the samples but not for the internal surfaces. For 

the external surface of the plasma regeneration sample, Al : Si ratio is significantly 

lower indicating a higher silicon content compared to the other samples. 

Aluminium 2p signals are used for binding energy scale correction (all the max- 

ima shifted to 74.5 eV), they are due to aluminium-oxygen interactions (Figure 

1). 

Silicon 2p signals appear at around 103.0 eV and they are due to silicon-oxygen 

interactions (Figure 2). For the external surface of the plasma sample (3 ext), 

silicon signal’s shifted to the lower binding energy side by 0.3 eV which could 

indicate a more negative charge around the silicon atoms compared to the other 

samples. 

Oxygen signals are mainly due to aluminium-oxygen interactions with a contri- 

bution from silicon-oxygen and carbon-oxygen interaction (Figure 3). Carbon 1s 

signals are similar for all the samples indicating carbon-carbon (main) and carbon- 

oxygen interactions. 

For general quantification of the elements present on the surface, please see 

Table 1. 
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Figure 1. Aluminum 2p spectra from the samples. Intensities are normalised. 

Binding energy scales are corrected. 
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Figure 2. Silicon 2p spectra from the samples. Intensities are normalised. Binding 

energy scales are corrected. 
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Figure 3. Oxygen 1s and carbon 1s spectra from the samples. Intensities are 

normalised. Binding energy scales are corrected. 
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III. ADDITIONAL RESULTS 

III.A. ACTIVITY PROFILES OF MULTIPLE REGENERATIONS 

Multiple regeneration describes the repeated deactivation of virgin mordenite samples by toluene 

disproportionation and their regeneration using either thermal or microwave plasma methods (as 

described in Section 4.1.2.). The activity profile given was produced from coked mordenite 

samples which had been regenerated a total of two times and were subjected to a third toluene 

disproportionation. This experiment was carried out under the same conditions as contained 

within the main body of the thesis, except the toluene reservoir was not kept under ice bath 

conditions, but instead was heated with a water bath to a constant temperature of 35°C.  

 

 

 

 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

50 100 150 200 250 300

T
o

lu
en

e 
C

o
n
v
er

si
o

n
 /

 %

Time / Minutes

Virgin

Thermally Regenerated

Microwave Plasma Regenerated (1st Regen)

Microwave Plasma Regenerated (2nd Regen)



 

 
XVIII 

 

III.B. ACTIVITY PROFILES OF VARYING PRESSURE 

Microwave plasma regeneration under the conditions set out within Section 4.1.2. were carried 

out, varying the pressure between 5 mbar and 50 mbar. The activity profile given displays the 

results of a second toluene disproportionation after regeneration. 
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