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RESEARCH ARTICLE Open Access

A comparison of a ketogenic diet with a
LowGI/nutrigenetic diet over 6 months for
weight loss and 18-month follow-up
Maria Vranceanu1, Craig Pickering2, Lorena Filip3, Ioana Ecaterina Pralea1, Senthil Sundaram5, Aseel Al-Saleh6,
Daniela-Saveta Popa1 and Keith A. Grimaldi4,7*

Abstract

Background: Obesity and its related metabolic disturbances represent a huge health burden on society. Many
different weight loss interventions have been trialled with mixed efficacy, as demonstrated by the large number of
individuals who regain weight upon completion of such interventions. There is evidence that the provision of
genetic information may enhance long-term weight loss, either by increasing dietary adherence or through
underlying biological mechanisms.

Methods: The investigators followed 114 overweight and obese subjects from a weight loss clinic in a 2-stage
process. 1) A 24-week dietary intervention. The subjects self-selected whether to follow a standardized ketogenic
diet (n = 53), or a personalised low-glycemic index (GI) nutrigenetic diet utilising information from 28 single
nucleotide polymorphisms (n = 61). 2) After the 24-week diet period, the subjects were monitored for an additional
18 months using standard guidelines for the Keto group vs standard guidelines modified by nutrigenetic advice for
the low-Glycaemic Index nutrigenetic diet (lowGI/NG) group.

Results: After 24 weeks, the keto group lost more weight: − 26.2 ± 3.1 kg vs − 23.5 ± 6.4 kg (p = 0.0061). However, at
18-month follow up, the subjects in the low-GI nutrigenetic diet had lost significantly more weight (− 27.5 ± 8.9 kg)
than those in the ketogenic diet who had regained some weight (− 19.4 ± 5.0 kg) (p < 0.0001). Additionally, after the
24-week diet and 18-month follow up the low-GI nutrigenetic diet group had significantly greater (p < 0.0001)
improvements in total cholesterol (ketogenic − 35.4 ± 32.2 mg/dl; low-GI nutrigenetic − 52.5 ± 24.3 mg/dl), HDL
cholesterol (ketogenic + 4.7 ± 4.5 mg/dl; low-GI nutrigenetic + 11.9 ± 4.1 mg/dl), and fasting glucose (ketogenic −
13.7 ± 8.4 mg/dl; low-GI nutrigenetic − 24.7 ± 7.4 mg/dl).

Conclusions: These findings demonstrate that the ketogenic group experienced enhanced weight loss during the
24-week dietary intervention. However, at 18-month follow up, the personalised nutrition group (lowGI/NG) lost
significantly more weight and experienced significantly greater improvements in measures of cholesterol and blood
glucose. This suggests that personalising nutrition has the potential to enhance long-term weight loss and changes
in cardiometabolic parameters.
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Background
Obesity is characterised by excessive fat accumulation,
and it is well established that the percentage of the
population that is either obese or overweight is rising
over time [1]. Obesity is also associated with several
health issues, including the development of metabolic
syndrome, hypertension, cardiovascular disease, arthritis,
and various cancers [2]. The causes of obesity are not
simply the consumption of a greater amount of energy
than is utilised; instead, obesity is a complex disorder,
with many biological, psychological, and sociological fac-
tors combining in its development [3].
A considerable number of health interventions have

been trialled to reduce obesity [2]. In terms of dietary in-
terventions, the efficacy of these trials is mixed, with a
sizeable proportion of dieters regaining more weight than
they initially lose [4]. Emerging research suggests that the
ability to place obese subjects on a personalised nutrition
regime using genetic information may increase both ad-
herence to that diet and subsequent post-diet nutrition,
enhancing health outcomes [5–8]. This has been demon-
strated in recent years in studies on gene-diet interactions
and the emergence of nutrigenetics, a goal of which is to
add a level of personalization to standard nutrition by
adjusting it according to genetic variation. Prior studies
suggest that specific genetic variants may increase suscep-
tibility to certain disease states, but that this increased risk
can be reduced or completely mitigated with dietary
modification [9–12]. As an example, variation in MTHFR
C677T genotype leads to alterations in plasma folate sta-
tus [13], which can increase the risk of hyperhomocystei-
nemia, potentially increasing the risk of cardiovascular
disease [14]. However, in those with the risk (TT) geno-
type, intakes of greater than the recommended daily al-
lowance (RDA) of folate are associated with a lowering of
homocysteine to reference values [9]. This indicates that a
“one-size fits all” approach to nutrition is perhaps insuffi-
cient, and that individualised nutrient guidelines may im-
prove population health.
Whilst obesity itself increases all-cause mortality [15],

it is also associated with other issues that may negatively
affect health, including elevated total cholesterol (TC)
[16], lower high-density lipoprotein cholesterol (HDL)
[17] and raised fasting blood glucose (FBG) [18]. Man-
agement of these markers is important in optimising in-
dividual health and reducing mortality risk.
A key observation, made by many, is the unsurprising

conclusion that hypocaloric dietary adherence, regardless

of the diet macronutrient composition, is the most critical
aspect of weight loss success [19–21]. Furthermore, on-
going adherence to healthy nutrition after the initial cal-
oric restriction phase is equally critical to achieving long-
term weight loss. A weight management study by Arkadia-
nos et al. [5] utilised a nutrigenetic test which was not spe-
cifically targeted at weight loss. Participants were allocated
into either a nutrigenetic or control group, similar in calo-
ries and macronutrient composition. Within the nutrige-
netic group, diet was modified by the addition of certain
micronutrients based on the genetic results, and small
changes in macronutrients (e.g. a reduction in refined
carbohydrate from a maximum of 10% calories to max 8%
calories; reduction of glycaemic load (GL) (from a max-
imum of 100 to 70). Adherence was determined by clinic
visits and questionnaires. Weight loss during the 24-week
diet was similar in both groups, but during follow-up over
a 1-year period, the nutrigenetic group maintained weight
loss while the non-genetic group regained weight [5].
The aim of the present study was to observe weight

loss 2-stage process:

1. A 24-week dietary intervention comparing two di-
ets: The well-known, and generally the most effect-
ive in the short-term ketogenic diet [22] vs. A
lowGI/Nutrigenetic diet.

2. A second phase, lasting 18 months, utilising
standard guidelines for the ketogenic group vs
standard guidelines modified by nutrigenetic advice
for the lowGI/NG group.

The study protocol was similar to Arkadianos et al. [5]
and used a nutrigenetic test which had been further de-
veloped in the European Union (EU) funded consortium
project EUROGENE [23]. The addition of nutrigenetic
advice was not designed nor proposed to patients as a
weight loss diet, nor to predict either disease risk or
obesity risk; the aim was to optimize the nutrient con-
tent of an individual’s daily food intake, based on current
understanding of an individual’s genetic profile. Whilst
an individual is achieving weight loss, food consumption
is generally reduced and some nutrients in the diet may
not be in adequate supply; nutrigenetics may be a tool to
help achieve optimum nutrient content on an individual
basis. Furthermore, the use of nutrigenetics in designing
personalized diet and lifestyle programs has the potential
to increase motivation and compliance with long-term
lifestyle changes.
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The primary objective was measurement of weight loss
in the two groups after the 24-week diet and at 18-
months of follow up. Secondary objectives were blood
measurement of key risk factors, comprised of glucose,
total cholesterol, and HDL cholesterol.

Methods
One hundred fourteen subjects (1 overweight; 113
obese) subjects (M = 55, F = 59, age 24-56y, all of Roma-
nian heritage and similar socio-economic status), who
were patients at a weight management clinic (Bucharest,
Romania), gave written informed consent for their
weight loss data to be prospectively analysed for this
study. All patient data were handled according to the
Romanian Code of Medical Deontology and in accord-
ance with the Helsinki Agreement. Approval was given
by the Ethics Committee of the University and Phar-
macy, Cluj Napoca, Romania (registration number 444).

Upon enrolment at the weight management clinic, the
subjects self-selected either a ketogenic diet or a low-GI
nutrigenetic diet. A ketogenic diet was utilised as the
comparison diet due to its reported efficacy in the treat-
ment of obesity [24]. Fifty-three subjects (25 female; age
43.0 ± 7.2y) selected the ketogenic diet plan, and 61 sub-
jects (34 female; age 42.0 ± 6.7y) selected the low-GI
nutrigenetic diet plan. Subjects in the low-GI nutrige-
netic diet group underwent DNA testing (NutriGENE by
Eurogenetica Ltd./DNAfit, UK) for 28 Single Nucleotide
Polymorphisms (SNPs) in 22 genes with good evidence
of gene-diet/lifestyle interactions (Table 1). Overall par-
ticipation in both diet groups cost a similar amount,
comprised of approximately €300 for the genetic test
along with 1-month diet plan, initial evaluation, body
composition, and medical history for the nutrigenetic
group, and €280 for the ketogenic group, providing
Ketostix and the same evaluations. Further visits through

Table 1 Gene and polymorphisms tested in the low-GI nutrigenetic patient group

Gene Polymorphism Reference Allele Freq Heterozygote Alt MAF

ACE [25, 26] Ins/Del (rs4646994) 25% 54% 21% 48%

ADRB2 [27, 28] Arg16Gly (rs1042713) 43% 39% 18% 38%

ADRB2 [27, 28] Gln27Glu (rs1042714) 44% 44% 11% 34%

APOC3 [29] C3175G (rs5128) 69% 25% 7% 19%

APOA2 [30, 31] -265 T > C (rs5082) 28% 44% 28% 50%

CAT [32] C-262 T (rs1001179) 56% 41% 3% 24%

CYP1A2 [10, 33] -163A > C (rs762551) 43% 41% 16% 37%

EPHX1 [34, 35] Tyr113His (rs1051740) 51% 38% 11% 30%

FABP2 [36] Ala54Thr (rs1799883) 54% 43% 3% 25%

FTO [30, 37] A/T (rs9939609) 21% 52% 26% 48%

GPX1 [38] Pro198Leu (rs1050450) 57% 43% 0% 21%

GSTT1 [39, 40] Ins/Del 61% 39%

GSTM1 [39, 40] Ins/Del 28% 72%

HLA-DQ [41] rs2395182_DQA1201 93% 7% 0% 3%

rs7775228_DQB1202 72% 28% 0% 14%

rs2187668_DQ25 74% 26% 0% 13%

rs4639334_DQ7 72% 20% 8% 18%

rs4713586_DQ4 100% 0% 0% 0%

rs7454108_DQ8 89% 11% 0% 6%

IL6 [42, 43] G-174C (rs1800795) 49% 41% 10% 30%

LCT [44] −13,910-CT (rs4988235) 53% 42% 5% 26%

LPL [45] C1595G (rs328) 74% 23% 3% 15%

MTHFR [9, 13] C677T (rs1801133) 33% 49% 18% 43%

PPARG [46, 47] Pro12Ala (rs1801282) 84% 15% 2% 9%

SOD2 [12] C-28 T (rs4880) 26% 54% 20% 47%

TCF7L2 [11, 48] C/T (rs7903146) 52% 43% 5% 26%

TNF [49, 50] G-308A (rs1800629) 62% 36% 2% 20%

VDR [51, 52] C > T (taq1) (rs1544410) 39% 38% 23% 42%
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the 24-week program the overall cost per patient was ap-
proximately €800. After 24 weeks diet follow up visits
had no further cost, After the diet period, the subjects
were monitored for an additional 18 months.
At the study onset, patients were not type 1 or type 2

diabetics, although many were hyperglycemic, a com-
mon issue in obese subjects. Any patients with records
of any other disease were excluded prior to commencing
the dietary intervention. The patients, apart from obes-
ity, were otherwise “healthy”. According to the Clinical
Guidelines on the Identification, Evaluation, and Treat-
ment of Overweight and Obesity in Adults [53], an
obese person is considered healthy if they present with
fewer than three of these conditions:

� a waist measurement over 40 in. in men or over 35
in. in women

� triglyceride levels in the blood of > 200 mg per
deciliter (mg/dl)

� levels of high-density lipoprotein below 35 mg/dl
� fasting blood glucose > 120 mg/dl
� blood pressure ≥ 14/90 mmHg

Diet overview
Both diets were followed for 24 weeks and contained
approximately1600kcal per day. Both groups were pro-
vided with a meal plan and nutritional advice by the lead
study author, a qualified nutritionist, a position requiring
at least a Masters degree. After the 24-week study
period, the subjects were monitored for an additional 18
months. Here, the ketogenic group followed population
based nutrition and exercise guidelines, whilst the low-
GI nutrigenetic group followed population based guide-
lines, slightly modified based on the genetic results of
each patient. Other than the modifications to the stand-
ard diet and exercise program, the patients in both
groups were treated in an identical manner.

Ketogenic diet
The ketogenic diet group were instructed to consume
≤35 g of carbohydrates per day, and ≤ 10% of total calo-
ries were from saturated fats. Daily protein intake was
set at 1.2 g/kg bodyweight for females, and 1.5 g/kg
bodyweight for males. A sample day’s menu is available
in the supplementary materials (S1).

Low-GI Nutrigenetic diet
The low-GI nutrigenetic diet group had individualised
dietary instructions based on their genetic results; exam-
ples of the advice given are found in Table 2. The gene
variants were selected based on previous evidence of
gene-diet interactions, in which a nutrition or exercise
intervention was demonstrated to modify the effect of
the variation, and which fulfilled the criteria described in

[54]. The genetic results of each individual were then
analysed for sensitivity to carbohydrates (utilising SNPs
in ACE, PPARG, TCF7L2, ADRB2 and FABP2) and satu-
rated fats (ADRB2, ADRB3, APOA2, FABP2, FTO,

Table 2 Examples of personalized recommendations given to
the patients in Low-GI Nutrigenetic group in addition to base
diet

Personalized modifications to the standard guidelines based on
DNA profile

Variation in ACE, PPARG,
ADRB2 (Gln27Glu), TCF7L2,
FABP2

Lower glycemic load (GL) diet,
extra fiber, reduction of added
sugars [3, 11, 25, 48]

Variation in LPL, FTO, APOA2,
APOC3, ADRB2 (Arg16Gly),
ADRB3, PPARG, TCF7L2

Restriction of saturated fats to no
more than 16 g/day with
concurrent increase in unsaturated
fat consumption, such as olive
oil [28]

Variation in GSTM1 and
GSTT1

Ensure consumption of an
adequate intake of cruciferous
vegetables - 200 g five times per
week [39]

Variation in GPX1 Consume foods rich in selenium
such as Brazil nuts, fresh fish, meat,
wheat germs, brown rice, oats, and
onion. In case of low plasma
selenium, supplementation of 200
mcg/day was recommended [38]

Variation in TNF and IL6 Increased consumption of omega-3
rich foods. Green tea, turmeric,
ginger, rosemary, oregano were
also recommended, along with
supplementary omega 3 (1-2 g/
day) [49]

Variation in MTHFR Increase consumption of folate-rich
foods (dark leafy greens, asparagus,
bean, peas, lentils, avocado, okra).
Supplementation with 400mcg
folate, 3 mg vitamin B6, 5 mg
vitamin B12, 2.5 mg vitamin B2,
12 mg zinc, and 250mg of
TMG/betaine [9]

Variation in CYP1A2
and EPHX1

Increase consumption of
antioxidants, such as grapes,
blueberries, sweet potatoes and
orange vegetables. Decrease in
caffeine consumption. Decrease
consumption of grilled meat and
fish to 1–2 servings per week.
[10, 35]

Variation in SOD2
and CAT

Increase antioxidant consumption
through diet [12].

Variation in LCT Reduction of lactose, use
lactose-free dairy. [44]

Variation in VDR Keep caffeine below 2 cups coffee/
day. Increase dairy component of
diet (yoghurt, cheese and low-fat
milk). If required add supplement
containing 800 IU vitamin D and
1300mg Calcium. [51, 52]

Variation in HLA-DQ Check for symptoms of gluten
intolerance – refer to medical doctor
if necessary. [41]
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PPARG). A score for both carbohydrate and saturated
fat sensitivity was determined by utilising a point system,
with the aggregate result being utilised. The base diet for
each person was similar and was modified by refined
carbohydrate content (maximum 10, 8%, or 6% total calo-
ries) and saturated fat content (maximum 10, 8%, or 6%
total calories) according to the relevant sensitivity scores.
Sample menus can be found in the supplementary files
S2-S4. All subjects were advised to focus on whole-grain
complex carbohydrates, as well as fruits and vegetables, as
their primary sources of carbohydrates. Subject diets were
also modified for some micronutrients and other macro-
nutrients where the evidence is sufficient to deviate from
the standard guidelines [54]. For example, individuals with
a deletion allele for either GSTM1 or GSTT1 were recom-
mended to increase their cruciferous vegetable intake [39],
whilst those with a C allele for CYP1A2 were recom-
mended to limit their caffeine intake to < 200mg/d [10].

Exercise
Both groups were provided with general exercise advice
and were asked to exercise for 30–45 min per day, 5 days
per week. In both groups the exercise protocol for each
person was carefully planned to avoid over-exertion in
this overweight and generally sedentary cohort. The low-
GI nutrigenetic group were given additional exercise ad-
vice, based on their results of six SNPs; ACE, ADRB2,
ADRB3, FTO, PPARG and TCF7L2. As per the diet scor-
ing, the results of each of these SNPs was combined, to
give subjects guidance as to the volume of high, medium
or low-intensity exercise recommended, total exercise
duration was matched between the groups. Sample exer-
cise plans are found in Supplementary Material file S5.
Exercise adherence was based on questions at clinic
visits.

Dietary adherence
Patients visited the clinic every 2 weeks during the first
24 weeks for body measurements, and detailed dietary
diaries were presented. Detailed diaries were maintained
throughout the 24-week period, including the weighing
of foods. All subjects received a menu plan with recipes.
In addition, in the ketogenetic group, patients were
taught how to test ketosis using Ketostix® (Ascensia Dia-
betes Care Holdings AG, Basel, Switzerland), measuring
ketone bodies in the urine, which they did daily. Ketostix
strips determine the presence of AA (acetoacetate). The
end of the strip is passed through the urine stream and
the colour then compared to the colour chart provided
with the product. The scale is negative, trace, small,
moderate, and large. Ketosis starts from “small”. In the
18-month follow-up period, patients presented at the
clinic every 6 months for further body measurements
and blood measurements, along with dietary diary

assessment and exercise assessment (via diary and step
counter). Dietary macronutrient composition was also
tested.

Subject testing
Cheek cell samples were taken in the clinic using two
buccal swabs from the respective companies. The sam-
ples were sent by courier to the laboratory (Synlab Italia
Srl, Monza, Italy). For DNA extraction swabs were
added to 550 μl of sterile, nuclease-free H2O and DNA
extracted with QIASYMPHONY DSP DNA Mini kit
eluted in 100 μl liquid. The genotype analysis was done
with MassARRAY system with iPLEX chemistry (ex-
Sequenom now called Agena) on a 384 chip. Primers
and PCR conditions were designed with Agena Assay
Design Suite (ADS) software. Through this process, gen-
etic information (Table 1) was determined.
Fasting venous blood samples were taken at baseline,

24-weeks and 104-weeks to determine total cholesterol
(TC), high density lipoprotein (HDL) cholesterol, and
fasting blood glucose (FBG). TC and HDL concentra-
tions were measured using an enzymatic colorimetric
method (CHOL-CHOD-PAP, HDL Homogenic Enzym-
atic reaction, Roche Diagnostic, Germany). FBG was de-
termined using an enzymatic kit (Glucose GOD-PAP,
Roche Diagnostic, Germany). Weight and height were
also measured, and body mass index (BMI) was calcu-
lated by dividing each subject’s weight (kg) by the square
of their height (m).

Statistical analysis
All genotype distributions were tested for deviation from
the Hardy-Weinberg equilibrium by a χ2 test with 1 df
(P > 0.05). Means, standard deviations and 95% confi-
dence intervals were calculated for test scores at base-
line, 6 weeks, 12 weeks, 24 weeks and 2 years (104
weeks). Percentage weight and BMI change for each in-
dividual participant was calculated for all post-baseline
time points. Percentage changes for each individual par-
ticipant in TC, HDL and FBG were calculated between
baseline and 2 years. Normality was determined utilising
Shapiro-Wilks. Data were analysed using ANCOVA. To
reduce the chances of a type-I error, significance was set
at p < 0.001for secondary objectives [55]. Percentage
change from baseline was calculated by subtracting base-
line data from the measurement at a given time point,
dividing by the baseline measurement, and multiplying
by 100. Data were analysed using Microsoft Excel 15.29
(Microsoft Corporation, Redmond, WA, USA) and IBM
SPSS Statistics 23 (IMB Corporation, Armonk, NY,
USA). All data are reported as mean (95% CI) unless
otherwise specified.
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Results
Genotype frequencies
SNP minor allele and genotype frequencies were calcu-
lated from all subjects who completed the study and for
which DNA data were available (n = 61). Genotype dis-
tributions did not deviate from Hardy-Weinberg expec-
tations. Minor allele frequencies in our subjects were in
close agreement with those listed for populations of
European ancestry on dbSNP [56].

Baseline phenotype
Table 3 illustrates the baseline characteristics of all sub-
jects. There were no significant differences at baseline
between the groups in terms of age, sex, body weight, or
BMI. Except for one subject in the low-GI nutrigenetic
group who was classified as overweight (BMI 25.1–30
kg/m2) all subjects were classified as obese (BMI > 30
kg/m2) according to BMI. There were no significant dif-
ferences between the groups regarding mean total chol-
esterol or mean HDL at baseline. There were significant
differences in terms of mean fasting blood glucose at
baseline, with the low-GI nutrigenetic group having sig-
nificantly lower (p < 0.0001) values.

Diet & nutrition adherence
All participants completed the 24-week study and 18-month
follow up. In the first 4 weeks, all patients in the ketogenic
group maintained ketosis. In the following weeks, 13 pa-
tients went out of a ketosis state; following dietary data ana-
lysis, it was determined that that 8 patients exceeded the
amount of carbohydrates required to maintain ketosis, and
5 patients consumed higher protein than prescribed, which
triggered gluconeogenesis. After re-adjusting the diet, these
patients regained their ketosis state. Within the first year of
follow up, 17 patients in the ketogenic group reported hav-
ing deviated at least 3 times a month from the nutrition
plan, consuming foods other than those prescribed. In the
second year of follow-up, 24 patients were found to have di-
verged frequently from the nutrition plan due to special
family events, social events, holidays, prolonged weekends
and in some cases lack of motivation.

In the low-GI nutrigenetic group, during the 24-week
diet phase, all patients successfully followed their indi-
vidual diet plan. In follow up, 10 patients reported small
deviations from the nutrigenetic nutrition plan, with
these deviations relating to weddings, holidays, or anni-
versary events. The patients in the low-GI nutrigenetic
group demonstrated greater adherence and consistency.

Change in body mass and weight loss
Body mass changed in both diet groups, with similar
weight loss at 6 and 12 weeks while at 24 weeks the keto-
genic group had lost more weight compared to the low-
GI nutrigenetic group. The ketogenic diet was associated
with a 17.2% loss in body mass at 18-month follow up,
which represented a significant (p < 0.0001) reduction.
The low-GI nutrigenetic group was associated with a
significant (p < 0.0001) reduction in body mass, with a
mean reduction on 25.3%. When examining for differ-
ences between the groups, clear differences emerge at
the two-year time point, with the low-GI nutrigenetic
group continued to lose weight (p < 0.0001) while the ke-
togenic group had regained some weight compared to
the 24-week time point (Table 4). Figure 1 details the
percentage change in weight loss within each group.

Health data
The results for metabolic health data are shown in
Table 5 and Figs. 2 and 3. Here, we see that at 18-month
follow up, the low-GI nutrigenetic group was associated
with a significantly greater (p < 0.0001) decrease in both
total cholesterol and fasting blood glucose when com-
pared to the ketogenic diet group (Table 5). Similarly,
the low-GI nutrigenetic group was associated with a
positive HDL change (i.e. increase) to a significantly (p <
0.0001) greater extent than the ketogenic diet group
(Table 5). There were significant differences in terms of
mean fasting blood glucose at baseline, with the low-GI
nutrigenetic group being associated with significantly
lower values. However, there was considerable overlap at
baseline between the two groups. This overlap became
more marked at the 24-week point, with less difference

Table 3 Baseline Characteristics of Subjects. All data are reported as mean (95% CI) unless otherwise specified

Parameter Ketogenic Diet Low-GI Nutrigenetic Diet p-value

Participants (n) 53 61

Age (years) (±SD) 43.0 ± 7.2 42.0 ± 6.7 0.424

Female (%) 47.2% 55.7% 0.361

Baseline body weight (kg) 113.0 (109.4–116.6) 108.5 (104.4–112.6) 0.106

BMI (kg/m2) 37.2 (36.4–38.1) 37.0 (35.9–38.2) 0.789

Total Cholesterol (mg/dl) 245.6 (234.8–256.5) 242.0 (235.0–249.0) 0.56

HDL Cholesterol (mg/dl) 45.1 (43.4–46.8) 47.6 (46.4–48.8) 0.16

Fasting blood glucose (mg/dl) 120.5 (119.4–121.5) 105.7 (103.5–108.0) < 0.0001

Data were analysed using ANCOVA, with significance set at p < 0.05 for primary observations and p < 0.001 for secondary observations
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in the mean values. The two groups diverged again at
the two-year follow up point (Fig. 2). Figure 3 shows the
individual participant metabolic health data. Finally, the
low-GI nutrigenetic group was associated with a signifi-
cantly (p < 0.0001) greater reduction in fasting glucose
compared to the ketogenic diet group at the 18-month
follow up point (Table 5).

Discussion
The main findings of this study are (1) after 6 months
diet the ketogenic group lost more weight compared to
the LowGI/nutrigenetic group (26.2 kg vs 23.5 kg; p =
0.0061) (2). After 18-month follow-up the ketogenic

group had regained some of the weight lost but the
LowGI/nutrigenetics group continued to lose weight,
at a slower rate (19.4 kg vs 27.5 kg; p < 0.0001). The
LowGI/nutrigenetic group, after 18-month follow-up,
also reported better results for total cholesterol, HDL
and glucose. Also, though a few individuals of the
LowGI/nutrigenetic group had regained some weight
at 18-month follow-up (Fig. 1) all 61 were below the
pre-diabetes blood glucose level of 100 mg/dl while
only 16 of 53 of the keto group were below that level
(Fig. 2).
These results mirror previous those of previous stud-

ies, such as those by Arkadianos et al. [5]. In the current

Table 4 Body mass (kg) changes between diet groups

Time
Point

Ketogenic group (n = 53) Low-GI Nutrigenetic group (n = 61) Significance

Weight as % of baseline Δ kg vs baseline (95% CI) Weight as % of baseline Δ kg vs baseline (95% CI)

Baseline 100% 100%

6 weeks 93.7 − 7.2 (− 7.5 to − 6.9) 93.3 −7.2 (−7.7 to −6.7) 1

12 weeks 87.9 −13.7 (−14.1 to − 13.3) 85.8 −15.5 (−16.5 to − 14.4) 0.0029

24 weeks 76.8 −26.2 (− 27.1 to −25.4) 78.4 −23.5 (− 25.1 to − 21.9) 0.0061

2 years 82.8 −19.4 (− 20.8 to − 18.0) 74.7 −27.5 (− 30.8 to − 24.3) < 0.0001

Data were analysed using ANCOVA, with significance set at p < 0.05 for primary observations

Fig. 1 Percentage weight lost compared to baseline for each group (mean, 95% CI). At 104 weeks (2 years), the low-GI nutrigenetic group lost
significantly more weight
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study, these differences became more apparent over
time; during the 18-month post-diet timeframe, particu-
larly regarding changes in body weight. Indeed, up to
the 24-week time point, there were significant differ-
ences between the diet groups in terms of body weight
change and biomarker improvement in favour of the ke-
togenic group.
Long term maintenance of weight loss requires per-

manent lifestyle changes in exercise and eating habits.
These changes need to be significant but not necessarily
radical or unachievable if planned over several years of
gradual but sustainable weight loss. Nutrigenetic modifi-
cations, as part of personalized nutrition (PN) add a
small part to the overall diet, with an obvious question
being whether it improves adherence to healthy nutri-
tion. Nutrigenetics includes advice dependent on genetic
results and following the straight-forward gene-diet ad-
vice the aim is that the overall eating pattern will im-
prove. Nutrigenetic PN does not create complex
personalized diets, merely slight differences between diet
types.
One possibility for this enhanced long-term weight

loss, combined with improvements in markers of meta-
bolic health, is that healthy eating compliance is greater
when nutrigenetics is used to modify the standard nutri-
tion guidelines at the end of the dieting phase. The diet-
ary adherence data in this study agrees with this
possibility, as does previous research in personalized nu-
trition. Nielsen and El-Sohemy [57] reported that partic-
ipants tend to find genetically tailored nutritional advice
useful. A subsequent study by the same authors [8] re-
ported that personalized dietary advice based on a per-
son’s genetic makeup improves eating habits compared
to current ‘one-size-fits-all’ dietary recommendations.
The authors reported that subjects who received DNA-
based dietary advice started to show improvements to
their diets after 3 months, with the changes becoming
more apparent after 12 months. A recent randomised
controlled trial of nutrigenomics-guided lifestyle

intervention reported “Weight management interven-
tions guided by nutrigenomics can motivate long-term
improvements in dietary fat intake above and beyond
gold-standard population-based interventions.” [6].
Some studies exploring the genetic risk of common

diseases have found varying results, with some reporting
that knowledge of genetic risk score has little impact on
behaviour [58]. Key differences with personalized nutri-
genetics studies, compared to genetic risk studies, in-
clude that (a) genetic information is linked only to
nutrient/lifestyles requirements and is not explicitly
linked to disease risk and (b) the information given to
individuals includes precise advice on increasing or de-
creasing specific food groups. Thus, adherence to a diet-
ary/lifestyle intervention appears to be more successful
in nutrigenetics compared to a genetic disease risk score,
which often do not come with personalised nutrition
guidelines to mitigate any increased risk. As a result,
there is increasing evidence that one of the main benefits
with nutrition and genetics is that of behavioural change
[59].
It is important to note some potential limitations to

this current study. The mechanisms underpinning the
enhanced weight loss and health improvements in the
low-GI nutrigenetic group are unclear; it may be poten-
tially due to dietary adherence, or specific biological
mechanisms, which were not tested. It is also possible
that the effects were placebo or expectancy mediated in
nature. Additionally, the lead study author was not
blinded to the results of each individual’s genotype re-
sults, which may have affected the study outcome.
Another limitation is that in this study the associations

observed with the low GI/nutrigenetic diet were only in
comparison to a ketogenic diet, it would have been ideal
to have other groups including lowGI only, without
nutrigenetics – but that wasn’t feasible with the re-
sources available and we had showed previously that a
lowGI/nutrigenetics diet gave better long-term results to
lowGI only [5].

Table 5 Differences in cardiometabolic parameters between both groups at different time points. All data are reported as mean
(95% CI)

Total Cholesterol (mg/dl) HDL Cholesterol (mg/dl) Fasting blood glucose (mg/dl)

Ketogenic Low-GI
Nutrigenetic

P Ketogenic Low-GI
Nutrigenetic

P Ketogenic Low-GI
Nutrigenetic

P

Baseline 245.6 (234.8–
256.5)

242.0 (235.0–
249.0)

0.56 45.1 (43.4–
46.8)

47.6 (46.4–
48.8)

0.16 120.5 (119.4–
121.5)

105.7 (103.5–
108.0)

< 0.0001

24 weeks 185.8 (181.4–
190.2)

210.3 (205.5–
215.0)

< 0.0001 54.1 (52.8–
55.4)

55.2 (54.3–
56.0)

0.182 98.2 (96.7–
99.5)

87.0 (85.6–88.3) < 0.0001

2 years 210.2 (204.7–
215.7)

189.4 (187.7–
191.1)

< 0.0001 49.8 (48.8–
50.9)

59.5 (59.1–
60.0)

< 0.0001 106.8 (104.4–
109.1)

81.1 (80.2–81.8) < 0.0001

Mean % Change
at 2 years from
baseline

− 13.0% (− 16.0
to − 10.0%)

−20.9% (− 22.8
to − 19.0%)

< 0.0001 11.6% (8.7–
14.5%)

26.1% (23.3–
29.1%)

< 0.0001 −11.3% (− 13.2
to − 9.4%)

−22.9% (− 24.3
to − 21.7%)

< 0.0001

Data were analysed using ANCOVA, with significance set at p < 0.05 for primary observations and p < 0.001 for secondary observations
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The choice of a ketogenic diet as the control diet has the
potential to alter the results; a ketogenic diet can be difficult
to adhere to for certain individuals [60]. A ketogenic diet
may also disturb basal metabolic processes leading to ad-
verse reactions when returning to standard nutrition. Add-
itionally, fasting blood glucose was significantly lower at
baseline in the low-GI nutrigenetic group when compared
to the ketogenic diet. The low-GI nutrigenetic group low-
ered their fasting blood glucose to a greater extent in this
study, and the baseline differences may have contributed to
this variation between groups. It is not clear why these
baseline differences were present, but they overlapped.
An additional limitation is that the population used

in this study were almost exclusively obese; it is not
clear whether such a lifestyle modification would be
effective in non-obese, but overweight, individuals –

although other studies demonstrated an improved
healthy-eating index in such people [61]. However,
despite these issues, the study addressed an important
unmet need to generate real world data; a common
issue with clinical trials is that participant behaviour
may be altered simply by being part of a study [62]. It
has been increasingly recognized that such data in real
world settings is needed to improve health outcomes [63].
Thus, we believe that the present study does accurately
represent the real-world, in which high-risk individuals
were given a dietary intervention in order to improve
health. Study subjects were European Caucasians; ethni-
city is a known potential modifier of gene-diet interac-
tions, so it’s not clear whether the findings of this study
would hold true for other populations, although the ma-
jority of the variants utilised here are functional—i.e. they

Fig. 2 Individual fasting glucose (mg/dl) between diet groups

Vranceanu et al. BMC Nutrition            (2020) 6:53 Page 9 of 12



directly affect the protein—and so their effect should be
the similar regardless of ethnicity. Further research in this
area should examine the use of a low-GI nutrigenetic per-
sonalized nutrition to reduce the risk of developing obes-
ity or metabolic syndromes in healthy, non-obese subjects,
as well as replicating the results of this study in popula-
tions of non-European ethnicity. Finally, this study utilised
a low-GI, nutrigenetic diet, and compared the outcomes
of this diet to a ketogenic diet. As the ketogenic diet group
did not undergo genetic testing, and have their nutritional
intervention tailored to their genetic results, a next study
should look at the addition of nutrigenetic advice after the
24-week ketogenic diet, to see if the benefits of the keto-
genic diet are maintained in the long term, especially as
after the 24-week diet and benefits were mostly greater in
the ketogenic group.

Conclusions
The results of this study suggest that a 24-week, keto-
genic diet was superior to a low-GI nutrigenetic diet

at improving weight loss and health markers com-
pared to baseline upon completion of the dietary
intervention, but at 18-month follow up the low-GI
nutrigenetic group fared better. These findings sug-
gest that despite the better results in the ketogenic
group following a 24-week dietary intervention, over
longer periods the low-GI nutrigenetic diet may be
useful in the treatment of both obesity and altered
blood markers of metabolic health, and that these
benefits appear to be maintained following the com-
pletion of a dietary intervention, an effective aid in
long term lifestyle changes leading to sustained
weight loss and health improvements.
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