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Abstract

Close proximity operations around small bodies are extremely challenging due to their uncertain dynamical environment.
Autonomous guidance and navigation around small bodies require fast and accurate modeling of the gravitational field for potential
on-board computation. In this paper, we investigate a model-based, data-driven approach to compute and predict the gravitational accel-
eration around irregular small bodies. More specifically, we employ Extreme Learning Machine (ELM) theories to design, train and val-
idate Single-Layer Feedforward Networks (SLFN) capable of learning the relationship between the spacecraft position and the
gravitational acceleration. ELM-base neural networks are trained without iterative tuning therefore dramatically reducing the training
time. Analysis of performance in constant density models for asteroid 25143 Itokawa and comet 67/P Churyumov-Gerasimenko show
that ELM-based SLFN are able learn the desired functional relationship both globally and in selected localized areas near the surface.
The latter results in a robust neural algorithm for on-board, real-time calculation of the gravity field needed for guidance and control in
close-proximity operations near the asteroid surface.
� 2020 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Extreme learning machine; Gravity modeling; Asteroid
1. Introduction

Over the past few years, there has been a strong interest
in sending robotic spacecrafts to small bodies in the solar
system, including comets (e.g. Rosetta Mission) and Near
Earth Asteroids (NEAs, e. g. Hayabusa Mission). The
interest in exploring small bodies stems from the fact that
https://doi.org/10.1016/j.asr.2020.06.021
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they have been minimally processed since the birth of the
solar system. Indeed, detailed remote mapping and in-situ
sampling of such objects may provide scientists with
opportunities to unveil the early history of the solar system
(Ciesla and Charnley, 2006). Aside from the extremely
valuable contribution that NEA missions would provide
to the global understanding of the origin of the Solar Sys-
tem, such robotic missions would help characterize and
quantify the amount of extraterrestrial natural resources
(Kargel, 1994), as well as help quantifying the risk that
ling irregular small bodies gravity field via extreme learning machines
10.1016/j.asr.2020.06.021

https://doi.org/10.1016/j.asr.2020.06.021
mailto:robertof@email.arizona.edu
https://doi.org/10.1016/j.asr.2020.06.021
https://doi.org/10.1016/j.asr.2020.06.021


R. Furfaro et al. Advances in Space Research xxx (xxxx) xxx
such objects may collide with planet Earth (Strange et al.,
2013). The NASA OSIRIS REx Asteroid Sample Return
Mission has arrived in proximity of the asteroid Bennu in
August 2018 and shortly after the spacecraft approach, ini-
tiated the mapping operations that will culminate with the
collection of a surface sample to be returned on Earth by
2023. Meanwhile, the Japanese space agency JAXA has
been operating Hayabusa 2 around asteroid Ryugu with
similar intents. Furthermore, NASA is planning for addi-
tional missions to small bodies such as Lucy, who will be
launched in 2021 to execute a tour of six Jupiter’s Trojans
(Levison et al., 2017), and Psyche, an orbiter mission that
will explore the origin of planetary cores by studying the
metallic asteroid, 16 Psyche (Oh et al., 2016).

Any of the currently operating and upcoming asteroid
or comet missions requires planning a set of robust close-
proximity operations around small bodies. Such operations
tend to be extremely challenging and complicated by a
number of factors including irregular shape and mass dis-
tribution, weak and uncertain gravitational field, accelera-
tions due to outgassing of comets, as well as perturbing
accelerations due to solar radiation which in many cases
tend to be of the same order of magnitude of the gravita-
tional acceleration. Due to such factors, the orbital dynam-
ics around small bodies significantly deviates from the ideal
Keplerian motion and tends to be highly irregular. In
strongly perturbed dynamical systems, the orbital motion
tends to be very unstable and many orbits either escape
or crash on the small body surface. Each small body exhi-
bits a certain number of orbits that can be considered to be
stable over a long period of time (Berry et al., 2013). Like-
wise, planning and executing close-proximity operations
such as hovering, landing and Touch-And-Go (TAG)
(Brillouin, 1933) require an accurate characterization of
the dynamical environment including accurate knowledge
and representation of the gravitational field. Indeed, pre-
cise design of descending trajectories requires accurate
knowledge of the gravitational acceleration. Autonomous,
closed-loop operations may need an efficient and fast rep-
resentation of the gravity field near the surface for on-
board calculations of the guiding acceleration command
and/or timing the impulse.

The classical approach to modeling the gravitational
field has been via the spherical harmonics expansion
method. The multi-pole expansion has been largely
employed to represent the gravitational potential field
because of the high accuracy ensured with relatively low
computational cost. Indeed, once the gravitational coeffi-
cients are measured (e.g. via a radio science orbital cam-
paign during the operational phase), the gravitational
acceleration can be easily computed by taking the spatial
derivatives of the potential harmonics with the desired
degree of precision. However, the mathematical conver-
gence of the series is guaranteed only for points outside
the so-called Brillouin Sphere, i.e. a sphere centered at
the expansion center and circumscribing the outermost
2

mass element of the small body (Russell and Arora,
2012a). Inside the sphere, the series of harmonics is known
to diverge. Whereas the divergence does not constitute a
problem for near-spherical small bodies, it causes major
issues for bodies exhibiting irregular shape and mass distri-
bution. As a result, the exterior potential is not capable of
modeling the gravitational field inside the Brillouin Sphere.
Alternatives to the exterior gravity model potential exist,
e.g. the mass concentration (mascon) model (Werner and
Scheeres, 1996a) and the polyhedral model (Takahashi
et al., 2013a). Whereas the first model tends to be inaccu-
rate, the polyhedral gravity field can accurately describe
the gravity field as function of the density (homogeneous
or heterogeneous). However, the polyhedron model is very
computationally expensive and generally not suitable for
ground-based Monte Carlo simulations or for on-board
propagation of the spacecraft dynamics. Recently, the so-
called interior gravity field expansion has been investigated
both from a theoretical (Takahashi et al., 2013a) and com-
putational (Huang et al., 2006b) point of view. The
method, which is a variant of the exterior gravity harmonic
expansion, is computationally inexpensive but tends to be
less general and restricted to TAG scenarios because con-
vergence is guaranteed up to one point at the surface and
total mapping has not been studied.

Recently, there has been interest in exploring new meth-
ods in modeling the gravitational field using a data-driven
approach. For example, Yang et al. (Yang et al., 2020)
developed a computationally fast method to calculate the
gravitational acceleration of small irregular bodies using
Chebyshev polynomials. The proposed approach relies on
an analytical approximation of the polyhedron gravity
via polynomial interpolation. Similarly, Gao and Liao
(Gao and Liao, 2019) propose a Gaussian Process Regres-
sion approach to gravity acceleration modeling. The over-
all idea is to directly approximate the map between
position around the asteroid and the corresponding gravi-
tational acceleration using a learning paradigm rooted in
statistical machine learning.

In this paper, we propose a new methodology for mod-
eling the gravity field of an irregular small body for a fast,
accurate, and efficient calculation of the gravitational
acceleration as function of the relative position around
the small body of interest. The methodology is based on
a recently developed machine learning approach called
Extreme Learning Machines (ELMs) (Huang et al.,
2006a) which employ a Single Layer Feedforward Network
(SLFN) to model the non-linear relationship between
inputs and outputs. In this case, the goal is to train, both
in batch and sequential fashion, a SLFN to represent the
relationship between spacecraft position around the small
body of interest and the value of the gravitational acceler-
ation (i.e. g rð Þ). We rely on a series of physical models (e.g.
polyhedral models) to accurately represent the spatial vari-
ation of gravity field around the small body and sample the

spacecraft position to generate the training set ri; g rið ÞNi¼1
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that specifies the desired functional relationship. Subse-
quently, we employ the ELM theories to efficiently train
the network to learn the desired relationship g rð Þ. Once
trained and validated, the ELM-based SLFN is capable
of processing a new input position (i.e. locations that have
never been seen by the network) and rapidly compute the
corresponding gravitational acceleration. The method is
particularly suited for situations that require fast and accu-
rate calculations of the gravity field as function of the posi-
tion (e.g. on-board propagation of spacecraft trajectories
during operations near the surface of a highly irregular
body (Simplı́cio et al., 2018; Furfaro et al., 2013; Pinson
and Lu, 2018; Yang et al., 2019).

This paper is organized as follows. First, the classical
methods for computing the gravity field around small bod-
ies (i.e. asteroids and comets) are briefly reviewed. Then,
the model-based, data-driven ELM approach is described
both theoretically and operationally. The Bayesian opti-
mization approach is discussed as fundamental methodol-
ogy employed to tune the ELM hyper parameters.
Subsequently, the proposed approach is evaluated in mod-
eling the gravity field of the asteroid 25143 Itokawa and the
comet 67P/Churyumov-Gerasimenko. High-fidelity poly-
hedron models are employed to generate the desired train-
ing set and to evaluate the performance of the proposed
ELM modeling approach for both local and global gravity
field determination. The ELM-based gravity acceleration is
also employed to compute the closed-loop, energy-optimal
acceleration command that may occur during real-time
guided landing scenarios. The paper ends with conclusions
and a look at future efforts beyond this study.

2. Review of methods for modeling the gravity field in small

bodies

2.1. Spherical harmonics expansion

The most common and best documented approach con-
cerns the representation of the gravity potential as derived
by an expansion of orthogonal spherical harmonics, here-
inafter denoted as SH, for brevity’s sake. One common
notation for the exterior gravitational potential is:

U r;/; hð Þ ¼ GM
r

X1
n¼0

RH

r

� �nXn
m¼0

Pnm

� sin/ anm cos mhð Þ þ bnmsin mhð Þ½ � ð1Þ
where RH is the reference radius, Pnm is the associated
Legendre function of degree n and order m, and anm bnm
are the spherical harmonics coefficients; the spherical coor-
dinates r;/; hð Þ are radius, latitude and longitude respec-
tively. One major advantage of such an approach lies in
the possibility of adjusting the complexity of the represen-
tation depending on the required accuracy by truncating
the series, thus reducing the computational cost of the algo-
rithm. In fact, in most applications, a suitably accurate
gravitational model can be achieved by retaining only few
3

relevant terms of the expansion. As analyzed by Werner
and Scheeres (1996b), the main flaw of the SH approach
is its unstable convergence behaviour inside the Brillouin
sphere, which can be identified as the sphere circumscribing
the body. Evaluating the gravity potential of an arbitrary
object through SH inside craters, valleys and tori, may pro-
duce grossly incorrect results, making this approach unre-
liable for dynamical environment modeling when
performing Touch-and-Go (TAG) or landing on irregular
bodies. Takahashi and Sheeres (Takahashi et al., 2013b)
recently presented a method to extend the convergence
region within the Brillouin sphere by relying on interior
spherical harmonics expansion. Although the series conver-
gence issue is brilliantly tackled, the degree of complexity
introduced does not make this method appealing for prac-
tical implementations of on-board guidance algorithms.
It’s worth mentioning that another deficiency of the SH
approach is the lack of a cheap and systematic check con-
dition to discriminate between points inside and outside the
volume of the body.

2.2. Mass concentrations

Mass Concentrations (MASCONS) offer an alternative
to model the gravity field of an object. The use of localized
finite concentrated masses, distributed in grids over a vol-
ume to realize the entire mass of the body, has been around
since the first satellite geodesy applications in the early
1970s (Weightman, 1967; Russell and Arora, 2012b). Orig-
inal formulations involved combination of global SH solu-
tions and accurate local MASCONS descriptions. Indeed,
it’s common practice to use refined mass elements to
describe accurately local gravitational effects along a refer-
ence path, while the mass elements distribution is coarser
anywhere else.

The MASCONS approach converges to the actual grav-
itational potential of the mass distribution considered, but
it is in general less accurate than SH, given the same com-
putational effort. Because of its natural structure, MAS-
CONS is well suited for parallel computation
implementations. But despite the simplicity and the attrac-
tive convergence properties, an accurate estimate of the
gravity force is generally affected by large errors, and
requires a very high number of mass elements, as docu-
mented in Werner and Scheeres (1996b). Analogously to
the SH approach, MASCONS does not provide informa-
tion on the a point field being inside or outside the body.

2.3. Polyhedron model

In 1996 R.A. Werner et al. presented a method to use
polyhedral models in order to determine in closed form
the gravitational field of an arbitrary object (see Fig. 1).
A polyhedral model consists of a number of triangular
plates that approximate the shape of the celestial body,
as accurately as possible, depending on the number of
facets considered.



Fig. 1. Low resolution polyhedron model of 25143 Itokawa. Low resolution model of asteroid 25143 Itokawa from Gaskell et al., 2008, with 49152
triangular plates.
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As discussed in reference Werner and Scheeres (1996b),
using the divergence theorem and green’s identities, the
gravity potential and the attraction can be expressed as a
summation of integrals over the number of facets of the
target. In the particular case of a polyhedron, the exact
analytical solution does not involve numerical integral
but can be expressed as a pure summation, including loga-
rithms and inverse tangents as most complex operations:

$U rð Þ ¼ rG �
X

e2edges
EereLe þ

X
f2faces

Ff rfxf

 !
ð2Þ
Expressions of matrices Ee;Ff and scalars Le and xf are
formulated in Werner and Scheeres (1996b). This suggests
that, although very simple, such a strategy suffers from
high computational demands when very accurate shape
models, with a number of facets in the order of millions,
are considered. The analytical expression (2) is the exact
solution of a uniform polyhedron with given density, and
the better the actual shape is resembled by the facets, the
better Eq. (2) approximates the actual field and it is as close
as the actual field as the accurate is the shape approxima-
tion. Unlike SH approach, the polyhedron method can
be used well within the exterior Brilluoin sphere up to the
very surface of the target, without incurring undesired large
misestimations. In fact, the exact gravity potential solution
holds also in proximity of those morphologically peculiar
regions such as ridges, valleys and even tori. Contrary to
SH and MASCONS, the polyhedron model also provides
an effective and cheap way to distinguish points that are
inside or outside the target body. In fact, as discussed in
reference Werner and Scheeres (1996b), the discriminant
between points inside, on the surface and outside the poly-
hedron is the value of the Laplacian of the gravity potential

r2U , which is a function of only the same quantities
4

required to compute the local gravity field in the same
position:

r2U rð Þ ¼ �rG
X

f2faces
xf ð3Þ

The tricky and elegant derivation of the closed form
expression of the polyhedron gravity potential, attraction,
and Laplacian is discussed in detail in reference Werner
and Scheeres (1996b).

3. Machine learning methodology

In this section, we describe the proposed methodology
and approach to model the functional relationship between
spacecraft position and gravitational acceleration of small
bodies. Importantly, the ELM theories are employed to
train a SLFN that quickly and accurately computes the
gravitational acceleration exibithed by a specified asteroid
or comet. Importantly, the bayesian optimization frame-
work is employed to optimize the network hyperparame-
ters (e.g. number of neurons, regularization parameter) to
maximize the network performance.

3.1. Extreme learning machines

In the last decades, ELM have been proposed as an
innovative method to overcome many of the challenges
presented by the conventional machine learning algorithms
(Support Vector Machines, Neural Nets, Huang, 2015). It
has been shown that ELM can achieve better generaliza-
tion capabilities and learning scalability without the
requirement of human intervention and with much less
computational effort, with learning times reduced by factor
of thousands if compared with traditional learning algo-
rithms (Huang et al., 2012). ELM were originally devel-
oped for SLFNs, and then extended to ‘‘generalized”
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SLFNs, which may not be neuron-alike (Duan et al., 2016).
The idea that learning can be achieved without iteratively
tuning highly-specialized neurons of a network (which is
recently confirmed by evidences in the field of biological
neural systems) is the base onto which modern ELM theo-
ries have been built (Fusi et al., 2016). It has been proven
by Huang et al. (2012) that if a SLFN with tunable hidden
nodes’ parameters can learn a regression of a target func-
tion f xð Þ, then, if the hidden nodes’ activation functions
hi x;wi; bið Þ; i ¼ 1 . . . L are non-linear piecewise continuous,
training of the network does not require tuning of those
parameters. Examples of commonly used activation func-
tions are reported in Table 1. This means that input
weights wi and biases bi of hidden nodes can be assigned
randomly, and a SLFN will still maintain the property of
universal approximator, as long as the output weights bi

are calculated properly. This proposition, which is the car-
dinal principle of ELM, has been formalized by Huang
et al. (2012):

Theorem 1. Given any non-constant piecewise continuous

function h : R# R, if Span h x;w; bð Þ : w; bð Þ 2 Rd � R
� �

is

dense in L2, for any continuous target function f and any
function sequence hi xð Þ ¼ h x;wi; bið Þf g; i ¼ 1; . . . ; L ran-

domly generated based on any continuous sampling distribu-
xk,1

xk,2

xk,3

xk,m in

w1, b1

w2, b2

wL, bL

x1,1 x2,1 xN,1

...

x1,2 x2,2 xN,2

x1,3 x2,3 xN,3

x1,m in x2,m in xN,m in

... ...

...

...

...

...

m in

N

...

...

Fig. 2. N observations xi; yif g are available to the learner include input data (
ELM is adjusted (green in center) to match the data. The output of the learner
references to colour in this figure legend, the reader is referred to the web ver

Table 1
Overview of activation functions.

Activation Functions

Name Expression Output range

Step
h xð Þ ¼ 0 x < 0

1 x P 0

�
x ¼ 0 _ x ¼ 1

Sigmoid h xð Þ ¼ 1
1þe�x x 2 0; 1ð Þ

Hyperbolic tangent h xð Þ ¼ ex�e�x

exþe�x x 2 �1; 1ð Þ
Arctangent h xð Þ ¼ arctan xð Þ x 2 � p

2 ;
p
2

� �
ReLu

h xð Þ ¼ 0 x < 0
x x P 0

�
x 2 0; 1½ Þ

Gaussian Function h xð Þ ¼ e�x2 x 2 0; 1ð �

5

tion, limL!inf f � f Lk k ¼ 0 holds with probability 1 if the

output weights bi are determined by ordinary least square to

minimize f xð Þ � f L xð Þk k
Expanding to the case of N training set inputs xj

� �
with

j ¼ 1 . . .N , one can write the N output equations of the
SLFN as:

yj ¼
XL
i¼1

bihi xj;wi; bi
� �

for j ¼ 1 . . .N ð4Þ

with bi 2 Rmout�1 and wi 2 Rmin�1, where min is the dimen-
sion of the input and mout is the size of the output. A train-
ing process in which all the data in the training set are
presented at the same time to the learner is called batch

learning. In Fig. 2 is depicted the SLFN presented with a
batch of N examples, and the connections between input,
hidden and output layer.

Let’s define the hidden layer matrix of the network asH ,
whose i-th column is the output of the i-th hidden node

with respect to the set of inputs X ¼ x1; . . . ; xN½ � 2 Rmin�N :

H ¼
h x1;w1; b1ð Þ . . . h x1;wL; bLð Þ

..

. . .
. ..

.

h xN ;w1; b1ð Þ . . . h xN ;wL; bLð Þ

2
664

3
775; H 2 RN�L

ð5Þ
It is possible to write in compact matrix formulation the
outputs of the SLFN when the set X is processed through
the hidden layer, by gathering yi; i ¼ 1; . . . ; N as the col-

umns of Y 2 Rmout�N

f L Xð Þ ¼ Y ¼ Hb with b ¼
bT
1

..

.

bT
L

2
664

3
775; b 2 RL�mout ð6Þ

The training algorithm of ELM is aimed at the minimiza-
tion of the cost functional E representing the training error
of the SLFN.
yk,1

yk,m out

y1,1

y1,m out

y2,1

y2,,m out

y3,1

yN,m out

... ... ...

...

...

N

m out

β1

βL

β2

...

xi on the left) and output data (yi on the right) and the parameters of the
is, for each of the inputs, expressed by Eq. (4). (For interpretation of the

sion of this article.)
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E ¼ Hb� Tk k2; with T ¼
tT1

..

.

tTN

2
664

3
775; T 2 RN�mout ð7Þ

where T is the collection of the supervisor responses.
According to Theorem 1, and for the most common case
in which the number of nodes in the SLFN is lower than
the number of data to fit, the trained network is a universal
approximator if b are assigned according to the Least
Square Error (LSE) of the overdetermined linear system:

Hb ¼ T ð8Þ
The necessary and sufficient condition to have the solution

b with minimum L2 norm among all least squares solutions
is to evaluate b using the Moore-Penrose generalized
inverse of the hidden layer matrix H (Serre, 2000; Casella
et al., 2007). Accordingly, the ELM training algorithm
for SLFN can be written as:

b ¼ HyT Hy ¼ HTH
� ��1

HT ð9Þ
As suggested by the works of Bartlett (Bartlett, 1997,

1998), the choice of b as the set of smallest output weights
satisfying the least squares condition ensures good general-
ization performance of the network when the number of
hidden nodes is high. As it can be observed by considering
Eq. (9), the ELM training algorithm does not require iter-
ative tuning of any parameter, but it just consists of the
expensive evaluation of the pseudo inverse of H , usually
obtained via Singular Value Decomposition (SVD) with a

huge computational complexity O NL2
� �

. However, as dis-

cussed in Huang et al. (2012), ELM approach allows reduc-
tion of the effort required for the training of a SLFN as
compared with iterative, gradient-based algorithms with
the same accuracy performances, while, at the same time,
the capability of prediction on real world data is increased
by choosing the smallest output weights b. This training
paradigm is focused on the efficiency in performing well
on the training data, but it can lead to overfitting, i.e. poor
generalization capabilities of the regressor: even if a perfect
training with zero error can be accomplished, discrepancies
on the ‘‘never seen” test set could be unacceptably high.
The ELM training algorithm (Eq. (9)) is then said to be a
realization of the Empirical Risk Minimization (ERM)

(Vapnik, 1992) induction principle, meaning that the train-
ing is aimed only at the minimization of a risk functional,
in this case the squared norm of the errors, depending only
on the known input-response data.

3.2. Regularized extreme learning machines

As opposed to ERM, Structural Risk Minimization

(SRM) theory is based on the simultaneous minimization
of a risk functional considering two terms: a term directly
related to the empirical risk, and a further term concerning
the complexity of the learning machine (Vapnik, 1992). It’s
6

proven in Bartlett (1997) that ELM generalization capabil-
ities can be enhanced if a further term controlling the mag-
nitude of the output weights b, called regularization term, is
combined to the empirical risk functional. Huang et al.,
2012, provided a detailed demonstration of regularization
techniques applied to ELM, and showed the efficiency of
the above mentioned approach.

The regularized ELM training algorithm is then aimed
at the minimization of the following risk functional:

E ¼
XN
i¼1

nik k2 þ K bk k2 ð10Þ

or, equivalently and in compact form:

E
� ¼ 1

2
C Hb� Tk k2 þ 1

2
bk k2 ð11Þ

with C ¼ 1
K and subject to the training residuals equality

constraints:

ni;j ¼ h xið Þbj � ti;j i ¼ 1; . . . ;N j ¼ 1; . . . ;mout ð12Þ
where ni;j is the j-th component of the residual error on the
i-th training sample. The quantity h xið Þ represents the hid-
den layer output corresponding to the input xi; bj is the

output weights vector linking the hidden layer to the j-th
output node, and ti;j is the j-th component of the i-th sam-
ple output. The regularization factor K is a positive number
expressing the importance of the minimization of the
empirical risk with respect to the magnitude of the output
weights b.

Minimization of E
�
in Eq. (11) is equivalent to solving

the optimization problem with lagrangian:

LE� b; n; kð Þ ¼ C
1

2

XN
i¼1

nik k2 þ 1

2
bk k2

�
XN
i¼1

Xmout

j¼1

ki;j h xið Þbj � ti;j þ ni;j
� � ð13Þ

The quantity ki;j is the Lagrange multiplier associated with
the j-th component of the i-th training sample. The opti-
mality conditions are:

@LE

@bj
¼ 0 ! bj ¼

XN
i¼1

ki;jh xið ÞT ! b ¼ HTk ð14Þ

@LE

@ni
¼ 0 ! ki ¼ Cni i ¼ 1; . . . ;N ð15Þ

@LE

@ki
¼ 0 ! h xið Þb� tTi þ nTi ¼ 0 i ¼ 1; . . . ;N ð16Þ

with ki ¼ ki;1; . . . ; ki;mout½ �T and k ¼ k1; . . . ; kN½ �T . Based on
the number of nodes in the hidden layer and the size of
the training sets, different efficient solutions are found to
the above mentioned problem:

� The number of training samples is not huge: N � LSub-
stituting Eqs. (14) and (15) in (16):



R. Furfaro et al. Advances in Space Research xxx (xxxx) xxx
I

C
þHHT

� �
k ¼ T ð17Þ

Multiplying by HT and considering Eq. (14), the train-
ing algorithm of the regularized ELM can be written as:

b ¼ HT I

C
þHHT

� ��1

T ð18Þ

� The number of training samples is huge: N � LFrom
Eqs. (14) and (15):

b ¼ CHTn ! n ¼ 1

C
HT
� �y

b ð19Þ

and substituting in Eq. (16) and rearranging leads to the
expression of the output weights b:

b ¼ I

C
þHTH

� ��1

HTT ð20Þ

which corresponds to the solution of mout linear systems
of dimension L.
3.3. Large dataset management: online sequential ELM

When dealing with big training sets with millions of
data, ELM tends to become computationally extremely
demanding, and most of the time, it becomes practically
impossible to rely on the LSE solution (Eq. (9)) to train
a SLFN. Two main causes can be identified.

� The number of elements of the hidden layer matrix H is
N � L. The memory used by the variable can grow very
quickly, reaching orders of magnitude of � 1TB for net-

works with L � 105 nodes and N � 106 observations in
the dataset.

� The computational cost in terms of number of opera-
tions in order to solve the linear system in Eq. (20) of

dimension L is O L3
� �

. As L becomes high enough, the

amount of CPU time required grows rapidly, resulting
in extremely large training times which makes this
approach not practical.

Recently, a variant of ELM has been developed for cases,
such as time series predictions, in which not all training
observations are available to the learner simultaneously.
In such scenarios, the learning machine needs to implement
a modified algorithm in order to be able to learn from
training samples presented one-by-one or chunk-by-
chunk. Consider a SLFN with L hidden nodes trained
using regularized ELM with an initial chunk of N 0 avail-

able training samples X0 ¼ x1 . . . xN0

	 

. Eq. (20) including

the regularization term can be written as:

b0 ¼ HT
0H0 þ I

C

� ��1

HT
0T0 ¼ K�1

0 H0T0 ð21Þ
7

with

H0 ¼
h x1;w1;b1ð Þ . . . h x1;wL;bLð Þ

..

. . .
. ..

.

h xN0
;w1;b1

� �
. . . h xN0

;wL;bL
� �

2
664

3
775; H0 2RN0�L

T0 ¼
tT1

..

.

tTN0

2
664

3
775; T0 2RN0�mout b0 ¼

bT
1

..

.

bT
N0

2
664

3
775; b0 2RL�mout

ð22Þ
Now, assume that another chunk of N 1 observations
becomes available to the learner, which now has to mini-
mize the training error considering both the previous and
the current chunks of data presented, by suitably evaluat-
ing the updated set of output weights b1:

L1 ¼
H0

H1

� �
b1 �

T0

T1

� �









2

ð23Þ

The LSE solution (Eq. (9)) can be written as:

b1 ¼
H0

H1

� �T
H0

H1

� � !�1
H0

H1

� �T
T0

T1

� �
¼ K�1

1

H0

H1

� �T
T0

T1

� �

ð24Þ
with K1 satisfying the relation:

K1 ¼ HT
0H0 þHT

1H1 ¼ K0 þHT
1H1 ð25Þ

With some simple rearrangements, Eq. (25) can be
rearranged:

b1 ¼ K�1
1

H0

H1

� �T
T0

T1

� � !
¼ K�1

1 HT
0T0 þHT

1T1

� � ¼
¼ K�1

1 K0K
�1
0 HT

0T0 þHT
1T1

� � ¼ K�1
1 K0b0 þHT

1T1

� � ¼
b0 þ K�1

1 HT
1 T1 �HT

1b0

� �
ð26Þ

Since K�1
1 is used to evaluate the updated solution b1, it is

convenient to use an update formula for K�1
1 itself, by

means of Woodbury’s formula (Golub and Van Loan,
2012):

K�1
1 ¼ K�1

0 � K�1
0 HT

1 I þH1K
�1
0 HT

1

� ��1
H1K

�1
0 ð27Þ

This process can be generalized to the case of sequential
learning when the k þ 1 chunk of examples is presented
to the SLFN. The update formula for b, which requires

the update for K�1 as well, is then given by Eqs. (29) and
(28).

bkþ1 ¼ bk þ K�1
kþ1H

T
kþ1 Tkþ1 �HT

kþ1bk

� � ð28Þ
K�1

kþ1 ¼ K�1
k

� K�1
k HT

kþ1 I þHkþ1K
�1
k HT

kþ1

� ��1
Hkþ1K

�1
k ð29Þ
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The innovation term Tkþ1 �HT
kþ1bk in Eq. (28) can be seen

as the residual when the output weights associated to the
previous sequential learning are used: if this term is zero,
then the outdated output weights perfectly fit the new
chunk of observations, so bkþ1 ¼ bk. An important feature
of the recursive training is that each time a new chunk of
Nkþ1 data is presented, the update of output weights bkþ1

involves only terms evaluated at the current and previous
sequential step. This means that the SLFN can be trained
sequentially by presenting small chunks of data with
Nk 	 N , thus reducing the amount of memory required
to store big variables such as H , and at the same time
allowing for memory clearing at each step.

In fact, each time a chunk of training observations is
presented to the machine, it is discarded as soon as bkþ1

is evaluated, along with all the quantities related to the pre-

vious learning step, except for bk and K�1. It is remarked
that, comparing the algorithm for R-ELM (Eq. (9)) and
the initial learning phase of OSELM described in Eq.
(21), it can be observed that when rank H0ð Þ ¼ L, ELM
and OSELM can achieve the same learning performances.
In order to have rank H0ð Þ ¼ L, the number of initialization
data should not be less than the hidden node number
(N 0 P L). Generally, OSELM suffers some drawbacks
(Liang et al., 2006):

� In general OSELM relying on Recursive Least Square
Error (RLSE) training algorithm is less accurate than
ELM, given the same amount of hidden nodes in the
network. Best performances can be obtained if the num-
ber of observations in the initial chunk of data is equal
to the number of neurons in the SLFN.

� If regression or classification can be performed on the
same machine using the same set of training data, in
general OSELM will be more computationally expensive
than batch learning using classical R-ELM.
3.4. Performance indices

In order to assess the risk associated to predictions by
the trained learning machine, several performance indices
commonly used in the analysis of regression models have
been considered in this study:

Mean Square Error (MSE): This scalar index is used to
indicate the expected value of the square of the differ-
ence between the output of the trained SLFN and the
target response given by the supervisor:

MSE ¼ 1

N

XN
i¼1

yi � tik k2 ð30Þ

where N is the number of elements included in the set con-
sidered. Values of MSE close to zero mean that the regres-
sor model is able to fit the data efficiently.
8

Root Mean Square Error (RMSE): It is the square root
of the mean square error and represents an the standard
deviation of the residual between the prediction and the
observation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
yi � tik k2

r
¼

ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð31Þ

This quantity is an indication, on average, of how far the
prediction of the SLFN is from the real observation.

Normalized Root Mean Square Error (NRMSE): It is a
non-dimensional performance index suitable for the
comparison of efficiency on sets characterized by targets
in a wide magnitude range.

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 yi � tik k2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 ti � ltk k2

q ¼ RMSE
rt

ð32Þ

where lt is the mean value of the targets and rt is the stan-
dard deviation of the targets. NRMSE is suitable to repre-
sent and compare prediction performances for very
different targets

3.5. Bayesian optimization

This section is aimed at giving a brief overview of Baye-
sian optimization, as a tool to perform automatic tuning of
complex learning machines hyperparameters, a practice
that is often left to be handled by human experience or
brute force search. This global optimization approach is
well suited for automatic setting of the architecture of the
network in order to minimize an objective function

b ¼ b xð Þ defined on a bounded subset C 2 RD. This func-
tion usually does not have a simple closed form representa-
tion or it is too expensive to evaluate, and it is treated as an
unknown deterministic or stochastic ”black-box” which
can be sampled at any point x 2 C. The algorithm consists
of a sequential search that, at the k-th round, selects a loca-
tion at which the objective function is queried. This obser-
vation, along with the previous ones, is used to infer a
belief on the behaviour of the objective function. The pro-
cess of sampling and update is iterated until a specified
stopping criterion is met: the algorithm returns the final
recommendation of �x which minimizes b xð Þ, for x 2 C.

�x ¼ argmin
x2C

b xð Þ ð33Þ

Differently from other optimization algorithms, the Baye-
sian approach does not rely on information about local
derivatives of the objective function, but it is rather aimed
at building and refining a model of b xð Þ via Bayesian pos-
terior update based on the entire set of samples acquired
during previous sequential decision rounds. Bayesian opti-
mization relies on Gaussian processes (GP) regression to fit
the objective to the incoming observations, while the choice
of the next query point is determined by an acquisition

function evaluated on the refined model.
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A GP is a stochastic process with the property that any
finite dimensional collection of N random variables
b xið Þ; xi 2 Cf g; i ¼ 1; . . . ;N , drawn from the GP, has a

multivariate gaussian distribution, identified by a mean

l xð Þ : C ! RN and a covariance matrix K 2 RN�N , whose
components ki;j; i; j ¼ 1 . . . ;N map two elements xi; xj 2 C
into R. This property can be written as:

b x1ð Þ
..
.

b xNð Þ

2
664

3
775 � N

l x1ð Þ
..
.

l xNð Þ

2
664

3
775;

k x1; x1ð Þ 
 
 
 k x1; xNð Þ
..
. . .

. ..
.

k xN ; x1ð Þ 
 
 
 k xN ; xNð Þ

2
664

3
775

0
BB@

1
CCA

ð34Þ
The notation f � N l;Kð Þ is used to state that f has mul-
tivariate gaussian distribution. Referring to Eq. (34), it is
natural to extend the property to collections of random
variables with N ! 1: in this case b is seen as an extremely
high dimensional vector, drawn from an extremely-high
multivariate distribution. The elements of the huge vector
b represent the value of the objective variable given the infi-
nite set of inputs xi: intuitively it can be seen that b xð Þ is a
function, drawn from the GP characterized by a mean func-

tion l xð Þ : C # R and a covariance function or kernel

k x; xð Þ : C� C # R. Gaussian processes are then the gen-
eralization of Gaussian distributions: whereas distributions
describe vectorial or scalar random variables, processes
governs the properties of functions (Williams and
Rasmussen, 2006). Eq. (34) can be written in compact form
as:

b xð Þ � GP l; kð Þ ð35Þ
meaning that it is assumed that the unknown objective b is
a Gaussian Process (GP). At the beginning of the routine to
find the minimum of b xð Þ, there is no empirical information
about this function. Before gaining samples, only a priori

beliefs can be inferred in terms of mean and covariance
functions of the so-called prior process. Since any real val-
ued l xð Þ may give rise to an acceptable GP, it is assumed,
without loss of generality, that l0 xð Þ ¼ 0 over the entire
bounded domain C. On the other hand, more care should
be taken in the choice of the kernel k, which must be such
that, given any set of xi; . . . ; xNf g, the covariance matrix K
is positive definite, where K is:

K ¼
k x1; x1ð Þ 
 
 
 k x1; xNð Þ

..

. . .
. ..

.

k xN ; x1ð Þ 
 
 
 k xN ; xNð Þ

2
664

3
775 ð36Þ

The other role of the prior covariance k is to express our
belief on the correlation (i.e. the smoothness) of the
unknown objective function: in practice this means that,
as it is reasonable to assume in many applications, the ker-
nel should represent the belief that similar inputs produces
similar outputs of the objective function. Among the many
kernel functions available in the literature, Matlab built-in
Bayesian Optimization routine bayesopt uses by default
9

the kernel function automatic relevant determination
(ARD) Matèrn 5/2 (Williams and Rasmussen, 2006):

k xi; xj; h
� � ¼ r2

f 1þ
ffiffiffi
3

p
r

rl

 !
exp �

ffiffiffi
3

p
r

rl

 !
ð37Þ

parametrized on the components of the set of parameter h,
which for the Matèrn 5/2 case are rl and rf representing a
characteristic length scale and the signal standard devia-
tion, respectively. The quantity r is defined as:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj

� �T
xi � xj

� �q
Once the prior process is assumed, the first samples

xk; ykf g of the objective function are acquired: a Bayesian
update procedure is implemented to select the process con-
ditioned on the newly arrived sample by adjusting the ker-
nel parameters h. The Matlab built-in function fitrgp,
called by bayesopt is used to fit the gaussian process to
the objective function samples. Assuming that the samples
are affected by a noise with variance r2, the posterior Q, i.e.
the distribution conditioned on the evidences xk; ykf g, will
also be a GP. The mean function of the posterior is inter-
preted to be the best fit to the data, while the posterior
covariance function is representative of uncertainty on
the fit of the data.

Among the many acquisition functions that can be
found in the literature, the algorithm considered in the case
studies presented in this document employs the family of
the expected improvements aEI xð Þ. The expected improve-
ment considers the expected amount of improvement in
the objective function, ignoring values of the optimization
variables that cause an increase in the objective. Supposing
that the best function observed so far is bbest evaluated at
xbest, let’s define the utility function u xð Þ defined as:

u xð Þ ¼ max 0; bbest � b xð Þð Þ ð38Þ
A reward equal to bbest � b xð Þ is then gained only if b xð Þ is
less that bbest, otherwise it is null. The expected improve-
ment is then defined as aEI x;Qkð Þ:
aEI x;Qkð Þ¼ EQk

u xð Þjx;Dk½ � ¼ R bbest
�1 bbest�b xð Þð ÞN b xð Þ;l xð Þ;k x;xð Þð ÞÞdb

¼ bbest�l xð Þð Þ/ bbest;l;k x;xð Þð Þþk x;xð ÞN bbest;l xð Þ;k x;xð Þð ÞÞ
ð39Þ

where xbest is the location corresponding to the minimum
mean of the posterior observed so far. The next query
point, i.e. the k þ 1 observation location of the Bayesian
optimization algorithm is then selected according to:

xkþ1 ¼ argmax
x

aEI x;Qkð Þ ð40Þ

Considering Eq. (39), it can be seen that aEI is a combina-
tion of two terms: an exploitative term, guiding the choice
of the next observation where the mean prediction is low
and an explorative term which make regions with high
uncertainty attractive for the next query. This
exploration-exploitation tradeoff characterizes the family
of expected improvement acquisition functions. The pro-
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cess of sampling, prior model updating to a posterior, and
acquisition function evaluation is repeated for each sam-
pling round, until the maximum number of observations
is reached, or until the difference between consecutive rec-
ommendations x becomes smaller than a fixed threshold.

4. Results: gravity field modeling

In this section, we report the design, training, validation
and the performance obtained while applying ELM theo-
ries combined with bayesian optimization to the problem
of modeling small bodies gravity field. To this end, we con-
sider two test cases, i.e. asteroid Itokawa and comet 67P/
Churyumov-Gerasimenko, and we employ high-fidelity
polyhedron models to accurately generate training points
representative of the functional relationship between posi-
tion and corresponding gravitational acceleration gener-
ated by the small body. Importantly, for both cases, we
consider the ability of the trained SLFN to compute the
gravitational acceleration as part of a potential on-board,
energy-optimal, closed-loop guidance system for landing
on the small body surface (Hawkins et al., 2012).

4.1. ELM-based SLFN for asteroid Itokawa

In this first case, we focus on asteroid Itokawa and we
show the design, training and validation of a SLFN cap-
able of computing the gravitational acceleration for the
above mentioned small body. Importantly, we evaluate
accuracy and computational training times for both global
and localized gravity modeling. The localized version of the
forward network has been employed in a simulated guided
landing scenarios where the feedback generalized Zero-Eff
ort-Miss/Zero-Effort-Velocity (ZEM/ZEV) algorithm
(Guo et al., 2013; Hawkins et al., 2012) employs the trained
SLFN to propagate the trajectory on-board. The polyhe-
dron model has been employed to generate the training
set. More specifically, the shape models, derived by R. Gas-
kell (Gaskell et al., 2008) and used to generate the datasets
for global and local 25143 Itokawa gravity field, are based
on Hayabusa AMICA (Asteroid Multi-Band Imaging
Camera) images acquired between September 11th and
November 12th, 2005. These shape models are derived
from the Implicitly Connected Quadrilateral (ICQ) models,
and they have been adjusted to suit an easy management in

MATLAB�, by composing a matrix V 2 RNV �3 whose
rows contain the body frame coordinates of each of the
vertices. The row number in V represents the vertex ID.
Each shape model is also comprised of a connectivity

matrix F 2 RNF�3 that represents how the facets are com-
posed, by indicating on each row the ID of the three ver-
tices that, connected, identify the triangular plate. All
models are expressed in body fixed reference frame and
describe a set of triangular plates that approximate the
asteroid surface, with different resolutions available
(Gaskell et al., 2008).
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A first attempt to learn the global mapping from the
body-fixed Cartesian coordinates to the local gravitational
attraction field vector, within a spherical region surround-
ing the body, was performed using a low-resolution,
constant-density polyhedron model with 49; 152 plates. A
higher-fidelity polyhedron model employing a higher reso-
lution model with 3; 145; 728 triangular faces is also consid-
ered to accurately model the gravitational acceleration in a
localized portion of the asteroid space. For practical rea-
sons, due to the high computational effort of the Polyhe-
dron algorithmic routine using such a high number of
faces and vertices, the landing guidance study is limited
to the inside of a cylindrical region broad enough that all
the landing trajectories considered are well within it.
4.1.1. Global gravity model for 25143 Itokawa

In order to train a SLFN to learn the functional rela-
tionship between positions about 25143 Itokawa and the
corresponding gravitational acceleration, a dataset of

N ¼ 107 input-response ri; g rið ÞÞf g; i ¼ 1; . . . ; N pairs has
been assembled. The field points ri have been sampled from
a uniform distribution within a sphere containing the entire
asteroid, with radius Rsphere ¼ 670 m. The general process
of evaluating the k-th sample consist of three steps:

Step 1:The k-th field point position r is randomly sam-
pled within the mentioned sphere.
Step 2:The constant density polyhderon gravity g rð Þ is
obtained by solving Eq. (2)
Step 3:Using all the necessary quantities already calcu-
lated in the previous step, a test criterion is employed
to discard the samples if its location is inside the asteroid
surface.This is executed by evaluating the Laplacian of
the gravity potential U rð Þ:

r2U rð Þ ¼ �rG
X

f2faces
xf ð41Þ

As discussed in Werner and Scheeres (1996b) and reported
in reference Werner and Scheeres (1996b), whenever the
field point lies within the polyhedron, summation in Eq.
(41) is equal to 4p, whereas on the outside region of the
polyhedron, the Laplace’s equation holds, and

r2U rð Þ ¼ 0. Therefore, the following cases can occur:

r2U rð Þ ¼ �4prG; if r inside

0; if r outside

�
ð42Þ

The shape is initially approximated by a low resolution
polyhedron model (Gaskell et al., 2008). The density of
the body is assumed uniform and equal to be

q ¼ 1:9� 103 kg=m3 (Ostro et al., 2004). Using a single
computational node of the University of Arizona Ocelote
cluster, with 28 core processors Intel� Xeon� E5-2695,
with a speed of 2.3 GHz and 6 GB RAM each, the mean
time to get a single sample is Tmean � 3:5 s. Overall, the
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CPU time required to build the entire dataset is approxi-
matively T CPU ;dataset � 9800 h. The observations are ran-
domly partitioned into a training set and a test set,
containing respectively 90% and 10% of the whole amount
of data.

Because of the huge number of training points (i.e. 10
million), the SLFN training via regularized ELM batch
learning would be extremely expensive both in terms of
training time and in terms of required computational
resources. Consequently, we developed a strategy to make
the computational time manageable. Such strategy consists
of a sequential training approach using the OSELM algo-
rithm, for a SLFN with sigmoid hidden nodes. The whole
amount of field points in the training set is sub-sequentially
partitioned according to their position in concentric spher-
ical shells, each one containing the same number of
Nshell ¼ 500; 000 points and with the same data density
(see Fig. 3). The initial training is performed using
100; 000 samples in the inner shell, which contains points
closest to the asteroid surface. Once the initial training is
completed, the next chunk of data rendered available to
the learner is taken from the outer shell. This sequential
shells strategy continues as more samples are provided,
moving outward until the last field points in the outermost
shell are used. The network architecture has been chosen
according to the best estimated testing accuracy reachable
after the initial training set, returned by the Bayesian opti-
mization routine. This choice has been guided by the
assumption that generalization capability in the region
closest to the surface, where the functional relation g rð Þ
show the most irregular behavior (Fig. 5), has the strongest
impact on the performances over the whole spherical
region described above. The bounded variables of the opti-
mization are (see Fig. 4):

� The number of nodes in the hidden layer:

L 2 104; 5� 104
	 
 2 N

� The regularization factor: C 2 104; 5� 105
	 
 2 R

Among the many performance indices to express the
goodness of a regression performed by a learning machine,
Fig. 3. Training points selected for the global modeling of Itokawa gravitation
to implement sequential training via OSELM.
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the objective function of the Bayesian optimization has
been set to be the 10-fold cross-validation loss in terms of
Normalized Root Mean Square Error (NRMSE), defined
in Section 3.4. Since the supervisor response to an input

position r in this case is a vector g 2 R3, the definition of
NRMSE given in Eq. (32), returns three values
NRMSEtest;j, with j ¼ 1 to 3, one for the regression of each
of the components. Without favoring the minimization of
mispredictions of any of these components, the objective
function b C; Lð Þ is considered to be simply the mean of
these three values:

b C; Lð Þ ¼ NRMSEtest ¼ 1

3

X3
j¼1

NRMSEtest;j ð43Þ

The stopping criterion is fixed in terms of maximum of
function evaluations Nmax, with Nmax ¼ 30. This is shown
to be a safe value since the minimum objective function
estimation doesn’t change significantly after the tenth sam-
pling, as it is possible to observe in Fig. 4.

Once the optimizer returns its recommended �x and the
SLFN is trained with the whole dataset, the actual general-
ization capability can be checked on the test set, which is
unseen during the entire optimization process.

Fig. 4 also shows that the actual minimum test NRMSE

is found for values of C ¼ 5� 105 and L ¼ 5� 104 at the
very edge of the searching interval. This suggests that fur-
ther increasing the maximum number of nodes would lead
to better performances of the net, without the occurrence
of overfitting. However, this would result in a very complex
learning machine, whose training would be extremely
expensive both in terms of time and in terms of computa-
tional resources required, without a significant or worthy
improvement on the objective function estimated mini-
mum. Results of training and test regression performed
with the SLFN trained with OSELM are reported in Figs. 6
and 7, respectively. It can be seen that the learner is able to
predict accurately the gravitational acceleration both on
the training data and on the never-seen field points of the
test set. It can be seen that the learner is able to predict
accurately the gravitational acceleration on the training
data, with an achieved NRMSEtrain ¼ 0:0434 and

RMSEtrain ¼ 1:994� 10�7 m=s2. Good performances are
al acceleration. The rightmost panel shown the partition strategy employed



Fig. 4. 25143 Itokawa: Bayesian optimization results. Results of Bayesian optimization of the SLFN for the global gravity modeling of Itokawa. (a):
NRMSEtest mean prediction returned by the optimizer after 30 evaluations as a function of the regularized ELM hyperparameters, along with the
observations and the recommended �x ¼ C; L

	 

. (b): the observed and estimated minimum objective function as the number of observations increases.

Fig. 5. Gravity attraction field about 25143 Itokawa, (a), (b) and (c) represent the gravity acceleration components gx; gy and gz respectively, in the x-y
plane. The value of the gravity attraction is evaluated using the low resolution polyhedron model Gaskell et al., 2008.

Fig. 6. 25143 Itokawa Low resolution. Regression plots: training set, Linear regression plot of samples used to train sequentially the learning machine,
reporting the target constant density low resolution polyhedron gravity attraction of Itokawa compared with the output of the SLFN with L ¼ 5� 104 and
C ¼ 5� 105. Training samples have been presented in chunks of size Nchunk ¼ 5000.

Fig. 7. 25143 Itokawa Low resolution. Regression plots: test set, Regression plots on test field points, reporting the target gravity attraction of the
constant density low resolution polyhedron compared with the one predicted by the SLFN on Itokawa.
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also observed on the test set samples, with values of

NRMSEtest ¼ 0:0440 and RMSEtest ¼ 2:007� 10�7 m=s2, as
indicating that the SLFN is able to efficiently generalize.
4.1.2. Local gravity model for 25143 Itokawa

In this section, we employ a SLFN to accurately model a
local gravitational field in a cylindrical region near the sur-
face based on a high resolution polyhedron and show how
the SLFN can be employed in a feedback guidance algo-
rithm for a soft landing operation on 25143 Itokawa.
Expressed in principal axes frame, the landing site is chosen
as a point with coordinates r ¼ 10:0 m; �40:0 m;½
112:5 m�T on the northern side of the surface of the aster-
oid. We selected a cylindrical region as the region of inter-
est. The radius and the height of the cylinder, depicted in
Fig. 4.1.3, are rcyl ¼ 150 m and hcyl ¼ 800 m, as measured

from the x� y plane. A dataset with N ¼ 106 field points
randomly sampled, according to a uniform distribution,
inside a cylindrical region (See Fig. 8) is obtained using a
high-resolution constant density polyhedron model with

Nplates ¼ 3145728, and a density q ¼ 1:9� 103 kg=m3. The
local attraction g rð Þ is computed executing the routine pre-
sented in Section 4.1.1, using MATLAB� parallel pool
toolbox in order to reduce the time required to perform
the huge number of basic operations involved in Eq. (2).
Using the same computational resources employed for
the global gravity field modeling case of Section 4.1.1, the
mean time to obtain a single sample is T sample � 168 s.

Comparing the computational efforts to evaluate the
gravity fields of the same target in these two scenarios, it
is evident that the accuracy of the shape model strongly
affects the complexity of the computation, making on-
board, real-time, feed-back guidance requiring the knowl-
edge of the exact polyhedron gravity contribute unfeasible.
The total amount of required CPU time for the generation
of the entire dataset is T CPU ;dataset � 46872 h. Note that this
particular implementation of the polyhedron model has
been done using a legacy platform such as MATLAB cou-
Fig. 8. Local field points in a cylinder on 25143 Itokawa. Some of the field po
25143 Itokawa. Top view of the cylindrical volume on the left.
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pled with a set of parallel processors. We believe that the
training set generation computational time may be further
reduced by one order of magnitude if a different coding lan-
guage is employed (e.g. C++).

The learning machine is a SLFN with L ¼ 50; 000 sig-
moid hidden nodes that has been trained using OSELM,
which has been designed to learn the relation g ¼ g rð Þ on
sequentially presented training data chunks. Similarly to
the global gravity modeling case, according to a random
partition, 90% of the samples have been chosen to compose
the training set, the remaining constituting the set of
‘‘never-seen points”, or test set. The initial learning phase
has been realized with a chunk of randomly selected
N 0 ¼ 50; 000 data among the training set, using the com-
mon practice of OSELM to have an initial chunk size equal
to the number of hidden units, as reported in Section 3.3.
Sequential small chunks presented to the learner had size
of Nchunk ¼ 10; 000. Training of the SLFN on the entire
training set required T train � 40:34 h. Regression perfor-
mances are reported in Figs. 10 and 11, in which are repre-
sented the absolute errors in gravity components prediction
on the training and test sets (see Fig. 9).

Accuracy on training set data is achieved with

NRMSEtrain ¼ 0:0184 and a RMSEtrain ¼ 1:731� 10�7 m=s2.
Good performances have also been obtained on test set
samples, with a NRMSEtest ¼ 0:0183 and

RMSEtrain ¼ 1:729� 10�7 m=s2. Results in terms of accu-
racy are coherent to what observed in the global modeling
scenario discussed in Section 4.1.1, showing that the SLFN
learned the mapping from r to g rð Þ, with satisfying capabil-
ity to generalize.

4.1.3. Soft landing on 25143 Itokawa
As a practical application of the trained SLFN, we

report the results of a simulated soft landing on 25143 Ito-
kawa using an on-line guidance algorithm which exploits
the modeling of the local gravitational field performed by
the trained SLFN. The motion of the lander is described
in a body fixed frame with the axis x; y; z oriented as the
ints in the region of interest for the modeling of the local gravity field of



Fig. 10. 25143 Itokawa High resolution. Regression plots: training set. Linear regression plot of samples used to train sequentially the learning machine,
reporting the actual constant density high resolution polyhedron gravity attraction of Itokawa compared with the output of the SLFN.

Fig. 11. 25143 Itokawa High resolution. Regression plots: test set. Linear regression plot on test field points ‘‘never seen” during the training, reporting the
actual constant density high resolution polyhedron gravity attraction of Itokawa compared with the one predicted by the SLFN.

Fig. 9. 25143 Itokawa: Absolute prediction errors. Absolute errors on the prediction of the local gravity attraction components, expressed in principal
axes frame.
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Fig. 12. Body frame and relevant quantities of Eq. (45) depicted.

Fig. 13. Landing on asteroid 25143 Itokawa: Representation of the
descent path. The solid line represents the landing trajectory when the
guidance algorithm with compensation of the generalized acceleration is
implemented. It can be observed that it is almost coincident with the one
computed using the exact constant polyhedron model.
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minimum, intermediate and maximum axes of inertia,
respectively (see Fig. 12). Because of the short period of
time during which the landing takes place, it is assumed
that the asteroid spins about a constant axis of rotation,
aligned with z.

The equations of motion expressed in the above men-
tioned asteroid frame can be written as:

_r ¼ v

_v ¼ �2x� vþ x� x� rþ g rð Þ þ ac þ d

�
ð44Þ

where r, and v are the lander position and velocity in aster-
oid centered frame, x is the asteroid rotation rate. The
gravitational acceleration term g is modeled using the con-
stant density polyhedron, while ac is the control
acceleration.

The rotation period of the asteroid, as derived by
Kaasalainen et al. (2003), is assumed to be T rot ¼ 12:1 h.

After neglecting the disturbance term d, the Coriolis
acceleration 2x� v, the centripetal term x� x� r and
the local gravity field are grouped into a generalized accel-
eration term gg r; v;xð Þ. The equations of motions are then

written as:

_r ¼ v

_v ¼ ac þ gg r; v;xð Þ

(
ð45Þ

A Zero-Effort-Miss/ Zero-Effort-Velocity (ZEM/ZEV)
guidance algorithm is adopted to generate in real time
the acceleration command that delivers the lander to the
desired landing site, in an energy efficient way. As discussed
in Hawkins et al. (2012), when the gravity field is not uni-
form or an explicit function of time, ZEM/ZEV does not
represent an optimal guidance solution. When the dynam-
ical environment is highly nonlinear, a modified ZEM/ZEV
that directly compensates for the non linear terms at all
time instants can be preferable to the usual predictive strat-
egy, as suggested by Battin (1999). This sub-optimal guid-
ance algorithm approaches feedback linearization
behaviour by using the estimation of the current state
and the current gravity attraction to generate the accelera-
tion command ac:
15
ac ¼
6 rf � r� tgov

� �	 

t2go

� 2 vf � v
� �
tgo

� gg;p r; v;xð Þ ð46Þ

where tgo represents the time-to-go, which is simply the dif-
ference between the current instant and the final time; rf
and vf are the desired final position and velocity respec-
tively. The term gg;p is the predicted generalized

acceleration:

gg;p ¼ �2x� vþ x� x� rþ gp rð Þ ð47Þ

where gp is the local gravity attraction predicted by the

SLFN. It is assumed that r; v and body the spin rate x

are known. In the particular case in which the target termi-
nal velocity is zero in the body reference frame, this expres-
sion becomes just:

ac ¼ �6
r� rf
t2go

� 4
v

tgo
� gg;p r; v;xð Þ ð48Þ

The time of flight for the descent on Itokawa has been fixed
to T ¼ 1800 s. The lander, initially located at
x0 ¼ 10 m; 20 m; 500 mf g with a velocity
v0 ¼ 0:04 m=s; 0:1 m=s; 0 m=sf g had a wet mass of
m0 ¼ 400 kg, and a propulsive system characterized by a
specific impulse I sp ¼ 1500 s.

The trajectory has been evaluated using a fixed time step
(T step ¼ 0:5 s) fourth-order Runge-Kutta integrator. Fig. 13
shows the guided trajectory to the asteroid surface as com-
puted using the polyhedron model as compared with the
trajectory computed using the trained SLFN. Fig. 14 shows
the component of the gravitational acceleration as com-



Fig. 14. Soft Landing on 25143 Itokawa: gravity acceleration components. (a), (b) and (c) represent the gravity acceleration components experienced
during the descent on Itokawa, comparing the ones evaluated using the constant density polyhedron (dotted line) and the prediction from the SLFN (solid
line).
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puted using both methods during the descent phase. Fig. 15
reports the histories of the thrust and acceleration compo-
nents. Gravity acceleration predictions are accurate, espe-
cially considering the low absolute values. As expected,
the largest deviations occur near the asteroid surface.
Importantly, the guided trajectory overlaps and the accu-
racy of the guided approach is comparable. However, the
use of trained SLFN is compatible with on-board imple-
mentation. It is estimated that on average, it took on
0.01 sec to compute each individual instance of the local
gravity field during descent using SLFN, versus 168sec of
CPU time required by the polyhedron model. Indeed, it
took about 26 hrs of CPU time to simulate a single descent
trajectory.
4.2. ELM-based SLFN for Comet 67P/Churyumov-

Gerasimenko

For the sake of repeatability of the previous approach, a
further analysis of gravity modeling and its application in
feedback guidance algorithms is reported on the comet
67P/Churyumov-Gerasimenko. For the same reasons cited
in the previous section, this case-study is aimed at the mod-
eling an approximation of the gravity field in a localized
area. The Hapi region narrow neck between the two lobes
of the comet nucleus is designated as one of the most inter-
esting regions to be investigated. This decision does not
come from any particular practical mission requirement,
but it has been chosen since identified as the region in
which the most peculiar gravity field will be experienced,
mostly due to the proximity of the two big irregular lobes
16
on the sides. This is also a region in which, because of its
morphology, the polyhedron approach is most suitable
for gravity modeling. The source of the shape model, built
based on images from Rosetta NAVCAM using stereopho-
toclinometry techniques, is the ESA Rosetta Mission Oper-
ation Centre (RMOC, Jorda et al., 2015).
4.2.1. Local gravity model for 67P/Churyumov-Gerasimeko

The body fixed frame used for this study is the Cheops
mapping scheme, defined in Jorda (2015). Similarly to the
previously reported 25143 Itokawa case, a high resolution
polyhedron with Nplates ¼ 4; 000; 512 is considered in order
to generate the 768,000 samples comprising the training
and test sets. These field points are evaluated inside a cylin-
drical area that encloses the valley above mentioned, as
illustrated in Fig. 16 (see Fig. 17).

The MATLAB� code deployed on node of Oceleote
cluster as part of the University of Arizona HPC system,
takes about T sample ¼ 200 s to generate a single sample.
Employing the same cluster node used for the previous
reported study cases, the CPU time needed for the entire
dataset generation is T CPU ;dataset � 42; 560 h.

In order to learn the functional map between the posi-
tion and the correspondent gravitational acceleration, a
SLFN with L ¼ 50; 000 nodes is trained and tested using
the computed 768,000 examples. The choice of the number
of sigmoid hidden nodes L and regularization factor C is
assigned to an automatic Bayesian optimization routine,
explained in Section 4.1.1. Similarly to the results obtained
for the global modeling of the gravity field of Itokawa, it is
found that the best results in terms of generalization per-



- - -

Fig. 15. Soft Landing on 25143 Itokawa: commanded thrust comparison. Comet 67P landing: On the top figure is reported the comparison between the
magnitude of the commanded thrust. On the bottom one are reported the components, in comet frame, of the thrust vector. The dotted line represents the
solution related to the gravity acceleration evaluated using the polyhedron model; the solid one corresponds to the guidance using the SLFN prediction of
the gravity components.

Fig. 16. Some of the training set points in the neck region between the
lobes of the comet 67P.
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formances are obtained for values of hyperparameters at
the boundary of the search interval. Even if lower losses
can be reached increasing the number of hidden nodes, it
is chosen to limit the search to this case because any
improvement would be paid with a drastic increase in the
computational effort requested. The SLFN is trained on
17
90% of the total observations available, using the remain-
ing 10% for testing in order to ensure that the machine is
able to generalize. Obtained performances in terms of
RMSE and NRMSE are the following:

� Accuracy on training data prediction:NRMSEtrain ¼
0:057; RMSEtrain ¼ 2:2029� 10�6 m=s2.

� Accuracy on ‘‘never-seen” data prediction:NRMSEtest ¼
0:0662; RMSEtrain ¼ 4:0605� 10�6 m=s2.

The total training time has been T train ¼ 37:25 h. Regres-
sion analysis reported in Figs. 18 and 19 shows that the
mapping from the position vector to the gravity accelera-
tion has been efficiently learned. Absolute predicition errors
on the local gravity components are reported in Fig. 17.

4.2.2. Soft landing on 67P/Churyumov-Gerasimenko

This section reports the results of the case study about a
guided soft landing on a 67P/ Churyumov-Gerasimenko
where a trained SLFN is employed in the guidance routine.
For this kind of operation, the ZEM/ZEV guidance algo-
rithm compensating for the generalized acceleration, briefly



Fig. 17. 67P/C-G: Absolute prediction errors. 67P/ Churyumov-Gerasimenko: Absolute errors on the prediction of the local gravity attraction
components, expressed in principal axes frame.

Fig. 18. 67P/C-G High resolution. Regression plots: Training set. 67P/ Churyumov-Gerasimenko: Regression plots for the local 67P gravity acceleration
training set.

Fig. 19. 67P/C-G High resolution. Regression plots: Test set. 67P/ Churyumov-Gerasimenko: Regression plot for the local 67P gravity acceleration
testing set.
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presented in Section 4.1.3, is analyzed. The time of flight is
fixed to be T ¼ 2600 s, and the simulation is conducted
using a fourth-order Runge-Kutta fixed time step integra-
18
tor with T step ¼ 1:3 s. The lander mass at the beginning of
the landing is considered as m0 ¼ 400 kg, and the lander
is equipped with a propulsive system characterized by a



Fig. 20. 67P/C-G: Bayesian optimization results. (a): objective model mean prediction returned by the optimizer after 30 evaluations as a function of the
regularized ELM hyperparameters, along with the observations and the recommended ~x ¼ C

�
; L
�h i
. (b): the observed and estimated minimum objective

function as the number of query points increases.

Fig. 21. Soft landing on 67P/ C-G: trajectory. Comet 67P landing trajectory comparison, using ZEM/ZEV guidance algorithm compensating for the local
generalized acceleration, comprising the effects due to the comet spinning and the local gravity. The solid line represents the path resulting from the
guidance algorithm using the SLFN prediction of the gravity attraction. The dotted line is obtained by compensating for the exact polyhedron gravity
acceleration. A more detailed visuaization of the landing site and trajectory is reported in picture on the right.

Fig. 22. Soft landing on 67P/ C-G: gravity acceleration components. (a), (b) and (c) represent the gravity acceleration components experienced during the
descent on 67P, comparing the ones evaluated using the constant density polyhedron (dotted line) and the prediction from the SLFN (solid line). gx; gy and
gz respectively,in the x-y plane.
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Fig. 24. Comet 67P landing: Time required by the SLFN to predict the
local gravity, given the input position. The computational effort lies in the
normalization of the lander position and the SLFN response evaluation,
according to Eq. (6).
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specific impulse Isp ¼ 1500 s. The landing site is set on a
plateau in the Hapi region, with coordinates in the comet
nucleus fixed frame set as rf ¼ 500 m; �100 m;½
390:89 m�. The initial position and velocity of the lander
are x0 ¼ �250 m; �10 m; 2000 m½ � and v0 ¼ 0:8 m=s;½
0:6 m=s; 0:04 m=s� respectively. The equations of motion
are Eqs. (44), and it is still assumed that during the brief
landing time interval, nutation and precession of the spin
axis are negligible. The comet’s spin rate is x ¼ 12:40 h
and assumed to be constant (Jorda, 2015). Fig. 21 shows
the guided trajectory to the comet surface as computed
using the polyhedron model as compared with the trajec-
tory computed using the trained SLFN. Fig. 22 shows
the component of the gravitational acceleration as com-
puted using both methods during the descent phase.
Fig. 23 reports the histories of the thrust and acceleration
components. Gravity acceleration predictions are accurate,
especially considering the low absolute values. As expected,
the largest deviations occur near the comet surface. Devia-
tions are also experienced in modeling the z-component of
the comet gravitational acceleration during the descent.
Importantly, guided trajectory overlaps and accuracy of
the guided approach is comparable. However, the use of
trained SLFN is compatible with on-board implementa-
(a)

- -

(b)

Fig. 23. Soft landing on 67P/ C-G: commanded thrust comparison. Comet
magnitude of the commanded thrust. On the bottom one are reported the co
represents the solution related to the gravity acceleration evaluated using the p
the SLFN prediction of the gravity component.
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tion. As can be observed by Fig. 24, which reports the com-
putational time required to compute the gravitational
acceleration from the SLFN given the input position, an
approach based on the prediction of the gravity field by a
-

67P landing: On the top figure is reported the comparison between the
mponents, in comet frame, of the thrust vector. As usual, the dotted line
olyhedron model, while the solid one is corresponds to the guidance using
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learning machine is computationally cheap enough to be
considered viable for an on-board, real-time guidance
algorithm.

5. Conclusions

In this paper, we developed and analyzed a new model-
based, data-driven methodology to compute the gravity
field of an irregular small body for a fast, accurate and effi-
cient calculation of the gravitational acceleration as func-
tion of the relative position around the small body of
interest. The proposed approach is based on a recently
developed machine learning approach called Extreme
Learning Machines (ELM) which employs a Single Layer
Feedforward Network (SLFN) to model the non-linear
relationship between inputs and outputs. Additionaly, the
ELM approach has been embedded in a Bayesian Opti-
mization framework necessary to fine-tune the networks
and determine the optimal hyper-parameters. Here, the
specific goal is to train, both in batch and sequential fash-
ion, a SLFN to represent the relationship between space-
craft position around the small body of interest and the
value of the gravitational acceleration. The approach has
been applied to two scenarios comprising the well-known
asteroid 25143 Itokawa and the recently explored comet
67/P Churyumov-Gerasimenko. The gravitational field
has been computed using computationally expensive poly-
hedron models. Such models have been employed to gener-
ate the training sets necessary to execute the SLFN learning
phase. Regression analysis shows that the proposed
approach can capture the functional relationship between
spacecraft position and gravitational acceleration accu-
rately and efficiently. Overall, we believe we demonstrated
that SLFN trained using ELM theories and the Bayesian
optimization framework can be successfully employed to
accurately approximate the computationally expensive
polyhedron gravitational field for small bodies, even when
complex and very high resolution models are considered.
As shown in the case of gravity modeling about 25143 Ito-
kawa and 67P/ Churyumov-Gerasimenko, the algorithm
devised to get the exact polyhedron attraction is computa-
tionally expensive and it is neither suitable for on board
and real time guidance algorithms nor suitable for applica-
tions in the early stage of the mission design to perform
Monte Carlo analysis. We have shown that the proposed
methodology can obtain fairly accurate results especially
considering the low absolute magnitude of the gravita-
tional field encountered around asteroids and comets.
Results of the two case studies for guided soft landing on
the surface of both asteroid Itokawa and comet 67/P
Churyumov-Gerasimenko demonstrated that the trained
SLFN are able to quickly and efficiently estimate the grav-
ity field and that, given the input, the time required to cal-
culate the output is in the order of a hundredth of a second.
This is an impressive result considering that the time
required to solve the exact polyhedron model is thousands
of times higher. Consequently, ELM-based SLFN are suit-
21
able for on-board implementation thus enabling autonomy
for future missions to small bodies.
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