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Abstract 

We examined changes in brain rhythms in relation to optimal performance in self-paced 

sports. Eight studies met the inclusion/exclusion criteria, representing 153 participants and 

eight different sports. We found that (a) optimal performance is characterised by increased 

alpha (g = .62, p = .02) and theta (g = .74, p = .002) across the cortex; (b) during optimal 

performance the frontal lobe is more relaxed (higher alpha; g = 1.06, p = .18) and less busy 

(lower theta; g = .38, p = .08), in comparison to the other brain lobes; (c) for the same given 

task, experts’ brains are more relaxed (higher alpha, g = .89, p = .34) and less busy (lower 

theta, g = .91, p = .54) than novices’ brains. Theoretically, our findings suggest that neural 

efficiency, neural proficiency, and transient hypofrontality are likely complementary neural 

mechanisms that underpin optimal performance. In practice, neurofeedback training should 

teach athletes how to amplify and suppress their alpha and theta activity across the brain 

during all movement stages. 

 

Keywords: optimal performance; precision sports; EEG; meta-analysis   
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The role of neural efficiency, transient hypofrontality and neural proficiency in 

optimal performance in self-paced sports: A meta-analytic review 

Introduction 

Expert athletes perform consistently at optimal levels even under challenging 

conditions (Ericsson, 2007). Although the literature on optimal performance experiences is 

vast, sport psychologists do not agree on a general theory of optimal performance (Farrow & 

Baker, 2018). Influential frameworks, supported by psycho-physiological data, discussing 

optimal performance experiences include the individual zones of optimal functioning 

framework (Hanin, 2000), flow-feeling theory (Csikszentmihalyi & Jackson, 1999), multi-

action plan model (Bortoli, Bertollo, Hanin, & Robazza, 2012; Robazza, Bertollo, Filho, 

Hanin, Bortoli, 2016), and the theory of reinvestment (Masters & Maxwell, 2008). While 

these frameworks diverge in their specific tenets, they converge in the overarching notions 

that (a) experts and novices function differently from a psycho-bio-social standpoint; and (b) 

the psycho-bio-social markers of optimal performance differ greatly from those of sub-

optimal performance (Filho & Tenebaum, 2015; Ruiz, Raglin, & Hanin, 2017).  

Sport psychologists subscribing to different theoretical frameworks have used the 

expert-novice paradigm to study optimal performance experiences (Filho & Tenenbaum, 

2020). This experimental paradigm aims to capture the psycho-bio-social markers of optimal 

performance by comparing experts with novices (i.e., between-subjects) and/or by comparing 

experts’ optimal and sub-optimal performance experiences (i.e., within-subjects). Thus far, 

most research based on the expert-novice paradigm has shown that, when performing at 

optimal level, experts exhibit more functional psycho-bio-social states than when performing 

poorly and in comparison to novices (Ericsson, 2007; Ruiz et al., 2017; Tenenbaum, 

Basevitch, Gershgoren, & Filho, 2013). Key characteristics of optimal performance include a 

focus on the present, physical and psychological relaxation (i.e., absence of somatic and 
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cognitive anxiety), high levels of confidence, and effortless “automatic” movement (Williams 

& Krane, 2020). Relevant to the present study, these characteristics of optimal performance 

are thought to be underpinned by neural mechanisms (Holmes & Wright, 2017; Pacheco, 

2016; Yarrow, Brown, & Krakauer, 2009).   

Putative Neural Mechanisms Underpinning Optimal Performance Experiences 

Scholars have explained optimal performance in light of the neural efficiency 

hypothesis (Del Percio et al., 2008; Haier et al., 1988; Holmes & Wright, 2017), which is also 

known as psychomotor efficiency hypothesis (see Hatfield, Jaquess, Lo, & Oh, 2020). 

According to this hypothesis, experts perform better than novices because their brains work 

smartly by only recruiting the spatiotemporal areas needed to perform the task at hand 

(Grabner, Neubauer, & Stern, 2006). Additionally, research in sports has attributed optimal 

performance and expert-novice differences to neural efficiency. Sport psychologists have 

suggested that it is because of a state of neural efficiency that performers report being in a 

state of automaticity when “in the zone”, “in flow” or showing a “type-1” performance 

(Bertollo, Doppelmayr, & Robazza, 2020; Filho & Tenenbaum, 2015). Over years of 

deliberate practice, experts learn to recruit only the neural networks needed to optimally 

perform a given task (Ericsson, 2007). Conversely, when performing poorly (e.g., choking 

under pressure), skilled performers reinvest mental resources in unnecessary elements of their 

performance (Masters & Maxwell, 2008), and thus do not exhibit a state of neural efficiency.  

Another explanation for optimal performance experiences can be found in the 

transient hypofrontality hypothesis proposed by Dietrich (2003, 2006). According to this 

hypothesis, decreased functional activity (e.g., neurochemical and blood flow) in the frontal 

lobe, rather than in the whole brain, explains optimal performance experiences. In particular, 

Dietrich (2003, 2006) argues that optimal performance is an altered state of consciousness 

that is only possible due to the temporary shutdown of conscious and deliberate thinking (i.e., 
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type-2 performance), as manifested by a temporary frontal hypofunction. In this regard, it has 

been long established that the frontal lobe, which was the last part of the brain to evolve, 

exerts a supervisory role over higher order executive functions, such as attentional control 

and self-appraisal (Coolidge & Wynn, 2001). The transient hypofrontality hypothesis 

resonates with the aforementioned frameworks of performance because athletes performing at 

optimal levels do not reinvest their attention on the task. Rather, they report being in a state 

of altered consciousness (e.g., in the zone, in flow, or type-1 performance) which is 

associated with automaticity and time distortion. Notably, this state of hypofrontality is 

thought to be “transient” because optimal performance experiences are relatively rare and 

brief, and chronic hypofrontality is associated with neurodegenerative conditions, such as 

dementia (Dietrich, 2003, 2006). 

Noteworthy, the notion that reduced brain activity, whether in the frontal lobe or 

across the whole brain, explains optimal performance experiences has been questioned in 

sports and other domains of human performance (Dunst et al., 2014; Vickers & Williams, 

2017). In this regard, Neubraeur and Fink (2009) conducted a review of the literature and 

concluded that a state of neural efficiency only explains optimal performance in tasks of easy 

or moderate complexity. For difficult tasks, they observed that individuals needed to recruit 

more cortical resources to perform at optimal level. Moreover, recent empirical studies 

revealed that increased theta activity in the frontal lobe, a marker of “brain busy-ness” (see 

Pacheco, 2016), underpins optimal performance experiences in both motor and cognitive 

tasks (Di Fronso et al., 2016; Katahira et al., 2018). In light of this emerging evidence, 

scholars have recently proposed the neural proficiency hypothesis (Bertollo et al., 2016; 

2020).  

According to the neural proficiency hypothesis, athletes need to engage in both 

efficient (system-1; fluid and automatic thinking) and effortful (system-2; deliberative 
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thinking) processing to be able to consistently perform at optimal levels (Bertollo et al., 2016; 

Bertollo et al., 2020). Previous research suggests that in order to optimally perform complex 

tasks under high-pressure situations athletes must be able to (a) purposefully recruit neural 

networks that allow them to perceive the environment, make decisions, and regulate their 

thoughts, feelings and behaviors (Filho & Tenebaum, 2015; Tenenbaum et al., 2013); and (b) 

silence the parts of their brains that are not relevant to the task at hand (i.e., "quiescense 

state"; see Hatfield et al., 2017). In other words, proficient athletes can adeptly use and switch 

between these two types of processing during competition. To shed further light on this 

notion of neural proficiency, as well as the concepts of neural efficiency and transient hypo-

frontality, we conducted a meta-analytic review grounded on the expert-novice paradigm in 

an effort to systematize and benchmark literature used to inform neurofeedback interventions 

aimed at enhancing the probability of optimal performance experiences in sports.   

The Present Study 

Given that the neural efficiency hypothesis, the transient hypofrontality hypothesis, 

and the neural proficiency hypothesis have been used to explain optimal performance 

experiences in sports, we sought to examine which of these hypotheses better explains 

optimal performance in self-paced precision sports. Specifically, we adhered to the PRISMA 

guidelines for meta-analytical reviews (see http://prisma-statement.org/) and purposefully 

focused our search on self-paced sports studied through electroencephalogram (EEG) power 

frequency spectrum analysis for three reasons. First, self-paced sports (e.g., archery, 

shooting) are significantly less impacted by movement artefacts than externally-paced sports 

(e.g., football, volleyball), and can be reliably monitored using EEG methods to allow 

insights on the pre-movement (e.g., perception, response selection), the execution (i.e., during 

movement), and the post-movement phases (e.g., action execution; see Bertollo et al., 2020; 

Filho & Tenenbaum, 2020). Second, EEG is one of the most commonly used brain-imaging 
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methods in sports because of its portability and high ecological validity (Holmes & Wright, 

2017; Yarrow et al., 2009). Third, EEG power frequency spectrum analysis is very relevant to 

inform applied neurofeedback interventions aiming to increase the probability of optimal 

performance experiences (Pacheco, 2016; Strack, Linden, & Wilson, 2011; Xiang, Hou, Liao, 

Liao, & Hu, 2018). To this extent, there is consensus that optimal performance experiences in 

sports are a multidimensional phenomenon indexed in the brain by different brain rhythms, 

particularly alpha (relaxation), beta (sensory motor integration) and theta (focused attention) 

waves (Cheron et al., 2016; Pacheco, 2016). Simply stated, by looking at the patterns of these 

three different brain rhythms across brain regions (i.e., frontal, central, temporal, parietal, 

occipital), we sought to understand whether neural efficiency, transient hypofrontality, and 

neural proficiency underpin optimal performance experiences in self-paced precision sports.  

Methods 

Search Strategy 

A total of eight databases (i.e., ProQuest Central, ProQuest Psychology Journals, 

PsycARTICLES, PsycINFO, SPORTDiscus, MEDLINE, Scopus, and Web of Science) were 

searched using keywords (i.e., EEG AND sports AND performance) for primary peer-

reviewed research that examined changes in brain power in self-paced precision sports. The 

search strategy also included snowball procedure by examining reference lists from previous 

reviews and research papers. The search included all papers published up to January 1st, 

2021. The first and last authors independently conducted the searches. Titles and abstracts of 

potentially relevant articles were identified and screened by the first and last authors to 

determine whether they examined performance involving self-paced tasks and any methods 

related to EEG. Duplicate articles were excluded during the search and full-texts of 

potentially relevant articles were obtained and independently assessed by the first and the 

second authors. After this assessment, the first and second authors met to arrive at a 
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consensus on the inclusion/exclusion criteria for each paper. Disputes were adjudicated by 

discussion until consensus was reached for all included articles.  

Study Inclusion Criteria. We sought to identify primary studies that examined EEG 

power and performance during self-paced sports (e.g., pistol shooting, archery, golf putting). 

Studies were included if they (1) were written in the English language; (2) used a quantitative 

design and provided sufficient information to allow for the computation of effect sizes (ESs; 

e.g., means, SDs, sample sizes, F-values); and (3) examined EEG power and self-paced 

precision sports involving comparisons between experts and novices or between optimal and 

sub-optimal performances. There were no geographical, cultural, or time-period (in which 

studies were published) restrictions.     

Study Exclusion Criteria. Studies were excluded if they (1) were written in a non-

English language; (2) were reviews, qualitative or case studies, or retracted studies; (3) did 

not examine EEG power frequency spectrum analysis, e.g., coherence, event-related 

potential, event synchronization/desynchronization analysis; (4) examined open skills sports 

(e.g., ice hocking, baseball batting) and were based on a learning paradigm (i.e., test, 

acquisition, post-test, retention, and transfer stages; see Wang & Chen, 2014) as opposed to a 

performance paradigm; (5) did not provide enough information to calculate the ESs. Table 1 

provides the detailed description of inclusion/exclusion criteria according to a Population, 

Exposure/Intervention/Comparison, Outcomes, and Study Design (PE/I/COS; see Brown et 

al., 2006). 

Coding Procedures 

Data Extraction. Data extraction was performed independently by all three authors. 

The information extracted included the participants’ characteristics (e.g., number of 

participants, gender, age, sport, expertise level, handedness) and the studies’ characteristics 

(e.g., design, independent and dependent variables, type of statistical analysis, sampling rate 
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in Hz, number of EEG channels, impedance, whether the authors removed artifacts (Yes/No), 

relevant data to calculate ESs, and the main findings). The authors had full access to the 

paper details during the coding process and were not blinded to one another. The extraction 

tables were examined for accuracy and completeness by all three authors. Information for the 

selected studies is presented in Table 2. 

---------------------Include Table 2 here------------------------- 

Methodologic Rigor: Quality Assessment. Quality assessments in meta-analysis is 

based on the critical evaluation of multiple factors within and between the included studies. 

Raters’ judgments must be independent and constrained via a standardized protocol to reduce 

the potential for biases in the assessment process. Therefore, each study included in our meta-

analysis was assessed for quality via quantitative analysis by two investigators who have 

expertise in the field of sport psychology and measurement and statistics (first and second 

author), and neuroscience (first author). To assess the quality of studies, we adopted a  

previously developed scale (see Zach, Dobersek, Filho, Inglis, & Tenenbaum, 2018), which 

was used in a meta-analysis in sport psychology and developed based on the guidelines for 

reporting research in psychology by the American Psychological Association Publications 

and Communications Board task force (Appelbaum et al., 2018). Specifically, we used a 7-

item quality scale addressing the following dimensions: (1) statement of purpose and 

hypotheses, (2) target population, (3) description of the EEG and outcome measures, (4) 

design, (5) statistical analyses, (6) adequacy of results, and (7) overall quality of the study. 

Each item was anchored on a 10-point Likert-type scale ranging from 1 (not acceptable) to 

10 (excellent). The inter-rater agreement was 97%.  

Dependent Variables 

 Based on the information presented in the included articles, we coded the following 

independent variables: (1) alpha power: 8-12 Hz; (2) beta power: 13-30 Hz; and (3) theta 
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power: 4-8 Hz. As discussed above, these brain rhythms are at the core of peak performance 

experiences in self-paced sports (Bertollo et al., 2020; Hatfield et al., 2020; Holmes & 

Wright, 2017; Vickers & Williams, 2017).  

Moderator Variables 

 We included the main type of analysis, time of assessment, and hypofrontality as 

moderator variables.  

Main Type of Analysis. As the expert-novice paradigm is implemented through both 

between- and within-subjects designs (Filho & Tenenbaum, 2020), we were interested in 

whether the main type of analysis moderated the linkage between brain power and 

performance. We coded the main analysis as between-subjects (0) and within-subjects (1). 

The ESs that reflected the data between experts and novices were coded as between-subjects 

analysis, and the ESs that reflected the data between experts’ optimal and sub-optimal 

performance were coded as within-subjects analysis. 

Time of Assessment. We were also interested in whether time of assessment had an 

impact on the relationship between EEG and performance. We coded time assessment when 

studies presented the data on EEG before performance (1) and across performance (0).    

Hypofrontality. Congruent with the transient hypofrontality hypothesis (Dietrich, 

2003, 2006), we compared EEG activities in the frontal lobe and the other the brain regions 

(i.e., central, temporal, parietal, and occipital) in relation to performance.   

Statistical Methods  

 The statistical techniques used to compute the estimates of the ESs were adopted from 

Borenstein and colleagues (Borenstein, Hedges, Higgins, & Rothstein, 2011; Borenstein, 

Rothstein, & Cohen, 2005). We calculated the d family ESs or standardized mean difference 

either between the novices and experts (i.e., between-subjects analysis) or between 

participants’ optimal/best or sub-optimal/worst performances (i.e., within-subjects analysis) 
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divided by the pool standard deviation (SD) for all studies. When the means and SDs were 

not available, we used F-values and df to calculate the ESs or transformed partial eta squared 

ESs into d family ESs. Because most of the studies presented more than one ES per brain 

region (e.g., Fz, F3, F4; P3, P4, Pz), we averaged the ESs that represented the same region 

within a given study to allow for statistical independence in the data set. This procedure 

eliminates ES biases, which are inherent in single studies with multiple ESs (Lipsey & 

Wilson, 2001). Additionally, given that Cohen’s d tends to overestimate the effects in smaller 

samples and most of the studies included in our meta-analysis had fewer than 20 participants, 

we used Hedge’s g ESs (Hedges, 1981, 1989; Hedges & Olkin, 1985). All ESs were 

calculated using the Campbell’s Collaboration calculator 

(www.campbellcollaboration.org/resources) and were interpreted according to Cohen 

(Cohen, 1988), with an ES of .20 indicating a small effect, .50 a medium effect, and > .80 a 

large effect.  

Furthermore, we calculated confidence intervals and performed a test of heterogeneity 

of distribution. In addition to Cochran’s Q statistic, we reported the I2 statistics because Q has 

a small power as a comprehensive test of heterogeneity especially when the number of 

studies in a meta-analysis is small (Gavaghan, Moore, & McQuay, 2000). Additionally, the Q 

test does not inform us about the extent of true heterogeneity among the studies, but only 

about its significance, whereas the I2 statistic indicates which proportion of the observed 

variance reflects differences in true ESs rather than sampling error (Higgins & Thompson, 

2002; Higgins, Thompson, Deeks, & Altman, 2003; Huedo-Medina, Sánchez-Meca, Marín-

Martínez, & Botella, 2006). To identify potential outliers and to provide a graphical overview 

of the ESs for each study, we constructed funnel and forest plots. All calculations were 

performed using the Comprehensive Meta-Analysis program Version 3.0 (Borenstein et al., 

2005).  

http://www.campbellcollaboration.org/resources
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Results 

Description of Studies 

Our initial search without the duplicates resulted in 267 potentially relevant articles 

that were screened according with the inclusion/exclusion criteria. Most studies were 

excluded because they examined irrelevant topics (n = 174) or were literature reviews or case 

studies (n = 37). This screening resulted in 55 articles which were then critically evaluated. 

Additional studies were excluded because of the irrelevant outcome (n = 40) or because they 

did not present enough data to calculate the ESs (n = 7). This analysis resulted in eight 

papers, published between 1990 and 2016, that met our inclusion/exclusion criteria. As per 

Preferred Reporting Items for Systematic Review and Meta-Analysis statement (PRISMA; 

see Moher et al., 2009), results from each stage of meta-analysis are presented in Figure 1.   

---------------------Include Figure 1 here------------------------- 

The total sample included 153 right-handed participants (90 males, 38 females). The 

sample size across studies ranged from 6 to 34 participants, with 54 novices and 93 experts 

performing archery, shooting, golf putting, free throwing, or dart throwing. On average, the 

participants were 26.38 years old (SD = 2.33; range: 18-38 years of age) and reported playing 

experience ranging from 0 to 15.9 years (M = 10.48; SD = 5.19).  

The overall quality of studies was moderately good (Qquality = 7.51, SD = 0.46), as 

measured by our self-developed scale. Tables 2 and 3 provide the Hedge’s g ESs and their 

associated 95% CI, forest plots, and Q heterogeneity statistics for the studies included in the 

analyses for the alpha and theta frequency ranges, respectively. We were unable to compute 

forest and funnel plots for the beta band given that only two studies (Cheng et al., 2015; 

Salazar et al., 1990) included results for beta activity. 

The test of heterogeneity for alpha (Q = 24.31, df = 7, p < 0.05, I2 = 71.20%), beta (Q 

= 39.56, df = 1, p < 0.05, I2 = 97.47%) , and theta power (Q = 11.17, df = 5, p < 0.05, I2 = 
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55.25%) suggested that the true effect size is identical in all studies and that approximately 

75% of the variance in the observed effects is a true effect rather than sampling error (I2
average 

= 74.64%). The 95% prediction interval was -0.91 to 2.15 and -0.65 to 2.13 for alpha and 

theta, respectively. Given that the ESs vary considerably because of between-study 

differences (e.g., study procedures, types of sport, years of sport experiences, participants’ 

age) and we want to generalize our meta-analytic findings beyond the current sample of 

studies, we adopted a random-effects model (see Borenstein, Hedges, Higgins, & Rothstein, 

2011; Borenstein, Rothstein, & Cohen, 2005). 

The funnel plots for alpha and theta waves (see Figure 2) are based on the Hedge’s g 

ES (x-axis) and standard errors (y-axis). Dots represent each individual study. Given that 

both funnel plots are slightly asymmetrical, we further examined the possibility of 

publication bias. The Egger test of intercept was not significant for both the alpha (t = 1.46, p 

= .33) and the theta (t = 1.16, p = .16) frequency bands, and Owrin’s Fail-safe N revealed that 

40 and 36 additional studies would be needed to bring the observed ESs to a trivial value of 

Hedge’s g = .10 for alpha and theta, respectively. Thus, publication bias was not a concern in 

our study and the observed spread of ESs in the funnel plot likely reflects the fact that we 

averaged ESs across brain lobes, and that alpha and theta waves behave differently (amplified 

or suppressed) across the cortex during motor performance (Yarrow et al., 2009). 

----------Include Figure 2 here---------------------- 

Overall, the analyses of the ESs suggested that optimal performance was 

characterized by higher alpha and theta power, in comparison to sub-optimal performance. 

Specifically, the analysis of the eight ESs for the alpha band suggested a medium significant 

effect (g = .62, p = .02, CI95% = 0.10, 1.15), and the analysis of the six ESs for the theta band 

suggested a medium significant effect (g = .74, p = .002, CI95% = 0.26, 1.21). The analysis of 
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the two ESs for the beta band revealed a large non-significant effect (g = 5.16, p = .28, CI95% 

= -4.20, 14.51). 

-----------Include Tables 3 and 4 here----------------------- 

Moderator Analyses  

 Three moderators (i.e., main type of analysis, time of assessment, and hypofrontality) 

were examined for the alpha and theta frequencies. Again, only two studies (Cheng et al., 

2015; Salazar et al., 1990) measured beta activity, and thus we were unable to conduct 

moderator analysis for this frequency range. Because we assumed that ESs differ from study 

to study, we employed a more conservative random-effects model for all analyses.  

Main Analysis Type 

Alpha power was higher for between-subject analysis (g = .89) than for studies 

employing a within-subjects analysis (g = .35), Q = 0.95, df = 1, p = .34. Conversely, theta 

power was lower for the between-subjects analysis (g = .60) than for the studies employing a 

within-subjects analysis (g = .91), Q = 0.37, df = 1, p = .54. Thus, albeit non-significant, the 

difference within experts’ optimal and sub-optimal performance is less pronounced than the 

difference between the brain activity of experts and novices.  

Time of Assessment  

Alpha power was higher (g = 1.22) for the studies measuring brain activity across 

movement time (i.e., before, during, after), compared to studies measuring brain activity 

before movement initiation (g = .45), Q = 1.53, df = 1, p = .22. Similarly, theta power was 

higher (g = 1.13) for the studies measuring brain activity across performance time (i.e., 

before, during, after), compared to the studies measuring brain activity before movement 

initiation (g = .58), Q = 1.06, df = 1, p = .30. This pattern of results suggests that the time of 

assessment did not influence the magnitude of alpha and theta activity in the performance of 

self-paced sports. 
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Hypofrontality  

Alpha power was higher in the frontal lobe (g = 1.06) than in the other brain lobes (g 

= .36), Q = 1.79, df = 1, p = .18. Conversely, theta power was lower in the frontal lobe (g = 

.38) than in the other brain lobes (g = 1.08), Q = 3.01, df = 1, p = .08. Albeit non-significant, 

this pattern of results suggests that increased alpha and reduced theta activity in the frontal 

lobe might be implicated in optimal performance experiences, as discussed in detail next. 

--------------------- Include Table 5 here ------------------------ 

Discussion 

Based on the expert-novice paradigm, we conducted a meta-analysis of experimental 

papers measuring changes in brain power between experts and novices, or between experts’ 

optimal and sub-optimal performances in self-paced sports. We sought to understand whether 

neural efficiency, transient hypofrontality, or neural proficiency underpinned optimal 

performance experiences (e.g., in the zone, in flow, or type-1 performance) in self-paced 

sports, as previously suggested in narrative reviews in sport psychology (Bertollo et al., 2020; 

Hatfield et al., 2020; Holmes & Wright, 2017; Vickers & Williams, 2017). To this end, we 

examined changes in alpha, beta, and theta activity as these brain rhythms have been 

previously linked to optimal performance experiences in self-paced sports. We found a 

complex pattern of results that must be interpreted together rather than in parts, as is often the 

case in psychophysiological research (Cacioppo, Tassinary, & Berntson, 2007). In a nutshell, 

we propose that neural efficiency, transient hypofrontality, and neural proficiency are all 

implicated in optimal performance in self-paced sports, as elaborated below.  

The Role of Brain Proficiency in Optimal Performance Experiences  

 Our main analysis revealed that beta waves did not differentiate experts from novices, 

or best from worst performances. However, this analysis was based on (only) two ESs, thus 

suggesting that scholars in sport psychology either have not examined this brain rhythm as 
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much as alpha and theta waves or that they have not reported non-significant findings for this 

frequency range. Therefore, further research is warranted to clarify the role of beta waves on 

optimal performance experiences, especially given that this brain rhythm has been related to 

sensorimotor integration (Cheron et al., 2016).  

Furthermore, our main analysis revealed that optimal performance is characterized by 

an increase of moderate magnitude in both the alpha and theta brain rhythms. These findings 

echo previous research suggesting that “a relaxed and focused” brain is essential for optimal 

performance in sports (Bertollo et al., 2020; Hatfield et al., 2020; Pacheco, 2016). 

Specifically, the neural marker of a “relaxed brain” involves increased alpha activity across 

the cortex, as an increase in this brain rhythm indicates the inhibition of brain areas unrelated 

to the task at hand (Cheron et al., 2016; Di Fronso et al., 2016). In turn, an increase in theta 

activity indicates a “focused brain” as an increase in this brain rhythm signals engagement of 

the working memory and motor control (Katahira et al., 2018; Pacheco, 2016).   

Our analysis of the time of assessment moderator showed that the increased alpha and 

theta activity accompany optimal performance experiences did not differ across time 

windows (i.e., before, during, and after movement execution). Thus, when performing at 

optimal levels, athletes remain relaxed and focused for the planning (pre-movement), 

execution (during movement), and feedback (post-movement) stages of movement action.  

As such, behavioral and neurofeedback interventions aimed at enhancing athletes’ ability to 

reach and sustain optimal performance should target the pre-, during, and post-movement 

stages, and future research should continue to study brain activity related to all of these 

stages.  

Taken together, these findings support the neural proficiency hypothesis (Bertollo et 

al., 2016; 2020). Notably, given that we averaged ESs across brain lobes, the spread of ESs in 

the funnel plot corroborates the overarching notion that different brain waves behave 
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differently (amplified or suppressed) in the different areas of the brain during optimal 

performance, a finding consistent with the brain proficiency hypothesis. Importantly, the 

large negative ESs reported by Salazar et al. (1990) in the temporal lobe likely signals a 

functional suppression of a stepwise (inner speech) serial process during motor performance, 

whereas the general trend of increased alpha activity across the cortex signals a global state 

of relaxation (“cortex idling”; see Hatfield et al., 2020; Bazanova & Vernon, 2014), both 

markers of optimal performance experiences in sports (Di Fronso et al., 2016; Yarrow et al., 

2009). Therefore, to perform at optimal levels some neural networks must be “tuned down” 

(i.e., quiescence state), whereas others must be “tuned up” (i.e., neural recruitment). 

Accordingly, neurofeedback protocols should be geared towards teaching athletes how to 

simultaneously activate (e.g., attentional focus regulation targeting theta waves) and silence 

(e.g., alpha peak neurofeedback) different areas of their brains. Learning how to silence the 

frontal lobe seems to be particularly important for athletes in self-paced sports, as elaborated 

upon next. 

The Role of Transient Hypofrontality in Optimal Performance Experiences 

Our analysis of the hypofrontality moderator lends partial support to the transient 

hypofrontality hypothesis. Specifically, we found a non-significant increase in alpha activity 

in the frontal lobe, and a non-significant decrease in beta activity in the frontal lobe, in 

comparison to all other brain lobes (i.e., central, temporal, parietal, and occipital). Although 

non-significant, this pattern of results, which was based on a small number of ESs, suggests 

that transient hypofrontality might be implicated in optimal performance experiences in self-

paced sports. Thus, the notions of neural proficiency and transient hypofrontality might not 

be at odds with one another. In theory, athletes need to engage and disengage different areas 

of their brains to perform at optimal levels (i.e., brain proficiency); however, their frontal 

lobe is working at the lowest rate possible (i.e., transient hypofrontality) and that is likely 
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why athletes’ report feelings of automaticity, control, confidence, and relaxation when 

performing at optimal levels (Csikszentmihalyi & Jackson, 1999; Williams & Krane, 2020).  

The observed non-significant increase in alpha and decrease in theta activity in the 

frontal lobe, in comparison to all other lobes, might be related to the fact that athletes 

performing at optimal levels experience an altered state of consciousness (e.g., in the zone, in 

flow, or type-1 performance) due to transient hypofrontality, as proposed by Dietrich (2003, 

2006). First, reduced alpha activity in the frontal lobe, in comparison to all other lobes, is a 

biomarker of relaxation and confidence (as opposed to somatic and cognitive anxiety), which 

in turn are characteristics of optimal performance experiences in sports (Pacheco, 2016; 

Williams & Krane, 2020). Second, an increase in theta activity across the whole brain, 

coupled with a relative (with respect to the other brain lobes) theta decrease in the frontal 

lobe, likely signal that athletes are “focused but not too focused” while performing at optimal 

levels, as theta activity in the frontal lobe is a marker of “brain busy-ness” (Pacheco, 2016). 

To perform at optimal levels athletes must be focused, as they monitor core elements of 

action and environmental cues, make decisions, and block distraction (Bortoli et al., 2012; 

Filho & Tenebaum, 2015; Tenenbaum et al., 2013). However, athletes cannot be too focused 

by overly monitoring themselves, the task, and the environment, or they will regress to a step-

by-step modus operandi that leads to choking rather than optimal performance and is 

associated with novice rather than expert functioning in sports (Bortoli et al., 2012; Masters 

& Maxwell, 2008). To this last point, we also analysed differences between expert and 

novices (between-subjects design), and optimal and sub-optimal experiences of experts 

(within-subjects design), as discussed next. 

The Role of Neural Efficiency in Optimal Performance Experiences 

We found a non-significant effect for the studies’ “main types of analysis moderator”. 

Specifically, we found a non-significant increase in alpha and non-significant decrease in 
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theta activity for between-subject studies, in respect to within-subject designs. Theoretically, 

although non-significant, this pattern of results is congruent with the neural efficiency 

hypothesis (Del Percio et al., 2008; Dunst et al., 2014; Grabner et al., 2006). 

Methodologically, this finding suggests that both within- and between-subjects can be used to 

study the neural markers of skilled performance. Nevertheless, we suggest that more within-

subject studies with experts should be conducted so that we can not only understand what the 

differences between experts and novices are, but also how experts have learned to control 

their mental states in order to consistently perform at optimal levels (see Ericsson, 2007; 

2020). From an applied standpoint, we reason that long-term neurofeedback protocols with 

expert individuals are important. We suggest these should include assessment of the 

performers’ overall neural efficiency for a given task (see also net efficiency; Hatfield et al., 

2020), as a form to monitor mental fatigue over the course of a competitive season. Studies 

on the neural markers of mental fatigue is also a ripe area for future research (Pageaux & 

Lepers, 2018). Additional areas for future research, and the limitations and strengths of the 

present study are discussed next. 

Limitations, Strengths and Future Research 

This paper is not without limitations. First, as is the case with meta-analytical work, 

there is a chance that we might have missed relevant papers. However, as our analysis 

revealed, at least 36 new papers meeting our inclusion/exclusion criteria would be needed to 

bring the differences reported here to a trivial effect for a criterion of Hedge’s g = .10. 

Previous comprehensive narrative reviews of the field have not cited an excess of 36 papers 

reporting changes in brain power in relation to performance in self-paced sports (Bertollo et 

al., 2020; Hatfield et al., 2020; Holmes & Wright, 2017).   

Second, we were unable to examine the moderating role of different types of self-

paced sports on the linkage between brain rhythms and performance. We ended-up with a 
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mixed-bag of self-paced sports (i.e., archery, basketball free throwing, golf putting, pistol 

shooting, and rifle-shooting) that could not be meaningfully (from a motor control and 

statistical standpoint) compared. Accordingly, where possible, future meta-analytical reviews 

should examine the moderating role of sport type and its relation between brain rhythms and 

performance to allow for the development of sport-specific interventions.  

Third, our study was narrow in focus, which is both a weakness and a strength. We 

only examined experimental studies measuring changes in brain power between experts and 

novices, or optimal and sub-optimal performance experiences, in self-paced sports. 

Noteworthy, we set a stringent inclusion criterion because of the recent boom of brain 

imaging papers in sports, several of which are not experimental nor target optimal 

performance experiences (Holmes & Wright, 2017). We reasoned that only stringent 

inclusion criteria would allow for an in-depth analysis of research relevant to the 

development of neurofeedback interventions for performance optimization in sports. 

Although previous narrative reviews covering different EEG methods of analysis and other 

brain imaging techniques might have achieved greater breadth of knowledge, they did not 

quantify the impact of brain rhythms on optimal performance in self-paced sports, as we have 

done here. To this extent, future meta-analyses of externally-paced sports are warranted, 

especially given that mobile EEG systems have been increasingly used to study dynamic 

sport settings (e.g., Christie, Di Fronso, Bertollo, & Werthner, 2017; Ladouce, Donaldson, 

Dudchenko, & Ietswaart, 2017). A future meta-analytical work examining studies on brain 

coherence in both self-paced and externally-paced sports is warranted given that coherence 

neurofeedback is also relevant for performance optimization in sports (Pacheco, 2016; Strack 

et al., 2011; Xiang et al., 2018). 

Fourth, due to the available data, we averaged ESs across brain lobes and were unable 

to examine hemispherical differences and compare all lobes with one another. Thus, per 
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current standards of reporting (Appelbaum et al., 2018), we urge authors to provide complete 

statistical reports including significant and non-significant findings for all variables of 

interest (e.g., all brain waves and sites studied). Such complete reports will allow future meta-

analyses in sports to examine potential differences across hemispheres and reach enough 

power for multi-comparison among the various brain lobes. 

Conclusions 

Our findings advance the literature by revealing the role of alpha and theta activity in 

optimal performance, with respect to the theoretical notions of neural efficiency, transient 

hypofrontality and neural proficiency. Previous narrative reviews have speculated that neural 

efficiency, transient hypofrontality, and neural proficiency were important to optimal 

performance (Bertollo et al., 2020; Hatfield et al., 2020), and even at odds with one another 

(Vickers & Williams, 2017). However, our analyses revealed that these neural mechanisms 

might be complementary to each other and underpin optimal performance experiences in self-

paced sports. Specifically, we observed that (a) a relaxed (increased alpha activity) and 

focused (increased theta activity) brain is needed for optimal performance, and thus both the 

activation and the down-regulation of brain areas is needed for optimal performance (i.e., 

neural proficiency); (b) the frontal lobe is likely working at the highest alpha (relaxation) and 

lowest theta (attentional control) activity possible (i.e., transient hypofrontality) and that is 

likely why athletes report running in automatic and feeling complete focus and immersion on 

the task at hand when experiencing optimal performance; and (c) for the same given task 

experts show non-significant  higher levels of relaxation (increased alpha) and lower levels of 

attentional control (reduced theta waves) across the cortex, in comparison to novices (i.e., 

neural efficiency). Finally, we learned that athletes’ brains must be relaxed and focused but 

not too focused (i.e., an increase in alpha and theta activity across the cortex) across all stages 

of movement action, namely the planning (pre-movement), execution (during movement), 
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and feedback stages (post-movement). Given these findings, neurofeedback protocols should 

teach athletes how to control (increase and decrease) their alpha and theta activity across the 

whole brain and across movement stages (the pre, during and post), and particularly in the 

frontal lobe. 
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Table 1  

Detailed description of inclusion/exclusion criteria according to the Population, Exposure/Intervention/Comparison, Outcomes, and Study 

Design (PE/I/COS) Framework 

 

 

Search Strategy Details  

Inclusion criteria P: Adults and adolescents  

 E/I/C: Self-paced precision sports involving comparison between 

experts and novices or between optimal and sub-optimal performances  

 O: EEG power frequency spectrum analysis 

 S: Observational studies (e.g., cross-sectional studies, longitudinal 

studies, case control), non-/randomized control trials 

  

Exclusion criteria P: N/A 

 E/I/C: Studies on open skills sports and based on learning paradigm     

 O: Studies that did not include EEG power frequency spectrum 

analysis (e.g., coherence, event-related potential, even synchronization 

analysis) 

 S: Qualitative studies, reviews, letters, book chapters, articles without 

quantitative data, retractions    

  

Language English 

  

Time filter None 

  

Database ProQuest Central, ProQuest Psychology Journals, PsycARTICLES, 

PsycINFO, SPORTDiscus, MEDLINE, Scopus, Web of Science 



NEURAL MARKERS OF OPTIMAL PERFORMANCE      24 

 

Table 2 

Summary Table 

Author Participants* Sport Age Years of 

experience 

Sampling 

rate 

Channels Design Artifact 

removal 

Impedance Overall results 

Baumeister 

et al. (2008) 

Skilled 

males = 9 

Novice  

males = 9 

Golf 

putting 

Experienced 

(M = 26.4, 

SD = 4.1);  

Novices  

(M = 24.6, 

SD = 3.4) 

7.6 years  

(SD = 4.2) 

  

Novices: no 

experience 

512Hz 10-20 system 

(Fz, F3, F4, Cz, 

C3, C4, Pz, P3, 

P4, T3, T4, T5, 

T6, Cz as a 

reference) (14 

electrodes) 

Between: 

Expert vs. 

novice 

paradigm 

Yes 20MΩ Experts showed 

higher theta and 

alpha power in 

comparison with 

novices. 

Bertollo et 

al. (2016) 

Elite experts 

Males = 6 

Females = 4 

Pistol 

Shooting 

18-29  

(M = 22.8, 

SD = 3.5) 

14.5 years 

(SD = 4) 

1024Hz 10-20 system 

(32 electrodes) 

Mixed:  

4 types of 

performance  

Yes 10KΩ Higher alpha and 

theta power were 

observed for better 

performance. 

Cheng et al. 

(2015) 

Experts = 14 

Novices = 11 

Dart-

throwing 

Experts  

(M = 41.86, 

SD = 13.79) 

Novices  

(M =22.04, 

SD = 2.09) 

13.93 years 

(SD =10.02) 

500Hz 10-20 system 

(Fz, F3, F4, C3, 

C4, T3, T4, Pz, 

P3, P4, O1, 

O2)  

(12 electrodes) 

Between: 

Expert vs. 

novice 

paradigm 

Yes 10KΩ Experts showed 

higher power for 

alpha and beta 

power; no 

difference in 

power for theta 

power compared 

to novices.  

Chuang et 

al. (2013) 

Experienced 

males = 15 

Basketball 

free throw 

M = 21.74, 

SD = 1.63 

6.95 years 

(SD = 2.53) 

NR 10-20 system; 

F3, F4, Fz, P3, 

P4, Pz, Cz, 

Fpz, A1, A2 

(10 electrodes) 

Within: 

successful vs. 

unsuccessful 

performance 

Yes 5KΩ Higher theta 

power was 

observed for better 

performance. 

Crews et al. 

(1993) 

Males = 17 

Females = 17 

 50% = 

amateurs, 

50% = 

professionals 

Golf 

putting 

M = 29.5, 

Mmales = 31.0, 

Mfemales = 

28.0 

M = 15.9, 

Mmales = 

16.06,  

Mfemales = 

15.8 

250Hz Biolab System; 

10-20 system 

(T3, T4, C3, 

C4) 

(4 electrodes) 

Mixed:  

40 putts 

Yes 5KΩ Increased alpha 

power was 

observed for better 

performance.  
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Hunt et al. 

(2013) 

Males = 15 

Females = 2 

Shooting 18-38  

(M = 22.17, 

SD = 4.79) 

No 

competitive 

shooting 

experience 

1000Hz 10-20 system 

F3, F4, C3, C4, 

P3, P4, T3, T4, 

O1, O2 

(10 electrodes) 

Between: 

Winning vs. 

losing group 

Yes 10KΩ The winning 

group showed less 

alpha and theta 

power than the 

losing group.  

Loze et al. 

(2001) 

Males = 6 Air-pistol 

shooting 

M = 36.4,  

SD = 2.4 

4 years 

international 

experience 

140Hz 10-20 system 

(Oz, T3, T4) 

(3 electrodes) 

Within:  

Best vs. worst 

shots  

Yes 5KΩ Higher alpha 

power was 

observed for better 

performance. 

Salazar et 

al. (1990) 

Males = 13 

Females = 15 

Archery 13-36  

(M = 21) 

National 

archery team 

250Hz 10-20 system 

(T3 - left 

temporal; T4 - 

right temporal) 

(2 electrodes) 

Within: 

Best vs. worst 

shots  

Yes NR Greater alpha and 

beta power were 

observed for better 

performance. 

*All participants were right-handed.  

Note: M = mean, SD = standard deviation, NR = not reported; F = Frontal lobe; C = Central lobe; T = Temporal lobe; P = Parietal lobe; O = Occipital lobe.    
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Table 3 

 Cohen’s d, Hedge’s g, 95% Confidence Intervals, Q Statistics, and forest plot for the studies included in the analysis for Alpha Power (8-13Hz).   

Study 
Effect Size (d) per ROI Overall 

ES (g) 
95% CI 

Hedge’s g 

[95% CI] 
Q 

 

WB F C T P O 

Baumeister et al. (2008)     1.34  1.28 [0.30, 2.25]         

Bertollo et al. (2016)  1.22   1.22  1.17 [0.25, 2.08]         

Cheng et al. (2015)  1.69 1.19  1.20 .23 1.04 [0.23, 1.86]         

Chuang et al. (2015)  1.00     0.98 [0.28, 1.67]         

Crews & Landers (1993) 1.15      1.12 [0.41, 1.83]         

Hunt et al. (2013) .22      0.22 [-0.41, 0.84]         

Loze et al. (2010)    .14  .16 0.14 [-0.91, 1.18]         

Salazar et al. (1990)    -.89   -0.86 [-1.62, -0.11]         

   

 .62* 

[0.10, 1.15] 

24.31**       

*p < .05; ** p < .001 

Note: Effect size for Cohen’s d; ROI = Region of Interest; WB = Whole Brain, F = Frontal lobe, C = Central lobe, T = Temporal lobe, P = Parietal lobe, O = 

Occipital lobe; Overall ES for Hedge’s g; 95% CI = 95% Confidence Interval for Hedge’s g;  Q = Q statistics. 
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Table 4 

Cohen’s d, Hedge’s g, 95% Confidence Intervals, Q Statistics, and forest plot for the studies included in the analysis for Theta Power (4-8Hz).   

Study 
Effect Size (d) per ROI Overall 

ES (g) 
95% CI 

Cohen’s g 

[95% CI] 
Q 

 

WB F C T P O 

Baumeister et al. (2008)  1.08     1.03 [0.09, 1.97]        

Bertollo et al. (2016)  1.38 1.20    1.23 [0.31, 2.16]        

Cheng et al. (2015)   -0.08    -0.08 [-0.84, 0.69]        

Chuang et al. (2015)  0.21     0.21 [-0.45, 0.86]        

Hunt et al. (2013) 0.86      0.84 [0.19, 1.49]        

Salazar et al. (1990)    1.47   1.43 [0.62, 2.24]        

    .74* 

[0.26, 1.21] 

11.17*      

*p < .05 

Note: Effect size for Cohen’s d; ROI = Region of Interest; WB = Whole Brain, F = Frontal lobe, C = Central lobe, T = Temporal lobe, P = Parietal lobe, O = 

Occipital lobe; Overall ES for Hedge’s g; 95% CI = 95% Confidence Interval for Hedge’s g;  Q = Q statistics. 

 

 

 

 

 

  



NEURAL MARKERS OF OPTIMAL PERFORMANCE      28 

 

 

 

 

 

Figure 1. PRISMA Flow-Chart: Search Results 

Note: Duplicates were omitted during the search.  
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Figure 2. Funnel Plots of Standard Errors and Hedge’s g for Alpha (left panel) and Theta (right panel). 
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Table 5 

Moderator Analyses for Alpha and Theta Power for Main Analysis, Time of Assessment, and Hypofrontality. 

Alpha (10-13Hz) Theta (4-7Hz) 

Moderator 
Overall 

ES (g) 
95% CI Q  

Overall 

ES (g) 
95% CI Q 

Main Analysis 

Type 

Between-subjects .89* [0.13, 1.64]   .60 [-0.15, 1.32]  

Within-subjects .35 [-0.42, 1.12]   .91* [0.17, 1.65]  

Overall .62* [0.09, 1.16]  0.95  .75* [0.22, 1.27] 0.37 

Time of 

assessment 

Before 

performance 

.45 [-0.13, 1.03]   .58* [0.03, 1.14]  

Across 

performance 

1.22* [0.15, 2.30]   1.13* [0.24, 2.02]  

Overall .70 [-0.01, 1.40] 1.53  .74* [0.26, 1.23] 1.06 

Hypofrontality Frontal lobe 1.06* [0.25, 1.87]   .38 [-0.18, 0.93]  

Other lobes  .36 [-0.27, 0.99]   1.08** [0.52, 1.64]  

Overall .66 [-0.02, 1.34] 1.79  .76* [0.04, 1.41] 3.01 

 

*p < .05 

** p < .001 

Note: Overall ES for Hedge’s g; 95% CI = 95% Confidence Interval for Hedge’s g; Q = Q statistics. 
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