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ABSTRACT 

Photocatalysis is a promising technology to treat dilute phenol-Cr(VI) mixture, 

where photo-induced electrons are commonly thought of as the main active species for 

Cr(VI) reduction. However, it generally depends on the surface adsorption to achieve 

efficient electron transfer. Meanwhile, the possible contribution of reductive quinone 

derivatives oxidized from phenol to Cr(VI) reduction has been rarely explored. The key 

is to explicitly understand the relation between the phenol oxidation pathway and Cr(VI) 

reduction. Herein, Ag/AgCl/MIL-101(Fe) prepared by directly loading Ag 

nanoparticles on MIL-101(Fe) was applied to the joint treatment of phenol and Cr(VI). 

The role of quinone derivatives in reducing Cr(VI) was revealed by excluding the 

surface adsorption. During the phenol oxidation, ·OH radicals were more consumed in 

the initial stage for the ring-opening of phenol. Meanwhile, 1O2 evolved from ·O2
- 

gradually caused the accumulation of reductive quinone intermediates, which 

dramatically accelerated the Cr(VI) reduction afterwards. This study demonstrates the 

significance of controlling the evolution process of active oxygen species for the joint 

photocatalytic treatment of phenol-Cr(VI) mixture. 

Keywords: Photocatalysis; Ag/AgCl/MIL-101(Fe); Cr(VI) reduction; phenol 

degradation; quinone derivatives; 1O2 
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1. INTRODUCTION 

Phenol and Cr(VI) are the commonly coexistent pollutants discharged from the 

leather tanning and wood products industries.1-5 Reactions between them can reduce 

Cr(VI) to less toxic Cr(III) but generally occurs under strongly acid conditions with 

high concentrations.6, 7 Photocatalysis has been commonly used to reduce Cr(VI) and 

degrade phenol with comparatively lower concentrations;8-12 photo-induced electrons 

are thought as the main active species for Cr(VI) reduction.13-16 Therefore, 

photocatalysts with high activity generally have enhanced hole-electron separation 

efficiency.17-22 This case is not vice versa since the electron-induced Cr(VI) reduction 

requires efficient surface adsorption of anion Cr(VI) on the photocatalyst, which 

restricts the photocatalysts with low isoelectric points to strongly acid conditions.23-26 

Meanwhile, the quinone derivatives oxidized from phenol, including hydroquinone 

(HQ) and semiquinone (SQ), are effective for Cr(VI) reduction. It is highly possible 

that these intermediates could also contribute to the Cr(VI) reduction during 

photocatalysis, which is however, hard to determine since the concentration may be 

dynamically varied with the reaction phase. For example, quinone derivatives can be 

formed in the presence of different active oxygen species including ·OH,27, 28·O2
-,29, 30 

and 1O2,
31-33 but may undergo fast ring-opening reaction when further attacked by 

aggressive ·OH radicals.34-37 On the other hand, the active oxygen species of ·OH, ·O2
- 

and 1O2 in the photocatalytic system can mutually transform to each other under certain 

conditions,38, 39 which further complicates the situation about exploring the reduction 

effect of quinone derivatives. An explicit understanding of the role of quinone 

derivatives in reducing Cr(VI) is necessary to help us extrapolate to the complex 

systems of waste phenol-Cr(VI) mixtures, which requires the fine unraveling of the 

formation-evolution of active oxygen species. 

MOFs with high specific surface area and highly tunable structure characteristics 

have shown promising potential in photocatalytic water decontamination.40-44 The 

abundant structure characteristics of MOFs provide diversified options for the tuning 

of interfacial interaction.45-48 Herein, Ag/AgCl/MIL-101(Fe) was fabricated by simply 
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loading Ag nanoparticles on MIL-101(Fe) and applied to the photocatalytic treatment 

of phenol-Cr(VI). It showed a cooperation effect for the phenol degradation and Cr(VI) 

reduction with excellent cyclic stability under weak acid to near-neutral conditions. The 

evolution of active oxygen species including ·OH and 1O2 under visible light irradiation 

and their relation with the phenol oxidation and Cr(VI) reduction were explicitly 

explored. The former caused the fast ring-opening of phenol in the initial phase, and 

the latter caused the gradual accumulation of quinone derivatives. The contribution of 

quinone derivatives to Cr(VI) reduction was identified besides the photo-induced 

electrons. This study provides a new way for photocatalytic Cr(VI) reduction in mixed 

phenol-Cr(VI) system by regulating the photocatalytic oxidation pathway of phenol. 

 

Scheme 1. Synthesis of Ag/AgCl/MIL-101. 

2. EXPERIMENTAL SECTION 

2.1. Chemicals and Materials. N, N-dimethyl formamide (DMF, 99.8wt%), 1,4-

benzenedicarboxylate (H2BDC, 99wt%), silver nitrate (AgNO3, 99.8wt%) and 

methanol were purchased from Aladdin industrial corporation (Shanghai, China). 

Anhydrous ethanol, potassium dichromate, iron(III) chloride hexahydrate (FeCl3·6H2O, 

99wt%) and polyvinylpyrrolidone (PVP, K-30) were purchased from Sinopharm 

Chemical Reagent Co., Ltd., China. All the chemicals were used without further 

purification.  

2.2. Synthesis of Ag nanoparticles. In the synthesis process of Ag nanoparticles (NPs), 
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85 mg AgNO3 and 60 mg PVP were used to prepare Ag NPs for 0.5% Ag/AgCl/MIL-

101(Fe), 170 mg AgNO3 and 120 mg PVP were used to prepare Ag NPs for 1% 

Ag/AgCl/MIL-101(Fe), and 340 mg AgNO3 and 180 mg PVP were used to prepare Ag 

NPs for 2% Ag/AgCl/MIL-101(Fe). In a typical procedure, AgNO3 and PVP were 

added to two beakers with 20 mL methanol, respectively. The AgNO3 solution was then 

added into the PVP solution drop by drop. Finally, the mixture was heated to 75 °C 

under magnetic stirring and maintained for 2 h (Scheme 1, Process 1). When the 

reaction was complete, the solution was cooled to room temperature and used for the 

next step.   

2.3. Synthesis of MIL-101(Fe). The MIL-101(Fe) was fabricated using a simple 

solvothermal method reported previously.49 In a typical procedure, 0.766 g H2BDC and 

1.246 g FeCl3·6H2O were added to 40 ml DMF respectively. After stirring 15 min, the 

mixture was transferred to a Teflon-lined stainless steel autoclave and placed in an oven 

at 120 °C for 18 h (Scheme 1, Process 2). The obtained products were washed with 

DMF, deionized water and ethanol, and dried prior to use. 

2.4. Synthesis of Ag/AgCl/MIL-101(Fe). 40 mL as-synthesized Ag NPs solution was 

added drop by drop into 40 mL DMF of MIL-101(Fe) (0.1 g) under vigorous stirring, 

and then the mixed solution was further stirred at room temperature for 2 h. 

Subsequently, the sample was centrifuged at 10000 rpm for 5 minutes, washed with 

numerous ethanol and ultrapure water, and dried at 60 oC in a vacuum oven (Scheme 1, 

Process 3). The dark yellow solid powder obtained is Ag/AgCl/MIL-101(Fe). Ag/AgCl 

was prepared from FeCl3 and Ag NPs, and used as the control sample.  

2.5. Photocatalytic Tests. The Cr(VI) reduction and the phenol degradation were tested 

under visible-light irradiation by using a xenon lamp equipped with a light filter (≥420 

nm, 300 W). In a typical experiment, 50 mg Ag/AgCl/MIL-101(Fe) was suspended in 

50 mL of 10 mg/L Cr(VI) and phenol solution. The pH was tuned to 6 to prevent the 

formation of precipitation. 50 The mixture was stirred for 30 min without light to reach 
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the adsorption-desorption equilibrium. During visible-light irradiation, a certain 

amount of liquid was taken out to analyze every 15 minutes. The concentration of Cr(VI) 

was determined by the diphenylcarbazide (DPC) method. The concentration of phenol 

was measured by a high-performance liquid chromatography (HPLC) system. 

2.6 Characterization. Transmission electron microscopy (TEM) was conducted on a 

JEOL JEM-2100EX electron microscope, operated at an accelerating voltage of 200 kV. 

X-ray diffraction (XRD) measurements were performed with a Rigaku Ultima IV (Cu 

Ka radiation, λ=1.5406 Å) in the range of 5-80° (2θ). The instrument employed for X-

ray photoelectron spectrum (XPS) measurements was a PerkinElmer PHI 5000C ESCA 

system with Al Kα radiation operated at 250 W. The UV-vis absorption spectroscopy 

was measured with a Shimadzu UV-2450 spectrometer. Phenol values were monitored 

using a SHIMADZU SPD-M20A reverse-phase high-performance liquid 

chromatography (HPLC) system at a flow rate of 1 mL·min-1 with a RX-C18 column 

(4.6 × 250 mm, 5 μm). The detection of radicals was carried out on a 100G-

18KG/EMX-8/2.7 Electro-Spin Resonance spectrometer. 

3. RESULTS AND DISCUSSION 

 

Figure 1. (a-d) TEM images of MIL-101(Fe), 0.5% Ag/AgCl/MIL-101(Fe), 1% Ag/AgCl/MIL-

101(Fe) and 2% Ag/AgCl/MIL-101(Fe); (e) XRD patterns of different samples; (f) XRD pattern 

of Ag/AgCl. 

3.1. Structure Characterization. Ag/AgCl/MIL-101(Fe) heterojunction was 

fabricated via the reaction between Ag NPs and the Fe(III)-Cl in the framework of MIL-

101(Fe). As shown in Figure 1a, the TEM images of MIL-101(Fe) show an 

approximately hexagonal shape with an edge length of ca. 550 nm. After the loading of 
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Ag nanoparticles, the hexagonal shape becomes less ordered with coarsened and 

blurred edges, indicating the possible reaction between Ag and MIL-101(Fe) (Figure 

1b-d, S1). The NPs have an average size of ca. 20 nm and become more agglomerate at 

higher loading content. According to the high-resolution TEM (HRTEM) image of 

sample 1% Ag/AgCl/MIL-101(Fe), the loaded NPs have lattice fringes of d=0.201 nm 

and d=0.277 nm (Figure S2), corresponding to the Ag (2 0 0) and AgCl (2 0 0) planes, 

respectively. These results demonstrate the formation of Ag/AgCl composites on MIL-

101(Fe). 

 
Figure 2. (a) XPS survey spectrum of 1% Ag/AgCl/MIL-101(Fe); (b) Ag3d spectra of 1% 

Ag/AgCl/MIL-101(Fe); Fe2p spectra of (c) MIL-101 and (d) 1% Ag/AgCl/MIL-101. 

The XRD measurement was performed to characterize the crystal structures of 

samples loaded with different amounts of Ag. The obvious peaks at 27.7°, 32.4°, 46.3°, 

54.9° and 57.7° correspond to the (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes of 

AgCl (Figure 1f, JCPDS No. 31-1238). The amplified signal at 38.4° is assigned to the 

(1 1 1) crystal plane of Ag (JCPDS No. 04-0783). No other obvious characteristic peaks 

of Ag NPs can be observed (Figure 1e, f), which may be attributed to the small size or 

small amounts of Ag, suggesting most of Ag should be oxidized to AgCl. The above 

results further confirm that the Ag/AgCl/MIL-101(Fe) ternary composite should be 

formed by simply loading Ag on MIL-101(Fe). The loading of Ag/AgCl is further 
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verified by the significantly decreased specific surface area and pore size of MIL-101 

(Figure S3). The XPS survey spectrum confirms Ag, Fe and Cl species in the composite 

(Figure 2a). The small peaks at 367.5 and 373.9 eV are attributed to metallic Ag (Figure 

2b). The MIL-101(Fe) only shows the peaks of Fe (III) at 711.3 eV (Figure 2c). After 

the loading of Ag, the signal of Fe (II) (Figure 2d) appears as characterized by the peak 

at 710.1 eV (ca. 9.0%), which should be attributed to the reaction shown in Eq. 1. 

MIL-101(Fe(III)) + Ag0 ⟶ Ag/AgCl/MIL-101(Fe(ΙΙ, ΙΙΙ))                     (1) 

The UV-Vis absorption spectra of MIL-101(Fe) and Ag/AgCl/MIL-101(Fe) 

composites are shown in Figure S4. The absorption band around 230 nm is attributed 

to the charge transfer from O to Fe in the octahedral coordination environment.51 The 

absorption from 320 nm to the visible region is derived from the charge transfer from 

the ligand to the Fe-O cluster (LMCT).52 AgCl has a strong light absorption in the UV 

region and the absorption in the visible region is attributed to the surface plasmon 

resonance (SPR) effect of noble Ag.  

 
Figure 3. (a) Cr(VI) reduction and (b) phenol degradation via different samples in the phenol-

Cr(VI) mixture; cyclic test for (c) Cr(VI) reduction and (d) phenol degradation in the phenol-

Cr(VI) mixture; (e) Ag3d and (f) Fe2p XPS spectra of 1% Ag/AgCl/MIL-101(Fe) after reaction. 

3.2. Photocatalytic test. The photocatalytic test was carried out in a mixed solution 

containing 10 mg/L of Cr(VI) and 10 mg/L of phenol under the irradiation of a 300 W 

xenon lamp equipped with a 420 nm filter. The photocatalytic reduction efficiency of 
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Cr(VI) first increases with the increasing amount of Ag and reaches almost 100% on 

sample 1% Ag/AgCl/MIL-101(Fe) (Figure 3a, S5). It is noted that the Cr(VI) reduction 

is obviously accelerated after irradiation for 30 min. Meanwhile, either Ag/AgCl or 

MIL-101(Fe) with the amount equivalent to the counterparts in the Ag/AgCl/MIL-

101(Fe) composite shows negligible activity for Cr(VI) reduction, implying the activity 

should be attributed to the cooperative effect between Ag/AgCl and MIL-101(Fe). For 

the phenol degradation, sample 1% Ag/AgCl/MIL-101(Fe) also shows the best activity 

(Figure 3b), where ca. 70% of phenol can be degraded within the first 30 min. From the 

linear portion of this plot, the apparent quantum efficiency of phenol is 0.31% 

(Supplementary Text S1). In comparison, the loading of other noble metals including 

Au and Pt results in less efficient phenol degradation and Cr(VI) reduction (Table S1). 

To understand the photocatalytic process, the Cr(VI) reduction and phenol degradation 

were also carried out in the single systems (Figure S6a). The Cr(VI) reduction is 

significantly retarded in the absence of phenol (Figure S6b). In comparison, the 

degradation efficiency of phenol is less decreased (Figure S6c). Specifically, compared 

with the single-pollutant system, the Cr(VI) reduction and phenol oxidation are 

increased by 82% and 24% in the mixed system, respectively. The above results 

demonstrate the cooperative effect between Cr(VI) reduction and phenol oxidation, and 

the Cr(VI) reduction is more efficiently promoted in the mixed system. 

In order to evaluate the stability of the composites, cyclic experiments were 

performed over 1% Ag/AgCl/MIL-101(Fe). The activity can be well preserved after 

five cyclic experiments (Figure 3c, d). A slightly decreased activity should be due to 

the unavoidable sample loss during recycling. It is noted from the XPS spectrum that 

the peaks of metallic Ag increase after the reaction (Figure 3e), accompanied by the 

improved content of the Fe(II) (ca. 18.2%, Figure 3f), which, however, keeps almost 

unvaried from the second run (Figure S7). This result demonstrates the chemical 

valences of Fe and Ag species changed during the first run but soon reached equilibrium. 

However, the improved Ag content seems contradictory to the appearance of more Fe(II) 

since the formation of Ag is supposed to be attributed to the electrons transferred from 
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MIL-101(Fe), and the remained hole in MIL-101(Fe) is expected to form Fe(III). The 

specific reason for the valence variation in the first run will be discussed later. 

Meanwhile, negligible content variation is observed through the XPS survey spectra 

after the first-run reaction, which excludes the possibility and influence of the particle 

leaching (Figure S8). The leaching-resistance of the Ag from the composite should be 

attributed to the chemical anchoring of Ag/AgCl on MIL-101(Fe) through the Ag-Cl-

Fe bond, which should also be beneficial to the interfacial carrier transfer. The highest 

and photocurrent and minimum impedance observed from 1% Ag/AgCl/MIL-101(Fe) 

verify the promoted charge transfer between different components through the Ag-Cl-

Fe bond (Figure S9). 

 
Figure 4. (a) EPR spectra for the detection of ·OH (water, DMPO); ·O2

- (methanol, DMPO); 
1O2 (water, 2, 2, 6, 6-tetramethylpiperidine (TEMP)); (b) phenol degradation and (c) Cr(VI) 

reduction with different radical scavengers in mixed systems.  

3.3. Determination of active species. EPR was used to confirm the active species of 

phenol oxidation and Cr(VI) reduction (Figure 4a). Under visible-light irradiation, 

active oxygen species, including radicals ·OH and ·O2
-, and non-radical 1O2, can all be 

detected from the Ag/AgCl/MIL-101(Fe) composite. Photocatalytic experiments were 

carried out in the presence of different sacrificial agents to analyze the main active 

species responsible for Cr(VI) reduction and phenol degradation (Figure 4b, c). P-

benzoquinone (PBQ), sodium oxalate (Na2C2O4), tert-butanol (TBA), 2, 2, 6, 6-

tetramethylpiperidine (TEMP), and sodium iodate (NaIO3) were used to capture ·O2
-, 

holes, ·OH, 1O2 and electrons in the solution. For the phenol oxidation, the prohibition 

effect by hole capturer Na2C2O4, ·OH capturer TBA, and ·O2
- capturer PBQ follows 

the order of Na2C2O4 > TBA > PBQ (Figure 4b). Specifically, the former two show 

comparable prohibition effects and seem far more efficient than PBQ, 
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demonstrating ·OH evolved from holes should be the main active species for phenol 

degradation. Moreover, the significantly decreased activity for phenol in the presence 

of NaIO3 should be ascribed to the oxidation of Ag by the hole that remained in the 

composite, demonstrating the essential role of the surface plasmon resonance (SPR) 

effect. A similar effect of the capturer agent on the phenol degradation was also 

observed in the single system (Figure S10). Based on the above results, ·OH radical 

should be the main active species for phenol degradation.  

 

Figure 5. (a) HPLC chromatograms of reaction products of phenol degradation in the 1% 

Ag/Ag/MIL-101(Fe)/Cr(VI)/phenol/light system at 30 min. (PBQ (1 mM), TBA (2 mM), 

TEMP (5 mM)), (a) reserve time 0-8min, (b) blank phenol, PBQ and HQ. 

For the Cr(VI) reduction (Figure 4c), TEMP most efficiently retards the Cr(VI) 

reduction, suggesting 1O2 is the key species to induce the reduction. The contribution 

of Fe(II) to the Cr(VI) reduction should be excluded since more Fe(II) is formed during 

the first run, and the content keeps stable afterwards. It was reported HQ could be 

oxidized from phenol by 1O2 (Eq. 2).31, 34, 53 It is highly possible that HQ may cause the 

significantly promoted Cr(VI) reduction, which is consistent with the lagged Cr(VI) 

reduction compared with the phenol degradation. This consumption was supported by 

the enhanced Cr(VI) reduction in the presence of HQ under dark conditions (Figure 

S11). Moreover, according to the previous report, the reaction between HQ and Cr(VI) 

can successively produce SQ and PBQ (Eq. 3, 4).54 The HPLC analysis of the product 

after 30 min irradiation in the presence of TEMP indicates the disappearance of PBQ 

signal (Figure 5), which further verifies the above consumption that 1O2-induced HQ is 

responsible for the Cr(VI) reduction. The addition of PBQ to the photocatalysis system 

helps accelerate the Cr(VI) reduction within the first 15 minutes but decreases the 
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overall efficiency. It is assumed that PBQ consumes ·O2
- and produce SQ, which is also 

active for the Cr(VI) reduction (Eq. 4, 5); the gradually retarded Cr(VI) reduction 

suggests 1O2 should be transformed from ·O2
- since the consumption of ·O2

- by PBQ is 

unfavorable to the formation of 1O2. The decreased reduction rate of Cr(VI) in the 

presence of electron-capturer NaIO3 should be related to the less efficient formation 

of ·O2
-, further confirming the evolution of 1O2 from ·O2

-. The slightly decreased 

reduction rate in the presence of TBA suggests the formation of quinone derivatives 

should be partly caused by ·OH. It was previously reported that ·OH, together with O2, 

could also oxidize phenol to HQ (Equation 6).54 However, the presence of ·OH capturer 

TBA in the mixed reaction system does not cause the disappearance of the PBQ signal 

in the HPLC chromatogram (Figure 5a), demonstrating HQ should be mainly oxidized 

from phenol by 1O2. The accelerated Cr(VI) reduction in the presence of Na2C2O4 

should result from the formation of ·CO2
- radicals with reducibility to Cr(VI).55 

O2
1 + Phenol →  HQ                                               (2) 

Cr(VI)  + HQ ⇆ Cr(III)  + SQ                                       (3) 

Cr(VI)  + SQ ⇆ Cr(III)  + PBQ                                      (4) 

PBQ + · O2
−  → SQ                                                 (5) 

∙ OH +  O2 + Phenol → HQ + HO2 ∙                                 (6) 

 

Figure 6. (a) Mott-Schottky plots for MIL-101(Fe) in a 0.1 M Na2SO4 aqueous solution; (b) 

bandgap determination for (MIL-101(Fe). 

To understand the relation between the carrier transfer in the Ag/AgCl/MIL-101(Fe) 

composite and the evolution of active oxygen species, the electrochemical 

characteristics were further studied through Mott-Schottky measurements performed at 

the frequencies of 2000 and 3000 Hz. The intersection point is independent of the 
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frequency and the flat band position determined from the intersection is -0.18 V (Figure 

6a), which is approximately used as the conduction band minimum (CBM). The 

bandgap of MIL-101(Fe) is 2.77 V according to the Tauc plot (Figure 6b), and the 

calculated valence band maximum (VBM) is 2.59 V.56-58 The CBM and VBM levels of 

AgCl are -0.06 and 3.19 V according to the previous reports,59 indicating AgCl can not 

be excited by the visible light. According to the improved Ag content during the first-

run photocatalytic process, it is assumed the visible-light-excited MIL-101(Fe) may 

first transfer electrons to AgCl in the initial stage of photocatalysis, quickly improving 

the Ag content and enhancing the SPR effect of the composite. The electrons excited 

from plasmonic Ag NPs then transfer to the conduction band of AgCl and form ·O2
-. 

Meanwhile, the electrons from MIL-101(Fe) are supposed to transfer to Ag and 

compensate the hole, stabilizing the electronic state of plasmonic Ag. The hole that 

remained in MIL-101(Fe) is supposed to result in a higher Fe(III) after the 

photocatalytic reaction. However, the contents of Fe(II) and Fe(III) sample keeps stable 

in the subsequent cyclic reactions. It is thus assumed that the in situ formed Fe(III) 

should further react with ·O2
-, simultaneously forming 1O2 and reducing Fe(III) to Fe(II) 

(Eq. 7, 8). 

Fe(II) + h+  → Fe(III)                                              (7) 

Fe(III) +  · O2
−  ⟶ Fe(II) +  O2

1                                     (8) 

Furthermore, the relation between 1O2 and Cr(VI) reduction was analyzed based on 

the above assumption. First, according to the LC-MS analysis, both quinone derivatives 

(HQ, PBQ, SQ) and ring-opening products (fumaric acid, maleic acid, oxalic acid, etc.) 

can be detected (Table S2, Figure S12). The possible step-by-step degradation process 

of phenol is shown in Figure S13. Quinone derivatives are commonly observed in the 

presence of active oxygen species, including ·OH and 1O2. Since ·OH radical has a 

higher oxidation potential, most of the quinone derivatives should be attacked by ·OH 

and more deeply oxidized to ring-opening products in the initial phase. The Cr(VI) 

reduction was dramatically promoted until over 70% of phenol was oxidized. Therefore, 
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it is assumed that with the consumption of holes to form ·OH in the initial stage, ·O2
- 

should be gradually accumulated and evolved into 1O2. More quinone derivatives are 

then produced, which promote Cr(VI) reduction in the lagged stage. 

The reducibility of quinone derivatives can be enhanced in the strong acidic system.6, 

7 To more explicitly demonstrate the effect of quinone derivatives on Cr(VI) reduction, 

the influence of pH variation on the Cr(VI) reduction was further explored during the 

photocatalysis. Sample 1% Ag/AgCl/MIL-101(Fe) used here has an isoelectric point of 

4.2 (Figure S14). The original pH value of the phenol-Cr(VI) mixture is 3.8 and tuned 

to 6.0 to exclude the electrostatic adsorption. The pH decreased to ca. 4.6 in the first 30 

min and finally reached 4.2 (Figure S15a), which verifies the photo-induced electron is 

not the main active species for Cr(VI) reduction. Photo-induced electrons should cause 

the slow Cr(VI) reduction in the initial stage through the random collision between 

photocatalyst and Cr(VI). The effect of decreased pH on the reduction ability of 

quinone derivatives was explored over the HQ-Cr(VI) mixture. The original pH value 

of HQ-Cr(VI) mixture was ca. 4.2 and tuned to 6.0 (Figure S15b). The Cr(VI) reduction 

efficiency was not obviously influenced by the initial pH value of the mixture, 

demonstrating the decreased pH in the phenol-Cr(VI) mixture under continuous 

irradiation is not responsible for the enhanced Cr(VI) reduction. 

 

Scheme 2. Proposed photocatalytic mechanism. 

3.4. Photocatalytic mechanism. Based on the above results, we proposed the 

photocatalytic mechanism of Ag/AgCl/MIL-101(Fe) for the combined treatment of 

phenol and Cr(VI) (Scheme 2). Under the irradiation of visible light, both Ag and MIL-
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101(Fe) can be excited. The hot electrons can be produced from Ag benefitting from 

the SPR effect and charged to AgCl, which lead to the formation of ·O2
-. The photo-

induced electrons can not efficiently reduce anion Cr(VI) due to the poor surface 

adsorption. Meanwhile, the electrons excited from MIL-101(Fe) can be charged to Ag 

and keeps it active under the visible light irradiation. The holes remained in MIL-

101(Fe) oxidize Fe(II) to Fe(III) and surface hydroxyls to ·OH. Fe(III) species further 

induces the formation of 1O2 from ·O2
-. Both ·OH and 1O2 oxidize phenol to quinone 

derivatives, and aggressive ·OH radicals further cause the ring-opening and 

mineralization of quinone derivatives, which are more consumed in the initial phase. 

Quinone derivatives oxidize from 1O2 are then accumulated and promote the Cr(VI) 

reduction in the lagged phase.  

4. CONCLUSION.  

In summary, ternary heterojunction Ag/AgCl/MIL-101(Fe) was formed by simply 

mixing Ag with MIL-101(Fe). This composite showed a cooperative effect for phenol 

degradation and Cr(VI) reduction. ·OH is responsible for the phenol degradation and 

the quinone derived from the reaction between phenol and 1O2 significantly promotes 

Cr(VI) reduction. This study discriminates the effect of quinone derivatives on the 

Cr(VI) reduction from that of photo-induced electrons during the photocatalytic 

treatment of phenol-Cr(VI) mixture. It provides a joint treatment strategy for the 

phenol-Cr(VI) mixture that is not limited by the prerequisite for surface adsorption of 

metal ions on the catalyst surface. Moreover, the application of MOFs in water pollutant 

treatment has been commonly restricted by the poor carrier separation efficiency and 

instability. Here, the cooperation between SPR-Ag, conjugated AgCl and MOF-101(Fe) 

provides an efficient way for achieving excellent carrier separation and improving the 

photo-stability.  
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