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The biomechanics of the rotator cuff in health and disease - A narrative review 1 

 2 

Abstract 3 

 4 

The rotator cuff has an important role in the stability and function of the glenohumeral joint. It 5 

is a complex anatomic structure commonly affected by injury such as tendinopathy and cuff 6 

tears. The rotator cuff helps to provide a stabilising effect to the shoulder joint by compressing 7 

the humeral head against the glenoid cavity via the concavity compression mechanism. To 8 

appreciate the function of the cuff it is imperative to understand the normal biomechanics of 9 

the cuff as well as the mechanisms involved in the pathogenesis of cuff disease.  10 

 11 

The shoulder joint offers a wide range of motion due to the variety of rotational moments the 12 

cuff muscles are able to provide. In order for the joint to remain stable, the cuff creates a force 13 

couple around the glenohumeral joint with coordinated activation of adjacent muscles, which 14 

work together to contain the otherwise intrinsically unstable glenohumeral joint and prevent 15 

proximal migration of the humerus. Once this muscular balance is lost, increased translations 16 

or subluxation of the humeral head may result, leading to changes in the magnitude and 17 

direction of the joint reaction forces at the glenohumeral joint. These mechanical changes may 18 

then result in a number of clinical presentations of shoulder dysfunction, disease and pain.  19 

 20 

This narrative review aims to highlight the importance of functional rotator cuff biomechanics 21 

whilst assessing the kinetics and kinematics of the shoulder joint, as well as exploring the 22 

various factors involved in cuff disease.    23 
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Introduction 24 

 25 

The rotator cuff comprises of four muscles and their respective tendons, namely, supraspinatus, 26 

infraspinatus, subscapularis and teres minor. These muscles function to stabilise the shoulder 27 

joint dynamically, helping the shoulder to be the most mobile large joint in the body. They also 28 

allow rotational motion of the humerus relative to the glenoid surface, aided by the contiguous 29 

insertion of the cuff tendons on the proximal humerus. Therefore, it is vital to understand the 30 

biomechanical properties of the rotator cuff and their role in the pathogenesis and effects of 31 

cuff tears. This narrative review will consider the anatomical structures and biomechanics of 32 

the rotator cuff and their role in the development of cuff dysfunction. 33 

 34 

Anatomical structures  35 

 36 

The supraspinatus muscle originates from the supraspinous fossa of the scapula with its tendon 37 

inserting onto the superior and middle facets of the greater tuberosity. Infraspinatus and teres 38 

minor originate from the infraspinous fossa with their tendons inserting onto the middle and 39 

inferior facets of the greater tuberosity. The subscapularis muscle originates from the 40 

subscapular fossa, with its tendon inserting onto the lesser tuberosity. The rotator cuff tendons 41 

interdigitate to form a continuous structure near their insertions onto the proximal humerus.1 42 

The subscapularis muscle has the largest tendon footprint of the four cuff muscles, inserting 43 

anteriorly along the medial aspect of the bicipital groove to provide internal rotation. The 44 

infraspinatus muscle has the second largest tendon, which inserts with its anterior border 45 

overlapping the posterior border of the supraspinatus insertion,2 to provide external rotation. 46 

The supraspinatus muscle has the third largest tendon footprint, which inserts onto the superior 47 

facet of the greater tuberosity of the proximal humerus to abduct the shoulder. Finally, the teres 48 
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minor muscle has the smallest tendon footprint, inserting directly inferior to infraspinatus, 49 

assisting the latter to rotate the humerus externally. The subscapularis and supraspinatus 50 

tendons combine to provide a sheath that surrounds the long head of biceps tendon, with a 51 

tendon slip from supraspinatus forming the roof of the sheath, and fibres from both tendons 52 

converging to form the floor. Furthermore, fibrous structures extending from the coracoid 53 

process to the interval between the subscapularis and supraspinatus muscles strengthen this 54 

region, known as the coracohumeral ligament.3 These anatomical structures can be seen in 55 

figure 1. 56 

 57 

Microscopically, a five-layer structure of the cuff and capsule complex near the tendon 58 

insertions of the supraspinatus and infraspinatus have been described in a cadaveric study.4 The 59 

first, innermost layer contained superficial fibres of the coracohumeral ligament. The second 60 

layer, the main portion of the cuff tendons, has been shown to be composed of closely-packed 61 

parallel tendon fibres grouped in large bundles extending directly from the muscle bellies to 62 

the insertion on the humerus. The third layer was noted to be a thick tendinous structure but 63 

with smaller fascicles than in the second layer, with the fourth layer comprising of loose 64 

connective tissue with thick bands of collagen fibres which run perpendicular to the primary 65 

fibres of the cuff. This layer also contained the deep extension of the coracohumeral ligament. 66 

The fifth and outermost layer was the true capsular layer, in which the fibres were shown to be 67 

mostly randomly oriented.4  68 



Biomechanics of the rotator cuff 

 4 

Biomechanics 69 

 70 

Kinetics and kinematics 71 

 72 

Shoulder movements represent carefully coordinated motion of all the rotator cuff components. 73 

For this to be achieved, the humerus rotates around the scapula at the glenohumeral joint (GHJ), 74 

the scapula rotates around the clavicle at the acromioclavicular (AC) joint, and the clavicle 75 

rotates around the sternum at the sternoclavicular joint.5 In order to achieve 180 degrees of 76 

humeral elevation, movement of all of these components must occur. In normal motion, up to 77 

120 degrees of glenohumeral elevation is permitted within the glenoid fossa. After this point, 78 

motion is blocked by impingement of the neck of the humerus on the acromion. For further 79 

humeral elevation to occur, the scapula must rotate in a superior direction. This rotation 80 

positions the glenoid fossa superiorly, allowing the humerus to elevate through an additional 81 

60 degrees.6 This combined movement of the scapula and humerus is termed scapulohumeral 82 

rhythm.7 Inman et al8 estimated the ratio between glenohumeral and scapulothoracic joint 83 

motion to be approximately 2:1. As the scapula upwardly rotates, it produces elevation of the 84 

acromial end of the clavicle, which can be up to 30 degrees.8 85 

 86 

The scapula is positioned on the thorax approximately 30 degrees internally rotated in the 87 

horizontal plane, 3 degrees abducted in the frontal plane, and 20 degrees anteriorly tilted in the 88 

sagittal plane.9 The scapula is known to upwardly rotate by 50 degrees, tilt posteriorly by 30 89 

degrees, and externally rotate by 24 degrees during active scapular plane elevation.10 Two 90 

further movements occur at this articulation in the coronal and sagittal planes. Protraction, 91 

defined as the forward movement of the scapula around the thoracic wall, combines linear 92 

translation away from the vertebral column, rotation of the scapula around the AC joint 93 
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(anterior tilt), and internal rotation,11 whereas retraction is the combination of the opposite of 94 

these movements.12  95 

 96 

The humeral head and the glenoid articular surface show a high degree of conformity and may 97 

be considered as a ball-and-socket joint. During active and passive elevation of the arm, the 98 

humeral head can translate up to 0.35 mm in the superior-inferior direction in the healthy 99 

shoulder. Whereas, anterior-posterior translation has been shown to be significantly larger, 100 

with the head translating anteriorly by a mean of 3.8 mm during elevation, posteriorly by 4.9 101 

mm during extension, and 4 mm during horizontal extension.13,14 A smaller radius of curvature 102 

(32.2 vs 40.6 mm) is the primary reason for larger translations seen in the anterior-posterior 103 

direction.15 These translations are thought to be induced by the tightening of the 104 

capsuloligamentous structures during motion. 105 

 106 

Scapula kinematics may alter in patients with cuff dysfunction and several studies have been 107 

conducted to investigate scapular rotation during arm elevation. Lin et al16 utilised 3D motion 108 

analysis and surface electromyography to analyse 3D movements of the shoulder complex 109 

during functional tasks and compared motion patterns between subjects with and without 110 

shoulder dysfunction. They discovered decreased scapular upward rotation in the shoulder 111 

dysfunction group. Similar results have been found in other studies.17,18 Such findings suggest 112 

that increased scapular upward rotation may be a positive compensation in the presence of 113 

rotator cuff dysfunction. Some studies, however, have found no such differences in scapular 114 

kinematics in symptomatic subjects when compared to asymptomatic individuals.19,20 115 

Discrepancies in scapular upward rotation findings during arm elevation in various studies 116 

assessing shoulder impingement may relate to the limited clinical knowledge of the status or 117 

severity of cuff involvement, particularly with regard to full or partial thickness tears, or indeed 118 
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the difficulties and variations in measuring scapular motion. The lack of significant differences, 119 

as well as observable clinically important differences, between groups to be detected for all 120 

variables consistently is perhaps not surprising as investigations are often undertaken with 121 

small sample sizes, which result in limited statistical power for some comparisons, particularly 122 

given the large variations seen in the movement patterns of healthy subjects.10 A further 123 

explanation for the lack of significant differences to be identified is the presumed multifactorial 124 

aetiology of cuff disease, the limitations of clinical diagnosis, in addition to the variations in 125 

the measurements taken and models utilised. 126 

 127 

Force couples & stability  128 

 129 

The rotator cuff muscles have an essential role in the stability and function of the GHJ. Force 130 

couples occur when two opposing muscle groups create a moment around a fulcrum.2 The 131 

rotator cuff creates a force couple around the GHJ with coordinated activation and inactivation 132 

of agonist and antagonist muscles, working synergistically to contain the otherwise intrinsically 133 

unstable GHJ and prevent proximal migration of the humerus. The deltoid and supraspinatus 134 

act as a force couple in the coronal plane, compressing the humeral head to the glenoid in 135 

abduction, whereas subscapularis and infraspinatus provide a compressive joint reaction force 136 

in the axial plane.21 This can be seen diagrammatically in figure 2. This mechanism, where 137 

shoulder stability is provided by the glenoid concavity and the compressive force generated by 138 

the rotator cuff muscles, is known as concavity compression.22 139 

 140 

The bony stability of the shoulder is insufficient, as the glenoid fossa is only a quarter the size 141 

of the articular surface of the humeral head. Therefore, the glenoid labrum, together with the 142 

joint capsule and glenohumeral ligaments, aids shoulder stability. Labral tissue increases the 143 
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depth of the glenoid by 50% and, together with the compressive forces of the rotator cuff, 144 

imparts a concave compression on the humeral head into the glenoid. By increasing the 145 

effective depth of the glenoid, the labrum also helps maintain a negative intra-articular pressure 146 

within the joint, conferring stability.23 Saha determined that dynamic stability is dependent on 147 

several factors.24 These included the power of the horizontal steerers (rotator cuff), 148 

development and tilt of the glenoid, as well as retrotorsion (retroversion) of the head and neck 149 

of the humerus. Intramuscular electromyography has been used to investigate the activity of 150 

the cuff muscles which provide horizontal stability during movement in various planes. 151 

Through this technique, it was shown that in abduction, the subscapularis and infraspinatus 152 

muscles stabilised the joint from zero to 150 degrees whereas infraspinatus did so almost 153 

independently from 150 to 180 degrees, thus confirming the role of subscapularis and 154 

infraspinatus as stabilisers of the joint through this range.24  155 

 156 

In their anatomical study, Turkel and colleagues25 concluded from cadaveric and 157 

roentgenographic experiments that different soft tissue structures stabilise the shoulder joint at 158 

varying degrees of abduction. They determined that at zero degrees of abduction, subscapularis 159 

was the dominant stabilising structure, whereas at 45 degrees subscapularis and the middle and 160 

inferior glenohumeral ligaments provided a greater contribution to stability. As 90 degrees of 161 

abduction was approached, the inferior glenohumeral ligament provided the main stabilising 162 

effect to prevent dislocation from occurring during external rotation.25 Mihata et al26 also 163 

previously demonstrated that superior translation of the humerus is significantly increased after 164 

a tear of the supraspinatus tendon in their study on eight cadaveric models. Moreover, they 165 

showed that whilst patch grafting provided a reduction in the superior translation of the 166 

humerus, full restoration of GHJ stability could not be achieved. More recently, Ishihara et al27 167 

described that the superior shoulder capsule plays a vital role in passive stability of the GHJ in 168 
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their study on seven cadaveric shoulders. The authors reported that a tear in the superior capsule 169 

at the cuff insertion on the greater tuberosity, as seen in some partial rotator cuff tears, 170 

significantly increased translations in the GHJ in both the anterior and inferior directions 171 

compared with those with an intact capsule. It was also discovered that a superior capsular 172 

defect, which can be observed in massive cuff tears, significantly increased glenohumeral 173 

translation in all directions.  174 

 175 

Joint reaction forces 176 

 177 

The glenohumeral joint reaction force (JRF) counteracts the combined muscle forces 178 

transmitted across the joint. The scale of the JRF depends on the torque generated from the 179 

activation of the muscles involved in moving the arm and resisting loads applied along its 180 

length.21 Through dynamic shoulder tests at 90 degrees of abduction, the JRF has been 181 

estimated to be 337 ± 88 Newtons (N) when equal forces were applied to the cuff and deltoid 182 

muscles.28 As the cuff and deltoid muscles are the primary abductors and rotators at the GHJ, 183 

the magnitude of the JRF during active motion provides an indication of the competence of the 184 

concavity compression mechanism (figure 3). It has been demonstrated in previous studies that 185 

disruption of the transverse force couple, which occurs in large and massive rotator cuff tears, 186 

not only leads to increased translations of the humeral head of up to 8 mm during the initiation 187 

of abduction,29 but also to changes in the magnitude and direction of the JRF at the GHJ.14,30 188 

Consequently, the degree to which different rotator cuff tear configurations effect the 189 

mechanical integrity of the transverse force couple can be determined with respect to their 190 

effect on the magnitude and direction of the glenohumeral JRF during simulated active motion. 191 

In a study of nine cadaveric specimens where motion of the full upper extremity was simulated 192 

using a dynamic shoulder testing apparatus, Parsons et al21 showed that extension of cuff tears 193 
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beyond the supraspinatus tendon into the anterior and posterior aspect of the cuff led to a 194 

significant decrease in the magnitude of the JRF, from 337 N to 126 N. Such tears also resulted 195 

in a significant change in the direction of the JRF. These results emphasised the importance of 196 

the transverse force couple on GHJ motion, compression and stability.  197 

 198 

Development of Cuff Dysfunction 199 

 200 

The aetiology of rotator cuff tears is considered to be multifactorial, including extrinsic as well 201 

as intrinsic factors, which are summarised in table 1. The coracoacromial (CA) arch has a 202 

significant role in rotator cuff disease and comprises of the bony acromion, the CA ligament, 203 

and the coracoid process. The supraspinatus traverses through the supraspinatus outlet with the 204 

arch immediately above, and therefore, is at risk of compression between two bony surfaces; 205 

the CA arch above and the humeral head below. This abutment of the cuff against the CA arch, 206 

leading to impingement, tendonitis and cuff tear, was classically thought of as the primary 207 

driver of cuff disease.31 This theory gained further momentum after Bigliani et al32 proposed 208 

that a down-sloping acromion in the sagittal plane could impinge upon the anterior cuff, 209 

thereby causing cuff tears. Acromial morphology was divided into three types: type I (flat 210 

under surface), type II (curved), and type III (hooked). Several authors have published findings 211 

showing a correlation between a hooked acromion and the development of a cuff tear,33,34 212 

including a recent systematic review and meta-analysis by Morelli et al35. However, several 213 

other studies have found that shoulders with a Bigliani Type III acromion are no more likely 214 

to have a rotator cuff tear than shoulders with Type I or II acromions.36,37  215 

 216 

Extrinsic compression can also be caused by factors including the presence of an os acromiale 217 

and the CA ligament itself, in addition to spurs arising from the acromion as well as the AC 218 
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joint.38 Nyffeler et al39 proposed that the acromion index, a measurement of the lateral 219 

extension of the acromion, is associated with a higher incidence of rotator cuff disease. This 220 

was supported by Balke et al,40 who concluded that the acromial index and low lateral acromial 221 

angle may be associated with a higher incidence of rotator cuff tears. However, intrinsic 222 

mechanisms of rotator cuff tendinopathy also exist, which impact on tendon morphology and 223 

performance. Neer30 described cuff disease as progressing through three stages of pathology 224 

based on the age of the patient: less than 25 years (stage I), 25 - 40 years (stage II), and greater 225 

than 40 years of age (stage III). Advancing age has also been shown to have a negative impact 226 

on tendon properties.41,42  227 

 228 

An inadequate vascular supply of rotator cuff tendons has been associated with cuff 229 

tendinopathy pathogenesis. This ‘critical zone’ of decreased vascularity, described by 230 

Codman,7 resides approximately 1 cm from the cuff insertion on the greater tuberosity, and is 231 

the most common site for cuff tendon injury. The hypovascularity in this region decreases the 232 

healing capacity of tissues, predisposing patients to cuff tendinopathy43 that tends to worsen 233 

with age.44 However, there have been published studies refuting this notion, where a functional 234 

hypoperfusion area or ‘critical zone’ in the cuff was not demonstrated.45 235 

 236 

Type I collagen fibres predominate in parallel bundles, with the thinner and weaker type III 237 

collagen occupying a much smaller proportion (approximately 5%). Non-uniform tissue with 238 

a low degree of fibre alignment has been shown to exist near the tendon insertion,46 correlating 239 

with diminished mechanical properties. Histological studies have also shown greater 240 

disorganisation in the articular side than the more regularly arranged collagen in the bursal 241 

layers of the cuff tendons, which has been proposed to weaken the tendon and precede complete 242 

tendon tear.47  243 
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 244 

Cuff tears  245 

 246 

Rotator cuff tears typically start at the deep surface of the anterior insertion of supraspinatus, 247 

adjacent to the long head of biceps (LHB) tendon, as this area is subject to greater loads even 248 

at rest. A popular mechanical narrative related to cuff progression describes rim-rent lesions 249 

resulting from degenerative cuff tissue that are found 7 mm48 or between 13-17 mm49 behind 250 

the biceps pulley. These lesions then induce reactive changes such as sclerosis and small cyst 251 

formation on the footprint of the cuff, which can be identified on plain radiographs. These 252 

lesions may heal, remain unchanged, or enlarge over time. If the latter occurs, over several 253 

months or years, a full-thickness defect will result, ultimately progressing into a small crescent-254 

shaped tear.48 As the cuff tear propagates and progresses from a small to moderate tear, the 255 

strong anterior leading edge of the supraspinatus tendon holds firm and withstands uprooting, 256 

whilst the flatter and thinner posterior tendon peels off and displaces easily, making the tear 257 

asymmetric or ‘L’-shaped. The supraspinatus is thus weakened, allowing the humeral head to 258 

sublux superiorly, button-holing between the supraspinatus anteriorly and infraspinatus 259 

posteriorly.48 260 

 261 

 262 

 263 

Cuff repair & healing 264 

 265 

Arthroscopic rotator cuff repair continues to provide a high success rate of subjective and 266 

functional results. With modern techniques being utilised, healing of small to large tears (1-4 267 

cm) appears to be improving, with healing rates ranging from 83% to 93%.50,51 However, 268 
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successfully repairing massive tears (>4cm) remains a challenge despite surgical advances, 269 

with reported failure rates ranging from 21% to 91%. Factors known to be associated with 270 

enlargement of tears include increasing symptoms, the involvement of 2 or more tendons, and 271 

a lesion of the rotator cable.52-54  272 

 273 

The double-row repair technique has been shown to provide a more robust repair, resembling 274 

the native footprint compared to the classic single-row suture anchor repair. Although the 275 

former technique may be expected to decrease the re-tear rate, short to mid-term clinical results 276 

have not demonstrated a consistently clear clinical benefit over single-row repairs.55 More 277 

recently, Pogorzelski et al56 have published very encouraging results of transosseous-278 

equivalent rotator cuff repairs using either knotted suture bridge or knotless tape bridge repair 279 

techniques. Significant improvements in patient-reported outcomes and excellent survivorship 280 

were observed with both techniques at a minimum of 5 years.56 281 

 282 

Tendon healing following surgical repair generally progresses through three phases. These 283 

include an initial inflammatory phase, lasting around a week, followed by a proliferative phase, 284 

lasting a few weeks, before entering the final remodelling phase, which lasts many 285 

months.57 During the inflammatory phase, vascular permeability increases and inflammatory 286 

cells enter the healing site, which produces several cytokines and growth factors that lead to 287 

recruitment and proliferation of macrophages and tendon fibroblasts. During the proliferative 288 

and remodelling phases of healing, fibroblasts proliferate and begin to produce, deposit, align 289 

and cross-link collagen fibres. In cuff repairs, abundant fibroblasts from the tendon and 290 

surrounding tissues produce a disorganised collagen scar tissue at the attachment site between 291 

the cuff and bone, composed primarily of type I and III collagen.  292 

 293 
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The optimal post-repair rehabilitation strategies for cuff tendons are mainly based on studies 294 

in the rat rotator cuff model, which have suggested a beneficial effect of immobilisation to 295 

prevent post-repair gapping and aid in healing. Protective immobilisation has demonstrated 296 

improved healing compared to other post-repair loading protocols such as exercise or complete 297 

tendon unloading.58 The mechanisms behind the benefits of immobilisation are unclear, 298 

however, they are likely to include mechanical (prevention of gap formation) and biologic 299 

effects (reduced phagocytic macrophage accumulation).59 However, further studies are needed 300 

to assess the most appropriate rehabilitation strategies following the different presentations and 301 

techniques used in rotator cuff repair.  302 

 303 

Conclusions 304 

 305 

The rotator cuff tendons have an essential role in the stability and function of the shoulder. In 306 

this article, we have provided the reader with current concepts concerning rotator cuff 307 

biomechanics, cuff disease mechanisms, the importance of maintaining balanced force couples, 308 

and the effect this may have if this mechanism is lost. It has also highlighted the critical 309 

function the superior cuff and capsule have in maintaining glenohumeral joint stability, all of 310 

which have implications to both the surgical techniques being considered and the subsequent 311 

rehabilitation protocols applied.  312 
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 478 

Figure 1 - Anatomical structures around the shoulder, in particular showing the insertions of 479 
the rotator cuff tendons (courtesy of shoulderpedia.co.uk) 480 
  481 
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 482 

Figure 2 - Diagrammatic representation of the transverse plane force couple (courtesy of 483 
shoulderpedia.co.uk) 484 
  485 
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 486 

Figure 3 - Diagrammatic representation of the joint reaction forces acting across the shoulder 487 

joint (courtesy of shoulderpedia.co.uk) 488 

  489 
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Extrinsic factors Intrinsic factors 
  
Downsloping acromion Age-related degeneration 
*CA ligament / Os acromiale Vascular insufficiency 
AC joint spurs Tendon properties 
Lateral extension of acromion  

*CA = coracoacromial; AC = acromioclavicular 490 
 491 

Table 1 - Factors associated with the aetiology of cuff tears 492 
 493 


