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The modern business environment is empowered by the abundant availability of data and plethora of sophisticated data analysis
tools to identify and quickly address market needs. While these tools have evolved significantly during the last years, offering
trailblazing data exploration experiences with stunning multi-modal visualizations, they mistreat the importance of individualized,
user-centred delivery of information/insights. As a result, users may require much more effort and time to reach decisions that have
implications on both the short-term and long-term success of sustainability of an organization. This paper highlights the need for
user-centred/persona-driven data exploration through adaptive data visualizations and personalized support to an end-to-end business
process. It proposes an extended human-centred persona and discusses preliminary exploratory results in relation to the formulation

of the contextual characteristics of a business environment, i.e., business tasks, visualizations and data.
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1 INTRODUCTION

Nowadays, business users have access to a range of data from a variety of sources to complete their assigned responsibili-
ties and tasks. These data may be generated from Business Intelligence and Data Analytics Platforms (such as SAS Visual
Analytics!, IBM Analytics?, Microsoft Power BI>, SAP Business Intelligence Platform?, Tableau Business Intelligence
and Analytics®, etc.), that offer the same functionality (e.g., visualization types, content and interaction paradigms) to all
users. Although some visualizations provided by those platforms/tools might be considered more usable/understandable
than others [20], usually their recipients (e.g., data analysts) are overloaded from the large amount of visual information
they have to process, since in principle such platforms do not consider in the core of their solutions the end-users’

individual differences. Additionally, algorithms employed by such platforms are mostly maintained by adhering to static
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monolithic role-based specifications or user needs and requirements, that comply to definitions that are formulated
having the power users (e.g., expert data analysts) in mind. For this reason, it becomes even easier for users to lose focus
in terms of navigation, while also they might not be able to take fast and accurate decisions when performing their
expected business activities [4, 16]. This paper argues that the complex nature of many business data visualizations,
objectives, tasks and large business datasets makes it essential to include human intelligence in the business data
analysis and visualization process at an early stage. This inclusion will help enrich tools and applications with adaptation
techniques and new possibilities for interaction that will consider human-centred personas of business users in every
business process or computational procedure. Our consideration of human intelligence as means for adaptation is
fueled by the influence and effects of human factors in tasks that entail data or information visualizations. Such effects
have been demonstrated in numerous application fields during the last decade, including educational and navigation
contents, public facing applications and information retrieval or health datasets. Indicatively, numerous research works
have found associations with respect to users’ cognitive abilities like perceptual speed (involving visual perception and
scanning), workload perception on search behavior, and data visualization types like bar graphs and radar graphs in
relation to users’ performance [5, 7, 28]; working memory, preference and tasks when users interact with various data
visualizations — as a form of integrated objects that contain colours, orientation, and shape — and elements (visual or
textual) [17, 26, 29]; spatial ability and visualization comprehension, investigating compatibility of the verbal metaphors
with visual metaphors [32, 35]; cognitive styles, like Field Dependent-Independent, and impact on interactions with
various information visualizations in relation to individual aid choices and preferences [27]; personality influence on
performance during visualization tasks [7, 14]; emotion-triggered (e.g., boredom and frustration) adaptation methods
effective for visualization systems [8].

Nevertheless, although significant effects have been observed in user-data visualization interactions by multiple
works and in a variety of application domains, these ideas have rarely been applied, to our knowledge, to the business
sector despite the encouraging findings [23]. Henceforth, the vision of this research work is to provide a preliminary
step towards addressing this gap for enabling human-centred adaptive data visualizations that will facilitate efficient
exploration and analysis of complex and multivariate business datasets, thus, enabling more effective decision making
on critical business tasks. This paper aims: (a) to build upon prior research on the impact of individual differences
on data visualizations, for proposing an innovative theoretical human-centred model in the business data analytics
domain, and (b) to study and explore the direct object of investigation, i.e., business tasks, visualizations and data, that
constitute the contextual frame of execution for a business user. In this respect, we present the results of a preliminary
exploratory study with 59 business users (data analysts), in an attempt to create a first understanding of the similarities
and differences between current approaches and possible approaches that are compatible with the business domain by
extracting the business context requirements i.e., characteristics for supporting decisions when crafting adaptive and

personalized interventions to be used in business data analytics.

2 OVERVIEWING A HUMAN-CENTRED MODEL FOR PERSONALIZATION IN BUSINESS DATA
ANALYTICS

A persona in the business sector constitutes a fictional representation of a business role, e.g., Project Manager, Business
Analyst, Data Analyst, that might represent one or more end-users, and consists of characteristics like demographics,
goals, responsibilities, wishes, needs, painpoints, etc., providing some good insights for the end-users that a product is
designed for [15]. However, the demanding nature of business processes, data and visualizations require adaptive and

personalized solutions that bring individual differences in the center of attention to build human-centred personas
2
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Fig. 1. Proposed Human-centred Business Persona

that will guide the respective interactions. This paper considers a persona as the core component of an adaptive data
analytics platform, and proposes enriching its current definition with more intrinsic values of users extending its scope
and sophistication. It mainly focuses in theories of user’s individual differences in information and affective processing,
and domain expertise, for providing adaptive and personalized solutions in the business context and information
discovery.

The following sections overview the selected human factors of the proposed theoretical model (see Figure 1), and
guided by findings of the related literature argues on the expected impact when end-users interact with business data
visualizations. Main purpose is not to compose an exhaustive theoretical model, but rather to employ those human
aspects that together with the business contextual characteristics (i.e., role, expertise, business processes/tasks and data)
would be able to jointly facilitate more comprehensive persona composition, apt adaptive interventions, personalization

conditions and explanations during the visual data exploration process.

2.1 User

The business end-user is the focal point in the definition of the extended persona, referring on one hand to the
understanding of the business roles, nature and their contexts of functioning, and on the other hand to the identification
of the intrinsic human factors that play the most significant role during their engagement with the data visualizations.
Considering the various theories and models of individual differences in the literature, the following factors have been
promoted as more applicable for the scope of this research work (in relation to specific business settings and actions):

The perceptual and cognitive processing characteristics, are mainly distinguished in users’: (a) high-level infor-
mation processes, like cognitive styles [34] that have a direct impact on the type (textual or imagery) of the content
and may influence preferences and decision making in data visualization scenarios [27], and (b) elementary cognitive
processes (i.e., working memory, controlled attention and speed of processing), that have an effect on the complexity of
the content regarding users’ task performance, overall efficiency and cognitive control of visual information [26], or

problem solving and comprehension during the interaction process. Regarding individual characteristics that affect
3
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the perception of visualizations, models that relate to graphical or visual (numeric) literacy or guidance (i.e., reading
between and beyond data to understand abstract, data-driven associations — [11]) have been qualified expecting that
high levels of visual literacy will impact users’ reasoning with visual representations making more elaborate inferences
(extracting information from more complex visualizations) as opposed to those with low [22]. Furthermore, emphasis
will be placed upon end-users’ personality [13] (and Need for Cognition as a variable of personality indicating the
extend to which an individual may engage into effortful cognitive activities [6]), as influential human traits of the
perceptual process, motivation and behaviour. It is expected that they will affect users during the visual interaction
process with respect to accuracy (including error rates), search and performance when executing tasks, problem-solving
approaches and skills [14, 21].

The affective processing (or affective states) guides behaviour and emotions, as behavioural output of the process
[33], and refers to a range of feelings that people experience, including discrete emotions, moods and traits (such as
positive and negative affectivity). It may be at some extent deduced into two basic constructs, i.e., Emotional Arousal
and Emotion Regulation, influencing people’s performance, judgement and decision making process while interacting
with data visualizations [19]. For example, users with a negative affective state require environmental enhancements to
work more efficiently, as their emotional needs alter their behaviour and create different informational and processing
demands [19].

The domain expertise indicates how skillful a user is in the domain (s)he functions and it is associated with graph
understanding, accuracy and performance (time spent) in relation to visual tasks complexity (e.g., less experienced
individuals may spend more time in information retrieval and comparison of sub-stages) [1, 10]. Also, it affects preference,
satisfaction and the capability of being familiarized or switching between graphs to obtain information, e.g., novice
users have greater difficulties of using different visualization types [30].

The business role characteristics refer to more “traditional” persona elements defined from a person’s or an entity’s
business responsibilities, objectives and tasks. It may include, personal, professional or technical information [31],
competencies, expectations, needs, feelings, painpoints, usually associated to specific activities that are tightly linked
to one (or more) business processes within an organization. This paper builds on the premise that data visualizations
should be coupled with the goals and requirements of each business role and consider the variability of tasks, level of
knowledge, constraints, etc., for conveying the adequate information, when and how it is needed, and on the expected

breadth and depth that could facilitate fast and accurate decision making [3].

2.2 Tasks, Data and Visualizations

Partially, the business tasks formulate the context of execution (sequence of project-specific actions) and interaction
for an end-user (or persona), relating to situation-specific scenarios, requirements and constraints depending on the
line of business. Tasks may be regarded as a solid point of reference for designing usable interactive data visualizations,
but they usually comply with business data models and processes characterized by increased complexity, making
the analysis and understanding of information by various non-power users (e.g., data analysts, business analysts)
challenging, time consuming, costly, if not many times impossible.

Such information resonates in various data sources found in different locations, are of different types, have different
data characteristics (e.g., criticality, real-time, historical), and are connected to complex (customer-specific) data models
and business processes. Hence, efficient semantic mapping among features is critical, so that integrated data analysis
is possible and comparable through intuitive data visualizations. As such, structured learning and graphical models

like probabilistic dependency networks, probabilistic decision trees, Bayesian networks and Markov Random Fields,
4
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are becoming popular business data mining tools helping to deal with open case-based data challenges like scalability,
uncertainty and data quality, dynamicity, heterogeneity, etc. [9] Therefore, it is widely accepted that the increasingly
large amount of data requires novel, efficient, and user-friendly data visualization solutions.

As such, handling, analyzing and gaining insights into these large multivariate datasets through interactive and
explainable data visualizations is one of the major challenges of our days and this work. Main goal is to specify
the properties and structure of the content of data visualizations and exploration support. Subsequently, a further
identification and characterization of parameters that will enable the adaptation based on the human-centred model will
take place. Currently, there are different types of visualizations (e.g., bar, column, line and area charts, radar graphs, plots
and tables) which communicate information and meaning out of data, always in relation to the scope and the needs of a
task. Once data visualization content is defined and semantically augmented, various adaptation and personalization
mechanics may offer dynamic hierarchical structure and content presentation adjustments, provision of real-time
navigation support and event-driven explanations, flexible user control and cooperation, etc.

Given the users’ diversified requirements, needs and perceptual preferences as well as the size, diversity and
processing overhead of big business data sets, it is expected that proposed human-centred persona will yield flexible
best-fit data visualizations and methods that will support the unique end-users during the end-to-end interaction
process. The main challenge is to identify and develop enhanced data representations that will be able to capture the
fuzzy human nature and multi-objective tasks in terms of providing information in different modalities, navigation
patterns and interaction logic thus allowing for adaptation based on users’ cognitive and affective processing abilities,

role, expertise and tasks.

3 A USER STUDY FOR EXPLORING THE BUSINESS ANALYTICS CONTEXT
3.1 Motivation and Research Questions

In addition to the users’ requirements, needs and complicated human factors/nature, the proposed extension of the
persona also made evident the importance of the business context for providing effective adaptations to the business
end users. In this respect, the first step is to investigate the contextual building blocks of the business environment
like tasks, visualization types and data (see section 2.2), so to crystallize a viewpoint around the expected adaptation
and personalization specifications. We formulate the following research questions: RQ7: Which are the most common
tasks of the data analyst in the business domain regarding data visualization and exploration, and how do those differ
from tasks in other domains? RQ2: What kind of data, visualizations and methods are used for the defined tasks? RQs:

Which are the main challenges and needs of data analysts in the business domain?

3.2 Sampling and Procedure

For this exploration study, we involved business participants that have on average at least 2 years of experience
in the field of data analytics, and their interaction with data visualizations is part of their daily job responsibilities.
The recruitment was made possible with the support of two collaborator organizations via direct messaging to their
end-users; resulting in a total of 59 data analysts. The sample consisted of 28 Male and 31 Female participants, with
their ages ranging from 22 to 56 years old (M = 32, SD = 7). All participants were analysts, working on different industry
fields such as Retail, Marketing, Advisory Services, Audit and Risk Assessment, while they were of varying expertise
levels including managers/directors, executive analysts, senior analysis, junior analysts and data engineering/quality
assurance. For capturing their proficiency and experience we analysed the reported educational status (all end-users

5
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had achieved higher education), their working experience (ranged from 1 to 25 years (M = 4.3, SD = 6.2)), as well as
their Visual Literacy (M = 3.9, SD = 0.7 — captured using the Subjective Graphical Literacy Scale [12]) and Self-Expertise
(M =3.1,SD = 1.3 - obtained through a single 5-point scale self-reporting measure of perceived expertise, i.e., “My level
of expertise for the current business role is”, where 1 is Novice and 5 is Expert). The Self-Expertise scale was used in
conjunction with the participants’ working experience in years and their Visual Literacy for further validating and
cross verifying the recruited sample’s expertise (that was expected to be high for the purposes of this exploratory study).
Overall, the above findings suggest that the sample is indeed within the initial expectations and goals of this study.
For the execution part, a Web-based environment was created including of a series of questionnaires (i.e., open-ended
and likert-scale questions). The study ran in a controlled environment in two sessions with 36 participants in the first
and 23 in the second. Each study session was hosted at the premises of each company and was executed sequentially,
with a group of 4 to 7 analysts completing the questionnaires at a time, depending on their availability. For every
new group of participants a researcher was presenting the overall study goals and an overview of the study tasks.
At all times during the study the researcher was also in charge for guiding the participants and for answering any
potential questions or even resolving any technical conflicts. The participation was voluntary, adhering to the GDPR
rules and regulations [24], while each participant required on average 20-25 minutes for completing the questionnaire
corpus. After participants provided their demographics, such as Gender, Age and Educational Status, they responded
to a set of open-ended questions, aiming to collect information regarding RQ; with respect to typical business tasks
they perform while using visualizations (e.g., Exploration, Correlation, Data Preparation) and their frequency, weekly
data analysis requests and their working experience. For addressing RQ; participants were given: (a) a matrix of check
boxes (19 visualization types by 10 task actions) where they had to check a maximum of 3 visualization types that they
preferred for completing each type of action e.g., Bar, Pie and Column chart used for performing Comparison, and (b) a
number of visualization types where they had to report the complexity of each type on a likert-scale. Finally, for RQs
participants had to state the challenges (i.e., painpoints) they face during data exploration (including interaction with

data visualizations) for accomplishing their business tasks and wishes for improving their daily operations.

3.3 Analysis and Discussion of the Results

Initially, the use of open ended questions necessitates the extraction and coding of themes for each of the provided
answers. Hence, our analysis adhered to the following process: (a) Clean textual responses by removing punctuation,
stop words, single letters and unnecessary white space with custom string manipulation functions in Python; (b)
generate a document-term matrix; (c) visualize the terms, i.e., words in a word-cloud; (d) manually read answers for
formulating different themes and coding specific words into that theme, e.g., if answer contains the words “data” and
“cleaning” then code this into a single new term named “DataCleaning”; (e) repeat from step (c) until a list of themes
and their frequencies for a question are formed. Accordingly, descriptive analyses such as frequency distributions and
mean were obtained to characterize the derived data.

Thereupon, regarding RQj (i.e., common business tasks), participants responded as follows: 71% Improve Data
Quality, 13% Performance Analysis, 12% Correlation Analysis, 12% Comparison Analysis, 12% Drawing Conclusions
and 10% Presentations. Other common answers included, pattern detection, trend or sales analysis and visualizing KPIs.
During their business tasks participants reported that they use data visualizations for an average of 2.5 days per week
(M =25, SD = 1.5) and 2.5 hours per day (M = 2.5, SD = 1.3), while they handle an average of 3.5 data analysis requests
(M = 3.5, SD = 2.6) on a weekly basis. When asked about the frequency of actions performed during their business tasks,

6
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Fig. 2. Reported Visualization Type Complexity

participants responded with Data Preparation, Exploration and Data Communication as the most frequent actions, and
with Correlation, Prediction and Classification as the least frequent actions.

The responses of the end-users for RQz (i.e., types and complexity of data visualizations, in relation to tasks) show
that Pie Charts and Bar Charts (95%), Column Charts (86%) and Line Charts (71%) are considered as simple charts;
Radar Charts (59%), Bubble Charts (54%), Gantt Charts and Heatmaps (47%), and Rectangular Tree Diagrams (46%) are
considered as complicated charts (taking in consideration also how many people voted those as simple i.e., the scatter
plot is considered complex by 33 participants while 21 participants stated that it is instead simple - therefore balancing
its complexity level); and Funnel Charts (44%), Frame Diagrams (42%), Gauges (39%) and Rectangular Tree Diagrams
(37%) are rated the highest for being “never used”. Our results for bar chart and radar graph partially agree with the
findings of [28] on visualization ease of use and comprehension, whereby the charts classified as simple are commonly
used in various analytic systems and dashboards [18] and thus people are more familiar with them. Figure 2 provides
more information on the full data collected regarding visualization type complexity. In addition, regarding the preferred
types of visualizations for different types of task actions, the analysis revealed that for all actions (i.e., Comparison,
Distribution, Contribution, Correlation, Deviation, Cycles, Composition, Trend and Relationship) participants tended to
select visualizations that were considered as simple, with the bar chart to be the most preferred visualization. Figure 3
provides more detailed insights on the visualizations that received the highest preference for a specific task action.
Some of the collected results are in line with previous findings [25], e.g., using line charts for correlations.

Lastly, for understating the main challenges and needs of data analysts in the business domain (RQ3), we analyzed the
main themes provided in end-users’ responses about painpoints and wishes. The major painpoints reported were related
to Time Consuming Processes (39%), data related issues such as bad quality of data (41%), data variability (13%), large

7
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Fig. 3. Visualization Types for Task - Preference

data volumes (19%) and multiple data sources (7%), hardware speed (12%) and poor or not user friendly visualizations
(15%). On the other hand, participants’ wishes were related to asking for better visualization (more automated) tools
(17%), faster processes, i.e., better hardware (22%), reduction of analysis steps (8%), easier data integration (7%) and
generally user friendly tools (7%). In relation to RQy, the above findings offer a preliminary input on the nature of
business data (i.e., large volume/dimensions, multiple data sources and dirty data) being used for the reported tasks in
the business domain (also in alignment with the data characteristics in section 2.2).

Interpreting our exploratory findings with respect to adaptation and personalization requirements, at a first sight the
business tasks could relate to more generic tasks’ definitions and structures [2], or specific data visualization types to be
used for more commonly recognized actions [7, 25, 26, 28], applicable across domains. However, a closer look may reveal
significant differences that focus primarily upon: (a) the process of data exploration in the business sector encapsulates
a thought process (e.g., a sequence of tasks) that is composed of many subsequent tasks that need to be executed so
to satisfy a single goal. As opposed to other domains where single visualizations might reflect stand alone tasks, in
this case there is a purposeful workflow that needs to be satisfied, where information and consecutive actions are part
of a bigger picture (goal) feeding other actions (from the same or different workflows/roles) until a produced logical
result. Visual exploration needs to be flexible, conversational, cooperative and interactive to be able to accommodate
such composite requirements, triggered by process-driven and not single task-driven end-to-end scenarios; (b) in many
cases, one simple business activity of users may be supported from custom-made developments (e.g., using Excel) for
the successive execution of steps necessary towards the fulfilment of the primary objective. As a result, single data
visualizations might refer to more than one tasks and need to be adjusted or integrated based on a number of diverse
factors and tools; and (c) for a single objective a combined knowledge is required from end-users to accomplish a series
of tasks, many times with hidden dependencies and implications driven by predefined business workflows. Accordingly,
different data-sets and descriptions may feed the same data visualizations, so transparent exploration and intuitive

explanations need to capture the breadth, depth and inherent semantic dependencies generated by the data sources.

4 CONCLUSION

While the influence and effect of human factors on visualizations has been widely explored and found significant

in various application fields, the business sector to date has failed to inclusively consider them in the modeling and
8
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implementation of data analytics solutions. To address this research gap, we proposed a model with specific human
factors for the enhancement of current end-user personas detailing how it may extend prior research. We demonstrated
preliminary exploration results from a user study of 59 industry data analysts formulating an understanding of the
business contextual characteristics (in terms of tasks, visualizations and data) and the requirements for adaptation and
personalization. Our exploratory findings solidify our consideration of the business context as a distinctive facet of
this application area, revealing the complex nature of business tasks and data as well as the requirement for advanced
usable visualization tools, i.e., built with the user in mind rather than solid one-size-fits all or data-driven approaches.
We expect that the proposed human-centred business persona will facilitate the data exploration journey by enabling
flexible best-fit data visualizations and methods that will support the unique end-users during the end-to-end interaction

process.
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