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ABSTRACT
Analytical technologies that can improve disease diagnosis are highly
sought after. Current screening/diagnostic tests for several diseases
are limited by their moderate diagnostic performance, invasiveness,
costly and laborious methodologies or the need for multiple tests
before a definitive diagnosis. Spectroscopic techniques, including
infrared (IR) and Raman, have attracted great interest in the medical
field, with applications expanding from early disease detection to
monitoring and real-time diagnosis. This review highlights applica-
tions of IR and Raman spectroscopy, with a focus on cancer and
infectious diseases since 2015, and underscores the diverse sample
types that can be analyzed, such as biofluids, cells and tissues.
Studies involving more than 25 participants per group (disease and
control group; if no control group >25 in disease group) were con-
sidered eligible, to retain the clinical focus of the paper. Following
literature searches, we identified 94 spectroscopic studies on differ-
ent cancers and 30 studies on infectious diseases. The review
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suggests that such technologies have the potential to develop into
an objective, inexpensive, point-of-care test or facilitate disease diag-
nosis and monitoring. Up-to-date considerations for the implementa-
tion of spectroscopic techniques into a clinical setting, health
economics and successful applications of vibrational spectroscopic
tests in the clinical arena are also discussed.

Introduction

Amidst the search for novel, cost-effective and rapid medical diagnostic tests, vibrational
spectroscopy techniques have attracted increased interest in recent years. Current clin-
ical tests, such as cytological evaluation, immunohistochemistry and imaging techniques
have proven extremely efficacious in disease diagnostics. However, they necessitate
costly, time-consuming methodologies while they may also lack automation, require
user-dependent interpretation or involve a series of tests, some still providing mediocre
diagnostic accuracy. In order to address these needs, Infrared (IR) and Raman spectros-
copy have been suggested as an alternative means of detecting and diagnosing a broad
range of diseases. By providing simultaneous information on multiple biological mole-
cules, such technologies generate a holistic biochemical “fingerprint”, thus indicating the
presence or absence of disease, and even the stage of disease progression.
Vibrational spectroscopy techniques employ the interaction of light with matter upon

exposure to electromagnetic radiation of specific energy to study molecular vibrations.
The vibrational characteristics of the chemical bonds of a molecule are characteristic of
that molecule and the spectroscopic signature of transitions between discrete vibrational
levels induced by incident light can therefore reveal information on specific molecules
present in the sample. IR absorption and Raman, the two main vibrational spectroscopic
techniques, have distinct physical origins, being light absorption and inelastic light scat-
tering, respectively (Figure 1A). IR and Raman spectroscopy provide complementary
information, due to different selection rules; vibrations are IR active when there is a
change in the permanent dipole moment over the course of the vibration, whereas a
change in the molecular polarizability is needed for a vibration to be Raman-active. The
different experimental variants of IR and Raman, each with distinct benefits and limita-
tions, are provided in Table 1[1–6]. Vibrational spectroscopy has been successfully
employed as an analytical tool for a number of applications in fields such as pharmacol-
ogy[7], archaeology[8], forensic[9], food[10] and environmental science[11], homeland
security[12] and biomedicine[13].
Clinical spectroscopy is attracting increasing interest as an alternative test for the

early detection, diagnosis or monitoring of human diseases, including kidney[14],
heart[15] and neurodegenerative diseases[16,17], asthma[18], chronic obstructive pulmon-
ary disease[19] and diabetes[20]. The last two decades have also seen a tremendous
increase in IR and Raman spectroscopic studies in the fields of cancer (�15-20 fold
increase) and infectious diseases (�7-30 fold increase) (Figure 2). Tissues, cells and bio-
logical fluids, including blood, urine, saliva or cerebrospinal fluid, are all suitable for
spectroscopic analysis, generating characteristic spectra that are indicative of the content
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of biomolecules such as proteins, lipids, nucleic acids and carbohydrates (Figure 1B
and C).
This paper will provide a comprehensive review of studies since 2015 that have uti-

lized clinical spectroscopy as a means of studying cancer and infectious diseases toward
the development of a cost-effective, rapid diagnostic and/or monitoring test. Studies
involving more than 25 participants were deemed eligible for this review, to retain its
clinical focus and explore the potential of spectroscopy in a clinical context. Smaller-
scale studies have been excluded to avoid those focusing mainly on technology/method-
ology development. For further information and studies with an emphasis on
innovation and emerging trends in biomedical spectroscopy, the readers are directed to
the following reviews[1,13,21–28]. Herein, we include both ex vivo and in vivo studies as

Figure 1. Principle of vibrational spectroscopic techniques and characteristic biological spectra
serving as “fingerprints”. When an incident photon interacts with a molecule, it may be absorbed,
during infrared (IR) absorption, or scattered. Vibrational energies are quantized and lie in the mid-IR
region of the electromagnetic spectrum. Absorption of light is well defined, resonant frequencies give
rise to a spectrum which is characteristic of the vibrations of a material. When light scattering occurs,
the energy of incident and scattered photons can either remain the same (elastic or Rayleigh scatter-
ing) or differ (inelastic or Raman scattering). Depending on whether energy is lost or gained by the
incident photon, Stokes or anti-Stokes scattering are observed, respectively. The spectrum of observed
energy differences (Raman shifts) provides a similar fingerprint of the chemical composition of
a sample.
(A) Energy diagram illustrating the electronic transitions of a molecule during Raman anti-Stokes and
Stokes scattering, Rayleigh scattering and infrared absorption. Where ht0 ¼ incident energy; htvib ¼
vibrational energy; htR ¼ Rayleigh energy; Dt ¼ Raman shift; tvib ¼ vibrational frequency.
Characteristic spectra generated by analysis of biological samples using (B) IR and (C) Raman spectros-
copy. Different spectral regions providing structural information for different biomolecules including
proteins, lipids, nucleic acids and carbohydrates are highlighted. The IR spectrum was generated by
analysis of human blood serum using Attenuated Total Reflection Fourier-transform IR (ATR-FTIR)
whereas the Raman spectrum was obtained from cells of the cervical cancer cell line CaSki.
Reproduced with permission from Baker et al.[24], Gray et al.[159] and Ramos et al.[170]
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Table 1. Experimental variants of infrared and Raman spectroscopic techniques along with their ben-
efits and limitations. Graphics reproduced and adapted with permission from[1–6].

Experimental mode Benefits Limitations

In
fr
ar
ed

Sp
ec
tr
os
co
py

Transmission Can be employed in
Macro or
Microscopic mode
Spatial resolution
of � 5mm
Ratioing
technique, in
which signal is
normalized to
source intensity
High signal-to-
noise ratio
Most commonly
performed in
Fourier Transform
mode
Interrogation area
up to 150x150mm
with multidetector
Focal Plane arrays

Need for IR
transparent
substrate
Restrictions in
sample thickness
(<12lm)
Laborious
sample
preparation of
tissue samples
Spectral artifacts
due to (i)
reflection from
top surface, (ii)
resonant
scattering
Susceptible to
water
interference

Transflection As for IR Transmission
Sample
absorbance
doubled to
improve signal-to-
noise ratio for thin
samples
Low-cost reflective
substrates
High signal-to-
noise ratio

As for IR
Transmission
Normally only
employed in
Microscopic
configuration
Restrictions in
sample thickness
(<5lm)
Spectral artifacts
due to (i)
reflection from
top surface, (ii)
resonant
scattering, (iii)
electric field
standing wave
effects

Attenuated Total
Reflection (ATR)

As for IR Transmission
Higher spatial
resolution for
imaging (1-2 mm)
Spectral artifacts
due to (i)
reflection from top
surface, (ii)
resonant scattering
are minimized
Minimal sample
preparation
Low-cost substrate
(Biofluids can be
directly deposited
on crystal without
the need for
substrate)
Ideal for biofluids

Possibility for
sample
destruction due
to contact
Tissue samples
more prone to
destruction
Limited
penetration
depth, which
varies across the
mid-IR (�5-
10mm).

(continued)
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Table 1. Continued.

Experimental mode Benefits Limitations
Ra
m
an

Sp
ec
tr
os
co
py

Raman Spectroscopy Most commonly
performed in
backscattering,
microscopic mode
Spatial resolution of
<1 mm
Confocal operation
available, to allow 3D
imaging
Narrower, better
defined spectral
features than in IR
Incident radiation not
absorbed by the
process, so
penetration is limited
by focal depth
Minimal sample
preparation required
Relatively small
signals from water

Relatively weak
signal
No normalization
to input intensity
Susceptible to
interference from
stray light
scattering and/or
fluorescence
Susceptible to
instrument
calibration drift
High intensity at
the sample can
cause
photothermal
and/or
photochemical
degradation
Most commonly
performed in
dispersive mode,
in which the
spectrum of a
point is
dispersed onto a
multidetector
array. Lateral
coverage is by
point-to-point
mapping, rather
than imaging of
an area,
resulting in long
acquisition times.

Resonance Raman Spectroscopy (RRS) As for Raman
Spectroscopy
106 signal
enhancement
High signal-to-
noise ratio for
resonant moieties
(typically
carotenes, heme,
and other
conjugated
structures)

As for Raman
Spectroscopy
Spectrum
dominated by
resonant
moieties

Surface Enhanced Raman Spectroscopy (SERS) Commonly employed
using colloidal
suspensions, or
substrates.
103–1010 Raman
signal
enhancement
Quenches
fluorescence
Low detection limit
Narrower, better
defined spectral
features than in IR
Molecular labelling
Suitable for
biofluids

Poor reproducibility
of spectral
profiles and
intensities
Molecular
selectivity to
nanoparticle
adherence
Limited range
(�10nm)
Increased sample
preparation
steps

(continued)
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Table 1. Continued.

Experimental mode Benefits Limitations

Tip Enhanced Raman Spectroscopy (TERS) Tip-dependent spatial
resolution (�10-
100nm)
Low detection
limit
Quenches
fluorescence
Narrower, better
defined spectral
features than in IR

Increased
experimental
complexity
Sample heating
effect at tip apex
Poor
reproducibility
Surface sensitive
(�10nm)

Coherent anti-Stokes Raman scattering (CARS) As for Raman
Spectroscopy
103–106 signal
enhancement
Spatial resolution
improved by
nonlinearity of
response (�200-
500nm)
No fluorescence
interference

As for Raman
Spectroscopy
Nonresonant
background can
dominate weak
resonance
signals
Spectral
distortion
Increased risk of
photothermal
sample damage
Currently limited
to single
wavenumber
measurement,
which can be
discretely tuned

Stimulated Raman Spectroscopy (SRS) As for CARS
Not affected by
fluorescence and
nonresonant
background
High sensitivity (1
in 106 photons)

As for Raman
Spectroscopy
Increased risk of
photothermal
sample damage
Currently limited
to single
wavenumber
measurement,
which can be
discretely tuned

Spatially Offset Raman Spectroscopy (SORS) As for Raman
Increased depth
measurements
(several mm)

As for Raman
Relatively weak
signal
Reduced
reproducibility

(continued)
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well as different experimental modes allowing for point spectroscopic assessment or
imaging. A health economic evaluation is also provided, to highlight the cost benefit of
vibrational spectroscopic techniques in healthcare systems compared to currently used
tests. Recent startup companies that have successfully moved forward to translational
clinical research are also discussed. Finally, we present a general workflow of clinical
spectroscopy and emphasize the requirements for integrating such technologies into a
clinical context.

Search strategy: eligibility and exclusion criteria

The literature search was conducted in PubMed for articles that were published between
January 2015 and May 2021. Independent reviewers extracted the data and identified
eligible studies. Studies were deemed eligible for inclusion if they included more than
25 participants per group (disease and control; if no control group >25 in disease
group) to study any cancer type or infectious disease (bacterial, fungal, parasitic, viral).
All experimental variants of mid-IR and Raman spectroscopy were considered eligible

Table 1. Continued.

Experimental mode Benefits Limitations

Surface Enhanced Spatially Offset Raman
Spectroscopy (SESORS)

As for SORS
Detects SERS
signals up to
50mm beneath
the sample surface

Requires
nanoparticle
introduction

Shifted-Excitation Raman Difference Spectroscopy (SERDS) As for Raman
Fluorescence
rejection

As for Raman
Difference
spectra are
reconstructed
using peak
fitting
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for inclusion. Studies that analyzed different human sample types (biofluids, cells and
tissues) were included.
Articles that used cell lines or non-human samples (animal models) were excluded.

Review articles, commentaries and opinion papers were also excluded, as were near-IR
studies and those with a focus on drug delivery/development. Non-English articles and
those with <25 participants per group (disease and control) were also excluded. The cut
off of 25 participants per group was based on the study by Beleites et al. on optimum
sample sizes for classification models[29].

IR and Raman spectroscopy in cancer research

Overall, 94 studies were found to satisfy the inclusion criteria: four in bladder cancer,
ten studies in brain tumor, five studies in breast cancer, five in colon cancer, seven in

Figure 2. PubMed search to determine the number of publications that have utilized (A) Infrared and
(B) Raman spectroscopy to study cancers and infections during the period 2000-2020. A significant
increase of relevant clinical spectroscopy studies is observed in recent years.
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gastric cancer, 15 studies in gynaecological cancers (11 cervical precancer/cancer; one
endometrial cancer; three ovarian cancer), 17 in head and neck cancers, four in kidney,
two in leukemia, three in liver cancer, seven in lung cancer, seven in esophageal cancer,
six in skin cancer, two in prostate cancer (Figure 3). No studies of pancreatic cancer
were found with >25 participants.

Bladder cancer

The literature searches for applications of spectroscopy for the diagnosis of bladder can-
cer identified four papers that met our inclusion criteria, with two using serum, one
using tissue and one using cytology.
Li et al.[30] applied surface enhanced Raman spectroscopy (SERS) to the serum of 36

normal healthy volunteers and 55 patients with bladder cancer. SERS spectra were
acquired with a 785 nm laser at 0.5mW and used silver nanoparticles with an acquisi-
tion time of 10 seconds. SERS spectra were subjected to genetic algorithms combined
with linear discriminant analysis (GA-LDA), which identified six key spectral peaks
associated with bladder cancer (associated with proteins, nucleic acids and lipids). Using
these six spectral bands it was determined that a sensitivity of 91% and specificity of
100% could be obtained to classify serum derived from normal patients compared to
bladder cancer patients. Chen et al.[31] also investigated the use of SERS on serum from
bladder cancer patients however focused on the discrimination of muscle invasive blad-
der cancer from non-muscle invasive bladder cancer, which is a critical determination

Figure 3. Clinical spectroscopy in cancer and infectious diseases. Infrared (IR) and Raman spectro-
scopic techniques have been used for the early detection, diagnosis or monitoring of the depicted
cancers and infectious diseases (numbers of identified studies are provided in parenthesis). Different
experimental variants, sampling modes and sample types have been used for in vivo or ex vivo clinical
studies. Details for each disease and main findings of each study published between 2015-2021 are
provided in Tables 2 and 3.
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Table 2. Overview of infrared and Raman studies in the field of oncology between January 2015
and May 2021. Studies were deemed eligible for inclusion if they included more than 25 participants
per group (disease and control; if no control group >25 in disease group).

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Biofluids
Bladder cancer Chen, 2019,

China[31]
SERS 30 healthy control, 60

cancer (28 non-muscle
invasive and 32 muscle
invasive)
[Blood serum]

Multiple models for
diagnosis presented, overall
diagnostic accuracy was
93%

Bladder cancer Li, 2015, China[30] SERS 36 healthy control, 55
cancer
[Blood serum]

Using genetic algorithms
combined with linear
discriminant analysis had a
diagnostic sens of 91% and
spec of 100%

Brain cancer (IDH1
detection)

Cameron, 2020,
UK[39]

ATR-FTIR coupled
with centrifugal
filtration (for
serum samples);
Synchrotron (for
tissue samples)

(i) 72 gliomas (36 IDH1
mutated vs 36 IDH1 wild-
type)
[Blood serum]
(ii) 79 gliomas (21 IDH1
mutated and 78 for IDH1
wild-type. Some were lost
during sample prep so
exact numbers for each are
not known)
[FFPE tissue]

Serum-based analysis gave
�70% sens and spec; 82%
sens and 83% spec in
distinguishing IDH1
mutated vs IDH1 wildtype
using synchrotron on
tissues

Brain tumour Cameron, 2020,
UK[37]

ATR-FTIR 87 healthy control,
554 cancer (Lymphoma
and primary: glioma,
meningioma
and metastatic)
[Blood serum]

92% sens, 97% spec for
lymphoma vs controls;
96% sens, 95% spec for
gliomas vs controls; 95%
sens, 98% spec for
meningiomas vs controls;
96% sens, 95% spec for
metastatic brain cancers
vs controls; brain cancer
subtypes were
differentiated with �71-
94% sens and 82-96%
spec; primary vs
metastatic cancers
achieved 91% sens and
66% spec

Brain cancer Butler, 2019,
UK[38]

ATR-FTIR 237 non-cancer, 487
cancer; external
validation with 104
prospectively recruited
patients
[Blood serum]

92% sens and 93% spec for
cancer vs non-cancer;
83% sens and 87% spec
in prospective validation
study

Brain cancer Cameron, 2019,
UK[36]

ATR-FTIR 237 non-cancer, 478
cancer, 41 additional
lymphoma patients
[Blood serum]

91% sens and spec for
cancer vs non-cancer;
best result for
glioblastoma vs
lymphoma was 90% sens
and 86% spec (done
using 112 patients
overall)

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Brain tumour Mehta, 2018,
India[40]

Raman 35 controls, 35 cancers
(meningiomas)
[Blood serum]

When tested in independent
dataset: 70% accuracy for
meningiomas vs controls;
72% accuracy for Grade I
meningiomas vs controls;
80% accuracy for Grade II
meningiomas vs controls

Brain cancer Smith, 2016,
UK[35]

ATR-FTIR 122 non-cancer, 311 cancer
[Blood serum]

93% sens and 92% spec;
feature selection coupled
with 2D correlation
analysis was employed to
improve the diagnostic
values from the Hands,
2016 study (below)

Brain tumour Hands, 2016,
2016[34]

ATR-FTIR 122 non-cancer, 311 cancer
(primary: glioma,
meningioma
and metastatic)
[Blood serum]

92% sens and 83% spec

Breast cancer Sitnikova, 2020,
Russia[44]

ATR-FTIR 80 healthy controls, 66
cancer
[Blood serum]

92% sens and 87% spec
was obtained

Breast cancer Lin, 2020, China[45] SERS 30 health controls, 30
cancer at two different
time points (before and
after surgical treatment),
[Blood serum]

95% and 100% diagnostic
accuracies were achieved
for pre-surgery vs post-
surgery and pre-surgery
vs normal groups,
respectively

Breast cancer Elmi, 2017, Iran[47] FTIR (transmission
mode)

43 healthy controls,
43 cancer
[Blood serum]

Diagnostic sens of 84%,
spec
of 74%, and accuracy of
83% based on 3090-
3700 cm-1 spectral region

Cervical cancer Shrivastava, 2021,
India[61]

Confocal Raman
microscopy

30 controls, 63 cancer
(serial samples from 3
time points: before,
during or 6months after
treatment –
chemoradiotherapy with
external radiotherapy)
[Blood serum]

93% sens and 86% spec for
control vs cancer before
treatment; sens and spec
ranged between 50-74%
and 25-66% respectively
when cancer samples
from different time
points of treatment were
compared (ie. before vs
during treatment; during
vs after; before vs after)

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Cervical precancer
and cancer

Lu, 2020, China[62] SERS-based
immunoassay

30 healthy controls, 30
CIN1, 30 CIN2, 30 CIN3,
30 cervical cancer
[Blood serum]

Simultaneous detection of
two cancer-associated
serum biomarkers
(squamous cell carcinoma
antigen and osteopontin).
Good selectivity and
reproducibility with low
detection limits and
consistent results to ELISA
methods

Colon cancer Toraman, 2019,
Turkey[51]

FTIR 40 healthy controls, 30
cancer
[Blood plasma]

Sens of 93% and spec of
95% for SVM and 96% for
multilayer perceptron
model

Colon cancer Li, 2016, China[49] Raman 75 healthy controls, 65 pre-
operative colon cancer,
60 post-operative colon
cancer patients
[Blood Serum]

Diagnostic accuracy of 91%
and spec of 93%

Colon, breast,
lung, oral and
ovarian
cancers

Moisoiu, 2019,
Romania[50]

SERS 39 normal, 109 colorectal,
42 breast, 33 lung, 17
oral, 13
ovarian cancer
[Blood serum]

98% sens and 91% spec for
normal vs cancer (all
types); overall diagnostic
accuracy of 88% for oral,
86% for colorectal, 80%
for ovarian, 76% for
breast and 59% for lung
cancer

Endometrial
cancer and
atypical
hyperplasia

Paraskevaidi, 2020,
UK[72]

ATR-FTIR 242 healthy controls, 68
atypical hyperplasia, 342
cancer (Type I: 258; Type
II: 64; Mixed: 20)
[Blood plasma]

87% sens and 78%
spec for controls vs
cancer (all types); 91%
sens and 81% spec for
Type I cancer vs controls;
100% sens and 88% spec
for atypical hyperplasia
vs controls

Gastric Cancer Chen, 2018,
China[56]

SERS 116 healthy control, 104
cancer (20 early gastric
cancer, 84 advanced
gastric cancer)
[Saliva]

80% sens and 88% spec

Gastric Cancer Liu, 2017, China[58] FTIR 30 healthy control,
40 cancer
[Red blood cells]

95% sens and 70% spec

Gastric and Colon
cancer

Guleken, 2021,
Turkey[57]

FTIR 43 healthy control, 45
gastric cancer, 45 colon
cancer
[Blood serum]

PCA discrimination
demonstrated

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Gastric cancer Bahreini, 2019,
Iran[54]

Raman 40 healthy control, 20
cancer
[Blood serum]

88% ability to discriminate
between control and
cancer

Gastric cancer and
gastritis

Li, 2016, China[55] SERS 42 control, 45 atrophic
gastritis patients, 43 pre-
operation gastric cancer
patients, 40 post-
operation gastric cancer
patients
[Blood serum]

Accuracies of 97%, 89% and
87% were obtained for
PCA-SVM, PCA-LDA and
PCA-CART

Head and Neck
cancer

Liang, 2020,
China[81]

SERS 32 benign, 70 thyroid
cancers
[Blood plasma]

90% discrimination accuracy
between benign and
malignant thyroid tumour

Head and Neck
cancer

Lin, China, 2019[80] SERS 30 normal, 30
nasopharyngeal
carcinoma
[Blood plasma]

Sens of 89% and 86%, spec
71% and 79%, for 633 and
785 nm respectively

Head and Neck
cancer

Adeeba, 2018,
Pakistan[82]

ATR-FTIR 20 healthy controls, 60
"niswar" (a dipping
tobacco product) users,
67 oral cancer
[Blood plasma]

90% classification rate

Head and Neck
cancer

Xue, 2018,
China[79]

SERS 135 Oral Squamous Cell
Carcinoma (OSCC) samples
of different stages and
histologic grades
[Blood serum]

All accuracies of detection
and classification reached
above 85%

Head and Neck
cancer

Tan, 2017,
China[78]

SERS 145 old maxillofacial
fracture and healthy
volunteers as normal
control, 90
mucoepidermoid
carcinoma as positive
control, 135 OSCC
[Blood serum]

OSCC discriminated from
the normal with 81% sens
and 84% spec

Head and Neck
cancer

Brindha, 2017,
India[83]

Raman 80 normal,
57 oral premalignant, 60
oral malignant patients
[Urine]

96% accuracy for normal vs
premalignant;
96% accuracy for normal
vs malignant;
93% accuracy across
normal, premalignant
and malignant groups

Head and Neck
cancer

Sahu, 2015,
India[76]

Raman 126 healthy controls, 47
premalignant, 35 disease
controls (non-oral cancer
malignancy control) and
120 oral cancer
[Blood serum]

64% sens and 80% spec for
normal vs abnormal

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Head and Neck
cancer

Yan, 2015,
China[77]

SERS 31 normal controls, 60
parotid gland tumours
patients (20 pleomorphic
adenoma, 21 Wartin’s
tumour and 19
mucoepidermoid
carcinoma)
[Blood serum]

84-88% classification
accuracy, 82-97% sens
and 74-87% spec

Leukaemia Bai, 2020, China[97] Raman 30 healthy volunteers,
33 diffuse large B-cell
lymphoma patients, 39
chronic lymphocytic
leukemia patients
[Blood plasma]

For the chronic lymphocytic
leukemia model, sens was
93% and spec was 100%,
whereas for the diffuse
large B-cell lymphoma
model, sens was 80% and
spec was 92%

Leukaemia F�er�e, 2020,
France[98]

Raman 61 healthy individuals and
one group of 79
untreated CLL patients
[Whole blood smears]

88% mean sens and 74%
mean spec

Lung Cancer Qian, 2018,
China[102]

SERS 66 healthy controls, 61
cancer
[Saliva]

95-97% sens and 100%
spec were achieved
using leave-one-out and
random forest algorithms
for controls vs cancer

Lung, Liver and
Breast cancers

Xiao, 2016,
China[103]

SERS 60 normal controls, 47
hepatocellular
carcinoma, 55 lung
cancer, 68 breast cancer
[Blood serum]

OPLS-DA classification
method differentiated all
cancers from controls as
well as between the
different cancer types

Liver cancer and
cirrhosis

Li, 2015, China[99] SERS 44 healthy controls, 45 liver
cancer, 42 post-
treatment liver cancer
and 45 liver cirrhosis
[Blood serum]

Between 89% and 92%
accuracy depending on
model used

Liver and
nasopharyngeal
cancers

Yu, 2018,
China[100]

SERS 95 healthy volunteers,
104 liver cancer patients,
100 nasopharyngeal
cancer patient
[Blood serum]

91% diagnostic accuracy on
unknown testing set.

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Oesophageal
adenocarcinoma

Maitra, 2019,
UK[109] (ATR-FTIR)
Maitra, 2020,
UK[110] (Raman)

ATR-FTIR
Raman

(i) 35 control, 18
inflammatory, 27 Barrett’s,
6 low-grade dysplasia
(LGD), 12 high-grade
dysplasia (HGD), 22
oesophageal
adenocarcinoma (OAC)
[Blood plasma]
(ii) 36 control, 19
inflammatory, 28 Barrett’s,
6 LGD, 12 HGD, 23 OAC
[Blood Serum]
(iii) 38 control, 19
inflammatory, 27 Barrett’s,
6 LGD, 12 HGD, 22 OAC
[Saliva]
(iv) 38 control, 19
inflammatory, 27 Barrett’s,
6 LGD, 11 HGD, 25 OAC
[Urine]

ATR-FTIR: 100% sens and
spec for controls vs disease
in plasma/urine samples;
95-100% sens and 50-100%
spec for controls vs disease
in serum (for OAC: 100%,
sens and spec); 87-100%
sens, 63-100% spec for
controls vs disease in saliva
(for OAC: 100% sens, 95%
spec).
Raman: For saliva/urine
samples, 100% of correct
predictions of all
oesophageal stages. For
plasma/serum samples,
accuracy values >90% were
achieved for all
oesophageal stages

Oesophageal
cancer

Feng, 2017[111] SERS 52 controls, 55 cancer
[Urine]

The oesophageal cancer
and control groups were
separated with 100% sens
and spec

Ovarian cancer Perumal, 2019,
Singapore[73]

SERS 57 benign, 54 cancer (29
Stage I, 3 Stage II, 15
Stage III, 7 Stage IV)
[Ovarian cyst fluid]

SERS-based assay to
quantify haptoglobin (Hp);
normalized mean values of
Hp were significantly higher
in cancer cases (1.85 vs
0.6); 94% sens and 91%
spec for benign vs cancer;
sens was high for all stages
(97% Stage I; 100% Stage
II; 93% Stage III, 86% for
Stage IV)

Ovarian cancer Paraskevaidi, 2018,
UK[74]

Raman and SERS 28 benign, 27 cancer (17
Stage I, 10 Stage II-IV
cancer)
[Blood plasma]

Raman: 94% sens and 96%
spec for benign vs cancer;
93% sens and 97% spec for
Stage I cancer vs benign
SERS: 87% sens and 89%
spec; 80% sens and 94%
spec for Stage I cancer vs
benign

Prostate cancer Medipally, 2020,
Ireland[122]

FTIR (ATR and
transmission
modes) and Raman
spectroscopy

33 healthy, 43 cancer
[Blood plasma]

Sens and spec
ranging between 90-99%
(PLSA-DA) for healthy vs
cancer

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Prostate cancer Medipally, 2019,
Ireland[123]

FTIR (transmission) 53 cancer patients
(at five different time
points: prior treatment,
after hormone
treatment, end of
radiotherapy,
two months post
radiotherapy and eight
months post
radiotherapy)
[Blood plasma]

Discrimination
between patients at each
treatment stage and follow-
up time point, as well as
between patients with
acute and late toxicity and
toxicity grade. High
sens and spec (80-99%)
were achieved

Cytology
Bladder cancer Gok, 2016,

Turkey[32]
Transmission and
ATR FTIR

34 control, 137 cancer
[Cell pellets from
bladder washes]

Successful discrimination of
normal and cancer

Cervical precancer
and cancer

Karunakaran, 2020,
India[63]

SERS (label-free) 47 normal, 41 HSIL, 36
cervical squamous
carcinomas
[exfoliated cervical cells
in LBC: single cells, cell
pellet and extracted
DNA]

Average diagnostic accuracy
of 94% (in single cells),
74% (in cell pellets) and
92% (in extracted DNA) for
the three groups

Cervical precancer Traynor, 2019,
Ireland[64]

Confocal Raman
microscopy

64 normal, 69 CIN3
[LBC: single cells]

Samples stored at �80oC
were not suitable (lack of
cellular material and
presence of cellular debris);
fresh LBC samples and
those stored at �25oC were
suitable; 86% sens and 90%
spec for normal vs CIN3
(fresh samples); 91% sens
and 92% spec for normal vs
CIN3 (�25oC samples)

Cervical precancer Jusman, 2016,
Malaysia[65]

FTIR 650 normal, 160 LSIL, 40
HSIL
[LBC: single cells]

92% overall diagnostic
accuracy in
differentiating normal,
LSIL and HSIL; proposed
an automated screening
FTIR system for cervical
precancer detection

Cervical precancer Ramos, 2016,
Ireland[66]

Confocal Raman
microscopy

88 normal (negative
cytology), 35 LSIL (CIN1),
43 HSIL (21 CIN2/22
CIN3)
[LBC: single cells]

Histological assessment
(CIN) provided higher
diagnostic accuracy when
compared to cytological
assessment (SIL); 91-100%
sens and 97-100% spec for
detecting normal, CIN1/2/3;
86-100% sens and 95-100%
spec for detecting negative,
LSIL, HSIL

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Head and Neck
cancer

Sahu, 2017,
India[84]

Raman 20 healthy volunteers, 20
healthy volunteers with
tobacco habits, 27 oral
premalignant conditions
(n¼ 27)
[Oral exfoliated cells]

Oral premalignant
conditions identified with
�70% sens in the three-
group model and 83% in a
two-group model

Head and Neck
cancer

Sarkar, 2018,
India[85]

Fluorescence,
atomic absorption
and FTIR

20 non-smokers, 60
smokers, 20 clinically
diagnosed oral
leucoplakia and 19 OSCC
patients
[Oral exfoliated cells]

No diagnostic classification
performed. Highlighted
effect of smoking on
cellular bioenergetic and
hememetabolic pathways,
which may be important for
early cancer development.

Skin Cancer Wald, 2015,
Belgium[116]

FTIR imaging 51 cancer patients (26
primary and 25
metastatic tumours)
[Melanoma cells]

No differences between
primary and metastatic
melanomas, but PLS-DA
differentiated between
Stage I-II and Stage III-IV
primary tumours with 89%
sens and 71% spec.

Tissue
Bladder cancer
and cystitis

Witzke, 2019,
Germany[33]

FTIR imaging 19 low-grade cancer, 43 high-
grade/invasive cancers
and 41 severe cystitis
[Fresh frozen tissue]

95% sens and spec when
comparing cancerous
and non-cancerous tissue

Brain tumour Lilo, 2020, UK[41] ATR-FTIR 99 tumour patients (grade I
(n¼ 70), II meningiomas
(n¼ 24) and recurrent
grade I meningiomas
(n¼ 5))
[FFPE tissue]

80% sens and 73% spec for
grade I vs II meningiomas;
94% sens and 94% spec
for grade I vs grade I
recurrence; 97% sens and
100% spec for grade II vs
grade I recurrence

Brain tumour Morais, 2019,
UK[42]

Raman imaging 90 tumour patients (66
Grade I and 24 Grade II
meningiomas)
[FFPE tissue]

86% sens and 100% spec
(96% accuracy) for Grade
I vs Grade II
meningiomas

Brain cancer Livermore 2019,
UK[43]

Raman 62 gliomas (36
astrocytoma, IDH-wild-
type; 21 astrocytoma,
IDH-mutated; 5
oligodendroglioma)
[Fresh tissue]
79 gliomas (19
astrocytoma, IDH-wild-
type; 41 astrocytoma,
IDH-mutated; 19
oligodendroglioma)
[Snap-frozen tissue]
120 gliomas (41
astrocytoma, IDH-wild-
type; 51 astrocytoma,
IDH-mutated; 28
oligodendroglioma)
[FFPE tissue]

79%–94% sens and
90%–100% spec for
distinguishing between
the 3 glioma genetic
subtypes.
IDH mutation gave 91%
sens and 95% spec
Seventy-nine
cryosections, 120 FFPE
samples, and glioma cell
lines also successfully
classified

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Breast cancer Talari, 2019, UK[46] Raman
spectroscopy

132 breast biopsies from
four cancer subtypes:
luminal A, luminal B,
HER2 and triple negative
[Tissue microarray
biopsies]

Spec of 70%, 100%, 90%
and 97% for distinguishing
luminal A, luminal B, HER2
and triple negative
subtypes

Breast
cancer

Surmacki, 2015,
Poland[48]

Raman imaging 82 samples from two sites
of cancer patients
(safety margin and
tumour section)
[Tissue cryosection]

86% sens and 72% spec for
distinguishing margin vs
tumour

Cervical precancer
and cancer

Wang, 2021,
China[67]

Confocal Raman
microscopy

60 cervical inflammation
(cervicitis), 30 CIN1, 30
CIN2, 30 CIN3, 30
cervical squamous cell
carcinomas, 30 cervical
adenocarcinomas
[FFPE tissue]

86% overall diagnostic
accuracy: precancerous
lesions (CIN1-3) were
correctly identified with
diagnostic accuracy
ranging from 80-89%;
squamous cell carcinoma
and adenocarcinoma were
found with 100% and
86% accuracy respectively.

Cervical cancer Zhang, 2021,
China[68]

Raman 44 cervical
adenocarcinomas, 49
cervical squamous cell
carcinomas
[FFPE tissue]

Different classifications
models were evaluated
reaching diagnostic
accuracies between 85-96%
in distinguishing cervical
adenocarcinomas vs
squamous cell carcinomas

Cervical cancer Zheng, 2019,
China[69]

Raman 45 cervical
adenocarcinomas, 50
cervical squamous cell
carcinomas
[FFPE tissue]

93% diagnostic accuracy in
distinguishing cervical
adenocarcinomas vs
squamous cell
carcinomas

Cervical precancer
and cancer

Daniel, 2018,
India[70]

Confocal Raman
microscopy

64 normal, 36 precancer
and 145 cancer (19 well
differentiated, 40
moderately
differentiated and 86
poorly differentiated
squamous cell
carcinoma)
[Snap frozen tissue]

95% overall accuracy in
correctly classifying the 3
groups: normal (97%
correct), precancerous
(70% correct) and
cancerous samples (99%
correct) using PC-LDA;
94% overall accuracy for
detecting well/
moderately/poorly
differentiated squamous
cell carcinoma using PC-
LDA

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Cervical cancer Daniel, 2016,
India[71]

Polarized Raman
and Raman

36 normal, 25 cancer
[not specified tissue]

Polarized Raman: 96% sens
and 97% spec (97%
accuracy) for normal vs
cancer;
Raman: 92% sens and 72%
spec (80% accuracy) for
normal vs cancer

Colon cancer Kuepper, 2016,
Germany[52]

FTIR (transflection
mode)

16 well differentiated, 90
moderately
differentiated and 19
poorly differentiated
colon cancer patients
[FFPE, tissue microarray]

94% sens and 100% spec of
colon cancer grading.

Colon cancer Petersen, 2017,
Germany[53]

Fibre-optic Raman 101 normal tissues,
22 adenocarcinoma, 141
tubular adenomas, 79
hyperplastic polyps
[Ex vivo fresh tissue]

High-risk lesions vs low-risk
lesions have 79% sens and
74% spec. Cancer vs normal
tissue has a sens of 79%,
and spec of 83%

Gastric cancer Ghassemi, 2021,
Iran[59]

ATR-FTIR 30 adenocarcinoma
patients with adjacent
normal tissue
[FFPE tissue]

Discrimination of normal
adjacent and cancerous
tissue (82% diagnostic
accuracy)

Gastric cancer Lin, 2016,
Singapore[60]

In vivo Raman Total of 157 gastric
patients with
measurements taken from
cancerous and healthy
tissues.
[In vivo]

Sens ranged from 75% to
89% and spec from 82% to
92% depending on model
used

Head and Neck
cancer

Bhattacharjee,
2021, India[92]

In vivo Raman Tumour and contralateral
regions of 94 OSCC
patients
[In vivo]

Prediction of disease
recurrence with a prediction
error of <0.25

Head and Neck
cancer

Jeng, 2020,
Taiwan[87]

Raman/
autofluorescence

35 control, 35 oral cancer,
35 cancer lesions
[Oral biopsies]

Raman: Cancer vs normal:
83%accuracy, 80% sens,
and 86%
Combination: 97% accuracy,
100% sens 94% spec

Head and Neck
cancer

Chundayil
Madathil, 2019,
India[89]

SERS Catheter 37 patient samples
[Oral biopsies]

Malignant OSCC, verrucous
carcinoma, premalignant
leucoplakia, and disease-
free conditions are detected
and classified with an
accuracy of 97%
Correct classification of
tumours into three grades
with an accuracy of 98% in
OSCC

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Head and Neck/
Mixed cancers

Vohra, 2018,
USA[88]

SERS 25 samples from human
cervical lymph nodes,
tonsils, oropharyngeal
mucosa, sinus mucosa,
and thyroid gland
[RNA extracted from
snap frozen tissue]

100% sens, 89% spec in
distinguishing H&NSCC
from other tissue types
such as thyroid cancer
and benign lymphoid
tissue

Head and Neck
cancer

Hoesli, 2017,
USA[90]

SRS Tissue from 50 patients, from
which 42 tumor samples and
42 normal adjacent controls
were chosen.
[Fresh oral biopsies]

91% sens and 95% spec for
neoplastic vs non-
neoplastic images

Head and Neck
cancer

Malik, 2017,
India[91]

In vivo Raman Tumour and contralateral
normal mucosa in 99 patients
with oral cancer [In vivo]

The sens of Raman
spectroscopy in predicting
recurrences was 80% and
the spec was 29.7%

Head and Neck
cancer

Sun, 2016,
China[86]

Raman 35 non-cancerous, 39
nasopharyngeal cancer
[Fresh biopsy tissue
smears]

87% sens and 86% spec for
differentiating
nasopharyngeal cancer
from non-cancerous
smears

Kidney cancer He, 2021, China[93] Raman 77 Renal cell carcinoma
patients
[Tissue biopsy - 38 fresh
and 39 from a frozen
tissue bank]

Distinguish human renal
tumour from normal tissues
and fat with an accuracy of
93%
Classification of renal
tumour subtypes and
grades with an accuracy of
87% and 90%, respectively

Kidney cancer Sablinskas, 2020,
Lithuania[96]

Fiber ATR IR 34 cancer patients
[Fresh tissue]

27 of 34 kidney tumour
samples were correctly
classified as tumour tissues

Kidney cancer Liu, 2017, China[94] Raman 63 patients receiving
radical or partial
nephrectomy.
Distal renal parenchymas
were collected as a
normal, control group
[Fresh needle biopsy]

83% accuracy for normal vs
tumour. 92% sens and
71% spec for malignant vs
benign tumours.
87% accuracy for low-
grade vs high-grade
tumours.
Clear cell renal carcinoma
was differentiated from
oncocytoma (100%) and
angiomyolipoma (89%).
Histological subtypes of
cell carcinoma
distinguished (94%
accuracy)

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Kidney cancer Mert, 2015,
Turkey[95]

SERS 40 Renal cell carcinoma
and transitional cell
carcinoma patients (28
T1 stage, 12 T2–T3
stages)
[Homogenized tissue]

Discrimination of tissue
regions of normal and
different tumour stages up
to 100%

Lung Cancer Bangaoil, 2020,
Philippines[104]

ATR-FTIR 66 benign, 54 cancer
[FFPE tissue]

98% sens, 92% spec, 95%
accuracy, 91% positive
predictive value and 98%
negative predictive value
for benign vs cancer

Lung Cancer Weng, 2017,
USA[105]

CARS imaging 83 normal, 156
adenocarcinoma, 111
squamous
cell carcinoma, 38 small-
cell carcinoma
[Snap frozen tissue]

89% accuracy in classifying
the four classes

Lung Cancer McGregor, 2017,
Canada[106]

In vivo endoscopic
Raman
spectroscopy

80 cancer patients (72 high
grade dysplasia/
malignant lesions tissue
sites and 208 benign
lesions/normal tissue
sites)
[In vivo]

High grade dysplasia and
malignant
lesions were detected with
90% sens
and 65% spec

Lung Cancer Akalin, 2015,
USA[107]

FTIR imaging 80 normal, 61 benign, 308
cancer
[FFPE tissue, microarray]

Clear distinction between
the different
adenocarcinoma
subtypes. SVM classifier
separated benign from
malignant lesions with 99%
accuracy

Lung Cancer Großerueschkamp,
2015, Germany[108]

FTIR Imaging 92 patient samples of lung
cancer
[Snap frozen tissue]

Identification of
NSCLC, ADC, SqCC, SCLC,
hamartochondroma,
carcinoids, thymoma, large
cell neuroendocrine
carcinoma and diffuse
malignant mesothelioma
with accuracy of 97% and
subclasses of
adenocarcinomas with 95%
accuracy

Liver cancer Zhang, 2018,
China[101]

SERS 46 normal patients and 56
liver cancer patients
[Tissue section – not
specified]

100% sens and spec

(continued)
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Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Oesophageal
cancer

Wu, 2020,
China[112]

Synchrotron FTIR
(transmission
mode)

32 control, 39 cancer
[Hair]

90% sens, 88% spec, 90%
positive predictive value
and 89% accuracy

Oesophageal
cancer

Maitra, 2020,
UK[113]

Raman 35 normal vs 18
inflammatory vs 27
Barrett’s oesophagus vs
6 LGD vs 12 HGD vs 22
OAC
[Tissue section - not
specified]

90-100% sens, and
71–100% spec (91–100%
accuracy) for correctly
identifying each class

Oesophageal
cancer

Ishigaki, 2016,
Japan[114]

Raman 50 normal tissues, 73
cancer (42 invasive
cancer stage I; 25
epithelial cancer stage 0;
6 suspicious lesions)
[Fresh tissue]

81% sens, 94% spec for
normal vs cancer stage I

Oesophageal
cancer

Wang, 2015,
Singapore[115]

In vivo Raman 48 oesophageal patients
[In vivo]

93% sens and 94% spec for
oesophageal squamous
cell carcinoma
identification

Ovarian cancer Theophilou, 2016,
UK[75]

ATR-FTIR 35 benign, 30 borderline,
109 cancer (46 high
grade serous, 9 low
grade serous, 15
endometrioid carcinoma,
4 mixed, 12 mucinous,
12 clear cell, 13
carcinosarcoma)
[FFPE]

Optimal discrimination was
observed between benign,
borderline and cancer after
GA-LDA analysis; no sens or
spec reported.
Classification of different
ovarian carcinoma subtypes
was performed with overall
diagnostic accuracy ranging
between 87-100% after
two-group comparisons
with GA-LDA

Skin cancer Schleusener, 2015,
Germany[117]

In vivo Raman 104 control (normal skin),
35 basal cell carcinoma
(BCC), 22 squamous cell
carcinoma (SCC)
[In vivo]

Non-melanoma skin cancers
were discriminated from
normal skin (n¼ 104) with
63% sens and 83% spec
(73% accuracy) for BCC
only, whilst 74% sens and
82% spec (78% accuracy)
were achieved for BCC/SCC
(n¼ 57) vs controls

(continued)
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in the staging, prognosis and treatment options of bladder cancer patients. SERS spectra
were acquired from 30 healthy volunteers, 28 non-muscle invasive bladder cancers and
32 muscle invasive bladder cancers. Raman spectra were acquired with a 785 nm laser
using silver nanoparticles with a 10 second integration time. Overall diagnostic accuracy
using partial least squares-discriminant analysis (PLS-LDA) was found to be 93%, with
a 98% accuracy in discriminating between normal and cancer and 93% between non-
muscle invasive and muscle invasive bladder cancer.
Fourier transform Infrared spectroscopy (FTIR) has also been investigated for its util-

ity in bladder cancer by Gok et al. using cytology[32] and Witzke et al. on formalin-fixed
paraffin embedded (FFPE) tissue sections[33]. Gok et al.[32] examined cytology samples

Table 2. Continued.

Disease
Author, Year,
Country

Spectroscopic
technique

Population
[Sample type] Main findings

Skin cancer Zhao, 2016,
Canada[119]

Zhao, 2015,
Canada[118]

In vivo Raman 46 benign lesions, 74
precancerous lesions and
cancers
[In vivo]

Zhao, 2016: Wavenumber
selection-based analysis to
improve diagnostic spec.
Increase of spec from 17-
65% to 20-75% with sens
fixed to 99-90%.
Zhao, 2015: Differentiation
performed using a
retrospective analysis of a
previous cohort of 518
lesions as training set,
obtaining an AUC-ROC of
�0.90

Skin cancer Santos, 2018,
Netherlands[120]

High-wavenumber
Raman

Common nevi and
melanoma in situ for a
total of 128 lesions
[Fresh tissue]

PCA-LDA diagnostic model
was built on 78 common
nevi and melanoma in situ
lesions and validated on an
independent dataset of 50
common nevi and
melanoma in situ lesions.
With a fixed sens of 100%,
spec amounted to 44%.

Skin cancer Feng, 2018,
USA[121]

In vivo Raman 44 healthy controls, 44
non-melanoma skin
cancer (basal cell
carcinoma (n¼ 14);
squamous cell carcinoma
(n¼ 20); actinic keratosis
(n¼ 10))
[In vivo]

95% sens, 10% spec

Abbreviations: ADC: Adenocarcinoma; ATR: Attenuated total reflection; CART: Classification and regression tree; CIN:
Cervical Intraepithelial neoplasia; DMM: Diffuse malignant mesothelioma; FFPE: Formalin fixed paraffin embedded;
FTIR: Fourier transform infrared spectroscopy; HGD: High-grade dysplasia; HSIL: High-grade squamous intraepithelial
lesion; IDH1: Isocitrate dehydrogenase 1; LBC: Liquid-based cytology; LGD: Low-grade dysplasia; LOOVC: Leave-one-out
cross validation; LSIL: Low-grade squamous intraepithelial lesion; NSCLC: Non-small cell lung carcinomas; OAC:
oesophageal adenocarcinoma; OPLS-DA: orthogonal partial least squares discriminant analysis; OSCC: Oral squamous
cell carcinoma; PCA-LDA: Principal component-linear discrimination analysis; PLS-DA: Partial least squares discriminant
analysis; SCLC: Small cell lung cancer; Sens: Specificity; SERS: Surface enhanced Raman spectroscopy; Spec: Specificity;
SqCC: Squamous cell carcinoma; SVM: Support vector machine
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acquired from bladder washes using transmission FTIR from 37 bladder cancer patients
and 34 normal controls. This was then confirmed using a separate cohort using attenu-
ated total reflection-FTIR (ATR-FTIR) on 44 bladder cancer patients and 21 normal
controls. The cancer group had a mix of carcinomas, papillomas and papillary urothelial
neoplasm of low malignant potential. Spectra from both FTIR approaches were sub-
jected to principal component analysis (PCA) and hierarchical clustering analysis
(HCA) that led to specificities ranging from 53% to 81% and sensitivities ranging from
82% to 100% depending on the techniques, spectral range analyzed and whether the
normal patients were compared to all bladder cancers or just the carcinoma sub-group.
Witzke et al.[33] also investigated the application of FTIR in the bladder and combining
this approach with identifying regions of interest for laser capture microdissection and
later liquid chromatography-mass spectrometry (LC-MS). One part of the study
(sample set 2) focused on the application of FTIR imaging to fresh frozen bladder
tissues to discriminate between low-grade bladder cancer (19), high grade bladder
cancer (43) and severe cystitis (41). Spectra were classified using Random Forest
which have 95% sensitivity and specificity when comparing between cancerous and
non-cancerous tissue.

Brain tumor

The literature search included the keywords: meningioma, glioblastoma (GBM), astrocy-
toma and lymphoma. Of the 10 eligible studies, six used a biofluid-based ATR-FTIR/
Raman approach, one study included biofluids and brain tissues using a synchrotron-
based spectrometer while three studies used tissue samples and ATR-FTIR/Raman.
Hands et al.[34] involved the investigation of blood serum using ATR-FTIR spectros-

copy. 122 non-cancer samples were compared against 311 primary tumor samples (glio-
mas, meningiomas and metastatic). Following a stratified approach, the mean sensitivity
and specificity for cancer versus non-cancer was 90% and 78%, which increased to 92%
and 83% when using feature selection method via a fed-support vector machine (SVM)
approach. In a follow up study by Smith et al.[35], the patient cohort was the same as in
the Hands et al. study. However, further feature selection coupled with generalized 2D
correlation analysis to augment the machine learning algorithm was employed to
improve the sensitivity and specificity results. Using a random forest model for the
second derivate normalized spectra, outputs gave a sensitivity of 93% and a specificity
of 92%. Cameron et al.[36] published a study in 2019 which attempted to stratify brain
tumor patients by using serum-based ATR-FTIR, aiming particularly to distinguish
between glioblastoma and lymphoma patients. 765 samples were analyzed (healthy con-
trols (n¼ 237), brain tumors (n¼ 487) and additional lymphoma samples (n¼ 41)).
When assessing healthy versus brain cancer using PLS-DA, the sensitivity and specificity
were �91%. Using the same technique to differentiate GBM (n¼ 71) from lymphoma,
results accounted for up to 90% sensitivity and 86% specificity. Another study by
Cameron et al.[37] delves further into determining brain tumor types using the same
method, in order to aid in secondary care. In this study, 87 healthy controls were col-
lected alongside 554 tumor samples which included several subtypes (lymphoma and
primary: glioma, meningioma and metastatic). Overall, this test achieved sensitivities
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and specificities in the high 90% range in distinguishing between brain tumor samples
(all subtypes) and healthy controls. When primary and metastatic cancers were com-
pared, 91% sensitivity and 66% specificity were achieved. Butler et al.[38] employed
ATR-FTIR spectroscopy to investigate biofluids from the same dataset of 237 non-can-
cer and 478 cancer samples from Cameron et al.[36] but without the additional lymph-
oma samples. This study aimed to develop a rapid, high-throughput technique capable
of triaging brain cancer patients and yielded 93% sensitivity and sensitivity using an
SVM-based classification approach.
The final study involving ATR-FTIR[39], aimed to determine whether a patient with a

glioma primary brain tumor possessed the isocitrate dehydrogenase 1 (IDH1) mutation,
which indicates a better prognosis, or had IDH1 wild-type lesion. Both serum and tissue
samples were investigated, with ATR-FTIR used on the dried serum samples, whilst the
tissue samples were investigated using the MIRIAM beamline at the Diamond Light
Source synchrotron facility (UK). Serum samples were collected from 36 patients for
each IDH1 type and, when investigated using centrifugal filtration coupled with ATR-
FTIR, gave a sensitivity and specificity of around 70% respectively. A number of tissue
samples (n¼ 21 for IDH1-mutated and n¼ 78 for IDH1-wild-type) were lost during
sample preparation, and therefore 79 glioma patients were analyzed. Using this method
to separate mutated from wild-type IDH1, the authors reported a sensitivity of 82% and
a specificity of 83%.
A serum-based Raman study was also completed by Mehta et al.[40] to investigate

meningiomas (n¼ 35) versus controls (n¼ 35). 25 healthy and 25 meningioma samples
underwent PCA and principal component-linear discrimination analysis (PC-LDA), the
latter model being subjected to Leave-One-Out Cross-Validation (LOOCV); when tested
using an independent test set, the PC-LDA model gave a classification efficiency of
70%. For healthy controls (n¼ 25) against grade I meningiomas (n¼ 15), the classifica-
tion efficiency when tested against an independent test set was 70% and 75% respect-
ively. For healthy (n¼ 25) against grade II meningiomas (n¼ 16), the specificity was
only 69%, given a number of the meningiomas incorrectly classified; only 10 healthy
samples were used for the independent test set which gave a classification efficiency
of 80%.
Several studies employed the use of FTIR and Raman spectroscopy on tissue samples

to attempt to differentiate between cancer subtypes. Once such study conducted by Lilo
et al.[41] used ATR-FTIR to analyze FFPE brain tissue samples coupled with subtype
classification via a PLS-LDA model. Utilizing these methods gave a sensitivity and speci-
ficity of 80% and 73% for grade I vs grade II meningiomas, 94% sensitivity and 94%
specificity for grade I vs grade I recurring and finally 97% sensitivity and 100% specifi-
city for grade II vs grade I recurring meningiomas.
Alternatively, Morais et al.[42] used Raman microspectroscopy imaging to investigate

brain tissue samples to determine the grading of the brain tumor. 90 samples were ana-
lyzed in total, 66 grade I and 24 grade II meningiomas. The models with the best classi-
fication performance were principal component analysis -quadratic discriminant
analysis (PCA-QDA) and successive projections algorithm-quadratic discriminant ana-
lysis (SPA-QDA). Both models yielded a sensitivity of 86% with a specificity of 100%,
with an area under the curve (AUC) of 0.929.
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Finally, with regards to tissue sampling, Livermore et al.[43] investigated the use of
Raman spectroscopy in classification of gliomas. This study involved the use of fresh tis-
sue (n¼ 62), FFPE tissues (n¼ 120), cryosections (n¼ 79) and LN18 cell lines. For iden-
tifying astrocytomas, IDH-wild-type, the PC-LDA model gave a sensitivity of 94% and a
specificity of 90%. Astrocytomas with IDH-mutated gave a sensitivity of 91% and speci-
ficity of 95% and for Oligodendroglioma, the sensitivity was 79% with 100% specificity.
Using the cryosections for astrocytomas with IDH-wild-type, the sensitivity was 78%
and specificity 85%, for astrocytomas with IDH-mutant it was 79% and 89% and for oli-
godendrogliomas, 74% sensitivity and 90% specificity. Finally, for the FFPE sections,
astrocytomas with IDH-wild-type the sensitivity was 81% with 84% specificity, for astro-
cytomas with IDH-mutant the sensitivity and specificity was 72% and 87%, with the oli-
godendrogliomas having a sensitivity of 79% and a specificity of 93%.

Breast cancer

After the literature search for breast cancer, 54 publications were identified, out of
which five were eligible for the current review based on our inclusion and exclu-
sion criteria.
Blood serum of 66 breast cancer patients was investigated by FTIR spectroscopy and

compared to blood serum collected from 80 healthy controls[44]. A combinatorial
approach of PCA and principal component regression was applied yielding correct iden-
tification of cancer cases with sensitivity of 92% and specificity of 87%. These diagnostic
values match closely to those of mammography and ultrasound emphasizing the poten-
tial of the technique for clinical diagnosis. Similar results were demonstrated by Lin
et al.[45], who obtained pre- and post-surgery breast cancer samples along with healthy
controls after a serum-based analysis. The approach for surgical evaluation and screen-
ing, based on label-free SERS using silver nanoparticles coupled with PCA-LDA,
achieved 95% and 100% diagnostic accuracies for pre-surgery versus post-surgery and
pre-surgery versus normal groups, respectively. Talari et al. used Raman spectroscopy
with PCA and LDA to identify cancer subgroups[46]. To distinguish between luminal A,
luminal B, HER2 and triple negative subtypes, 132 tissue microarray breast biopsies
were examined. Biochemical alterations linked with lipids, collagen and nucleic acid
were identified achieving a specificity of 70%, 100%, and 90% and 97%, for luminal A,
luminal B, HER2, and triple negative subtypes respectively. In another study with simi-
lar objective, Elmi et al.[47] utilized PCA-LDA to distinguish blood serum samples from
43 breast cancer patients and 43 healthy controls. Differences in FTIR spectra were
observed for wavenumbers associated with sugar, collagen, esters and NH stretching
region. The results showed that breast cancer could be distinguished from controls with
84% sensitivity, 74% specificity (83% accuracy) in the 3090-3700 cm-1 spectral region.
The NH stretching vibration in this region was primarily found to be the classifying fac-
tor, indicating that the prominent differences in the spectra were due to protein
modifications.
Tissue sections in various forms are also frequently analyzed in spectroscopy diagnos-

tic studies. Raman spectral imaging analysis of 82 samples from two sites of cancer
patients (safety margin and tumor section) was employed to identify, characterize and
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discriminate structures in normal and cancerous tissues in a study by Sumacki et al.[48].
The main differences between normal and cancerous tissues were found in regions char-
acteristic of vibrations of carotenoids, fatty acids, proteins and interfacial water. PCA
and PLS-DA diagnostic models were built to evaluate the diagnostic value of Raman.
The sensitivity and specificity obtained from PLS-DA and cross validation were 86%
and 72% respectively, reinforcing Raman imaging as a promising diagnostic tool.

Colon cancer

A literature search identified five papers that met the inclusion criteria for using vibra-
tional spectroscopy to identify colon cancer.
Three papers were focused on measuring biofluids for colon cancer detection. Li

et al.[49] used Raman spectroscopy (514.5 nm, 100mW) of serum samples from 75
healthy volunteers, 65 pre-op colon cancers and 60 post-op colon cancers. Spectra were
analyzed using PCA and k-nearest neighbors (KNN) and discrimination was identified
to be principally due to the nucleic acids, amino acids and chromophores. KNN of the
obtained principal components (PCs) demonstrated a diagnostic accuracy of 91%. A
study by Moisoiu et al.[50] applied SERS to discriminate between normal (n¼ 39), and
cancers of the colon (n¼ 109), breast (n¼ 42), lung (n¼ 33), oral (n¼ 17) and ovaries
(n¼ 13) using blood serum. The study used silver nanoparticle and a 532 nm laser at
10mW with a 40 second acquisition time. Derived spectra were analyzed using PCA-
LDA and classification of normal from cancer was achieved with a sensitivity of 98%
and specificity of 91%. Cancer types were correctly classified with an accuracy of 88%
for oral cancer, 86% for colorectal cancer, 80% for ovarian cancer, 76% for breast cancer
and 59% for lung cancer. A study by Toraman et al.[51] investigated using FTIR on
plasma samples from 30 colon cancer patients and 40 healthy patients. FTIR spectra
had 16 spectral features derived which were then subjected to multilayer perceptron
neural network and support vector machine (SVM). Numerous classification compari-
sons were shown with maximum accuracies for SVM of 94 (1300-1000 cm-1 spectral
range) and 96 for multilayer perceptron model (1300-1000 cm-1) spectral range.
Two studies were identified which applied spectroscopy to tissue to diagnose colon

cancer. Kuepper et al.[52] used transflection mode FTIR imaging to scan tissue microar-
rays that consisted of 16 well differentiated, 90 moderately differentiated and 19 poorly
differentiated colon cancer patients. Spectra were classified using two consecutive ran-
dom forest classifiers, the first to identify cancerous regions and the second to identify
the grade of differentiation. This approach allowed for tumor tissue identification to be
made with a 94% sensitivity and 100% specificity. Overall, the classifiers accurately pre-
dicted 85% of the cancer grading. Petersen et al.[53] used fiber optic Raman spectros-
copy (785 nm, 300mW, 2 second integration) of colon biopsy samples to extract spectra
from adenocarcinoma (n¼ 22), tubular adenomas (n¼ 141), hyperplastic polyps
(n¼ 79) and normal tissue (n¼ 101). Classification results demonstrated high-risk
lesions could be differentiated from low-risk lesions with a sensitivity of 79% and speci-
ficity of 74%, whereas cancer and normal tissue could be discriminated with a sensitivity
of 79% and specificity of 83%. This work may allow for future in-vivo measurements to
be taken.
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Gastric cancer

A literature search identified seven papers that investigated the application of spectro-
scopic techniques to gastric cancer that met the selection criteria, with five using bio-
fluids and two using tissues.
Three studies used Raman to examine biofluids for the detection of gastric cancer.

Bahreni et al.[54] examined whether Raman spectra acquired (532 nm laser, 70mW,
1 second acquisition time) from serum could correlate with traditional enzymatic tests
often used for gastric cancer, with correlation above 94% between the Raman spectra
and the enzymatic tests. Furthermore, it was shown that 87.5% of samples were cor-
rectly classified as being from healthy patients (n¼ 40) or gastric cancer subjects
(n¼ 20) using PLS regression. A study by Li et al.[55] also examined serum from gastric
cancer patients however used SERS (632.8 nm laser, 3.5mW, 10 s exposure time, silver
nanoparticles) to discriminate between atrophic gastritis (n¼ 45), pre-op (n¼ 43) and
post-op (n¼ 40) gastric cancers and healthy individuals (n¼ 42). Obtained SERS spectra
were subjected to PCA and then with either SVM, LDA or classification and regression
tree (CART), with accuracies demonstrated of 97%, 89% and 87% respectively. Another
study that was performed using SERS to detect gastric cancer was conducted by Chen
et al.[56] using saliva samples. This study used SERS sensors based on graphene oxide
nanoscrolls wrapped in gold nanoparticles (785 nm laser at 35mW with a 10 second
acquisition time). It was demonstrated that discrimination between early and advanced
gastric cancers (n¼ 104) could be achieved with a specificity over 88% and sensitivity
over 80%.
Two studies investigated the use of FTIR on biofluids for gastric cancer diagnosis. A

study by Guleken et al.[57] applied FTIR to serum derived from 43 control patients, 45
gastric cancer patients and 45 colon cancer patients. Significant spectral differences were
observed in the Amide III and Amide I spectral regions between the cancers and nor-
mal patients. PCA analysis demonstrated clustering of the cancers together and sepa-
rated from the normal cluster. Liu et al.[58] also used FTIR to diagnose gastric cancer
however focused on measurements from red blood cells. The study compared the red
blood cells spectra from 30 normal patients to 40 gastric cancer patients identified spec-
tral changes associated with protein secondary structures, structure and content of sug-
ars and relative amounts of proteins and sugars. The spectra were subjected to
canonical discriminant analysis which gave a 95% sensitivity and 70% specificity.
Two studies were identified that have applied spectroscopy to tissue sections to diag-

nose gastric cancer, one using ATR-FTIR and one using fiber optic Raman spectros-
copy. Ghassemi et al.[59] demonstrated that ATR-FTIR applied to tissue samples could
discriminate between normal adjacent and cancerous tissue from the FFPE tissue sec-
tions from 30 patients. Data modeling techniques such as PCA, SVM and KNN allowed
for classifications with a final classification accuracy of 82% reported. Lin et al.[60] dem-
onstrated the simultaneous use of fingerprint and high-wavenumber Raman spectros-
copy with a beveled fiber-optic probe for in-vivo measurements during gastroscopy of
the pre-cancerous lesion, gastric intestinal metaplasia. In the study they obtained meas-
urements from 157 gastric patients in which they recorded a total of 4,178 spectra from
normal tissue and 432 spectra from gastric intestinal metaplasia. PCA and LDA
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algorithms were used for classification which resulted in an AUC of 0.92 for disease
classification.

Gynaecological cancers

After a literature search for gynaecological cancers since 2015, 214, 53 and 83 studies
were identified for cervical, endometrial, and ovarian cancers, respectively, out of which
11, one and three were deemed relevant to the current review based on our inclu-
sion criteria.

Cervical cancer
Women with low- and high-grade cervical precancer as well as invasive carcinoma were
investigated. The majority of the studies performed spectroscopic analysis on tissues
derived after a biopsy (5/11 studies) and cells that were stored in a preservative
medium, namely a liquid-based cytology (LBC) sample (4/11 studies), whereas only 2/
11 studies used blood serum samples.
Shrivastava et al.[61] used confocal Raman microscopy in blood serum from controls

and cancer patients for diagnostic purposes, achieving 93% sensitivity and 86% specifi-
city. Serial samples were collected from all patients at three different time points
(before, during and 6months post-treatment) to also monitor the effect of treatment.
Chemoradiation-related changes were identified in the serial samples with proteins and
nucleic acids showing a decrease while phospholipids were elevated. The authors con-
cluded that the observed variations could either be due to treatment or caused by per-
sistence of disease at 6-months, which would therefore necessitate a longer follow-up.
Raman profiles from patients after treatment were trending toward the healthy controls,
although protein alterations persisted even post-treatment. Such an approach holds
promise in disease detection and potentially in treatment monitoring; further studies in
longitudinal samples during the course of treatment are required.
In a study using a SERS-based immunoassay of blood serum, two cancer-associated

blood biomarkers (squamous cell carcinoma antigen and osteopontin) were simultan-
eously detected with low detection limits and good selectivity and reproducibility[62].
Healthy subjects as well as histologically confirmed precancer (cervical intraepithelial
neoplasia (CIN) 1, 2 and 3) and cancer samples were analyzed with the SERS-based
platform and enzyme-linked immunosorbent assay (ELISA) experiments, showing con-
sistent results.
Karunakaran et al.[63] used three different sample preparation approaches (single cells,

cell pellets and extracted DNA) to analyze the cytological material from LBC samples.
Using a label-free SERS approach, the average diagnostic accuracy for differentiating
between normal, high-grade precancer (high-grade-intraepithelial lesions (HSIL)) and
cancer samples was higher for single cells and extracted DNA (92-94%), whereas a
lower diagnostic accuracy of 74% was achieved in cell pellets.
Three different spectroscopic studies using single cells from LBC samples investigated

cervical precancer of low and high grades[64–66]. One study highlighted that cytological
samples were suitable for analysis of fresh samples or after storage at �25oC, but not
�80oC[64]. After comparison of controls with high-grade precancer across all three
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studies, the sensitivity and specificity were found to be between 86-100% and 90-100%
respectively; sensitivity and specificity for detecting low-grade lesions were 94% and 95-
98% respectively. The authors proposed an automated screening system for cervical can-
cer[65] and also highlighted that histological assessment provided higher diagnostic
accuracy in comparison to cytological assessment[66].
Using tissue samples and Raman spectroscopy, five different studies demonstrated

high diagnostic accuracies in detecting cervical precancer and cancer[67–71]. Wang
et al.[67] classified and identified six different tissue types (inflammation, CIN1, CIN2,
CIN3, squamous cell carcinomas and adenocarcinomas) with 86% overall diagnostic
accuracy. Precancerous lesions (CIN1-3) were identified with 80-89% accuracy while
squamous cell carcinomas and adenocarcinomas were found with 100% and 86% accur-
acy. Two studies did not include a control group but rather assessed the ability of the
approach to differentiate between different cancer subtypes (adenocarcinomas and squa-
mous cell carcinomas)[68,69]. Using different classification algorithms, they achieved
diagnostic accuracies ranging between 85-96% in distinguishing the two subtypes of
cancer. Using snap frozen tissue sections, Daniel et al.[71] correctly detected normal,
precancer and cancer subjects with 70-99% accuracy while also achieving 94% accuracy
in detecting well/moderately/poorly differentiated squamous cell carcinomas. Polarized
Raman and Raman were both found to accurately discriminate control and cancer sub-
jects, with polarized Raman achieving higher diagnostic values (96% sensitivity, 97%
specificity, 97% accuracy versus 92% sensitivity, 72% specificity, 80% accuracy)[71].

Endometrial cancer
One blood-based ATR-FTIR study in endometrial cancer was eligible for inclusion[72].
Using blood plasma samples from healthy controls as well as women with atypical
hyperplasia and endometrial cancer of different subtypes, controls were differentiated
from all cancers (mixed) with 87% sensitivity and 78% specificity. Endometrioid adeno-
carcinomas (Type I), the most common subtype of endometrial cancer, were detected
with 91% sensitivity and 81% specificity. Precursor lesions of atypical hyperplasia were
also identified with high diagnostic accuracy (100% sensitivity and 88% specificity),
which may allow fertility sparing management and cancer prevention.

Ovarian cancer
Of the eligible studies for inclusion (n¼ 3), two performed analysis of biological fluids
(ovarian cyst fluid[73] and blood plasma[74] and one used ovarian tissue samples[75].
A SERS-based method was used to detect and quantify haptoglobin (Hp) in ovarian

cyst fluid as a diagnostic biomarker for epithelial ovarian cancers[73]. A significantly
higher concentration of Hp was identified in malignant in comparison to benign cysts
(normalized mean values of 1.85 vs 0.6). Verified against histology, SERS achieved 94%
sensitivity and 91% specificity for benign versus malignant samples, while sensitivity
was also high (86-100%) for all the different cancer stages (stage I-IV). For comparison,
a cancer antigen 125 (CA-125) test was performed on the same patients achieving lower
sensitivity and specificity of 85% and 90%, respectively.
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Using both Raman and SERS, Paraskevaidi et al. analyzed blood plasma samples
from benign and ovarian cancer cases[74]. Both techniques provided satisfactory diag-
nostic accuracy for the detection of ovarian cancer (stage I-IV) (Raman: 94% sensitivity
and 96% specificity; SERS: 87% sensitivity and 89% specificity), as well as for early ovar-
ian cancers (stage I) (Raman: 93% sensitivity and 97% specificity; SERS: 80% sensitivity
and 94% specificity). SERS achieved slightly lower diagnostic values, which may be due
to poor reproducibility of spectral profiles and intensities. Nevertheless, these findings
suggest improved diagnostic accuracy compared to clinically-used molecular biomarkers
for ovarian cancer.
Theophilou et al.[75] employed ATR-FTIR spectroscopy to analyze dewaxed FFPE tis-

sues from benign, borderline and cancer patients. Different algorithms were employed
(PCA-LDA, successive projections algorithm-LDA (SPA-LDA) and GA-LDA), with GA-
LDA providing optimal discrimination between the three classes. Classification of differ-
ent ovarian carcinoma subtypes (high- and low-grade serous, endometrioid, mixed,
mucinous, clear cell and carcinosarcomas) was also performed and achieved overall
diagnostic accuracies ranging between 87-100% after two-group comparisons using
GA-LDA.

Head and neck cancers

The literature search for Head and Neck cancers included cancer of the pharynx, oro-
pharynx, hypopharynx, larynx, mouth and tongue, and encompassed dysplasia, neopla-
sia and carcinoma. A total of 278 results were retrieved, 17 of which were deemed to be
relevant to the current review (8/17 on biofluids, 2/17 cytology, 5/17 excised tissue, 2/
17 in vivo).
Multiple studies have explored the applications of Raman, SERS and IR spectroscopic

analysis of human blood plasma and serum for diagnostic applications in human head
and neck cancers. Sahu et al.[76] explored the use of using a fiber-optic Raman micro-
probe (785 nm) of serum samples of 328 subjects belonging to healthy controls, prema-
lignant, disease controls (non-oral cancer), and oral cancer groups. Samples were
measured in liquid drop form and PCA-LDA was employed for discriminant analysis,
achieving 77% classification efficiency between normal and oral premalignant groups,
89% for normal and disease control groups, and 87% for normal and oral cancer
groups. In a four way model, the normal versus abnormal could be differentiated with
64% sensitivity and �80% specificity. The study also explored the feasibility of differen-
tiating two different types of cancers (oral and glioma), showing �89% efficiency.
A number of studies have sought to enhance the sensitivity of Raman based techniques

using SERS, which may be particularly suited to the analysis of relatively dilute biofluids.
In the study of Yan et al.[77], the serum of 60 patients with parotid gland tumors was ana-
lyzed and compared with that of 31 normal patients. The patients were further stratified
into a pleomorphic adenoma group, Wartin’s tumor group and mucoepidermoid carcin-
oma group. Measurements at 633 nm were made of drops of serum mixed with gold
nanoparticles. Using SVM-based analysis, spectra were classified with �86% accuracy,
�90% sensitivity and �80% specificity. Tan et al.[78] similarly explored SERS (633 nm) for
the analysis of blood serum in liquid form, but for the diagnosis of oral squamous cell
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carcinoma (OSCC). The study included 135 patients with OSCC, 90 patients with mucoe-
pidermoid carcinoma, selected as the positive control group, while 145 patients with old
maxillofacial fracture and healthy volunteers were used as the normal control group.
PCA-LDA demonstrated that OSCC could be successfully discriminated from the normal
control groups with a sensitivity of 81% and a specificity of 84%. Using similar method-
ology, Xue et al.[79] analyzed the serum of 135 OSCC patients, grouped according to
tumor size, positive lymph nodes, metastases, and histological grade. Accuracies of detec-
tion and classification of >85% were achieved for all categories. Lin et al.[80] used a silver
nanoparticle serum mixture to measure the SERS response to differentiate 30 nasopharyn-
geal carcinoma patients and 30 healthy volunteers. Diagnostic sensitivities of 89% and
86%, and corresponding specificities of 71% and 79%, were achieved, using either 785 or
633 nm, respectively. Liang et al.[81] employed SERS for differentiation of benign (n¼ 30)
and malignant (n¼ 70) thyroid tumors from blood plasma which had been subjected to
ultrafiltration, resulting in 90% discrimination accuracy.
Using ATR-FTIR spectroscopy, Adeeba et al.[82] analyzed dried plasma samples of 67

oral cancer patients, 60 "niswar" (a dipping tobacco product) users (considered to be
normal, but high risk), and 20 healthy controls. Discriminant analysis resulted in a 90%
classification rate.
In an alternative approach, Brindha et al.[83] explored the application of Raman

(785 nm) spectroscopy in the high wavenumber region for the analysis of human urine
samples, and the detection of oral cancer. Samples from 80 normal subjects, 57 oral pre-
malignant and 60 oral malignant patients were examined, yielding 96% accuracy for
classification of normal versus premalignant; 96% accuracy for normal versus malignant;
and 93% accuracy across normal, premalignant and malignant groups.
Spectroscopic analysis of oral exfoliated cells has also been employed for oral cancer

diagnostics. Sahu et al.[84] harvested samples from 20 healthy volunteers, 20 healthy
volunteers with tobacco habits, and 27 with oral premalignant (OPL) conditions.
Using Raman spectroscopic analysis (785 nm) of cell pellets, OPL patients could be
identified with �70% sensitivity in the three-group model, or � 83% in two-group
model, indicating that tobacco consumption may be a confounding factor. Sarkar
et al.[85] employed a combination of fluorescence, atomic absorption and FTIR to
explore the relative expression level of relevant biomolecules in exfoliated cell samples
of clinically diagnosed and histopathologically confirmed oral leucoplakia (n¼ 20) and
OSCC (n¼ 19) patients, compared to those from 20 nonsmokers, 60 smokers.
Although no diagnostic classification was undertaken, the study indicated the effect of
smoking on cellular bioenergetic and hememetabolic pathways, which may be import-
ant for early cancer development.
Clinically relevant studies of tissue samples have been carried out using Raman, SERS

and Infrared spectroscopies. Sun et al.[86] examined smears from cancerous (n¼ 39) and
non-cancerous nasopharyngeal tissues (n¼ 35) using confocal Raman spectroscopy
(785 nm), establishing a diagnostic sensitivity of 87% and specificity of 86% for differenti-
ation of the two tissue types. Jeng et al.[87] used a combination of visually enhanced lesion
imaging and Raman microspectroscopy to examine cryopreserved tissue samples from 35
oral cancer patients who had undergone surgery. Thirty-five cancer lesions and thirty-five
control samples with normal oral mucosa were analyzed. PCA-LDA of Raman spectra
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resulted in diagnostic accuracy of 83%, sensitivity 80%, and specificity 86%. Regions of
interest of the autofluorescence images were differentiated with 90% accuracy, 100% sen-
sitivity, and 80% specificity. The combination of the two techniques differentiated cancer
and normal groups with 97% accuracy, 100% sensitivity, and 94 % specificity. Vohra
et al.[88] used a functionalized “nanorattle” SERS (785 nm) based technique to target cyto-
keratin nucleic acid biomarkers specific to head and neck squamous cell carcinoma
(HNSCC). Patients were chosen from adults with HNSCC, thyroid papillary carcinoma,
lymphoma, or benign lymphoid or tonsillar disease, and 25 samples were obtained from
human cervical lymph nodes, tonsils, oropharyngeal mucosa, sinus mucosa, and thyroid
gland tissue. Tissues were flash frozen, before RNA extraction and functionalized SERS
measurement, resulting in a diagnostic sensitivity of 100% and specificity of 89% in distin-
guishing HNSCC from other tissue types. Chundayil Madathil et al.[89] designed a novel
SERS catheter device and demonstrated its potential using samples from 37 patients with
abnormal oral lesions. Regions of oral tissues identified as disease-free, malignant oral
squamous cell carcinoma (OSCC), verrucous carcinoma and premalignant leucoplakia
were detected and classified with an accuracy of 97%. Correct classification of OSCC
tumors into three grades was achieved with an accuracy of 98%. Stimulated Raman
Scattering was explored by Hoesli et al.[90] to differentiate normal and cancerous tissue
from head and neck cancer patients. 42 tumor samples and 42 normal adjacent controls
were derived from 50 patients, and diagnostic sensitivities and specificities of 91 and 95%
were achieved, respectively, for neoplastic vs non-neoplastic images.
In vivo Raman studies were carried out by both Malik et al.[91] and Bhatacharjee

et al.[92] In the first study, Raman spectroscopy was performed on tumor and contralat-
eral normal mucosa in 99 oral cancer patients. Patients were then followed up to track
the reappearance of cancerous lesions. Recurrences of lesions were predicted with a sen-
sitivity of 80% and specificity 30%. The latter study aimed to explore the potential of
Raman spectroscopy for prediction of disease-free survival of oral cancer patients.
Raman spectra were obtained from the tumor and contralateral regions of 94 OSCC
patients. Based on identified spectral markers, a model for disease free survival rates
(>1000 days) were established, with a prediction error of <0.25.

Kidney cancer

The literature search for Kidney cancer included kidney and renal cancer, including
dysplasia, neoplasia, carcinoma, Grawitz tumor, hypernephroma and nephrocarcinoma.
A total of 138 results were retrieved, four of which were deemed to be relevant to the
current review.
Renal cell carcinoma in tissue samples has been studied using both Raman[93,94] and

SERS[95]. He et al.[93] established a (785 nm) Raman spectroscopy-based SVM model to
classify (n¼ 77 samples) human renal tumor from normal and fat regions of tissue with
an accuracy of 93%. Liu et al.[94] collected needle biopsy kidney tissue samples from 63
patients who had received radical or partial nephrectomy. Raman spectroscopy (532 nm),
coupled with discriminant analysis, could distinguish tumor and normal tissues with an
accuracy of 83%, and malignant versus benign tumors with sensitivity and specificity of
92% and 71%. Low-grade and high-grade tumors were classified with an accuracy of 87%.
In addition, clear cell renal carcinoma was differentiated from oncocytoma and
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angiomyolipoma with accuracies of 100% and 89%, respectively. Histological subtypes of
cell carcinoma were distinguished with an accuracy of 94%. Mert et al.[95] employed SERS
(830 nm) to examine normal and abnormal homogenized tissue samples collected from
40 patients at different cancer stages. In a range of different diagnostic comparisons, the
study demonstrated sensitivity, specificity, and total accuracy as high as 100%
Sablinskas et al.[96] employed the less explored technique of Fiber ATR-IR to examine

fresh kidney tissue, resected from patients undergoing surgery. Spectra of tissue were
measured inside the operation theater, immediately after resection, using an ATR silver
halide fiber probe. A classification accuracy of 79% of kidney tumor was achieved.

Leukemia

The literature search for Leukemia produced a total of 98 results, of which only two
blood-based studies were deemed relevant to the current review.
In the study of Bai et al.[97], Raman spectroscopy was employed to study the features

of blood plasma of 33 patients with diffuse large B-cell lymphoma (DLBCL) and 39
with chronic lymphocytic leukemia (CLL), compared to 30 healthy volunteers.
Measurements were made in droplet form using a 785 nm laser source. Classification
models were constructed using orthogonal partial least squares discriminant analysis,
resulting in 93% sensitivity and 100% specificity of 100% for the CLL model, whereas
for the DLBCL model resulted in 80% sensitivity and 92% specificity.
F�er�e et al.[98] explored a number of different classification strategies, applied to the

(532 nm) Raman spectra of blood smears spread on glass slides, for the diagnosis of
chronic lymphocytic leukemia. The study included one group of 61 healthy patients and
one group of 79 untreated CLL patients, and explored different scenarios, dependent on
the clinical objective, i.e., balanced sensitivity and specificity, maximum sensitivity, or
maximum specificity. Classification accuracies of up to �88% were achieved.

Liver cancer

After a literature search for spectroscopic techniques to diagnose liver disease, three
papers were deemed eligible based on the search criteria.
Two papers, Li et al.[99] and Yu et al.[100] investigated the application of SERS using sil-

ver nanoparticles to serum samples from patients with liver diseases. Li et al.[99] used
SERS to discriminate between 44 healthy patients, 45 liver cancer patients, 42 post-treat-
ment liver cancer patients and 45 liver cirrhosis patients. Spectra were acquired using a
632nm laser at 3.5mw with a 10 second acquisition time. The SERS spectra were subjected
to SVM, PLS and artificial neural networks, which resulted in accuracies of 92%, 89% and
90% respectively. Yu et al.[100] also used SERS on blood serum however applied this
approach to a different cohort with 104 healthy volunteers, 104 liver cancer patients and
100 nasopharyngeal patients. SERS spectra were acquired using laser at 785nm at 0.1mW
with a 10 second acquisition time and subjected to either PLS or PCA for dimensionality
reduction which were then used in SVM with a Gaussian radio basis function. Diagnostic
accuracies of 95% were achieved for the training set and 91% for the validation set.
Zhang et al.[101] also investigated the application of SERS with silver nanoparticles to

liver disease however took measurements from liver tissues slices from 56 patients, with
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46 normal adjacent tissue and 56 from cancer tissue. SERS spectra were acquired using
a 532 nm laser with a four second acquisition time. The SERS spectra were subjected to
PCA-LDA which resulted in sensitivities and specificities of 100% between cancerous
and normal adjacent tissue. They found that 838, 1448, and 1585 cm�1 peaks were sig-
nificantly altered in the cancerous tissue regions.

Lung cancer

Out of the 55 results obtained from the literature search in lung cancer, seven were
deemed eligible for this review (2/7 using biofluids; 5/7 using tissue samples).
In a study by Qian et al.[102], saliva samples of 61 lung cancer patients and 66 healthy

controls were examined using a portable SERS system with a nano-modified chip. A
SVM diagnostic model was built using random forest algorithms with LOOCV, achiev-
ing 95-97% sensitivity and 100% specificity.
Xiao et al.[103] attempted to detect and compare serum metabolic profiles in three

cancer types, lung, breast and liver via SERS along with healthy controls. Vibrational
frequencies associated with metabolites like tryptophan, phenylalanine, proline, valine,
adenine and thymine were used as discriminative factors. Diagnostic accuracy was
assessed using an orthogonal PLS-DA (OPLS-DA) multivariate algorithm. All cancers
were clearly distinguished from healthy controls as well as between the different cancer
types, highlighting the potential of SERS as a label-free, noninvasive approach for
metabolites profiling and diagnosis of cancer.
Five different studies investigated lung cancer using tissues (ex vivo or in vivo).

Bangaoil et al.[104] used FTIR to analyze benign (n¼ 66) and malignant (deparaffinized)
FFPE tissues (n¼ 54). PCA and hierarchical cluster analysis distinctly clustered benign
from malignant tissues with 98% sensitivity and 93% specificity (95% accuracy), which
is in agreement with histopathological assessment. Weng et al.[105] demonstrated the
feasibility of applying a deep learning algorithm to automatically differentiate normal
and three types of lung cancerous tissues (adenocarcinoma, squamous cell carcinoma
and small-cell carcinoma) using coherent anti-Stokes Raman scattering (CARS) imaging.
Images were acquired after thawing of tissues that had been snap-frozen and analyzed
in real-time. The computational model achieved 89% accuracy in classifying the four
classes which could provide instant information and accelerate clinical decision-making.
McGregor et al.[106] presented the use of a real-time endoscopy Raman system to
improve the diagnostic specificity of localizing lung cancer in central airways. Results
were based on data obtained from 280 tissue sites (72 malignant lesions, 208 normal) in
80 patients, subjected to multivariate analyses and waveband selection methods. The
model demonstrated that malignant lesions can be detected with 90% sensitivity but
lower specificity of 65%. Akalin et al.[107] demonstrated the potential of spectral histo-
pathology by acquiring data from normal and lung cancer cases (commercial tissue
microarrays) and benign lesions (standard excised tissues). The hyperspectral data set
acquired from tissue imaging was analyzed by multivariate analysis, revealing changes
in the biochemical composition between tissue types, and between various stages and
states of disease. LOOVC-based SVM classifier could separate benign from malignant
lesions with 99% accuracy while clear distinction was seen between the different
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adenocarcinoma subtypes. Großerueschkamp et al.[108] performed automated marker-
free identification of lung tumor classes and subtypes of adenocarcinoma by FTIR imag-
ing and a novel trained random forest classifier. The tissue imaging analysis led to iden-
tification of non-small cell lung carcinomas, adenocarcinomas, squamous cell
carcinoma, small cell lung cancer, hamartochondroma, carcinoids, thymoma, large cell
neuroendocrine carcinoma and diffuse malignant mesothelioma with accuracy of 97%
and subclasses of adenocarcinoma tumors with an accuracy of 95%.

Esophageal cancer

A total of 32 results were recovered after a literature search for esophageal cancer, seven
of which were considered relevant for the current review (3/7 using biofluids; 4/7 using
tissue samples).
Using a number of different biofluids (plasma, serum, saliva and urine), Maitra

et al.[109] evaluated the ability of ATR-FTIR to discriminate stages of esophageal
transformation into adenocarcinoma. Different chemometric models were applied
(PCA-quadratic discriminant analysis (PCA-QDA), SPA-QDA, GA-QDA) to discrim-
inate controls from individuals with disease, with PCA/GA-QDA achieving optimal
results (100% sensitivity and specificity) when using blood plasma or urine samples.
The same group also analyzed samples from the same cohort of patients using Raman
spectroscopy[110], achieving similar results with GA-LDA providing 100% accuracy for
all classes when using saliva or urine samples and >90% accuracy when using blood
samples. Feng et al.[111] used SERS to obtain the complete biochemical profile of
modified nucleosides in urine samples from 52 controls and 55 esophageal cancer
patients. The ability of SERS to discriminate cancer from healthy participants was
tested using PLS-LDA, which allowed complete separation of the two classes with
100% accuracy.
In a study by Wu et al.[112], synchrotron infrared microspectroscopy was employed

to differentiate between healthy controls (n¼ 32) and esophageal cancer patients
(n¼ 39) using hair samples. Spectral data was analyzed using PCA as an exploratory
technique and discriminant analysis as a classification technique. Clear differentiation
was observed between the two groups, with a sensitivity of 90% and specificity 88%.
A different study by Maitra et al.[113] used Raman microspectroscopy to discriminate
stages of esophageal transformation to adenocarcinoma in human tissues. Normal,
inflammatory, Barrett’s esophagus, low-grade and high-grade dysplasia as well as
esophageal adenocarcinoma samples were analyzed and three chemometric techniques
were tested for classification (PCA-QDA, SPA-QDA and GA-QDA). Sensitivity and
specificity ranged between 90-100% and 71-100% respectively (91-100% accuracy) for
identifying each class. Overall GA-LDA provided optimal results. Ishigaki et al.[114]

used Raman spectroscopy to detect early-stage esophageal cancer (stage I) using 50
normal and 42 fresh tissues. Through partial least squares regression analysis (PLS-R)
and self-organization maps (SOMs), it was possible to discriminate between normal
and cancerous samples, although a relatively large overlap was observed. Using LDA
on six Raman bands that were statistically different provided an 81% sensitivity and
94% specificity after comparison of normal versus stage I cancerous tissues.
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Wang et al.[115] evaluated the potential of in vivo Raman spectroscopy as a real-time
diagnostic tool for esophageal squamous cell carcinoma (ESCC). Spectra were acquired
from 48 esophageal cancer patients using a Raman fiber optic endoscopic tool that
was developed for rapid analysis. Using PLS-DA, the sensitivity and specificity for
detecting ESCC were 93% and 94% respectively.

Skin cancer

The literature search for Skin cancers included malignant, pre- and neoplastic lesions,
involving melanoma and non-melanoma skin cancers (NMSC), such as basal cell skin
cancer (BCC), squamous cell carcinoma (SCC) and actinic keratosis (AK) of the skin.
Out of 404 studies identified since 2015, six were deemed relevant for this review based
on our inclusion criteria. The majority of the studies (5/6) was performed on tissue
samples using Raman spectroscopy; only one study included the use of infrared imaging
on histological samples.
In 2015, Wald and Goormaghtigh[116] employed FTIR imaging and PLS-DA to ana-

lyze histological sections and identify the main cell types found in melanoma tumors,
achieving an accuracy of over 90%. The same study compared melanoma cells in
patients with primary (n¼ 26) and metastatic tumors (n¼ 25), although no class differ-
ences were identified. Discrimination of different stages (stage I/II versus stage III/IV)
of primary tumors was assessed, achieving 89% sensitivity and 71% specificity.
Two in vivo studies were carried out using Raman spectroscopy to discriminate

between cancerous and normal skin. Schleusener et al.[117] collected Raman spectra
from subjects with lesions of BCC (n¼ 35) and SCC (n¼ 22). BCC samples were suc-
cessfully discriminated from normal skin (n¼ 104) with 63% sensitivity and 83% spe-
cificity (73% accuracy). All NMSC combined (BCC/SCC, n¼ 57) versus normal skin
(n¼ 104) resulted in sensitivity and specificity of the PLS-DA model up to 74% and
82% respectively (78% accuracy). Zhao et al.[118] examined skin cancer and precancer-
ous lesions from 74 patients, which were compared to benign lesions from 46 partici-
pants. Performing a retrospective analysis using a previous cohort of lesions (n¼ 518)
as training set, the AUC was found to be �0.90. Using the same cohort, but includ-
ing a wavenumber selection-based analysis, the same group improved the diagnostic
specificity from a range of 17-65% to 20-75% when sensitivity was fixed to
90-99%[119].
Santos et al.[120] developed a method to improve diagnosis of melanoma based on

Raman spectroscopy. High-wavenumber Raman spectra were collected from lesions sus-
picious for melanoma (common nevi and melanoma in situ: n¼ 128), with measure-
ments performed on multiple locations within the lesions. A PCA-LDA diagnostic
model was developed on a dataset of common nevi and melanoma in situ (n¼ 78) and
then validated on an independent dataset (n¼ 50). The diagnostic model correctly clas-
sified all melanomas in the independent dataset with a highest possible specificity of
44% at a fixed sensitivity of 100%. Feng et al.[121] explored the discriminating power
between different types of NMSC (BCC, n¼ 14; SCC, n¼ 20; AK, n¼ 10) and healthy
skin regions (n¼ 44) from the same patients using receiver operating characteristic
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(ROC) curve analysis; the results showed high sensitivity up to 95% with a rather low
specificity of 10%.

Pancreatic cancer

The literature search for pancreatic cancers included malignant, pre- and neoplastic
lesions, involving exocrine and endocrine cancers, such as adenocarcinomas (PDAC)
and neuroendocrine tumors (NET) of the pancreas. A total of 98 results were found for
the chosen time interval, of which 4 studies were deemed to be clinically relevant; how-
ever, none of them were based on a required number of patients to be included in
this review.

Prostate cancer

The literature search for prostate cancer resulted in 22 studies, of which only 2 blood-
based were deemed relevant to the current review.
In a study by Medipally et al.[122], Raman and IR spectra were recorded from

blood plasma samples obtained from 33 healthy controls and 43 prostate cancer
patients. Significant spectral differences were observed between the spectra of two
categories exhibiting different Gleason scores. The acquired spectra were analyzed by
PCA, PLS-DA and classical least squares fitting to discriminate samples with and
without disease and provide insights into the underlying molecular species. The PLS-
DA classifier was able to classify the presence of disease with sensitivities and specif-
icities ranging between 90-99%. The CLS fitting identified several analytes that are
involved in the development and progression of prostate cancer. Another study from
the same group monitored radiotherapeutic response in blood plasma of prostate
cancer patients reflected in the spectral profiles after FTIR analysis[123]. Samples were
acquired from 53 prostate cancer patients at five different time points (prior treat-
ment, after hormone treatment, at the end of radiotherapy, two months post radio-
therapy and eight months post radiotherapy) and analyzed using PCA.
Discrimination was observed between spectra recorded at baseline versus follow up
time points, as well as between spectra from patients showing minimal and severe
acute and late toxicity. The diagnostic model achieved sensitivity and specificity rates
ranging from 80% to 99%[50].

IR and Raman spectroscopy in infectious diseases

Overall, 30 studies were identified in the literature to satisfy the inclusion criteria. Five
studies in bacterial/viral (1/5 sepsis, 1/5 Typhoid infection, 1/5 Urinary tract infection,
1/5 Klebsiella and 1/5 bacterial/viral (not specified)), three in fungal (Candida infections,
Candida or T. rubrum), two in parasitic (malaria) and 20 in viral infections
(Chikungunya; Dengue; Ebola; Hepatitis B and C (HBV and HCV); Human
Immunodeficiency Virus (HIV); Human Papillomavirus (HPV); Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)) (Figure 3).
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Table 3. Overview of infrared and Raman studies in infectious diseases between January 2015 and
May 2021. Studies were deemed eligible for inclusion if they included more than 25 participants per
group (disease and control; if no control group >25 in disease group).

Disease
Author, Year,

Country
Spectroscopic
technique

Population
[Sample type] Main findings

Biofluids

Ba
ct
er
ia
li
nf
ec
tio

n

Sepsis
(neonatal)

Yunanto, 2019,
Indonesia[125]

FTIR 60 newborns: 30 healthy
and 30 with risk of

sepsis
[Saliva]

Exploratory study,
identified spectral
regions that were

significantly different
between the groups

Typhoid
infection (Salmonella

typhi)

Naseer, 2020,
Pakistan[124]

Raman 60 healthy volunteers,
60 patients (typhoid-

confirmed)
[Blood serum]

Characteristic spectral
signatures associated
with infection. PCA

discrimination between
healthy volunteers and
patients showed clear

discrimination along PC1

Urinary-Tract-
Infection
(UTI)

Tien, 2018,
Taiwan[126]

SERS 108 UTI patient samples
[Urine]

SERS chip used to
capture/detect bacteria
(no culturing); culturing

used a reference
method; culturing
identified 97 of the
samples as infected;

SERS approach identified
93 of them directly and
remaining 4 – after

concentration

Fu
ng

al
in
fe
ct
io
n

Candida
infection

Wohlmeister,
2017, Brazil[129]

FTIR 48 Candida infections (C.
albicans (n ¼ 36), C.
glabrata (n ¼ 10), C.

krusei (n ¼ 2)
[Vaginal discharge]

93% of infected samples
were correctly classified
using Soft Independent
Modelling by Class
Analogy (SIMCA)

Candida
infection

Silva, 2016,
Portugal[130]

ATR-FTIR 82 clinical isolates from
12 different Candida spp.
from distinct biological

products
[Vaginal exudate, urine,
blood and sputum]

�100% accuracy in
identifying clinical

isolates according to
developed PLS-DA

model

Malaria Mwanga, 2019,
Tanzania[133]

ATR-FTIR 173 healthy controls,
123 malaria infected

patients
[Dried blood spots]

93% sens and 92% spec
(92% accuracy) for

detecting Plasmodium
falciparum infection;

85% sens and spec (85%
accuracy) for detecting
mixed malaria infection
(P. falciparum and ovale)

(continued)
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Table 3. Continued.

Disease
Author, Year,

Country
Spectroscopic
technique

Population
[Sample type] Main findings

Vi
ra
li
nf
ec
tio

n

Dengue, malaria Patel, 2019,
India[140]

Raman 54 healthy controls, 39
dengue, 37 malaria

[Blood serum]

Sens/spec of 96% for
dengue vs healthy

controls and 95% for
malaria vs healthy
controls PC-LDA

Dengue, Zika,
Chikungunya

Santos, 2018,
Brazil[139]

ATR–FTIR 45 healthy controls,
45 dengue, 30 zika, 10
chikungunya infections

[Blood]

Healthy, dengue and
chikungunya classes
were identified with
100% sens and spec
(using PCA-LDA/SPA-
LDA/GA-LDA models);
Zika infections were

identified with sensitivity
and specificity ranging
between 92-100% and
86-100% respectively

Dengue virus Khan, 2017,
Pakistan[138]

Raman 55 healthy controls, 45
dengue infections
[Blood serum]

91% sens and spec (91%
accuracy) using random

forest algorithm

Dengue virus Amin, 2017,
Pakistan[137]

Raman 28 healthy controls, 32
dengue infections
[Blood serum]

93% sens and 100%
spec (97% accuracy) by

PCA-LDA

Dengue virus Khan, 2016,
Pakistan[135]

Raman 53 dengue negative
samples, 31 dengue

infections
[Blood serum]

73% sens and 93% spec
(85% accuracy) by SVM

model

Dengue virus Khurram, 2016,
Pakistan[136]

Raman 104 dengue infected
samples

[Blood serum]

Comparative study
between Raman

spectroscopy and ELISA.
Raman vs. IgM: 61%

sens and 72% spec (66%
accuracy) by SVM model;
Raman vs. IgG: 43 %

sens and 52% spec (47%
accuracy) by SVM model

Dengue virus Khan, 2016,
Pakistan[134]

Raman 25 healthy controls,
40 dengue infected

samples
[Blood serum]

Reported discriminatory
spectral features

between controls and
infected individuals

Ebola, Malaria Sebba, 2018,
USA[146]

SERS
nanotagging
technology

100 Ebola positive vs
486 negative; 163

Malaria positive vs 233
negative

[Whole blood and
serum]

Simultaneous detection
of Ebola, Lassa and

malaria within the same
sample.

Ebola detection: 90%
sens, 98% spec; malaria
detection: 100% sens

and spec

(continued)
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Table 3. Continued.

Disease
Author, Year,

Country
Spectroscopic
technique

Population
[Sample type] Main findings

HBV Lu, 2020,
China[145]

Raman 499 healthy controls,
435 HBV

[Blood serum]

Diagnostic accuracy of
96% by multiscale

convolution independent
circulation neural

network

HBV Tong, 2019,
China[144]

Raman 500 non-HBV samples
(including suspected

bacterial infections with
serum procalcitonin test
results >0.5lg/L, HCV
patients, liver cirrhosis,
liver cancer patients and
healthy controls), 500

HBV
[Blood serum]

100% sens and 88%
spec (93% accuracy)

were established using
adaptive iterative

weighted penalty least
squares method (airPLS)
- PCA- particle swarm

optimization (PSO) -SVM
method

HBV and
Hepatitis
C (HCV)

Roy, 2019,
Australia[143]

ATR-FTIR 114 controls, 117 HBV,
130 HCV

(Sample measurement:
sample on ATR crystal)

[Blood serum]
191 controls, 142 HBV,

164 HCV (Sample
measurement: sample
on glass coverslip)
[Blood serum]

40 controls, 40 HBV, 40
HCV

(Sample measurement:
ultrafiltration)
[Blood serum]

On ATR crystal:
HBV vs control: 84%
sens, 93% spec;
HCV vs control:

80% sens, 97% spec
HBV vs HCV: 77% sens,

83% spec
On coverslip:

HBV vs control: 69%
sens, 74% spec;

HCV vs control: 51%
sens, 91% spec

Ultrafiltration: Using the
high-molecular weight

fraction:
HBV vs control: 88%
sens, 95% spec;

HCV vs control: 82%
sens, 90% spec

HBV Khan, 2018,
Pakistan[142]

Raman 84 control, 119 HBV
infected

[Blood serum]

97% sens and 100%
spec (98% accuracy) in
distinguishing HBV from
controls using support
vector machine (SVM)

HCV Sohail, 2018,
Pakistan[141]

Raman 105 healthy controls,
122 HCV

[Blood serum]

97% sens, 94% spec
(95% accuracy) for
controls vs HCV

Human immuno-
deficiency
virus (HIV)

Silva, 2020,
Brazil[147]

ATR-FTIR 80 healthy controls, 40
HIV-positive patients

[Blood plasma]

83% sens and 92% spec
by GA-LDA model

(continued)
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Table 3. Continued.

Disease
Author, Year,

Country
Spectroscopic
technique

Population
[Sample type] Main findings

Human papilloma
virus (HPV)

Chen, 2020,
China[148]

Raman 196 HPV negative, 58
HPV positive [Cervical

secretion]

94% sens and 100 %
spec (99% accuracy)

SARS-CoV-2 Barauna, 2021,
Brazil[151]

ATR-FTIR 111 SARS-CoV-2
negative patients,

70 SARS-CoV-2 positive
(based on RT-PCR)

[Saliva]

95% blind sens and 89%
spec by GA-LDA model

SARS-CoV-2 Carlomagno, 2021,
Italy[152]

SERS 33 age/sex-matched
healthy controls, 38

SARS-CoV-2 negative, 30
SARS-CoV-2 positive

[Saliva]

Control vs SARS-CoV-2
positive: 98% sens and
spec (98% accuracy)
Control vs SARS-CoV-2
negative: 96% sens and

99% spec (97%
accuracy)

SARS-CoV-2 positive vs
negative sample: 87%

sens and 95% spec (91%
accuracy)

Comparison between the
three groups: 84% sens
and 92% spec (88%

accuracy) by Leave-One-
Patient-Out Cross-

Validation

SARS-CoV-2 Wood, 2021,
Australia[153]

FTIR with
purpose-built
transflection
accessory

29 SARS-CoV-2 positive
and 28 SARS-CoV-2

negative (confirmed by
RT-qPCR)
[Saliva]

93 % sens (27/29) and
82 % spec (23/28) by
MCDCV modelling

approach.

Cytology
Bacterial and
viral infections
(not specified)

Agbariaa, 2020,
Israel[127]

FTIR 113 controls, 89
inaccessible

bacterial infections, 54
accessible bacterial

infections, 60
inaccessible viral

infections,
27 accessible viral

infections.
[White blood cells]

Controls vs infections
(bacterial & viral): 95%

accuracy.
Diagnosis of the etiology
of accessible infections

(bacterial or
Viral): >94% sens and >

90% spec.
Error rate <6%.

Results within 1h from
collection

Klebsiella - K.
pneumoniae; K.
variicola; K.

quasipneumoniae)

Dinkelacker, 2018,
Germany[128]

FTIR 57 patients (68 isolates
were used, of which 53
K. pneumoniae; 11 K.

variicola; 4 K.
quasipneumoniae)

[Anal and pharyngeal
swabs]

A high discriminatory
power compared to the
WGS reference, which
was reflected by an
adjusted R index of

0.837

(continued)
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Bacterial infections

Patients diagnosed with any bacterial infection were investigated. Five studies were
finally included in the review based on the inclusion criteria (biofluid-based: 1/5 using
blood serum; 1/5 urine; 1/5 saliva; 1/5 anal and pharyngeal swabs; cytology-based: 1/5
white blood cells).
Naseer et al.[124] used serum-based Raman spectroscopy to discriminate between par-

ticipants infected with Salmonella typhi (n¼ 60) and healthy controls (n¼ 60). PCA
was used as an exploratory approach, whereby two principal components (PCs) were
chosen (90% of variance). The authors identified characteristic spectral signatures that
differed between the two classes. However, no other classification approach was
employed. In an exploratory study, Yunanto et al.[125] used FTIR of saliva samples to

Table 3. Continued.

Disease
Author, Year,

Country
Spectroscopic
technique

Population
[Sample type] Main findings

Malaria Heraud, 2019,
Thailand[132]

FTIR 318 patients with clinical
symptoms of malaria:
151 positive, 167

negative according to
qPCR and PCR
[Red blood cells]

PLS-DA achieved 90%
sens and 91% spec. SVM
analysis showed better
classification with 92%
sens and 97% spec for
discriminating malaria

infection. Data were pre-
analysed, and modelled
to generate a diagnosis
which can be accessed
by patients over the
cloud-based system

Vi
ra
li
nf
ec
tio

n

HPV Mo, 2020,
China[150]

FTIR 50 healthy controls, 50
high-risk HPV positive

[Cervical exfoliated cells]

98% sens and 98% spec
(98% accuracy) using

PCA-LDA model

HPV Zheng, 2020,
China[149]

Raman 33 normal, 30 high-risk
HPV positive

[Cervical exfoliated cells]

100% sens and 97%
spec (98% accuracy) by
leave-one-patient-out

cross-validation method.

Tissue
T. rubrum or Candida

species - C.
parapsilosis (sensu
lato), C. glabrata, C.

albicans)

Kourkoumelis,
2017, Greece[131]

Raman 26 controls, 52 clippings
infected either by T.
rubrum/Candida

[Nails]

The classification for the
test set yielded 100%
accuracy, with low
RMSEP: 0.24 for the
classification of T.
rubrum vs Candida
species vs contros

Abbreviations: ATR: Attenuated total reflection; FTIR: Fourier transform infrared spectroscopy; GA-LDA: Genetic algo-
rithm- linear discriminant analysis; HBV: Hepatitis B; HCV: Hepatitis C; HPV: Human papillomavirus; IgG:
Immunoglobulin G; IgM: Immunoglobulin M; MCDCV: Monte Carlo Double Cross Validation; PCA-LDA: Principal compo-
nent-linear discrimination analysis; PLS-DA: Partial least squares-discriminant analysis; Sens: Sensitivity; SERS: Surface
enhanced Raman spectroscopy; SPA-LDA: Successive projections algorithm-linear discriminant analysis; Spec:
Specificity; SVM: Support vector machine; UTI: Urinary tract infection; WGS: Whole Genome Sequencing

Fu
ng

al
in
fe
ct
io
n

Pa
ra
si
tic

in
fe
ct
io
n

APPLIED SPECTROSCOPY REVIEWS 43



facilitate the diagnosis of neonatal sepsis. Spectral information was obtained from new-
borns at risk of sepsis (n¼ 30) and healthy (n¼ 30) and significantly different spectral
regions were reported, showing changes in nucleic acid/protein regions, which might be
resulting from an inflammatory process. Tien et al.[126] used SERS cylindrical chips to
identify pathogens in patients with urinary tract infection (UTI) (n¼ 108). Urine was
sent for bacterial culture as a reference method and also analyzed using SERS chips to
identify bacteria. Of the 108 patients, 97 samples with a single bacterial species were
identified by conventional urine culture. In the others, mixed flora was observed, which
was not possible to detect by SERS. SERS identified 93 samples directly, while the
remaining four samples required concentration to identify bacteria. The use of SERS in
conjunction with the recognition software could allow a quicker and less expensive
identification of pathogens.
Using white blood cells and FTIR spectroscopy, Agbaria et al.[127] assessed accessible

and inaccessible bacterial and viral infections. In this study, spectra from 343 individuals
were collected, including 113 controls, 89 inaccessible bacterial infections, 54 accessible
bacterial infections, 60 inaccessible viral infections, and 27 accessible viral infections.
The authors used SVM which resulted to the classification between controls vs infected
(95% accuracy). It was also possible to identify the etiology of accessible infections with
>94% sensitivity and >90% specificity in one hour after blood collection with a< 6%
error rate. The authors concluded that the classification results demonstrate the meth-
odology’s ability to diagnose the etiology of inaccessible infections with high reliability.
Dinkelacker et al.[128] used FTIR spectroscopy as a tool for the rapid typing Klebsiella
clinical isolates and compared their results with whole genome sequencing (WGS) (gold
standard). Samples from 57 patients were used (anal and pharyngeal swabs � 68 iso-
lates, of which 53K. pneumoniae; 11 K. varicella; 4 K. quasipneumoniae). 75% similarity
was chosen as a cutoff value for grouping, and applying this value to the dendrogram,
28 groups were observed that comprized 8 isolates. The cluster congruence was quanti-
fied with the adjusted Rand index (ARI). ARI ¼ 1 means total congruence between two
methods. Comparing the FTIR-based to the WGS-based method (gold standard), there
was a high similarity, which was reflected in an ARI of 0.837. A congruent result in
relation to the WGS phylogeny was obtained for 63 isolates (�93%). The results dem-
onstrated that FTIR spectroscopy has the ability to evaluate the relationship of
Klebsiella strains exhibiting high congruence with the WGS gold standard method.

Fungal infections

Three studies were identified which examined fungal infections (2/3 using biofluids; 1/3
using tissues).
Wohlmeister et al.[129] used FTIR (reflectance mode) associated with Soft

Independent Modeling by Class Analogy (SIMCA) to identify of Candida species iso-
lated from vaginal secretions. The study included samples of vaginal secretions from 48
women infected with a Candida species (C. albicans (n¼ 36), C. glabrata (n¼ 10), C.
krusei (n¼ 2)). PCA was applied as an exploratory analysis technique, while SIMCA
maximized interclass distance and class prediction (internal and external validation).
Through the application of SIMCA, �93% (n¼ 45) of the samples were correctly
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classified. Silva et al.[130] used ATR-FTIR to discriminate clinically relevant Candida
species. The analyzed isolates were obtained from different biological samples (vaginal
exudate, urine, blood and sputum). In this study, an exploratory analysis of the spectra
of these clinical isolates with PCA was performed, and classification analysis was per-
formed with PLS-DA. For the classification, different analyses were performed to dis-
criminate between C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropicalis
species (most important clinical infections) with PLS-DA achieving �100% correct
detection of the clinical isolates.
Kourkoumelis et al.[131] evaluated the ability of Raman spectroscopy to detect fungal

infections by analyzing healthy (n¼ 26) and infected nails (n¼ 52). Using PCA, efficient
differentiation of healthy, T. rubrum and Candida species infected nails was achieved.
SIMCA and PLS-DA were further applied to generate diagnostic algorithms for the clas-
sification of Raman spectra. Both techniques succeeded in classifying clinical nail sam-
ples in three groups according to their mycological categories. The authors
demonstrated that Raman spectroscopy is a promising method for the differentiation of
healthy vs. diseased nails, including efficient differentiation between onychomycosis
caused by T. rubrum and Candida species.

Parasitic infections

Studies on parasitic infections including Malaria, Babesiosis and Leishmania were iden-
tified since 2015. Out of the 64 results obtained, only two fit into the inclusion criteria.
Two studies investigating parasitic infections (malaria) were identified after literature
search (1/2 using dried blood spots; 1/2 using red blood cells).
Two independent studies on the detection of malaria parasites have extended spectro-

scopic approaches to large clinical pilot trials. Heraud et al.[132] tested 318 patients
exhibiting malaria symptoms from four regional clinics in Thailand. Blood samples
from all patients were pre-analyzed using three different conventional testing methods
namely optical microscopy using a Giemsa staining, rapid diagnostic tests (RDT), and
qPCR (gold standard). According to qPCR, 151 tested positive while 167 patients tested
negative for malaria infection. Spectral data were acquired using a portable ATR-FTIR
spectrometer, which can be operated from a laptop computer or a mobile telephone
with in-built software that guides the user through the sample measurement. To minim-
ize the effect of confounding variables such as spectral noise, water vapor, background
fluctuations, and possible contamination by sample fixation, an independent quality
control software suite was designed to ensure each spectrum acquired passed the stipu-
lated criteria for data modeling. PLS-DA and SVM algorithms were employed to create
classification models, with PLS-DA achieving 90% sensitivity and 91% specificity while
SVM analysis showed better classification with 92% sensitivity and 97% specificity for
discriminating P. falciparum malaria infection. Finally, spectral data were encrypted and
automatically uploaded to a cloud-based diagnostic system where spectra are pre-proc-
essed using the classifier located in the “Cloud”. This system will enable non-experts to
rapidly process and receive a malaria diagnosis within 5minutes.
Mwanga et al.[133] carried out a similar pilot trial in Tanzania. A malaria parasite survey

was conducted using RDTs and PCR assays across 1486 households. Blood samples
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obtained were further re-analyzed by optical microscopy to ascertain the presence of mal-
aria parasites. Finger prick volumes of blood were acquired from all participants and sub-
sequently dried on to filter paper to form a dried blood spot. Altogether, positive
(n¼ 123) and negative (n¼ 173) PCR pre-confirmed samples were scanned directly using
a portable ATR-FTIR spectrometer. Seven independent machine learning algorithms were
used to analyze the spectral data including k-nearest neighbors, logistic regression, SVM,
naïve Bayes, XGBoost, random forest and Multilayer perceptron. Logistic regression mod-
els gave the best results, having an overall classification accuracy of 92% for P. falciparum
and 85% for predicting mixed infections of P. falciparum and Plasmodium ovale.

Viral infections

The literature search for viral infections included Human Papillomavirus (HPV), Ebola,
Hepatitis B and C (HBV and HCV), Zika, Dengue, Chikungunya, Yellow fever, Human
Immunodeficiency Virus (HIV), and Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). Of the total 53 studies retrieved, 20 were deemed to be relevant based
on the inclusion criteria (7/20 Dengue; 5/20 HBV and HCV; 3/20 HPV; 3/20 SARS-
CoV-2; 1/20 HIV; 1/20 Ebola infections)

Dengue & other infections
Globally, diseases caused by viruses are regarded as a major public health issue. Global
dengue incidences have risen dramatically in recent decades. There are four distinct but
closely related dengue virus (DENV) serotypes, namely DENV-1, DENV-2, DENV-3,
and DENV-4. Hitherto, several diagnostic methods have been developed, that includes
serological (ELISA) and virological assays (reverse transcriptase–polymerase chain reac-
tion (RT–PCR)). Despite the advancement in the point of care combination tests, con-
siderable challenges endured in the clinical management of dengue-infected patients,
including the non-existences of definitive biomarkers[10].
Most of the studies to date are based on serum analysis. In 2016, Khan et al.[134],

examined the biochemical changes associated with dengue infections from 40 infected
individuals and 25 healthy controls and distinctive Raman peaks were apparent in
infected samples. Most notably, a Raman line at 750 cm�1 was assigned to adenosine
diphosphate (ADP), which is expected to be excreted into extra-cellular media during
cell rupture. However, no chemometric investigation was conducted to prove the diag-
nostic prediction of the proposed approach. A different study from the same group
exploited the combination of Raman spectroscopy and SVM algorithm to elucidate the
biochemical disparities between 31 dengue positive and 53 negative samples[135]. Similar
Raman bands were observed (750, 850, 1450, and 1660 cm�1 which were assigned to
ADP, Tryptophan- immunoglobulin G (IgG), IgG, and Amide I (proteins)) in the den-
gue-infected samples. When analyzing the spectra of three independent SVM models
using kernel functions including Gaussian radial basis function, polynomial function,
and a linear function, the best performance was achieved with the polynomial kernel
with sensitivity of 73% and a specificity of 93% (85% accuracy).
In another study, two different conventional approaches, such as IgG and immuno-

globulin M (IgM) – captured ELISA, were evaluated in comparison with Raman spec-
troscopy[136]. The sensitivity, specificity, and accuracy for Raman spectroscopy in
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comparison to IgM and IgG captured with the ELISA assay were 61%, 72%, and 66%,
and 43%, 52%, and 47%, respectively. Authors explained the rationale behind the ‘low
sensitivity’ concern with Raman analysis as being due to the greater number of false-
negative results. There were 21 samples (20%) misdiagnosed as dengue negative with
Raman spectroscopy, whilst IgM values of ELISA predicted them as dengue positive.
However, the spectroscopic approach provides preferable specificity along with sensitiv-
ity and a very low false positive rate in comparison to IgM than IgG assays.
In 2017, Amin et. al[137] identified unique spectral signatures associated with 32 den-

gue infected serum samples including Raman bands that were not reported earlier.
These Raman bands provided an exceptional sensitivity of 93%, specificity of 100%, and
diagnostic accuracy of 97% using PCA-LDA. Khan et.al[138] also demonstrated that
Raman spectroscopy with a random forest algorithm could correctly classify 100 dengue
suspected samples (sensitivity, specificity of 91%). Analysis of the spectra demonstrated
discernible variations in the peak intensities and additional Raman bands were observed,
which were indicative of elevated lactate level in the infected samples.
A successful attempt has been made to evaluate the potential of ATR-FTIR spectros-

copy in conjunction with multivariate classification techniques between healthy versus
dengue versus chikungunya versus zika blood samples[139]. Since these viruses belong to
the same family (i.e., Flaviviridae) and have similar surface proteins, cross-reactivity is a
pertinent concern in clinical diagnostic routines. A combination of ATR-FTIR spectros-
copy and different multivariate algorithms (PCA–LDA, SPA-LDA, and GA-LDA)
showed an excellent sensitivity and specificity of 100% in healthy, dengue, and chikun-
gunya classes. However, classification of zika samples exhibited a 100% sensitivity and
92% specificity with PCA–LDA and SPA–LDA models whilst GA-LDA showed sensitiv-
ity of 92% and specificity of 86%.
Similarly, due to the overlapping clinical symptoms between malaria and dengue

infections, a precise diagnosis remains challenging. Recently, Patel et al.[140] reported a
Raman spectroscopy-based stratified analysis on 130 subjects (37 malaria, 39 dengue,
and 54 healthy controls). The authors showed a classification efficiency of 83% for both
dengue and malaria whilst 100% efficacy was achieved with control data sets for the 3-
model system (malaria vs dengue vs controls) using PC-LDA and validated using a
LOOCV approach. Besides, a ROC displayed a sensitivity/specificity of 0.95 for malaria
versus controls and 0.96 for dengue versus controls. As compared with existing diagnos-
tic approaches, the acquired classification efficiency to stratify malaria versus dengue is
enhanced. Nevertheless, machine-learning involving larger-cohorts analysis would be
highly recommended before clinical translations.

HBV & HCV infections
HBV and HCV cause both acute and chronic infections. In 2018, Sohail et al.[141] ana-
lyzed 227 samples, (105 healthy individuals, 122 HCV infected). Raman spectroscopy
combined with a proximity-based machine learning technique was utilized to obtain a
sensitivity of 97%, specificity of 94%, and a diagnostic accuracy of 95%. Significant spec-
tral changes were observed due to variation peak intensities of lectin, chitin, lipids,
ammonia and viral proteins as a consequence of the HCV infection. A better specificity
of 100% and an accuracy of 98% was achieved with a Raman spectroscopy-SVM model

APPLIED SPECTROSCOPY REVIEWS 47



in differentiating 84 normal sera samples from 119 HBV infected samples[142]. A SVM
model was built on two separate kernels i.e., polynomial function and Gaussian RBF for
extracting Raman spectral features of control sera and infected sera samples. The best
classification performance was achieved using a polynomial kernel of order-2. In another
study, Roy et al.[143] employed three sample preparation methodologies including sera
deposited onto glass cover slips, airdried and placed onto the ATR crystal, whole serum
dried directly onto the ATR crystal, and ultrafiltration to deplete high- and low-molecular
weight serum components and the high-molecular weight fraction placed directly onto
the ATR-FTIR diamond window and dried. PLS-DA was applied to all three cases and
sensitivity of 84%, 80%, and 77% and specificity of 93%, 97%, and 83% were established
in HBV versus control, HCV versus control, and HBV versus HCV classification sets
with the first approach (direct deposition onto ATR crystal). The depletion of high
molecular weight components from low molecular weight fraction slightly enhanced sensi-
tivity and specificity. The sensitivity of 88% and 82%, and specificity of 95% and 90%
were achieved in HBV versus control, HCV versus control samples.
Tong et al.[144], applied a combination of Raman spectroscopy and adaptive iterative

weighted penalty least squares method, PCA, particle swarm optimization algorithm, and
SVM (airPLS-PCA-PSO-SVM) approaches on 500 HBV and 500 non-HBV clinical sam-
ples (including suspected bacterial infections with serum procalcitonin (PCT) test results
>0.5lg/L , HCV patients, liver cirrhosis, liver cancer patients) and healthy controls. A
sensitivity of 100%, specificity of 88%, and accuracy of 93% were attained. More recently,
Lu et al.[145] demonstrated the discrimination potential of Raman spectroscopy with a
multiscale convolution independent circulation neural network between 499 healthy peo-
ple and 435 HBV patients and accuracy of the approach was determined to be 96%.

Ebola & other infections
In regard to Ebola disease diagnosis, point of need diagnostic methods are critical. The
initial clinical symptoms of the disease mimicking other endemic diseases, such as mal-
aria, are certainly hindering the effective diagnosis. Sebba et al.[146] developed a multi-
plexed POC immunoassay platform that uses surface-enhanced Raman scattering
(SERS) tags to simultaneously detect antigens from Ebola, Lassa and malaria within a
single blood sample. The SERS assay design comprises of a Raman reporter placed on
the surface of a gold nanoparticle which enhances the strength of the scattering (�4-8
orders of magnitude). The team has showed a sensitivity and specificity of 90% and
98% for Ebola detection (n¼ 100), whilst 100% for Malaria detection (n¼ 163). Besides
these excellent statistics, the proposed assay does have limitations. The performance of
SERS technology in human samples in an outbreak is undetermined. Moreover, the
challenges due to the sample matrix including the disparities between fresh versus fro-
zen blood or serum versus whole blood samples are remaining, which affect the poten-
tial of this assay technology.

HIV infections
Very recently, Silva et al.[147] successfully detected HIV infection in pregnant women
using ATR-FTIR spectroscopy. The authors used blood plasma samples from 80 healthy
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controls and 40 HIV-positive patients obtaining a sensitivity of 83% and specificity of
92% after using GA-LDA.

HPV infections
In 2020, three spectroscopic studies focused on HPV infection, out of which two studies
exploited Raman spectroscopy whilst the other study utilized FTIR. Chen et al.[148] applied
Raman spectroscopy in cervical secretions with a combination of a few multivariate data
analysis techniques (airPLS-PLS-GA-SVM model), which achieved 94% sensitivity and
100% specificity (99% accuracy). Similarly, Zheng et al.[149] analyzed Raman spectral data
from 33 normal and 30 high-risk HPV positive cervical exfoliated cell samples using a
LOOCV method, which provided 100% sensitivity, 97% specificity and 98% accuracy. Mo
et al.[150] investigated the performance of FTIR combined with PCA-LDA to facilitate the
rapid and noninvasive screening of 50 high-risk HPV infections using cervical exfoliated cell
samples. The method was able to produce sensitivity and specificity of 98%.

SARS-CoV-2 infections
SARS-CoV-2 has been emerged as a threat to humanity due to its severity in swift
spreading of infection. As yet there are only three studies on the utilization of vibra-
tional spectroscopic approaches for SARS-CoV-2 diagnosis. Barauna et al.[151] proposed
the exploitation of ATR-FTIR spectroscopy with a GA-LDA algorithm to detect and dis-
criminate infected from healthy control samples. In total, saliva samples from 111
SARS-CoV-2 negative patients and 70 SARS-CoV-2 positive patients were used (con-
firmed by RT-PCR) and provided a 95% blind sensitivity and 89% specificity.
Interestingly infrared spectra of the purified virus showed no evidence of amide modes.
Carlomagno et al.[152] used a Raman-based deep learning classification model to dis-
criminate the signal collected from COVID-19 saliva samples with accuracy, precision,
sensitivity and specificity of more than 95%. However, the control versus SARS-CoV-2
positive versus negative sample model provided 84% sensitivity and 92% specificity
(88% accuracy) by LOOCV. More recently, Wood et al.[153] investigated the utilization
of infrared spectroscopy for the rapid point-of-care detection of COVID-19 markers in
saliva from 29 SARS-CoV-2 positive patients and 28 negative using a portable infrared
spectrometer with a purpose-built transflection accessory. This study demonstrated a
sensitivity of 93 % (27/29) and a specificity of 82 % (23/28) using a Monte Carlo
Double Cross Validation algorithm with 50 randomized test and model sets.
Furthermore, they isolated and purified the virion particles from cell culture and identi-
fied the specific infrared and Raman marker bands associated with SARS-CoV-2 virus
from RNA, proteins and lipids. The isolation of the virion particles was confirmed by
transmission electron microscopy that clearly showed the virion particles with the char-
acteristic corona and glycoprotein spikes.

Health economic considerations

The extensive research reported is a testament to the potential of vibrational spectroscopy
as a platform in medical analysis. Whilst the capability of these approaches and
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applications has been explored comprehensively, the barriers to translation still exist, as is
shown by the number of technologies and products that have actually entered the medical
market. A potential reason for this lack of translation is perhaps a predisposition in
research to focus upon the technology performance in a given clinical niche, or a more
superficial exploration of the medical application itself. Interaction with key opinion lead-
ers and close consideration of the wider influences in health care are essential for
translation.
For any new medical technology, it is essential that it is safe and effective, but also

that it contains healthcare expenditures – essentially creating a balance between efficacy
and cost[154]. As well as providing the evidence required for approval for use, health
economic assessments are a recommended way of further exploring the use of a tech-
nology within a clinical area and establishing clinical utility.
In the area of IR and Raman spectroscopy, the subject of ‘cost’ is predominantly asso-

ciated with the cost of instrumentation, substrates, and occasionally reagents[155–158]. It
could be assumed that the gross value of these components together would infer the
relative cost of a technology. However, health economics is not simply a comparison of
these costs between different instruments, or approaches. The entire clinical pathway,
and the technology’s position within it, needs to be assessed so that comparisons within
that pathway can be made. A topical example would be a [hypothetical] technology that
was positioned as a screening test for COVID-19, which would need to compete with
the existing test (PCR) in terms of cost per analysis, as well as critical factors such as
sample throughput. Whereas a low-cost device may be able to compete, some instru-
mentation may be unsuitable. In this example there is an obvious comparator technol-
ogy; however, in some instances this may not be the case, and a close economic
evaluation will be required to truly understand the cost-benefit implications.
A series of health economic studies have been published with regards to a blood

serum test for brain tumor detection[159,160]. Initially, the current clinical pathway for
brain cancer diagnosis is described, and the position of the test within that pathway is
explored[159]. This study took into consideration proof-of-principal results, and factored
this test performance into a cost-effectiveness calculation, showing that the spectro-
scopic test could provide cost savings in a primary and secondary care setting. A fol-
low-up study explored the health economic model further, by using prospective data, as
well as an additional cost-consequence analysis for tumor type discrimination[160].
These studies are invaluable for enabling translation, and the examples described here
are good resources for future studies and applications.

Successful startups toward clinical translation

Over the last 5� 10 years there has been a welcome increase in entrepreneurial activity
within the clinical spectroscopic field. However, we start this section with a discussion
of an early trailblazer, River D (formerly known as River Diagnostics) (https://www.
riverd.com/). River D was formed in 2002 and is a spin-out of the Erasmus Medical
Center in Rotterdam, Netherlands. River D’s main product within a clinical application
is the gen2-SCA, a highly sensitive confocal Raman system for in vivo skin analysis that
can determine molecular concentration profiles from the skin surface within minutes
and with high spatial resolution. This can help to study penetration and transdermal
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delivery of topically applied materials. PitchBook shows that River D is a well-estab-
lished company with its latest deal as a Series B (https://pitchbook.com/ profiles/com-
pany/58999-87).
Other companies backed by strong patent portfolios are appearing in the space (note

some of the authors are directors of these companies). Dxcover Ltd is a spin-out of the
Department of Pure and Applied Chemistry at the University of Strathclyde (https://
www.dxcover.com/). Dxcover Ltd formed in 2016 and spun out in 2019 with a seed
funding. To date they have raised £5.1M to progress their novel spectroscopic liquid
biopsy for the detection of cancer. Glyconics is a spin-out from research performed at
the University of Swansea and are developers of medical diagnostics device design for
early detection of exacerbation (https://glyconics.com/). Glyconics use FTIR to diagnose
and monitor acute and chronic diseases from the molecular analysis of sputum to detect
chronic obstructive pulmonary disease in patients with respiratory problems. Invenio
(https://www.invenio-imaging.com) are pioneering Stimulated Raman Histology (SRH)
that allows 3-D imaging of thick tissue specimens for the detection of disease. This
technology enables analysis that does not required physical sectioning, performing a
spectroscopic measurement at each point and displaying the results as a pseudo-colour
image for each molecular species. Crunchbase shows that Invenio Imaging is based
upon research from the Department of Chemistry and Chemical Biology at Harvard
University and have rasied $7.5M in funding and now have headquarters in silicon val-
ley (https://www.crunchbase.com/organization/invenio-imaging).
There is also a burgeoning market in new instrumentation represented by new com-

panies and mergers / acquisitions of other companies within the spectroscopic field.
These companies do not have the company mission of translating clinical spectroscopy
in a similar fashion to the companies named above but worth noting is the acquisition
of Cobalt Light Systems by Agilent. The instrumentation developed by Cobalt can rap-
idly and accurately identify materials hidden inside objects or through barriers (such as
the skin). IRsweep are developing the next generation of fast broadband and high-reso-
lution dual-comb spectrometers (https://irsweep.com/) and Photothermal Spectroscopy
Group who have pioneered the development of instruments for optical Photothermal
Infrared (O-PTIR) (https://www.photothermal.com).
The descriptions above are by no means exhaustive and are representative of a

developing area within spectroscopy and exemplify innovation that originated in
research for both clinical spectroscopy and spectroscopic instrumentation that is
progressing toward / completed commercial application.

Considerations for the translation of clinical spectroscopy

Translation of vibrational spectroscopy into the clinical environment has been relatively
slow[23]. The field of clinical spectroscopy would greatly benefit from multidisciplinary
research centers that would not only assess the clinical potential of such technologies
but also explore routes to the market and secure funding for large-cohort randomized
clinical trials, which would facilitate and expedite clinical translation.
Standardization of pre-analytical, analytical and post-analytical steps is crucial for any

analytical method intended for clinical implementation[2,161–164]. Multinational
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networks, such as the International Society for Clinical Spectroscopy (CLIRSPEC)
(https://clirspec.org/) and Raman4Clinics (https://www.raman4clinics.eu/) founded in
2015, aim to pool expertise and develop collaborations between scientists, chemometri-
cians, industrial and clinical partners in a concerted effort to promote the translation of
spectroscopic techniques into the clinic. The objectives of these networks range from
optimizing sample preparation protocols and determining instrumentation requirements
suitable for clinical use, to developing data analysis/sharing protocols and assessing
spectroscopy’s clinical value and patient benefit.
Depending on the study design, the performance of spectroscopy needs to be eval-

uated as a screening/triage, diagnostic, prognostic or monitoring tool in large multi-cen-
ter studies. In case the proposed spectroscopic test provides comparable or even
superior accuracy to currently available tests, then it could be considered for implemen-
tation into the routine clinical practice. However, apart from assessing the diagnostic
performance, other factors, such as health economics, automation, time for analysis and
ease-of-use, should be taken into consideration and compared head-to-head with clinic-
ally validated approaches. Disruption of the normal clinical workflow should also be
kept minimal to gain the support of the medical community. A general workflow of
clinical spectroscopy is depicted in Figure 4, whereas suggested steps for clinical transla-
tion, from a preclinical phase to clinical trials along with technical considerations are
provided in Figure 5[3,171].
The ability of spectroscopy to analyze different sample types opens the technology up

to different clinical applications. For instance, a highly-sensitive spectroscopic test of
easily-accessible biofluids or cells (blood, urine, exfoliated cervical cells) would be valu-
able as a first-line screening tool, which may then require a secondary, more invasive
(cerebrospinal fluid, tissue) but also specific test for a definite diagnosis. Such a two-
step workflow has the potential to minimize unnecessary referrals to a secondary setting
(as first-step highly sensitive) but also avoid over-diagnosis and over-treatment (as sec-
ondary-step highly specific).
Technological advancements in the field of spectroscopy have allowed the advent of port-

able, hand-held and miniaturized devices to permit point-of-care testing[13]. The emergence

Figure 4. General workflow of clinical spectroscopy.
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of quantum cascade lasers (QCLs), as high intensity light sources permitting IR measure-
ments at discrete frequencies, is another important step forward into future clinical transla-
tion as they can decrease acquisition time and increase signal-to-noise ratio and resolution,
thus enhancing the diagnostic capability[165–168]. Development of fiber probes has also per-
mitted in vivo applications for disease diagnostics or evaluation of surgical margin intra-
operatively[169]. However, despite the fact that fiber-based spectroscopy has proven its
potential to facilitate diagnosis and guide treatment, large-scale trials confirming the promis-
ing results from proof-of-concept studies are still lacking. The requirements of instrumenta-
tion, such as resolution, portability, ease-of-use, speed of data acquisition/analysis, should be
determined based on their clinical application and the setting for which these instruments
are destined for (remote field trial, primary/secondary care, intra-operative).

Conclusion

It is clear that biomedical vibrational spectroscopy has shown promise in different clin-
ical applications, from disease screening and diagnosis to treatment and monitoring of
disease progression. Over the past last twenty years (2000� 2020), there was a dramatic
increase in the literature outputs for research in both IR and Raman spectroscopy for
diagnosis of both cancer and infectious disease, although the rate of increase slowed sig-
nificantly since � 2016. Notably, of the studies identified by the inclusion criteria, only
�10% of these were considered clinically relevant, based on the exclusion criteria, in
the case of cancer diagnostics. This was highest for the case of esophageal cancer
(�22%), in which tissue studies, including in vivo, dominate. Amongst the cancer stud-
ies deemed eligible, biofluid based diagnostics were most prevalent (�47%), followed by
tissue (�45%). Clinically relevant cytological based studies were relatively few, although
they featured strongly for bladder (25%) and gynaecological (27%) cancer diagnostics.
In the area of infectious disease, clinically relevant virology studies dominated (�67%),
and these were almost exclusively (90%) performed on biofluids.
The analysis of the literature first and foremost leads to the conclusion that increas-

ing emphasis must be placed by the scientific community on the clinical relevance of
studies intended to prove the concept of the applicability of vibrational spectroscopic
techniques for clinical diagnostic applications. The exclusion criterion of <25

Figure 5. Steps toward clinical translation of vibrational spectroscopy. Reproduced with permission
from Butler et al.[3].
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participants per group (disease and control) neglects many valuable fundamental and
proof of concept studies[1,13,21–27]. However, credible prospects of clinical translation
can only be based on credible statistical analyses.
The predominance of biofluid based studies is also noteworthy. They are spatially

homogeneous in their liquid form, or, as measured using the increasingly popular tech-
nique of ATR, the spatial inhomogeneity of dried droplets is automatically integrated in a
single measurement. Time consuming and computationally demanding spatial imaging/
mapping therefore is not required, as it is for tissue. Lower cost, portable/miniaturized IR
and Raman instrumentation has become increasingly available, potentially for point-of-
care diagnostics, and it is therefore not surprising that the past 5 years have seen signifi-
cant activity toward the commercialization of biofluid based diagnostic techniques, sup-
ported in some cases by health economics studies to demonstrate the feasibility of clinical
translation. In histo/cytological applications, progress toward the realization of clinical
translation has advanced less rapidly. Although the proof-of-concept has been demon-
strated, in many cases, with clinically relevant cohorts, feasibility in terms of clinical
workflow and health economics may rely on emerging and further instrumental and data
processing developments, to reduce acquisition and analysis times.
Increasing bibliometric attention has been mostly given to disease diagnostics which

highlights the need for further large-scale studies into the latter clinical applications.
Nevertheless, continuous advancements in the field will undoubtedly shed light on these
applications in the years to come.
Herein, we have reported human studies of mid-IR and Raman spectroscopy investi-

gating cancer and infectious diseases since 2015. Although the potential of such technol-
ogies in these diseases has been demonstrated, larger emphasis should be placed on the
requirements for clinical translation. Standardization of study design and protocols, col-
laborations between the scientific, medical and industrial community, as well as
randomized clinical trials are all of imminent importance for the translation of promis-
ing analytical tools into the clinic. This review has also considered the health economics
of vibrational spectroscopy in the clinical arena and presented successful startup compa-
nies with a clinical focus.
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