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Abstract 

Tenuiphantes tenuis (Linyphiidae) is a common arachnid found in British agricultural habitats. T. 

tenuis is a pioneer species, recolonises disturbed habitats rapidly and is a key predator of cereal 

pests. It has been estimated that Linyphiidae can reduce peak Aphididae populations by 49% in a 

wheat crop, a major gain when Aphididae cause loss of yields through direct feeding and as viral 

vectors. Soil tillage is normal practice to ensure the correct seedbed is constructed to allow 

successful germination. Conventional inversion tillage (use of a plough) causes comparatively more 

disturbance to T. tenuis than that of non-inversion tillage. One approach to the latter, direct drilling, 

is a method of inserting seeds directly into the soil with little prior disturbance. This research 

assessed how different intensities of soil tillage affected T. tenuis’ capacity to control pests through 

examination of its extended phenotype, the web. Field trials were conducted on a NIAB 

experimental farm investigating different tillage systems; Conventional non-inversion tillage of sub-

soiling and two forms of direct drilling; Direct Drill and Direct Drill Managed - a shallower form of 

tillage. Glasshouse trials, incorporating small aspects of the fieldwork, were undertaken to analyse T. 

tenuis behaviour in a controlled environment. 

Clear differences of T. tenuis behaviour were identified between the different soil tillage intensities 

at times of primary and secondary cultivation. The zero-till area of Direct Drill allowed extensive 

short-ranged dispersal to commence and small webs to be woven into the structures left above 

ground. Large webs were spun between soil aggregates and remaining crop residue of the 

Conventional tillage due to the sub-soil technique. Low activity was observed in Direct Drill 

Managed, where the shallow tillage led to an increase in landscape homogeneity. Similar findings 

were found in glasshouse trials mimicking the cultivation processes. 

In later growth stages of Hordeum vulgare (barley) the density and height of the plant within each 

soil tillage intensity was important. Increased landscape heterogeneity permitted greater web 

abundance by providing a plethora of anchor materials. In the field and glasshouse trials, the zero-till 

and shallower cultivated areas aided prey abundance due to the increased straw mass remaining on 

the surface. T. tenuis responded by entrapping a higher prey density. Research further indicated 

anchor point height of a web can over-ride web area for prey suppression, if attached at a beneficial 

stratum. 

T. tenuis biological control potential was exhibited by webs spun of a greater area and height in an 

area of Barley Yellow Dwarf Virus-infected H. vulgare in the Conventional area. DNA bar-coding 

identified S. avenae in the gut of T. tenuis from the Conventional and Direct Drill Managed tilled 

areas. This was hypothesised to be due to these areas of less migration distance to the shelterbelt.   
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Combined aspects of this research have gained insights into how T. tenuis behaviour, thus potential 

for biological control, could assist in achieving agricultural sustainability. Conventional delivering 

greater yields and enabled prey capture from T. tenuis showed the benefit to non-inversion sub-

soiling. A recommendation to an Integrated Pest Management Plan is to increase T. tenuis biological 

control capacity of this till method by influencing greater migration from the shelterbelt. 

Keywords: Aphididae, Biological Control, BYDV, Cultivation, Extended Phenotype, Linyphiidae, 

Sitodiplosis mosellana, Tenuiphantes tenuis, Tillage, Zero-till 
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Chapter One 

1.0. Introduction 

1.1 Background 

Tenuiphantes tenuis (Araneae: Linyphiidae) (Blackwall, 1852) is a common ground-dwelling spider 

found within British agricultural systems (Barriga et al., 2010; Öberg & Ekbom, 2006). This Linyphiidae 

is a generalist predator, identified as a dominant natural enemy, due to evolved coping mechanisms 

for starvation and gorging (Bell et al., 2002). T. tenuis is carnivorous, thus does not harm crops (Diel et 

al., 2013; Rajeswaran et al., 2005). Furthermore, T. tenuis is a key, non-chemical control agent in 

removing Aphididae (true aphids), that are known to cause crop damage via direct feeding through 

the phloem and as vectors of diseases (e.g. Barley Yellow Dwarf Virus). Barley Yellow Dwarf Virus 

(BYDV) transmission from Sitobion avenae (English Grain Aphid) was of greater cost in grain yield 

reduction to a Hordeum vulgare (Spring Barley) crop in the UK than direct feeding (Choudhury et al., 

2019). In 2018, an average 30% yield loss of H. vulgare (UK wide) was caused by BYDV on untreated 

(pesticide-free) ground, at a potential cost of £2 million to British agriculture (AHDB, 2019). Moreover, 

Sitodiplosis mosellana (Orange Blossom Wheat Midge), which causes yield reduction through damage 

to the pericarp of grain in cereal crops, are removed from a crop system by entrapment in T. tenuis 

sheet webs (Price et al., 2011). 

Aphididae may contribute 55% of pests identified in a crop field habitat and 37% of prey consumed by 

Linyphiidae within one generation (Halley et al., 1996). T. tenuis, as a biological control agent, may 

reduce the need for insecticide use (Aradottir et al., 2017; Holland & Oakley, 2007; Jonsson et al., 

2014; Lüscher et al., 2014). Insecticidal chemicals are known to harm the environment by being 

leached into waterways and target organisms have been shown to gain resistance negating their 

intended use and force synthesis of new products. Bass et al. (2014) and Silva et al. (2012) comment 

that Myzus persicae (Peach-Potato Aphid) exposure to insecticides has led to the engineering of seven 

independent genetic pathways. Due to the polyphagous nature of M. persicae, this resistance has led 

to substantial economic losses in British arable agriculture. Direct feeding of M. persicae primarily led 

to a 45% reduction in sugar beet yield in Europe, which in 2016 had an approximate market value of 

£23 million (Hogenhout, 2016). The loss of income from yield reduction has a social impact to 

agricultural industry, with arable farms not able to sustain a crop failure (Brewer, 2019; Zhang et al., 

2016). Halley et al. (1996) examined average annual pesticide use and identified a 50 - 90% decrease 

in field populations of Linyphiidae, which persisted for several generations. Despite this, pesticide use 

is still common, as 70% of pest-related crop damage can occur without their application, resulting in 

a loss of capital and food (Al Hassen et al., 2012).  
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1.2. Research Aims 

The aims of this research project were to: - 

1. Identify the potential biological control by T. tenuis of Aphididae and S. mosellana within 

different intensities of tillage in an arable crop.  

2. Identify any differences in extended phenotypes of T. tenuis within tillage practices, e.g. web 

dimensions and bridge thread length. 

3. Understand whether T. tenuis behaviour is stimulated by the presence of Aphididae and S. 

mosellana. 

4. Comprehend if a certain level of landscape heterogeneity affects T. tenuis ability to predate 

on Aphididae and S. mosellana. 

5. Quantify T. tenuis biological control by comparing Aphididae and S. mosellana DNA presence 

in T. tenuis gut and Linyphiidae webs with Aphididae and S. mosellana populations within 

different intensities of tillage. 
 

The incorporation of S. mosellana within the Research Aim 1, 3, 4 and 5 relate to Chapter 5 (Sub-

Chapter 5.1. & Sub-Chapter 5.3.) and Chapter 12.0. Aphididae within the same Research Aims are 

represented in every experimental chapter. 

To address these aims, a number of approaches were undertaken. These involved both field and 

laboratory-based investigations (Chapters 3.0. to 12.0.). Specific objectives are provided within each 

of the experimental chapters. 

1.3. Overview of Thesis 

• Chapter Two - Literature Review 

This chapter reviews the relevant literature and places the current research into context. The 

review begins by exploring the Linyphiidae family and more specifically the biology and 

behaviour of T. tenuis. Literature surrounding British arable agriculture production is explored 

with interest in tillage techniques. Crop pests are introduced with reference to how T. tenuis 

may interact with these pests and offer elements of biological control. 

 

• Chapter Three - Fieldwork Site Introduction 

This chapter explores in-depth a National Institute of Agricultural Botany (NIAB) trial, the field 

site for this research. It identifies how the levels of soil tillage intensity are established and 

measured by NIAB. Lastly, the contributions to the scientific community that this research 

could bring is highlighted. 
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• Chapter Four - Method Development for Fieldwork 

How the final fieldwork methodology was developed is the focus of this chapter. It includes 

learning and experience gained from preliminary investigations. 

 

• Chapter Five - Fieldwork - 2016 / 2017 Season and 2017 / 2018 Season 

This chapter is divided into three sub-chapters. Sub-Chapter 5.1 seeks to understand how T. 

tenuis behaves in a field where it is split into areas of differing soil tillage intensity. Sub-

Chapter 5.2 reports an in-field experiment, where the abundance of upright stubble, identified 

from the scientific literature as a key component within the landscape, was manipulated. Sub-

Chapter 5.3 examines T. tenuis behaviour within hedgerows that surround the cultivated area. 

 

• Chapter Six - Interactions of T. tenuis and Linyphiidae with Aphididae Causing Barley Yellow 

Dwarf Virus (BYDV) in H. vulgare 

T. tenuis and pest interaction in H. vulgare infected with BYDV-PAV is analysed from testing 

for BYDV-PAV to understanding if there was increased Aphididae abundance and if this 

heightened associated T. tenuis behaviour. 

 

• Chapter Seven - Method Development for Glasshouse Experiments 

This chapter narrates the development of glasshouse experiments used in this research. It 

informs how designs were built and learnt from, allowing experience to be incorporated into 

final investigations. The chapter highlights how methodologies were refined into final 

methods. 

 

• Chapter Eight - Effects of Soil Tillage Intensity on Prey Capture by T. tenuis in Mesocosms of 

H. vulgare 

This experiment was designed to simulate the conditions observed in the field created by the 

differing levels of soil tillage intensity under controlled conditions. 

 

• Chapter Nine - Effects of Primary and Secondary Cultivation on T. tenuis Behaviour Under 

Controlled Experimental Conditions: A Mesocosm Experiment 

This chapter communicates a further glasshouse experiment. These mesocosms were 

specifically set-up to closely observe T. tenuis interaction with the habitat created after 

primary and secondary cultivation of the different intensities of soil tillage.  
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• Chapter Ten - T. tenuis Behaviour with Different Soil Tillage Intensities and Different 

Abundances of Cereal Aphididae: A Microcosm Experiment 

The focus on this experiment was to further investigate T. tenuis behaviour when placed in 

controlled conditions with different levels of Aphididae. It set out to determine whether a 

greater Aphididae density influenced T. tenuis activities. The experiment was set in small 

habitats (microcosms), a small area allowing T. tenuis and Aphididae interactions to be clearly 

determined. 

 

• Chapter Eleven - Choice Chambers for Selection of Upright Stubble and Furrow With or 

Without the Presence of Aphididae 

The element of choice was central to this experiment, where a T. tenuis was offered simulated 

habitats containing different levels of landscape heterogeneity (formed from the different 

intensities of soil tillage). The experiment was extended by inclusion or exclusion of Aphididae. 

 

• Chapter Twelve - DNA Bar-Coding of T. tenuis Gut and Linyphiidae Web 

The technique of DNA Bar-coding was applied to analyse whether prey DNA exists in T. tenuis 

gut or Linyphiidae web from specimens collected from different soil tillage areas. The premise 

was that the results would allow a greater understanding of the prey capture behaviour of T. 

tenuis. 

 

• Chapter Thirteen - Final Discussion 

This chapter concludes the research. It is divided into three sections. The final discussion 

where T. tenuis activity towards crop pests within different tillage intensities is concluded. 

Recommendations for future work are offered as a platform for other works. Finally, an 

Integrated Pest Management Plan is drawn up, with an aim to be accessible to those within 

the arable agriculture industry. Here contributions to the scientific community are re-visited. 
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1.4. Summary of Results Section 

At the beginning of each results section of the experimental chapters, there is a summary of the 

results, the section and page number of which are noted below. The reasoning behind this is to give 

an overview of the key results from each experimental chapter before the detailed analysis is 

explained. 

Chapter Section Page 
Number 

 
Chapter Five - Fieldwork - 2016 / 2017 Season and 2017 / 2018 Season 
Sub-Chapter 5.1. - Main Field - Out of Crop (Fallow & After Cultivations) 
 

 5.1.5.1.1. 89 

Chapter Five - Fieldwork - 2016 / 2017 Season and 2017 / 2018 Season 
Sub-Chapter 5.1. - Main Field - In Crop (Early and Late Growth Stages) 
 

 5.1.5.2.1. 102 

Chapter Five - Fieldwork - 2016 / 2017 Season and 2017 / 2018 Season 
Sub-Chapter 5.2. - In-field Experiment - Addition of Upright Stubble  
 

 5.2.6.1. 141 

Chapter Five - Fieldwork - 2016 / 2017 Season and 2017 / 2018 Season 
Sub-Chapter 5.3. - Hedgerows of Main Field 
 

 5.3.5.1. 157 

Chapter Six - Interactions of T. tenuis and Linyphiidae with Aphididae 
Causing Barley Yellow Dwarf Virus (BYDV) in H. vulgare 
 

 6.5.3.1. 193 

Chapter Eight - Effects of Soil Tillage Intensity on Prey Capture by T. tenuis 
in Mesocosms of H. vulgare 
 

8.7.1. 235 

Chapter Nine - Effects of Primary and Secondary Cultivation on T. tenuis 
Behaviour Under Controlled Experimental Conditions: A Mesocosm 
Experiment 
 

 9.6.1. 257 

Chapter Ten - T. tenuis Behaviour with Different Soil Tillage Intensities and 
Different Abundances of Cereal Aphididae: A Microcosm Experiment 
 

10.6.1. 274 

Chapter Eleven - Choice Chambers for Selection of Upright Stubble and 
Furrow With or Without the Presence of Aphididae  
 

11.7.1. 304 

Chapter Twelve - DNA Bar-Coding of T. tenuis Gut and Linyphiidae Webs - 
DNA Bar-coding to Analyse T. tenuis Gut Contents for Aphididae and S. 
mosellana 
 

 12.3.3.1 342 

Chapter Twelve - DNA Bar-Coding of T. tenuis Gut and Linyphiidae Webs - 
DNA Bar-coding to Analyse Linyphiidae Webs for Aphididae and S. 
mosellana 

 12.4.3.1 348 
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Chapter Two 

2.0. Literature Review 

2.1. The Linyphiidae Family and Tenuiphantes tenuis  

The Linyphiidae (Blackwell 1857) are sheet-weavers and a family of small spiders, all species being less 

than 5 mm in body length from the cephalothorax (head) to the abdomen (main body). Globally, the 

family has 430 species in 601 genera.  Linyphiidae are the largest family found in the British Isles, with 

270 species comprising 40% of the total spider population (Coddington, 2005).  

Tenuiphantes tenuis is found in a variety of habitats across temperate Europe and Northern America 

and has been sampled in various lowland habitats throughout the UK. T. tenuis is distributed equally 

within England, Wales and Northern Ireland and less common in the North of Scotland, with 

decreasing temperatures (Harvey et al., 2002). The lowland habitats include grasslands, woodlands, 

moorlands, and wetlands, all of which incorporate a variety of flora. It is uncommon in areas with 

sparse vegetation strata, for example the uplands (Harvey et al., 2002). The ubiquitous nature of T. 

tenuis identifies its biological control potential, able to sustain in a multitude of habitats and exert 

predatory behaviour.  

2.1.1. The Biology of T. tenuis 

Adult T. tenuis are generally between 2 and 3 mm in body length meaning they are of the smaller size 

within the Linyphiidae. T. tenuis has a distinctive set of markings on the abdomen (Figure 2.1). The 

female has two linear sets of brownish spots, graduating in size, which are on a background of beige 

and brown areas on the abdomen (Bradley, 2013; Roberts, 1993) (Figure 2.1.). Males have a darker 

brown abdomen, where the markings are less identifiable, though two anterior white spots on the 

abdomen are unique to male T. tenuis and allow field identification (Bradley, 2013; Roberts, 1993) 

(Figure 2.1.). T. tenuis can be separated by sex by a unique epigene, an external female sexual organ, 

and a palp, a swollen appendage in males whose primarily aim is to transfer sperm in copulation, both 

epigene and palp require microscopic observation to identify unique markings (Roberts, 1993) (Figure 

2.1).  

 

 



7 
 

  

 

T. tenuis have four pairs of small eyes which only allow near-sighted vision, meaning they are incapable 

of rendering a complete picture of their surroundings. The long thin legs of T. tenuis have many 

macrosetae, sensitive fine hairs, which collect sensory information to allow T. tenuis to respond to its 

surroundings (Bradley, 2013; Roberts, 1993) (Figure 2.2). T. tenuis thus hunt within a small spatial 

scale. T. tenuis are highly flexible animals, easily able to ascend structures (Bradley 2013, Řezáč & 

Řezáčová, 2019; Woolley et al., 2016). Lichtenstein et al. (2019) discussed climbing allows T. tenuis to 

exploit prey that may be within the upper strata of a habitat. Within an agricultural setting T. tenuis 

as effective climbers can respond to aerial prey more than carabidae (ground beetles) which are 

confined to the basal stratum (Cowles, 2018; Davey et al., 2013). 

 

 

 

 

 

 

 

Figure 2.1: a = Male and b = Female T. tenuis, dorsal view (InfluentialPoints, 2019). Pencil drawing of male palp and 

female epigyne (Roberts, 1993).  

Figure 2.2: Female T. tenuis, lateral view, under KERN™ compound microscope 

OBS-1 binocular achromat resolution 4x, showing long legs with macrosetae. 

a b 
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2.1.1.1. Reproduction and Life Cycle of T. tenuis 

T. tenuis reproduces rapidly and often produces two generations within a cropping season, commonly 

September to February and February to April. At peak reproductive rates, T. tenuis can reach a 

population density of up to 1,000 m-2 in an arable cropped field (Bell et al., 2002; Schellhorn et al., 

2014). It is identified as a pioneer species, by rapidly recolonising areas subjected to a recent 

disturbance, in this instance a cultivated arable field, and is therefore a viable candidate of biological 

control (Thomas & Jepson, 1999).  

After mating, female T. tenuis search for a refugia (safe place), camouflaged and secure from the 

elements, and begin to spin an egg sac where a clutch can be laid. Eggs are light cream/beige in colour 

and darken through the incubation period which lasts for 10 to 15 days (Thorbek et al., 2003). Clutch 

size is on average 20 to 30 eggs. Spagna & Gillespie (2008) showed T. tenuis females abandon their 

egg sacs negating parental care, though care is taken in choosing suitable oviposition sites (Bradley, 

2013). The number of hatchlings varies with temperature, higher temperatures increasing hatching 

rate (Simpson, 1995; Thorbek et al., 2003). Spiderlings (infant spiders) all hatch from the eggs at the 

same time, as ‘sexless’ miniature forms of the adult with abdominal markings established. They are 

able to spin silk upon hatching and often balloon (disperse) directly away from the egg sac immediately 

to avoid intra-specific predation, weaker spiderlings in size and fitness, can become a protein meal for 

stronger siblings (Thorbek et al., 2004). 

The spiderlings go through three ecdyses, shedding of exoskeleton, before acquiring a distinguishable 

sex and becoming adult. The period between ecdysis are known as instars and T. tenuis juveniles are 

classed into three instars (Peng et al., 2013; Preston-Mafham & Preston-Mafham, 1996). Ecdysis 

allows growth, having an inflexible exoskeleton T. tenuis are required to grow in definite stages. 

Ecdysis leaves an instar vulnerable to predation, as prior to ecdysis the juvenile ceases to feed and 

hangs from a strand of strong dragline silk, from the ampullate gland, for two to four days until the 

old exoskeleton is shed (Higgins, 1993; Preston-Mafham & Preston-Mafham, 1996). Male T. tenuis 

reach the third instar before females, due to males generally being smaller in body mass, and are 

therefore sexually mature before females (Akita, 1992; Preston-Mafham & Preston-Mafham, 1996). A 

successful next generation of adult T. tenuis, with spiderlings able to successfully reach each instar, is 

of importance to the biological control T. tenuis can apply within a crop. Adult T. tenuis weave webs 

of greater area within higher strata, establishing a greater potential to intercept aerial prey (Brunetta 

& Craig, 2010; Craig, 1987). T. tenuis reproductive capacity in multiple generations allows an adult 

population to be apparent when an arable crop has germinated and within early growth stages (GS), 

thus susceptible to action of pests (He et al., 2020; Schellhorn et al., 2014; Welch et al., 2013). The 
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greater mobility and dexterity of adult T. tenuis can effectively weave webs in a multitude of locations 

to ensnare prey (Kraftt & Cookson, 2012). 

2.1.2. Extended Phenotypes of T. tenuis and Linyphiidae 

An extended phenotype is expressed as an extension of an organism without being attached to the 

organism.  For example, an extended phenotype of a bird (Aves) would be a nest, or a burrow for an 

earthworm (Lumbricus). The extended phenotype of T. tenuis is its ability to construct a web 

(Blackledge et al., 2002; Blamires et al., 2013). This extended phenotype differs in form and 

construction between web-building spiders. The extended phenotype of Linyphiidae is a horizontal 

sheet web, spun of fine silk. 

2.1.2.1. Web-building Behaviour in Silk and Design of T. tenuis and Linyphiidae 

T. tenuis web size can vary from 5 cm2 to 550 cm2 depending on the landscape (Gómez et al., 2016). 

They create sheet webs which are a horizontal close woven web where the internal structure does not 

form a symmetrical pattern rather a random crisscross. Spider silks are highly complicated at a 

molecular level, however, silks are constructed of repetitive patterns of amino acids that are 

intercepted with crystalline structures or spacers (gene expression breaking up dominant repeats) 

(Blackledge & Elaison, 2007; Chen et al., 2012; Colgin & Lewis, 1998). The sequence of amino acids 

and associate structure or spacer allows differences between silk to occur, each silk having a molecular 

structure relating to its intended purpose (Basu, 2015; Brunetta & Craig, 2010).  

 

Support threads are created from the major and minor ampullate glands which emit a non-sticky 

dragline silk (Craig, 2003). Major ampullate silk is fibrins (fibrous protein) attached with hydrogen 

bonds that are strengthened with hydroponic crystals (named β-sheets due to its secondary structure) 

giving this silk its high tensile strength and tough characteristic (Craig, 2003; Hardy et al., 2008; 

Heidebrecht & Scheibel, 2013) (Figure 2.3a). Support threads are usually two fibres thick due to 

Linyphiidae having only one pair of spinnerets, allowing the maximum of two fibres to be woven at 

one time. Silk from the minor ampullate gland is only half as strong as that from the major ampullate 

gland due to the absence of hydroponic crystals. Spacers, rich in serine, are not uniformly repeated 

and are unique to this silk (Basu 2015; Rising et al., 2005) (Figure 2.3b). The function of this spacer is 

thought to be in protein synthesis to aid fibrin formation (Tokareva et al., 2014). This silk is used by 

Linyphiidae as a temporary bridging thread, which T. tenuis may use to assess a web structure before 

the costly, in energy, major ampullate silk is laid. Bridging relates to the action of lying a thread to 

allow small scale migration between structures. It is not incorporated into a web and its lying is 
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predominately an exploratory or dispersal tool (Bonte & Saastamoinen, 2013; Řezáč & Řezáčová, 

2019). 

 

Anchorage of support threads at different orientations is made possible by the piriform gland. The 

piriform silk forms discs that allow support threads to protrude from the main sheet web and access 

otherwise difficult substrate (Craig, 2003). These discs enable the support webs to turn through the 

creation of junctions and allow T. tenuis to manipulate a web to sit within an arable crop. Piriform silk, 

through large repeats of amino acid rich in alternative glutomaine and proline sequences, is able to 

produce thick layers (creating the discs) with silk being deposited in a zig-zag motion over a small area 

(Craig, 2003; Perry et al., 2010) (Figure 2.3d). Only termini break the amino acid repeats instead of 

spacers, due to its assistant role in guiding support threads to an appropriate orientation (Perry et al., 

2010).  

 

Sheet webs comprise of anchor threads that arise from the support threads and attach to the 

substrate to give reinforcements to the web, this allows loading stress of the web to be increased. 

Flagelliform silk forms the sheet threads that make up the internal body of the sheet web and is highly 

extensible, with a disorderly molecular structure with weak bonds. It contains glycine and proline 

bonded by strong hydrogen bonds that are structured to form a β-helix which gives the silk its strength 

and elasticity (Ayoub et al., 2007; Hayashi & Lewis, 1998; Hayashi & Lewis, 2001) (Figure 2.3c). It makes 

an excellent material for the internal structure as it can be laid rapidly with little energetic output due 

to less force required for its extension, pulling of the thread, compared to the earlier mentioned 

dragline silk (Pasquet, 2014; Rojas, 2011; Toft 1987). Key to highly mobile T. tenuis to promptly lay a 

web in advantageous locations, responding to an agricultural disturbance for example (Pedley & 

Dolman, 2014). 

Figure 2.3a: Schematic diagram of secondary molecular structure of the major ampullate silk fibril (Adapted from 

writings of Craig (2003), Hardy et al. (2008) and Heidebrecht & Scheibel (2013)). 
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The yield of silk can have a limiting factor on the way a silk performs when a web is constructed. Yield 

is measured in strain and is described as the moment when silk is pulled far enough away from the 

spinnerets that the proteins are able to deform and exhibit their intended characteristics (Craig, 2003; 

Römer & Scheibel, 2008). For example, the yield required for major ampullate silk to strengthen and 

set is 2 - 3% strain required by the Linyphiidae (Hardy et al., 2008). If the correct yield is not met the 

constructed web may perform differently in environmental stresses, like wind, or its intended stress 

loading capability may not be met, meaning its prey-capturing potential may be lowered (Blackledge 

et al., 2011; Tokareva et al., 2014).  

Figure 2.3c: Schematic diagram of secondary molecular structure of the piriform silk fibril (Adapted from writings of Craig 

(2003) and Perry et al. (2010)). 

Figure 2.3d: Schematic diagram of secondary molecular structure of the flagelliform silk fibril (Adapted from writings of 

Ayoub et al. (2007), Craig (2003) and Hayashi & Lewis (2001)). 

Figure 2.3b: Schematic diagram of secondary molecular structure of the minor ampullate silk fibril (Adapted from 

writings of Basu (2015), Craig (2003), Rising et al. (2005) and Tokareva et al. (2014)). 
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All elements of a web, silk threads of supports and sheets, differ marginally in thickness, expressing a 

difference in energy output for their creation (Beals, 1999; Benjamin et al., 2002). Benjamin et al. 

(2002) found increased levels of silk globules in support threads of Linyphia triangularis, Linyphiidae, 

which suggested a higher demand for silk production (Beals, 1999; Pasquet, 2014; Rojas, 2011; Toft, 

1987). The area of a web can be identified as a measurement of an individual T. tenuis prey-capture 

capacity as this the extended phenotype that ensnares the prey (Blackledge et al., 2002; Harmer et 

al., 2011; Toft, 1987). DiRienzo & Aonuma (2018) discussed web orientation alongside dimensions can 

affect the webs capacity to capture prey. 

Understanding the molecular composition of each silk fibril woven by Linyphiidae in relation to the 

silks intended purpose is of importance when analysing the prey-capturing ability of their extended 

phenotype (Römer & Scheibel, 2008). Benjamin & Zschokke (2004) and Xu et al. (2015) discuss the 

increase laying of flagelliform silk in a webs internal structure, although of extra energy output, aids 

the webs structural integrity and allows greater persistence in times of disturbance. A greater yield of 

piriform silk obtained allows attachment discs to be spun of enhanced thickness, providing a web 

anchored with increased security onto a substrate (Japyassú & Laland, 2017; Stenchly et al., 2011; 

Tokareva et al., 2014). The decisions in the manufacturing processes of a web clearly affects its ability 

to endure in an agricultural setting and therefore alters the biological control potential the web can 

exhibit (Blackledge et al., 2005; Blackledge et al., 2009; Vollrath, 1986). 

2.1.2.2. Location of Web-building Behaviour of T. tenuis and Linyphiidae 

In web construction, it is suggested that T. tenuis makes a conscious decision whether the output of 

kinetic energy required to lay threads and energy used to produce proteins for silk will be profitable, 

in terms of energy income through prey capture (Benjamin & Zschokke, 2003; Campbell et al., 2020; 

Henschel & Lubin, 2018). The anchor point is a key factor in prey capture, as it is the starting point for 

creation of a web. Identifying a T. tenuis choice of anchor point within a complex environment allows 

exploration of decision-making on web location (Dennis et al., 2015; Pasquet, 2014).  

Hardwood et al. (2003) noted that there are similarities between the surrounding plant communities 

and T. tenuis web location observed. It has been suggested that web location may be a compromise 

between the micro-habitat in plant density, climate, prey availability and predator avoidance 

(Hardwood et al., 2003). T. tenuis are highly adaptive in web construction and can adapt into a small 

niche unsupported by another Linyphiidae, allowing prey to be utilised with limited predation. 

Birkhofer et al. (2008) highlighted, where artificial plants were incorporated into a Triticum (wheat) 

field to increase vegetation complexity, T. tenuis abundance was significantly correlated with 

vegetation complexity. This was attributed to the increased number of potential web-sites that could 
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be utilised by T. tenuis (Birkhofer et al., 2008). T. tenuis were identified as having a significant 

preference to perennial habitats over mono-cropped fields of Beta vulgaris (Sugar Beet), Triticum 

aestivum (Winter Wheat) and Brassica napus (Oilseed Rape). In this same study, T. tenuis were at 

significantly high density in the annual cropped fields than other spider populations, which identifies 

that T. tenuis may not have a definite habitat criteria but monopolise areas where other spider 

populations are low. The fact that spider webs have been shown as prevalent when land was fallow 

suggests a low level of vegetation complexity maybe required for thread attachment. This agrees with 

work by Groeneveld et al. (2015) and Schmidt & Tscharntke (2005) who analysed Linyphiidae 

abundances in fallow and field in crop. This idea of monopolising cereal fields and requiring basic plant 

physiognomy is supported by Mader et al. (2017), when the arachnid of highest abundance in an 

organically managed cereal crop was T. tenuis. This occurred when arthropod sampling was compared 

between a flowering field in the Agriculture Environment Scheme and an organic T. aestivum.  

Buri et al. (2016) introduce the ‘carry over’ hypothesis, where allowing all year vegetation availability 

means a Linyphiidae generation can be carried over in the same habitat vicinity. It was identified that 

a T. tenuis population remained abundant with delayed mowing of a perennial grassland. This was 

accredited to annual availability of vegetation allowing web construction to continue and support the 

life cycle of the web-building behaviour of T. tenuis (Buri et al., 2016).  

Changes in vegetation architecture, in its height, density and foliage present, has been shown by 

Gómez et al. (2016) to contribute to web location and construction. In Northern Kansas, vegetation 

architecture of a prairie was analysed with the use of three grassland field sites with differing 

populations of woody shrubs and forbes (flowering herbicious plants). Gómez et al. (2016) identified 

a significant positive correlation between Linyphiidae web abundance and vegetation height and 

number of vegetation layers. It is theorised that web-anchoring is driven by the implementation of 

differences in vegetation architecture in layers and increasing foliage density. Increased vegetation is 

noted to benefit Linyphiidae by providing webs with a background cover. Insects may not identify a 

web in this situation and may not be able to avoid entrapment (Fasola & Mogavero 1995).  

With cereal crops, T. tenuis and Linyphiidae in general have been shown to utilise straw and previous 

crop stubble for web construction. In a study in Argentina, abundance of Linphiidae increased by 

12.30% in an area of T. aestivum which incorporated stubble against an area without stubble 

(Armendano & González, 2011). Armendano & González (2011) suggested that Linyphiidae were 

capable of occupying a niche habitat and utilising available material for webs. This supported work by 

Thomson & Hoffmann (2007) where a higher abundance of T. tenuis was identified in areas where 

straw mulches had been applied providing small scale habitat materials for web construction. 
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With arable fields, the distance from the field margin has been communicated as a factor that drives 

the location of spider web creation. Pfister et al. (2015) discussed that the abundance of web-building 

spiders increasing towards a hedgerow (measured in scale of log transformations) may be due to their 

lifecycles, where the availability of a micro-habitat differing in vegetation complexity in close 

proximity, may benefit shelter, egg-laying and a different prey availability. Movement towards the 

centre of a cropped field may cause increased predation and limited complexity of plant physiognomy 

for anchor points for webs. Garratt et al. (2017) found a significant decline in Linyphiidae abundance 

in a T. aestivum crop in Southern England with increased distance from the hedgerow. Abundance of 

T. tenuis in the T. aestivum was shown to relate to the maturity of the vegetation within the hedgerow, 

with increased abundance occurring when the hedgerow had a high vegetation density being well 

established with little gaps. This suggests the requirement for an area of complex vegetation to 

provide a background to allow T. tenuis to utilise an area of mono-cropping. The idea of edge effect is 

also considered here where at the boundary of two habitats a unique micro-ecosystem can sustain. 

The difference in landscape heterogeneity often observed between the two habitats, for example a 

cropped field and managed margin, can allow communities to interact that are normally confined to 

a particular habitat (Blake et al., 2013; Buchholz, 2010; Horváth et al., 2015; Opatovsky & Lubin, 2012). 

The strength of the edge effect is noted by De Smedt et al. (2019) where it was understood a higher 

density of spider assemblages’ activity was identified at the edge of Western European forest due to 

different orientation of plant physiognomy established.  

It has been identified that webs of Linyphiidae are constructed in areas of high prey density (Harwood 

& Obrycki, 2005). A higher density of Aphididae and Thysanoptera (Thrips), prey capable of flight, were 

found nearer to above ground T. tenuis webs than to ground dwelling spiders (Harwood et al., 2003). 

This suggests learnt behaviour that webs above the ground within vegetation will be able to access 

elevated dwelling and aerial prey. Significant higher abundance of Linyphiidae identified within a row 

T. aestivum rather than the space in between the crop, caught by sticky traps within a T. aestivum field 

in Warwickshire, may be attributed to a higher density of prey habituating on the height of the crop 

(Harwood et al., 2003).  

 

2.1.2.3. Web Renewal of T. tenuis and Linyphiidae 

Web renewal in this context is the frequency that a web is repaired and put back into a working 

condition after damage which renders the web functionless (Blackledge et al., 2002; Blackledge et al., 

2009).  
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Linyphiidae are part a Retrolateral Tibial Apophysis (RTA) Clade spider, spiders where the male retains 

an RTA, a backward projection extending from the male palps, that through evolution has equated to 

the loss of the cribellate gland. These RTA Clade spiders are of the family class araoeidea apart from 

the venomous araoemorph class that still use the cribellate gland (Craig, 2003; Millidge, 1988). 

Cribellate silk from the cribellate gland requires a large amount of energy expenditure to lay with the 

adhesive silk required to be combed out (Blackledge et al., 2009). It can take an araeomorph up to 

three hours to create a simple one layered web, whereas a similar web can take 30 minutes for an 

araoeidae.  

Linyphiidae, using silk from the ampulate gland can be laid down rapidly with less energy expenditure 

than would be required for cribellate silk which may suggest web renewal may be beneficial 

(Blackledge et al., 2009). However, T. tenuis does not tend to renew a web and if one is built at a less 

favourable site, it may lead to implications of hunger, inability to attract a mate or offer unsuitable 

protection (Benjamin & Zschokke, 2003; Segoli et al., 2004; Tanaka, 1989). Webs of Linyphiidae tend 

to have longevity, laid in flat sheets amongst vegetation. These webs can withstand basic disturbance, 

meaning if damage has occurred, rendering the web functionless, it is likely to be extensive which 

discourages web renewal (Römer & Scheibel, 2008; Segoli et al., 2004). Agricultural landscapes are 

areas of high disturbance predominately through the action of machinery, this behaviour of negating 

web renewal suits this dynamic environment. Harmer et al. (2011) and Zhang et al. (2016) discussed 

the energy output to spin silk to repair a web is an inefficient use of T. tenuis resources in habitats 

where disturbance is a common practice.   A T. tenuis is likely to remain under its web for several days 

until prey has been captured. The web is then abandoned and left to degenerate in the breakdown of 

silk proteins (Schmidt & Tscharntke 2005). T. tenuis has the ability to lay new silk to a web, if the web 

area is required to be enlarged to increase its functionality in prey capture or marking territory, which 

is seen as a conservation of the energy output needed to create a new web (Segoli et al., 2004).  

2.1.2.4. Egg Sac Development of T. tenuis and Linyphiidae 

Egg sac formations are unique to a spider family. Female T. tenuis lay small spherical eggs onto a pad 

of silk and then wrap two layers of silk around the eggs, enclosing at the top until a pear shape egg sac 

is created (Dondale, 2010). The eggs are held together by a liquid that quickly evaporates (Nentwig 

and Heimer, 1987). The internal surface is smooth (Humphreys, 1983). It has been shown that diet can 

affect the fecundity rate in number of eggs laid per sac of T. tenuis where continual exposure to 

Aphididae resulted in lowered fecundity (Bilde & Toft, 2008; Toft, 1995). This is due to low-nutritional 

value of Aphididae relating to a smaller bodied female after repeated consumption, which leads to 
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low energy availability to lay a large clutch (Alland & Yeargan, 2005; Madsen et al., 2004; Toft, 1995) 

(Section 2.1.1.1.). 

Egg sacs are spun by silk formed in the cylindrical gland (Rajkhowa et al., 2015). Cylindrical or 

tubuliform gland silk (‘wrapping silk’) has a composition higher in alanine and glycine which are amino 

acids accredited to providing toughness (Craig, 2003; Heidebrecht & Scheibel, 2013) (Figure 2.3e).  

Beta sheets are repetitions in the silk, which have a ‘grooved’ surface (Jiang et al., 2011; Lin et al., 

2009). The grooves are hydroponic and allow a textured, highly water-proof sac to be spun (Zhao et 

al., 2006; Zheng & Ling, 2018). Prior to egg laying, the cylindrical glands become extended ready to 

manufacture a large amount of this silk in a short space of time which results in an energy output 

equivalent to 70% of the female’s body weight (Peters & Koovor, 1991). A female of a greater prey 

consumption (exhibiting increased biological capacity) is likely to spin an egg sac of enhanced design, 

to aid protection of eggs laid within (Blackledge et al., 2009; Craig, 1986; Peters & Koovor, 1991).  

 

2.1.2.5. Oviposition of T. tenuis and Linyphiidae 

The oviposition of an egg sac is a key decision with the criteria of providing safety from predation and 

external elements and also allowing the correct light and humidity to be met for the eggs to hatch 

(Blackledge et al., 2011; Suter et al., 1987). The selection of egg sites are very different from where T. 

tenuis webs are sited for construction, where the webs main function is to capture prey the egg sacs 

are to be primarily protected against predators. T. tenuis exhibit off-web oviposition where they 

vacate the egg sac once creation is complete. Camouflage is a key factor in oviposition and T. tenuis 

egg sacs have been found low to the ground in field margins woven into the vegetation (Finch 2005). 

Gravity, moisture content from the air or substrate and the micro-habitat can affect egg incubation. 

Egg sacs of T. tenuis require high humidity and low light. Gravity aids the development of the ovum 

and the base of the sac is orientated with gravity. Egg sacs are spun at night to avoid predation and 

Figure 2.3e: Schematic diagram of secondary molecular structure of the cylindrical / tubuliform silk fibril (Adapted from 

writings of (Craig, (2003), Heidebrecht & Scheibel (2013) and Jiang et al. (2011)). 
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allow camouflage to be in place before daylight returns. The outer layer of the egg sac is waterproof 

to prevent additional moisture from entering the ovum, not to interfere with the unique level of 

variants required for successful incubation. This is key as egg sacs are often in heavily vegetated area 

that collect moisture. Propensity to oviposition is temperature dependant, low temperature may 

impede the development rate of the eggs (De Keer & Maelfait, 1988; Finch, 2005; Thorbek et al., 2003) 

(Section 2.1.1.1.). 

2.1.3. Social Phenotypes of T. tenuis 

2.1.3.1. Predation Behaviour of T. tenuis 

T. tenuis is a ‘sit and wait predator’ within the web. T. tenuis do not actively forage, rather waiting for 

food to come and enter the web (Benjamin et al., 2002). Predation effort can be determined by the T. 

tenuis commitment to web-building which can be measured by web size (Janetos, 1984; Segoli et al., 

2004; Toft & Lövei, 2002). It is viewed that the greater the web size, occupying more space in a habitat, 

can result in a greater number of prey being caught and an increased predation success. The size of T. 

tenuis abdomen was identified to be related to higher prey attainment, as shown by Segoli et al. 

(2004), where body condition (measured from residuals of abdomen depth against leg length) was 

significantly positively regressed with web area. It was shown that a T. tenuis of greater body condition 

can exert higher energetic output that T. tenuis can give to web construction. 

T. tenuis is a solitary species, only coming together to briefly mate (McCanny et al., 1996; Suter & 

Keiley, 1984). Searching for potential web-sites and web construction is carried out alone. Attractive 

web-sites, of higher aspect or near to a potential prey source, are in high demand. With the high 

abundance of T. tenuis and Linyphiidae that may reside in agricultural settings competition exists to 

acquire the most lucrative site in low arachnid predation and high prey nutritional content to construct 

a web (Benjamin et al., 2002). 

T. tenuis foraging activity has been shown to take place during the day and night though T. tenuis are 

most active during the early hours of the morning. Krol et al. (2018) suggested this was due to the 

larger families of spiders common in agriculture, Lycosidae (wolf spider) and the Philodromidae (crab 

spider) showing increased activity in the afternoon. Krol et al. (2018) proposed that the morning 

activity of T. tenuis enabled foraging and web-building to occur without the increased prey 

competition. Lycosidae and Philodromidae are a predatory risk to the Linyphiidae due to the smaller 

body size of the latter.   
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2.1.3.2. Competition of T. tenuis 

T. tenuis are territorial of their web and its defence is a key strategy.  T. tenuis hang centrally under 

their web obscuring themselves from view from potential prey above. T. tenuis and Linyphiidae exhibit 

both intra-specific and inter-specific competition. Intra-specific competition is a real threat, with 

cannibalism occurring for the retrieval of an attractive web-site (Wise 2006). Juvenile cannibalism is 

prevalent in T. tenuis and usually occurs after the hatching of eggs. Vanacker et al. (2004) identified 

that larger spiderlings will predate on smaller spiderlings for a protein source and to express 

dominance. Smaller, similar sized spiderlings in the 1st instar were shown to prey-share out of 

necessity, which suppresses cannibalistic tendencies. Heuts & Brunt (2002) found, through placing 

female and male T. tenuis in arenas 11 cm in depth, no adult cannibalism occurred between the same 

sex and different sex if web-sites could be constructed by both parties and no copulation was 

undertaken. This suggests that T. tenuis as adults were not inclined to non-sexual cannibalise if they 

were able to establish a territory.  

Thorbek at el. (2004) recognised that fecundity rates of T. tenuis can aid its survival by outcompeting 

other Linyphiidae for space. T. tenuis is noted to have a large clutch size but relatively low egg sac 

production rate. This is counteractive as it allows T. tenuis to ensure long reproductive periods. A long 

reproductive period means eggs are likely to hatch at a different time to other Linyphiidae clutches, 

so competition for prime web-sites may be low at the time of a clutch hatching (Thorbek at al., 2004). 

Harwood & Obrycki (2005) conducted an experiment to identify competition between several species 

of Linyphiidae and identified that Erigone autumnali and Meioneta unimaculata were able to cohabit 

due the micro-niches of each species being different. M. unimaculata construct webs higher within 

the vegetation and E. autumnali is confined to foraging activities in lower areas of the habitat due to 

its dwarf size. Harwood & Obrycki (2005) show Linyphiidae may reside in the same habitat if there 

appears no direct threat to potential web-sites.  

Energy flow within an ecosystem food web can aid in the identification of competition by establishing 

which species have increased organic stable isotopes within their mass (Zimmo et al., 2012). Stable 

isotope analysis has been used to understand the energy flow between T. tenuis and Collembola 

(springtails), in a limestone grassland in Germany. This method measures the organic isotopes within 

the body mass of a sample with a mass spectrometry measured on the delta scale, δ (Sanders & 

Platner, 2007; Zimmo et al., 2012). The stable isotope δ15N, Nitogen 15, was identified in higher 

quantities in T. tenuis than Collembola measured. This suggests T. tenuis has acquired more energy 

and the predation rate was higher than that of Collembola (Sanders & Platner, 2007). Linyphiidae can 

be identified as providers of ecosystem services; where natural processes conserve and regulate the 
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environment to the benefit of wildlife and humans (Honek et al., 2018; Lutman et al., 2013; Roberson 

et al., 2016). Birkhofer et al. (2018) discusses ecological intensification as an ecosystem service where 

Linyphiidae abundance is encouraged to intensify in an arable landscape to aid removal of crop-

damaging pests, thus forfeiting the need for pesticide use. 

2.1.3.3. Migratory Behaviour of T. tenuis 

T. tenuis migrate over a landscape in two distinctly different methods, ballooning and rappelling. In 

both ballooning and rappelling T. tenuis produces a long silk thread by stretching of the legs and raising 

of the abdomen. The difference in movement being rappelling anchors silk to a substrate and then 

exhibits forward movement until another substrate is reached where the thread is once again 

anchored. Ballooning does not require attachment of silk onto the substrate and instead swings on 

the spun thread. Bridge threads spun in rappelling are generally smaller in length than dragline threads 

for ballooning and due to attachment have low deterioration rate and can be identified after short 

dispersal has taken place (Blandenier 2014; Bonte, 2013; Thomas et al., 2003; Thorbek, 2003). 

Linyphiidae move locally via rappelling, the laying of a bridge thread which enables movement 

between adjacent materials. It allows rapid movements, for example between neighbouring crops 

without the need to move up and down the stem. Rappelling is observed as local movement to identify 

a nearby suitable web construction site. Bridge threads are similar in silk complex and production as 

support threads, though are separate from a web structure (Section 2.1.2.1.). Bridge threads for T. 

tenuis differ greatly in length depending on the local landscape heterogeneity and availability of web-

sites, lengths generally range from 10 mm to 200 mm.  Bridging propensity is a term referring to a 

tendency of a T. tenuis to spin a bridge thread and rappel (Bonte & Saastamoinen, 2013; Woolley et 

al., 2016). Rappelling behaviour of female Erigone atra, Linyphiidae, was affected by increased species 

abundance during their developmental stages. This highlights density information, collected by 

juveniles during development leads to increased short-distance dispersal (De Meester & Bonte, 2010). 

Bonte et al. (2008) identified the tendency to rappel in juvenile E. atra increased in warm humid 

temperatures, 20 oC to 25 oC and propensity in rappelling was lowest at 15 oC. 

T. tenuis ability to ‘balloon’ or aerial-disperse is another factor promoting its dominance in predation 

(Thomas et al., 2003; Welch et al., 2011). Ballooning is the action of a T. tenuis “throwing” a strong 

but flexible dragline support thread into the air and then swinging on this thread to a new location, so 

being able to travel further distances than cursorial, running, spiders (Bonte et al., 2002). Ballooning 

enables rapid re-colonisation of a habitat, which may be triggered by food shortages or habitat 

disturbance (Thompson et al., 1999). Ballooning has limitations in having a narrow meteorological 
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window with wind speed required to be less than 3 ms-1 and air temperature above 19 oC (Bonte et 

al., 2002; Pekár, 2014; Simonneau et al., 2016).  

After sampling the dispersal activities of spiders found in the farmland of Southern England, Woolley 

et al. (2016) identified spring dispersal was low for T. tenuis and peaked in autumn mainly indicated 

to be due to habitat disturbance. Low dispersal in spring communicated T. tenuis may identify 

adequate web-building locations in accelerated crop growth. Woolley et al. (2016) found that there 

was significant positive correlation between ground population and dispersal population of T. tenuis 

suggesting that ballooning is a function resulting from high population densities perhaps more 

problematic in times of disturbance (Bell et al., 2002). 

2.1.3.4. Courtship Behaviour of T. tenuis 

T. tenuis exhibit Sexual Size Dimorphism (SSD) which describes differences between male and female 

other than the genital organs (Bowden et al., 2013; Kuntner & Coddington, 2020). Linyphiidae and T. 

tenuis demonstrate extreme SSD in abdomens being larger in females (Figure 2.1.).  It is thought that 

SSD in T. tenuis has been driven by selection pressure with males’ preference of larger females due to 

increased fecundity, in clutch size, of a large abdomen (Shine, 1988). Recently, extreme SSD has been 

attributed to the ‘Gravity Hypothesis’ where small males select larger females due to a small male 

finding it easier to climb onto a larger female frame during copulation (Corcobado et al., 2010). In 

bridging propensity, a small body frame is favoured to facilitate the quick rapid movement rappelling 

requires. This may have driven the selection of a female to a small abdomen phenotype in males, 

where males are required to disperse more frequently than females to find a suitable mate 

(Corcobado et al., 2010). 

Male T. tenuis generally do not weave webs, their main goal being to locate a suitable female for 

mating. Males observed under webs without a female is often spinning a sperm web. When a male is 

ready to mate it will weave a web where sperm can be deposited onto the sheet threads in the centre 

of the web which is then collected by the front palps of the male. It is at this stage the male will 

abandon the web and search for a potential mate (Dondale 2000; Preston-Mafham & Preston-

Mafham, 1996). Female T. tenuis exert the greater biological control within agricultural landscape due 

to females spinning most sheet webs (Bowden et al., 2013). This can identify that female T. tenuis 

have a greater ability to predate, as male’s choice of web-site location may be due to the function of 

courtship more than inception of a stimuli of prey. De Meester & Bonte (2010) and Huang et al. (2018) 

explain females hunt for prey with increased activity than males, thus are a more attractive predator 

to crop pests.  
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The male can receive an airborne sex pheromone (R)‐3‐hydroxybutyric acid (HBA) that is emitted by a 

female T. tenuis when ready to copulate (Gaskett, 2007; Maklakov et al., 2003). T. tenuis males select 

virgin over fecund females, as the virgin provides the male the opportunity to dominate the transferral 

of genetic material. If such a virgin is unavailable, another mate is required or the male risks losing the 

genetic transferral of active sperm (Preston-Mafham & Preston-Mafham, 1996; Volltrath, 1986).  

As most female T. tenuis spend most of their adult life occupying a web the male uses several tactics 

to receive the female’s attention using the web (Preston-Mafham & Preston-Mafham, 1996; Rundus 

et al., 2011). The male performance on web arrival may result in pre-copulation cannibalism by the 

female. The threat of pre-copulation cannibalism to the male can be seen as a form of natural selection 

where a male’s genetic material may not be transferred to a specific female due to the threat being 

too great (Vanacker et al., 2004). Females select males on several traits, which can be demonstrated 

with web arrival of the male. Heritable fitness benefits in longevity and fecundity are attractive to the 

female and can be shown by manipulating the female’s web. Male’s exhibit longevity in vibrating the 

web at high rates, this action being costly in energy identifies a high level of fitness in the male  

(Preston-Mafham & Preston-Mafham, 1996; Thorbek et al., 2004). Pekár (2014) and Rundus et al. 

(2011) discussed male T. tenuis may exhibit superior traits by ascending structures to display flexibility 

and cognition. This behaviour can alter male T. tenuis location and thus web-spinning to the vicinity 

of potential prey within an agricultural setting (Boisseau et al., 2017; Gómez et al., 2016; Řezáč & 

Řezáčová, 2019).  

Threat of competition in T. tenuis is the main contributor to the courting times. Courting in larger 

males can be as long as 200 minutes with a slow and laborious approach guarding the chosen female. 

Smaller males are quicker to copulate with courtship lasting 50 - 80 minutes and produce a scramble 

approach to copulate before a large, more attractive male may approach. Due to selective pressure in 

pre-copulation cannibalism more female T. tenuis are often within a habitat than males (Dondale, 

2000; Mafham & Preston-Mafham, 1996, Vanacker et al., 2004). This can be of benefit to increased 

predatory behaviour as females generally require a greater protein in-take due to their enhanced 

propensity to web-build (Bonte et al., 2008; De Meester & Bonte, 2010). Copulation timing is an 

important consideration to predation pressure T. tenuis can exert, due to time taken away from 

responding to stimuli of potential crop pests. Prey falling into a web may not be discovered by T. tenuis 

copulating, vibrations in the web from prey insertion may be distorted (Eberhard, 2019; Rodríguez & 

Gloudeman, 2011; Vibert, 2016).  Moreover, copulation leaves T. tenuis vulnerable to predation, thus, 

rapidity can assist pest suppression in a highly changeable environment such as a working arable field 

(Herberstein et al., 2014; Keil & Watson, 2010).  
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2.1.3.5. Sensitivity of T. tenuis to Disturbance 

T. tenuis can adapt quickly to disturbance and therefore monopolises the creation of webs at 

beneficial web-sites before another arachnid. T. tenuis pioneers a recently disturbed landscape due 

to its life strategy. T. tenuis may have two annual generations where reproduction occurs in staggered 

periods (Downie et al, 2000; Topping & Lövei, 1997). The aeronaut ability of T. tenuis is often cited as 

one of the reasons for rapid dispersal as ballooning allows 2 km distance in travel (Downie et al, 2000). 

The wide array of habitats that T. tenuis can colonise may ensure a population can survive in a 

neighbouring habitat while their previous occupied landscape is being disturbed.  

Simonneau et al. (2016) and Thorbek et al. (2004) described female T. tenuis behaviour of ‘bet 

hedging’ of egg sac location being induced from threat of disturbance. This is where egg sac placement 

is dispersed through large areas of space to limit damage from localised disturbance and improve 

survival chances of the clutch. T. tenuis large clutch size in Linyphiidae is seen as a strategy to ensure 

a future generation even if the egg sac is disturbed or predated upon. This future generation if 

successful, offers a continuation of possible prey capture, thus implement biological control.  

In an experiment where Linyphiidae abundance and small-scale spatial arrangements of webs was 

analysed before and after the cutting of alfalfa, it was noted that overall density decreased after 

cutting, though the spatial distribution of webs remained the same (Birkhofer et al., 2007). Linyphiidae 

webs were noted to be in closer approximation, less than 20 cm, immediately before and after cutting. 

This highlighted that Linyphiddae were most active within this period, suggesting a race to acquire 

small beneficial habitats of debris created after cutting (Birkhofer et al., 2007).  

From a study analysing the abundance of spider species in a sheep pasture in Canterbury, New 

Zealand, and its surrounding margin, it was observed that T. tenuis adults and juveniles were found in 

the highest abundance 50 m away from the field margin into the sheep pasture (Mclachlan & Wratten, 

2003). This shows the pioneer approach of T. tenuis and suggested the ballooning nature of T. tenuis 

reduces the field size effect allowing further migration from a margin into a disturbed field (Mclachlan 

& Wratten, 2003).  Clark et al. (2004), commenting on spider abundance in four monthly intervals 

after a pasture was cultivated, indicated that even though T. tenuis was present in each sampling 

period after cultivation its abundance was significantly lower in months one, two and three only 

reaching abundance equal to before cultivation in month four. This was discussed to contribute to the 

cyclic grazing by cattle that is carried out in the pasture, preventing T. tenuis from taking the 

stronghold (Mclachlan & Wratten, 2003). Furthermore, T. tenuis abundance was surprisingly not 

correlated to weed percentage. Unwanted plants (weeds) are small-scale micro-habitats that aid web 

construction. It can be identified from this experiment that T. tenuis does have limits in colonising 
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disturbed habitats, viewed in both papers as a high aeronaut spider density overall having diluted T. 

tenuis pioneering capability (Clark et al., 2004; Mclachlan & Wratten, 2003). 

2.2. British Arable Agricultural Systems 

2.2.1. British Grown Cereal Crops 

Cereal crops have been grown in British soils since prehistory to provide food. Today the cereals grown 

are the same with only the varieties differing due to increased technology, allowing varieties to be 

resistant to disease and favouring certain phenotypes like crop height for increased yields (Townsend 

et al., 2016). Triticum (wheat) and Hordeum (barley) are the main cereals that are grown in the UK, 

followed by Avena (oats). Triticum varieties are grown for differing reasons, to be milled into bread 

flour or dried for animal feed. Similarly, depending if the Hordeum harvested is to be malted for beer 

production or be milled into flour, different varieties of Hordeum are grown (NABIM, 2018). The 

growth stages (GS) of the plant are definite periods where the physiology of the plant changes, for 

example, GS 11 is where the first leaf unfolds on the H. vulgare plant, to five leaves unfolding in GS 

15. GS 83 relates to the dough development, which is the ripening of the kernel and GS 87 identifies 

the hard dough stage, fully ripened (AHDB, 2015; McFarland, 2014). 

There are two sowing periods within a year, spring and winter. The spring and winter varieties differ 

in the germination requirements and tolerance to temperatures. As of 2016, spring and winter crops 

are defined by their drilling date (FarmPlan, 2016). A crop drilled before 1st February is a winter crop 

whereas a variety drilled on or after 1st February it is a spring crop. Seed varieties grown in the UK 

must be on a National List where the grain has been certified to be implemented into the UK market 

(NABIM, 2018). The most important factor in winter cropping is seen as the sowing date. Early sowing 

of Triticum aestivum (Winter Wheat) can increase yields, however, increase risk of slug damage 

(DEFRA, 2011). In spring cropping, it is the condition of the seedbed, generally this is required to be 

firm and dry (DEFRA, 2011).  

There are advantages and disadvantages to both crop varieties. Hordeum vulgare (Spring Barley) has 

lower yields than winter Hordeum, however, is fast growing and input requirements are less (Reuss, 

2003). The main cultivation difference between spring and winter crops is weed management. 

Alopecurus myosuroides (Black-grass) is primarily a concern in T. aestivum and within H. vulgare broad 

leaved weeds, i.e. Stelleria media (Chickweed) and Ranunculus repens (Creeping Buttercup) may 

appear. Spring crops allow persistent herbicide-resistant weeds, for example A. myosuroides, to be 

tackled by allowing the first flush to emerge and dealt with without harming the later drilled spring 

crop. Spring crops are beneficial as their fast turn-over reduces workload and labour costs on the farm. 
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Fallow fields over winter are considered bio-conservative providing a food source and a refuge area 

for wildlife (ADAS, 2007; DEFRA, 2011). Řezáč & Řezáčová (2019), Welch et al. (2013) and Wiśniewski 

et al. (2018) explained spring cropping, drilled later than winter, fits the T. tenuis predator response 

due to a generation stage of T. tenuis as mature adults when the crop is drilled. Thus, adults having 

the ability to reach a multitude of web-site locations through greater propensity to balloon and weave 

webs of beneficial orientation (Bonte et al., 2008; Dinter, 2004; Řezáč & Řezáčová et al., 2019).  

Winter crops may prevent soil erosion and nutrient leaching with the large elongated root system 

anchoring into the soil. Bare soil can be vulnerable to the extreme weather conditions of winter where 

erosion and run-off can cause considerable damage to the higher profiles of the soil (Western Winter 

Wheat Initiative, 2013). Winter cropping can manage annual pests that dwell in the soil as larval form, 

for example Sitodiplosis mosellana (Orange Blossom Wheat Midge), with tillage disrupting their 

hibernation cycle (AHDB, 2018). Winter and spring crops differ in response to the vernalisation 

process, where seeds are introduced to a period of low temperatures ranging from 0 oC - 12 oC during 

the germination phase, which promotes earlier anthesis, (flowering) (AHDB, 2018; DEFRA, 2011). 

Winter varieties respond strongly to this process whilst spring crops show little response. Vernalisation 

is a costly process and gains in yield are required to support the use of this technique (AHDB, 2018). 

Winter crops are now the most favourable cereal crop due to the economic return that winter yields 

can gain. Spring crop prices fluctuate on the global market due to their short growth season causing 

uncertainty in final yield, and therefore are less attractive from a business perspective (AHDB, 2018; 

Davies & Finney, 2002). Spring crops are generally harvested later than winter crops which may be an 

economic burden as expensive cultivation equipment, if hired, may be utilised at different times 

(AHDB, 2018; Godwin, 2014). 

The cropping of both winter and spring cereals on a UK arable farm in a structured rotation allows the 

advantages of both to be utilised, a T. aestivum crop in one field may ensure economic stability for 

the farm while another field left fallow ready for a spring crop may reduce the weed density once the 

crop is drilled (AHDB, 2018; ADAS, 2007). 

2.2.2. Soil Properties in British Arable Agriculture 

Soil is the most important factor in arable agriculture providing the growth medium for the cereals 

planted. The health of the soil is required to be continually monitored to ensure it is optimal to provide 

the best yields. Soil health is defined as its capacity to function as a living system (Bommarco et al., 

2013; Sagoo, 2018). This can be measured in many differing aspects from enhancing water quality, 

sustaining plant productivity while supporting a varied community of soil organisms. Growing cereals 
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seems to be a small part of the role of soil, however, it is essential in allowing economic sustainability 

and food availability (Ashmin & Puri, 2002; DEFRA, 2018; Sagoo, 2018). 

Many soil types are found throughout the British Isles, each having a unique set of physico-chemical 

properties that contribute as a growth medium. Most cereals are grown in East Anglia, South East and 

the East Midlands in the UK (DEFRA, 2010; 2017; NABIM, 2018). Generally, the summers are warm in 

these regions with low lying land and a highly fertile soil combine to produce cereals of viable yields. 

The main soil types of these regions, Hanslop, Salop and Evermore, are a loamy clay where the highest 

mineral content of the soil is clay (Cranfield University, 2017). They are described as generally being 

seasonally wet with slow permeability due to the silicate sheets of clay particles having a high surface 

area adhering to water particles (Ashman & Puri, 2002). Clay rich soils reduce nutrients from being 

leached as the micelles (negatively charged silicate crystals), act as a large anion and attract cations, 

Ammonium (NH4
+), Potassium (K+) and Calcium (Ca+) (Paul, 2015). The high Cation Exchange Capacity 

(CEC) of clay soils, the rate of binding cations, reduces soil pH (Ashman & Puri, 2002). Acidic soil 

disrupts a crops ability to uptake certain nutrients causing tissue necrosis and delayed growth (Knight 

et al., 2012). Through these factors a soil containing a high percentage of clay is seen as being fertile 

(Ashman & Puri, 2002; Paul, 2015). Difference in soil physico-chemical make-up of a soil can affect 

plant diversity and population, for example high field capacity of clay soil allows some moisture 

availability in times of drought (Badalı´kova, 2010). Vegetation complexity and plant physiognomy can 

affect a T. tenuis ability to weave, thus noting parameters of soil health can aid inclusion of a T. tenuis 

population (Campbell et al., 2020; Lyons et al., 2018; Paul, 2015).  

2.2.3. Soil Tillage Methods in British Arable Agriculture 

Tillage is an agricultural term and describes action that is given to a soil. Tillage is standard practice to 

ensure a seedbed is optimised for the growth of a crop by controlling weeds and turning of the soil, 

allowing buried nutrients to be transferred to higher profiles and more accessible by roots (Morris et 

al., 2007; Sharley et al., 2008). 

Conventional tillage (inversion tillage) is a term that refers to the traditional methods of preparing soil. 

It involves primary and secondary cultivations that commences before the seed is drilled. The primary 

cultivation involves the use of a mould board plough which has been used since the 18th century and 

greatly reduced the time it takes to prepare a seedbed. The plough consists of a coulter (sieth) which 

cuts vertically usually 300 mm deep into the topsoil, and a shear that cuts horizontal (Jones, 2008). 

The clods, soil aggregates, are then inverted with a curved elongated disc, the mould board. The 

resulting gap that follows the plough is called the furrow and this is where the seed is inserted. There 

is a period of on average a month for winter crops before seed is drilled to allow soil to ‘rest’, increase 
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in nutrient availability. One of the principals behind this technique is to quickly release nutrients that 

may be locked in the soil and bring them to the surface where they can be utilised by the seed once 

germination begins (Morris et al., 2007). 

Secondary cultivation completes the creation of the seedbed by breaking up the clods that have been 

formed from the previous plough, creating a finer soil structure that will allow increased aeration, 

germinating plants roots are able to spread and access nutrients more easily. In a conventional 

approach, secondary cultivation is usually carried out by finishing discs. In the UK, the majority of 

seedbeds are moulded using a disc harrow. The finishing disc diameter here usually ranges from 590 

mm - 610 mm depending the heavy duty of the machinery (Bullock Tillage, 2014; Morris et al., 2007; 

SARE, 2012). After which remains a homogenous landscape, with little landscape material to uphold a 

population of ground dwelling arthropods, such as Linyphiidae.  

The seed is sown after the cultivations with a seed drill, whose purpose is to insert the seed directly 

into the soil, each being sown at a depth of approximately 350 mm at a specified distance apart for 

cereal crops. The seed drills are often pneumatic and the lightest piece of machinery in the cultivations 

(Kverneland, 2018). The seed comes from a hopper where the seed is easily transferred to shoots to 

be inserted. The soil over the seed is reconsolidated after seed insertion by a roller, that is the last 

pass, this ensures the seed has adequate soil coverage for successful germination (Väderstad, 2017). 

Conservation non-inversional tillage systems, where soil disturbance is reduced by not being inverted, 

are now increasingly applied to farming systems in the UK (CTIC, 2002; Godwin 2014, Lafage et al., 

2015; Morris et al., 2007; Morris et al., 2010). Direct drilling is one method of non-inversional tillage 

and involves seed insertion directly into the soil with limited soil disturbance (CTIC, 2002; Morris et 

al., 2007). Different levels of non-inversion tillage, deep to zero are implemented now in UK arable 

farming systems (Kertész & Madarász, 2014; Townsend et al., 2016) (Figure 2.4a & b). 

In modern agriculture, soil tillage can be measured by the percentage of crop residue that is left on 

the surface (SARE, 2012). With research into sustainable agriculture, agriculture than conserves 

resources to allow continued food production, there are different soil tillage methods coming into 

effect which sit between conventional and conservation in the level of residue that remains on the 

surface. The use of a sub-soiler for primary cultivation instead of the mould board plough is beneficial 

for soil health as being of lighter weight and uses points, legs and tines (sharp point attached to the 

legs), instead of the sieth and mould board meaning soil is not inverted (Figure 2.4a). The point carries 

out most of the loosening and passes through first and can be winged to maximise the tillage. The legs 

can be different widths and curved or straight depending on the level of cultivation required, curved 

legs loosening soil further than straight, lifting the structure slightly. Discs can be applied to the tines 
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and have a diameter of approximately 510 mm. The sub-soiler is ideal to aide soils that are prone to 

compaction due to reduced clods being formed because of the machines lighter frame (Bullock 

Training, 2014; He-Va, 2018; Weill, 2015).  

 

 

 

 

 

 

 

 

 

2.2.4. Advantages and Disadvantage of Different Soil Tillage Methods 

A key advantage to the use of a conventional tillage system over conservation is the crop yields that 

are reported to be greater in the former with an economical benefit to the farmer and British 

agriculture. In a report by the Farming Association the yield of winter Hordeum was 0.65 tha-1 (+9.6%) 

higher in cultivation of always plough compared to non-plough. Similarly, winter oilseed rape’s yield 

was increased by 0.15 tha-1 (+3.9%) with plough (Townsend et al., 2016). Between the years of 2009 

and 2011, Brennan et al. (2014), reported a significantly higher yield in T. aestivum in conventional 

tillage than reduced tillage in Central Ireland. Vakali et al. (2011) found the use of the plough gave 

significant higher yields, 73%, in organic Hordeum grown in a clay loam in the years five to seven of a 

long term experiment in South-West Germany which was partly attributed to the higher rate of 

nitrogen fertiliser uptake (Brennan et al., 2014). However, higher yields my not directly relate to 

increased profitability due to the outlay cost it may take to ensure the growing medium of the land is 

fit for purpose (in nutritional availability and soil structure) (Arvidsson et al., 2014; Edgerton, 2009; 

Forristal & Murphy, 2010). 

Inversion tillage has been shown to remove pests to a higher degree than other tillage systems by 

destroying their habitat and exposing pests to predation. Voles are common herbivores in temperate 

regions, causing damage to cereals due to extensive feeding (Brown et al., 2007). In the Czech 

a b 

Figure 2.4a & b: After secondary cultivation on two fields on the same arable farm in Cambridgeshire.      

a = Conventional tillage with a sub-soiler and disc harrow. b = Conservational zero-tillage. 
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Republic, significantly greater vole activity in burrowing was identified in spring of cereal crops in areas 

under zero-tillage management (Heroldová et al., 2017). The inversion action of the plough has been 

identified to bury cocoons of midges that cause crop damage further into the soil disrupting their life 

cycle (Section 2.2.1.). Chen & Shelton (2009) found that common European arable pest Contarinia 

nasturtii (Swede Midge) was unable to pupate at soil depths greater than 5 cm. In a trial on oilseed 

rape in Germany, Dasineura brassicae (Brassica Pod Midge) reproduction and infestation rates 

increased in plots where less intense soil tillage of harrowing and addition of mulch occurred 

compared to the ploughed plots. Decreased aeration and the addition of organic material allowed the 

soil to remain at an optimal temperature for hatching (Buechs & Katzur, 2004). 

Weeds have been reported as less prevalent under conventional than conservational tillage. Lutman 

et al. (2013) investigated soil tillage methods on the control of A. myosuroides in twenty-five 

experiments across the UK. Meta-analysis of the experiments showed a 67% reduction in A. 

myosuroides density m-2 in Conventional compared to non-inversion tillage. Removal of weeds is also 

beneficial in controlling Aphididae, as weeds and volunteer crops, crops that germinate from seeds 

dropped in harvest, can produce ‘green bridges’ to allow a colony to prevail until cereal crop is 

established (Ball & Bingham, 2003; Milner, 2002). 

The disadvantages to conventional tillage are well documented and include factors such as the 

deterioration of soil health in nutritional content and aeration and the decrease in density of beneficial 

predators. Aeration is reduced in soil with the bulk density often being increased initiating 

compaction, this is more from the heavy machinery passing over the soil rather than the inversion of 

the soil (Badalı´kova, 2010; Lui et al., 2013a). This is a ‘plough pan’ and is generally of 2 - 3 cm in 

thickness, identified at a depth of >20 - <35 cm in the soil (Knight et al., 2012 Peigné et al., 2007). A 

soil with increased bulk density will likely impede root growth in its structure of limited air pores. 

Vakali et al. (2011) identified that root penetration (mPa) for Hordeum was significantly higher, 30% 

higher, at the soil depth of 25 - 50 cm with reduced tillage than for mould board plough.  

Soil nutrients are seen to be poor in continually inverted soils due to the evaporation of the key 

nitrogen into the atmosphere due to exposure of the B profile of the soil as it comes into contact with 

rain water (Morris et al., 2007). Conventional inversion tillage causes much disturbance to the habitat; 

by reduction of ground litter, development of a poor soil structure which decreases water draining 

capabilities and affects soil inhabitants through the direct action of the plough (Holland & Reynolds, 

2003; Morris et al., 2007).  
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Conservational tillage, leaving a higher percentage of crop residue on the surface and less intensive 

management, leads to a higher percentage of organic matter being present after cultivation. Essential 

nutrients are prevented from leaching by being locked in. Reduced tillage significantly increased the 

essential plants nutrients P, K and Ca content within a silt loam from an arable farm in west Tennessee 

(Mbuthia et al., 2015). Shrestha et al. (2015) used Nuclear Magnetic Resonance (NMR) Spectroscopy 

to identify the levels of Soil Organic Carbon (SOC) and Soil Organic Nitrogen (SON) within different 

tilled soils, conventional and non-till. Soil samples were a clay loam acquired from a 6-year cereal crop 

rotation experiment in Norway. A significant difference was identified between the content of SOC 

and SON of each soil at a depth of 0 cm to 10 cm. Both compounds were found in higher quantities in 

the non-till soil (Shrestha et al., 2015). At the further depth interval of 10 - 30 cm no significance 

between kg of SOC and SON were identified, supporting tillage only effecting the top A - profile of soil.  

Disadvantages with conservation tillage are that improved soil health and increased microbial activity 

takes several seasons to be of significance to crop health and subsequent yields, time and patience is 

required which is not an option if revenue is required annually. In arable farms, around 40% of upfront 

costs goes to machinery (Morris et al., 2010). A direct drill is considerably more expensive to purchase 

than a plough and sub-soiler. It is apparent that because of the above factors conservational till tends 

to be in operation on larger farms in England. Out of 3% of farms participating in the Farm Business 

Survey 2010, 69% of large farms within the study incorporated some form of reduced tillage within 

their cultivations, whereas only 22% of small farms used reduced till (Townsend et al., 2016).  

Increased herbicide use is a problem that has been identified with non-inversion tillage, without the 

action of a plough weeds are left in the soil to flourish. In a review of thirty T. aestivum and Helianthus 

(sunflower) farms in Southern Spain, 34% of the cereal farms reported issues with weeds, the most 

significant issue that was presented. Subsequent problems arising from poor weed management was 

resistance from herbicides, because of increased use and the cost of the herbicide required (Carmona 

et al., 2015). 

The increased moisture within conservation soils, due to the aeration and improved capillary action 

of the soil, can lead to higher instances of fungal disease being prevalent. Váňová et al. (2011) 

discussed the significantly higher level of mycotoxin deoxynivalenol (DON), toxin produced from 

Fusarium affecting the ears of Triticum, was identified in the T. aestivum of conservational tillage than 

conventional tillage annually (2005 - 2008) in Prague, Czech Republic.  

Conservation tillage is not suitable for every soil type. Soils with a high sand and silt content have a 

weaker structure due to small particles equalling soil with larger pores (Alhammadi & Al-Shrouf, 2013). 

The texture is usually a crumb with little adhesion without the moisture-attracting ability of clay 
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(Ashman & Puri, 2002; USDA, 1988). A small proportion of clay in soil allows expansion and shrinkage 

through times of heavy rain and drought which can disturb a structure like a seedbed. Direct drill 

requires a well-formed seedbed to allow a seed to have the correct conditions for germination, 

without the use of additional tillage methods (Morris et al., 2010; Peigné et al., 2007). 

Differing tillage intensities have shown throughout recent research to manipulate Linyphiidae 

abundance and activity. Methods of tillage can be seen to affect the biological control potential of 

Linyphiidae. To enhance T. tenuis capacity for biological control, surrounding ecosystem elements are 

required, for example plant litter, which may increase prey conversion efficiency and fecundity 

(Alignier et al., 2014; Horváth et al., 2015; Thorbek et al., 2004). Reducing ground litter can affect 

Linyphiidae presence. Wagner et al. (2003) recognised a higher number of Linyphiidae within deeper 

litter levels in a forest. Increased litter levels and enclosed structure are identified in non-inversion 

tillage, where previous crop stubble is not incorporated into the soil and offers an area to over-winter 

which is beneficial for the protection of egg sacs to secure a large population in the next generation 

(Holland & Oakley, 2007; Morris et al., 2010; Öberg et al, 2008).  

When analysing spider abundance on a T. aestivum crop and on stubble of the previous crop of a 

drilled field in Argentina, Armendano & González (2011) identified that 21.35% of spiders in the 

stubble were Linyphiidae. This was against 9.05% of spiders being Linyphiidae in the T. aestivum crop. 

The difference of 12.3% Linyphiidae population demonstrates that Linyphiidae are inclined to inhabit 

the stubble when both stubble and crop are available. A study in the Loire Valley, examining landscape 

factors that cause variations of species richness of Linyphiidae, found species richness decreased with 

increased moisture due to intensive soil management (Lafage et al., 2015).  

In an experiment that investigated the occurrence of the Barley Yellow Dwarf Virus (BYDV) in 

Hordeum, with the implementation of minimal tillage and conventional tillage, it was found that within 

minimum tillage 48% fewer Aphididae were identified within the sample crop and this related to 78% 

less BYDV instances observed than with the conventional plough. This had the economic benefit of 

the yield harvested from the minimum till area being 1.24 th-1 greater than conventional till. The 

addition of straw to separate minimal till and conventional plots was compared to the original plots 

of no straw. There was a significant difference in Aphididae and BYDV occurrence between the 

conventional no straw and straw, no straw held the greater occurrence. Within minimal tillage, the 

addition of the straw observed a further 68% less Aphididae than the minimal tillage alone (Kennedy 

& Connery 2005; Kennedy et al., 2010).   Discussed is the potential of straw to support an increased 

number of natural enemies. Scattered T. aestivum straw mulches have been identified to reduce 

instances of aphid-borne virus in a zucchini squash plant in California (Summers et al., 2004). The T. 
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asetivum straw is shown to deter alate, winged, Aphididae morphs from colonising a crop by 

disturbing their landing potential with key sites partially covered with the mulch (Summers et al., 

2004). 

2.2.5. Popularity of Soil Tillage Methods in British Arable Agriculture 

In recent years, development has moved towards agro-ecology through adapting non-inversion tillage 

in agriculture (Ball & Bingham, 2003). In 2010, 6,000 ha of UK arable land used direct drill as its tillage 

system (Goodwin, 2014).  This equates to 32% of arable land established with conservation tillage, 

with 46% of farms using methods other than the mould board plough (Townsend et al., 2016).  

Communications with Mr. Martin Jenkins of Martin Jenkins Farming Ltd in Childerley, Cambridgeshire, 

commented that by using a sub-soiler rather than a plough, more organic material is left on the surface 

which has benefited soil health in the increased content of micro-nutrients. Ingram (2010) studied 

farmers who had adopted reduced tillage practices and recognised that the reasons were to improve 

soil for improved future yields and to allow large areas to be cultivated rapidly. An increased number 

of invertebrates, e.g. Arachnids and Coleoptera; Carabidae, were identified on soil with reduced till 

than conventional till by Soane et al. (2012) who reviewed UK involvement in reduced till farming.   

Further case studies undertaken by Goodwin (2014) on a variety and size of farms across the UK, 

where the owners have adapted the direct drill till approach, provide an insight into how 

conservational tillage is working in practicing farms. A 440 ha farm in Yorkshire adapted to non-till for 

financial reasons and to improve the soil health of the farm. In two years of application, the farm’s 

labour and fuel costs reduced, and earthworm activity increased. Disadvantages were expressed as an 

increase in slug damage especially in Brassica napus (Oil Seed Rape) and compaction of the heavy clay 

soil without the inversion action of the plough. In Oxfordshire, a 404 ha farm with silt / clay loam has 

been practicing direct drill tillage for six years. The major advantages were shown to be matched to 

the case study in Yorkshire in cost saving benefits and improved soil structure which enables the soil 

to recover quicker after extreme weather events. The farm has experienced 20% less seed emergence 

in the direct drill approach with lower yields. Another disadvantage was expressed as direct drill 

manufacturers becoming complacent in the machinery as equipment is slow to adapt and improve to 

better suit a farm’s needs (Goodwin, 2014). 
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2.2.6. Crop Pests in British Arable Agriculture - Aphididae and Sitodiplosis mosellana 

2.2.6.1. Biology and Ecology of Cereal Aphididae 

Rhopalosiphum padi (Bird Cherry Oat Aphid) (Linnaeus, 1758), Sitobion avenae (English Grain Aphid) 

(Fabricius, 1775) and Metopolophium dirhodum (Rose Grain Aphid) (Walker, 1849) are classed as 

cereal Aphididae, true aphids, and reside on cereal crops within spring and summer months (Buriro et 

al., 2006). S. avenae, R. padi and M. dirhodum are polyphagous species, feeding on different plant 

materials through a generation (Gullan & Cranston, 2010). During summer months each Aphididae 

colonises cereal crops (Triticum, Hordeum, Avena) taking advantage of the high monosaccharide 

content of the phloem in the upper parts of the tiller and subsequent leaves (Price et al., 2011).   

Temperature is the key variable that regulates the numbers of Aphididae with fecundity increasing 

with temperature, though each Aphididae will have an optimum temperature where fecundity 

decreases once overcome. R. padi, S. avenae and M. dirhodum reproduce in two ways in temperate 

regions (Lombaert et al., 2006). Parthenogenesis (asexually), which occurs usually in warmer 

temperatures where the high availability of food in cereal crops allows a large colony to be supported. 

Young (nymphs) are born live being sexless and capable of producing offspring once maturity is 

reached usually within seven days (Mehrparvar et al., 2013; Price et al, 2011). As temperatures and 

food availability drops to a limiting resource, R. padi, S. avenae and M. dirhodum are able to reproduce 

a female which is capable of laying eggs usually at the base of the over-wintering host plant, Rosea 

(rose) for R. padi and M. dirhodum and Poaceae (grass) for S. avenae. Eggs, able to survive through 

winter, are small and difficult to identify (Goggin, 2007; Lombaert et al., 2006). 

As with Linyphiidae, Aphididae undergo ecdysis to develop.  R. padi, S. avenae and M. dirhodum have 

four instars equalling four ecdysis stages to reach adult maturity. R. padi, S. avenae and M. dirhodum 

nymphs being polyphagous may produce alate morphs, offspring capability of producing wings, to 

allow for extended migration (Goggin, 2007; Jeffs & Leather, 2014). Alate morphs are produced 

instead of apterous (wingless) morphs, in a response to a set of stimuli. The key stimulus being over-

crowding where food availability is identified as a limiting factor, other factors include temperature 

and daylight hours, though each above Aphididae has a different threshold to environmental 

conditions controlling the reproduction of alate morphs (Mehrparvar et al., 2013; Price et al., 2011). 

Some species of Aphididae alternate between polyphonic (environmental) and polymorphic (genetic) 

control of wing morph which enables numerous factors to promote wing growth (Goggin, 2007). 
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Alate morphs are physiologically different to apterous morphs, due to their main role being to colonise 

a new host plant, instead of reproduction. Alate morphs have longer antenna, longer legs and well-

developed sensory organs to allow the correct host to be found in nutritious availability and longevity. 

For example, in S. avenae, the colour of the host plant is thought to be key, where green identifies a 

high nutritional content and where yellow leaves often mean new shoots or senescing leaves (Jeffs & 

Leather, 2014; Mehrparvar et al., 2013; Parker & Brisson, 2019).  

Yu (2019) notes, apterous morphs have low energy availability to translocate large distance, the 

tendency to ascend and descend adjacent plants in a community. Reynold & Reynolds (2009) discuss 

within an early growth stage of a cereal, wing polyphenism (a different phenotype; alate morph, 

produced from the identical genotype) may have occurred due to stimuli of plant growth accelerating 

parthenogenesis rate, however, Parry (2013) explains winged dispersal of cereal Aphididae is regularly 

short (20 m) and sporadic, the priority to locate plants of low Aphididae density. 

Cereal Aphididae ensure survival by living in large colonises as clones, produced from 

parthenogenesis, often observed only implementing localised migration to nearby plants. One 

advantage of this is an Aphididae may produce a warning pheromone if threatened that alerts the rest 

of the clones of the threat, promoting Aphididae to stop feeding and drop from the plant (Goggin, 

2007; Lombaert et al., 2006; Price et al., 2011). Another advantage to communal living is metabolic 

sinks that are created within the host plant by excessive direct feeding by many Aphididae. A positive 

feedback loop is created where Aphididae feeding promotes the assimilation of monosaccharides to 

the feeding site of the phloem (Price et al., 2011). 

R. padi, adults are 2 - 3 mm in body length, oval with a short caunda (tail) which is red at the base 

(Figure 2.5.). The colour of dark green to a burnt red, with darker red patches to the rear segments 

(seventh to eighth) of the abdomen makes R. padi easily identifiable on a cereal leaf (Figure 2.5). 

Siphunculi, dorsal tubes which emit pheromones, are short on R. padi. Alate morphs abdomens are 

principally dark green in colour and have black wings (Bayer 2013; Campos & García-Marí, 2014; Price 

et al., 2011) (Figure 2.5). 
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M. dirhodum are less easily identified on a crop due to their colour being a light green, even 

translucent, shade (Figure 2.6.). Cauda are the same translucent green and longer than R. padi. They 

are positively identified by a dark green strip on the dorsal aspect down all segments of the abdomen 

(Figure 2.6). Siphunculi are long and dark. Alate morphs are the same light green but the dark green 

strip is absent, wings are a light grey colour (Bayer 2013; Campos & García-Marí, 2014; Price et al., 

2011) (Figure 2.6).  

Figure 2.6a -c: a = M. dirohodm adults & nymphs in glasshouse trials. b = M. dirohodum adult & nymph apterous morph 

(InfluentionalPoints, 2018). c = M. dirhodum adult alate morph & nymphs apterous morph (InfluentionalPoints, 2018). 

Figure 2.5a -c: a = R. padi nymphs in NIAB field trial. b = R. padi adult apterous morph (InfluentionalPoints, 2018). 

c = R. padi adult alate morph (InfluentionalPoints, 2018). 

A B 
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S. avenae in western and central Europe exhibits the trait of colour polymorphism. S. avenae abdomen 

ranges from pale green to reddish orange to a dark brown in colour (Figure 2.7). Colour morphs are a 

response to changes in environmental factors for example light intensity and temperatures, colour 

may be further induced by a genetic predisposition (Alkhedir, et al., 2010). Colour morphs arise due 

to the different levels of carotenoid pigments that are present within the cells (Alkhedir et al., 2010; 

Price et al., 2011). Cauda is the same shade as abdomen and siphunculi, as in M. dirhodum, are long 

and black (Bayer 2013; Campos & García-Marí, 2014; Price et al., 2011) (Figure 2.7.). 

 

2.2.6.2. Cereal Aphididae as a Crop Pest 

R. padi, S. avenae and M. dirhodum insert their stylets, mouthpieces, into the cells and penetrate the 

cell wall of plants by the assistance of a secreted saliva, the pectinase in the saliva breaks down the 

tough cell wall (Dixon, 1987, Gullan & Cranston, 2010). Turgor pressure of the plant aids the phloem 

sap to be obtained. Aphididae spend a large proportion of the day feeding due to the large amount of 

phloem sap required, as the amino acid content is low in the sap. Therefore, excess sugars are stored 

in the rectum whilst enough amino acids are absorbed by the Aphididae for essential proteins to be 

assembled. 

In time of heavy infestations on a leaf and persistent feeding, the monosaccharide content of the 

leaves will be depleted to such an extent that the growth rate will decrease and development of new 

leaves from tillers will be compromised. If feeding pressure exhausts a plant of its nutritional content 

Figure 2.7a -d: a = S. avenae adult in glasshouse trials. b = S. avenae adult alate morph & nymph apterous morph. c = S. 

avenae adult apterous morph (InfluentionalPoints, 2018). d = S. avenae adult alate morph (InfluentionalPoints, 2018). 
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anthesis may be aborted. Muhammod et al. (2012) identified a 4.57% loss in the yield of the T. 

aestivum cultivar BK-2002 was directly related to the phloem feeding pressures of S. avenae. 

Rhopalosiphum maidi (Corn Leaf Aphid) was found to be the most damaging through direct 

assimilation of Hordeum in terms of yield reduction (25.5% loss) in cereal crops grown in Australia. 

This was estimated as an economic loss of $12.1 ha-1 (Valenzuela & Hoffmann, 2014). 

A secondary method where R. padi, S. avenae and M. dirhodum affect crop growth and subsequent 

yields is the production of a honeydew, a liquid with high sugar content (Prado et al., 2015). Honeydew 

is secreted as a waste product from the anus when the stylets penetrate the phloem cell wall. The 

amount of honeydew produced by cereal Aphididae is less than other Aphididae for example 

Acrthosiphon pisum (Pea Aphid), feeding on fruit plants and legumes with high monosaccharide 

content, however the minimal presence of honeydew may initiate a fungal growth on Triticum and 

Hordeum (Prado et al., 2015; Watanabe et al., 2018). Fungi present in the atmosphere may be 

attracted to the honeydew, where the subsequent growth forms into powdery mildew or sooty mould 

which causes white or black pustules and darkening of the ears before harvest. Fungal diseases do not 

affect the cereal directly, though the presence of the markings may decrease the photosynthetic 

ability of the leaves and therefore affect the vigour of the crop. This may reduce the marketability of 

the cereal (AHDB, 2018; Bayer, 2018; Williams et al., 2017). 

The most damaging aspect to a crop via S. avenae and R. padi is viral transmission where the Aphididae 

becomes a vector and transmits a virus directly into the phloem of a plant whilst it feeds. The most 

common and harmful virus seen in the UK cereal crops is the luteovirus BYDV. BYDV requires a vector, 

namely an Aphididae, to ingest BYDV particles from an infected plant and introduce the particles into 

a new host plant via saliva when the Aphididae penetrates the phloem cell wall (Dorokhov et al., 2014; 

Reddy et al., 2009). The virus, once embedded, causes a volatile odour to be released from the host 

plant that entices another vector to feed, ensuring continued survival. Carrier Aphididae must feed 

for a considerable time to transfer BYDV or in large vector numbers for the virus to attack the plants 

natural resistance. BYDV only effects the phloem and causes the specialized sieve cells, which conduct 

materials throughout the phloem, to collapse which ultimately leads to plant tissue necrosis 

(Dancewicz et al, 2018; Paulmann et al., 2018). The BYDV causes considerable growth impairments 

and senescence (yellowing) of leaves. It has been recently estimated that BYDV caused an estimated 

average annual yield loss of 30% in Hordeum and 50% of crop affected in Triticum, on land not treated 

with pesticides within the UK (AHDB, 2019). This is of significant financial loss to the arable market. S. 

avenae contributes as the main vector of BYDV in most regions of the UK apart from the South-West 

of England where R. padi is the principal vector of BYDV cases (AHDB, 2018). BYDV is placed into two 
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subgroups depending on the Aphididae of vector, BYDV-PAV is the virus induced by S. avenae and 

BYDV-MAV is the subclass carried by R. padi (Reddy et al., 2009).  

BYDV particles can persist over-wintering in hedgerow vegetation and thus can be ingested by 

nymphs, hatching from eggs or produced by parthenogenesis, at the start of spring. Carrier Aphididae 

could then inoculate cereals in early growth stages (Choudhury et al., 2019). Dorokhov et al. (2014) 

and Reddy et al. (2009) note that it takes excessive feeding by carrier Aphididae before a host plant is 

receptive and symptoms of the virus arise. Therefore, Aphididae may be in abundance before BYDV 

symptomatic cereals are apparent.  

McKirdy et al. (2002) reported that incidences of BYDV showed a significant direct relationship to gaps 

in T. aestivum yield. A significant positive correlation was found between the occurrence of BYDV and 

T. aestivum seed weight, weight in g of 1000 seeds. A seed weight of 500 g was most likely to be 

infected with BYDV compared to lower seed weights (AHDB, 2015; McKirdy et al., 2002). BYDV cereal 

crop yield loss can vary depending on when in the growth cycle the virus transmission was induced. 

Triticum and Hordeum are vulnerable to infection during early GS of shoot emergence (Turanli et al., 

2012). Trębicki et al. (2016) found that infection before tillering can reduce T. aestivum yield up to 

79%. Later infection of stem elongation and tillering can reduce the yield loss by 6 - 9% showing that 

as new growth occurs the crop can tolerate some tissue necrosis directing essential substances 

through the phloem elsewhere. 

It is important in understanding the positive potential of T. tenuis in predator dynamics where its 

activity is in relation to possible symptomatic BYDV crops, however, certainty is required if a crop is 

infected with BYDV-PAV or MAV. From here, T. tenuis biological control impact of the reduction of 

disease-carrying Aphididae can be assessed. The test for BYDV in a crop is commonly carried out by 

an Enzyme-linked Immunosorbent Assay (ELISA) (Bar-Joseph & Garnsey, 1981). The principal behind 

ELISA is to detect the presence of an antigen that is specific to the virus being tested. The antigen is 

produced by the viral genome which induces the response in the host (Lequin, 2005). The ELISA test 

in this instance is generally a ‘Elisa Sandwich Test’ where the sample is placed in between two target 

antibodies whose job is to draw out and collect any protein cytokines secreted due to the BYDV-MAV 

or PAV antigen (Horlock, 2018; Lequin, 2005). The presence of the antigen is determined via 

chromatography using a substrate, p-Nitrophenyl Phosphate Disodium Salt (PNPP) is commonly used. 

PNPP converts the specific antigen into a water-soluble yellow hue if present, that can be visually 

identified, and intensity read with a colour spectrometer at a wavelength of 405 nm (Horlock, 2018; 

Lequin, 2005; ThermoFisher Scientific, 2018). 
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Chabert & Sarthou (2017) and Gronle et al. (2014) identified that tillage levels have been shown to 

affect the availability of Aphididae within an arable crop. Aphididae require a high level of vegetative 

material to access phloem to sustain a developing colony. Conventional tillage, establishing a greater 

yield of crop, may allow accelerated parthenogenesis due to high phloem availability. Tamburini et al. 

(2015) and Wenninger et al. (2020) explained conservation tillage may impede Aphididae ability to 

predate due to greater accumulation of organic material obscuring Aphididae feeding sites. 

Specifically, within early growth stages of a crop, the prime time for Aphididae to develop a colony. 

Conservation tillage may support a greater degree of persistent unwanted weeds where seeds may 

not have been chitted (pre-germinated) with the low intensity cultivation of this area. It was discussed 

by Balfour & Rypstra (1998) and Dahlin & Ninkovic (2013) that weeds may support an Aphididae 

population differently than a mono-crop. This is agreed by Milner (2002), who suggested A. 

myosuroides provide shelters away from predation, and Weibull (1993) found R. padi population 

growth accelerated in the vicinity of perennial A. myosuroides.  

2.2.6.3. Biology and Ecology of S. mosellana 

Sitodiplosis mosellana (Orange Blossom Wheat Midge) (Gehin, 1857) adults have a bright orange 

abdomen and thorax with iridescent wings and are 2 to 3 mm in body length (Figure 2.8). Larvae are 

a bright orange colour making them easily identifiable. S. mosellana are classed as weak fliers 

compared with other Diptera (true flies), not having the wing strength to fly large distances. Short 

localised flights are from crop to crop with a sharp take off. Female S. mosellana fly between fields to 

disperse and oviposition, where males locate in a small area due to the need to find an adequate 

number of mates (AHDB, 2016; Bayer, 2018; Price et al., 2011).    

Figure 2.8a & b: a = S. mosellana adults caught in web in NIAB field. b = S. mosellana lavae in T. aestivum ear (AHDB, 2016). 
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S. mosellana live in the soil as larvae in cocoons and only pupate onto the soil surface when soil 

temperature begins to increase (13 - 15 ⁰C) and has an acceptable moisture level. The S. mosellana 

adults fly as soon as air temperature reaches around 15 ⁰C. After mating, eggs are laid in the inside 

florets of emerging Triticum ears. Larvae hatch within four to ten days and crawl into the developing 

grain, GS 53 of ear formation to GS 59 for anthesis (AHDB, 2016; 2018; Bayer, 2018). 

2.2.6.4. S. mosellana as a Cereal Crop Pest 

S. mosellana feed by exuding enzymes that break down the cell walls and then convert this stored 

starch back into sugar which is ingested. This causes poor grain quality, which is shrivelled and reduces 

germination capability. Damage to the pericarp (outer layer) of the seed causes water to enter which 

may mean spontaneous early germination or favourable conditions for the emittance of fungi causing 

Fusarium head blight and Septoria tritici leaf spot (AHDB, 2016; Price et al., 2011). Once Triticum has 

reached GS 61 of grain filling, larvae are no longer able to break the cell wall down in the hardened 

pericarp, ensuring the crop is defended against S. mosellana damage (AHDB, 2016; 2018; Bayer, 2018).  

Larvae, after feeding, drop from the crop into the soil to be cocooned until soil temperature and 

moisture reaches the acceptable parameters for pupation (AHDB, 2016; Price et al., 2011). S. 

mosellana can persist as larvae in cocoons for ten to fifteen years if soil condition is not favourable to 

hatching. The major threat of crop damage from the pupae of the cocoon is four years, after which 

pupae fecundity levels are seen to decrease (AHDB, 2016; Price et al., 2011).  

Echegaray et al. (2018) described that ear emergence had a significant positive relationship with S. 

mosellana density, later maturity of the T. aestivum having occurred at higher densities of S. 

mosellana. This had a negative economic effect due to later maturity equalling poor grain 

establishment and reduced yields. The pivotal density of midge for late ear emergence was placed at 

twelve larvae per spike (Echegaray et al., 2018; Elliot et al., 2011). Trials analysing S. mosellana 

infestation on T. aestivum cultivars in Montana, USA, reported that the protein content of the grain 

had a significant positive relationship with S. mosellana density with higher protein density leading to 

increased S. mosellana abundance on the T. aestivum florets (Echegaray et al., 2018). Lamb et al. 

(2000) investigated the trophic relationship between T. aestivum and S. mosellana by analysing the 

biomass loss of T. aestivum and biomass gain to S. mosellana. Grain within the ear held different 

biomass potential for S. mosellana feeding, impact varied from 4.1 mg to 8.5 mg of seed biomass lost 

for each milligram of biomass gained by a larva, suggesting poor conversion from S. mosellana leads 

to intense periods of feeding on several grains. Tolerance of T. aestivum grain was identified as 6% 

biomass loss of the seed before its germination rate was impaired (Elliot et al., 2011; Lamb et al., 

2000).   
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2.2.6.5. Chemical Control of Cereal Aphididae and S. mosellana 

Pyrethroid chemicals, used to control cereal Aphididae, disturb the nervous system leading to fatality 

(Bass et al., 2014; Kennedy & Connery, 2005). This insecticide became popular when neonicotinoids 

were banned in 2014, due to environmental concerns (Dewar et al., 2014). Pyrethroids, though 

identified as a ‘cleaner’ insecticide breaking down in sunlight, its mode of action is less effective than 

previous banned insecticides (Ikonov et al., 2019; Kumar et al., 2018). There is a concern where its use 

may incur further genetic resistance without the assurance it will have the desired effect on an 

Aphididae population. S. avenae is noted to be becoming increasingly resistant to this compound in 

the UK, continually creating morphs with genetically reheard resistance mechanisms (Bass et al., 

2014). Dewar et al. (2014) identified that in 2013, 35 - 50% of S. avenae within the UK arable 

agriculture contained genes that produced knockdown resistance (kdr), a subdued sensitivity to the 

neurone inhibitor action of the pyrethroid compound (Bass et al., 2014). From recent literature it is 

explained the increase in kdr occurrence rate appears to have slowed for S. avneae, and M. dirhodum 

and R. padi kdr capabilities are noted to be of a lesser degree (De La Pasture, 2018). However, the 

genetic mutations behind kdr still exits.  

Outbreak of S. mosellana previously was effectively controlled by the insecticide Chlorpyrifos, causing 

death by inhibiting neural pathways (Bruce et al., 2007; Christensen et al., 2009; Edwards & Dodgson, 

2009). Since March 2016, this insecticide had been banned by the UK government, undertaken by the 

Health and Safety Executive due to concerns of its persistence within the environment (HSE, 2016). 

Isolation of a S. mosellana resistant gene (Sm1) has allowed T. aestivum cultivars to be engineered 

with inbred S. mosellana resistance. The Sm1 gene alters the structure of the grain, creating an 

antibiosis (antagonistic) effect to S. mosellana by lowering oviposition availability (Blake et al., 2014; 

Ellis et al., 2009; Kassa et al. 2016). However, this is at a cost and signs of tolerance from S. mosellana 

have been identified in Canadian agriculture where the resistant cultivars have been extensively used 

(Bruce et al., 2007).  

From this evidence, pests gaining tolerance to chemical control and resistant cultivars, biological 

control can seem favourable where resistance does not exist in the consumption of prey by a natural 

enemy.  Furthermore, Mazzia et al. (2015), analysing fecundity rates of epigeal (dwelling close to the 

ground) spiders (including Linyphiidae) in vineyards with pesticide application against organic, 

identified lower fecundity rate (in egg sac development) in areas of pesticide use. This was theorised 

to be because of a reduced abundance of natural enemies in areas where chemical control was 

applied. This subsequently lowered female body mass, lessening the female’s egg production capacity 

(Beck & Toft, 2000; Mazzia et al., 2015; Peters & Koover, 1991; Romero & Harwood, 2010). 
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Dewar et al. (2014) explains that spraying of insecticides does not harm T. tenuis directly, though alters 

the food web of the ecosystem and further alters the vegetation orientation of the landscape. 

Haughton et al. (1999) and Řezáč & Řezáčová (2019) concurred, investigating effect of glyphosate drift 

to a field margin, found in times of increased glyphosate application the drift reduced landscape 

heterogeneity. This was shown to have a greater negative impact to T. tenuis density than the 

glyphosate application. This is further agreed by Isaia et al. (2007) and Ysnel & Canard (2000) who 

viewed an increased vegetation complexity as a propensity to web-build. Ikonov et al. (2019) discussed 

that persistent interaction with a pyrethroid insecticide altered female Oedothorax apicatus 

(Linyphiidae) morphology, the chemical composition stimulating homeotic pathways increasing the 

size of the abdomen. This may lead to extreme SSD and gravity hypothesis, where large females are 

unable to sustain lying a dragline thread, the extra weight of the T. tenuis disrupting the strain needed 

to yield the silk (Section 2.1.2.1. & Section 2.1.3.4.). Moreover, Peng et al. (2010) showed clutch sizes 

decreased in Linyphiidae when in contact with pyrethroids, the pathway for the enzyme 

carboxylesterase key in ovulation, disrupted by the insecticide. Leccia et al. (2015) concurred, 

suggesting pyrethroids may further affect the chemical composition of the sex pheromone omitted 

when a female is fecund, both actions impeding Linyphiidae ability to succeed in another generation 

and exert pest suppression within a crop (Section 2.1.3.4.).  

2.3. Biological Control  

2.3.1. The Premise Behind Biological Control in British Arable Agriculture 

The concept of biological control is the method of using natural enemies to control and limit the 

number of crop pests within an agricultural environment and is classed as an ecosystem service. The 

natural enemies themselves are identified as non-phytophagous and therefore will not directly harm 

the crop. Most pests have naturally occurring enemies that may be generalist predators eating a wide 

variety of insects, or specific predators that require a narrow niche of prey (Ramsden et al., 2016). 

Biological control seeks to harness this ideal and create opportunities where natural enemies can 

thrive and naturally convene on a pest population (Nyffeler & Sutherland, 2003). Biological control is 

a method to pest suppression that may reduce the need of chemical control (Ramsden et al., 2016; 

Rusch et al., 2016).  

In British arable agriculture at present, much has been published regarding the need to produce food 

in a sustainable manner. Sustainable here meaning to ensure the availability of raw materials, for 

example soil nutrients, and condition of these raw materials, as in soil health, is such that food in 

enough supply can be produced in future years. Increasing the practice of biological control can reduce 

the amount of pesticides that are needed for crop application (Ramsden et al., 2016; Rusch et al., 
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2016). This may contribute to becoming sustainable, as soil health is shown to be degraded due to 

pesticides being toxic to essential microorganisms, that are important to soil aeration and 

decomposition of detritus (Shayler, 2005). There is, at present, political demand to lower the 

application of pesticides and government papers, e.g. Food Safety Authority and Ectophyto Plan, 

dictate targets of decreased use (Diehl et al., 2013, Macfadyen et al., 2014). Biological control would 

appear to be the key answer to crop pest reduction, therefore, it is of concern why biological control 

is not used more widely. Biological control is not an exact science, there are many complex pathways 

that may impede or promote biological control. Hajek & Eilenberg (2018) and Lichtenstein et al. (2016) 

discussed failures to biological control may be due to fecundity rates of a natural enemy reduced, thus 

reducing the mass action effect that a colony can exert, and fitness of a predator including boldness 

where a natural enemy is dominant in search for prey. Further discussed is devoid of a precise system 

where beneficial predators are present at the exact place at the correct time to capture prey (Hajek & 

Eilenberg, 2018; Jonsson et al., 2014; Lichtenstein et al., 2016). A stimuli of a crop pest presence is 

required to be received by a predator, such as Linyphiidae, to encourage relocation to prey and 

suppress pests effectively (McHugh et al., 2020; Rodríguez & Gloudeman, 2011). Japyassú & Laland 

(2017), Kraftt & Cookson (2012) and McHugh et al. (2020) discussed a stimuli to Linyphiidae may be 

obscured by climatic factors or impeded by the orientation of landscape features, often observed 

within the open aired environment of an agricultural setting.  

2.3.2. T. tenuis Potential in Biological Control  

As identified in Section 1.1 and Section 2.1.3.1., T. tenuis is a generalist predator and a carnivore, 

meaning it causes no threat to a crop. T. tenuis is stenophagous (narrow ranged) in prey capture and 

only captures prey within a web and therefore web construction is an important factor within a T. 

tenuis life cycle (Pekár, 2014). The silk is not sticky, rather fine hairs of the Aphididae become 

entangled into the web and so Aphididae have a low frequency of escape (Harwood et al., 2003) 

(Figure 2.9). In this instance, it can be identified that even if prey fallen into a web is not consumed, 

the low escape instances renders this prey unable to carry out its intended function, e.g. to direct feed 

in the case of Aphididae (Section 2.2.6.2.). Harwood et al. (2003) identified that significantly more 

Aphididae (mean 0.81), were collected from webs constructed by T. tenuis at sample sites, 78.5 cm2, 

compared with 0.56 being identified outside of webs. This coincides with a tendency to construct webs 

high in a crop to capture Aphididae effectively and handle them promptly. 
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Aphididae are of low nutritional value to T. tenuis and other Linyphiidae. Toft (1995) showed that the 

duration of the 1st instar was increased, when a T. tenuis juvenile was fed on a sole Aphididae diet, 

increasing the time when maturity could be reached. Toft (1987) noted that T. tenuis went through a 

cycle of rejecting cereal Aphididae after repeated exposure to a lone Aphididade diet for a day. T. 

tenuis showed a rapid aversion to R. padi than to the more palatable M. dirhodum and S. avenae, and 

after an hour to a day, Aphididae were again accepted. This suggests that T. tenuis are likely to choose 

another prey, a possibility is another natural enemy, to consume in between Aphididae and this may 

be a negative to its potential as a biological control agent (Nyffeler & Sutherland, 2003; Toft, 1989). 

 

2.3.3. Measuring Biological Control with DNA Bar-Coding and PCR 

Predator and prey relationships can often be difficult to quantify, due to the complex environments 

in which they exist. Prey consumed by T. tenuis is ideal evidence to express such an interaction, 

however it is difficult to establish through simple observation, as prey are often wholly consumed and 

soft bodies of prey are easily digested and ephemeral within a system (Birhofer et al., 2017; Eitzinger 

et al., 2013; Furlong, 2015). Polymerase Chain-Reaction (PCR) is an advanced method of gaining 

verification in T. tenuis prey interactions. It involves the ability to identify specific prey DNA e.g. of 

Aphididae, from DNA extracted from T. tenuis (Davey et al., 2013; King et al., 2011; Powell et al., 2004). 

DNA bar-coding incorporates several steps from extraction of DNA to the reading of the product of a 

Polymerase Chain Reaction (PCR) cycle.  

 

Figure 2.9: Female T. tenuis in NIAB field from fieldwork. Wrapped prey is Aphididae, exact species unknown. 
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The DNA for bar-coding is required to be extracted from the sample. There are several steps to extract 

and clean the desired DNA: cell and tissue lysis, precipitation of the final DNA and purification of the 

DNA through washing. Amplification is required due to the difficulty in reading a small intron (gene 

expression) of the species that may have been ingested. Amplification involves a primer of a specific 

DNA sequence (of species potentially consumed) which is able to insert into the corresponding intron 

and replicate the intron under a cycle of differing temperatures to allow catalysis synthesis (Davey et 

al., 2013; Furlong et al., 2015; King et al., 2011; Powell et al., 2004). Nuclear (nDNA) or Mitochondrial 

DNA (mtDNA) may be targeted for primer insertion, however, mtDNA is beneficial to locate and 

amplify as several intron sites for the desired gene are found within mitochondrial cells (Chen et al., 

2000; Powell et al., 2004; Rice, 2015). Two primers are required in each PCR analysis to insert into the 

intron of each strand of the DNA double helix. Forward primer represents forward sequence of the 

gene expression and reverse primer the reverse sequence (Harper et al., 2005; Macías-Hernández et 

al., 2018; Ye et al., 2017). 

Several reagents alongside the primers enable PCR to occur. The buffer Tris(hydroxymethyl) 

aminomethane hydrochloride (Tris-HCl) at pH 9.0 creates an environment of constant pH for protein 

synthesis. Magnesium Chloride (MgCl2) and Potassium Chloride (KCl) aid the binding of the primer to 

the correct intron, nucleoside triphosphate containing deoxyribose (dNTP) provides cytosine, guanine, 

adenine and thymine for replicates to be synthesised, and Taq DNA polymerase is an enzyme that acts 

as a catalyst to DNA synthesis (Chen et al., 2000; University of Utah, 2016). A negative and positive 

template ensure validity in a result.  Slight contamination can occur with many procedures and 

interference with the amplification of the specified DNA. A negative template incorporates all 

reagents, using a substitute to the DNA (PCR grade sterile water) and positive involves the use of a 

known DNA sample of the species. 

Genomic DNA sequences or amplicons (amplified introns) obtained from PCR are read in an agarose 

gel (seaweed extract of neutral charge) after gel-electrophoresis for clarification under UV light box 

(Ayoub et al., 2007; Chapman et al., 2013). A loading dye is added to the amplicon before gel-

electrophoresis begins for tracking of the amplicons as they run through the gel. Gel-electrophoresis 

works on the principal that DNA has an overall negative charge due to the phosphate backbone of the 

strand (Brownie et al., 1997; King et al., 2012). Any DNA present, amplified through the PCR process, 

will be pulled towards a positive charge. Nucleotide base pairs (for example a bond between cytosine 

and guanine) are read to the nearest kilo base-pair (kbp) (Eitzinger et al., 2013) (Figure 2.10). A 

hyperladder, a solution containing base-pairs (bp) of definite size, is used to read bp of a sample 

(Ayoub et al., 2007; Chen et al., 2000; Cold Spring Harbour Laboratory, 2015; Powell et al., 2004). Small 

bp will be pulled to the positive charge at a faster rate, thus the marker of 200 bp of the hyperladder 
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will be closest to positive electrode, whereas (with a hyperladder containing a 1 kbp marker) the band 

nearest to the negative electrode will be the largest bp of 10,000 bp (Figure 2.10). Over-running of 

gel-electrophoresis may mean an amplicon bleeds out of the gel into solution (Brownie et al., 1997; 

Chen et al., 2000). 

 

 

 

 

 

 

 

 

 

 

 

Recent research has analysed the prey content of web-building spiders to further examine the 

biological control potential of arachnids (Xu et al., 2015). The principal to the research is exploring the 

potential life span of prey DNA within the extended phenotype of a web, and if the longevity is greater 

than prey DNA within a gut. With prey known to fall into a web, without needed to be consumed, 

measuring predator potential solely on gut content may under value the biological control web-

building spiders can offer. 

 

Figure 2.10: Schematic diagram of agarose gel after electrolysis with 1kbp Hyperladder used. The bp for the following 

bars are read as 1 = 3000 bp. 2 = 800 bp. 3 = 400 bp. 

1kbp Hyperladder 
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Chapter Three 

3.0. Introduction to Fieldwork 

Fieldwork is a key element to this research and allows T. tenuis behaviour to be explored in a natural 

habitat. It provides primary data on how T. tenuis reacts within areas of different tillage intensities on 

a working arable farm. 

This Chapter introduces the arable farm where fieldwork was undertaken, exploring its climate, 

topography and agricultural practices implemented on the land. It concludes with a short discussion 

of how the research fits into the present scientific community and its benefit to the arable agriculture 

industry. 

3.1. Fieldwork Site 

3.1.1. Location 

Permission was granted to access a site at an arable farm in Childerley, Cambridgeshire (National Grid 

Reference: TL 35643 61654), where a Direct Drilling Project, funded by the National Institute of 

Agricultural Botany (NIAB) in partnership with The Arable Group Ltd. (TAG), was (and is currently) 

examining tillage systems to develop methods of sustainable arable production (NIAB TAG, 2016). The 

farmland at Childerley, housing the NIAB trials, covers 1,294 hectares and is of a low gradient, 

maximum incline of 2%, and is around 7 m above sea level. The farm is operated by Martin Jenkins 

Farming™ and grows cereals in the majority with brassica fields used in crop rotations. A smallholding 

of Cheviot sheep (around a hundred and forty) is used for sporadic grazing, utilised primarily to control 

Alopecurus myosuroides (Black-grass). The sheep graze as part of a crop rotation system, inhabiting a 

field which is within a fallow period. Details of location are shown in Figure 3.1. - Figure 3.3. 
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Figure 3.1:  Map showing location of Martin Jenkins Farming™ (red dot), within 

the UK, created from Google Earth© and QGis© 3.4 Madeira™. 

Figure 3.2: Scale map showing location of Martin Jenkins Farming™ (red dot) created from Google Earth© and 

QGis© 3.4 Madeira™. 
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3.1.2. Climate 

The climate for the rural outskirts of Cambridge (Childerley) is warm and temperate with low rainfall 

compared to UK average and moderate to average wind speeds especially seen over low-lying land. 

The average climate for this area for 2017 (year of sampling) was an average daytime temperature of 

14.5 oC, maximum observed in July with 27.1 oC and lowest 3.1 oC in January 2017. The total rainfall 

measured 576.5 mm over 164 days. The average maximum wind speed was calculated at 39.9 kmh-1 

(24.8 mph), the lowest monthly maximum of 32.2 kmh-1 (20 mph) was identified in August and 48.6 

kmh-1 (30.2 mph) was the highest wind speed reached, measured in December. For 2018, again a year 

field sampling occurred, 15.1 oC was the average daytime temperature with a maximum of 36.4 oC 

recorded in July and 2 oC measured in February. There were 107.5 rainfall days in 2018 with a total 

rainfall of 533 mm.  The average maximum wind speed recorded for 2018 was 40.4 kmh-1 (25.1 mph), 

the lowest monthly maximum wind speed was 29.1 kmh-1 (18.1 mph) identified in June and the highest 

was 51.2 kmh-1 (31.8 mph) measured in January (Met Office, 2017; Met Office, 2018; World Weather 

Online, 2020). 

Figure 3.3: Scale Map showing location of Martin Jenkins Farming™ created from Google Earth© and QGis© 3.4 

Madeira™. Red line showing borders of farm. Yellow line showing borders of fields within the NIAB trials. 
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3.1.3. Set - Up of NIAB Trial 

3.1.3.1. Aim of NIAB Trail 

The NIAB trial is long-term, which began in 2012, and is on-going. It is based on a four-year rotation 

on spring and winter cereals (Table 3.1.). The trial aims to analyse the impact that differences in tillage 

techniques may have on cereal crop performance and soil composition. The key findings are to 

demonstrate to farmers, that Direct Drill tillage could be a possible alternative to Conventional tillage, 

on heavy clay soil (NIABTAG, 2017). 

3.1.3.2. Soil 

The site comprises four fields in the NIAB trial of Hanslope Soil Series, non-alluvial clayey loam 

(Cranfield University, 2017) (Figure 3.4.). 

 

 

 

 

 

 

 

 

 

 

 

 

As Figure 3.4 identifies, the A - profile of Hanslope soil is an alkaline clay loam, usually dark brown in 

colour. It has a high field capacity and ability to incorporate organic matter into humic material. Its 

texture is fine and is defined as having a ‘sticky’ consistency. These properties are due to positively 

charged clay micelle complexes that allow aggregation of negatively charged ions. Water particles, 

negative charge from the oxygen atom, are bound to the micelle ensuring a ‘sticky’ consistency and 

high field capacity. Hummus is incorporated as negative organic fractions, which are further bound to 

Figure 3.4:  Schematic diagram showing soil profile of Hanslope soil series 4.1 (Adapted from Cranfield University 2017). 
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the micelle, allowing a clay loam to be fertile soil. Further down the Hanslope profile, the soil forms 

blocky sub-angular stoney aggregates, calcareous in nature, where eroded bedrock is incorporated 

into the clay fractions. This meaning, deep cultivations of Hanslope can be laboursome (Ashman & 

Puri, 2002; Cranfield University, 2017; Paul, 2015; Williams, 1979) (Section 2.2.2.).  

3.1.3.3. Fields 

The four fields are named: “Bendy” Field A, “Carrot Ground” Field B, “Stargoose” Field C and 

“Weatherfield” Field D, as shown with crop rotations (Table 3.1, Figure 3.3. & Figure 3.5a - d). 

 

3.1.3.4. Soil Tillage Methods 

Each field is divided into three plots, each with a different soil tillage technique, which are:  

1. ‘Conventional’ approach. The primary cultivation involves management from a winged 

sub-soiler with discs 60 cm apart. The soil is worked and broken up to a 24.5 cm depth. It 

is disc harrowed, the chain disc giving 1.27 cm penetration, for secondary cultivation. This 

is carried out two or three times per week until the soil is level to the ridges from the sub-

soiler. 

2. ‘Direct Drilled Managed’ approach. The primary cultivation is shallower, with a 20 cm 

depth. The managed approach includes the additional management techniques of straw 

raking (NIAB TAG, 2016). 

3.    ‘Direct Drilled’ approach. This uses a John Deere 750A Direct Drill only to sow.  

 

NIAB Field 

Name 

Project  

Field  

Name 

Crop 

Rotation 

2012/13 

Crop 

Rotation 

2013/14 

Crop 

Rotation 

2014/15 

Crop  

Rotation 

2015/16 

Crop  

Rotation 

2016/17 

Crop  

Rotation 

2017/18 

Crop  

Rotation 

2018/19 

Bendy A Oil Seed 

Rape 

Winter 

Wheat 

Winter 

Wheat 

Spring 

Barley 

Spring 

Barley 

Winter 

Wheat 

Spring 

Barley 

Carrot Ground B Spring 

Barley 

Spring 

Barley 

Oil Seed 

Rape 

Winter 

Wheat 

Spring 

Barley 

Spring 

Barley 

Spring 

Barley 

Stargoose C Spring 

Wheat 

Winter 

Wheat 

Spring 

Barley 

Winter 

Oats 

Winter 

Wheat 

Spring 

Barley 

Spring 

Barley 

Weatherfield D Spring 

Barley 

Oil Seed 

Rape 

Winter 

Wheat 

Winter 

Wheat 

Spring 

Barley 

Spring 

Barley 

Winter 

Wheat 

Table 3.1: The four fields of the NIAB field trial and the crop rotations (NIAB TAG, 2018). 
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Conventional and Direct Drill Managed are sown with John Deere 750A Direct Drill after cultivation. 

The four fields are divided into the three soil tillage intensities. Direct Drill was assigned to the middle 

area of the field with Conventional and Direct Drill Managed soil tillage either side (Figure 3.5a - d). 

 

 

 

 

 

 

 

 

 

 

(Figure 3.5a - d: Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green) 

 

3.2. Contributions to the Scientific Community 

The fieldwork in Cambridgeshire forms part of a long-term trial that enables data to be collected over 

several seasons. The unique nature of the NIAB trial with four fields incorporating different crop 

rotations allows data to be collated from a wide set of circumstances, for example, fallow or H. vulgare 

(Spring Barley) following T. aestivum (Winter Wheat) within an arable habitat. Different time periods 

are important, capturing elements of T. tenuis biology; stenochronous, short-lived and rapid growth, 

and eurychronous, over-wintering in different stages. Research from Halley et al. (1996) and Welch et 

al. (2011) has gained an understanding that T. tenuis has adapted its life cycle to a crop system in 

Figure 3.5a: Field A, shown from Google Earth© - 

52
o
13’56.64” N, 0

o
02’48.48” W 

  

Figure 3.5b: Field B, shown from Google Earth© - 

52
o
13’30.72” N, 0

o
00’38.88” W 

  

Figure 3.5c: Field C, shown from Google Earth© - 

52
o
14’58.26” N, 0

o
01’08.36” W 

  Figure 3.5d: Field D, shown from Google Earth© - 

52
o
15’14.4” N, 0

o
01’56.64” W 

  



 

52 
 

fecundity rate heightened at a time of post-cultivation, where prey abundance and disturbance is low. 

This transfers to a generation existing in later Growth Stages (GS) of a crop, and viable for pest 

predation (Thorbek et al., 1994) (Section 2.2.1.). Therefore, the benefit of having fields within the NIAB 

site differing in crop rotations,  allows insight into how the life cycle of T. tenuis may change.  

The long-running of the trial and the position of tillage intensity not altering within the fields, is of 

scientific interest (Table 3.1. & Figure 3.5a - d). Soil fertility, with inoraganic matter build-up, may have 

increased in the Direct Drill area, encouraging robust plant growth and high yields, which in turns 

favours Linyphiidae abundance (Mbuthia et al., 2015; Shrestha et al., 2015). A. myosuroides 

abundance, a weed prevalent within south-east Britain, may have excelled within a long-term Direct 

Drill zero-till environment, potentially supporting greater Aphididae abundance (Lutman et al., 2013; 

Milner 2002). This may impact T. tenuis ability to impact biological control and suppress greater 

Aphididae numbers (Section 2.2.4.). 

In addition to the tillage, there are other management techniques employed in the fields; glyphosate 

application, where a long trial is beneficial. Herbicide that had been applied 360 a.i.ha-1 (active 

ingredients per hectare) to a margin of a T. aestivum field, has been shown to cause drift which 

reduced T. aestivum height and hence decreased crop residue, changing the habitat which may impact 

T. tenuis behaviour (Haughton et al., 1999) (Section 2.2.6.5.). 

There is a need for a more detailed analysis of how Linyphiidae behave, regarding predator dynamics, 

within a zero-tilled habitat, such as a method of Direct Drill, where seed is drilled without prior 

cultivation. Much work only analysing the ecology of Linyphiidae under ploughing / a simplified 

landscape against landscape heterogeneity. Data collected from a Direct Drill Managed approach will 

have a key place in agroecology, as this tillage technique is innovative and its biological control 

regarding T. tenuis has not been explored. The diversity of T. tenuis web structures, for pest 

suppression, that may be created in this management technique is barely known. Of particular 

interest, is how the lower levels of cultivation applied within Direct Drill Managed, at primary 

cultivation, alters T. tenuis web-spinning behaviour. Measurements have previously been gained from 

webs spun in grasslands and agricultural margins from research by Clark et al. (2004), Horváth et al. 

(2015) and Thorbek & Bilde (2004), however, differences / similarities of the structures of a web and 

prey capture rate within different tilled areas have not been extensively explored or quantified. 
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Chapter Four 

4.0. Fieldwork Method Development 

4.1. Introduction 

This Chapter discusses how the final methods for data collection in the field were established. 

Experimental work (notably in the summer of 2016) explored data collection practicality and 

repeatability and whether the intended procedural aim was met in a non-biased way. The Chapter is 

split into three sections, the main fieldwork (Section 4.2. & Section 4.3.), an in-field experiment 

analysing a key theme from fieldwork (Section 4.4.) and sampling of hedgerows bordering the main 

field (Section 4.5.).  
 

4.2. Field Sampling 

The field sampling period of summer 2016 allowed investigation across the dimensions and 

orientation of the tilled areas within each field in the NIAB investigation, where a variety of cereals 

were grown (H. vulgare, T. aestivum and A. sativa) (Table 3.1., Section 3.1.3.3., Page 50). The length 

(m) and width (m) measured from Google Earth images of all four fields was rounded to the nearest 

1.0 m (Figure 3.5.a - d, Section 3.1.3.4., Page 51). It was essential to consider edge effects when 

planning areas to sample. The edge effect here refers to the boundary of the field edge, the division 

between the main field and a 1 m margin before the hedgerow begins (Figure 4.1.). The field edge is 

important to consider due to the difference of habitat in vegetation density and species which then 

relates to a difference in animal species populations (Section 2.1.4.5.). Sampling within this area would 

disrupt the results collected from the main field habitat. To remove the edge effect, no samples were 

collected from within 1 m of the field edge (Figure 4.1). An edge effect further existed between each 

soil tillage intensity where field vegetation was not a true representation of the soil tillage (Figure 4.2a 

& b). 

 

 

 

 

 

Figure 4.1: Schematic diagram of layout of NIAB field (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). 
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The 1 m2 quadrat sample areas were assigned from two random numbers which related to length and 

width of the tilled area, minus 1 m from the edge into the field (Random.org 2018). From this co-

ordinate, a 1 m2 sample area was taken north easterly from this point (Figure 4.3.). The co-ordinate 

position was found with a distance measuring wheel (Amtech® P1910 Measuring Wheel) with a 

measuring capacity of 1000 m. 

 

 

 

 

 

 

 

 

Each field was required to be sampled within the same day to reduce the effect of external factors, 

e.g. bias from wind and rain. After experimenting with numbers of 1 m2 samples where all 

measurements could be attained in the shortest daylight hours of winter, 8 hours, it was concluded 

realistically three replicated samples (equalling nine) could be measured in each tillage in this time 

period. It was identified, after the preliminary fieldwork, that samples were required to be taken in 

the order of one from Conventional, one from Direct Drill and then one from Direct Drill Managed 

Figure 4.2a & b: a = Yellow rectangles identifying margin of soil tillage intensity (Conventional = Red, Direct Drill 

Managed = Blue, Direct Drill = Green). b = Margin of soil tillage intensity, Field B between Direct Drill (left) and 

Direct Drill Managed (right) September 2018. 

a 

Figure 4.3: Example of how random sampling was generated in Field B Conventional tillage of preliminary fieldwork. 

Yellow area represents 1 m margin removed to negate edge effect. 
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instead of all three samples taken from one tillage sequentially. This was deemed important as with 

one sample area taking on average forty minutes to complete, the weather may have altered from the 

first sample to the last which could have obscured results. For example, differences in wind speeds 

across the day may affect the integrity of webs that had been constructed during the night.  

4.3. Data Collection 

As the field sampling progressed from the preliminary investigations into the first few months of 

sampling within the 2017 season, adjustments were made to methodology in the field site. This 

allowed the development of a robust field data collection method.  

4.3.1. Straw / Plant Residue 

A system of collecting straw / loose crop residue, was established in the explorative fieldwork of 

summer 2016. Straw residue was collected from two lengths of 1 m x 0.15 m (allowing for overlap) 

and from this, the mass for a 1 m2 sample area was calculated (Figure 4.4a & b). This method saved 

time out of a tight sampling schedule rather than collecting from a full m2.  

 

 

 

 

 

 

 

 

It was identified that the method used for preliminary fieldwork would not accurately represent the 

straw mass of the tillage intensity, this variable shown to be key to Linyphiidae behaviour in previous 

research and preliminary work identified straw as a key material for web construction (Diehl et al., 

2013; Thomson & Hoffmann, 2007). All loose straw mass was therefore collected from in between 

each plant row of the sample area. As the seeding rows were the same distance apart, six lines of 

potential straw mass was collected. The straw mass was then weighed to 0.01 g at Myerscough 

College, using a balance. 

Figure 4.4a & b: a = Straw mass collected measured to nearest 0.1 g. Elevated view. b = Schematic diagram of sample 

plot. Areas A, B and C are from where straw was collected, preliminary fieldwork. Summer 2016. 
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4.3.2. Upright Stubble Height and Plant Height 

Upright stubble corresponds to stubble that is of an angle between 45o - 90o from the ground (Figure 

4.5.). Ten randomly chosen upright stubble were measured within each sample area and the mean 

established. Upright stubble density and straw mass were not analysed after H. vulgare growth stage 

(GS) reached on average 25 cm (GS 37 - GS 39) as the importance of stubble for Linyphiidae anchor 

points appeared to be reduced and the total amount of stubble in each cultivated area generally 

remained the same after the last soil activity of drilling (AHDB, 2018) (Section 2.2.1.).  

Plant height data was collected from each sample area. Average plant height in the first instance was 

gathered by measuring the height of each plant within the 1 m2 sample area. This took a large amount 

of time and it was noticed that little difference existed between most plants within the sample area. 

Thereafter, average plant height was gained by measuring the heights of ten randomly chosen plants 

within the 1 m2 measured to the nearest 0.1 cm by a metre rule. A question arose, as to where the 

height of H. vulgare should be taken, as the plant went through certain GS. It was noted that the height 

had to be taken from the identical place on each plant at every field site visit for height to be used as 

an independent variable within this research. Observing the difference in plant physiology, the 

preliminary fieldwork identified a comprehensive system was required to note where plant height 

measurements were taken from at each growth stage. Before ear emergence, the tallest aspect of the 

plant was not the same feature, leaf or stem for example. In a survey of 50 randomly selected plants 

across the whole field within the preliminary fieldwork, the apex of the stem was the tallest aspect for 

many plants. From this, a system of measuring height was conducted as follows; before the growth of 

the flag leaf, GS 37 which represents the growth of the final leaf later sheathing ear emergence, the 

apex of the stem was measured as the highest point of each plant. After flag leaf emergence it was 

found this leaf, in the majority of cases was the highest point of the stem, growing out from the apex, 

therefore measurements of height to the top of the flag leaf was used until ear emergence (usually 

identified in GS 51). Thereafter, height was gained from the top of the ear (Figure 4.6.). 
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4.3.3. Upright Stubble Density and Plant Density 

The number of plants and upright stubble were counted within each sample area to determine density 

of H. vulgare, as T. tenuis has been shown to be sensitive to plant physiognomy, vegetation 

arrangement in space (Bell et al., 2002). This method was kept the same throughout sampling, as it 

was important to acquire an exact figure for the sample area to understand whether vegetation 

density in the field impacted Linyphiidae and T. tenuis abundance in any way. 

4.3.4. Linyphiidae Sheet Web Identification and Area Calculation 

Sheet webs created by T. tenuis and Linyphiidae are the key elements which describe T. tenuis 

biological control capability. The design of a web impacts the way a pest is captured, with Toft (1987) 

explaining that webs with more radial sheet threads exhibiting a finer mesh for greater prey 

entrapment, were constructed by T. tenuis in areas of high prey abundance. Linyphiidae sheet webs 

were identified by certain characteristics, with anchor points above the webs main body, possible two 

sheet layers and sheet threads being woven into a hexagon structure (Herberstein, 2011; Krink & 

Vollrath, 1997; Roberts, 1993) (Figure 4.7a & b). Sheet webs were viewed as a product of Linyphiidae 

activity unless a T. tenuis was observed under the web. This was due to similarities in the nature of 

the sheet web spun by many Linyphiidae. A web that contained a Linyphiidae that was not a T. tenuis 

was discounted from the research. Further, it was important to consider T. tenuis tendency to create 

webs at a certain height within a landscape. For example, webs woven high within the branches of a 

hedgerow were discounted, a stratum not often utilised by T. tenuis web-building (Bell et al., 2002).  

 

Figure 4.5: Upright stubble (circled 

in black). Height measurement to 

nearest 0.1 cm Field B, March 2017. 

Figure 4.6: T. aestivum height 

measured to ear, nearest 0.1 cm, 

Field C, July 2016. 



 

58 
 

 

 

 

 

 

 

 

 

Webs located were the focus of every field sampling session after the preliminary fieldwork. From the 

experimental work in summer 2016, it was identified that Linyphiidae webs are complex structures in 

dimensions and location. A robust system was required to acquire the measurements of a web found 

in the field. Small differences needed to be identified between the webs to assess subtle differences 

in potential biological control of Linyphiidae between different sample areas within the three tillage 

intensities. Each support thread, providing the external framework of the web, was measured to the 

nearest 0.1 mm. Measurements were taken with a Zukvye© Electronic Vernier Callipers 150 mm 

Carbon Fibre Body Measuring Tool, use of which is shown in Figure 4.8b. To assist in observation and 

measurement webs were illuminated with an OneNight™ 700 Trekking Head Torch with capacity of 

250 lumens (Figure 4.8a &b).  

 

 

 

 

 

 

 

 

Different methods of calculating web area were processed for accuracy and practicability within the 

field. Heron’s formula was found to be the most reliable and precise method as the web’s area was 

split into triangles ensuring no part of the web was missed. Area of triangle by Heron′s formula uses 

Figure 4.7a & b: Photographs of Linyphiidae sheet webs at NIAB field site showing sheet threads 

woven into a hexagon structure. Elevated view. 

Figure 4.8a & b: Sheet web dimensions measured Field B, March 2017. (Yellow circles identify 

anchor point of web). a = Sheet web illuminated. Lateral view. b = Web measured with Zukvye© 

electronic vernier callipers. Lateral view. (Red arrow = 31.6 mm). 
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sum of all sides (abc = √s(s−a)(s−b)(s−c) where s=(a+b+c)2) where S is the perimeter (Casio, 2017). As 

the formula used to calculate the area of a triangle required all three side lengths, internal distances 

of the web were needed. Distance from anchor point to anchor point was measured using the same 

method as support threads. This took the largest amount of time and accuracy in sampling, the web 

the essential element when analysing predator behaviour within the different tilled areas. Several, 

methods were applied to support the understanding of web construction and learn how to accurately 

record the dimensions of a web. The use of 3D computer-aided web design allowed measurements 

taken in the field to be verified (Krink & Vollrath, 1997; Qin et al., 2015). Data Collected from fieldwork 

was transferred to SolidWorks© (2017) to create 3D computer-aided designs (Figure 4.9.). The use of 

SolidWorks© was used to identify any errors in calculations. In early field sampling, a few 

measurements did not fit into the expected design when transferred to SolidWorks© and therefore in 

following sampling periods, a Viking Optical™ 10 x Folding Magnifier Glass (1.9 mm diameter) was 

used to determine the exact attachment point of a support thread to be able to measure from this 

point.  

 

 

 

 

 

 

 

 

4.3.5. Web Anchor Point Height 

The location of the webs was essential to record, as different heights of webs may intercept prey of 

different species and in different numbers. Each anchor point height of the support threads within the 

web was measured to the nearest 0.1 cm. The material (vegetation) that the sheet thread was 

anchored to was recorded. Even though measuring the height of each anchor point took time, it was 

viewed as key data to collect. Sheet webs are usually woven within a horizontal plane, however there 

were times within preliminary investigation that a web was woven at an angle to facilitate the web 

around available vegetation. Such angled webs may have affected prey capture and therefore 

reference to this was collected in anchor point height of the support thread (Batáry et al., 2008; Dennis 

et al., 2015).  

Figure 4.9: Measurements taken from field sampling and inputted into Solidworks© 2017 
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4.3.6. Migratory Behaviour 

It is important to recognise migratory behaviour in aerial dispersal of T. tenuis, as locomotion allows 

this species to move to a superior web construction site, which may be in an area with potential 

Aphididae (Bonte et al., 2002; Pekár, 2014; Simonneau et al., 2016) (Section 2.2.1.4.). Locomotion can 

identify vacating a disturbed area or abandonment of a web not meeting its intended function. Prior 

to any sampling, quadrats were observed to identify any ‘throwing’ of a dragline thread. The time for 

observation required prior consideration. It was noted that the small physical disturbance of locating 

and lying the quadrat may have created a low level of unease with Linyphiidae that are highly sensitive 

to fine movements (Simmouea et al., 2016). It was felt a period of complete calm should be applied 

to allow the normal habitat of the quadrat to resume. First, ten minutes was given to observing any 

movements of migration though it was noted if any activity occurred, it was within the first five 

minutes of observation. Five minutes was applied to assess whether any throwing was used to rappel 

(short migration) or balloon for longer migration (Figure 4.10.). This was important to assess, as 

different locomotive methods may be used in different situations. Ballooning can be a product of 

disturbance where rappelling may be used to identify a prime web-site in a small micro-habitat. The 

length of the dragline silk was a clue to the choice of locomotion, a longer dragline is required to propel 

T. tenuis over a longer distance and balloon. Preparation for ballooning generally takes more time 

than bridge threads being laid for rappelling (Thorbek 2003). Anchor point height of bridge and 

ballooning threads were measured as with support threads (Section 4.3.5.). 

 

 

 

 

 

 

 

4.3.7. Abundance and Phenology of T. tenuis 

Numbers, sex and body length measurements of T. tenuis in each sample was important data to 

acquire, to establish whether tillage affects the numbers and phenology of T. tenuis and understand 

if this may affect the biological control potential of each sample plot. Much can be gained from 

measuring T. tenuis as it has been shown that individuals with a longer abdomen are more likely to 

invade a web (Dennis et al., 2015). Male size is directly proportional to climbing speed, which may 

Figure 4.10: Bridge threads spun by a rappelling T. tenuis. (T. tenuis circled in yellow). 
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mean webs are constructed higher in a crop (Prenter et al., 2010). Identifying gender of T. tenuis within 

the sample is key, as females have been cited to eat more prey (Harwood et al., 2004). Number of 

spiderlings in each sample was also counted to reference reproduction rate (Toft, 1987). T. tenuis 

density was sampled with the use of a modified g-vac (Stihl® BG - 55 - 65) with nozzle air velocity of 

around 40 ms−1. Equipment guidance and practice of the use of the g-vac was attained at Myerscough 

College fields before commencing sampling work in the NIAB fields in Cambridge. It was essential that 

use of the equipment was comfortable with health and safety requirements carried out efficiently and 

effectively, due to lone working in Cambridge. G-vac sampling was the last activity carried out on a 

sampling plot so as not to disturb other data gathered, such as web dimensions and anchor height. 

Sampling was continuous with a slow and steady motion, the g-vac being implemented over each plant 

row and space in between the plant row once (Figure 4.11. & Figure 4.12.). The contents were 

dispensed into a white plastic trug, a clear sample tray used to analyse small quantities of the sample 

at one time (Wheater et al., 2011). 

 

 

 

 

 

 

 

 

 

 

In wet conditions, the collection bag became moist from sampling wet vegetation and therefore not 

able to collect a realistic sample. In these circumstances, T. tenuis were collected by hand searching, 

gently moving crop, loose soil and substrate to locate possible T. tenuis. Phenology of T. tenuis was 

recorded by the same method as collection via g-vac. Spiderlings were not sampled via hand searching, 

as their small size meant they were difficult to locate without causing considerable disturbance to the 

vegetation of the sample area and therefore any sample would be unrepresentative. Measurement of 

T. tenuis required precise equipment due to the small size of the animal. The first problem was 

identified as ‘stilling’ a T. tenuis upon capture to be able to measure body dimensions accurately. It 

Figure 4.11: G-vac in use for T. 

tenuis sampling, Field D summer 

2016. 

Figure 4.12: Method of T. tenuis sampling in quadrat. Green 

boxes represent plant rows. Light blue arrows represent 

forward movement in between plant rows and yellow arrows 

represents reverse movement through plant rows. 
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was observed that removing the T. tenuis to a smaller environment devoid of any other species, away 

from the plastic trug holding the contents of the g-vac, helped create a stable stilling habitat. T. tenuis 

was thus placed in a Petri dish to be measured and sexed. A hand-held magnifying glass, Viking 

Optical™10 x Folding Magnifier Glass (1.9 mm diameter) was used to ensure T. tenuis identity through 

analyse of abdominal markings (Figure 4.13a - c). This is important with spiderling identification, 

where the markings on the abdomen are present after hatching from the egg sac (Section 2.1.1.2.). 

Adult T. tenuis were determined if they had a combined cephalothorax and abdomen length over 2 

mm. Time was given to allow an active T. tenuis to settle in the Petri dish, after which body length 

(incorporating cephalothorax and abdomen lengths) were recorded to 0.1 mm with the Zukvye© 

Electronic Vernier Callipers (Figure 4.14a - c). Spiderling dimensions were not taken, due to in-field 

measurement tools unable to accurately record any differences in spiderling body lengths.  

 

 

 

 

 

4.13a - c: Species and gender identification of T. tenuis in fieldwork, Field A, November 2017. 

4.14a - c: T. tenuis left to still in Petri dish. Body length measured by Zukvye© electronic vernier callipers. 

c = Sample reads 2.2 mm for T. tenuis abdomen length. 
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4.3.8. Web Occupation  

From initial fieldwork, T. tenuis occupying a web was recorded to add to data analysing predator 

behaviour within the field (Figure 4.15a - c). An occupied web suggests recent construction of the web, 

and the prey capture potential of the web is yet to be attained. Web occupation may give information 

of courtship behaviours where a female in a web may be fecund and a male occupying a web alone 

may suggest it is a sperm web, allowing the transfer of sperm to the palps (Section 2.1.3.4.). Webs 

with no T. tenuis occupation may have been abandoned due to poor prey capture, suggesting a 

negative energy flow where energy output for web creation was not regained through prey 

consumption (Benjamin & Zschokke, 2003; Segoli et al., 2004). T. tenuis and prey within the same web 

were recorded and identified as a successful web construction in site and location, implying T. tenuis 

will be able to predate on the prey in the web. 

 

4.3.9. Prey Abundance in Webs 

In the preliminary experiment of summer 2016, all Aphididae found within the Linyphiidae webs were 

recorded. Concentrating on cereal Aphididae that cause direct damage to cereal crops was identified 

to benefit the research. Continual identification of migratory Aphididae in field examination, or 

retrieval for further observation, compromised the recording of the Aphididae that cause the most 

damage and are required to be controlled biologically by T. tenuis. The cereal Aphididae found in the 

preliminary experiment, S. avenae, R. padi and M. dirhodum are identified to cause significant H. 

vulgare damage and were the Aphididae recorded in 2016 / 2017 and 2017 / 2018 field sampling 

(Section 2.2.6.2.). S. mosellana was also considered due to appearance in preliminary fieldwork 

sampling. After positive identification it was noted that S. mosellana appearance in H. vulgare was 

possibly from the adjacent T. aestivum field. Due to S. mosellana causing damage to H. vulgare via 

grain degradation through feeding, it would be beneficial to understand whether S. mosellana 

abundance affected T. tenuis density or activity (Section 2.2.6.4.).  

Figure 4.15a - c: Female T. tenuis hanging underneath sheet webs from field sampling. Lateral view. 
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During April sampling of the 2017 season, small white fragile debris was viewed within a Linyphiidae 

web. Laboratory analysis confirmed this was Aphididae exuviae, the soft shell removed from an 

Aphididae as it transitions through the instars (Section 2.2.6.1.). This was an important element to 

measure as it shows evidence of nearby or caught Aphididae activity, for example presence of exuviae 

could indicate an Aphididae of the first instar becoming entangled in a web, however, able to escape 

through shedding of an exuviae into the next instar. Exuviae may be incorporated into the web 

through wind dispersal and therefore can be a measure of nearby Aphididae activity, and this may be 

a reason why a Linyphiidae web was woven in the vicinity.  

Spring to summer season field sampling included measuring R. padi, S. avenae and M. dirhodum, and 

S. mosellana abundance within the 1 m2 sample area, to analyse further whether prey availability 

affects T. tenuis activity in the different tilled areas (Figure 4.16. & 4.17.). Prey (cereal Aphididae and 

S. mosellana) was recorded in the g-vac sampling that was implemented for T. tenuis abundance 

(Section 4.2.7.).  

 

 

4.3.10. Alopecurus myosuroides Density 

Alopecurus myosuroides (Black-grass) is a common invasive weed prevalent on many arable farms, 

especially in the Southern regions of the UK, with warmer and drier climates (Melander et al., 2013). 

A. myosuroides density was recorded for each sample plot (Figure 4.18a & b). The incorporation of A. 

myosuroides within the sample area may have had a small effect on T. tenuis activity due to slight 

increase to landscape heterogeneity (Dennis et al., 2001; Gómez et al., 2016) (Section 2.1.3.3.). A. 

myosuroides grows at a faster pace than H. vulgare and is different in phenology, in increased height 

and with an increased abundance of tillers (Milner, 2002). This could aid web construction, providing 

another platform for support thread anchorage. This may be a piece of evidence to negate the idea 

that webs are largely constructed near sites of increased prey abundance, instead finding areas with 

increased anchorage potential. 

Figure 4.16: S. mosellana in rappel threads T. aestivum May 2018. 

(Circled in yellow). Lateral view (Red arrow = 49.7 mm). 
Figure 4.17: Colony of R. padi identified on 

Rubus fruticosus (Bramble). 



 

65 
 

 

4.3.11. Physical Features of Soil 

4.3.11.1. Soil Furrows / Seedbeds 

At time of field sampling after drilling of seed (Section 3.1.3.4.), differences were observed in the soil 

physical features, after it was noted that deeper, narrower and more defined furrows created the 

seedbed in the Conventional tilled area (Figure 4.19a) against the Direct Drill Managed (Figure 4.19b) 

and Direct Drill (Figure 4.19c) tilled areas. This may correspond to difference in soil moisture due to 

the tillage technique. Differences in soil landscape has been shown to promote changes in Linyphiidae 

activity (Alderweireldt, 1994; Samu et al., 1996). Each furrow (seedbed) was measured to the nearest 

0.1 cm in width and depth. These measurements were gained for both crops (T. aestivum and H. 

vulgare) until harvest and primary cultivation. 

 

 

 

 

 

 

 
Figure 4.19: a - c: Furrows created after seed drill. (Yellow circles show furrows). Field B, a = Conventional, 

May 2017. b = Direct Drill Managed, November 2017. c = Direct Drill, April 2018. 

Figure 4.18a & b: A. myosuroides identified in the field sites. a = Field B August 2017. b = Field C September 2017. 

(A. myosuroides circled in black). 
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4.3.11.2. Soil Clods 

After primary and secondary cultivation (Section 2.2.4. & Section 3.1.3.4.), clod height and abundance 

in sample plots were measured to discover if this element of the micro-habitat influenced T. tenuis 

activity (Figure 4.20a & b; Figure 4.21a & b). Clods were identified as man-made aggregates over 1 cm 

in dimensions of height, length and width (Ashman & Puri 2002). Following the pattern of plant height 

and upright stubble, ten clods were chosen in each sample area and their height measured from the 

ground surface to the top of the highest point of the clod. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.12. Overall 

Data collection developed as fieldwork progressed and was necessarily changed as each crop went 

through progressive growth stages and cultivation activity occurred. For example, in periods where 

fields were fallow, cultivated or crop was in early GS, straw mass was measured in addition to total 

amount of upright stubble present. In times of crop, plant height, density and A. myosuroides density 

was measured. Further information gained at the time of cultivations and seeding, included measuring 

physical structures of soil (furrows and clods). 

Figure 4.20a & b: Soil clods formed after primary cultivation in Field B 2018. a = Conventional. b = Direct Drill Managed. 

Figure 4.21a & b: Soil clods formed after secondary cultivation in Field B 2018. a = Conventional. b = Direct Drill Managed. 
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4.3.12.1. In-Between Sampling Periods 

It was necessary to sanitise all equipment used in between sampling period to remove soil and debris. 

Kilco© Virex™ Disinfectant (dilution rate 1:300), applied via a spraying system was used at Myerscough 

College to wash all equipment. Attention was given to the bag (made of woven nylon) that collected 

the material sampled by the g-vac. This was to ensure removal of all fauna and flora remains and 

debris that may have impeded air flow. 

4.3.12.2. Data Collection and Analysis in H. vulgare and T. aestivum 

It was viewed important to collect data from both crops as they are both grown widely in the UK, both 

having a place in global markets. T. aestivum growth is slower than the fast development of H. vulgare 

(Section 2.2.1.). Therefore, each crop involves different times of harvest, cultivation and drilling. It was 

thought that these differences in growth and timing of farm activities could alter the predator 

behaviour of Linyphiidae and T. tenuis and affect capacity to biological control pests (Section 3.2.). 

After preliminary data analysis, it became clear that there were more similarities than differences of 

T. tenuis predator dynamics within T. aestivum and H. vulgare. It was considered that it would be 

beneficial to this research to concentrate on one cereal and be able to explore in depth T. tenuis 

behaviour within the life cycle of the one crop.  

After analysing NIAB’s crop rotation in the fields there was one field that since 2016, when preliminary 

work began, had grown the same crop of H. vulgare, Field B. When the images of the NIAB fields were 

viewed from Google Earth© it became clear that Field B housed the most similar dimensions for areas 

of differing tillage intensity (Figure 3.5b). The other fields in the investigation held differences in areas 

for each tillage intensity which could likely skew results. Field A clearly shows Conventional of a greater 

area than the Direct Drill Managed area, for example (Figure 3.5a). This may allow any differences in 

T. tenuis abundance and activity measured to be linked with area of the soil tillage intensity instead 

of the intensity of tillage itself. From the above information it was determined that data represented 

in this thesis would be presented from Field B, cropped with H. vulgare in each season sampled (March 

2017 to November 2018). 

 

 

 

 



 

68 
 

4.4. In-field Experiment: Addition of Upright Stubble to Conventional Tillage Trials 

4.4.1. Introduction 

Upright stubble left intact thorough minimal or direct drill tillage can increase the abundance of T. 

tenuis, its activity in web-spinning and short-range dispersal in rappelling (Bianchi et al., 2017; Holland 

& Reynolds, 2003; Witmer et al., 2003). From this, a useful approach, was to investigate whether the 

soil under the different tillage practices had a direct effect on T. tenuis activity and abundance, or if 

these variables were affected by the above ground habitat created as a result of each tillage practice. 

From here an in-field experiment was designed where upright stubble, of a certain height and density, 

was placed into an area of Conventional tillage, which had undergone secondary cultivation. This 

experiment underwent two prototype trials to assess the methodology and develop a well-rounded 

design.  

4.4.2. Prototype One: Ploughed Field - Myerscough College - September 2017 

A first experiment was set up in a T. aestivum field at Myerscough College in September 2017. The 

field had been harvested and ploughed just prior to the experiment. Three sample quadrats of 2500 

cm2 were set up for each tillage type. A 50 cm border was established between each quadrat and 

sample areas not enclosed, to simulate the field trials of NIAB (Figure 4.22.). It was considered a 

sample size of 1 m2, as sampled in the field, would take much time to construct with little added value. 

There was no enclosure, as the aim of this experiment was to simulate the field where T. tenuis have 

the freedom to choose to be within a habitat or not.  

At this stage, upright stubble that had been collected from the field had been degrading and its 

integrity was lost. It had been collected on dates where there had been heavy rainfall. The need to cut 

the stubble to a corresponding height to that of the NIAB field and for the stubble to be upright when 

inserted into the experimental field, led to substituting bamboo canes (6 mm in diameter) (Figure 

4.24a - c). Canes used, corresponded to upright stubble density collected in March 2017 in Field B 

where all cultivations had taken place and was yet to be seeded with the H. vulgare (Figure 4.24a - c). 

The bamboo was cut to the mean height found in the different tilled areas, plus 1 cm to allow insertion 

into the soil. There was some thought applied to how the canes should be arranged, noting the canes 

in each tillage intensity, Conventional for example, was required to be arranged the same. From field 

observations the cluster size of upright stubble varied immensely depending on how the angle of the 

harvester had struck the cereal heads, however it was clearly shown that cluster size was on average 

less than that of Direct Drill Managed and Direct Drill, the latter two intensities having similar cluster 

sizes (Morris et al., 2010). From this, the bamboo was set to represent the stubble as it was in the field 
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with the bamboo being incorporated into clusters of two to four for Conventional and two to six for 

Direct Drill Managed and Direct Drill (Figure 4.23.). Bamboo number in the cluster was randomly 

generated (Random.Org, 2018). The clusters were set 2 cm apart horizontally within the plant rows 

and 15 cm was set vertically between each row of bamboo clusters (Figure 4.22 & 4.24c). Dimensions 

of three female T. tenuis were recorded (same method as dictated in Section 4.3.7.) and these animals 

were introduced to the centre of each sample plot, to determine whether body length and mass 

influenced web construction to a higher degree than upright stubble availability and whether a 

decrease in upright stubble promoted T. tenuis dispersal. This density (three per plot), corresponded 

to that of T. tenuis identified from the field after secondary cultivation. It was theorised that placing 

measured T. tenuis into the experiment would potentially allow results, web area for example, to be 

related to the dimensions of the T. tenuis assigned. 

 

 

 

 

 

 

 

Figure 4.22: Schematic diagram of set-up of prototype 

one - ploughed field at Myerscough College, September 

2017, of addition of upright stubble to Conventional 

tillage trials. (Green boxes are upright stubble clusters). 

Figure 4.23: Upright stubble was counted in field 

sampling and cluster design noted for prototype one - 

ploughed field at Myerscough College, September 

2017, of addition of upright stubble to Conventional 

tillage trials. (Clusters circled in yellow). 

Figure 4.24a - c: Addition of upright stubble to prototype one - ploughed field at Myerscough College, September 

2017, of addition of upright stubble to Conventional tillage trials. (Cluster for Conventional in black circles). a = 

Conventional, b = Direct Drill Managed, c = Direct Drill. 
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4.4.3. Prototype Two: NIAB Field B - After Secondary Cultivation - November 2017 

After the set-up was established at Myerscough College, the experiment was trialled at the NIAB fields 

(Section 4.3.2.). The conventional area of Field B housed the experiment in November 2017 (Figure 

4.25a - c). The primary and secondary cultivations had taken place at this stage plus the glyphosate 

spraying (360 g L-1 Rodeo® at application rate 3.1 L ha-1) (NIAB TAG, 2017). Unlike the Protype One, T. 

tenuis were not added into the sample plots. It was seen that this experiment should use the T. tenuis 

resources in the field only, as these are the resources that are available to provide biological control. 

It was also identified that there were no significant correlations between the measurements gained 

of the T. tenuis in Prototype One with dimensions of sheet webs calculated. Further, it was impossible 

without highlighting the T. tenuis first, if any T. tenuis identified at the end of the experiment was 

indeed from the original stock. The sample plots were in a random area, generated via the same 

method discussed for field sampling in Section 4.2. 

 

 

 

 

 

 

There appeared to be significant use of the bamboo canes at the outer reaches of the sample area 

within Direct Drill in Prototype One (Section 4.4.2.). To identify if there was any edge effect to 

Linyphiidae activity, the clusters of bamboo in Direct Drill were labelled from 1 to 16 starting from the 

south-west aspect of the sample plot (Figure 4.26.). 

 

 

 

 

 

 

 

Figure 4.25a - c: Set-up of prototype two, NIAB Field B, Cambridge, November 2017, of addition of upright 

stubble to Conventional tillage trials. a = Conventional, b = Direct Drill Managed, c = Direct Drill. 

Figure 4.26: Schematic diagram showing the 

numbering system for each group of upright 

stubble for Direct Drill. Prototype two, NIAB Field 

B, Cambridge, November 2017, of addition of 

upright stubble to Conventional tillage trials. 
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It was noted that the bamboo canes needed to be disposed of and actual upright stubble from the 

field used. This required collection well in advance, to ensure upright stubble had a chance to dry and 

its integrity remain intact. Bamboo canes were too thick and uniform to act as upright stubble for 

Linyphiidae activity to simulate that of the field. The impact of the numbering system of the groups of 

stubble to identify any edge effect to the results was void. There was no clear indication if the outside 

cluster of stubble was favoured as a web-building material than the inside clusters. This was negated 

from the final experiment; however, observations were still made if there were notable differences in 

the clusters used. Prototype Two, where T. tenuis were not implemented from the start, was 

successful. T. tenuis identified at the end of experiment were measured as in Section 4.3.7. This 

supported the idea that there was free movement within the experiment, and it could be identified 

whether the addition of upright stubble encouraged the settlement of T. tenuis not previously present 

in the sample area.  

4.5. Hedgerows Opposite Soil Tillage Intensities 

4.5.1. Introduction 

Field margins act as a refugia, as T. tenuis do not complete their life cycles in cultivated fields, finding 

shelter for refuge and development of egg sacs (Welch et al., 2011). T. tenuis migrate to field edges 

and shelterbelts when the field is uncultivated as increased vegetation offers habitat to potential prey. 

Therefore, it was important to sample the field margins of the NIAB fields to fully understand predator 

and prey dynamics of T. tenuis within the NIAB fields, cultivated to different levels of intensity. Each 

field is surrounded by a 1 m grass strip that is mowed twice annually. A hedgerow forms the 

surrounding boundary to each side of the NIAB fields (Figure 4.1.). The vegetation of the grassland 

strip was, at most times of sampling, noted to be too short and sporadic to support high Linyphiidae 

activity (Hof & Bright, 2010) (Figure 4.27a & b). The grass strip was not seen to be a refuge habitat. 

From this information, the hedgerow was viewed as the focus when sampling the field margins.  

Figure 4.27a & b: Field margins identifying mowed with sporadic vegetation growth. a = Field A June 2017. b = Field 

B April 2018.   
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A vegetation survey was carried out on the hedgerows that were sampled (Wheater et al., 2011). Each 

hedgerow incorporated these floral species: Alnus glutinosa (Alder), Anthriscus sylvestris (Cow 

Parsley),  Crataegus monogyna (Hawthorn), Dactylis glomerata (Cocksfoot), Lolium multiflorum Lam 

(Italian Ryegrass), Poa trivialis (Rough Meadow Grass), Rosa canina (Dog Rose), Rubus fruticosus 

(Brambles), Sambucus nigra (Elder) and Urtica dioica (Common Nettle) (DEFRA, 2011; Rose, 1991). 

 

4.5.2. Method Development 

4.5.2.1. Choice of Hedgerow  

Only one hedgerow was sampled in each field, the hedgerows that bordered each tillage (Figure 4.28.). 

Two hedgerows bordered only one tillage treatment, Conventional and Direct Drill Managed which 

would not identify any differences in T. tenuis activity within each tilled area (Figure 4.28.). It was 

determined that sampling only one of these two available hedgerows kept data consistent and 

relevant. As with the field areas, the hedgerows sampled could be known in depth, from species it 

supports to areas of varying vegetation density. 

 

 

 

 

 

 

 

 

 

4.5.2.2. Data Collection 

The sampling area began 1 m away from the field edge (Figure 4.1.). The length of the hedgerow in 

each tillage was recorded via the Amtech® P1910 Measuring Wheel and a sample point was randomly 

selected and located from west to east. The sample size was 1 m2 following the field sample quadrats 

(Figure 4.29a - c & Section 4.2.). If a ditch prohibited sampling from extending 1 m into the hedgerow, 

a new location was randomly selected.  

Figure 4.28: Rectangles identifying hedgerows of Field B 

bordering all soil tillage intensities. (Yellow rectangle = 

hedgerow chosen for sampling). 
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Sampling consisted of collecting similar data as within the field, with respect to web dimensions, web 

occupation and g-vac sampling (Section 4.3.). The distance from the field edge was an important 

feature to survey, it may have shown the migration distance of a Linyphiidae into the hedgerow and 

its relation to prey availability. Only one anchor point of each web was required to identify migration 

distance, that closest to the field edge was recorded for each web (Figure 4.30a). Numerous methods 

were tested to establish this, first with a laser tape measure being shone from the anchor point onto 

a white sheet at a given distance away from the field edge. This was deemed too inaccurate, as it was 

difficult to place the measure exactly at the anchor point. A simpler approach was adopted where 

another 1 m rule was placed just in front of the anchor point. This ruler intercepted the metre rule of 

the sample that ran vertically into the hedgerow, distance of anchor point was read on the vertical 

ruler to 0.1 cm (Figure 4.30b). From all measurements, 1 m was added to incorporate the distance 

from the field edge to the start of the sample area (Figure 4.1.).  

 

Figure 4.30a & b a = Anchor point closest to field edge identified and marked with meter rule. (Anchor point circled in 

yellow). b = Distance measured on metre rule of quadrat laid into hedgerow. 

Figure 4.29a & b: Sample areas in hedgerows opposite soil tillage intensities, Field B. a = November 2017. b = August 2017. 
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4.5.2.3. Hedgerow Vegetation Density 

Through literature and initial fieldwork of summer 2016 and early 2017, it was identified that the 

vegetation density of the hedgerows of the NIAB fields may have an interaction with Linyphiidae and 

T. tenuis activity (Garratt et al., 2017; Pfister et al., 2015; Rosas-Ramos et al., 2018). To be able to 

assess this, the vegetation density of sample areas within the hedgerows was measured at the time 

of sampling. Density was measured using the computer software ImageJ©. A photograph was taken at 

1 m away. Zoom was not used, to ensure the same focal length in every photograph. To enable no 

disturbance of additional vegetation from the field beyond, the photograph was taken lying on the 

ground, with the camera on average 30 cm from the ground. A tripod was not used for this height. 

Several photographs were taken at each sample plot, reviewing each to ensure the one used was taken 

with a steady and level camera. It was observed that not all the hedgerow width could be incorporated 

into one photograph in this position. Two photographs were obtained for each plot with the use of a 

1 m rule identifying the sample plot. The centre of the ruler was marked to establish a 50 cm width 

section of the hedgerow (Figure 4.31a). Any excess vegetation not within the 50 cm marked was then 

cropped from the photograph before being processed by ImageJ© (Figure 4.31b). 

 

 

 

 

 

 

 

 

The photograph was cropped using Paint3D® and saved as a JPEG. The photograph was turned into an 

8-bit binary image via ImageJ© (Figure 4.32a). A tone threshold was then identified and adjusted to 

ensure all vegetation in the photo was recognised (Figure 4.32b & c). The picture was then turned into 

a binary image (Figure 4.32d). A known measurement, the 50 cm, was placed into the programme to 

set a scale to allow the pixels in the photograph to relate to a measurement (Figure 4.32e). A selection 

was then created, and area measured (Figure 4.32f). It was key to understand which selection was 

being measured, dark for vegetation or light for sky. To switch between both the selected area was 

inverted. 

Figure 4.31a & b: Hedgerow sample Field B a = 50 cm marker (circled in yellow) identifying where 

the photograph should be cropped for ImageJ©. b = Cropped photograph to be used with ImageJ©. 
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As sampling of the hedgerows continued, it became clear that T. tenuis and Linyphiidae activity was 

focused in the foreground vegetation of the grasses rather than in the branches of the shrubs. Within 

the photographs of the entire hedgerow profile, the foreground vegetation density could not be 

measured (Figure 4.33a & Figure 4.35a). To solve this, a white background was created from a clothes 

horse measuring 144 cm in height and 60 cm in width (Figure 4.33b & c, Figure 4.34a & b & Figure 

4.35b). A white sheet was draped over and secured by plastic tags to make tight and remove creases. 

This made an easily moveable white background that was high enough to remove any background 

disturbance. The width of the clothes horse at 60 cm was 40 cm less than the sample plot of 1 m. Two 

photographs were taken of every hedgerow sample because of this. The metre rules and measured 

markers on the sheet were used to allow 10 cm to be cropped from either side of the white sheet as 

described in Figure 4.33b & c. The result is shown in Figure 4.34a & b. 

Figure 4.32a - f: Process of measuring hedgerow density sample Field B with ImageJ©. a = Converting image to 8-bit grey 

scale. b = Adjusting tone threshold. c = Image after threshold manually corrected. d = Image converted into binary after 

threshold established. e = Setting the scale with the known length of 50 cm. Scale line highlighted in yellow. f = Selection 

created from which area of black (vegetation) can be measured in cm2. 
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To validate ImageJ© calculation of the area, using the tone threshold scale to achieve the binary image, 

the first data set from the hedgerows of Field B May 2018 was calculated by manually drawing around 

each aspect of vegetation (Figure 4.36.). This created a selection where, with the known length, an 

area could be identified. There was an average ±5% difference in hand-drawn selection and tone 

threshold scale. From this, the tone threshold scale was used thereafter. 

Figure 4.33a - c: Process of establishing a white background for 1 m hedgerow samples. a = Sample without 

white background. b & c = Using the meter rule and marker to remove 10 cm of white background from 

right and left side. Red arrows portray 10 cm on white sheet. Yellow arrows portray 10 cm on meter rule. 

Figure 4.34a & b: Cropped photographs of hedgerow 

sample from Figure 4.33a & c used to measure 

vegetation density with ImageJ©. 
Figure 4.35a & b: a = Before white background 

was added. b = After white background was 

added. 
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4.5.2.4. T. tenuis and Linyphiidae Egg Sacs 

From October to February, in the H. vulgare fields, the two hedgerows bordering all soil tillage 

intensities were sampled for the presence of T. tenuis and Linyphiidae egg sacs (Figure 4.2. & Figure 

4.37a - d). The presence of egg sacs is a measure of fecundity and reproductive potential. High egg sac 

density equates to increased hatchlings which may increase the biological control capability of the 

next generation (Thorbek, 2003). This was an important factor to measure against the different soil 

tilled areas. The type of soil tillage intensity that the egg sac was located opposite, was noted.  

The height of the attachment point of the egg sac was measured to 0.1 cm. This was to aid 

understanding in whether Linyphiidae establish egg sac position in relation to threat of predation, an 

egg sac higher within the hedgerow is seen as having more protection, as the trade-off is that it takes 

more energy for egg sacs creation (Lowe et al., 2014; Segoli et al., 2004; Vollrath, 1986). Dimensions 

of unhatched egg sac, height and width, were recorded to the nearest 0.1 cm to quantify reproductive 

output potential for each tilled area. Hatched egg sacs are often elongated where the protective silk 

has been torn by spiderlings hatching (Dondale, 2000) (Figure 4.37d).  

The entire length of the hedgerow was surveyed for egg sacs observed via a slow-paced walk 

positioned in the grassland area between the field edge and hedgerow (Figure 4.1.). T. tenuis could 

not be assigned to an egg sac, as neither egg sacs were observed during construction by T. tenuis nor 

hatching T. tenuis spiderlings. Several Linyphiidae create similar egg sac formations to T. tenuis 

(Dondale, 2000). Egg sac abundance in this research is a feature of Linyphiidae fecundity in general. 

Each egg sac identified was investigated to identify if spiderlings had hatched or eggs were still 

present, via gentle examination of the egg sac. Care was taken not to disturb the integrity of the egg 

sac and the eggs inside (Figure 4.37a). 

Figure 4.36: Vegetation manually selected in ImageJ© to verify the use of the threshold scale in ImageJ©. 
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4.6. Meteorological Information 

4.6.1. Main Field and In-Field Experiment: Addition of Upright Stubble to Conventional 

Tillage Trials  

Meteorological information (temperature and wind speed and direction), appropriate to location, was 

obtained from the Met Office© weather app for Android at the start of each field sampling period 

(Section 4.2.), and for the Addition of Upright Stubble to Conventional Tillage Trials (Section 4.4.). It 

became clear that advanced meteorological data was required to assess wind speed at the sample site 

as this may affect the ability of a T. tenuis to balloon and reduce dispersal rate (Thomas & Jepson 1999; 

Thomas et al., 2003), which may have implications to T. tenuis ability to predate on Aphididae. Wind 

speed was measured to the nearest 0.1 mph (converted to kmh-1) with the anemometer, Cateye 

Velo®. Wind speed was measured in each sample plot prior to sampling and after analysis of migratory 

T. tenuis (Section 4.3.6.). In fallow fields and for the in-field experiment, the anemometer was placed 

vertically 15.5 cm, the height of the anemometer, above the ground. When in crop, the anemometer 

was held vertically above the tallest plant in the sample area. Care was taken when using the 

anemometer to not disturb the same area. 

Figure 4.37a - d: Linyphiidae egg sacs identified in sample hedgerows Field B after secondary cultivation 2018. a = Open 

egg sacs showing unhatched eggs. b & c = Intact egg sacs with eggs inside. d = Broken egg sac where eggs have hatched. 
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4.6.2. Hedgerow Opposite Main Field 

The hedgerow density varied within each sample area, which could alter the level of wind speed that 

passes through the hedgerow. To capture this, three wind speed measurements were taken within 

each sample area (Figure 4.38.). To measure the level of wind speed traversing through the hedgerow, 

a measurement was taken at the field edge and 0.5 m away from the field edge into the field margin. 

Level of air flow inside the hedgerow was taken at ground level. All measurements with the 

anemometer were taken after other sampling was complete. 

 

 

 

 

 

 

 

 

 

 

 

 

4.7. Collection of Photographic Evidence 

Images were identified as an essential element of data collection. Within early fieldwork, photographs 

were obtained by an android phone, however, to be able to use photographs as evidence it became 

apparent that photographs of a high quality were required. After preliminary fieldwork, all 

photographs in the field, and presented within this thesis, were taken with a Sony® HDR CX240 Full 

HD Camcorder with 27 x optical zoom and 320 x digital zoom. A period of training was undertaken to 

obtain precise photographs. 

 

 

Figure 4.38: Schematic diagram of three points where wind speed was measured when sampling the hedgerow 

opposite main field. 
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Chapter Five 

5.0. Fieldwork - 2016 / 2017 Season and 2017 / 2018 Season 

This Chapter is divided into three Sub-Chapters as referenced in Section 1.2., Page 2. The first (5.1.) 

reports the findings of measurements taken from the NIAB field at the fieldwork site in Childerley, 

housing the areas of differing soil tillage intensity (Section 3.0.). The second (5.2.) discusses data 

collected from an in-field experiment, where upright stubble was applied to land which had undergone 

Conventional primary and secondary cultivation (Section 3.1.3.4.). The final Sub-Chapter (5.3.) 

addresses T. tenuis interactions within the hedgerows that are opposite the NIAB field referenced in 

Figure 4.28., Section 4.5.2.1., Page 72. 

Sub-Chapter Five One 

5.1. Main Field  

5.1.1. Introduction 

T. tenuis activity recorded during both years of sampling followed the growth of the commercial cereal 

crop H. vulgare from seed to harvest over 2016 / 2017 and 2017 / 2018. Field sampling was carried 

out after primary and secondary soil cultivation, glyphosate application and drilling of seed for the 

following crop (Table 3.1., Section 3.1.3.3., page 50). Seeding took place in April and harvest was in 

mid-July.  

5.1.2. Aims and Specific Objectives 

5.1.2.1. Aims 

Sampling within the main field occurred to address Research Aims 1 - 4 presented in Section 1.2., Page 

2. 

1. Identify the potential biological control by T. tenuis of Aphididae and S. mosellana within 

different intensities of tillage in an arable crop.  

2. Identify any differences in extended phenotypes of T. tenuis within tillage practices, e.g. web 

dimensions and bridge thread length. 

3. Understand whether T. tenuis behaviour is stimulated by the presence of Aphididae and S. 

mosellana. 

4. Comprehend if a certain level of landscape heterogeneity affects T. tenuis ability to predate 

on Aphididae or S. mosellana. 
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5.1.2.2. Specific Objectives 

Specific objectives were to: 

• Measure behavioural changes under different tillage practices, e.g. measure migratory 

patterns, and consider how they affect T. tenuis ability to capture Aphididae. 

• Assess potential differences in extended phenotypes of T. tenuis within tillage practices, e.g. 

measure web dimensions and architecture. 

• Measure Linyphiidae web location in anchor height and anchor materials, within the different 

tilled areas, including T. tenuis web occupation, and relate to possible T. tenuis prey capture 

interactions. 

• Identify and quantify crop pest abundance amongst crop and prey capture rate in Linyphiidae 

webs in areas of differing soil tillage intensity. 

• Quantify variables associated with the landscape of the different tilled areas, e.g. upright 

stubble density, and use this to address how landscape homogeneity / heterogeneity may 

affect T. tenuis ability to predate on crop pests. 

 

5.1.3. Methodology 

5.1.3.1. Field Sampling 

The methods used were exactly as discussed previously for method development of field sampling 

(Section 4.2.).  Each of the nine sample sites (each visit) were located with an Amtech® P1910 

Measuring Wheel. 

Table 5.1.1. describes sampling visits carried out on the NIAB Field B and the relevant hedgerow 

between 2016 / 2017 and 2017 / 2018 seasons. Data collected from these visits is the basis of the 

results in this thesis but does not include any preliminary fieldwork of Summer 2016 where initial data 

was collected.  

The ‘Cultivation Stage / Farm Activity’ (Table 5.1.1.) describes any activity that significantly changed 

the landscape heterogeneity of the field (cultivations for example) or activity which occurred within 

one week before the sampling visits (herbicide sprays) that may have affected Linyphiidae activity 

when data was collected. It has been identified by Bell et al. (2002) and Woolley et al. (2016) that T. 

tenuis, though sensitive to disturbance, can recolonise and re-inhabit an area within a few days of 

disturbance (Section 2.1.3.3.). 

Growth Stage (GS) represents the cereal growth that had occurred prior to sampling (Section 2.2.1.). 
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Visit Year Month Season 
Growth Stage 
(GS) of Plant  

Cultivation Stage / Farm Activity 

1 2017 March Spring Fallow - 

2 2017 April Spring GS 11 - GS 15 Propino™ H. vulgare drilled. 

3 2017 May Spring GS 33 - GS 37 -  

4 2017 June Summer GS 55 - GS 61 -  

5 2017 July Summer GS 83 - GS 87 -  

6 2017 August Summer Fallow 
After primary cultivation, six days 
after action of sub-soiler. 

7 2017 September Autumn Fallow 
After secondary cultivation, two days 
after last action of disc harrow. 

8 2017 October Autumn Fallow 
One day after Glyphosate 360 Rodeo® 
spray. 

9 2017 November Autumn Fallow -  

10 2017 December Winter Fallow -  

11 2018 January Winter Fallow -  

12 2018 February Winter Fallow -  

13 2018 March Spring Fallow -  

14 2018 April Spring GS 11 - GS 15 
Propino™ H. vulgare drilled, five days 
after Glyphosate 360 Rodeo® spray. 

15 2018 May Spring GS 33 - GS 37 
Six days after Compitox Plus (broad 
leaved herbicide) spray. 

16 2018 June Summer GS 61 - GS 65 -  

17 2018 July Summer GS 83 - GS 87 -  

18 2018 August Summer Fallow 
Immediately after primary cultivation. 
Field sampled as soon as sub-soiler 
left field. 

19 2018 August Summer Fallow 
After primary cultivation. Twenty-four 
hours after action of sub-soiler. 

20 2018 September Autumn Fallow 
After secondary cultivation, five days 
after last action of disc harrow. 

21 2018 October Autumn Fallow -  

22 2018 November Autumn Fallow 
One week after Glyphosate 360 
Rodeo® spray. 

 

5.1.3.2. Data Collection 

Data collection commenced within each 1 m2 field sample area (n = 9, 3 from each soil tillage area) at 

every field visit. Measurements were taken in the order specified in Table 5.1.2 and relate to method 

development work in Section 4.3. Webs counted were viewed as a product of Linyphiidae activity as 

species identification relating to web design was uncertain unless a web was occupied by a T. tenuis 

(Section 4.3.4.). Each measurement recorded was assigned the tillage intensity (Conventional, Direct 

Drill Managed, Direct Drill) where the sampling took place. 

 

Table 5.1.1: Sampling visits of NIAB Field B and relevant hedgerows, incorporating farm activity one week prior to visit. 



83 
 

 Measurement Taken 
Months 
Measured 

Relation to T. tenuis Activity 

1 
Number of T. tenuis rappelling or 
ballooning 

All 
T. tenuis migration in / out of 
habitat. 

2 Wind speed (km-h) All 
How wind velocity relates to T. 
tenuis abundance / activity. 

3 Number of bridge threads All 
Frequency of T. tenuis 
locomotion / migration. 

4 Anchor point height of bridge threads (cm) All 
Height locomotion / where 
migration is occurring. 

5 Attachment material for bridge threads All 
Material facilitating locomotion / 
migration.  

6 Number of webs All Frequency of web-building. 

7 Support thread length (cm) All Quantify web area. 

8 
Anchor point height of support threads 
(cm) 

All Height web-building is occurring. 

9 Attachment material for support threads All 
Material facilitating web-
building. 

10 Number of T. tenuis within web All 
How web occupation relates to 
habitat and prey abundance. 

11 Number of prey within web All Prey capture rate via web. 

12 Plant height (cm) April - July 
How height affects T. tenuis 
abundance / activity. 

13 Plant density (Nom-2) April - July 
How density affects T. tenuis 
abundance / activity. 

14 Volunteer plant density (Nom-2) Aug - Feb 
How density affects T. tenuis 
abundance / activity. 

15 Upright stubble density (Nom-2) Aug - April 
How density affects T. tenuis 
abundance / activity 

16 A. myosuroides density (Nom-2) May - July 
How density affects T. tenuis 
abundance / activity 

17 Soil clod height (cm) Aug - Nov 
How height effects T. tenuis 
abundance / activity 

18 Furrow width /depth (cm) All 
How dimensions affect T. tenuis 
abundance / activity 

19 T. tenuis abundance quantified 
All How abundance relates to 

habitat and prey availability. 

20 
T. tenuis body dimensions (abdomen & 
cephalothorax length (mm)) 

All 
How dimensions relate to habitat 
and prey availability. 

21 
Prey identification and abundance 
quantified 

All 
How prey quantity relates to 
habitat and T. tenuis abundance / 
activity. 

 

 

 

Table 5.1.2: Measurements taken on each fieldwork sampling period for main field from Table 5.1.1. and its relation to 

T. tenuis activity. 
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The final methodology incorporating all measurements mentioned above followed the steps below. 

1. Five minutes observation of the undisturbed 1 m2 sample area for rappelling or ballooning T. 

tenuis. 

2. Wind speed was measured to the nearest 0.1 mph (converted to kmh-1) with the anemometer, 

Cateye Velo®. In fallow periods the anemometer was placed vertically 15.5 cm, the height of the 

anemometer, above the ground. When in crop, the anemometer was held vertically above the 

tallest plant in the sample area. 

3. Any bridge threads were counted, and length measured to the nearest 0.1 mm with Zukvye© 

Electronic Vernier Callipers 150 mm Carbon Fibre Body Measuring Tool. 

4. Material: plant or straw for example, used for bridge thread attachment was recorded. 

5. Linyphiidae sheet webs were recognised due to the horizontal plane and hexagonal mesh 

incorporating the internal structure and quantity established. 

6. Length of the support threads of the external web structure was measured to the nearest 0.1 mm 

with Zukvye© Electronic Vernier Callipers 150 mm Carbon Fibre Body Measuring Tool. 

7. Material: plant or straw for example, used for support thread attachment was recorded. 

8. Contents of webs inspected. Quantity of T. tenuis within webs were recorded along with gender. 

Prey quantity within webs recorded included the cereal Aphididae M. dirhodum, R. padi and S. 

avenae, and S. mosellana. Aphididae exuviae were recorded once identified using the handheld 

magnifying glass, Viking Optical™ 10 x Folding Magnifier Glass with 1.9 mm diameter. 

9. Between April and July when H. vulgare was in crop, plant density was affirmed via counting all 

individual stems within the sample area. Between September and February, volunteer crop 

density was calculated in the same way. 

10. Ten randomly chosen H. vulgare plant heights were measured from base of stem to top of shoot 

within GS 11 - GS 15 in April. Height was then measured from base of stem to top of flag leaf 

within GS 31 - GS 37 in May, then from June onwards after ear emergence of GS 51, plant height 

was measured from base of stem to the top of emerging ear. Height was measured to 0.1 cm with 

the use of a metre rule. 

11. Upright stubble, lying above the horizontal axis and fixed to the soil, density was calculated by 

individually counting each stubble within the 1 m2 sample area. 

12. Straw / loose plant residue was collected in its entirety from between each crop row and placed 

into pre-labelled plastic freezer bags. Material was then measured on a balance to 0.01 g within 

48 hours before material began to degrade. 

13. A. myosuroides density, if present, was attained by counting each plant within the 1 m2 sample 

area.  
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14. After soil cultivations had taken place, the height of 10 randomly chosen soil clods, soil aggregates 

over 1 cm3, was confirmed to 0.1 cm with the use of a metre rule. 

15. After cultivation and action of direct drill each furrow, trench incised for seeding, width and depth 

were measured in the 1 m2 sample area and a mean ascertained. A metre rule was used for the 

measurements collected to 0.1 cm. 

16. A Stihl® BG – 55 – 65 g-vac was applied to each sample area to determine T. tenuis and prey 

density. The g-vac was moved steadily up and down crop rows and areas in between, passing 

each area only once. Contents were then dispensed into a white plastic trug. 

17. T. tenuis were removed and placed into Petri dishes and left still on the ground for 5 minutes. 

When T. tenuis were still, correct identification and gender were assigned with the use of the 

Viking Optical™ 10 x Folding Magnifier Glass with 1.9 mm diameter. Body dimensions 

(cephalothorax and abdomen length) were recorded to 0.1 mm with the Zukvye© Electronic 

Vernier Callipers 150 mm Carbon Fibre Body Measuring Tool. 

18. T. tenuis, after correct identification, if body length < 2 mm were classed as spiderlings and 

abundance recorded. 

19. Cereal Aphididae (M. dirhodum, R. padi and S. avenae) and S. mosellana, after correct 

identification with the Viking Optical™ 10 x Folding Magnifier Glass with 1.9 mm diameter if 

needed, were counted from the white plastic trug and placed into a separate container to negate 

a specimen being counted twice. 

 

5.1.4. Statistical Analysis 

5.1.4.1. Normality Testing 
 

Several steps were taken to understanding whether a dataset held normal or non-normal distribution. 

A histogram set with normal fit was used firstly to understand the overall shape of the distribution of 

data. Level of skew (level of asymmetry within the distribution) and kurtosis (distribution of outliers 

in the dataset altering the height of the bell curve) were analysed. If a standard bell-shaped curve was 

established the data was thought to have normal distribution (Field, 2009; Hawkins, 2014; Wheater et 

al., 2011).  
 

Secondly the use of a probability plot (quartile to quartile plot) was used to plot the percentage value 

of each data point. Percentage value position about the trend line was observed. Non-normal 

distribution was assumed if a high percentage of points fell above or below the trend line. Further 

percentile lines, dividing the quartiles, were viewed to understand discrepancy of the distribution from 

the trend line (Ghasemi & Zahediasl, 2012; Field, 2009; Khan, 2013). 
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A normality test was then utilised. Anderson-Darling test was used due to its dealing with critical 

values in the distribution and placing weight to the tails (the ends of the bell curve in the histogram 

where frequency becomes smaller). P-value α was set at 0.05. If <0.05, the distribution was found to 

be significantly different from normal distribution. Further, the null hypothesis of normal data was 

rejected (Khan., 2013; Jäntschi & Bolboacă, 2018). Where datasets were large it was considered that 

the Anderson-Darling test may become too sensitive and show significance in favour of non-normal 

distribution when only slight deviations from the trend line may exist (Field, 2009; Jäntschi & Bolboacă, 

2018).  
 

If  significance was assumed with the Anderson-Darling test, however doubts rose on the distribution 

presented on the histogram and probability plot, especially in larger datasets, the Ryan-Joiner test 

(similar to Shapiro-Wilk test) was utilised to compare results. This is a useful test due to calculating 

the correlation between the actual data points and the score the data would hold in normal 

distribution (Ghasemi & Zahediasl, 2012; Jäntschi & Bolboacă, 2018; Yap & Sim, 2011). Here the test 

statistic is a correlation coefficient (0 - 1), a value close to one assumes normal distribution in the data. 

Further the P-Value α is set at 0.10, higher than Anderson-Darling test, if the P-Value is <0.10 the null 

hypothesis is rejected and distribution within the dataset was assumed significantly different from the 

normal distribution (Ghasemi & Zahediasl, 2012; Khan 2013).  
 

These steps gained confidence in acknowledging whether a dataset was classed as non-normal and 

non-parametric tests were therefore run.   

 

5.1.4.2. General Statistics 

Through normality testing, all data was found to be non-normal in this Chapter (Section 5.1.4.1.).  

Kruskal-Wallis Test was run as a one-way test due to no extreme outliers found (Hawkins, 2014). 

Software used was Minitab18©. Dunn’s multiple comparison test was performed on Minitab18© with 

the incorporation of a macro (KrusMC.mac) downloaded from Mintab18© libray (Orlich, 2000).  

Spearman’s Rank (Rho) examined whether a significant relationship existed between variables, e.g 

abdomen length and anchor height. Spearman’s Rank (Rho) was used for the non-normal data, able 

to incorporate outliers due to ranking the data (Bass, 2017; Hawkins, 2014).   

Two-way rank ANOVAs assessed variance in a mean of a response (e.g. anchor point height) and two 

categorical factors, due to non-normality (Hawkins, 2014; Wheater et al., 2011). One factor was soil 

tillage intensity (referring to Conventional, Direct Drill Managed and Direct Drill), a factor used in every 

model due to tillage intensity central to the fieldwork. The other factor was an element of T. tenuis 
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behaviour, for example, whether an anchor point height belonged to a thread inside or outside a web. 

When the field was cropped with H. vulgare, a factor was whether crop pests where found in the web. 

Crop pests here refers to Aphididae (S. avenae, M. dirhodum and R. padi) and S. mossellana. These 

pests are viewed as potential prey to T. tenuis. The rank was generated through Mintab18© and 

descriptive statistics placed into FCSTats V2_1a© (Wheater & Cook, 2000). From here, significance was 

gained and multiple comparison performed via the Dunn’s test. Letters to identify significance were 

checked through use of the Bonferroni post-hoc test on the rank data in Mintab18© (Field, 2009). 

Bonferroni was used due to comparisons greater than the degress of freedom, no independence is 

assumed and Type I errors are lowered by reducing the α-level (Field, 2009). 

Multiple regression models were built using the stepwise backwards elimination method via 

Minitab18©. The use of the model enabled the analysis of variables that were viewed as independent, 

for example number of T. tenuis in the web and mean abdomen length of T. tenuis identified. In each 

case, the response was placed against certain explanatory independent variables, upright stubble and 

plant density for example. No categorical predictor, soil tillage intensity, was assigned due to wanting 

to understand if certain variables swayed the response outside the soil tillage intensity. The idea to 

understand if variables, such as number of crop pests, affected numbers of T. tenuis in the web outside 

the effects given by soil tillage intensity. All variables were entered as factors into the model against 

the response, backwards elimination removing insignificant variables to provide the strongest model 

at α <0.05. Steps were analysed to assess when independent variables were removed (Hawkins, 2014; 

Wheater et al., 2011). Associated statistics were analysed to further confirm normality. Variance 

Inflation Factor (VIF) was required to be <5 to remove the possibility of multicollinearity, where two 

variables are closely associated outside of the response factor (Bass, 2007). Standard error of 

coefficients was viewed acceptable if <2, identifying low variation in the figures the coefficients of the 

model predicts. A high F - value explains the result is less likely to be due to chance alone and supports 

the response variables relationship with independent variables (Bass, 2007; Hawkins, 2014). 

Plant heights were explanatory x variables that were entered as means. All other explanatory variables 

were entered as the actual result measured. Normality was checked for each stepwise regression 

model via a residual vs fitted values plot. Trends to identify multicollinearity were analysed, ideally 

wanting random distribution of residuals around the fit line. Large residuals observed were checked 

and taken into consideration. If large residuals occurred, the datasets were considered normal due to 

the large numbers of data placed into each model (Khan, 2013). 
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5.1.4.3. Shannon-Weiner Diversity Index 

A species richness index, Shannon-Weiner Diversity Index (H’), for prey / crop pests central to this 

investigation (cereal Aphididae of R. padi, M. dirhodum and S. avenae, and S. mosellana) in the 

different tilled areas was established from data collated in fieldwork, at times field was in crop (Öberg 

et al., 2008). H’ was established from the natural log (LogN). The values used for the diversity index 

came from g-vac sampling only. The use of a diversity index allowed the investigation into the 

relationship between T. tenuis and prey abundance alongside soil tillage intensity and how this 

corresponds to Linyphiidae activity. Species evenness (J’) was calculated from the figures of prey 

recorded in each tilled area, this figure analysed the variance in numbers of the prey identified, 

allowing differences in prey distribution within the soil tillage intensities to be understood. A 

maximum Shannon-Weiner Diversity Index (H’) Max was calculated for the entire field to understand 

the maximum potential diversity that the prey recorded from the field could have. The values for the 

index were input manually into Excel for Microsoft Windows10© and formulae applied (Beauchamp, 

2016; Wheater et al., 2011). This data was found to be normal, thus a one-way ANOVA was applied 

for analysis of significance of means with Minitab18©. Tukey was utilised as a multiple comparison 

method. 

5.1.5. Results 

The results follow the events that were taking place within the main field. Firstly, all the data collected 

at the time when the field was out of crop (fallow and after primary and secondary cultivation) and 

secondly from the sampling that had taken place when the field was in crop (seeded with H. vulgare) 

(Table 5.1.1.). This period was split into two distinct stages for the analysis, the Early Stage (this 

incorporated GS from 11 – 15 and GS 33 – 37) and the Late Stage (GS 55 – GS 65 and GS 83 – GS 93) 

(Table 5.1.1.). Data from the two seasons sampled (2016 / 2017 and 2017 / 2018) were placed 

together. 

Within each stage of the field (in and out of crop), differences in landscape features of the field that 

were measured in each soil tillage intensity were examined for significance. The occurrence of three 

main dependant variables were then investigated: anchor point height, thread length and web area. 

Anchor point height and thread length were split into whether they belonged to threads inside webs 

(support treads) and threads outside webs (bridge threads), due to the different function for T. tenuis 

of these two threads (Section 2.1.2. and Section 2.1.3.3.). Other variables measured were then 

analysed with correlations. When the field was out of crop, results are reported of the data collected 

immediately after the field had been cultivated (primary) by the disc harrow (Section 3.1.3.4.).  
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5.1.5.1. Out of Crop - Fallow and After Primary and Secondary Cultivation 

5.1.5.1.1. Summary of Results 

• Significantly greater medians of upright stubble density, straw mass and volunteer plant density 

were found in Direct Drill (Figure 5.1.1. Figure 5.1.2. & Figure 5.1.4.). 

Fallow 

• Mean rank anchor point height outside webs was significantly higher (Figure 5.1.5.). 

• Straw mass was significantly positively correlated to support thread length (Table 5.1.12). 

• Anchor point height of bridge threads was significantly positively correlated to upright stubble 

density (Table 5.1.4.). 

• Significantly higher mean rank anchor point height was found attached to upright stubble in all soil 

tillage intensities (Figure 5.1.6.). Anchor point of support threads and upright stubble density were 

significantly positively correlated (Table 5.1.3.). 

• Volunteer plant density was significantly positively correlated to anchor point height of support 

threads (Table 5.1.3.). Volunteer plant and upright stubble density were significantly negatively 

correlated to support thread length (Table 5.1.12). 

• Bridge thread length was significantly positively correlated to number of T. tenuis rappelling (Table 

5.1.13.). 

Primary Cultivation 

• Mean rank anchor point height outside of webs was significantly higher than inside webs in 

Conventional (Figure 5.1.7.). Mean rank anchor point height of support threads was significantly 

lower attached to straw and soil than upright stubble in Conventional (Figure 5.1.8a.).  

• Straw mass was significantly negatively correlated to bridge thread length (Table 5.1.13.). 

• Mean rank anchor point height of bridge threads was significantly higher attached to upright 

stubble for Direct Drill than attached to straw in Conventional and Direct Drill Managed (Figure 

5.1.8b.). 

• Mean soil clod height and support thread length were significantly positively correlated (Table 

5.1.12.). 

• Anchor point height and length of bridge threads were significantly positively correlated to number 

of T. tenuis rappelling (Table 5.1.4. & Table 5.1.13.). 

• Mean abdomen length, upright stubble density and straw mass were significantly positively 

correlated to anchor point height of support threads (Table 5.1.3.). 

• Wind speed and anchor point height of bridge threads were significantly positively correlated 

(Table 5.1.5.). 
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Secondary Cultivation 

• Significant difference in mean rank anchor point height out of webs was found between 

Conventional and Direct Drill Managed (Figure 5.1.9.).  

• Mean rank anchor point height of bridge threads attached to upright stubble and straw were 

significantly different in Direct Drill Managed (Figure 5.1.10b.). For support threads homogeneity 

was found for Direct Drill and Direct Drill Managed in mean rank anchor point height attached to 

upright stubble and straw (Figure 5.1.10a.). 

• Anchor point height of support threads was significantly positively correlated to upright stubble 

density and straw mass (Table 5.1.3.). 

• Mean soil clod height was significantly negatively correlated to anchor point height in webs (Table 

5.1.3.), and significantly positively correlated to support thread length (Table 5.1.12.). 

• Straw mass was significantly negatively correlated to support thread length (Table 5.1.12.). 

• Number of female T. tenuis was significantly positively correlated to length of support threads 

(Table 5.1.3. & Table 5.1.12.). 

• Mean abdomen length was significantly negatively correlated to anchor point height of support 

threads (Table 5.1.3.). 

Immediately After Primary Cultivation 

• Thread length out of webs for Direct Drill was significantly longer (Figure 5.1.12.). 

• The attachment material of upright stubble identified the significantly higher mean rank anchor 

point height inside and outside of webs for Direct Drill (Figure 5.1.11). 

 

5.1.5.1.2. Field Landscape Features 

Figure 5.1.1: Median upright stubble density (Nom-2) in the 

differing soil tillage intensity, for field when fallow and 

after primary and secondary cultivation. (df = 2, Adjusted 

for ties H - 44.29, P - 0.001, n = 114). (Conventional = Red, 

Direct Drill Managed = Blue, Direct Drill = Green). 

(Conventional (n = 38), Direct Drill Managed (n = 38), 

Direct Drill (n = 38)). 

 

Figure 5.1.2: Median straw mass (g) in the differing soil 

tillage intensity, for field when fallow and after primary 

and secondary cultivation. (df = 2, Adjusted for ties H - 

41.21, P - 0.001, n = 132). (Conventional = Red, Direct 

Drill Managed = Blue, Direct Drill = Green). 

(Conventional (n = 44), Direct Drill Managed (n = 44), 

Direct Drill (n = 44)). 
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The significantly greater median density for upright stubble was recorded in the Direct Drill (Figure 

5.1.1.). The greatest variability within the dataset was established in the Direct Drill tillage, much of 

this variability found in the top 25% of data. The greater dispersion of values was established between 

the lower quartile and median within the inter-quartile range. 

Straw mass gained from the Direct Drill soil tillage was skewed in a positive upwards trend where most 

dispersion recorded was identified in the third, upper quartile (Figure 5.1.2.). The significantly greater 

median straw mass found with Direct Drill. 

A significantly greater median was identified within the Conventional soil tillage for mean soil clod 

height measured, the significantly lower median was measured within the Direct Drill soil intensity 

(Figure 5.1.3.).  

The significantly greater median of volunteer plant density was measured within the Direct Drill 

intensity and Conventional held the significantly lower median volunteer plant density (Figure 5.1.4.). 

Similar in trend to Figure 5.1.1., the greater variability was found within the top 25% of data for Direct 

Drill. 

 

 

 

 

Figure 5.1.3: Median soil clod height (cm) in the differing 

soil tillage intensity, for field when fallow and after primary 

and secondary cultivation. (df = 2, Adjusted for ties H - 

136.58, P - 0.001, n = 225). (Conventional = Red, Direct Drill 

Managed = Blue, Direct Drill = Green). (Conventional (n = 

75), Direct Drill Managed (n = 75), Direct Drill (n = 75)). 

 

Figure 5.1.4: Median volunteer plant density (Nom-2) in the 

differing soil tillage intensity, for field when fallow and after 

primary and secondary cultivation. (df = 2, Adjusted for ties 

H - 12.05, P - 0.002, n = 36). (Conventional = Red, Direct Drill 

Managed = Blue, Direct Drill = Green). (Conventional (n = 

12), Direct Drill Managed (n = 12), Direct Drill (n = 12)). 

 



92 
 

5.1.5.1.3. Anchor Point Height 

 Fallow Primary Cultivation Secondary Cultivation 

(Rho) P n (Rho) P n (Rho) P n 

Mean Abdomen Length (mm) 0.116 0.169 142 0.716 0.001* 136 -0.385 0.001* 108 

Mean Soil Clod Height (cm) 0.005 0.944 205 -0.103 0.071 33 -0.207 0.022* 124 

Mean Upright Stubble Height 
(cm) 

-0.014 0.870 133 0.593 0.001* 147 0.602 0.001* 32 

Number of Female T. tenuis 0.243 0.001* 280 0.068 0.367 179 -0.212 0.008* 155 

Number of Male T. tenuis 0.087 0.147 280 0.073 0.295 179 -0.094 0.065 155 

Number of T. tenuis Rappelling 0.134 0.025* 280 0.323 0.001* 180 0.099 0.053 155 

Straw Mass (g) -0.038 0.673 142 0.777 0.001* 180 0.337 0.001* 155 

Upright Stubble Density  

(Nom-2) 

0.395 0.001* 413 0.734 0.001* 180 0.363 0.001* 155 

Volunteer Plant Density 

(Nom-2) 

0.169 0.019* 192 0.121 0.053 33 0.339 0.001* 124 

 

 

After cultivations and when the field was fallow, upright stubble density was significantly positively 

correlated to anchor point heights measured in webs (Table 5.1.3.). Straw mass and mean upright 

stubble height were further significantly positively correlated to anchor point height of support 

threads when the field had recently undergone primary and secondary cultivations. After secondary 

cultivation and when the field was fallow, anchor point height within webs was significantly positively 

correlated to volunteer plant density. Mean soil clod height was found to be significantly negatively 

correlated to the anchor point height of webs when the field had undergone secondary cultivation. 

Number of female T. tenuis recorded was significantly positively correlated, when the field was fallow, 

and was significantly negatively correlated after secondary cultivation. Significant positive correlation 

existed between the mean abdomen length of T. tenuis and the anchor point height inside webs at 

times the field had undergone primary cultivation and significant negative correlation after secondary 

cultivation. Significant positive correlation existed with anchor points of support threads and the 

number of T. tenuis observed rappelling after primary cultivation and at times of fallow. 

 

 

 

Table 5.1.3: Correlations of independent variables measured in the field with the dependant variable of anchor point height 

(cm) inside webs (of support threads) for field when fallow and after primary and secondary cultivation. (* relates to 

significant with α <0.05). 
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 Fallow Primary Cultivation 

(Rho) P n (Rho) P n 

Mean Upright Stubble Height (cm) 0.089 0.068 933 0.617 0.001* 1587 

Number of Female T. tenuis 0.733 0.001* 99 -0.509 0.001* 1211 

Number of Male T. tenuis 0.731 0.001* 99 -0.241 0.001* 1211 

Number of T. tenuis Rappelling 0.056 0.079 99 0.597 0.001* 1211 

Upright Stubble Density (Nom-2) 0.733 0.001* 933 0.248 0.001* 1955 

 

Number of female T. tenuis and male T. tenuis was significantly positively correlated to anchor point 

height of bridge threads when the field was fallow and significantly negatively correlated when the 

field had undergone primary cultivation (Table 5.1.4.). Upright stubble density recorded was 

significantly positively correlated in times of fallow and after primary cultivation. Mean upright stubble 

height and number of T. tenuis observed to be rappelling were significantly positively correlated when 

the field had undergone primary cultivation only.  

There was no significant correlation recorded at times the field had undergone secondary cultivation 

between anchor point height out of webs and any independent variable measured. 

 

 Out of Web In Web 

(Rho) P n (Rho) P n 

Wind Speed (kmh-1) 0.280 0.001* 289 -0.038 0.453 385 

 

At times of fallow and after cultivations (primary and secondary) collectively, wind speed was only 

significantly positively correlated to anchor point height of bridge threads (Table 5.1.5).  

Data for wind speed collected in times of fallow and after primary and secondary cultivation was 

analysed against anchor point height (of both support and bridge threads) together due to no 

significance identified when variables were analysed in their respective sampling times. 

 

 

Table 5.1.4: Correlations of independent variables measured in the field with the dependant variable of anchor point height 

(cm) outside of webs (of bridge threads) for field when fallow and after primary and secondary cultivation. (* relates to 

significant with α <0.05). 

Table 5.1.5: Correlations of wind speed (kmh-1) with the dependant variable of anchor point height (cm) outside of webs 

(of bridge threads) and inside webs (of support threads) for field when fallow and after the field had undergone primary 

and secondary cultivation. (* relates to significant with α <0.05). 
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Categorical Predictor Df H P 

Soil Tillage Intensity 2 19.654 0.001* 

In / Out of Web 1 513.633 0.001* 

Interaction: Soil Tillage Intensity * In / Out of Web 2 22.172 0.001* 

 

  

 

 

 

 

 

 

 

Heterogeneity was identified in the interaction of mean rank of anchor point height with soil tillage 

intensity and whether threads were inside or outside of the web (Figure 5.1.5. & Table 5.1.6.). The 

mean rank anchor point for all soil tillage intensities was significantly higher in threads that were 

outside of webs used for rappelling. Direct Drill mean rank anchor point height of support threads was 

further significantly higher than that of Direct Drill Managed and Conventional. 

 

 

 

 

Table 5.1.6: Response of rank anchor point height and factors of soil tillage intensity and inside or outside of webs, for 

field when fallow (n = 1345). (* relates to significant with α <0.05). 

Figure 5.1.5: Interaction of mean rank anchor point height, soil tillage intensity and inside or outside of webs, for field 

when fallow (n = 1345). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional In 

±s.e.13.616 (n = 112), Conventional Out ±s.e.25.659 (n = 132), Direct Drill Managed In ±s.e.24.552 (n = 110), Direct Drill 

Managed Out ±s.e.24.370 (n = 114), Direct Drill In ±s.e.25.614 (n = 191), Direct Drill Out ±s.e.11.771 (n = 686)). (Points 

that do not share the same letter are significantly different at the p<0.05 level).  
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Categorical Predictor df H P 
Soil Tillage Intensity 2 9.673 0.038* 

Anchor Point Attachment Material 2 74.235 0.001* 

Interaction: Soil Tillage Intensity * Anchor Point Attachment Material 4 12.454 0.014* 

 

 

 

 

 

 

 

 

There was significance noted within the mean rank anchor point height for support threads and the 

interaction between soil tillage intensity and the attachment material (Figure 5.1.6. & Table 5.1.7.). 

Mean rank anchor point height attached to upright stubble was significantly higher for Direct Drill 

Managed and Direct Drill than that found attached to straw and upright stubble within all three soil 

tillage intensities.  

No model was established for mean anchor point height of bridge threads as no bridge thread was 

found attached to straw within Direct Drill Managed and no bridge thread recorded attached to soil 

in the Direct Drill soil tillage. 

 

 

 

Table 5.1.7: Response of rank anchor point height inside webs (of support threads), and factors of soil tillage intensity and 

anchor point attachment material, for field when fallow (n = 372). (* relates to significant with α <0.05). 

Figure 5.1.6: Interaction of mean rank anchor point height inside webs (of support threads), soil tillage intensity and 

anchor point attachment material, for field when fallow (n = 372). (Conventional = Red, Direct Drill Managed = Blue, Direct 

Drill = Green). (Conventional Soil ±s.e.11.321 (n = 39), Conventional Straw ±s.e.11.197 (n = 23), Conventional Upright 

Stubble ±s.e.15.070 (n = 38), Direct Drill Managed Soil ±s.e.2.098 (n = 31), Direct Drill Managed Straw ±s.e.13.780 (n = 25), 

Direct Drill Managed Upright Stubble ±s.e.14.006 (n = 40), Direct Drill Soil ±s.e.12.174 (n = 22), Direct Drill Straw 

±s.e.10.016 (n = 34), Direct Drill Upright Stubble ±s.e.9.202 (n = 120)). (Points that do not share the same letter are 

significantly different at the p<0.05 level).  
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Categorical Predictor df H P 
Soil Tillage Intensity 2 141.818 0.001* 

In / Out of Web 1 24.959 0.001* 

Interaction: Soil Tillage Intensity * In / Out of Web 2 5.265 0.070 

 

 

 

 

 

 

 

 

 

 

No Significance existed in the interaction of this model (Figure 5.1.7. & Table 5.1.8.). When the mean 

rank anchor point height was found inside webs, the significantly lower mean rank was found in the 

soil tillage intensity of Conventional, whereas the significantly higher mean rank anchor point height 

was identified in the Direct Drill tillage. Regarding mean rank anchor point heights outside of webs, 

the significantly higher mean rank was found in Direct Drill compared to that of Direct Drill Managed. 

Significance was identified only within the Conventional soil tillage intensity between the mean rank 

anchor point heights inside or outside of webs. The mean rank for this tillage was significantly lower 

for anchor points recorded inside webs than outside of webs.  

Figure 5.1.7: Interaction of mean rank anchor point height, soil tillage intensity and inside or outside of webs, for 

field after primary cultivation (n = 1096). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). 

(Conventional In ±s.e.3.001 (n = 80), Conventional Out ±s.e.63.910 (n = 30), Direct Drill Managed In ±s.e.24.611 (n 

= 35), Direct Drill Managed Out ±s.e.11.064 (n = 177), Direct Drill In ±s.e.34.663 (n = 64), Direct Drill Out ±s.e.11.484 

(n = 710)). (Points that do not share the same letter are significantly different at the p<0.05 level). 

 

Table 5.1.8: Response of rank anchor point height and factors of soil tillage intensity and inside or outside of webs, for 

field after primary cultivation (n = 1096). (* relates to significant with α <0.05). 
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Categorical Predictor df H P  Categorical Predictor df H P 

Soil Tillage Intensity 2 14.523 0.001*  Soil Tillage Intensity 2 52.120 0.001* 

Anchor Point 
Attachment Material 

2 23.030 0.001*  Anchor Point 
Attachment Material 

1 21.484 0.001* 

Interaction: Soil Tillage 
Intensity * Anchor Point 
Attachment Material 

4 5.528 0.043*  Interaction: Soil Tillage 
Intensity * Anchor Point 
Attachment Material 

2 8.867 0.012* 

 

Significant difference between mean rank anchor point height inside webs existed between the soil 

tillage intensity and the attachment material of the anchor point height (Figure 5.1.8a. & Table 

5.1.9a.). The significantly higher mean rank anchor point height was attached to the material upright 

stubble in the Direct Drill soil tillage compared to that attached to straw and soil in the soil tillage 

intensities of Conventional and Direct Drill and significantly higher than attached to the material of 

soil within Direct Drill Managed. 

 

Table 5.1.9b: Response of rank anchor point height 

outside of webs (of bridge threads) and factors of soil 

tillage intensity and anchor point attachment material, 

for field after primary cultivation (n = 889). (* relates to 

significant with α <0.05). 

Figure 5.1.8b: Interaction of mean rank anchor point 

height outside of webs (of bridge threads), soil tillage 

intensity and anchor point attachment material, for field 

after primary cultivation. (n = 889). (Conventional = Red, 

Direct Drill Managed = Blue, Direct Drill = Green). 

(Conventional Straw ±s.e.18.648 (n = 3), Conventional 

Upright Stubble ±s.e.62.300 (n =25), Direct Drill Managed 

Straw ±s.e.41.934 (n = 17), Direct Drill Managed Upright 

Stubble ±s.e.10.150 (n = 149), Direct Drill Straw 

±s.e.71.478 (n = 18), Direct Drill Upright Stubble 

±s.e.10.150 (n = 677)). (Points that do not share the same 

letter are significantly different at the p<0.05 level). 

 

Figure 5.1.8a: Interaction of mean rank anchor point height 

inside webs (of support threads), soil tillage intensity and 

anchor point attachment material, for field after primary 

cultivation. (n = 178). (Conventional = Red, Direct Drill 

Managed = Blue, Direct Drill = Green). (Conventional Soil 

±s.e.3.207 (n = 48), Conventional Straw ±s.e.5.040 (n = 32), 

Conventional Upright Stubble ±s.e.2.501 (n = 2), Direct Drill 

Managed Soil ±s.e.3.279 (n = 3), Direct Drill Managed Straw 

±s.e.2.500 (n = 3), Direct Drill Managed Upright Stubble 

±s.e.2.078 (n = 24), Direct Drill Soil ±s.e.2.001 (n = 2), Direct 

Drill Straw ±s.e.3.931 (n = 6), Direct Drill Upright Stubble 

±s.e.2.831 (n = 58)). (Points that do not share the same 

letter are significantly different at the p<0.05 level). 

 

Table 5.1.9a: Response of rank anchor point height inside 

webs (of support threads) and factors of soil tillage 

intensity and anchor point attachment material, for field 

after primary cultivation (n = 178). (* relates to 

significant with α <0.05). 
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For mean rank anchor point height for bridge threads significance was also found in the interaction of 

attachment material and soil tillage intensity (Figure 5.1.8b. & Table 5.1.9b.). The mean rank anchor 

point height for Conventional attached to straw and Direct Drill Managed attached to straw and 

upright stubble were significantly lower than the mean rank anchor point height attached to upright 

stubble for Direct Drill. The attachment material of soil was removed as no bridge threads were 

recorded attached to this material within Direct Drill Managed. 

 

Categorical Predictor df H P 

Soil Tillage Intensity 2 6.801 0.033* 

In / Out of Web 1 74.040 0.001* 

Interaction: Soil Tillage Intensity * In / Out of Web 2 7.377 0.025* 

 

 

 

 

 

 

 

 

 

In all three soil tillage intensities examined, the significantly lower mean rank anchor point height 

belonged to threads found inside of webs, following the trend found when the field was fallow (Figure 

5.1.9., Table 5.1.10. & Figure 5.1.5.). The greater significant mean rank anchor point height outside of 

webs, belonged to the soil tillage intensity of Direct Drill Managed, and the lower found within 

Conventional.  

Figure 5.1.9: Interaction of mean rank anchor point height, soil tillage intensity and inside or outside of webs, for field 

after secondary cultivation. (n = 259). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). 

(Conventional In ±s.e.6.979 (n = 76), Conventional Out ±s.e.11.685 (n = 30), Direct Drill Managed In ±s.e.16.587 (n = 19), 

Direct Drill Managed Out ±s.e.16.450 (n = 16), Direct Drill In ±s.e.7.617 (n = 59), Direct Drill Out ±s.e.7.095 (n = 59)). 

(Points that do not share the same letter are significantly different at the p<0.05 level). 

 

Table 5.1.10: Response of rank anchor point height and factors of soil tillage intensity and inside or outside of webs, for 

field after secondary cultivation (n = 259). (* relates to significant with α <0.05). 
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Categorical Predictor df H P  Categorical Predictor df H P 

Soil Tillage Intensity 2 0.462 0.794  Soil Tillage Intensity 2 0.146 0.930 

Anchor Point Attachment 
Material 

2 34.515 0.001*  Anchor Point 
Attachment Material 

1 10.647 0.001* 

Interaction: Soil Tillage 
Intensity * Anchor Point 
Attachment Material 

4 11.773 0.019*  Interaction: Soil Tillage 
Intensity * Anchor Point 
Attachment Material 

2 3.164 0.206 

 

 

 

Interaction between mean rank anchor point height for support threads, anchor point height 

attachment material and soil tillage intensity was found to be significant (Figure 5.1.10a. & Table 

5.1.11a.). The significant higher mean rank anchor point height was identified attached to upright 

stubble compared to the mean rank anchor point height calculated when attached to soil between all 

soil tillage intensities. Further the mean rank anchor point height for Conventional attached to the 

material of upright stubble was significantly higher than that found attached to straw within 

Conventional and Direct Drill.  

Figure 5.1.10a: Interaction of mean rank anchor point 

height inside webs (of support threads), soil tillage intensity 

and anchor point attachment material, for field after 

secondary cultivation (n = 156). (Conventional = Red, Direct 

Drill Managed = Blue, Direct Drill = Green). (Conventional 

Soil ±s.e.5.514 (n = 41), Conventional Straw ±s.e.9.880 (n = 

7), Conventional Upright Stubble ±s.e.12.320 (n = 28), Direct 

Drill Managed Soil ±s.e.8.820 (n = 13), Direct Drill Managed 

Straw ±s.e.19.718 (n = 6), Direct Drill Managed Upright 

Stubble ±s.e.21.779 (n = 2), Direct Drill Soil ±s.e.0.500 (n = 

2), Direct Drill Straw ±s.e.5.673 (n = 29), Direct Drill Upright 

Stubble ±s.e.7.508 (n = 28)). (Points that do not share the 

same letter are significantly different at the p<0.05 level). 

 

Table 5.1.11a: Response of rank anchor point height inside 

webs (of support threads) and factors of soil tillage intensity 

and anchor point attachment material, for field after 

secondary cultivation (n = 239). (* relates to significant with 

α <0.05). 

Figure 5.1.10b: Interaction of mean rank anchor point 

height outside of webs (of bridge threads), soil tillage 

intensity and anchor point attachment material, for field 

after secondary cultivation (n = 82). (Conventional = Red, 

Direct Drill Managed = Blue, Direct Drill = Green). 

(Conventional Straw ±s.e.6.185 (n = 10), Conventional 

Upright Stubble ±s.e.11.431 (n = 6), Direct Drill Managed 

Straw ±s.e.3.250 (n = 6), Direct Drill Managed Upright 

Stubble ±s.e.6.137 (n = 3), Direct Drill Straw ±s.e.10.748 

(n = 8), Direct Drill Upright Stubble ±s.e.2.913 (n = 49)). 

(Points that do not share the same letter are significantly 

different at the p<0.05 level). 

 

Table 5.1.11b: Response of rank anchor point height 

outside of webs (of bridge threads) and factors of soil 

tillage intensity and anchor point attachment material, 

for field after secondary cultivation (n = 82). (* relates to 

significant with α <0.05). 
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Significance only existed between the term of anchor point attachment materials (Figure 5.1.10b. & 

Table 5.1.11b.). Significant difference was found between the mean rank anchor point height for 

bridge threads attached to the materials straw and upright stubble within the soil tillage Direct Drill 

Managed, the significantly higher found attached to upright stubble. Soil was removed from the model 

due to no bridge threads recorded attached to soil within the Direct Drill tillage. 

5.1.5.1.4. Thread Length 

 Fallow Primary Cultivation Secondary Cultivation 

(Rho) P n (Rho) P n (Rho) P n 

Mean Abdomen 
Length (mm) 

0.008 0.922 144 -0.270 0.002* 136 0.028 0.787 97 

Mean Soil Clod 
Height (cm) 

0.107 0.165 132 0.372 0.014* 44 0.270 0.001* 198 

Number of Female T. 
tenuis 

0.289 0.001* 286 0.157 0.042* 169 0.163 0.041* 159 

Number of Male T. 
tenuis 

0.203 0.001* 286 0.184 0.018* 169 0.127 0.111 -159 

Number of T. tenuis 
Rappelling 

0.054 0.363 285 0.283 0.001* 169 0.101 0.204 159 

Straw Mass (g) 0.321 0.001* 286 0.103 0.185 169 -0.193 0.015* 159 

Upright Stubble 
Density (Nom-2) 

-0.262 0.001* 430 -0.093 0.233 169 -0.194 0.014* 159 

Volunteer Plant 
Density (Nom-2) 

-0.313 0.001* 198 -0.305 0.046* 44 0.113 0.202 128 

 

Length from support threads was significantly negatively correlated to the upright stubble density 

recorded when the field was in fallow and after secondary cultivation (Table 5.1.12.). Straw mass was 

further significantly negatively correlated with thread length inside webs when the field had 

undergone secondary cultivation, however significantly positively correlated when the field was 

fallow. Volunteer plant density showed significant negative correlation to thread length inside webs 

when the field had been primary cultivated and when the field was fallow. Mean soil clod height was 

significantly positively correlated to support thread lengths after primary and secondary cultivation. 

The number of female and male T. tenuis recorded were significantly positively correlated to support 

threads inside webs after primary cultivation and in times of fallow. Whereas, after secondary 

cultivation the number of female T. tenuis only was significantly positively correlated to length of 

support threads. The number of T. tenuis observed rappelling was significantly positively correlated, 

and mean abdomen length was significantly negatively correlated, to thread length inside of webs 

when the field was primary cultivated.  

Table 5.1.12: Correlations of independent variables measured in the field with the dependant variable thread length (mm) 

inside webs (of support threads) for field when fallow and after primary and secondary cultivation. (* relates to significant 

with α <0.05). 
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 Fallow Primary Cultivation 

(Rho) P n (Rho) P n 

Mean Abdomen Length (mm) 0.028 0.845 28 -0.098 0.036* 467 

Number of T. tenuis Rappelling 0.412 0.004* 48 0.124 0.003* 576 

Straw Mass (g) 0.046 0.271 576 -0.105 0.012* 576 

Volunteer Plant Density (Nom-2) -0.117 0.140 156 -0.176 0.042* 134 
 

Bridge thread length was significantly negatively correlated to straw mass, volunteer plant density and 

mean T. tenuis abdomen length after primary cultivation (Table 5.1.13.). Number of T. tenuis recorded 

rappelling was found to be significantly positively correlated to length of bridge threads in times of 

fallow and after primary cultivation.  

No analysis is represented for secondary cultivation, as with the variable anchor point height no 

significance was identified (Table 5.1.4.). 

 

5.1.5.1.5. Immediately After Primary Cultivation 

Categorical Predictor df H P 

In / Out of Web for Direct Drill 2 1.795 0.180 

Anchor Point Attachment Material 1 11.497 0.003* 

Interaction: In / Out of Web for Direct Drill * Anchor Point Attachment Material 2 1.580 0.454 

 

 

 

 

 

 

 

Figure 5.1.11: Interaction of mean rank anchor point height, inside and outside of webs for Direct Drill and anchor point 

attachment material, immediately after primary cultivation (n = 223). (Direct Drill In = Green, Direct Drill Out = Dark 

Green). (Direct Drill In Straw ±s.e.1.437 (n = 13), Direct Drill In Upright Stubble ±s.e.17.834 (n = 19), Drill Out Straw ±s.e.0 

(n = 1), Direct Drill Out Upright Stubble ±s.e.16.746 (n = 190)). (Points that do not share the same letter are significantly 

different at the p<0.05 level). 

 

Table 5.1.14: Response of mean rank anchor point height and factors of inside and outside of webs for Direct Drill and 

anchor point attachment material, for field immediately after primary cultivation (n = 223). (* relates to significant with 

α <0.05). 

Table 5.1.13: Correlations of independent variables measured in the field with the dependant variable thread length (mm) 

outside of webs (of bridge threads) for field when fallow and after primary and secondary cultivation. (* relates to non-

significant with α <0.05). 
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The mean rank anchor point height inside and outside of webs was significantly higher attached to 

upright stubble than the mean rank anchor point of support threads attached to straw (Figure 5.1.11. 

& Table 5.1.14.). No significance existed within the interaction. 

 

 

 

 

 

 

 

 

There was a significant difference between the medians of the lengths of support and bridge threads 

identified in the Direct Drill tillage immediately after primary cultivation, threads were significantly 

longer for bridge threads (Figure 5.1.12.). Both median thread lengths inside or outside of webs have 

data positively skewed and identify the greater range of the data existed in the third quartile. 

  

 

5.1.5.2. In Crop (Early and Late Growth Stages) 

5.1.5.2.1. Summary of Results 

Early Growth Stages 

• Upright stubble held bridge threads that had a significantly higher mean rank anchor point height 

than plant within Direct Drill Managed (Figure 5.1.14.). 

• Upright stubble density was significantly positively correlated to anchor point height of support 

threads (Table 5.1.15). 

• Mean rank anchor point height of bridge threads was significantly higher with each soil tillage 

intensity (Figure 5.1.13.).  

• Significantly greater Shannon-Weiner Diversity Index and species evenness were identified in 

Conventional tillage (Figure 5.1.18. & Figure 5.1.19.). 

Figure 5.1.12: Median thread length (mm), inside and outside of webs for Direct Drill, 

immediately after primary cultivation (df = 2, Adjusted for ties H - 32.21, P - 0.001, n = 

137). (Direct Drill Out = Dark Green, Direct Drill In = Green). (Out (n = 105), In (n = 34)). 
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• Plant density and anchor point height of bridge threads were significantly positively correlated 

(Table 5.1.16.). This variable was significantly positively correlated to length and anchor point 

height of support threads (Table 5.1.15. & Table 5.1.19.).  

• Mean rank support anchor point height was significantly higher in Conventional (Figure 5.1.13.). 

• Number of crop pests within webs held significant positive regression to the number of T. tenuis 

found under a web (Table 5.1.20.). 

• Number of S. mossellana in webs were significantly negatively correlated to anchor point height 

and length of support threads (Table 5.1.15. & Table 5.1.19.). Number of T. tenuis in webs held 

significant positive correlation to anchor point height of support threads (Table 5.1.15.). 

• Mean abdomen length was significantly positively correlated to anchor point height and length of 

support threads (Table 5.1.15. & Table 5.1.19). 

• Number of S. mosellana and exuviae in webs and number of S. avenae were significantly negatively 

correlated to anchor point height of bridge threads (Table 5.1.16.). Mean abdomen length was 

significantly positively correlated to anchor point height of bridge threads (Table 5.1.16.). 

Late growth stages 

• Mean plant height was significantly positively correlated to anchor point height and length of 

support threads (Table 5.1.15. & Table 5.1.19.). 

• Median plant height was significantly higher within Conventional (Figure 5.1.15.). 

• Number of S. mosellana in webs and vegetation were significantly positively correlated to anchor 

point height of support threads (Table 5.1.15.). Number of S. avenae and Aphididae exuviae in 

webs were significantly positively correlated to support thread length (Table 5.1.19.). 

• Number of T. tenuis (female and male) were significantly negatively correlated to anchor point 

height and length of support threads, furrow dimensions only significantly negatively correlated to 

length of support threads (Table 5.1.15. & Table 5.1.19.).  

• Mean abdomen length was significant positively correlated to anchor point height of support 

threads (Table 5.1.15.). 

• Number of spiderlings was significantly negatively correlated to support thread length (Table 

5.1.19.). 

Overall - When in Crop (Early and Late Growth Stages) 

• Number of T. tenuis in web and mean plant height were significant predictors to mean abdomen 

length (Table 5.1.21.). Plant and A. myosuroides density were significant predictors to number of 

T. tenuis occupying webs (Table 5.1.20.). 

• Conventional held the significantly mean rank higher anchor point height and significantly mean 

rank lower web area when webs contained crop pests (Figure 5.1.16. & Figure 5.1.17.). 
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5.1.5.2.2. Anchor Point Height 

 Early Late 

(Rho) P n (Rho) P n 
A. myosuroides Density (Nom-2) -0.085 0.346 126 -0.121 0.005* 550 

Furrow Depth (cm) -0.539 0.021* 19 -0.068 0.384 166 

Mean Abdomen Length (mm) 0.434 0.001* 452 0.109 0.006* 786 

Mean Plant Height (cm) -0.087 0.102 512 0.244 0.001* 989 

Number of Female T. tenuis -0.009 0.804 506 -0.161 0.001* 989 

Number of Male T. tenuis -0.041 0.306 506 -0.196 0.001* 989 

Number of S. avenae 0.210 0.001* 469 -0.014 0.374 635 

Number of S. mosellana -0.055 0.227 469 0.169 0.001* 635 

Number of S. mosellana in Web -0.116 0.012* 469 0.108 0.007* 635 

Number of T. tenuis in Web 0.153 0.001* 487 0.007 0.829 989 

Plant Density (Nom-2) 0.112 0.013* 487 -0.041 0.199 989 

Upright Stubble Density (Nom-2) 0.591 0.001* 52 No Data Collected 
 

 

Within early stages of growth; upright stubble density, plant density, numbers of T. tenuis observed 

within the web, mean abdomen length of T. tenuis and numbers of S. avenae found after g-vac 

sampling held significant positive correlation with anchor point heights of support threads (Table 

5.1.15.). For early growth stages, significant negative correlation was identified with numbers of S. 

mosellana found in the web and furrow depth. Number of T. tenuis (male and female) were 

significantly negatively correlated to anchor point height inside webs at late growth stages, alongside 

A. myosuroides density. In later growth stages, mean T. tenuis abdomen length, mean plant height, 

numbers of S. mosellana found in the web and collected after g-vac sampling was positively 

significantly correlated to anchor point inside of webs. 

 

 Early 

(Rho) P n 

Mean Abdomen Length (mm) 0.447 0.001* 464 

Mean Plant Height (cm) -0.405 0.001* 756 

Number of Aphididae Exuviae in Web -0.232 0.001* 481 

Number of S. avenae -0.168 0.001* 481 

Number of S. mosellana in Web -0.139 0.002* 481 

Number of Spiderlings -0.106 0.017* 507 

Number of T. tenuis in Web 0.141 0.001* 507 

Plant Density (Nom-2) 0.108 0.015* 507 

 

Table 5.1.15: Correlations of independent variables measured in the field with the dependant variable of anchor point 

height (cm) inside webs (of support threads) for field when in crop (early and late growth stages). (* relates to significant 

with α <0.05). 

Table 5.1.16: Correlations of independent variables measured in the field with the dependant variable 

of anchor point height (cm) outside of webs (of bridge threads) for field when in crop (early growth 

stages). (* relates to significant with α <0.05). 
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Plant density, numbers of T. tenuis within the web and mean T. tenuis abdomen length were 

significantly positively correlated to the anchor point height of bridge threads (Table 5.1.16.). 

Significant negative correlation was identified between anchor point height outside of webs and mean 

plant height, number of T. tenuis spiderlings recorded, number of Aphididae exuviae and S. mosellana 

observed within sheet webs and number of S. avenae found within the sample area. 

Only fourteen pieces of data (anchor point heights out of the web) were recorded for the late growth 

stages of H. vulgare. These were not reported as no viable significant correlation existed with 

independent variables recorded.  

 

Categorical Predictor df H P 

Soil Tillage Intensity 2 37.057 0.001* 

In / Out of Web 1 184.651 0.001* 

Interaction: Soil Tillage Intensity * In / Out of Web 2 16.400 0.001* 

 

 

 

 

 

 

 

 

 

Conventional and Direct Drill mean rank anchor point height of bridge threads were significantly 

higher than the mean rank anchor point height of support threads of all three soil tillage intensities 

(Figure 5.1.13 & Table 5.1.17.). Direct Drill Managed held a significant higher mean rank anchor point 

height outside of webs than that found inside webs of Direct Drill Managed and Direct Drill only. 

Figure 5.1.13: Interaction of rank mean anchor point height and inside or outside of webs, for field when in crop, early 

growth stages (n = 755). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional In 

±s.e.17.227 (n = 111), Conventional Out ±s.e.13.127 (n = 44), Direct Drill Managed In ±s.e.14.142 (n = 149), Direct Drill 

Managed Out ±s.e.29.595 (n = 20), Direct Drill In ±s.e.15.319 (n = 257), Direct Drill Out ±s.e.6.830 (n = 174)). (Points that 

do not share the same letter are significantly different at P <0.05).  

 

Table 5.1.17: Response of rank anchor point height and factors of soil tillage intensity and inside or outside of web, for 

field when in crop, early growth stages (n = 755). (* relates to significant with α <0.05). 
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Categorical Predictor df H P 

Soil Tillage Intensity 2 4.566 0.102 

Anchor Point Attachment Material 1 14.969 0.001* 

Interaction: Soil Tillage Intensity * Anchor Point Attachment Material 2 11.232 0.001* 

 

 

 

 

 

 

 

 

 

There was significance in interaction between mean rank anchor point height of bridge threads and 

the materials of plant and upright stubble within Direct Drill Managed and Direct Drill (Figure 5.1.14. 

& Table 5.1.18.). The mean rank significantly higher attached to upright stubble for Direct Drill 

Managed. 

With only thirteen data points recorded for anchor points of bridge threads for the late growth stages 

of H. vulgare, only anchor points outside of webs at early growth stages are incorporated into an 

interaction plot against its retrospective attachment material.  

Straw and soil were removed due to no recordings of anchor point heights inside webs attached to 

straw and soil within the Conventional tillage. Leaving plant and upright stubble within this model, as 

terms within the attachment material categorical factor, left a model with VIF >20.  

 

Figure 5.1.14: Interaction of mean rank anchor point height outside of webs (of bridge threads) and anchor 

point attachment material, for field when in crop, early growth stages (n = 228). (Conventional = Red, Direct 

Drill Managed = Blue, Direct Drill = Green) (Conventional Plant ±s.e.18.060 (n = 25), Conventional Upright 

Stubble ±s.e.13.820 (n = 12), Direct Drill Managed Plant ±s.e.8.920 (n = 7), Direct Drill Managed Upright Stubble 

±s.e.8.240 (n = 10), Direct Drill Plant ±s.e.8.838 (n = 20), Direct Drill Upright Stubble ±s.e.8.240 (n = 154)). 

(Points that do not share the same letter are significantly different at P <0.05). 

 

Table 5.1.18: Response of rank anchor point height outside of webs (of bridge threads) and factors of soil tillage intensity and 

anchor point attachment material, for field when in crop, early growth stages (n = 288). (* relates to significant with α <0.05). 
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5.1.5.2.3. Thread Length 

 Early Late 

(Rho) P n (Rho) P n 

A. myosuroides Density (Nom-2) -0.235 0.007* 134 -0.050 0.243 523 

Furrow Depth (cm) 0.162 0.133 17 -0.398 0.001* 192 

Furrow Width (cm) -0.185 0.130 17 -0.383 0.001* 192 

Mean Abdomen Length (mm) 0.228 0.001* 452 0.352 0.001* 923 

Mean Plant Height (cm) 0.242 0.001* 516 0.599 0.001* 923 

Number of Aphididae Exuviae in Web -0.089 0.054 469 0.245 0.001* 923 

Number of Female T. tenuis -0.090 0.049* 485 -0.371 0.001* 923 

Number of M. dirhodum in Web -0.124 0.007* 469 -0.098 0.084 923 

Number of Male T. tenuis -0.114 0.033* 485 -0.492 0.001* 923 

Number of S. avenae 0.227 0.001* 469 0.156 0.013* 923 

Number of S. avenae in Web 0.018 0.701 469 0.119 0.021* 923 

Number of S. mosellana -0.082 0.077 469 0.336 0.001* 923 

Number of S. mosellana in Web -0.137 0.003* 469 -0.087 0.104 923 

Number of Spiderlings -0.038 0.400 485 -0.510 0.001* 923 

Plant Density (Nom-2) 0.294 0.001* 485 -0.223 0.001* 923 

 

In both growth stages (early and late), the number of female and male T. tenuis recorded were 

significantly negatively correlated to length of support threads (Table 5.1.19.). Plant density was 

significantly positively correlated to thread length inside webs at times the H. vulgare was in early 

growth stages, though significantly negatively correlated in later growth stages. Numbers of S. 

mosellana and M. dirhodum found in webs and A. myosuroides density were significantly negatively 

correlated to support thread length in early growth stages. Regarding later growth stages, numbers of 

Aphididae exuviae and S. avenae observed within the web, were significantly positively correlated to 

length of support threads. Significant negative correlation existed between number of spiderlings 

found in the g-vac, furrow width and depth and thread lengths of webs at the later growth stages. 

Significant positive correlation was identified between mean plant height, mean abdomen length of 

T. tenuis and number of S. avenae recorded and length of support threads at times of H. vulgare in 

early and late growth stages.  

 

 

 

 

Table 5.1.19: Correlations of independent variables measured in the field with the dependant variable of thread length (mm) 

inside webs (of support threads) for field when in crop (early and late growth stages). (*relates to significant with α <0.05). 
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5.1.5.2.4. Overall - When in Crop (Early and Late Growth Stages) 

 

 

 

 

 

 

 

 

Significantly higher median plant height was found in the Conventional area with a median of 69.9 cm 

(Figure 5.1.15.). This was 5.9 cm higher than the median of Direct Drill Managed and 6.8 cm higher 

than that measured in Direct Drill. For all soil tillage intensities, the greater dispersion of heights was 

measured in the upper quartile. Greater range in data was found in Direct Drill. 

 

 

Continuous Coefficients Standard Error  T P VIF 

Predictor   Coefficients (SE Coeff)       

A. myosuroides density (Nom-2) 0.03134 0.00890 3.52 0.001* 1.96 

Number of Crop Pests in Web 1.3111 0.0973 13.48 0.001* 4.58 

Number of T. tenuis 0.2123 0.0386 5.50 0.001* 4.13 

Plant Density (Nom-2) 0.03371 0.00642 5.25 0.001* 2.67 

 

When the data from early and late growth stages of H. vulgare were analysed collectively it was 

identified that four variables were significant predictors to the response of number of T. tenuis in webs 

recorded in the field. The variables were plant density, number of T. tenuis (male and female 

combined), number of crop pests (Aphididae and S. mosellana) found in the web and A. myosuroides 

density. The four variables were found to have significant positive regression to number of T. tenuis 

in the web. 

 

Figure 5.1.15: Median plant height (cm) in the differing soil tillage intensity, for field when 

the field was in crop, late growth stages (df = 2, Adjusted for ties H - 10.12, P - 0.006, n = 

360). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green).  (Conventional 

(n = 120), Direct Drill Managed (n = 120), Direct Drill (n = 120)). 

 

Table 5.1.20: Significant predictors to the response number of T. tenuis in webs for field when in crop (early and late 

growth stages). (n = 82, R-sq - 68.11%). (*relates to significant with α <0.05). 
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Continuous Coefficients Standard Error  T P VIF 

Predictor   Coefficients (SE Coeff)       

Mean Plant Height (cm) 0.006223 0.000609 10.22 0.001* 4.81 

Number of Aphididae Exuviae in 
Web 0.003560 0.000831 20.18 0.001* 2.91 

Number of Sheet Webs 0.01458 0.00170 8.59 0.001* 3.80 

Number of T. tenuis 0.01477 0.00208 7.11 0.001* 4.06 

Number of T. tenuis in Web 0.00845 0.00252 3.36 0.001* 3.06 
 

The variables of number of T. tenuis (male and female combined), mean height of H. vulgare, number 

of sheet webs recorded, number of T. tenuis in the web and number of Aphididae exuviae found in 

the web held significant positive regression to the response of mean abdomen length of T. tenuis 

recorded in the sampled area (Figure 5.1.21.). 

 

Categorical Predictor df H P 

Soil Tillage Intensity 2 39.393 0.001* 

Presence of Crop Pests in Web 1 17.905 0.001* 

Interaction: Soil Tillage Intensity * Presence of Crop Pests in Web 2 9.746 0.007* 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.16: Interaction of mean rank anchor point height inside webs (of support threads), soil tillage 

intensity and presence of crop pests in web, for field when in crop (early and late growth stages) (n = 1102). 

(Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional Yes ±s.e.24.002 (n = 109), 

Conventional No ±s.e.26.729 (n = 162), Direct Drill Managed Yes ±s.e.23.775 (n = 184), Direct Drill Managed No 

±s.e.22.973 (n = 185), Direct Drill Yes ±s.e.23.877 (n = 313), Direct Drill No ±s.e.24.505 (n = 149)). (Points that 

do not share the same letter are significantly different at P <0.05). 

 

Table 5.1.22: Response of rank anchor point height inside webs (of support threads) and factors of soil tillage intensity 

and presence of crop pests in web, for field when in crop (early and late growth stages) (n = 1102). (*relates to significant 

with α <0.05). 

Table 5.1.21: Significant predictors to the response mean abdomen length (mm) for field when in crop (early and late 

growth stages). (n = 79, R-sq - 58.56%). (*relates to significant with α <0.05). 
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There was a significant difference between the mean rank anchor point height of support threads 

where webs did or did not contain crop pests of the differing intensities of soil tillage, recorded in the 

early and late growth stages of H. vulgare (Figure 5.1.16. & Table 5.1.22.).  

Conventional held a mean rank anchor point inside webs, where crop pests were not recorded, that 

was significantly higher than that of Direct Drill Managed and Direct Drill where crop pests were found 

and were not found within sheet webs.  

 

Categorical Predictor df H P 

Soil Tillage Intensity 2 44.765 0.001* 

Presence of Crop Pests in Web 1 60.585 0.001* 

Interaction: Soil Tillage Intensity * Presence of Crop Pests in Web 2 146.135 0.001* 

 

 

 

 

 

 

 

 

 

Significance was identified in all terms in this model (Figure 5.1.17. & Table 5.1.23.). The mean rank 

web area, when crop pests were not observed within the web, was significantly higher in Conventional 

tillage than the other two tillage intensities where crop pests were not recorded, and significantly 

higher than the mean rank web area of the three tillage intensities when crop pests were recorded 

within the web. The opposite trend is true for Conventional when pests were found within the web.  

Figure 5.1.17: Interaction of mean rank web area, soil tillage intensity and presence of crop pests in web, for 

field when in crop (early and late growth stages) (n = 295). (Conventional = Red, Direct Drill Managed = Blue, 

Direct Drill = Green). (Conventional No ±s.e.10.030 (n = 42), Conventional Yes ±s.e.12.745 (n = 32), Direct Drill 

Managed No ±s.e.10.120 (n = 37), Direct Drill Managed Yes ±s.e.12.310 (n = 67), Direct Drill No ±s.e.12.267 (n 

= 43), Direct Drill Yes ±s.e.12.258 (n = 74)). (Points that do not share the same letter are significantly different 

at P <0.05). 

 

Table 5.1.23: Response of rank web area and factors of soil tillage intensity and presence of crop pests in web, for field 

when in crop (early and late growth stages). (n = 294). (*relates to significant with α <0.05). 
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5.1.5.2.5. Shannon-Wiener Diversity Index 

 

Shannon-Wiener Diversity Index (H’) Max 1.38629436 

 

The significant greater mean Shannon-Wiener Diversity Index (H’) of 0.895 H’ (Figure 5.1.18.) and the 

significant greater mean species evenness (J’) (0.646 J’) (Figure 5.1.19.) was found to be contained 

within the Conventional soil tillage sampled. With a mean Shannon-Wiener Diversity Index 0.205 

lower than Conventional, Direct Drill Managed tillage held the significantly lower mean Shannon-

Wiener Diversity Index. Direct Drill Managed further displayed the significantly lower mean species 

evenness, 0.280 J’ lower than the mean for Conventional. The mean for Direct Drill tillage for Shannon-

Wiener Diversity Index and species evenness was found not to hold any significant difference. The 

possible Shannon-Wiener diversity index (H’) Max for the field was calculated to be 1.386 (3dp). 

 

 

 

 

 

 

Figure 5.1.18: Mean Shannon – Wiener Diversity Index (H’) 

in differing soil tillage intensities for field when in crop 

(early and late growth stages). (n = 30, df - 2, P -  0.001) 

(Conventional = Red, Direct Drill Managed = Blue, Direct 

Drill = Green) (Conventional ±s.e.0.128 (n = 12), Direct Drill 

Managed ±s.e.0.003 (n = 9), Direct Drill ±s.e.0.068 (n = 9)). 

(Bars that do not share the same letter are significantly 

different at P <0.05). 

 

Figure 5.1.19: Mean Species Evenness (J’) in differing soil 

tillage intensities for field when in crop (early and late 

growth stages). (n = 30, df – 2. P - 0.001) (Conventional = Red, 

Direct Drill Managed = Blue, Direct Drill = Green) 

Conventional ±s.e.0.092 (n = 12), Direct Drill Managed 

±s.e.0.002 (n = 9), Direct Drill ±s.e.0.056 (n = 9)). (Bars that 

do not share the same letter are significantly different at P 

<0.05). 
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5.1.6. Discussion 

5.1.6.1. Out of Crop - Fallow and After Primary and Secondary Cultivation 

5.1.6.1.1. Fallow 

Straw appeared to promote construction of webs at a higher point, in Direct Drill tillage, where the 

mass was the greatest (Figure 5.1.2. & Figure 5.1.5.). In fallow, little prey was active which questions 

whether web-building was due to capture of prey or survival. Norma-Rashid et al. (2014) and Nyffeler 

& Sunderland (2003) explained straw was used as a place to create small Linyphiidae webs throughout 

the growth of a crop. These were identified as refugia, mainly from predation, more than for biological 

control. Webs were found partially hidden by straw, agreeing with the above statement. Straw mass 

was significantly positively correlated to support thread length within the fallow period, however this 

due to threads yielding between clumps spread along the surface (Table 5.1.12).  

It seems that upright stubble was used to support bridge threads and much rappelling was identified 

in the Direct Drill habitat because of this material (Figure 5.1.1. & Table 5.1.4.). Rappelling activity is 

required to begin at a high take-off point to allow eventual descent into a habitat (Hogg & Daane, 

2018). Lubin & Suter (2013) and Bonte et al. (2008) commented that the tiptoe behaviour of a 

dispersing Linyphiidae is often carried out on a substrate that offers high anchorage points and 

stability. This identifies the benefits of using upright stubble to aid dispersal. 

 

Upright stubble further allowed webs of greater height to be constructed, a tendency for non-dwarf 

Linyphiidae to display dominance and increase prey capture (Armendano & González, 2011; 

Sunderland & Samu, 2000) (Figure 5.1.6. & Table 5.1.3.). The nature of the higher stratum that upright 

stubble offers, is a sturdy base for silk to be laid rapidly upon where the highly mobile T. tenuis is 

inclined to construct webs at a rapid pace, hence the attractiveness of stubble allowing a strong 

foundation (Toft, 1989; Mclachlan & Wratten 2003). 

 

With fallow only, volunteer plant density was significantly positively correlated to anchor point height 

of support webs, exhibiting this material as an asset to web-spinning when the field was out of crop 

(Table 5.1.3.). There was increased growth of volunteer crop in the Direct Drill area leading to the 

significantly higher mean anchor point height of support threads (Figure 5.1.4.). The increased growth 

is because of the zero cultivation, allowing seeds abandoned by the harvester to persist, their presence 

can simulate a crop canopy when void of H. vulgare (Morris et al., 2010; Welch et al., 2016). This 

accords with Birkhofer et al. (2008) & Buri et al. (2016), who suggest that random orientation of 

features, here performed by volunteer plant dispersal, can change the micro-habitat of a small area 

and thus web-building potential. Interestingly, thread length within webs was negatively significantly 
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correlated to landscape feature of upright stubble density and volunteer plant density (Table 5.1.12.). 

The increased availability and orientation of anchor materials in proximity within the Direct Drill tillage 

allowed a site to hold a wide range of web design opportunity of smaller areas (Kovac & Mackay, 2009; 

Stenchly et al., 2011; Welch et al., 2011) (Figure 5.1.1., Figure 5.1.2. & Figure 5.1.4.). 

 

Thread length out of web was significantly positively correlated to number of T. tenuis observed 

rappelling, explaining active movement in short-ranged dispersal was occurring (Table 5.1.13.). The 

greatest number of rappelling T. tenuis was observed in the Direct Drill area, utilising upright stubble 

for lift. Bonte et al. (2008) described, the linear movement of laying a bridge thread across upright 

stubble as less costly than descending and ascending structures within a habitat, when in web site 

exploration. The greatest number of anchor points found for rappel threads in Direct Drill areas were 

indeed attached to upright stubble (Figure 5.1.5.). In accord, Bonte (2013) discussed the cost of 

producing long dragline silk for a dispersal is far more costly than successive short threads that were 

identified in Direct Drill. This may identify why more bridge threads were found in Direct Drill, the low-

cost exploration leading to successful web creation (Bonte, 2013; Knight & Vollrath, 2002). A fallow 

field, devoid of complex landscape architecture, could promote migration in the area noted for highest 

landscape heterogeneity (Birkhofer et al., 2014; Sunderland & Samu, 2000; Thomson & Hoffman, 

2007).  

 

It was difficult to assess whether the field-wide glycosphate application had affected Linyphiidae 

activity when the field was sampled the following day in October 2017, as no comparative sampling 

commenced before the glycosphate had been applied (Table 5.1.1.). However, evidence of the 

disturbance effect could be seen with high rappel threads noticed attached to the upright stubble of 

all tillage, the application occurring field wide. De Keer & Maelfait  (1988), Holland & Oakley (2007) 

and Thorbek & Topping (2005) suggest that rappelling is often intensified in times of disturbance, a 

survival strategy to avoid the threat and pioneer a new web-site. 

 

5.1.6.1.2. Primary Cultivation 
 

After primary cultivation, there was heterogeneity between mean rank anchor point height inside and 

outside of the web for Conventional only (Figure 5.1.7.). This was a different result than found within 

fallow (Figure 5.1.5.). Motobayashi & Tojo (2020) described stubble is useful for a temporary habitat 

while a crop is not in growth, Conventional holding the lower upright stubble density (Figure 5.1.1.). 

Macfadyen et al. (2019) & Zou et al. (2020) agree, discussing that upright stubble helps to sustain the 

life cycle of Linyphiidae by providing a habitat of landscape complexity outside of the shelterbelts. A 

T. tenuis is inclined to rappel from the top of material to allow flexion in the legs (Bonte et al., 2008; 
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De Meester & Bonte, 2010). T. tenuis, being poor sighted, also requires a platform with fewer 

obstructions in its path to be able to repel (Bradley, 2013; Roberts, 1993). Both behaviours of T. tenuis 

are of value to biological control. Rappelling offers the potential for a T. tenuis to locate a superior 

web-site, either in low intra-specific competition or prey availability conditions (Diehl et al., 2013 

Harwood et al., 2003; Thomas et al., 2003). The use of upright stubble may have prompted web-

building due to its enhancement to landscape heterogeneity, without any prey information received 

(Japyassú & Laland, 2017). 

At lower height within Conventional, larger webs were spun close to the soil surface, which was 

identified as beneficial by Alderweireldt (1994), Rodríguez & Gloudeman (2011) and Zschokke et al. 

(2006), who commented that increased surface area allowed greater prey capture potential (Figure 

5.1.7.). With the landscape open in the cultivated areas, compared to Direct Drill, there was a greater 

potential of aerial prey contact (Hogg & Daane, 2018; Miyashita et al., 2012). The openness of the 

Conventional landscape can be seen with a mean negative anchor point height within webs measured 

due to the depressions created in the ground by the sub-soiler (Figure 5.1.7., Figure 5.1.8a. & Section 

3.1.3.4.). The trade-off with web-spinning in this manner is shown by Obrycki & Harwood (2005), Toft 

(1987) and Wagner et al. (2003) expressing, webs with low protection from surrounding vegetation 

may fall to predation or web-take over if intra or inter-specific competition is prevalent. However, low 

prey was found at this time due to low temperatures and reduced green index in the field. Soil-

dwelling prey though will be present, a web spun traversing the ground may intercept this prey (Agusti 

et al., 2003; Rodríguez & Gamboa, 2000; Vink & Kean, 2013). 

It appeared that straw mass had an indirect function to the promotion of web construction in Direct 

Drill Managed and Direct Drill, by increasing the anchor point height of support and bridge threads 

and web area along the vertical length of the upright structures of upright stubble (Table 5.1.3., Figure 

5.1.8a., Figure 5.1.8b., Figure 5.1.20. & Figure 5.1.21.). It can be concluded that limited T. tenuis 

activity used the straw as refuges at this time due to low webs anchored in straw in any soil tillage. T. 

tenuis are ‘sit and wait’ predators and thus their main goal is to occupy a web (Diehl et al., 2013; Samu 

et al., 1996; Sunderland et al., 1986). At times of cultivation, straw offered the complexity in a micro-

landscape required by T. tenuis for a beneficial web. It may be that straw contained a higher degree 

of prey residing within, where a large bio-community was supported due to the increased straw mass 

(Davey et al., 2013). Costello & Danne (1998) concur, by concluding the use by Linyphiidae of straw 

within a vineyard was due to the increased presence of prey foremost, and not as an additional habitat 

material. Straw may reduce evaporation and affect the micro-climate at the surface of the soil, and 

therefore allow a breeding site for several arthropods that can be of potential Linyphiidae prey 

(Thompson & Hoffman, 2007). Buchholz & Hartmann (2008), when analysing spider appendages in a 
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semi grassland habitat, identified that T. tenuis built their webs within the higher herbaceous layer. 

This agrees with the webs in Direct Drill attached at an increased height to stubble to occupy the 

landscape strata favoured by these Linyphiidae. 

 

Straw may have had an effect, enticing rappelling into the habitat by offering areas of complex 

structural diversity, favoured for web-spinning (Lubin et al., 2011; Öberg 2007; Prieto-Benítez & 

Méndez, 2011; Rusch et al., 2016). The spatial arrangement of material with greater densities (in straw 

mass and volunteer plant) permit shorter steps in dispersal (Table 5.1.13.). Many variations of bridge 

threads were identified for upright stubble where larger bridge threads were woven diagonally across 

upright stubble clusters of Direct Drill attached to the apex of the stubble (Figure 5.1.8b.). The 

fundamental reason behind rappelling is to find a suitable web location within a micro-habitat. It may 

be that the presence of straw allowed these webs to be created and extensive prior exploration of the 

area was not required (Bonte, 2013; De Meester & Bonte, 2010). 

 

The act of cultivation introduces the landscape feature of soil clod height as a key attachment material 

in the Direct Drill Managed and Conventional areas. The structure of soil clods was influencing T. tenuis 

activity, the greater number of anchor points for support threads were found in the Conventional area, 

where the significant higher median soil clod height was measured (Figure 5.1.3. & Figure 5.1.8a.). It 

has been recognised that T. tenuis preference is not to anchor at ground level, preferring to anchor to 

the higher point within a micro-habitat (Davey et al., 2013; Platen et al., 2017). It may be that these 

webs were created by Erigoninae that prefer to build webs near the ground surface (De Keer & 

Maelfait, 1988; Downie et al., 2000: Pommeresche et al., 2013). However, T. tenuis were identified 

Figure 5.1.20: Web within upright stubble. Direct Drill of H. vulgare, 

primary cultivation, 2016 / 2017 Season. Elevated view. (Yellow arrow = 

34.5 mm). 

Figure 5.1.21: Straw alongside upright 

stubble. Direct Drill of H. vulgare, primary 

cultivation, 2016 / 2017 Season. Lateral 

view. 
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under some webs woven across the soil clods within Conventional (Figure 5.1.22a & b). The pioneering 

ability of T. tenuis may be expressed here, a larger sheet web woven within soil clods that had been 

developed from the sub-soiler (Armendano & González, 2011; Bell et al., 2002; Chapman et al., 2013; 

Sunderland & Samu, 2000) (Table 5.1.12.). Linyphiidae activity was prepared to spin silk from soil, 

however, it appears that Linyphiidae and T. tenuis favoured the greater height difference of soil clods 

in Conventional to weave in-between and express the ‘sit and wait’ strategy under a web (Figure 5.1.3. 

& Figure 5.1.8a.). 

 

The length and anchor point height of bridge threads were positively significantly correlated with the 

number of T. tenuis noted to be rappelling (Table 5.1.4. & Table 5.1.13.). Bonte (2013) and Mestre et 

al. (2018) discussed the need for a strong platform to assist in support of the flex in the abdomen to 

initiate take-off when rappelling. Upright stubble is ideal for this platform and allows greater height 

and length of silk to be obtained. It can be discussed that a greater abundance of T. tenuis was 

dispersing locally by rappelling than web-building in the Direct Drill areas (Figure 5.1.7. & Figure 

5.1.8b.). After twenty-four hours, it is expected that a web-site will be located and web-spinning 

commences, rapid dispersal after a disturbance (cultivation) shown by Harwood & Obrycki (2005) and 

Opatovsky & Lubin (2012) to lead to subsequent web creation. Blackledge et al. (2009) and Segoli et 

al. (2004) showed a sheet web can take less than thirty minutes to weave. However, it appears that 

migration is still occurring. It can be identified that there may still be an influx of T. tenuis ballooning 

into the Direct Drill habitat with its high landscape density (Figure 5.1.1., Figure 5.1.2. & Figure 5.1.4.). 

Gómez et al. (2016) and Horváth et al. (2009) showed materials of a higher aspect were of preference 

to a habitat lowered in vegetation complexity and where bare soil is evident.  

 

Figure 5.1.22a & b: Sheet webs attached to soil clods. Conventional. H. vulgare, primary cultivation, 2017 / 2018 

season. Elevated view. (a: Yellow arrow = 33.6 mm). (b: Yellow arrow = 37.3 mm). 

 

a b 
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More female T. tenuis were recorded than male T. tenuis in all areas, where females tend to have 

larger abdomens, and greater numbers were identified in the Direct Drill area. Craig (1987), Houser et 

al. (2016) and Segoli et al. (2004) comment that larger-bodied T. tenuis may create webs at a higher 

aspect to enforce dominance and enhance prey capture capability (Table 5.1.3.). The greater densities 

of attachment materials in Direct Drill allowed webs to be spun at higher heights (Table 5.1.3.). Female 

T. tenuis with large abdomen lengths were found in this area, the larger-bodied T. tenuis exerting 

territory with the prime web-site amongst upright stubble. The wind speed within a Direct Drill plot 

was 15.6 kmh-1, which may have deterred silk-spinning high within the upright stubble (Table 5.1.5.). 

For rappelling, some moderate wind speed is essential to allow a ‘lift’ of the dragline as its being 

thrown (Hogg & Daane, 2018; Saravanan, 2006; Simoneau et al., 2016; Tew & Hesselberg 2017). 

Increased wind influenced rappelling on stubble of a greater height, it appeared the greater wind 

speed of 15.6 kmh-1 was adequate to aiding laying of dragline silk in a conscious direction (Blackledge 

et al., 2011; Craig, 2003; Tew & Hesselberg 2017) (Table 5.1.5.). 

 

5.1.6.1.3. Secondary Cultivation 
 

Within the main field, only twenty-eight bridge threads were found in the Direct Drill area spun across 

upright stubble. This is a stark difference to the primary cultivation when bridge threads were 

measured in abundance (Figure 5.1.7. & Figure 5.1.9.). Short ranged dispersal from Linyphiidae and T. 

tenuis was not taking place. There were no correlations between above-ground vegetation and 

Linyphiidae activity in spinning bridge threads within the secondary cultivation, a quite different result 

from primary cultivation where total upright stubble, straw and soil clod height affected propensity to 

bridge (Table 5.1.4. & Table 5.1.13.). Low propensity to migrate was identified by Halley et al. (1996), 

Hogg & Daane (2018) and Thorbek (2003) in low temperatures. The temperature ranged from 8 - 12 

°C in the main field within this sampling period. The minimum temperatures recorded for this area are 

not considered extreme to prevent silk production from glands, the fibrils still holding their integrity 

allowing yielding to be bestowed on the silk (Section 2.1.2.1.). This permits thread spinning for web 

creation (Craig, 2003; Harmer et al., 2011; Vollrath, 1986). Indeed, this temperature range has been 

shown to facilitate some Linyphiidae activity and persistence of a generation in the field (Halley et al., 

1996; Welch et al., 2011). 

Heterogeneity was identified between the mean anchor point height of bridge threads between Direct 

Drill Managed and Conventional soil tillage intensities (Figure 5.1.9.). Elements of the field landscape 

have altered after secondary cultivation; action of the prongs of the disc harrow and additional raking 

in the Direct Drill Managed, thinning straw abundance which previously formed large clumps (Figure 

5.1.10b. & Section 3.1.3.4.). The upright stubble density was additionally reduced in Direct Drill, with 
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no cultivation the delicate balance of stubble falling over possibly due to wind speed, large mammal 

or bird disturbance (Heroldová et al., 2017; Morris et al., 2010; Öberg et al, 2008). Bonte et al. (2008) 

and Hogg & Daane (2018) explain frequent attachment material is essential in driving rappelling, thus 

the fallen upright stubble not providing the frequency required in bridging. Due to differences in 

abundance in attachment material apparent, anchor point height within webs was significantly 

positively correlated with straw mass and upright stubble density. Bowden & Buddle (2010), 

Herrmann et al. (2010) and Obrycki & Harwood (2005), observed small differences in micro-landscape 

significantly altered T. tenuis and Linyphiidae web-spinning activity (Figure 5.1.10a. & Table 5.1.3.).  

Soil clod height was negatively correlated to anchor point height after secondary cultivation but was 

not found to be significant after primary cultivation (Table 5.1.3.). This is despite the secondary role 

of the disc harrow to break up clods, and thus the difference in soil clods height between the 

cultivation areas is less defined than that of primary soil cultivation (Davies & Finney, 2002; Peigné et 

al., 2007) (Section 3.1.3.4.). Greater areas of bare soil were evident with the disturbance of surface 

materials, attachment was still occurring, and longer webs were spun from soil clods of a greater 

height (Figure 5.1.23., Figure 5.1.24. & Table 5.1.12.).  

 

Webs with large areas were spun across soil and straw within the Direct Drill Managed area (lower 

straw mass and stubble density found within this tillage intensity) (Figure 5.1.1., Figure 5.1.2. & Table 

5.1.12.). However, this did not lead to a significantly mean greater web area found in Direct Drill 

Managed. Fewer (ten less) webs were observed in Direct Drill Managed than Conventional and Direct 

Drill which suggests the habitat of Direct Drill Managed was still not identified as a prime location for 

web-building. The disc harrow reducing clod height further and may have increased landscape 

homogeneity to a greater degree in Direct Drill Managed, therefore as shown by Borges & Brown 

Figure 5.1.24: Soil clods after secondary cultivation. 

Conventional. H. vulgare, secondary cultivation, 2017 / 2018 

season. 

 

Figure 5.1.23: Soil clods after primary cultivation. 

Conventional. H. vulgare, primary cultivation, 2016 / 

2017 season. 
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(2001) and Poggio et al. (2013) to offer a low abundance of attachment sites for threads (Section 

3.1.3.4.). 

Moreover, with the habitat unchanged by machinery in the Direct Drill area, thus material still 

arranged in proximity, it can be asked why thread length was significantly negatively correlated to 

upright stubble density and straw mass (Table 5.1.12.). It was observed that large webs were due to 

threads of a larger length being spun to non-adjacent upright stubble, at a greater height than the 

webs of primary cultivations (Figure 5.1.25.). The difference here may be due to wind speed. In the 

primary cultivation, the mean wind speed for field sampling was 13.8 kmh-1, in secondary cultivation, 

it was 0.6 kmh-1. Minor damage to webs had been identified throughout the datasets, and it has been 

previously discussed by Barriga et al. (2010), Gan et al. (2015) and Tew & Hesselberg (2017) that at 

higher wind speeds, webs of a higher anchorage would incur damage. Schmidt & Tscharntke (2005) & 

Segoli et al. (2004) discuss vegetation can impede wind flow, protecting force exerted onto a web. 

However, at secondary cultivation there was no vegetation growth apart from germinating volunteer 

crops, therefore no protection from wind was provided. Baldissera et al. (2004) and Tew and 

Hesselberg (2017) discussed that a reduction in vegetation complexity increased the level of impact 

wind speed disturbance could have on Linyphiidae web-spinning.  It may be that after primary 

cultivation, a persistent wind disturbance may have deterred T. tenuis and Linyphiidae from weaving 

webs amongst the upright stubble, the seemingly favoured strata for T. tenuis to exhibit dominance 

and an ability to capture a greater array of moving prey, throughout fieldwork.  

 

 

 

Figure 5.1.25: Small sheet web woven at top of upright stubble. (Female T. 

tenuis circled in light blue). Direct Drill, H. vulgare secondary cultivation, 

2017 / 2018 season. Elevated View. (Yellow arrow = 14.9 mm). 
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Larger webs were found in areas with greater numbers of female T. tenuis recorded, this may be an 

element of intra-specific competition (Table 5.1.12.). The greater number of T. tenuis recorded was 

four in the Direct Drill tillage. Four Linyphiidae within an area of 1 m2 gives adequate web building 

space to each T. tenuis without necessary relating to intra-specific dynamics (Benjamin & Zschokke, 

2003; Harwood et al., 2003; Pasquet et al., 2014; Shaw et al., 2005). Bianchi et al. (2017) and Krafft & 

Cookson (2012) discuss the hypothesis of mass action, where the spinning of silk through delicate 

vibrations can act as a stimulus and induce further web-spinning in close vicinity. However, five sheet 

webs attached to stubble were found in this area and cannot be identified as a significant stimulus. 

Again, the dominance of the anchor material of upright stubble can be defined, offering a robust 

structure for web-weaving of several dimensions (Birkhofer et al., 2008; Buri et al., 2016). 

The larger T. tenuis had abdomen lengths 1.8 mm to 2.1 mm and were found within Conventional. 

This could suggest intra-specific competition, where T. tenuis of larger abdomens were seen to 

dominate within a habitat, driving away small T. tenuis. Štokmane & Spuņģis (2016) and Gómez et al. 

(2016) discussed, a habitat similar in landscape heterogeneity to Conventional, is not ideal for web-

spinning with less complexity in the plant physiognomy. However, it did not provide the opportunity 

for significantly larger webs to be spun, across the bare soil when predation was low (Figure 5.1.3. & 

Table 5.1.12.). Web take-over in Linyphiidae by species of a larger size has been described in work by 

Eichenberger et al. (2009) and Harwood et al. (2003), where T. tenuis compete strongly for web 

territories and building a larger web is seen as a greater display of territory. However perhaps in 

Conventional small webs, to conserve energy, were adequate if other small T. tenuis had been driven 

away (Beck & Toft, 2000; Segoli et al., 2004). 

5.1.6.1.4. Immediately After Primary Cultivation 
 

Much Linyphiidae and T. tenuis activity were recorded in the Direct Drill areas sampled. These areas 

were untouched by the sub-soiler due to zero-tillage (Section 3.1.3.4.). Schmidt & Tscharntke (2005), 

Schmidt et al. (2008a) and Topping & Lövei (1997) showed similar findings where zero-tillage increased 

the observed T. tenuis and Linyphiidae abundance and activity compared to cultivated areas. Longer 

bridge threads were mostly identified at the top of the upright stubble (Figure 5.1.11., Figure 5.1.12., 

Figure 5.1.26a & b). Rappelling anchors silk to a substrate and then exhibits forward movement until 

another substrate is reached. A solid inflexible structure is shown to aid this movement and allow T. 

tenuis to rappel with relative ease (Bonte, 2013; Craig, 2003).   
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It appears that migration activity occurred at a greater rate than web-building. This is an unusual 

result, as Alderweireldt (1994), Opatovsky et al. (2016) and Wagner et al. (2003) found short distance 

dispersal should result in web creation. It may be after the cultivation had occurred in the adjacent 

soil cultivations (Direct Drill centred in the middle of the field) T. tenuis had identified an area of low 

Linyphiidae abundance to pioneer and were therefore dispersing (Figure 3.5b, Section 3.1.3.3., Page 

51). Perhaps due to the pass of the cultivators, T. tenuis were dispersing into an area of high landscape 

heterogeneity offering shelter. Buchholz & Hartmann (2008) and Pommeresche (2002) communicated 

the pioneering capability of T. tenuis. Bianchi et al. (2017) and Halley et al. (1996) discussed T. tenuis 

dispersal strategies from a disturbance. It appears two-way migration may have been occurring. 

The greater number of anchor points measured were anchored to upright stubble and straw, material 

clearly favoured for web-spinning (Figure 5.1.11.). This is a similar finding to that from primary 

cultivation, where it was noted that the addition of straw and upright stubble in the same area is of 

advantage to web-building, upright stubble offering a platform of greater height (Figure 5.1.11. & 

Section 5.1.5.1.3.). Straw, combined with the upright stubble, increased landscape heterogeneity, 

shown to be influencing web-building by Blake et al. (2013) and Borges & Brown (2001) by offering 

many orientations in which a web can be spun (Figure 5.1.11.). Volunteer plants, used sparingly for an 

attachment material, shows the beneficial level of landscape heterogeneity was reached with straw 

and upright stubble alone (Lenoir & Lennartsson, 2010; Pathan, 2002).  

 

Figure 5.1.26a & b: Rappel threads attached to upright 

stubble. Direct Drill. H. vulgare, immediately after 

primary cultivation, 2017 / 2018 season. Lateral view. (a: 

Yellow arrow = 61.1 mm). (b:  Yellow arrow = 39.3 mm). 

 

a b 
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No sign of T. tenuis or Linyphiidae was observed in the Conventional plots immediately after primary 

cultivation.  Four female T. tenuis were observed within one sample from the Direct Drill Managed 

cultivations. It may be that the shallower cultivation of Direct Drill Managed had allowed pockets of 

T. tenuis to remain (Henschel & Lubin, 2018; Schirmel et al., 2016; Tamburini et al., 2015) (Section 

3.1.3.4.). No web-building activity was identified within this area, and it may be that the T. tenuis 

dispersed away from the sub-soiler to an area of the field where tyres of the machinery did not tread 

and the tines did not strike (Section 3.1.3.4.).  

The destruction of any web-building activity, identified after primary cultivation, damaged the 

Linyphiidae community. The above-ground vegetation disturbed, material where web attachment 

may have occurred. This agrees with evidence from Holland & Reynolds (2003) and Thorbek & Bilde 

(2004) who both demonstrated the action of loosening the soil, regardless of whether inversion was 

implemented, decreased T. tenuis abundance dramatically. This is a cost to energy output of the 

Linyphiidae where any web constructions may not have fulfilled their intended purpose (Benjamin et 

al., 2002; Harmer et al., 2011). Barriga et al. (2010), Bell et al. (2002) and Clark et al. (2004) 

communicated that after soil disturbance, the presence of T. tenuis may still be identified due to its 

rapid dispersal to pioneer a disturbed habitat. However, this is viewed after a certain time frame 

where the field in this dataset was analysed immediately after cultivation.  

 

5.1.6.2. In Crop - Early and Late Growth Stages 

5.1.6.2.1. Early Growth Stages 

The upright stubble was dominant in times of cultivation and again when the field was in crop, upright 

stubble appeared to be prevalent as a bridging attachment material (Figure 5.1.14. & Section 5.1.5.1.). 

Further, Armendano & González (2011) and Bianchi et al. (2017) found the use of stubble influenced 

Linyphiidae web height (Table 5.1.15.). The upright stubble was still utilised even though the density 

was reduced (Figure 5.1.14.). The reason for this decline in upright stubble can be due to the direct 

drilling process (Section 3.1.3.4.). Following evidence of the direct drill machinery in the field, it 

appeared that upright stubble had fallen and became straw on the ground (Figure 5.1.26. & Figure 

5.1.27.). This additional straw, created by the fallen upright stubble, on the surface of Direct Drill did 

not appear to increase T. tenuis activity in web construction. This disagrees with the fallow period 

where straw gave Linyphiidae an area of refugia (Section 5.1.5.1.3.). Armendano & González (2011), 

analysing Linyphiidae in a T. aestivum crop in Argentina, and Tahir & Butt (2009), studying Linyphiidae 

in a rice system, both discussed the need for both straw and stubble abundance to promote web-

building and refugia. This is due to Linyphiidae requirements focused on the need for a habitat of 

complex landscape feature.  
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Rappel threads within all tillage intensities still had significantly higher mean anchor point height 

compared to support threads (Figure 5.1.13.). Most bridging occurred upon the upright stubble when 

the field was out of crop, however, there was no significance between these two variables at this early 

growth stage (Section 5.1.5.1.). This exhibits, lower short-ranged migration was occurring, compared 

to in periods of fallow (Section 5.1.6.1.1.). Woolley et al. (2016), identified a significant decrease in 

adult Linyphiidae population after removal of maize stubble in an agricultural setting. Wenninger et 

al. (2020) concur, signalling in zones of strip tillage of sugar beet, reduction in prominent ground cover 

reduced Linyphiidae abundance. The reason for this decline in short dispersal may be due to the 

decrease in mean upright stubble within the Direct Drill area, where a mean decrease of 267, was 

identified between the fallow stage and GS 11 - GS 15 (Figure 5.1.27. & Figure 5.1.28.). This occurred 

due to the action of sowing the crop with a direct drill (Table 5.1.1.). It appeared that the low 

population of T. tenuis in the crop and low propensity to disperse at this stage could influence the 

biological control capacity that Linyphiidae exerted as the crop began to grow.  Mestre et al. (2018) 

and Zou et al. (2020) both discussed that the promotion of settlement by natural enemies 

(Linyphiidae) within a crop at early growth stages is an essential tool in increasing biological control 

when pests begin colonising a crop. Boreau de Roincé et al. (2013) & Schellhorn et al. (2014), showed 

colonisation prospects have been lowered in Aphididae if early pest suppression is applied in a crop. 

Holland et al. (2012) however, showed increased biological control rate when Aphididae were allowed 

to build up a colony to provide adequate stimuli for Linyphiidae. 

 

  

T. tenuis in Conventional appeared to be utilising greater plant growth for rappel threads (Figure 

5.1.14. & Table 5.1.16.). Blandenier (2014) referenced rappelling as ‘ridging’, stating that bridge 

threads are like climbing structures allowing ascension to an increased height for further exploration 

of a possible web-site location. Conventional held less diversity in attachment material, even after 

drilling, with lower landscape features in straw and stubble present after cultivations (Section 5.1.5.1.). 

Figure 5.1.27: Direct Drill prior to direct drilling of H. vulgare 

in H. vulgare, fallow, 2016 / 2017 Season. 
Figure 5.1.28: Direct Drill after direct drilling of H. 

vulgare in H. vulgare, GS 11 - GS 15, 2016 / 2017 Season. 
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Conventional incorporated H. vulgare with increased numbers of tillers and subsequent leaf growth, 

increasing the overall plant physiognomy of the sample. The available growth of H. vulgare plant 

providing new stem elongation of somewhat rigidity and perhaps offered a substrate robust enough 

to exhibit forward movement until another substrate is reached (Bonte et al., 2016; Craig, 2003). The 

greater S. mosellana found within the Conventional tillage was identified in the sampling where 

rappelling occurred, which feeds into the higher Shannon-Weiner Diversity Index found in this area 

(Figure 5.1.18. & Table 5.1.16.). The higher air temperature would have allowed pupation from 

cocoons in the soil of S. mosellana nymphs (AHDB, 2016; 2018; Bayer, 2018). T. tenuis with the poor 

vision of distant objects, removal of obstructing features may have allowed the vibrant orange of S. 

mosellana to have been received by the eyesight of T. tenuis (Herberstein, 2011; Lichtenstein et al., 

2019; Young & Wanless, 2009). Preston-Mafham & Preston-Mafham (1996) and Young & Wanless 

(2009) showed contrast in colour aids reception of the Linyphiidae optic system and thus inclined 

bridging. 

The greater plant density measured was in Conventional, which contributed to webs of a greater 

height and area (Table 5.1.15. & Table 5.1.19.). At this GS of H. vulgare, stem elongation was in early 

development and therefore the tillers had a high spatial orientation and allowed small changes in 

micro-habitat for web-spinning at an increased height (AHDB, 2015) (Figure 5.1.13. Figure 5.1.29. & 

Figure 5.1.30.). Gómez et al. (2016) and Mader et al. (2017) state that difference in plant physiognomy, 

provided through greater vegetation density, can push an anchor point height further up the crop.  

The largest web of the dataset was in Conventional, spun traversing crop rows and may suggest why 

thread length increased along with the height and density of H. vulgare (Table 5.1.19. & Figure 5.1.29.). 

Holland & Oakley (2007), manipulating row spacing between crops, found this area to be a web-site 

potential for Linyphiidae. This agrees with Harwood et al. (2003) who commented that spaces 

between a T. aestivum crop may become a potential web-site if adjacent stem orientation was such 

to allow the creation of a sheet web (Harwood et al., 2001). This is advantageous to an arable field, 

where crops are set in definite rows. The availability of an anchor material, plant, is therefore in 

proximity and allows the weaving of a uniform sheet web. The webs between crops were spun at an 

aspect of <10 cm, not utilising the increased mean height of H. vulgare in the Conventional area. 

Benjamin & Zschokke (2004) and Scheidler (1990) discuss the necessity for anchor vegetation to be 

structurally robust to adequately support a sheet web. This requirement increases with larger webs 

(Greenstone, 1984; Toft, 1987). It was theorised that the webs in between crop rows were attached 

lower to H. vulgare stem to allow for sheet web to be spun within a sturdy platform. This agrees with 

Benjamin & Zschokke (2004) and Rybak (2007) where Linyphiidae were found to spin a thread across 

a large open space, if the resultant web construction would be viable in its intended purpose.  
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Crop pests (S. avenae, M. dirhodum and S. mosellana) at the early growth stages, were found to be 

active within H. vulgare, with an increased green canopy index (Kennedy & Connery, 2005; Price et al., 

2011). T. tenuis seemed to be exerting their biological control potential, with number of crop pests 

within the web a positive significant predictor to the number of T. tenuis within the web (Prieto-

Benítez & Méndez, 2011; Sunderland & Samu, 2000) (Table 5.1.20.).  Fourteen S. mosellana and twelve 

M. dirhodum, the greatest captured, were caught in five small webs of Direct Drill, spun within the 

lower aspect of H. vulgare, four T. tenuis shared webs with S. mosellana nymphs (Table 5.1.15. & Table 

5.1.19.). This disagrees with work by Davey et al. (2013) and Samu et al. (1996) who express larger 

webs spun at a greater height are often spun in a response to prey stimuli. The evidence suggested 

that T. tenuis here, spun webs within the correct location to capture prey. The capture of fourteen S. 

mossellana was within the early growth stages in 2017 season. The temperature at the time of 

sampling (highs of 13 oC - 16 oC) was adequate to allow the pupation of S. mosellana within the soil, 

however, low enough to discourage flight at a high level (Echegaray et al., 2018; Elliot et al., 2011; 

Lamb et al., 2000). Thus, stimuli of S. mosellana presence may have been intercepted by Linyphiidae, 

towards ground level (Japyassú & Laland, 2017).  

Seven S. avenae were found in webs at a lower stratum in Direct Drill Managed, with three T. tenuis 

underneath webs which contained the Aphididae. This is a success of predator dynamics and biological 

control (Table 5.1.20.). Webs of a larger orientation were anchored higher amongst the H. vulgare in 

a Conventional area, five S. avenae were noted from g-vac sampling in this area, however none within 

the web (Figure 5.1.13.). Five T. tenuis were under these webs, shown in significant positive correlation 

to anchor point height of support threads (Table 5.1.15.). The large webs of Conventional area in 

between crop rows do not appear to have exerted much predator dynamics. It may be that these webs 

were created to allow a greater surface area to snare prey, unable to pinpoint exact location of 

Figure 5.1.29. Greater H. vulgare growth. Conventional of H. 

vulgare, GS 33 - GS 37, 2016 / 2017 Season. 

Figure 5.1.30: Lesser H. vulgare growth. Direct Drill 

Managed of H. vulgare, GS 33 - GS 37, 2016 / 2017 Season. 
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potential aerial prey (Agusti et al., 2003; Rodríguez & Gamboa, 2000; Vink & Kean, 2013) (Figure 

5.1.13.). 

Within this dataset, it was identified that the number of webs is a useful measure for biological control, 

with webs less numerous in Conventional. Schmidt et al. (2004) and Wyss et al. (1995) concur, 

discussing that the construction of smaller webs in numerous areas enable predator dynamics of 

Linyphiidae to extend over a larger area (Figure 5.1.31.). Moreover, the greatest number of T. tenuis 

were found within a Direct Drill area, with similar comparative small abdomen lengths, where smaller 

lower webs were found (Table 5.1.15. & Table 5.1.19.). Low intra-specific competition is found with T. 

tenuis of similar bodied size, comparable strengths indicating low signs of dominance, for example, 

web take-over (Gan et al., 2015). With this, co-existence can occur, and each T. tenuis may assign web 

territory with relative ease (Rojas, 2011; Segoli et al., 2004). The smaller webs within the early growth 

of H. vulgare in this area have been successful in biological control. Barro (1992), Oliver (2007) and 

Zhang et al. (2016) discussed Aphididae in early growth stages of a crop, are likely to be in greater 

numbers as apterous morphs. At early growth stages, high densities of Aphididae or high 

temperatures not likely to have been present, both precursors of the parthenogenesis of alate morphs 

(Alkhedir et al., 2010; Barro, 1992, Mehrparvar et al., 2013). Apterous morphs seldom migrate over a 

large distance, their movement laboured and an energy-draining process, thus are likely to be feeding 

on the basal level of H. vulgare (Zhang et al., 2016).  

 

 

 

 

 

 

 

 

 

Rappelling offers the potential for a T. tenuis to locate a superior web-site, either in low intra-specific 

competition or prey availability conditions (Diehl et al., 2013 Harwood et al., 2003; Thomas et al., 

2003). Bonte et al. (2008) and Bonte et al. (2011) discussed the high energy cost, with a little return in 

Figure 5.1.31: Small web woven in an area of dense H. vulgare. (Web circled 

in light blue). Direct Drill Managed. H. vulgare, GS 33 - GS 37, 2017 / 2018 

season. Elevated view. (Yellow arrow = 25.9 mm). 
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terms of the outcome being web-site selection, associated with creating bridge threads. With anchor 

point for bridge threads, S. mosellana and numbers of exuviae in the webs along with S. avenae in the 

vegetation were all significantly negatively correlated (Table 5.1.16.). This accords with evidence that 

explains yielding a length of bridging thread with such extension is energy demanding, due to 

sustaining adequate tension (Blandenier et al., 2013; Bonte 2013). Its necessity only implemented 

when it is apparent that low prey density is in the vicinity and search for a new web-site is promoted. 

The mean larger abdomen lengths were identified within the Conventional areas where the higher 

bridge threads were spun (Table 5.1.16.). The stimuli of S. mosellana nymphs, several collected by the 

g-vac within these areas as previously highlighted, maybe enough of a stimulus for a response by T. 

tenuis and drive bridging propensity (Rodríguez & Gloudeman, 2011; Zschokke, et al., 2006). 

Rappelling at a greater height is of an advantage, T. tenuis can migrate rapidly with less obstruction.  

Gan et al. (2015) and Rusch et al. (2015) showed, that larger-bodied Linyphiidae can expel greater 

energy to ascend higher. This discords with Corcobado et al. (2010) who comment, that a larger-

bodied female Linyphiidae, with a greater mass (due to extreme SSD), may not have sustained the 

lying of a horizontal bridge thread, the dragline silk unable to hold the weight. However, it cannot be 

identified whether the bridge threads in question were spun by a male or female. The time of this 

sampling was outside of courtship and reproduction of the life cycle leading to lower intra-specific 

competition between each sex (Beck & Toft., 2000; Thorbek & Bilde, 2004). 

5.1.6.2.2. Late Growth Stages 

Unlike at early growth stages, plant height influenced the size of webs that Linyphiidae wove and their 

placement (Table 5.1.16 & Table 5.1.19.). It has been shown by Borges & Brown (2001) and Mclachlan 

& Wratten (2003) that manipulation of vegetation height alone did not alter T. tenuis abundance or 

promote web-spinning, density and vegetation richness combined with height influenced Linyphiidae 

behaviour. This significant difference in median plant height recorded is likely to have changed the 

vegetation architecture of the sample area, increasing its complexity (Figure 5.1.15.). Providing a 

habitat of vegetation enhanced heterogeneity was shown, by Platen et al. (2017) and Schmidt & 

Tscharntke (2005), to increase T. tenuis productivity providing an enhanced matrix of anchor points. 

Six S. mosellana were recorded in vegetation and collectively fourteen S. mosellana were found in two 

webs attached near the H. vulgare ears with thread lengths >90 mm in a Direct Drill sample (Table 

5.1.15.). Web construction was identified to be following areas of increased prey abundance within 

the Direct Drill tillage. This showed high T. tenuis biological control potential as the extended 

phenotype of the web ensnares the prey. Thus, the increase in web area increased the biological 

control capacity of this sampled plot (Chapman et al., 2013; Nyffeler & Sunderland 2003; Pekár 2000; 

Toft 1987). It is of interest, why the more prominent webs in the Conventional tillage did not intercept 
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S. mosellana when the higher webs of the Direct Drill tillage succeeded in snaring prey.  S. mosellana 

was present within the Conventional area in vegetation in similar numbers to Direct Drill. 

Alderweireldt (1994) and Rodríguez & Gamboa (2000) discussed, these numbers of S. mosellana (n = 

<10) too difficult for T. tenuis and Linyphiidae to register. Extreme temperatures were observed in 

2018 and were thought to be the reason for a reduction in pupation and growth rate that occurred in 

the S. mosellana population (Blake et al., 2013). Cheng et al. (2017) identified that in times of higher 

than optimal temperatures, S. mosellana are induced into early diapause (dormancy). Female fliers 

have been known to migrate into a shelterbelt during dispersal (Cheng et al., 2017; Elliot et al., 2011). 

The greater number of S. avenae within the web was found in the area where the greater number of 

Aphididae exuviae was identified in the Direct Drill area (Table 5.1.19.). This agrees with Muratori et 

al. (2008), who present evidence that exuviae are commonly near an Aphididae population, 

reproduction being carried out in definite areas. Muratori et al. (2008) commented, that exuviae may 

be dealt with by predators in the same manner as Aphididae, allowing time for said pest to vacate. 

However, the benefit of Linyphiidae adapting passive foraging through the web, allows the same 

potential for both Aphididae and exuviae to be ensnared in the web (Diehl et al., 2013; Feber et al., 

2015; Haughton et al., 1999). 

Very few T. tenuis were noted occupying webs in all tillage intensities. It appeared web abandonment 

had frequently occurred, much of this action in the Conventional area. Sunderland & Samu (2000) and 

Vink & Kean (2013) commented that the main drivers of web abandonment are low prey retrieval, 

physical disturbance, or threat of predation. Wind speed (14 kmh-1) was considered high at times in 

terms of levels a sheet web can potentially withstand without fracturing hydrogen bonds, however, 

there were periods of calm within sampling in later stages (Blackledge et al., 2009; Tew & Hesselberg, 

2017) (Section 2.1.2.2.). It seems biological control was being implemented, though low amounts of 

cereal Aphididae activity was found within this dataset (Table 5.1.20.). Maximum daily temperatures 

for the Summer of 2018 sampling ranged from 25 - 31 oC (Met Office, 2018). This period of extreme 

heat seemed to have affected S. avenae fecundity rate and dispersal of other cereal Aphididae into 

the field. Asin & Pons (2001) identified that temperatures over 28.5 oC become a limiting factor in an 

S. avenae life cycle. Mortality rate was found to increase for nymph and adult, and reproduction rate 

decreased due to inability to thermo-regulate internal temperatures (Brabec et al., 2014; Newman, 

2005). M. dirhodum was found to be sensitive to a lower threshold temperature of 26.5 oC. This may 

be a reason why low numbers of M. dirhodum were identified (Aspin & Pons, 2001). This supports the 

low Shannon-Weiner Diversity Index found (compared to the Max H’) across all soil tillage intensities, 

the high temperatures acting as a pest suppressant, perhaps as a consequence of T. tenuis’ ability to 
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persist with a biological control potential offering food through capture (Ramsden, 2016; Rusch et al., 

2016) (Section 5.1.5.2.5.). 

It was identified that the greater A. myosuroides density was found in the Direct Drill Managed areas, 

yet few anchor points of webs were anchored to their stems. It appears that the addition of another 

plant species, if only in small quantities, increased T. tenuis activity in creating webs of a larger area 

and increased number of webs (Table 5.1.15.). Barriga et al. (2010) and Glime & Lissnier (2017) both 

describe changes in vegetation structure at a small spatial scale that induced an increase in Linyphiidae 

web-building and web occupancy (Table 5.1.20.). It appears that the structural difference in 

dimensions of A. myosuroides, elongated stem and low canopy growth, created the change in 

vegetation complexity required (AHDB, 2015; Borges & Brown, 2001; Marshall 2004; Schmidt & 

Tscharntke, 2005; Thomson & Hoffman, 2007).  

Number of T. tenuis (female and male) were significantly negatively correlated to anchor point height 

and thread length within the webs (Table 5.1.15. & Table 5.1.19.). This disagrees with research from 

Harwood & Obrycki (2005) and Opatovsky et al. (2016) who identified that a greater number of T. 

tenuis increased general anchor point height, dominant T. tenuis driving webs higher at times of 

increased competition. The result is driven by a sample plot, where the greater T. tenuis abundance 

was identified, in an area where 75% of the webs created were in Conventional furrows with extensive 

shrinkage of the soil, due to the abnormally high temperatures (Table 5.1.15. & Figure 5.1.19.). The 

soil moisture was noted to be 19.3% in this area, below field capacity for Hanslop clay soil (Ashman & 

Puri, 2002) (Figure 5.1.32. & Figure 5.1.33.) (Section 2.2.2.). These webs had little contact with the 

above canopy. It is possible that this web would not have been constructed here, but for the low soil 

moisture inducing the extensive cracking. The canopy had shrunk due to moisture loss in the plant, 

thus it can be deduced that the web was in the furrow because of high spatial availability in higher 

aspects of H. vulgare (AHDB, 2018; Gómez, et al., 2016; Roberson et al., 2016). The creation of this 

web-site location in the habitat is not shown as beneficial to pest suppression. It appears that 

environmental conditions had altered the landscape offered by Conventional, allowing T. tenuis and 

Linyphiidae to exploit the potential web-sites (Ball & Bingham, 2003; Knight et al., 2012; Peigné et al., 

2007; Zheng et al., 2014). However, Betz & Tscharntke (2017), Campbell et al. (2020) and Romero & 

Harwood (2010), explored a web spun away from possible habitats of crop pests (upper crop canopy), 

would not have a high interception rate to entrap prey.  
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In the Direct Drill Managed area, the greater abdomen length of all female T. tenuis was found in the 

area that held webs spun at the apex of the plant (Table 5.1.15.). Males abdomens measured on 

average >0.2 mm smaller in length. Increased anchor height may be linked to males exhibiting 

enhanced fitness traits to dominant females with extreme SSD, expressed in a large female abdomen 

(Corcobado et al., 2010; De Mas et al., 2009; Prenter et al., 2010) (Section 2.1.2.3.). Higher webs spun 

by large-bodied females equates to males required to present climbing efficiently and articulation to 

enter the web. This data was taken at the end of July. It may be argued that this is too early in T. tenuis 

life history for copulation to commence (Vanacker et al., 2004; Watson, 1993). Prenter et al. (2010) 

and Toft (1989) discuss that male T. tenuis with a larger abdomen have a greater degree of success in 

courtship, being able to promote heritable benefits and exert dominance over the female. Maklakov 

et al. (2003) and Rundus et al. (2011) identify that males with smaller abdomens require a greater 

time to search for a female.  

A greater number of spiderlings were identified at GS 47 - GS 61 and generally identified to be in third  

instar, a stage prior to last ecdysis and maturity into an adult, life generations occurring in waves (Peng 

et al., 2013; Preston-Mafham & Preston-Mafham, 1996) (Table 5.1.1. & Section 2.1.1.2.). Spiderlings 

tend to create small webs closer to the ground, with Vanacker et al. (2004) explaining that this is a 

protective strategy, and Thorbeck (2003) discussing that spiderlings are competent web spinners, 

though have low fitness to be able to outlay large expanse of silk (Table 5.1.19.).  

5.1.6.2.3. Overall - When in Crop (Early and Late Growth Stages) 

Intra-specific relationships have been exhibited and show T. tenuis, of greater abdomen length, 

exercise dominance to locate an ideal web-site often with increased vegetation abundance. Gan et al. 

(2015) showed dominance, to be an act of claiming prime territory. This concurs with number of T. 

Figure 5.1.32: Furrow. Conventional. H. 

vulgare, GS 87 - GS 91, 2017 / 2018 season. 

 

Figure 5.1.33: Furrow. Direct Drill. H. 

vulgare, GS 87 - GS 91, 2017 / 2018 

season. 
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tenuis found in the web and mean H. vulgare height as significant predictors to T. tenuis mean 

abdomen length (Table 5.1.21.). Greater body size allows a T. tenuis to exert priority if competition in 

web-sites may be identified, leading to cannibalism in a show of this authority (Gregori et al., 2015; 

Lowe et al., 2014; Wise, 2006). Gómez et al. (2016) and Štokmane & Spuņģis (2016) note web-spinning 

propensity increases with increased complexity in the plant physiognomy. Campbell et al. (2020) 

agreed, discussing an ideal web-site is an area of greater landscape heterogeneity, a location a larger-

bodied T. tenuis may compete for.  

Activity of T. tenuis in web-spinning was identified to be sensitive to the level of landscape 

heterogeneity with number of T. tenuis occupying webs significantly associated with the density of H. 

vulgare and A. myosuroides (Table 5.1.20.). This agrees with Holland et al. (2003), Lafage et al. (2015) 

and Schmidt & Tscharntke (2005) who suggested that complex vegetation structure promote T. tenuis 

occupation, due to the increased anchorage possibilities creating webs of greater size and strength. A 

web gains strength with the greater number of attachment points it contains, the piriform discs 

providing attachment (Figure 2.3c., Section 2.1.2.1. Page 11).  

The greater number of T. tenuis were found in summer of 2017 within Conventional when H. vulgare 

was within the later growth stages, when no prey was recorded in web or crop. This growth stage 

defines dough development to when the kernel is identified to be at the hard dough stage, i.e. fully 

ripened. As further senescence had occurred and moisture loss increased, the head endures bending 

(AHDB, 2015; Holopainen-Mantila, 2015; McFarland et al., 2014). The reduced rigidity of the stem 

lowers the height of the plant. In this area, all T. tenuis were of low abdomen length perhaps from a 

new generation (Opatovsky et al., 2016; Welch et al., 2013) (Table 5.1.21.). The condition of the crop 

appeared to be detrimental to T. tenuis ability to weave substantial webs. Additionally, low dispersal 

activity was recorded at the late growth stage. De Meester & Bonte (2010) explained that migration 

effort spun with multiple shorter threads is of lower energy consumption than extended dragline silk. 

Gan et al. (2015) and Segoli et al. (2014) suggest that an increase in body size can relate to higher 

energy outlay, therefore, the T. tenuis of low abdomen length were unable to expel greater energy to 

migrate to the shelterbelt or a prime web-site location.  

Webs in all soil tillage intensities were successful at prey capture at a variety of anchor point heights, 

which shows the T. tenuis ability to spin webs in many locations (Figure 5.1.16.). It appears that no 

height was beneficial to capture prey, which disagrees with Davey et al. (2013) and Samu et al. (1996) 

who highlighted that a web of a high aerial aspect may presume it would be beneficial to capture 

aerial prey. The T. tenuis behaviour appeared to be similar in Direct Drill Managed and Direct Drill, 

suggesting that T. tenuis and Linyphiidae were responding to either prey abundance or difference in 
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habitat requirements, plant height and density shown to affecting T. tenuis behaviour. It appears that 

both stimuli may be inseparable with Harwood et al. (2001), Kraftt & Cookson (2012) and Sunderland 

& Samu (2000) establishing that T. tenuis respond to the same cues in micro-habitats as prey, an 

increase in vegetation complexity and nutritional status. 

Within a different sampling period, webs attached >60 cm to the H. vulgare stem did entrap three 

adult S. mosellana within Conventional (Figure 5.1.16.). The greater Shannon-Weiner Diversity Index 

was established in the Conventional plot, due to S. mosellana, M. dirhodum and S. avenae identified 

collectively, in ten out of the twelve sampling periods of Conventional, when H. vulgare was in crop 

(Table 5.1.1., Figure 5.1.16. & Figure 5.1.18.). Additionally, S. mosellana was identified at greater 

abundance as adults in Conventional. The greater number of S. mosellana was found on the crops due 

to perhaps the greater plant height (Figure 5.1.15. & Figure 5.1.16.). This is as expected due to H. 

vulgare of increased height having a higher yield of grain (AHDB, 2018). S. mosellana may seek this 

increased grain for potential areas where access through the pericarp is attainable (AHDB, 2018; Price 

et al., 2011). S. mosellana are weak fliers with poor optic ability, their strategy of chaotic rapid flight 

covers short distances (Bayer, 2018; Blake et al., 2013). Blackledge & Eliason (2007) and Gómez et al. 

(2016) discussed aerial pests may have promoted webs spun at a greater height. It may be that T. 

tenuis in the Conventional area were unable to sense S. mosellana, their cognitive receptors not able 

to pinpoint the location of the stimuli, to be able to entrap further S. mosellana (Rodríguez & Gamboa, 

2000; Rodríguez & Gloudeman, 2011).  

Small webs were found in areas where high wind speeds were measured. Smaller webs were shown 

by Blackledge et al. (2009) and Segoli et al. (2004) to offer a higher degree of structural support in 

times of increased physical disturbances. Webs of a lesser area may have been woven tightly within 

vegetation at a previous exposure to high wind speeds, agreeing with smaller webs successful in prey 

captured (Harwood et al., 2003; Toft 1989) (Figure 5.1.17.). Seven alate morphs were observed at a 

wind speed of 16.6 kmh-1. The alate were not in flight and recorded due to g-vac sampling. The wind 

speed at this level is considered too great to allow lift for S. avenae according to Parry (2013) and 

Reynolds & Reynolds (2009). Three alate S. avenae were captured with two webs. The alate were 

recorded in Direct Drill Managed where the greater density of S. avenae were found. It may be that 

alate morphs were asexually reproduced as a product of increasing S. avenae abundance in the Direct 

Drill Managed area, high density being a driver for parthenogenesis of alate morphs here, more than 

dispersal along wind speed currents (Parry et al., 2006; Parry 2013; Price et al., 2011; Summers et al., 

2004). T. tenuis can sense alate morph movement by subtle cues in movement in vegetation 

(Rodríguez & Gamboa, 2000; Rodríguez & Gloudeman, 2011). It could be said if the wind speed was 
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lower, S. avenae may have taken flight and webs woven at a higher stratum would have ensnared 

prey. 

S. mosellana, as cocoons from a previous season, may have been abundant in soil of each cultivation 

allowing the occurrence of pupation to be similar, however, its greater presence in Conventional 

suggests dispersal from a shelterbelt, with Conventional field length bordering a hedgerow (Figure 

3.5b). This would explain S. mosellana presence within H. vulgare, when it is mostly associated with T. 

aestivum (Goggin, 2007; Lombaert et al., 2006). S. mosellana as adults are winged, even though they 

are poor fliers, the short rapid aerial dispersal allows movement between crop ears (AHDB, 2016; 

Bayer, 2018; Price et al., 2011). Aphididae depend on stimuli from environmental conditions to 

produce an alate morph to allow dispersal thus are restricted to when a stimulus may be presented 

(Mehrparvar, 2013; Price et al., 2011). From the different reproduction and dispersal methods of the 

two pests above within the field, may explain why two webs of different strata and size capture 

different prey (Figure 5.1.16. & Figure 5.1.17.). 

Greater web dimensions do not necessary ensnare prey (Figure 5.1.17.). This disagrees with Chapman 

et al. (2013) and Pekár (2000) who discuss the extended phenotype of the web exhibits pest 

suppression with an increase in web area supporting escalated biological control capacity. It appears 

that the location of the web is more important than the dimensions, small prey becoming attached to 

flagelliform silk of webs of any dimensions (Diehl et al., 2013; Harwood et al., 2003; Nyffeler & 

Sunderland., 2003) (Section 2.1.2.1.). The greater webs woven where no prey was identified was costly 

in energy. Linyphiidae are highly sensitive to the energy depletion of silk production (Benjamin et al., 

2002; Segoli et al., 2004). The large webs of Conventional might have been beneficial if prey was 

evident, though it seems that the drive to assemble webs of a high aspect here had occurred as an act 

of dominance, from females of a larger abdomen, than the desire to construct their extended 

phenotype of the web to capture prey (Birkhofer et al., 2017; Eichenberger et al., 2009; Stenchly et 

al., 2011).  

Overall, there was no statistical difference between the abundance of prey found in the web and 

within the vegetation between the three soil tillage intensities, confirming the similar biological 

control opportunity existed in each. Perhaps if temperatures were favourable and greater prey was 

able to persist, the Shannon-Weiner Diversity Index and evenness would have been enhanced and 

significant differences of prey type and abundance may have been identified in the soil tillage 

intensities (Figure 5.1.18. & Figure 5.1.19.). This diversity index does not calculate the abundance of a 

species, it is a measurement only to describe biodiversity within a sample. The index was low with 

Shannon-Weiner Diversity Index falling between 1.5 and 3 for many ecological systems (Beauchamp, 
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2016). However, the habitat sampled was a mono-cropped area with little diversity of floral species. 

The growth pattern of H. vulgare extending over the field provided little landscape heterogeneity 

compared e.g. to a wildflower meadow. This agreed with findings of Sithole et al. (2018), a Shannon-

Weiner Diversity Index was similar in a field mono-cropped with maize where a straw mulch was / was 

not applied, the straw having little impact on an increase in biodiversity. Meena et al. (2019) concur 

with a greater Shannon-Weiner Diversity Index (1.447 H’) when wildflower strips were intercropped 

into okra plantations, compared to 1.392 H’ without the strip intervention. This diversity without the 

wildflower strips was greater than measured from the H. vulgare field, the high fructose content of 

such a vegetable attracting an array of prey and predators (Meena et al., 2019). This value of 1.392 H’ 

was similar to the 1.386 H’ maximum calculated for the research field. This was 0.521 away for the H’ 

of Conventional, the discrepancy due to weak M. dirhodum presence.  

5.1.7. Final Discussion - Fieldwork - 2016 / 2017 Season and 2017 / 2018 Season 

Through the complexities of an open environment of the field with extensive interactions occurring 

from independent variables of weather, climate, predators and the landscape set from the soil tillage 

intensity, an element of the biological control potential of T. tenuis has been observed in each soil 

tillage. This is identified from prey of Aphididae and S. mosellana observed in webs in each soil tillage 

intensity. Signs of T. tenuis responding to stimuli exhibited by prey was measured with T. tenuis web-

spinning in numerous orientations in areas where alate morphs and exuviae related nearby presence. 

This, therefore, addresses the third aim of this fieldwork Chapter (Section 5.1.2.1.).  

One of the key themes running through this research is the need for a certain level of landscape 

heterogeneity to provide a T. tenuis and Linyphiidae with a multitude of materials suitable to allow 

attachment of threads, relating to the fourth aim (Section 5.1.2.1.). The orientation of said materials 

is worth considering, as a greater distance that a thread is spun has shown to increase the energy 

output required. The differences in plant height and density between the soil tillage intensities as the 

GS stages of H. vulgare progressed became the key parameter in understanding whether an adequate 

level of landscape heterogeneity had been reached to allow the commencement of a web, this the 

extended phenotype in which T. tenuis exerts biological control. Different sheet webs were observed 

woven into different structures created by differing plant physiognomy, where an energetic output 

had not necessarily met the intended return. This a loss in terms of predator dynamics of T. tenuis and 

Linyphiidae. 

An important difference identified in the soil tillage intensities was at times of cultivation and the 

period until GS of crop provided adequate above-ground vegetation for web-spinning (GS 30 - GS 40). 

The zero-till of Direct Drill supported T. tenuis activity, where immediately after primary cultivation 
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the predator capture ability of T. tenuis had been removed in Conventional and Direct Drill Managed. 

The pioneering ability of T. tenuis was observed when webs were woven into the cultivated land after 

twenty-four hours, allowing predator dynamics of T. tenuis and other Linyphiidae to prevail in the 

cultivated areas. It was shown that Direct Drill Managed held less biological control potential of T. 

tenuis with low web-spinning and rappel threads, found to be due to the low depth of the cultivation 

creating a micro-habitat of less complex structural architecture. With the action of the disc harrow 

breaking up clods, both cultivated areas supported less landscape heterogeneity in secondary 

cultivation and subsequently a habitat less likely to support T. tenuis web-construction. Direct Drill 

with zero-till had a key role in secondary cultivation to provide an area continually suitable for web-

site location and therefore an ability to capture prey. These differences exhibiting understanding for 

the second aim for this Chapter (Section 5.1.2.1.). 

From this, aside of the mechanical action of the primary and secondary cultivations, the differences in 

T. tenuis predator dynamics due to elements relating to the intensity of soil tillage was less clear. 

Secondary consequences of cultivation appeared to drive a propensity to web-spin. For example, an 

increase in A. myosuroides in Direct Drill was found due to zero-till, allowing persistence. The widening 

of furrows in Conventional, induced by the cultivation method, increasing moisture stress. Both 

circumstances enhanced landscape heterogeneity and could promote web-site selection. These 

features relevant to specific tillage intensities altered biological control potential of T. tenuis and 

addressed the first aim (Section 5.1.2.1.).  
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Sub-Chapter Five Two 

5.2. Addition of Upright Stubble to Conventional Tillage Trials 

5.2.1. Introduction 

Fieldwork of H. vulgare, within times of primary and secondary cultivation, highlighted that the 

presence of upright stubble increased the abundance of T. tenuis, its activity in web-spinning and 

short-range dispersal in rappelling (Section 5.1.5.1.). From this, a useful approach, was to investigate 

whether the soil under the different tillage practices had a direct effect on T. tenuis activity and 

abundance, or if these variables were affected by the above ground habitat created as a result of each 

tillage practice. From here several trials were run placing upright stubble, of a certain height and 

density, into an area of Conventional tillage, which had undergone secondary cultivation (Section 

4.4.2. & Section 4.4.3.).  

In August 2018, the trial took place on an additional field on Martin Jenkins™ farm (Figure 5.2.1.). A 

field that only had conventional tillage methods was an ideal location to explore the benefits of upright 

stubble further. The NIAB fields have been hypothesised as able to support increased T. tenuis activity 

due to the Direct Drill Managed and Direct Drill sections. A field outside of the experiment, which had 

undergone one tillage treatment was observed to have similar T. tenuis activity to the Conventional 

area of the NIAB fields. This field had been fallow for a year. The field under-went primary cultivation 

in July 2018 of sub-soil cultivation with Kelly® Big Diamond with chain bites 1 cm in the soil, and 

secondary cultivation in August 2018 consisting of an Optimer® Cultivator where the discs were 

inserted 5 to 7 cm into the soil.  
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5.2.2. Aims and Specific Objectives 

5.2.2.1. Aims 

Research aims for this Sub-Chapter are 2 and 4 noted in Section 1.2., Page 2. 

2. Identify any differences in extended phenotypes of T. tenuis within tillage practices, e.g. web 

dimensions and bridge thread length. 

4. Comprehend if a certain level of landscape heterogeneity affects T. tenuis ability to predate 

on Aphididae. 

 

 

 

Figure 5.2.1: Scale map showing location of Martin Jenkins Farming™ created from Google Earth© and QGis© 3.4 

Madeira™. Red line showing borders of farm. Yellow line showing borders of fields within the NIAB trials. Light blue 

line showing borders of field used for addition of upright stubble to Conventional tillage trials. 



138 
 

5.2.2.2. Specific Objectives 

The specific objectives to fit the aims for this Sub-Chapter were as follows: 

• Calculate T. tenuis energy output by measuring web area and address biological control 

potential of T. tenuis in the different densities of upright stubble. 

• Assess T. tenuis migration through evidence of bridge threads for rappelling and ballooning in 

areas replicating soil tillage method with upright stubble abundance. 

• Record T. tenuis abundance, calculate body dimensions, and consider the impact of this to 

possible prey capture in the upright stubble representing different levels of soil tillage 

intensity. 

 

5.2.3. Methodology 

The trial was placed at a substantial distance away from all field margins and hedgerows, to negate 

edge effect and allow migration for T. tenuis that may have been residing in the hedgerows. The first 

2500 cm2 quadrat (50 cm x 50 cm) was placed at 153 m from the east field edge and 15 m from the 

south field edge (Figure 4.4.2., Page 68 & Figure 5.2.1.).  

Upright stubble from the NIAB fields had been collected throughout the year, dried and stored in 

plastic containers. This allowed cereal stubble to be used in this experiment, as the stubble had 

remained rigid and was able to be cut to size and inserted back into the soil without damaging its 

integrity. Cut sizes corresponded to mean height measured in the field plus the 1 cm insertion length. 

Three sample plots were employed for Conventional, Direct Drill Managed and Direct Drill (Figure 

5.2.2., 5.2.3a & b. & Section 4.4.2.). Data of upright stubble quantity and height were taken from 

September 2017 when primary and secondary cultivations were complete, and no drilling had taken 

place. The set-up followed that of development work (Section 4.4.2). The stubble was placed in 

clusters of two to four for Conventional and two to six for Direct Drill Managed and Direct Drill, set 

vertically 2 cm apart in rows 15 cm apart (Figure 5.2.4a - c). The sample plots for upright stubble for 

each crop were arranged in a Latin Square design, each separated vertically and horizontally by 50 cm 

apart (Figure 5.2.2.). 
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Figure 5.2.2: Schematic diagram of Latin Square design of 

sampling plots for addition of upright stubble to 

Conventional tillage trials. (Conventional = Red, Direct 

Drill Managed = Blue, Direct Drill = Green). 

a b 

Figure 5.2.3a & b: Addition of upright stubble to Conventional tillage trials photographed at different focal lengths from 

field margin. 
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5.2.4. Data Collection 

The experiment ran for twenty-four hours. Linyphiidae activity was assessed by measuring support 

and bridge thread length (mm), web area (mm2), anchor point height (cm) and anchor material. Body 

length, abdomen to cephalothorax length (mm), and gender was recorded for any T. tenuis observed. 

Methods were identical to fieldwork described in Section 5.1.3. 

5.2.5. Statistical Analysis 

Staistical analysis was carried out with Minitab18©. A Principal Component Analysis (PCA) was utilised 

to observe if any associations were formed between the mean of the variables measured and which 

associations formed the principal component, having the most influence over the other variables 

quantified (Bass, 2007; Khan, 2013). 

Two-way rank ANOVA was utilised due to non-normal data found via Anderson-Darling test, analysing 

skew and kurtosis of histograms and distribution represented on a probability plot (Section 5.1.4.1.). 

This analysis was used to test if there were any significant differences between certain two dependent 

variables (factors)  measured; i.e. anchor point height out of webs (bridge threads) and anchor point 

height in webs (support threads), within the differing abundance of upright stubble representing each 

Figure 5.2.4a - c: Close-up view of addition of upright stubble to Conventional tillage trials. a = Conventional. b = Direct 

Drill Managed. c = Direct Drill. 

 

a b 

c 
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soil tillage intensity (independant variable). The method for two-way rank ANOVA followed the 

method described in previous Fieldwork Sub-Chapter (Section 5.1.4.2.). The programmes used were 

FCSTats V2_1a© and Mintab18© (Wheater & Cook, 2000). Dunn’s test was used to show where the 

significance lay. 

Correlations were used to indentify any significant trends between two continuous random variables 

(independent / dependant) for example web area (dependent) against amount of upright stubble 

added (independant). Normality was checked through the method mentioned above. Pearsons (r) was 

implemented if the null hypthesis was not rejected, found in data relating to length of bridge threads. 

Spearman Rank (Rho) was used to analyse non-normal data, where anomalies were included due to 

the ranking of data (Hawkins, 2014; Khan, 2013). 

5.2.6. Results 

5.2.6.1. Summary of Results 

• Mean rank anchor point height was significantly higher inside of webs in Conventional plots 

(Figure 5.2.6.).  

• Within the Conventional and Direct Drill tillage replicated areas, there was homogeneity 

between the mean rank anchor point height of support threads measured on the attachment 

material of upright stubble and soil (Figure 5.2.7.). 

• Anchor point height of threads outside of webs and thread length inside of webs were 

significantly positively correlated to features of soil tillage intensity (upright stubble density 

and upright stubble height). These features were significantly negatively correlated to anchor 

point height of threads inside the web (Table 5.2.5.).  

• Mean rank thread length was significantly longer in Direct Drill Managed inside of the web 

and mean rank thread length outside of webs was significantly longer in Conventional and 

Direct Drill Managed (Figure 5.2.8.). 

• Mean total thread length outside of webs was significantly positively correlated to number of 

Linyphiidae webs (Table 5.2.6.). 

• Products of T. tenuis activity (thread length and anchor point height) held the greatest overall 

influence over the data recorded (Figure 5.2.5.).  
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 Principal 1 Principal 2 

Variance 48.2% 19.1% 

Variables Eigenvalue Eigenvalue 

Total Thread Length in Webs (of support threads) (mm) 0.357  

Thread Length out of Webs (of bridge threads) (mm) -0.261  

Thread Length out of Webs (of bridge threads) (mm)  0.281 

Anchor Point Height out of Webs (of bridge threads) (cm)  -0.436 
 

 

The first principal component was associated with the variables total thread length inside webs and 

thread length outside of webs (Figure 5.2.5. & Table 5.2.1.). Thread length and anchor point height 

outside of webs lay in the second principal component. The variables that had the greater influence 

on the data were those that measured the product of T. tenuis activity, more than the variables 

associated to the field conditions, i.e. upright stubble density and height. The data for Direct Drill and 

Conventional were influenced the most by thread length out of webs and total thread length inside of 

webs, anchor point height outside of web had the main effect within Direct Drill Managed. 

Figure 5.2.5: PCA of variables measured in addition of upright stubble to Conventional tillage trials along the first two 

principal components and variables correlating to each component. (Conventional = Red, Direct Drill Managed = Blue, 

Direct Drill = Green). 

 

Table 5.2.1: The variance in data explained by principal component 1 and principal component 2 and associated 

eigenvalues for the variables which held the most influence within the data in each component, addition of upright 

stubble to Conventional tillage trials. 
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Categorical Predictor Df H P 

Soil Tillage Intensity 2 35.564 0.001* 

In / Out of Web 1 130.62 0.001* 

Interaction: Soil Tillage Intensity * In / Out of Web 2 62.6694 0.001* 

 

 

 

 

 

 

 

 

 

 

 

 

There was a significant difference identified between the interaction of the soil tillage intensity and 

whether the mean rank anchor point heights were inside or outside of the web (Table 5.2.2. & Figure 

5.2.6.). Mean rank anchor point height for support threads in Direct Drill and Direct Drill Managed 

were significantly lower than the mean rank anchor point height of bridge threads in all soil tillage 

intensities. The mean rank anchor point height outside of webs (bridge threads) for Direct Drill 

Managed was further significantly higher than the mean rank anchor point height inside webs (support 

threads) found within Conventional. 

 

Figure 5.2.6: Interaction of mean rank anchor point height, soil tillage intensity and inside or outside of webs, 

addition of upright stubble to Conventional tillage trials (n=233). (Conventional = Red, Direct Drill Managed = 

Blue, Direct Drill = Green). (Conventional In ±s.e.10.816 (n = 27), Conventional Out ±s.e.7.603 (n = 39), Direct 

Drill Managed In ±s.e.0.089 (n = 3), Direct Drill Managed Out ±s.e.14.020 (n = 20), Direct Drill In ±s.e.7.616 (n 

= 73), Direct Drill Out ±s.e.5.227 (n = 71)). (Points that do not share the same letter are significantly different 

at the p<0.05 level).  

 

Table 5.2.2: Response of rank anchor point height and factors of soil tillage intensity, inside or outside of webs. Addition 

of upright stubble to Conventional tillage trials (n = 233). (* relates to significant with α <0.05). 
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Categorical Predictor Df H P 

Soil Tillage Intensity 1 0.00962 0.922 

Anchor Point Attachment Material 1 53.2587 0.001* 

Interaction: Soil Tillage Intensity * Anchor Point Attachment Material 1 0.18619 0.666 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Significance was only identified within the term anchor point attachment material (Figure 5.2.7. & 

Table 5.2.3.). The mean rank anchor point height of support threads attached to the material of 

upright stubble was significantly higher within the area representing Conventional and Direct Drill 

tillage than the mean rank anchor point height measured attached to soil. 

 

 

Direct Drill Managed was taken out of the model as only one anchor point was measured attached to 

soil and altered the validity of the model. 

 

 

 

 

 

 

 

 

 

Table 5.2.3: Response of rank anchor point height inside webs (of support threads) and factors of soil tillage intensity 

and anchor point attachment material, addition of upright stubble to Conventional tillage trials (n = 100). (* relates to 

significant with α <0.05). 

Figure 5.2.7: Interaction of mean rank anchor point height inside webs (of support threads), soil tillage intensity 

and anchor point attachment material, addition of upright stubble to Conventional tillage trials (n = 100). 

(Conventional = Red, Direct Drill = Green). (Conventional Soil ±s.e.0.054 (n = 3), Conventional Upright Stubble 

±s.e.2.725 (n = 24), Direct Drill Soil ±s.e.2.054 (n = 41), Direct Drill Upright Stubble ±s.e.3.221 (n = 32)). (Points 

that do not share the same letter are significantly different at the p<0.05 level).  
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Categorical Predictor df H P 

Soil Tillage Intensity 2 10.2791 0.006* 

In / Out of Web 1 16.6134 0.001* 

Interaction: Soil Tillage Intensity * In / Out of Web 2 21.675 0.001* 

 

 

 

 

 

 

 

 

 

A significant difference was found when soil tillage intensity (Conventional, Direct Drill Managed, 

Direct Drill) interacted with location of thread length (inside or outside of a web) for mean rank thread 

length (Table 5.2.4. & Figure 5.2.8.). Significant heterogeneity existed with the mean rank thread 

length inside webs for Conventional and Direct Drill and the mean rank thread length outside of webs 

for Direct Drill. The mean rank thread length inside webs for Conventional was significantly lower than 

any other mean rank thread length of the model. 

 

Independent Variable        Dependant Variable (Rho) P n 

Anchor Point Height in Web (cm) x Mean Upright Stubble Height (cm) -0.399 0.001* 103 

Anchor Point Height in Web (cm) x Upright Stubble Density (No0.25m-2) -0.264 0.007* 103 

Anchor Point Height Out of Web (cm) x Mean Upright Stubble Height (cm) 0.304 0.001* 130 

Anchor Point Height Out of Web (cm) x Upright Stubble Density (No0.25m-2) 0.393 0.001* 130 

Number of T. tenuis x Upright Stubble Density (No0.25m-2) 0.461 0.001* 9 

Thread Length in Web (mm) x Mean Upright Stubble Height (cm) 0.302 0.002* 103 

Thread Length in Web (mm) x Upright Stubble Density (No0.25m-2) 0.500 0.001* 103 

Figure 5.2.8: Interaction of mean rank thread length, soil tillage intensity and inside or outside of webs, addition of 

upright stubble to Conventional tillage trials (n = 262) (Conventional = Red, Direct Drill Managed = Blue, Direct Drill 

= Green). (Conventional In ±s.e.6.785 (n = 29), Conventional Out ±s.e.9.908 (n = 38), Direct Drill Managed In 

±s.e.2.962 (n = 3), Direct Drill Managed Out ±s.e.13.014 (n = 20), Direct Drill In ±s.e.10.631 (n = 71), Direct Drill Out 

±s.e.15.688 (n = 101)). (Points that do not share the same letter are significantly different at the p<0.05 level).  

 

Table 5.2.5: Correlations (Spearman’s Rank) between independent variables and dependant variables measured, addition 

of upright stubble to Conventional tillage trials. (* relates to significant with α <0.05). 

 

Table 5.2.4: Response of rank thread length and factors of soil tillage intensity and inside or outside of webs, addition 

of upright stubble to Conventional tillage trials (n = 262). (* relates to significant with α <0.05). 
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Independent Variable           Dependant Variable (r) P df 

Thread Length Out of Web (mm) x Upright Stubble Density (No0.25m-2) -0.173 0.029* 157 

Total Thread Length Out of Web (mm) x Number of Webs 0.685 0.001* 7 
 

Anchor point height for threads outside of the web and thread length inside of webs were significantly 

positively correlated to upright stubble height and upright stubble density (Table 5.2.5.). Whereas 

anchor point for threads inside of webs was significantly negatively correlated to the same two 

dependant variables (upright stubble height and density). Number of T. tenuis recorded in the sample 

plots was significantly positively correlated to upright stubble density. 

Independent variables in Table 5.2.6. were found to be normal. Thread length out of webs was 

significantly negatively correlated to upright stubble density. Whereas, total thread length outside of 

the web was significantly positively correlated to number of Linyphiidae webs recorded (Table 5.2.6.).  

 

5.2.7. Discussion 

Mean anchor point height was found to be significantly higher within Conventional in the web and 

Direct Drill Managed out of the web (Figure 5.2.6.) This is an unexpected result, with the mean higher 

anchor points found to be higher from bridging threads in times of cultivation in fieldwork, T. tenuis 

accessing apex of materials for rapid dispersal (Bonte et al., 2003; Hogg and Danne, 2018) (Section 

5.1.6.1.). This is seen to be due to the difference in heights of upright stubble between the tillage 

areas, a product of harvest where grain is cut from the dried stem creating the stubble (AHDB, 2015; 

Davies & Finney, 2002; Morris et al., 2010) (Section 3.1.3.4.). Its resultant height is due to its 

orientation when cut, and slight depressions in land causing elevation or suppression of the rotating 

wheels of the harvester (AHDB 2015; 2018; Kennedy & Connery, 2005). Eight out of the nine webs for 

Conventional were woven at the top of the upright stubble. The field of this trial, having undergone 

Conventional secondary tillage, was void of other landscape features (soil clods and volunteer plants 

for example), which could have provided additionally anchor points for webs, other than upright 

stubble (Jarvis & Woolford, 2017; Morris et al., 2010; Peigné et al., 2007) (Figure 5.2.3a & b & Section 

5.2.3.). 

Little T. tenuis and Linyphiidae activity occurred within Direct Drill Managed habitat, where only one 

web was woven at ground level. This web was abandoned; however, it may have been woven by a 

Linyphiidae with a prey preference of ground dwelling arthropods, which favour this web-site (García 

et al., 2013; McCanny et al., 1996; Oxbrough et al., 2006). The disparity appears to be due to upright 

Table 5.2.6: Correlations (Pearsons) between independent variables and dependant variables measured, addition of 

upright stubble to Conventional tillage trials. (* relates to significant with α <0.05). 
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stubble density. Rappel threads were measured at the pinnacle of stubble in Direct Drill Managed 

(Figure 5.2.6.). Dispersal had perhaps occurred, possibly to the adjacent Direct Drill habitat treatment 

where the greater web area was identified, this expressing a higher presence of T. tenuis and 

Linyphiidae (Figure 5.2.4a & b).  

In all soil tillage intensities, upright stubble in height and abundance affected web-building, a re-

occurring theme throughout fieldwork when out of crop (Section 5.1.6.1.). A higher number of webs 

built between adjacent stubble in the same cluster were observed with Direct Drill (Table 5.2.5.). This 

supports work of Aaserud (2005), Alderweireldt (1994) and Miller (2007), where web-building spiders 

were shown to require above ground materials for attachment points of silk. The nature of the 

horizontal aerial web is a requirement to have multiple structures in the vicinity for threads to be 

woven between (Blackledge et al., 2005; Harwood et al., 2003; Marc & Canard, 1997 Zschokke & 

Herberstein, 2005). If such material is not available, the site may not allow a web to be spun, and thus, 

the area is void of the biological control potential that a web may bring (Betz & Tscharntke, 2017; Krink 

& Vollrath, 1997). 

Webs in Direct Drill were either measured attached to apex of the habitat, amongst upright stubble, 

or anchored to the lower aspects of the stubble and a soil aggregate (Table 5.2.5.). This could point to 

utilisation of the treatment by different Linyphiidae. A female T. tenuis was found underneath a web 

at the top of the stubble and under a web spun within the base in Direct Drill. This showed the 

pioneering ability of T. tenuis and agrees with Isaia et al. (2007) and Samu et al. (1996), where T. tenuis 

is seen to exploit a varied position created by a disturbed landscape. Although, Alderweireldt (1994) 

Samu et al. (1996), and Štokmane & Spuņģis (2016) discuss the key with T. tenuis is a requirement to 

have space underneath a web for ‘sit and wait’ predation and allow mobility when prey is ensnared. 

The stark difference in web-site locations, shows that different Linyphiidae species may be involved in 

weaving sheet webs within this experiment. Schirmel et al. (2016) and Schütt (1997) explain the choice 

of a vegetation layer differs within Linyphiidae, allowing co-habitation. A T. tenuis was found under a 

large web at the lower strata of the habitat in Direct Drill Managed, which differs from recordings by 

Beck & Toft (2000) and Davey et al. (2013) who noted that T. tenuis spin webs above the ground layer 

in an agricultural setting (Figure 5.2.8.). Bell et al. (2002), Harwood et al. (2001) and Sunderland & 

Samu (2000) comment that weaving a web higher within vegetation, a greater advantage point, is 

achieved to capture prey residing in upper canopies of crop vegetation and aerial prey. However, the 

field of this trial was out of crop and the cultivation applied field wide, which rendered the field to be 

of an open nature, thus, prey dispersal could have occurred with little obstruction (Figure 5.2.3a & b 

& Section 5.2.3.). Blackledge et al. (2009) and Diehl et al. (2013) discussed that reduced level of 
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landscape heterogeneity could enable webs spun near the soil surface to access aerial prey (Romero 

& Harwood, 2010; Sanders et al., 2015).  

The creation of the two different strata used in Conventional and Direct Drill habitat allowed different 

sheet webs to be woven (Figure 5.2.7.). This explores similar findings to the main field sampling after 

secondary cultivation (Section 5.1.5.1.3.). A sheet web of a small area, woven into the tops of the 

stubble in Conventional was seen to be protected from disturbance, as noted by Diehl et al. (2013) 

and Harwood et al. (2003) to be environmental in nature, and be closer to a potential aerial prey 

source (Harwood et al., 2004) (Figure 5.2.7., Figure 5.2.8. & Figure 5.2.10.). However, Obryck & 

Harwood (2005) and Toft (1987) identified possible limitation in prey capture due to small surface 

area of the web and obstruction to entrapment that surrounding stubble may cause (Dennis et al., 

2001; Roberson et al., 2016). The webs spun into soil of lower level, have a greater prey interception 

potential with a large open web area, though very little protection is provided from surrounding 

simplified landscape of the fallow field (Beck & Toft, 2000; Rybac, 2007; Welch et al., 2013) (Figure 

5.2.7., Figure 5.2.8. & Figure 5.2.9.). It can be identified that both treatments have enabled webs with 

differing trade-offs to be established. Robertson & Avilés (2018) and Segoli et al. (2004) explained 

web-building behaviour to be a form of compromise, with not every desired specification met. With 

no prey identified in both, it is difficult to assess which may have been successful in predator dynamics 

(Barriga, 2010; Buri et al., 2016; Sanders et al., 2015). 

 

 

Figure 5.2.9: Sheet web within base of upright stubble and soil. 

Direct Drill tillage. Addition of upright stubble to Conventional 

tillage trials. Elevated view. (Red arrow = 12.4 mm). 

Figure 5.2.10: Sheet web within upright 

stubble. Direct Drill tillage. Addition of upright 

stubble to Conventional tillage trials. Lateral 

view. (Red arrow = 21.3 mm). 
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Mean thread length was significantly longer in Conventional and Direct Drill Managed, out of webs, 

than that seen in Direct Drill (Figure 5.2.8.), however, greater rappelling action occurred within Direct 

Drill (Figure 5.2.11.). Due to the lack of stubble density in Conventional and Direct Drill Managed, 

longer bridge threads were identified, spun between upright stubble across rows instead of stubble in 

the same cluster (Figure 5.2.4a-c). Alderweireldt (1994), Bonte et al. (2011) and Peters & Koover 

(1991) explain features of the landscape used in rappelling are favoured to be of a similar height and 

dimensions to facilitate fast dispersal. This long dragline silk is likely to have consumed much energy 

and could explain why little rappelling was identified (Bonte 2013; Hesselberg & Vollrath 2012) (Figure 

5.2.11.). Rappelling was likely a trade-off, with Moya-Laraño et al. (2008) and Szymkowiak et al. (2007) 

discussing the energy consumption used in the climbing of a structure to begin dispersal. This energy 

loss may not be counteracted, if a potential web-site is not found (Blackledge et al., 2011; De Meester 

& Bonte, 2010). Low abundance in rappelling material in Conventional plot may have led to ballooning 

into a neighbouring treatment or towards a shelterbelt. Moya-Laraño et al. (2008) and Simonneau et 

al. (2016) discuss how ballooning uses less energy than rappelling, after the initial ascent, due to 

pendulum motion created by gravity, swinging the dragline thread into a new location. This allows 

long-ranged dispersal to be advantageous if there are low beneficial web-site opportunities within the 

vicinity. 

 

 

 

 

 

 

 

 

 

Within this trial, unlike fieldwork of H. vulgare at primary cultivation, number of webs and total thread 

length out of web, were significantly positively correlated (Table 5.2.6. & Section 5.1.5.1.4.). The 

energy output for bridging can be observed to have been positively rewarded, by a key web-site 

exploited in the Direct Drill area (Ford, 1977; Robertson & Avilés, 2018; Schütt, 1997; Simonneau et 

al., 2016). The increased upright stubble may be beneficial to the future potential of prey capture, the 

Figure 5.2.11: Female T. tenuis rappelling across upright stubble (circled in 

yellow). Direct Drill tillage. Addition of upright stubble to Conventional 

tillage trials. Elevated view. (Red arrow = 18.7 mm). 
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web (the extended phenotype) to remove active prey from an ecosystem (Kovac & Mackay, 2009; 

Lichtenstein et al., 2016; Pathan 2002). If T. tenuis remains in the web any future prey caught in the 

silk fibres will become a source of food for the T. tenuis. (Štokmane & Spuņģis, 2016; Welch et al., 

2013). Marc & Canard (1997), Millidge (1988) and Saravanan (2006) comment that if a web is vacated, 

the prey potential remains, as it is still able to by-catch prey into the web and become entangled in its 

sheet web construction.  

The number of T. tenuis was positively correlated to upright stubble density, due to three females and 

one male T. tenuis identified in the Direct Drill treatment, with two females occupying webs (Table 

5.2.5.). It can be observed that upright stubble facilitated the movement of female T. tenuis more than 

males, through bridging and possible balloon dispersal between treatments. The combination of the 

height of the stubble, its orientation allowing access to a large open area, may have promoted this 

area as a key web-site, pioneered by a large bodied female (Chapman et al., 2013; Eichenberger et al., 

2009; Stenchly et al., 2011). Indeed, Bonte et al. (2011), Gan at al. (2015) and Samu et al. (1996) 

explain web take-over could have occurred, where T. tenuis of a larger frame are likely to exert 

dominance. This web of the ground strata may have been spun previously by a ground dwelling dwarf 

Linyphiidae (Dondale, 2000; Downie et al., 2000).  

Bonte et al. (2008), identified that females had a greater propensity to rappel and balloon, and 

Lombaert et al. (2006), explained rappelling closely correlates to body fitness. This experiment was 

carried out at the beginning of September 2018. Samu et al. (1996) and Welch et al. (2013) discussed 

that life cycles of T. tenuis have evolved to be in line with the cropping system, and fecund females 

have differing dispersal strategies (Mazzia et al., 2015; Thorbek et al., 2004). Zschokke & Herberstein 

(2005) explained that females are energy maximisers at times of peak fecundity, dispersing 

emphatically in between web-building. A greater number of web-sites were seen to lead to increased 

number of male suitors and sperm selection (Gaskett, 2007). Thomas & Jepson (1999) suggest males 

have a higher preference to balloon due to fewer requirements than fecund females, however Thomas 

& Jepson (1999) discuss dispersal from a grassland to a cereal crop. This trial carried out upon a 

disturbed fallow field, a female T. tenuis may be rappelling at a greater propensity to find a web-site 

within the upright stubble, sensing little potential within the simplified landscape of the field. 

Corcobado et al. (2010), De Mas et al. (2009) and Kuntner & Coddington (2020) explore that female T. 

tenuis with a larger abdomen, to increase attraction from male suitors, may be unable to bridge and 

thus is a function of extreme SSD (Sexual Size Dimorphism) (Section 2.1.3.4.). Dragline silk is required 

to be spun at a fast pace due to exertion required with gravity (Moya-Laraño et al., 2008; Prenter et 

al., 2010; Rodríguez & Gloudeman, 2011). A larger bodied T. tenuis may not be able to bridge at this 

pace creating a negative feedback loop where the initial output of energy for ascent is lost (Entling et 
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al., 2011; Simonneau et al., 2016). Only one large bodied female T. tenuis (abdomen 2 mm) was noted 

under a web of the bottom strata of Direct Drill treatment. This may identify a lack of rappelling ability. 

One female T. tenuis (abdomen 1.3 mm) was observed at the pinnacles of the stubble retreating 

downwards upon disturbance. Upright stubble in the Direct Drill treatment may have aided fecund 

females for web creating for copulation. 

Interestingly, four variables that relate to T. tenuis activity explained the greatest variance found 

within the data (Figure 5.2.5.). This identified that action of T. tenuis appeared to be a response to 

previous activity. The mass action hypothesis can be applied here where the upright stubble is 

identified as a ‘functional landscape unit’ altering the response of T. tenuis activity as a population 

(Bianchi et al., 2017; Fahrig et al., 2011). The landscape features, upright stubble density, has been 

shown to alter T. tenuis behaviour in web-building and rappelling, though it is the action of the T. 

tenuis themselves which is acting as a positive feedback response. T. tenuis are noted to be solitary 

species, however, Kraft & Cookson (2012) introduced the idea that the response of one Linyphiidae to 

lay silk alters a landscape and leaves a vibration pattern that can be sensed by other near T. tenuis of 

activity, thus producing a group predation effect.  

5.2.8. Final Discussion - Addition of Upright Stubble to Conventional Tillage Trials 

The above trial identified that upright stubble, in abundance, height and orientation to one another, 

appeared to have been influential in driving T. tenuis and Linyphiidae activity in a disturbed landscape 

and relates to the second and fourth aim of Section 5.2.2.1. Small differences in upright stubble, in 

terms of the factors discussed, were shown to increase rappelling and web-spinning. Different webs 

in dimension and location, were identified within the treatments, suggesting creation by different 

Linyphiidae. Small webs woven within the stubble or large webs woven from soil clods, identified 

differing trade-offs further addressing the second aim (Section 5.2.2.1.). On the surface, Direct Drill 

treatments, with increased upright stubble, were shown to encourage predator dynamics of T. tenuis 

and Linyphiidae with greater web abundance, and T. tenuis present underneath webs, linking to the 

fourth aim of this Sub-Chapter (Section 5.2.2.1.).  

It would have been useful to observe a higher degree of prey capture in webs to quantify this and 

bring clarity to the presented fourth aim of understanding T. tenuis ability to predate on Aphididae in 

the different array of upright stubble offered. However, it is noted, that the trial would be required to 

run over a longer time frame to fully understand how upright stubble could have altered the pest 

suppression ability of T. tenuis.  
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Sub-Chapter Five Three 

5.3. Hedgerows Opposite Soil Cultivations of Different Tillage Intensity 

5.3.1. Introduction 

Hedgerows are an important aspect of a field for consideration when aiming to understand T. tenuis 

relationship with prey in an arable agricultural system. Garratt et al. (2017) and Pfister et al. (2015) 

both discussed the impact of a hedgerow surrounding a cropped field, noting T. tenuis preference for 

the hedgerow in times when the field was fallow (Section 2.1.2.2.). It was commented that the 

distance from the hedgerow into the main field was a key function of T. tenuis behaviour with 

Linyphiidae numbers decreasing as distance from hedgerow increased.  

For this research to fully comprehend T. tenuis ability for predation, it was important to sample 

hedgerows in addition to the main field. Due to the project seeking to understand if soil tillage 

intensity influenced T. tenuis behaviour, the hedgerow needed to be divided into areas of tillage that 

it was adjacent to, as described in Figure 4.28., Section 4.5.2.1., Page 72. 

5.3.2. Aims and Specific Objectives 

5.3.2.1. Aims 

This element of fieldwork relates to Research Aims 1 - 4 (Section 1.2., Page 2). 

1. Identify the potential biological control by T. tenuis of Aphididae and S. mosellana within 

different intensities of tillage in an arable crop.  

2. Identify any differences in extended phenotypes of T. tenuis within tillage practices, e.g. web 

dimensions and bridge thread length. 

3. Understand whether T. tenuis behaviour is stimulated by the presence of Aphididae and S. 

mosellana. 

4. Comprehend if a certain level of landscape heterogeneity affects T. tenuis ability to predate 

on Aphididae and S. mosellana. 
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5.3.2.2. Specific Objectives 

Objectives below are specifically placed to meet the aims of this Sub-Chapter. 

• Measure Linyphiidae web location in anchor point height and anchor materials, within a 

hedgerow adjacent to the different tilled areas of the field.  

• Observe T. tenuis web occupation and prey (Aphididae and S. mosellana) density in web and 

relate to potential T. tenuis prey capture interactions. 

• Identify and quantify crop pest / prey and T. tenuis abundance (from g-vac sampling) in the 

hedgerow and compare relative density relationships. 

• Quantify migratory distance of T. tenuis by measuring the distance of a web and bridge thread 

from the field edge. 

• Assess potential differences in extended phenotypes of T. tenuis within a hedgerow adjacent 

to the differing intensity of soil tillage, e.g. measure web dimensions and architecture. 

 

5.3.3. Methodology 

5.3.3.1. Field Sampling 

Sampling commenced at the identical periods described in Table 5.1.1. of Section 5.1.3. (Page 82). This 

spanned the period of March 2017 to November 2018. 
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5.3.3.2. Data Collection 

 Measurement Taken 
Months 
Measured 

Relation to T. tenuis Activity 

1 
Number of T. tenuis rappelling or 
ballooning 

All 
T. tenuis migration in / out of 
habitat. 

2 Number of bridge threads All 
Frequency of T. tenuis 
locomotion / migration. 

3 Anchor point height of bridge threads (cm) All 
Height locomotion / migration is 
occurring. 

4 Attachment material for bridge threads All 
Material facilitating locomotion / 
migration.  

5 
Distance of nearest anchor point from field 
edge (cm) 

All Migration distance into hedge. 

6 Number of webs All Frequency of web-building. 

7 Support thread length (mm) All Quantify web area. 

8 
Anchor point height of support threads 
(cm) 

All Height web-building is occurring. 

9 Attachment material for support threads All 
Material facilitating web-
building. 

10 
Distance of nearest anchor point from field 
edge (cm) 

All Migration distance into hedge. 

11 Number of T. tenuis within web All 
How web occupation relates to 
habitat and prey abundance. 

12 Number of prey within web All Prey capture rate via web. 

13 Egg sac abundance 
Sept - Feb Quantify Linyphiidae potential 

reproductive output. 

14 
Egg sac attachment material and anchor 
point height (cm) 

Sept - Feb Understand oviposition location. 

15 Egg sac dimensions (width & length (mm)) Sept - Feb 
Reproductive output for next 
generation. 

16 Egg sacs examined for eggs within Sept - Feb 
Reproductive stage for next 
generation. 

17 Wind speed (kmh-1) All 
How wind speed relates to T. 
tenuis abundance / activity. 

18 T. tenuis abundance quantified All 
How abundance relates to 
habitat and prey availability. 

19 
T. tenuis body dimensions (abdomen & 
cephalothorax length (mm)) 

All 
How dimensions relate to habitat 
and prey availability. 

20 
Prey identification and abundance 
quantified 

All 
How prey quantity relates to 
habitat and T. tenuis abundance / 
activity. 

 

Table 5.3.1: Measurements taken on each fieldwork sampling period for the hedgerows opposite soil cultivations of 

different tillage intensities and its relation to T. tenuis activity. 
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Measurements collected in the hedgerows centred on the suitability of the habitat to be a reservoir 

for T. tenuis activity outside of the field (Table 5.3.1.). As in the main field, measurements acquired 

were assigned to the tillage intensity that the hedgerow was opposite. 

1. Bridge threads and web in anchor height, quantity and dimensions were measured following the 

methodology used in the field (Section 5.1.3.2.). Balloon threads were noted by long length 

anchored singularly to the apex of an outmost structure for downwards projection. 

2. Contents of the web were examined, species identified, and prey quantified. 

3. The nearest anchor point of a bridge thread and web to the external of the hedgerow, thus nearest 

to the field edge, was identified. A 1 m rule was placed just in front of the anchor point. This ruler 

intercepted the metre rule of the sample that ran vertically into the hedgerow. The measurement 

of the distance of anchor point to start of the sample area, field margin, was read on the vertical 

ruler to 0.1 cm (Figure 4.30a & b, Section 4.5.2.2, Page 73). From all measurements, 100 cm was 

added to incorporate the distance from the field edge to the start of the sample area. 

4. Wind speed was measured in the four areas noted in Figure 4.38. (Section 4.6.2., Page 79). to 0.1 

mph (converted to kmh-1) with the anemometer, Cateye Velo®. 

5. Abundance of T. tenuis and prey were attained with the g-vac as in the fieldwork (Section 5.1.3.2.). 

Dimensions of T. tenuis abdomen and cephalothorax were quantified via the same methodology 

as fieldwork with a period of rest in Petri dishes before measurement to 0.1 mm with a Zukvye© 

Digital Calliper (Section 4.3.7.). 

6. Hedgerow vegetation density was acquired by photography at 1 m away from the hedgerow and 

30 cm from the ground with the Sony® HDR CX240 Full HD Camcorder with 27 x optical zoom and 

320 x digital zoom (Section 4.5.2.3.). 

7. For the fore-ground hedgerow vegetation density, a pre-tied white sheet onto a support frame, 

clothes horse, was placed behind the foreground vegetation of the hedge. A photograph was taken 

at the exact specifications as quoted above with the same camera (Section 4.5.2.3.). 

8. Photographs were then formatted with Paint 3D into a JPEG and imported into ImageJ. 

Methodology then adhered to specifications noted in Section 4.5.2.3. (Page 74 - 77) and area of 

vegetation for hedgerow vegetation density quantified. 

9. The length of hedgerow was examined for egg sac abundance. Once located, dimensions were 

measured to 0.1 mm with the Zukvye© Electronic Vernier Callipers 150 mm Carbon Fibre Body 

Measuring Tool. Further, the attachment material was recorded, and the anchor point height was 

measured to the nearest 0.1 cm. Egg sacs were carefully examined for the presence of eggs within 

(Figure 4.37a-d, Section 4.5.2.4. Page 78). 
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5.3.4. Statistical Analysis 

Normlity was assessed following the proceedure explained in Section 5.1.4.1. of the main field 

sampling. The Anderson-Darling and Ryan-Joiner test was utilised alongside histograms and 

probability plots to understand distribution of the datasets. 

Statistical Analysis was similar to that used for the fieldwork due to non-normal data established 

(Section 5.1.4.2.), utilising the statistical analysis of correlations (Spearman’s Rank) and two-way rank 

ANOVAs identifying the relationship between categorical factors and a numerical response (Hawkins, 

2014). Mean ranks and associated statistics, degrees of freedom (df) and sum of squares (SS), were 

generated (Mintab18©) and placed into FCSTats V2_1a© (Wheater & Cook, 2000). From here 

significance for any interaction was gained. The Dunn’s test was performed on FCSTats V2_1a© to 

understand where significance lay (Wheater & Cook, 2000). Significance was checked through use of 

the Bonferroni post-hoc test (Mintab18©) to establish letters for graphical representationon. Kruskal-

Wallis Test was run through Minitab18©. Dunn’s multiple comparison test was performed on 

Minitab18© with the incorporation of a macro (KrusMC.mac) downloaded from Mintab18© libray 

(Hawkins, 2014; Orlich, 2000). 

One result met the null hypothesis for normaility (via Anderson-Darling and Ryan-Joiner test), mean 

number of sheet webs within the field and hedgerows at times out of crop (Section 5.1.4.1.). A two-

way ANOVA was run with the post-hoc test of Tukey (Bass, 2007). Associated statistics where analysed 

to assess validity.  

5.3.5. Results 

The layout of the results presented below followed the format offered to display the results from the 

fieldwork section (Section 5.1.5.), where the data is split into whether it belonged to hedgerows 

opposite the field in times out of crop (after primary and secondary cultivation and fallow) and when 

the field was cropped with H. vulgare (early and late growth stages). The information was further split 

into the main dependant variables measured that related to T. tenuis activity; anchor point height, 

distance of anchor points from the field edge (which was a representation of migration distance into 

the hedgerow) and thread length. All three variables were divided into whether the information 

recorded was from inside the web (from a support thread) or outside the web (from a bridge thread).  

Anchor point height and web area were investigated with presence of crop pests found in the 

vegetation and web. Crop pests relate to potential T. tenuis prey (S. avenae, M. dirhodum, R. padi and 

S. mosellana). Mean variables recorded in the field were analysed against those measured in the 

hedgerow opposite. Finally, an analysis of data surrounding the presence of egg sacs was interpreted. 
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5.3.5.1. Summary of Results 

Out of Crop - Fallow and After Primary and Secondary Cultivation 

• Significantly lower mean rank anchor point height for bridge threads was found in Conventional 

hedgerows (Figure 5.3.1.). Number of female T. tenuis and T. tenuis in webs was significantly 

negatively correlated to anchor point height out of webs (Table 5.3.4.). 

• Number of T. tenuis in webs were significantly positively correlated to anchor point height of 

support threads after primary cultivation and significantly negatively correlated after secondary 

cultivation (Table 5.3.2.). 

• Numbers of male T. tenuis was significantly positively correlated to anchor point height of support 

threads at secondary cultivation, mean abdomen length was significantly positively correlated to 

this variable after primary and secondary cultivations (Table 5.3.2.).  

• Hedgerow vegetation density was negatively correlated to anchor point height of support threads 

after primary and secondary cultivations (Table 5.3.2.). 

• Wind speed (field edge) was significantly negatively correlated to anchor point height in webs 

(Table 5.3.3.) and distance of anchor point of support threads from field edge (Table 5.3.6.). 

• Mean rank distance of anchor point from the field edge of bridge threads was significantly nearer 

to the field edge (Figure 5.3.2.). 

• Number of female T. tenuis, T. tenuis in webs and number of webs were significantly negatively 

correlated to distance of anchor point of bridge threads from field edge (Table 5.3.7.). 

• Median support thread length was significantly longer in Direct Drill hedgerows (Figure 5.3.3.) 

Number of female T. tenuis was significantly positively correlated to support thread length when 

fallow and after secondary cultivation (Table 5.3.9.). 

• After primary cultivation, hedgerow vegetation density was significantly positively correlated to 

support thread length, when fallow, both variables were significantly negatively correlated (Table 

5.3.9.). 

• Mean abdomen length was significantly negatively correlated to bridge thread length, whereas 

number of female and male T. tenuis were significantly positively correlated (Table 5.3.10.). 

In Crop - Early and Late Growth Stages of H. vulgare 

• Number of T. tenuis in webs, T. tenuis rappelling, S. avenae in webs and wind speed (bottom of 

hedgerow) were significantly positively correlated to anchor point height of support threads (Table 

5.3.11. & Table 5.3.12.). Number of T. tenuis in webs was significantly positively correlated to 

support thread length in early growth stages (Table 5.3.16.). 
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• Number of female and male T. tenuis were significantly negatively correlated in early growth stages 

to anchor point height and length of support threads and significantly positively correlated in later 

growth stages to anchor point height of webs only (Table 5.3.11. & Table 5.3.16.). 

• Significantly higher mean rank anchor point height of support threads was found in Direct Drill 

hedgerow when no crop pests were found in the vegetation (Figure 5.3.4.). 

• Direct Drill Managed and Direct Drill hedgerows exhibited significantly lower mean rank anchor 

point height of support threads when crop pests were in webs (Figure 5.3.5.).  

• Hedgerow vegetation density was significantly positively correlated to distance of anchor point of 

support threads to field edge, whereas number of S. avenae and T. tenuis in web were significantly 

negatively correlated (Table 5.3.15.). 

Variables Measured Within the Field and Hedgerow  

• Mean rank number of T. tenuis and mean number of sheet webs were significantly greater in 

hedgerows after cultivations and fallow (Figure 5.3.6. & Figure 5.3.7.). Mean rank number of T. 

tenuis, in all growth stages, was significantly greater in hedgerows than field (Figure 5.3.8.). 

• Significantly greater number of bridge threads in hedgerows were found when field was out of crop 

for Conventional and Direct Drill Managed (Figure 5.3.9.). 

Variables Concerning the Presence of Egg Sacs in Hedgerows 

• Number of egg sacs was significantly positively correlated to the hedgerow vegetation density. Egg 

sac width was significantly positively correlated to distance from field edge (Table 5.3.21.). 

 

5.3.5.2. Out of Crop - Fallow and After Primary and Secondary Cultivation 

5.3.5.2.1. Anchor Point Height 

 Fallow Primary Cultivation Secondary Cultivation 

(Rho) P n (Rho) P n (Rho) P n 

Hedgerow Vegetation 
Density (cm2) 

0.224 0.064 69 -0.394 0.001* 495 -0.125 0.003* 556 

Mean Abdomen Length 
(mm) 

0.044 0.516 216 0.278 0.001* 704 0.125 0.001* 794 

Number of Female T. 
tenuis 

-0.280 0.001* 372 0.151 0.003* 704 0.040 0.258 794 

Number of Male T. 
tenuis 

-0.072 0.266 372 -0.091 0.072 704 0.108 0.006* 794 

Number of T. tenuis in 
Web 

-0.426 0.001* 372 0.161 0.001* 704 -0.110 0.002* 794 

Number of Web 0.063 0.322 243 0.191 0.001* 704 0.285 0.001* 794 

Table 5.3.2: Correlations of independent variables measured in the hedgerow with the dependant variable anchor point 

height (cm) inside webs (of support threads) for hedgerows when the field was fallow and after the field had undergone 

primary and secondary cultivation. (* relates to significant with α <0.05). 
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 (Rho) P n 

Wind Speed - Field Edge (kmh-1)  -0.159 0.001* 1294 

 

When the field had undergone primary and secondary cultivation, the number of webs was 

significantly positively correlated to anchor point height of threads inside webs (Table 5.3.2.). Number 

of female T. tenuis was significantly positively correlated against anchor point height for threads in 

webs after primary cultivation. After secondary cultivation, the number of male T. tenuis was shown 

to have a significant positive correlation to anchor point height measured inside webs and when fallow 

number of female T. tenuis was significant negatively correlated to anchor point height of support 

threads. The mean abdomen length of T. tenuis had significant positive correlation with anchor point 

height of support threads after primary and secondary cultivation. Hedgerow vegetation density was 

significantly negatively correlated to anchor point height of webs after both cultivations. The number 

of T. tenuis observed in webs was significantly positively correlated in times of primary cultivation, 

and significantly negatively correlated in secondary cultivation and fallow.  

 

When the field was out of crop, wind speed at the field edge was significantly negatively correlated to 

anchor point height of support threads (Table 5.3.3.). Wind speed only identified significance when 

data from fallow and after cultivations were analysed together. 

 
 

 

 (Rho) P n 

Distance of Anchor Point from Field Edge (cm) 0.186 0.004* 241 

Number of Female T. tenuis -0.749 0.001* 351 

Number of Male T. tenuis -0.542 0.001* 351 

Number of T. tenuis in Web -0.734 0.001* 351 

Number of T. tenuis Rappelling -0.291 0.001* 351 
 

The distance of the anchor point outside of webs from the field edge was significantly positively 

correlated to the anchor point height outside of webs (Table 5.3.4.). Number of T. tenuis (male and 

female) were significantly negatively correlated to anchor point heights out of webs recorded. The 

number of T. tenuis observed inside sheet webs and were recorded rappelling were both significantly 

negatively correlated to anchor point height of bridge threads.  

Table 5.3.3: Correlations of wind speed (kmh-1)  measured in the hedgerow with the dependant variable 

anchor point height (cm) inside webs (of support threads) for hedgerows when the field was fallow and 

after the field had undergone primary and secondary cultivation. (* relates to significant with α <0.05). 

Table 5.3.4: Correlations of independent variables measured in the hedgerow with the dependant variable 

anchor point height (cm) outside of webs (of bridge threads) for hedgerows when the field was fallow and 

after the field had undergone primary and secondary cultivation. (* relates to significant with α <0.05). 
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 df H P 

Soil Tillage Intensity 2 41.181 0.001* 

In / Out of Web 1 539.799 0.001* 

Interaction: Soil Tillage Intensity * In / Out of Web 2 18.928 0.001* 

 

 

 

 

 

 

 

 

 

 

 

The interaction was significant between the soil tillage intensity and whether the mean rank anchor 

point belonged to a thread which was a support thread or a bridge thread (Figure 5.3.1. & Table 5.3.5). 

The higher mean rank anchor point height was established in the Direct Drill and Direct Drill Managed 

hedgerows of bridge threads and the lower mean rank anchor point height was found in hedgerows 

opposite all soil tillage intensities for support threads. 

 

5.3.5.2.2. Distance of Anchor Point from Field Edge 

 (Rho) P n 

Wind Speed – Bottom of Hedgerow (kmh-1) -0.192 0.001* 336 

Wind Speed - 0.5 m from Field Edge (kmh-1) -0.131 0.016* 336 
 

The wind speed measured at the bottom of the hedgerow and 0.5 m away from the field edge was 

significantly negatively correlated to the distance a web was spun within a hedgerow opposite (Table 

5.3.6.). No significance was found with any other independent variable measured. 

Table 5.3.5: Response of rank anchor point height, soil tillage intensity and inside and outside of web, for hedgerows 

when the field was fallow and after the field had undergone primary and secondary cultivation (n = 2323). (* relates to 

significant with α <0.05). 

Figure 5.3.1: Interaction of mean rank anchor point height, soil tillage intensities and inside or outside of web for 

hedgerows when the field was fallow and after the field had undergone primary and secondary cultivation (n = 

2323). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional In ±s.e.26.170 (n = 

526), Conventional Out ±s.e.67.286 (n = 122), Direct Drill Managed In ±s.e.21.230 (n = 647), Direct Drill Managed 

Out ±s.e.29.803 (n = 163), Direct Drill In ±s.e.24.101 (n = 714), Direct Drill Out ±s.e.18.978 (n = 151)). (Points that 

do not share the same letter are significantly different at the p<0.05 level). 

 

Table 5.3.6: Correlations of wind speed (kmh-1) measured in the hedgerow with the dependant variable distance of 

anchor point from field edge (cm) inside webs (of support threads) for hedgerows when the field was fallow and after 

the field had undergone primary and secondary cultivation. (* relates to significant with α <0.05). 
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After cultivations and fallow, the distance away from the field edge a bridge thread was anchored, 

was significantly negatively correlated to four measured variables (Table 5.3.7.). These were number 

of sheet webs recorded, number of T. tenuis observed within a sheet web and number of female and 

male T. tenuis. Significance only occurred when all data out of crop was incorporated together. 

 df H P 

Soil Tillage Intensity 2 8.686 0.012* 

In / Out of Web 1 51.306 0.001* 

Interaction: Soil Tillage Intensity * In / Out of Web 2 4.062 0.131 

 

 

 

 

 

 

 

 

No significance was found in the interaction. The significantly greater mean rank distance of anchor 

point from the field edge, within hedgerows opposite each tillage intensity, was of support threads 

(inside webs) (Figure 5.3.2. & Table 5.3.8.). The mean rank distance of anchor point of support threads 

from the field edge was significantly greater in the hedgerow of Direct Drill Managed. 

Figure 5.3.2: Interaction of mean rank distance of anchor point from field edge, soil tillage intensity and inside or outside 

of web for hedgerows when the field was fallow and after the field had undergone primary and secondary cultivation (n = 

760). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional In ±s.e.20.649 (n = 148), 

Conventional Out ±s.e.21.658 (n = 70), Direct Drill Managed In ±s.e.16.724 (n = 177), Direct Drill Managed Out ±s.e.17.940 

(n = 85), Direct Drill In ±s.e.14.322 (n = 215), Direct Drill Out ±s.e.16.894 (n = 65)). (Points that do not share the same letter 

are significantly different at the p<0.05).  

 

Table 5.3.8: Response of rank distance of anchor point height from field edge, soil tillage intensity and inside and outside 

of web, for hedgerows when the field was fallow and after the field had undergone primary and secondary cultivation (n = 

760). (* relates to significant with α <0.05). 

Table 5.3.7: Correlations of independent variables measured in the hedgerows with the dependant variable distance 

of anchor point from field edge (cm) outside webs (of bridge threads) for hedgerows when the field was fallow and 

after the field had undergone primary and secondary cultivation. (* relates to significant with α <0.05). 
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5.3.5.2.3. Thread Length 

 Fallow Primary Cultivation Secondary Cultivation 

(Rho) P n (Rho) P n (Rho) P n 

Hedgerow Vegetation 
Density (cm2) 

-0.216 0.001* 480 0.285 0.001* 572 -0.121 0.254 580 

Mean Abdomen Length 
(mm) 

0.175 0.001* 504 0.286 0.001* 823 0.269 0.001* 803 

Number Female T. tenuis 0.364 0.001* 504 -0.025 0.471 823 0.325 0.001* 803 

Number Male T. tenuis -0.149 0.001* 504 -0.019 0.503 823 -0.098 0.158 803 
 

The number of female T. tenuis was significantly positively correlated to support thread length in times 

of fallow and after secondary cultivation, while number of male T. tenuis showed significant negative 

correlation to support thread lengths in times of fallow only. When the field was out of crop, the mean 

length of T. tenuis abdomen was significantly positively correlated to support thread length. Lengths 

of support threads, when the field was fallow, was identified to be significantly negatively correlated 

to hedgerow vegetation density. This independent variable was further significantly positively 

correlated to support thread lengths after primary cultivation had taken place. 

 

 (Rho) P n 

Mean Abdomen Length (mm) -0.218 0.033* 97 

Number of Female T. tenuis 0.290 0.003* 107 

Number of Male T. tenuis 0.284 0.003* 107 

Number of T. tenuis in Web 0.292 0.001* 107 

Number of T. tenuis Rappelling 0.247 0.013* 107 

Numbers of Web 0.243 0.016* 107 
 

 

The numbers of T. tenuis (female and male) were significantly positively correlated to the length of 

threads outside of the web. The number of T. tenuis observed rappelling, the number of T. tenuis 

identified in the web and the number of sheet webs recorded were all significantly positively 

correlated to the lengths of bridge threads. The mean T. tenuis abdomen length recorded was 

significantly negatively correlated to the bridge thread length.  

The thread length of bridge threads at times of cultivations and fallow were analysed together due to 

low numbers of data identified in each cultivation and fallow period (Table 5.3.10).  

Table 5.3.9: Correlations of independent variables measured in the hedgerow with the dependant variable thread length 

(mm) inside webs (of support threads) for hedgerows when the field was fallow and after the field had undergone primary 

and secondary cultivation. (* relates to significant with α <0.05). 

Table 5.3.10: Correlations of independent variables measured in the hedgerow with the dependant variable thread 

length (mm) outside of webs (of bridge threads) for hedgerows when the field was fallow and after the field had 

undergone primary and secondary cultivation. (* relates to significant with α <0.05). 
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The significantly longer median support thread length was 46.4 mm and was recorded in the Direct 

Drill hedgerow (Figure 5.3.3.). This was 4.7 mm and 4.9 mm longer than the significantly shorter 

median thread lengths recorded in the hedgerow opposite Conventional and Direct Drill Managed 

respectively. Positive upwards skew was identified for all soil tillage intensities.  

 

5.3.5.3. In Crop - Early and Late Growth Stages of H. vulgare 

5.3.5.3.1. Anchor Point Height 

 Early Late 

(Rho) P n (Rho) P n 

Hedgerow Vegetation Density (cm2) 0.405 0.001* 229 0.072 0.051 708 

Number of Female T. tenuis -0.446 0.001* 330 0.087 0.021* 708 

Number of Male T. tenuis -0.530 0.001* 330 0.124 0.001* 708 

Number of T. tenuis in Web 0.333 0.001* 330 0.235 0.001* 708 

Number of T. tenuis Rappelling 0.478 0.001* 330 0.112 0.003* 708 
 

 

 (Rho) P N 

Number of S. avenae 0.316 0.001* 520 

Number of S. avenae in Web 0.415 0.001* 520 

Wind Speed - Bottom of Hedgerow (kmh-1) 0.220 0.001* 1037 
 

Table 5.3.11: Correlations of independent variables measured in the hedgerow with the dependant variable of anchor 

point height (cm) inside webs (of support threads) for hedgerows when the field was in crop (early and late growth 

stages). (* relates to significant with α <0.05).  

Figure 5.3.3: Median thread length (mm) inside webs (of support threads) in the differing 

soil tillage intensity, for hedgerows when the field was fallow and after the field had 

undergone primary and secondary cultivation. (df = 2, Adjusted for ties H - Value 9.94, P 

- 0.007, n = 2031). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). 

(Conventional (n = 584), Direct Drill Managed (n = 697), Direct Drill (n = 750)). 

 

Table 5.3.12: Correlations of independent variables measured in the hedgerows with the dependant 

variable of anchor point height (cm) inside webs (of support threads) for hedgerows when the field 

was in crop (early and late growth stages). (* relates to significant with α <0.05). 
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Numbers of T. tenuis (male and female) recorded at the early growth stages of the crop were 

significantly negatively correlated to anchor point height noted inside webs (Table 5.3.11.). When the 

field was at the late growth stages of crop, the number of T. tenuis (male and female) was significantly 

positively correlated to anchor point heights of webs measured. Hedgerow vegetation density was 

significantly positively correlated in the early stages of H. vulgare growth. The numbers of T. tenuis 

rappelling and T. tenuis observed to be in a web, were significantly positively correlated to anchor 

point height inside webs in all growth stages (early and late) of the crop.  

Wind speed observed at the bottom of the hedgerow was significantly positively correlated to anchor 

point height of support threads (Table 5.3.12). When anchor point heights inside webs were recorded 

from the early and late periods of H. vulgare growth, there was noted to be significant positive 

correlation to number of S. avenae observed in sheet webs and found in the vegetation. Significance 

only occurred within these independent variables and anchor point height of support threads when 

data recorded from early and late growth stages were analysed together. 

 

 df H P 

Soil Tillage Intensity 2 28.546 0.001* 

Presence of Crop Pests in Hedgerow Vegetation 1 0.384 0.535 

Interaction: Soil Tillage Intensity * Presence of Crop Pests in Hedgerow Vegetation 2 41.744 0.001* 
 

 

 

 

 

 

 

 

Table 5.3.13: Response of rank anchor point height inside webs (of support threads), soil tillage intensity and presence of 

crop pests found within the hedgerow vegetation, for hedgerows when the field was in crop (early and late growth stages) 

(n = 1070). (* relates to significant with α <0.05). 

Figure 5.3.4: Interaction of mean rank anchor point height inside webs (of support threads), soil tillage intensity and 

presence of crop pests found within the hedgerow vegetation, for hedgerows when the field was in crop (early and late 

growth stages) (n = 1070). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional No 

±s.e.49.192 (n = 51), Conventional Yes ±s.e.17.830 (n = 330), Direct Drill Managed No ±s.e.28.412 (n = 50), Direct Drill 

Managed Yes ±s.e.18.546 (n = 226), Direct Drill No ±s.e.32.762 (n = 96), Direct Drill Yes ±s.e.16.193 (n = 317)). (Points that 

do not share the same letter are significantly different at the p<0.05). 
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The mean rank anchor point height for support threads was significantly different between the soil 

tillage intensities and whether there were crop pests recorded in the hedgerow vegetation (Figure 

5.3.4. & Table 5.3.13.). Significantly higher mean rank anchor point height occurred when crop pests 

were not found in the vegetation for Direct Drill than that found in Conventional and Direct Drill 

Managed hedgerows. This mean rank anchor point height was further significantly higher than the 

mean rank found when crop pests were located within the vegetation of hedgerows opposite all soil 

tillage intensities. 

 

 df H P 

Soil Tillage Intensity 2 3.651 0.161 

Presence of Crop Pests in Webs of Hedgerows 1 15.186 0.001* 

Interaction: Soil Tillage Intensity * Presence of Crop Pests in Webs of Hedgerows 2 27.395 0.001* 

 

 

 

 

 

 

 

The mean rank anchor point height for webs that contained and did not contain pests in Conventional 

hedgerows was significant in the interaction. The mean rank anchor point height significantly higher 

when crop pests were found in webs, within this hedgerow, than any other mean rank anchor point 

height measured within this model (Figure 5.3.5. & Table 5.3.14.).  

 

 

Table 5.3.14: Response of rank anchor point height inside webs (of support threads), soil tillage intensity and presence of 

crop pests found within the webs of hedgerows, for hedgerows when the field was in crop (early and late growth stages) 

(n = 1070). (* relates to significant with α <0.05). 

Figure 5.3.5: Interaction of mean rank anchor point height inside webs (of support threads), soil tillage intensity and 

presence of crop pests found within the webs of hedgerows, for hedgerows when the field was in crop (early and late 

growth stages) (n = 1070). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional No 

±s.e.17.184 (n = 347), Conventional Yes ±s.e.45.344 (n = 34), Direct Drill Managed No ±s.e.23.741 (n = 181), Direct Drill 

Managed Yes ±s.e.14.877 (n = 95), Direct Drill No ±s.e.21.004 (n = 240), Direct Drill Yes ±s.e.21.927 (n = 173)). (Points 

that do not share the same letter are significantly different at the p<0.05). 
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5.3.5.3.2. Distance of Anchor Point from Field Edge 

 (Rho) P n 

Hedgerow Vegetation Density (cm2) 0.263 0.001* 232 

Number of Female T. tenuis -0.345 0.001* 258 

Number of Male T. tenuis -0.321 0.001* 258 

Number of S. avenae -0.286 0.002* 119 

Number of T. tenuis in Web -0.248 0.001* 258 

Wind Speed - 0.5 m from Field Edge (kmh-1) 0.184 0.003* 258 

Wind Speed - Field Edge (kmh-1) 0.228 0.001* 258 
 

When the field was cropped with H. vulgare (early and late growth stages), the distance that an anchor 

point of a thread inside webs was to the field edge was significantly negatively correlated to the 

number of T. tenuis (male and female) that were recorded in the hedgerows (Table 5.3.15.). The 

distance was further significantly negatively correlated to the number of T. tenuis that were observed 

within sheet webs and the number of S. avenae that was found within the hedgerow vegetation. 

Hedgerow vegetation density, wind speed, measured at the field edge and 0.5 m to the field edge, 

were significantly positively correlated to the distance the anchor point was to the field edge. 

 

5.3.5.3.3. Thread Length 

 Early Late 

(Rho) P n (Rho) P n 

Hedgerow Vegetation Density (cm2) -0.120 0.052 252 0.225 0.001* 714 

Number of Female T. tenuis -0.135 0.011* 359 -0.158 0.001* 714 

Number of Male T. tenuis -0.154 0.003* 359 -0.180 0.001* 714 

Number of S. avenae -0.127 0.044* 252 0.031 0.603 286 

Number of S. avenae in Web -0.253 0.001* 252 -0.117 0.051 286 

Number of T. tenuis in Web 0.243 0.001* 359 -0.067 0.075 714 
 

Numbers of T. tenuis (male and female) were identified to be significantly negatively correlated to 

length of support threads when the field was in the early and late growth stages of H. vulgare (Table 

5.3.16.). Number of T. tenuis found in the web was significantly positively correlated to thread length 

inside webs only at times of early growth stages. Hedgerow vegetation density identified significant 

positive correlation with length of support threads during the late growth stages. There was a 

significant negative correlation for both variables, number of S. avenae recorded in the sample and 

number of S. avenae found in the web, with support thread length, found in the early growth stages. 

Table 5.3.15: Correlations of independent variables measured in the hedgerows with the dependant variable of 

distance of anchor point from field edge (cm) inside webs (of support threads) for hedgerows when the field was in 

crop (early and late growth stages). (* relates to significant with α <0.05). 

Table 5.3.16: Correlations of independent variables measured in the hedgerow with the dependant variable of thread 

length (mm) inside webs (of support threads) for hedgerows when the field was in crop (early and late growth stages). 
(* relates to significant with α <0.05). 
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5.3.5.4. Variables Measured Within the Field and Hedgerow 

 df F P 

Soil Tillage Intensity 2 0.45 0.641 

Location (Field or Hedgerow) 1 23.71 0.001* 

Interaction: Soil Tillage Intensity * Location (Field or Hedgerow) 2 0.38 0.684 

 

 

 

 

 

 

 

 

A significant difference existed only between location; whether the sheet web was found within the 

main field or hedgerow opposite at times when the field was out of crop (primary cultivation, 

secondary cultivation, and fallow) (Figure 5.3.6. & Table 5.3.17.). For all three soil tillage intensities 

(Conventional, Direct Drill Managed and Direct Drill), the mean number of sheet webs found within 

the hedgerows was significantly higher than the mean number found within the field.  

 

 

 

 

 

Table 5.3.17: Response of number of sheet webs, soil tillage intensity and location (field or hedgerows). When the field 

was fallow and after primary and secondary cultivation (n = 174, R-sq - 11.06%). (* relates to significant with α <0.05). 

Figure 5.3.6: Interaction of mean number of sheet webs, soil tillage intensity and location (field or 

hedgerows). When the field was fallow and after primary and secondary cultivation (n = 174, R-sq - 11.06%). 

(Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional Field ±s.e.0.285 (n = 

29), Conventional Hedgerow ±s.e.0.486 (n = 29), Direct Drill Managed Field ±s.e.0.324 (n = 29), Direct Drill 

Managed Hedgerow ±s.e.0.408 (n = 29), Direct Drill Field ±s.e.0.333 (n = 29). Direct Drill Hedgerow ±s.e.0.407 

(n = 29)) (Points that do not share the same letter are significantly different at the p<0.05). 
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 df H P 

Soil Tillage Intensity 2 0.960 0.619 

Location (Field or Hedgerow) 1 24.741 0.001* 

Interaction: Soil Tillage Intensity * Location (Field or Hedgerow) 2 0.127 0.938 

 

 

 

 

 

 

 

 

 

Homogeneity was identified within the soil tillage intensities between the mean rank number of T. 

tenuis identified within the hedgerow and field, within Conventional, Direct Drill Managed and Direct 

Drill, when the field was out of crop (primary cultivation, secondary cultivation and fallow) (Figure 

5.3.7. & Table 5.3.18.). The significant categorical factor was whether the mean rank number of T. 

tenuis was identified in the field or hedgerow with a significantly greater mean established in the 

hedgerow location within all soil tillage intensities.  

 

 

 

 

 

Table 5.3.18: Response of rank number of T. tenuis, soil tillage intensity and location (field or hedgerows). When the 

field was fallow and after primary and secondary cultivation (n = 174). (* relates to significant with α <0.05). 

Figure 5.3.7: Interaction of mean rank number of T. tenuis, soil tillage intensity and location (field or hedgerows). 

When the field was fallow and after primary and secondary cultivation (n = 174). (Conventional = Red, Direct Drill 

Managed = Blue, Direct Drill = Green). (Conventional Field ±s.e.9.908 (n = 29), Conventional Hedgerow ±s.e.5.811 (n 

= 29), Direct Drill Managed Field ±s.e.8.842 (n = 29), Direct Drill Managed Hedgerow ±s.e.6.089 (n = 29), Direct Drill 

Field ±s.e.9.162 (n = 29), Direct Drill Hedgerow ±s.e.7.648 (n = 29)). (Points that do not share the same letter are 

significantly different at the p<0.05). 
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 df H P 

Soil Tillage Intensity 2 0.687 0.709 

Location (Field or Hedgerow) 1 12.382 0.001* 

Soil Tillage Intensity*Location (Field or Hedgerow) 2 0.852 0.653 

 

 

 

 

 

 

 

 

When the field was cropped, homogeneity was established between mean rank numbers of T. tenuis 

found within the hedgerows and main field opposite for all soil cultivation intensities (Figure 5.3.8. & 

Table 5.3.19.). There was a significant difference in the mean rank number of T. tenuis within the two 

different locations; significantly more T. tenuis were found within the hedgerows than the field at 

times when H. vulgare was in crop. This followed the trend of when the field was out of crop (Figure 

5.3.7.). 

 

 

 

 

 

Table 5.3.19: Response of rank number of T. tenuis, soil tillage intensity and location (field or hedgerows) at times field 

in crop (early and late growth stages) (n = 72). (* relates to significant with α <0.05). 

Figure 5.3.8: Interaction of mean rank number of T. tenuis, soil tillage intensity and location (field or 

hedgerows) at times field in crop (early and late growth stages) (n = 72). (Conventional = Red, Direct Drill 

Managed = Blue, Direct Drill = Green). (Conventional Field ±s.e.6.045 (n = 12), Conventional Hedgerow 

±s.e.5.782 (n = 12), Direct Drill Managed Field ±s.e.5.121 (n = 12), Direct Drill Managed Hedgerow 

±s.e.5.115 (n = 12), Direct Drill Field ±s.e.5.684 (n = 12), Direct Drill Hedgerow ±s.e.5.251 (n = 12)). Points 

that do not share the same letter are significantly different at the p<0.05). 
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 df H P 

Soil Tillage Intensity 2 0.941 0.625 

Status of Field Opposite Hedgerow (In Crop or Not in Crop) 1 23.097 0.001* 

Interaction: Soil Tillage Intensity * Status of Field Opposite Hedgerow 
(In Crop or Not in Crop) 

2 1.681 0.432 

 

 

 

The factor which held significance was whether the mean rank number of bridge threads was 

identified in the hedgerows when the field was either cropped or not cropped (Figure 5.3.9. & Table 

5.3.20.). When the field was out of crop (after primary and secondary cultivation and fallow) a 

significantly greater mean rank number of bridge threads was recorded than when the field was 

cropped with H. vulgare at all growth stages for Conventional and Direct Drill Managed.  

 

5.3.5.5. Variables Concerning the Presence of Egg Sacs in Hedgerows 

 (Rho) P n 

Egg Sac Width (mm) x Distance from Field Edge (cm) 0.294 0.049* 35 

Number of Egg Sacs x Hedgerow Density Vegetation (cm2) 0.625 0.001* 28 

 

A significant positive correlation was identified between the variables of egg sac width and the 

distance the egg sac was from the field margin and further between the number of egg sacs recorded 

and the hedgerow vegetation density calculated (Table 5.3.21.). 

Figure 5.3.9: Interaction of mean rank number of bridge threads, soil tillage intensity and status of field 

opposite hedgerow (in crop or not in crop) (n = 123). (Conventional = Red, Direct Drill Managed = Blue, Direct 

Drill = Green). (Conventional No ±s.e.6.260 (n = 29), Conventional Yes ±s.e.3.126 (n = 12), Direct Drill Managed 

No ±s.e.6.072 (n = 29), Direct Drill Managed Yes ±s.e.5.851 (n = 12), Direct Drill No ±s.e.6.650 (n = 29), Direct 

Drill Yes ±s.e.6.931 (n = 12)). (Points that do not share the same letter are significantly different at the p<0.05). 

 

Table 5.3.21: Correlations of independent variables measured concerning egg sacs when the field was fallow and after 

the field had undergone primary and secondary cultivation. (* relates to significant with α <0.05). 

Table 5.3.20: Response of rank number of bridge threads, soil tillage intensity and status of field opposite hedgerow (in 

crop or not in crop) (n = 123). (* relates to significant with α <0.05). 
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5.3.6. Discussion 

5.3.6.1. Out of Crop - Fallow and After Primary and Secondary Cultivation 

Heterogeneity was found in the anchor point height of bridge threads spun for rappelling, with 

Conventional hedgerows exhibiting the significant lower mean (Figure 5.3.1.). Conventional held the 

greater number of T. tenuis (mainly female) which was shown to be significantly negatively correlated 

to anchor point height out of webs (Table 5.3.4.). It may be that intra-specific competition had 

occurred, with a greater number rappelling inside and outside of the hedgerow at the basal stratum 

due to greater T. tenuis abundance. Harwood & Obrycki (2005) identified that a propensity to bridge 

increased at times of over-crowing in Linyphiidae, and rappelling occurred at a lower aspect, a low 

energy form of dispersal (Bonte et al., 2016). This was further discussed by Pompozzi et al. (2019) as 

‘overspill’, where the movement of Linyphiidae spans outwards from high abundance. ‘Overspill’, in 

the direction of the field, is of benefit to an agricultural setting to exert early biological control. This 

‘overspill’ occurred due to an area of high T. tenuis abundance, identifying the hedgerows to have 

been a beneficial habitat. In this instance the attractive nature of the hedgerow to web-weaving may 

have aided the biological control potential in the field (Toft & Lövei, 2002; Vialatte et al., 2007).  

However, a lower number of rappel threads was noted within the Conventional hedgerow. Indeed, 

eleven T. tenuis were noted under the webs at time of primary cultivation in this hedgerow, the 

greater result (Table 5.3.4.). These points raise the question of why dispersal was less where the 

density of T. tenuis was high within hedgerows opposite Conventional, the greater level of rappelling 

occurring within Direct Drill Managed. It would be expected to measure low bridging movement within 

the Direct Drill hedgerows, due to the zero cultivation occurring in the field opposite at this time due 

to the greater level of activity occurring in the Direct Drill tillage of the main field (Section 5.1.5.1.2. & 

Section 5.1.5.1.3.).  Řezáč & Rezáčová (2019) explain that in agro-ecosystems Linyphiidae activity is 

diminished after mechanical disturbance in cultivations. The cultivated area of Conventional with 

reduced landscape heterogeneity may have promoted T. tenuis to reside within the hedgerow 

opposite, perhaps because of greater prey availability (Lang & Barthel, 2011; Schwab et al., 2002; 

Witmer et al., 2003).  

Most support threads were observed to be attached to grass at the forefront of the hedgerow and 

leaf litter within the hedge. The basal stratum of the hedgerow was identified as a key web-site, where 

at times of low growth of hedgerow species, webs were woven into the area which might offer 

protection and a source of nutrition from the capture of ground-dwelling prey (Figure 5.3.1.). 

Badenhausser et al. (2020) comment that hedgerows increase predatory opportunities for Linyphiidae 

and Garrett et al. (2017) and Pfister et al. (2015) comment that Linyphiidae may be exhibiting scramble 

https://www.sciencedirect.com/science/article/pii/S0167880919303512#!
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competition to colonise areas in close vicinity to capitalise on any prey developments noted in the 

field.  

Six T. tenuis under webs of two samples in hedgerows opposite Direct Drill area held the greater height 

at primary cultivation (Table 5.3.2. & Figure 5.3.10.). In these two areas, nine and sixteen webs were 

measured within distinct strata of the hedgerow with the number of female T. tenuis recorded as 

seventeen and twenty-two, respectively (Table 5.3.2.). Gan et al. (2015) state that higher webs can be 

an act of dominance. It appears that webs have been constructed at differing strata within the 

hedgerow due to increased web-building activity by Linyphiidae and T. tenuis. The greater abundance 

of T. tenuis was identified in these Direct Drill sample areas. Birkhofer et al. (2017) and Sanders et al. 

(2015) concurred, explaining that in margins, at times of high intra-specific and inter-specific 

abundance, different vertical levels were occupied by Linyphiidae. Romero & Harwood (2010) 

suggested that the occupation of different strata was a representation of different prey being 

predated. This is further supported with high levels of vegetation density noted in this area, able to 

support a multitude of prey (Campbell et al., 2020).  

 

 

 

 

 

 

It can be deduced that the greater number of webs at a higher level equated to web abandonment at 

the time of secondary cultivation (Table 5.3.2.). Toft (1987) explained that non-productive webs are 

quickly abandoned, within a couple of days. Sunderland & Samu (2000) and Vink & Kean (2013) 

commented that the main drivers for web abandonment are low prey retrieval, physical disturbance, 

or threat of predation. In contrast, Harwood et al. (2003) and Harwood & Obrycki (2007) explained 

that abandonment of webs may happen randomly and not be due to any specific factor and therefore 

not be a sign of a poor web-site. Intra-specific competition may be a factor with several webs woven 

in close proximity, no web take-over was observed but the threat of such could cause abandonment, 

especially in areas of high potential prey capture when the field was low in such opportunities (Jarvis 

& Woolford, 2017).  

Figure 5.3.10: Female T. tenuis occupying web anchored to low-

lying branches at rear of hedgerow. Direct Drill. In times out of 

crop, 2016 / 2017 Season. Elevated view. (Red arrow = 33.4 mm).  
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Numbers of males was significantly positively correlated to the anchor point height of the webs at 

secondary cultivation (Table 5.3.2.). This was due to timing of courtship (for potential copulation) to 

seek a mate, the next generation beginning in parallel with the cropping pattern (Thorbek & Bilde, 

2004; Welch et al., 2011; Zschokke & Herberstein, 2005). Abdomen length was further significantly 

positively correlated to anchor point height of webs, where males in this dataset had abdomens >1.5 

mm (Table 5.3.2.). This suggests copulation was undertaken in the extended phenotype of the web. 

Males of T. tenuis are described as acquiring smaller abdomens due to SSD (Sexual Sized Dimorphism) 

evolution as shown in fieldwork findings (Corcobado et al., 2010; De Mas et al., 2009) (Section 2.1.3.4. 

& Section 5.1.6.2.1.). The significant positive correlation between anchor point height and abdomen 

length in primary cultivation was driven by nine large-bodied females found in an area with one male 

(Figure 5.3.11a & b). At this time, it appeared that courtship leading to copulation may have begun, 

thus a higher degree of female occupying webs was expected, expelling a pheromone to communicate 

readiness to mate (Bonte et al., 2000; Maklakov et al., 2003; Toft, 1989; Watson, 1993) (Section 

2.1.3.4.). Thorbek & Bilde (2004) & Welch et al. (2011) note hedgerows allow generations to persist 

by offering web-weaving opportunities for courtship / copulation rituals to commence. 

 

 

 

 

 

 

 

That the vegetation within this habitat may be too dense, after cultivations (primary and secondary), 

could be a consideration, as Linyphiidae require a certain level of space to lay a horizontal web 

(Benjamin et al., 2002) (Table 5.3.2.). They are unique in laying sheets in many horizontal 

arrangements, adapting the sheet to the material on offer for anchorage, though a central space is 

needed for a web (Barriga et al., 2010; Benjamin et al., 2002; Gagnon et al., 2011). 

Wind speed at the field edge affected T. tenuis decision for web placement within the hedgerow. The 

greater wind speed was identified as 10.1 kmh-1 with webs spun in the basal layer within the hedgerow 

opposite Direct Drill tillage and 12.7 kmh-1 in Direct Drill Managed both in fallow, where higher webs 

Figure 5.3.11a & b: Female T. tenuis of large abdomen occupying web. Direct Drill Managed hedgerows, 

in times out of crop, 2016 / 2017 season. (a: Red arrow = 39.1. mm. b: Combined red arrow = 35.6 mm). 

 

a 

b 
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were identified (Table 5.3.3.). Spinning lower webs may be a protection strategy in times of wind 

speed disturbance. Damage to a web, however slight, can render the web functionless and thus energy 

outlay not compensated with potential prey capture (Qin et al., 2015; Tew & Hesselberg, 2017). 

Furthermore, at times of higher wind speed the distance a web was anchored into the hedgerow was 

decreased (Table 5.3.6.). This is an unusual result, with Schmidt & Tscharntke (2005) and Segoli et al. 

(2004) noting that Linyphiidae are sensitive to environmental disturbance, for example, wind flow, in 

choosing to construct webs. Webs were spun low, closer to the front of the shelterbelt when wind 

speed was measured the highest (Table 5.3.3.). It may be that the webs were spun at a time when 

wind speed was lower. Vanacker et al. (2004) described that once a web is constructed, it is shown to 

have longevity and can withstand moderate wind speed disturbance. Linyphiidae evolution has 

adapted to deal with environmental disturbance by the creation the major ampullate silk, where the 

beta-sheets are toughened by acquiring strong association between hydrogen bonds (Blackledge et 

al., 2011; Craig, 2003 Tew & Hesselberg, 2017) (Figure 2.3a, Section 2.1.2.1., Page 10). This insistence 

to spin at the forefront of a hedgerow has been identified as an area of dynamic movement by Isaia 

et al. (2007), Marshall (2004) and Mclachlan & Wratten (2003). A web position near an edge of a 

shelterbelt is seen to be a result or precursor to migration into a field habitat.  

Bridge threads were anchored significantly nearer to the field edge (Figure 5.3.2.). Simmoneau et al. 

(2016) and Woolley et al. (2016) signal rappelling is a precursor to web-spinning and it is expected that 

rappelling would occur at the front fringes of the hedgerow once migration has occurred. Blandenier 

(2014) and Thorbek (2003) suggest that aerial dispersal into a margin is relatively passive, the direction 

being influenced due to meteorological conditions. Thorbek (2003) suggests that short rapid 

movements of dragline silk can aid control of dispersal direction. This is supported by Bonte et al. 

(2008), who report high short ballooning helps to find a linear wind current. However, no significant 

correlation for distance of bridge threads from the field edge with wind speed was found. The greater 

number of large threads identified for ballooning occurred in the fallow periods, Hein et al. (2019) 

noted that this is due to low vegetation heterogeneity within the field at this time. The greater wind 

speed from the field edge was 10.1 kmh-1 (converted to 2.8 ms-1), this being the upper level acceptable 

for ballooning (Blandenier, 2014; Simonneau et al., 2016; Thorbeck, 2003). Ballooning begins at a high 

take-off position and then in a sharp downward projector into vegetation thus some wind flow is 

required to provide lift (Pekár, 2014). This wind speed was not identified as high enough to disrupt the 

hydrogen bonds of the major ampullate gland for dragline silk, thus losing its integrity (Craig, 2003) 

(Section 2.1.2.1).  
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The lower anchor points of the hedgerow opposite Conventional, where the greater female T. tenuis, 

number of webs and numbers of T. tenuis under webs were found predominantly within the forefront 

of the hedgerow habitat (Table 5.3.7.). Harwood & Obrycki (2005) and Hein et al. (2019), discuss that 

Linyphiidae are highly competitive for resources, and when identified in high densities, intra-specific 

competition can drive smaller webs to be spun in the superior web-site. This was concurred by 

Stenchly et al. (2011), who identified this to be due to Linyphiidae known to occupy individual stratum 

within a habitat, T. tenuis preferring a high aspect. It appears that if high densities of one species exist, 

space for web construction in that stratum would be a limiting factor (Janetos, 1984; Miyashita et al., 

2012). This result may describe mass action, where the greater density of migration, perhaps recently 

ballooned from Conventional with times of secondary cultivation, is driven due to following subtle 

vibrations produced from a-lying of dragline silk (Bianchi et al., 2017; Kraftt & Cookson, 2012; Řezáč & 

Řezáčová, 2019). 

Several webs were found right at the back of the hedgerow, > 15 cm in height, which were abandoned 

(Table 5.3.2.). Abandonment perhaps having occurred because ensnared prey had been consumed or 

the web provided no return for the energy cost in its construction (Jurczyk et al., 2012; Opatovsky et 

al., 2016; Schütt, 1997). It may be, with low densities of prey observed in the field, that T. tenuis and 

Linyphiidae had increased exploratory potential into the hedgerow and relocated to the rear habitat 

for a considerable period, shown in the large webs created with a considerable energy outlay 

(Benjamin et al., 2002; Hardy et al., 2008; Saravanan, 2006). Feber et al. (2015), Griffiths et al. (2018) 

and Ysnel & Canard (2000) explained that greater bio-diversity and potential prey were identified in 

the central hub of hedgerows, though not all prey noted were crop pests (Aphididae for example). 

Larger females were seen in Direct Drill with twenty females present where six large webs were 

measured at >3000 mm2 (Table 5.3.9.). Bowden & Buddle (2010), Harwood et al. (2004) and 

Lichtenstein et al. (2016) discussed that females with large abdomens express dominance by acquiring 

prime web-sites, spinning large webs or exert web take-over (Figure 5.3.3.). There were no parameters 

where the hedgerow of the Direct Drill was a prime web-site compared to the hedgerows opposite 

Conventional tillage. Gan et al. (2015), Harwood & Obrycki (2005), Segoli et al. (2004) and Toft (1987) 

detail that body size in Linyphiidae can influence web area that is spun. This observation seems to fit 

the high web areas recorded, the high vegetation complexity of the hedgerow offering a plethora of 

opportunities for large webs to be spun (Badenhausser et al., 2020). 

In times after primary cultivation, hedgerow vegetation density was significantly positively correlated 

to thread length, whereas in times the field was fallow, the correlation was negative (Table 5.3.9.). 

The negative correlation is an unusual result with Baxter et al. (2005) and Garrett et al. (2017), 
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explaining that in times of high vegetation density T. tenuis weave in small pockets that may allow 

extension of silk to reach the adequate loading strain (Craig, 2003; Harmer et al., 2011; Vollrath, 1986). 

Direct Drill measured a vegetation density of 4715.24 cm2 at the time of primary cultivation. As noted 

earlier, low anchor points were found in times of increased vegetation density. Linyphiidae web 

weaving ability appears forced to the base of the hedge, larger webs woven into the grass swards, 

where naturally there was greater space achieved by the fanning of the grass pinnacles (Blake et al., 

2013) (Table 5.3.2.). In times of fallow, hedgerow vegetation density was <4000 cm2, this due to the 

autumn and winter seasons, where deciduous species go into dormancy. Barriga et al. (2010) and 

Glime & Lissnier (2017), both describe greater spatial scale induces webs of large threads to be woven, 

with T. tenuis monopolising greater space.  

A T. tenuis with a small abdomen was identified ballooning out of a Direct Drill hedgerow where three 

bridge threads >110 mm were measured driving out of the hedgerow (Table 5.3.10.). It can be 

questioned why dispersal out of the hedgerow was occurring within a fallow period where fieldwork 

identified low landscape heterogeneity, which Lichtenstein et al. (2019) noted impeded web-weaving 

across all tillage intensities (Section 5.1.5.1.3. & Section 5.1.5.1.4.). Further, Bonte et al. (2008) 

described ballooning as a cost draining activity, with production of the strong durable major ampullate 

fibres woven together to provide a dragline thread (Craig 2003, Blackledge et al., 2009) (Section 

2.1.2.1.). Ballooning causing a greater depletion of energy in small-bodied T. tenuis. Blandenier (2014) 

and Bonte et al. (2008) discussed, the ballooning may have occurred due to the pioneering capacity 

of T. tenuis, exploiting recently disturbed territory (Holland et al., 2003; Lafage et al., 2015; Schmidt & 

Tscharntke, 2005). 

Greater number of female and male T. tenuis were recorded where two large dragline silks were 

woven within the Direct Drill Managed hedgerow after primary cultivation (Table 5.3.10.). 

Additionally, greater number of T. tenuis observed rappelling was found in a Conventional hedgerow. 

This sample was measured a day after primary cultivation occurred in the main field, with disturbance 

applied to the Conventional and Direct Drill Managed areas. It is unexpected that T. tenuis would be 

dispersing out into the field, as Barriga et al. (2010) and Bell et al. (2002) discuss that an altered 

landscape, devoid of complexity, will deter Linyphiidae settlement. The hedgerows vegetation density 

was analysed as moderate and acceptable to facilitate adequate web-spinning. Chapman et al. (2013) 

and Thorbek & Topping (2005) suggested a precursor to ballooning can be starvation or threat of intra-

specific competition, Linyphiidae, at times of high density, are fiercely protective of beneficial web-

weaving territory (Bell et al., 2002; Harwood et al., 2004). It appears that T. tenuis were dispersing to 

locate a site where web-spinning can commence with low predation and hopeful prey capture.  
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5.3.6.2. In Crop - Early and Late Growth Stages of H. vulgare  

The greater number of T. tenuis found underneath webs were identified in a Direct Drill hedgerow, 

where nine out of the ten webs were anchored 10 cm - 12 cm to the apex of grass tillers (Table 5.3.11.). 

This appeared to be a notable stratum for larger web weaving, branches altering the vegetation 

density at a clear higher level provides a pocket of open space facing the surface of the web (Table 

5.3.16.). This was seen by Gómez et al. (2016) and Schütt (1997) as intercepting a higher degree of 

prey. Additionally, where four T. tenuis occupied webs of a Direct Drill hedgerow, the webs were spun 

at >30 cm in height. The wind speed at 0.5 m from the field edge was the highest within both 

hedgerows of Direct Drill (12.9 kmh-1 and 14.8 kmh-1 respectively) (Table 5.3.12.). It is unusual for webs 

of a higher aspect here, when Tew & Hesselberg (2017) explain that high wind speeds have the 

potential to lower web placement due to threat that laid silk may be impaired via beta-sheet 

dislocation (Craig, 2003) (Section 2.1.2.1.). With high occupancy, the webs were expected to be woven 

recently. Bell et al. (2002) and Sunderland & Samu (2000) discuss that a web is regularly only occupied 

for a few days at maximum. Perhaps the webs were woven earlier in the day when wind speed was 

lower. As Król et al. (2018) explain, Linyphiidae spin webs at such times to distinguish territory in 

periods of reduced predation. Additionally, high vegetation density was identified (>5500 cm2) in these 

Direct Drill hedgerows, which could have protected webs from high wind speeds. Batáry et al. (2008) 

and Sharley et al. (2008) noted increased vegetation impairs the wind flow into the shelterbelt. Wind 

speed was noted to be too high to facilitate dispersal, thus the T. tenuis recorded occupying a web, 

remaining in the spun retreat, would be of beneficial to energy preservation (Craig, 2003; Harmer et 

al., 2011; Segoli et al., 2004). 

With the shielding of vegetation, it appears that small scale migration commenced with little intra-

specific threat (Table 5.3.11.). The act of rappelling, as an explorative behaviour, may allow refining of 

T. tenuis senses to better locate prey (Bonte et al., 2002; Rodríguez & Gloudeman, 2011; Zschokke et 

al., 2006). Alate S. avenae were found entrapped in small webs within low-lying branches (Table 

5.3.12. & Table 5.3.16.). The hedgerow vegetation was at its greatest when H. vulgare was in early 

growth stages, hedgerow flora having photosynthesised to lay new growth. A small difference of 

hedgerow vegetation density was observed amongst the samples (5037.8 - 6277.7 cm2). The lower 

density was identified in hedgerow opposite Direct Drill Managed, where many of the webs were 

anchored at <5 cm into grassy tussocks (Table 5.3.11.). Bianchi et al. (2017) discuss that a small 

increase in complexity of vegetation can solely promote web anchorage at higher strata and allow 

capture of alate prey (Birkhofer et al., 2008; Dennis et al., 2001; Kovak & Mckay, 2009).  
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At later growth stages, hedgerow vegetation density was not of significance, even when the greater 

difference was examined (higher of 6092.3 cm2 and lower 2559.5 cm2). Both areas recorded webs 

primarily anchored within the lower aspects of the hedgerow. Interestingly, following the pattern of 

the main field, alate morphs were identified in greater abundance in early growth stages, thus removal 

of aerial cues pulling web placement lower (Section 5.1.6.2.1.). Alignier et al. (2014) and Parry (2013) 

noted that as H. vulgare reaches later growth stages of milk and dough development, greater 

resistance is met in phloem extraction, thus the shelterbelt provides lush vegetation for continual 

feeding and colony survival (AHDB, 2015; Holopainen-Mantila, 2015; Macfadyen et al., 2014; Vialatte 

et al., 2007). Apterous morphs feeding upon grass tillers are likely to be ensnared into webs of a lower 

aspect (Martin et al., 2015; Price et al., 2011). 

The greater number of T. tenuis were noted in a Conventional hedgerow at early growth stages where 

eleven small webs were noted at <4 cm, woven in the grass of the basal layer of the hedgerow (Table 

5.3.11. & Table 5.3.16.). Fourteen of the T. tenuis held abdomen lengths <1.4 mm. Opatovsky et al. 

(2016) and Romero & Harwood (2010) discuss that much competition exists between T. tenuis and 

Linyphiidae for optimal web-sites, and when identified at high densities, intra-specific competition can 

drive web placement. However, low abdomen size suggested no dominating T. tenuis inflicted 

excessive competition (Corcobado et al., 2010; De Mas et al., 2009). Stenchly et al. (2011) identified 

that T. tenuis are known to occupy a beneficial individual stratum, weaving smaller webs, in a habitat 

with resource availability and shielding from climatic and predatory factors (Janetos, 1984; Miyashita 

et al., 2012; Saravanan, 2006). Garrett et al. (2017) and Pfister et al. (2015), explained that greater 

abundances of prey resources were present in lower aspects of the hedgerows. At later growth stages, 

the greater height (>20 cm) for four webs were identified when thirty-five T. tenuis were noted (Table 

5.3.11.). This is double the amount of T. tenuis that were noted at early growth stages. Thus, for 

cohabitation different strata were required for web anchorage within this 1 m2 sample, the density of 

T. tenuis was too great, as shown by Janetos (1982) and Landsman & Bowman (2017) to comfortably 

occupy a single optimum layer. Robertson & Avilés (2018) discuss that high T. tenuis abundance pushes 

Linyphiidae into the upper canopy to inhabit an unoccupied vegetation stratum. Little disturbance of 

increased wind speed facilitated ascension into the branches of the hedgerow with a low energy 

outlay (Benjamin et al., 2002; Segoli et al., 2004). The greater T. tenuis density in the hedgerow was 

theorised to be driven by the high temperatures recorded in later growth stages in 2018. The heat 

decreased prey reproductive potential and excessive moisture loss of the mono-cropped field 

decreasing field architecture complexity (Alderweireldt, 1994; Harwood et al., 2004; Winder et al., 

2014) (Section 5.1.6.2.2.). 
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Few larger-bodied T. tenuis were noted in hedgerows opposite each tillage intensity, though were 

recorded in the field when H. vulgare was in crop. Perhaps T. tenuis of greater fitness did exist in the 

population, as Gan et al. (2015) and Rodríguez & Gloudeman (2011) explain there are many factors to 

describing the level of fitness that a T. tenuis exhibits, body size not always relating to greater fitness. 

Maybe certain T. tenuis did exert predatory pressure, finding the optimum web-site in the shelterbelt 

to entrap the aerial morphs and S. mosellana that were identified (Rodríguez & Gamboa, 2000; 

Rodríguez & Gloudeman, 2011). Kraftt & Cookson (2012) note that a T. tenuis response of silk-laying 

is due to a collection of stimuli which requires high levels of perception. 

T. tenuis adapted their web-building site as a response to numbers of S. avenae found within the web 

and the vegetation (Table 5.3.12.). T. tenuis in hedgerows opposite all soil tillage intensities spun webs 

in similar locations, mainly in the higher aspect of the grass layer formed at the basal stratum of the 

hedgerow. This placement providing material for adequate anchorage, the apex of tillers increasing 

surface area of the web for prey capture. Kraftt & Cookson (2012) describe vegetation architecture is 

often of greater complexity underneath a sheet web, maximising area flagelliform silk can ensnare 

hairs of prey (Section 2.1.2.1.). Webs spun in tight compartments of inter-twinned leaves and branches 

of the hedgerow species is void of the space to facilitate prey capture.  

The fact that Aphididae were caught in webs of all hedgerows opposite each soil tillage, describes that 

Aphididae colonies were present in all areas of the hedgerow, regardless of tillage intensity (Figure 

5.3.4. & Figure 5.3.5.). Moreover, alate morphs were recorded in hedgerows bordering all soil tillage 

intensities. This expressed movement in and out of the shelterbelt from all tilled areas of the field, 

with Aphididae tendency for migration within a close vicinity (Parry, 2013; Reynolds & Reynolds, 

2009). However, Direct Drill Managed hedgerow did not relay a significant prey abundance of S. 

avenae, when in the field S. avenae was found at notable density in Direct Drill Managed with 

polymorphism occurring (Section 5.1.6.2.3). Parry (2013) discussed that Aphididae dispersal takes 

place within a small window, when conditions are optimal for these opportunists to reproduce and 

disperse rapidly. Newman (2004) accords that Aphididae will not disperse unless certain 

environmental conditions are met. Wind speed according to Reynolds and Reynolds (2009) is the main 

variable that dictates the initiation and direction of Aphididae flight, thus linear dispersal is unlikely to 

occur from the field into the shelterbelt. 

It appears that where no prey was located, webs were found at different heights of the hedgerows 

opposite Direct Drill than the remaining two soil tillage intensities (Figure 5.3.4.). This shows that T. 

tenuis were exploring the hedgerow habitat in different ways for prey. For a hedgerow opposite Direct 

Drill, eight webs were woven >20 cm above the ground and for a hedgerow of Direct Drill Managed, 
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four webs <3 cm were found, both in July 2018, where no crop pests were identified in the g-vac 

sampling. As discussed within the Fieldwork Sub-Chapter, this absence of pests is hypothesised to be 

due to abnormally high temperatures, which caused low fecundity in Aphididae and an inability to 

pathogenesis an abundance of alate morphs, to provide new colonies (Reynolds & Reynolds, 2009; 

Winder et al., 2014). (Section 5.6.2.2.). However, in both areas, webs did contain exuviae which may 

have been Aphididae prey where contents were consumed through T. tenuis expelling enzymes to 

liquify body tissue and feed (Davey et al., 2013; Macías-Hernández et al., 2018). Aphididae exuviae 

were evidence of their presence, though its web capture cannot be classed as direct biological control 

(Goggin, 2007; Lombaert et al., 2006) (Section 2.3.2.). It may be that Aphididae had migrated into the 

shelterbelt where phloem content of vegetation may have been of easier extraction than the drought-

stressed H. vulgare and webs, at different heights, were a product of this stimulus (Price et al., 2011).  

All webs had been abandoned in the areas where no prey was located. Jurczyk et al. (2012) and 

Opatovsky et al. (2016) suggesting that T. tenuis though a ‘sit and wait’ predator, are keen to relocate 

if no cues for prey in the vicinity are processed, Wenninger et al. (2020) concur, suggesting a web may 

snare prey even when abandoned due to premature vacation. The difference in anchor point heights, 

mentioned above, may be explained predominantly by hedgerow vegetation density recorded at the 

later growth stages of H. vulgare. Direct Drill hedgerow held a density of 2885.9 cm2, gaps may be 

attractive to exploit in times of low prey consumed or perhaps webs spun to relate to aerial vibrations 

of alate prey and aerial S. mosellana found in early growth stages (Hogg & Daane, 2018; Miyashita et 

al. 2012) (Section 5.1.6.2.1.). Disintegration of webs is timely, resilience of silk creating fibrils of high 

strength and toughness (Chen et al. 2012; Craig, 1987) (Section 2.1.2.3.).  For Direct Drill Managed, 

the vegetation density was 5776.6 cm2, again seen to pull anchorage of webs downwards to lesser 

heights.  

It appeared that webs of lower height in Direct Drill Managed and Direct Drill hedgerows were more 

successful in ensnaring prey (Figure 5.3.5.). Most prey were found in webs within the early growth 

stages of H. vulgare, when temperatures were favourable and growth on hedgerows provided 

increased availability of feeding sites (Price et al., 2011; Tulli et al., 2013). The lower webs had been 

successful in prey capture with low levels of energy output. This agrees with Bell et al. (2002) and 

Bowden & Bundle (2010) who identified that Linyphiidae will respond to their habitat in web creation 

and create a web that allows the least energy cost to construct. Interestingly, more prey entered the 

webs when no wind was present, this discords with Agabiti et al. (2016) and Losey & Denno (1998), 

who discussed ‘dropping action’ of Aphididae is influenced by physical disturbances such as wind, 

disrupting the anchorage of feeding phloem. Kumar et al. (2019) discussed a field cropped with H. 

vulgare that was identified to have 22.1% infestation rate in peak growth stage. Thus here, the capture 
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rate was not described as high, with six S. avenae the greater prey entrapped. Therefore, in this study, 

three S. avenae, the greater value collected by g-vac sampling, did not present a strong precursor for 

biological control. Perhaps wind speed measured was irrelevant, low S. avenae abundance due to 

weak fitness traits, transferred within a potential colony (Asin & Pons, 2001; Lombaert et al., 2006). 

Moreover, when a higher wind of 6.6 kmh-1 was measured at the basal stratum of the hedgerow, webs 

were spun higher attaching to low-lying leaves (Table 5.3.12.). Gaps were observed in the swards, 

revealing bare ground of limited attachment potential. Additionally, no prey was collected via g-vac 

sampling, revealing the favoured stratum in this hedgerow was lacking the benefits described earlier. 

T. tenuis as an opportunistic predator ascended higher, perhaps able to entrap aerial prey such as 

dipteria (Ball & Bingham, 2003; Knight et al., 2012; Peigné, et al., 2007; Zheng et al., 2014) (Figure 

5.3.4.). 

Blake et al. (2013) and Gómez et al. (2016) discuss that T. tenuis migrate through a positive vegetation 

complexity gradient. It appears that the forefront of the hedgerow was yet again the prime location 

for web-site construction when hedgerow vegetation was lower (Table 5.3.15.). Additionally, with 

respect to a significant negative correlation between number of S. avenae found within the vegetation 

and distance of anchor point height, Feber et al. (2015), Griffiths et al. (2018) and Ysnel & Canard 

(2000) discuss Aphididae migration into the hedgerow by primarily alighting onto the outer-most layer 

of vegetation (Table 5.3.15.). The prey consumed, can be thought of as a product of migrating from 

the relevant field areas. It appears that the webs spun in the front most section responded to cues of 

S. avenae (Hatano et al., 2008; Kraftt & Cookson, 2012; Mansour & Heimbach, 1993).  

Eight out of eleven webs at the forefront of the hedgerow, held three T. tenuis under the webs in 

Direct Drill hedgerow of later growth stages (Table 5.3.15.). This result explains potential biological 

control is actively occurring. No prey was captured within these webs or evidence of feeding through 

exuviae presence, though prey was present in the vegetation. Perhaps the webs were recently spun, 

and the hope was to entrap prey for consumption. From a biological control perspective, it is 

encouraging to observe potential prey suppression from Linyphiidae persistence of the web. This 

extended phenotype can entrap prey through mechanism of the silk, however, Chapman et al. (2013) 

and Pekár (2000) explain Linyphiidae presence is favoured in success of biological control, as T. tenuis 

occupying a web will ensure a prey item is dealt with. 

5.3.6.3. Variables Measured Within the Field and Hedgerow  

Significantly more T. tenuis and sheet webs were noted to be in the hedgerows than the main field, 

which fits the evidence found by Tamburini et al. (2015) and Vollrath (1986), that in times of cultivation 

and low prey abundance within a main field area, shelterbelts become a reservoir for Linyphiidae 
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activity (Figure 5.3.6. & Figure 5.3.7.). Pfingstmann et al. (2019) and Rosas-Ramos et al. (2018) agree, 

explaining that hedgerows act to continue flow of ecosystem services in times of field disturbance, 

ensuring predator and prey interactions persist. Surprisingly in the hedgerow opposite Direct Drill, 

where zero disturbance was identified, the same trend existed (Figure 5.3.6. & Figure 5.3.7). It is of 

interest that more T. tenuis were present alongside numbers of sheet webs in the hedgerow when the 

field opposite had not been disturbed and T. tenuis were active in the field (Section 5.1.6.1.). 

Blandenier (2014) and Thorbek (2003) suggest that aerial dispersal into a margin is relatively passive, 

the direction being influenced by meteorological conditions. This is concurred by Bonte et al. (2008), 

who report high, short ballooning helps to find a linear wind current. Alignier et al. (2014) and Van 

Alebeek et al. (2008) relate that a hedgerow is a separate habitat. Once T. tenuis have migrated from 

the field, their predator - prey connections are predominately from within the hedgerow. Thus, any 

short-ranged locomotion by T. tenuis in the shelterbelt is due to cue / stimuli from within (Pfingstmann 

et al., 2019). 

At times of early and late growth stages of H. vulgare, there was heterogeneity in the mean number 

of T. tenuis between the locations of the hedgerows and the main field (Figure 5.3.8.). This has an 

implication to the biological control capacity of T. tenuis in the field when it is of necessity to suppress 

prey abundance from congregating on H. vulgare (Toft, 1987; Vichitbandha & Wise, 2002; Welch et 

al., 2016). Isaia et al. (2007), Mclachlan & Wratten (2003) and Pfister et al. (2015) discuss a deterrent 

of outward migration from a hedgerow or incentive to inward dispersal may be low densities of prey 

observed in the field, T. tenuis and Linyphiidae thus relocate to the hedgerow for a considerable period 

of time to continue their life cycle. Passive foraging through the web strategy for predation incurs a 

need for high prey density (Diehl et al., 2013; Feber et al., 2015; Haughton et al., 1999). Yu (2019), 

when understanding temperature effects on plasticity (adaptability an organism must physically alter 

in response to external stimuli) on Rhopalosiphum maidis (corn leaf aphid), identified that Aphididae 

endure a limiting temperature which prohibits wing polyphenism (production of alate morph). Asin 

and Pons (2001) discussed that M. dirhodum and S. avenae plasticity to polymorphism altered at 

temperatures of 27 - 30 oC and explained low migration into the main field thus, not providing the 

necessary cues for T. tenuis to follow (Brabec et al., 2014; Newman, 2005). Similar numbers of T. tenuis 

were noted in the hedgerow and field in the summer of 2017, when temperatures on sampling days 

ranged from 22 - 27 oC, greater abundance of Aphididae were recorded in the field, the environmental 

factors at an optimal to trigger asexual reproduction in Aphididae and induce plasticity  to wing 

polymorph and disperse (Parry et al., 2006; Parry 2013; Price et al., 2011; Summers et al., 2004). It 

appears that the field was still not exhibiting potential to be a productive web-site for some 
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Linyphiidae and T. tenuis. Bredeson (2019) notes that mono-cropping disrupts the balance that a 

stable arthropod community can promote, by reducing vegetation diversity.  

Haughton et al. (1999), investigating effects of glyphosate drift to a field margin, found in times of 

increased glyphosate application that the drift reduced landscape heterogeneity. This was shown to 

have a greater negative impact to T. tenuis density than the glyphosate application. However, the 

glyphosate application appeared not to affect T. tenuis abundance in the shelterbelt (Table 5.1.1.). A 

reduction in hedgerow vegetation density seems not to have occurred, low wind may have aided low 

drift dispersal. Vegetation complexity, agreed by Isaia et al. (2007) and Ysnel & Canard (2000), 

facilitates web-spinning.    

The greater number of bridge threads within the hedgerow itself were identified to take place within 

the times when the field was out of crop (Figure 5.3.9.). This shows web site exploration was greater 

in this period and concurs with Batáry et al. (2008), Buri et al. (2016) and Horváth et al. (2015), who 

relate Linyphiidae preference to migrate to areas (hedgerows), supporting a degree of vegetation 

complexity. Here, rappelling commences to acquire knowledge of spatial orientation and prey 

movements (Ford, 1977; Romero & Hardwood, 2010). This confirmed less movement between 

hedgerow and field when H. vulgare was growing in the latter. This may affect pest suppression rate 

that Linyphiidae can exert. Marc & Canard (1997) and Rusch et al. (2016) suggest, promoted early 

movement out of a shelter habitat is key to effective biological control, to establish a high density at 

time of increased prey abundance. De Meester & Bonte (2010) advise that migration rate into a 

shelterbelt can be difficult to quantify, the upper strata of H. vulgare facilitating lower (in height) 

dragline threads, which are hard to identify and are easily susceptible to external factor disturbances. 

Perhaps not all evidence of dispersal was measured, though, as it appeared that the hedgerow was a 

favoured dwelling. 

Ballooning was found to occur in greater quantity at times of field disturbance, which concurs with T. 

tenuis pioneer ability to settle in disturbed habitats, shown by Bianchi et al. (2017) and Halley et al. 

(1996). Ballooning, when observed, was spun by female T. tenuis. Simmoneau et al. (2016) and 

Woolley et al. (2016) found no difference in the propensity to balloon for male and female Linyphiidae. 

Bonte (2013) discussed that female T. tenuis propensity to disperse is density dependant on female T. 

tenuis not males, noted to be due to selection pressure of locating a suitable mate (Rundus et al., 

2011). The data accords with this observation with female T. tenuis most abundant in all main field 

samples and hedgerows opposite all soil tillage intensities (Section 5.1.5.).  
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5.3.6.4. Variables Concerning Presence of Egg Sacs in Hedgerows 

Humpreys (1983) and Vanacker et al. (2004) discuss the size of an egg sac, generally presents a 

potential greater clutch, and Blackledge et al. (2011) showed that an egg sac sheltered with a higher 

degree of vegetation density was less likely to become a product of predation (Table 5.3.21.). It 

appears that egg sacs of a greater clutch were woven at a greater distance into the hedgerow for 

additional protection to help assure the success of hatching of a new generation. 

Hedgerow vegetation density was of significance to egg sac placement (Table 5.3.21.). This agrees with 

findings by Finch (2005) who observed that Linyphiidae females had woven their egg sacs into 

vegetation to provide camouflage and required low levels of light to incubate which can be achieved 

within increased vegetation. This also accords with Holland & Oakley (2007) and Öberg et al. (2008), 

where it was shown that egg sacs are required to be woven into dense vegetation for protection. 

Sanders et al. (2015) and Vanacker et al. (2004) identified intra-specific and inter-specific predation 

where egg sacs contain a meal of high nutritional value (Blackledge et al., 2011; Suter et al., 1987) 

(Section 2.1.2.5.). It may be that weaving the egg sac further from the forefront of the shelterbelt may 

avoid predation with the tendency for T. tenuis to construct webs at the forefront of the hedgerow 

(Blackledge et al., 2011; Opatovsky et al., 2016; Suter et al., 1987; Topping & Lövei, 1997). 

Egg sacs (either containing or not containing eggs) were identified opposite each area of soil tillage 

intensity, presenting the commencement of a different generations. This supports the findings of Bell 

et al. (2002), Opatovsky et al. (2016) and Welch et al. (2013) who discussed. T. tenuis and Linyphiidae 

have evolved their life strategies around a crop rotation. The conclusion of a generation, therefore, 

occurs when resources are low. The intensity of soil tillage applied to the main field had little impact 

on T. tenuis and Linyphiidae oviposition behaviour. It could be identified that cultivating at this period 

in the life cycle of a Linyphiidae is beneficial in having a low consequence to biological control potential 

of T. tenuis and Linyphiidae. Egg sacs were generally found more than a metre apart, spread out across 

the entire length of the hedgerow. Maklakov et al. (2003), Simonneau et al. (2016) and Thorbek et al. 

(2004) described an idea of ‘bet-hedging’ where Linyphiidae weave egg sacs across a large space to 

improve survival chances of the next generation (Section 2.1.2.5.). 
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5.3.7. Final Discussion - Hedgerows Opposite Soil Cultivations of Different Tillage Intensity 

Number of T. tenuis webs identified was on most occasions greater in the hedgerows, regardless of 

soil tillage intensity. The hedgerow throughout fieldwork has been shown to be a reservoir of prey 

and T. tenuis abundance. Migration into and out of shelterbelts is fundamental to prey suppression 

and health of the crop. Beneficial shelterbelts allow the population of both prey and T. tenuis to 

persist, and subsequently allow the continuation of biological control potential of T. tenuis, in times 

where the field may not be a favourable habitat (i.e. times of extreme climatic conditions). The 

necessity is dispersal back into the field to exert predator dynamics within. This identifies the 

importance of aim one, three and four noted in Section 5.3.2.1.  

Hedgerow vegetation density appeared to be a predominant factor in altering T. tenuis propensity to 

web build and choice of web-site, more so than the soil tillage the hedgerow was adjacent to, thus 

communicating the second and fourth aim reported in this Sub-Chapter (Section 5.3.2.1.). 

Additionally, addressing the aim, migration was not occurring linearly due to dispersal patterns and 

influence of external factors such as wind speed. Soil tillage appeared to alter bridging inclination at a 

noteworthy abundance when the areas of Conventional and Direct Drill Managed underwent primary 

cultivation.  

Prey was confined in webs in all hedgerows addressing the third aim assigned to this Sub-Chapter 

(Section 5.3.2.1.). Plasticity of the spun web altered with the stimuli of prey, whether aerial prey or 

apterous morphs. This prey did not appear to link to the density of prey viewed in the main field. Prey 

capture was not considered high to substantially offer a dominant biological control element. Prey, 

though, were of low abundance in the vegetation due to high temperatures, limited cues thus not 

interpreted by T. tenuis relying on vibratory stimuli.  

The hedgerow provides an area for oviposition and egg sac incubation, to facilitate a subsequent 

generation. The hedgerow is observed to aid T. tenuis activity of revolving around the life cycle of the 

crop and be in the vicinity to exert predator control on a following crop. 
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Chapter Six 

6.0. Interactions of T. tenuis and Linyphiidae with Aphididae Causing Barley Yellow Dwarf 

Virus (BYDV) in H. vulgare 

6.1. Introduction 

Barley Yellow Dwarf Virus (BYDV) is a common viral disease that causes considerable damage to yield 

and is transmitted mainly through S. avenae and R. padi (Section 2.2.6.2.). From this, crops showing 

possible symptoms of BYDV must be laboratory-tested to confirm whether the virus is present and 

then the relevant action, in controlling S. avenae and R. padi numbers, can be applied (Section 

2.2.6.2.). 

In the H. vulgare cropping season 2017 / 2018 at GS 61 - GS 65 and GS 87 - GS 91, symptomatic BYDV 

leaves were identified from afar in the field (Table 5.1.1., Section 5.1.3.1., Page 82). On closer 

inspection, leaves were orange / burnt yellow from the tip to half-way down and each H. vulgare had 

failed to anthesis. Falks & Duffus (1981) discussed that a plant may abort if depletion of a plants 

nutrition’s become too great with weakening phloem tissue caused by BYDV. These observations are 

shown from research by D’Arcy & Domier (2000), Dorokhov et al. (2014), Falks & Duffus (1981) and 

Reddy et al. (2009) to be clear indications of possible BYDV (Figure 6.1a & b and Figure 6.2a & b). After 

field inspection, most areas of symptomatic BYDV were identified within the Conventional tillage. Only 

one other area was observed in the Direct Drill side of the margin between the Conventional tillage 

and Direct Drill tillage (Section 4.2., Figure 4.2a & b, Page 54). 

 

 

 

 

 

 

 

 

Figure 6.1a & b: Symptomatic BYDV H. vulgare. Conventional. Field B. GS 61 - GS 65, 2017 / 2018 season. 

a b 
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Understanding T. tenuis activity alongside that of the BYDV-causing Aphididae (S. avenae & R. padi) 

within areas observed with symptomatic BYDV would be useful for this research project. Firstly, 

acknowledging where, within the areas of differing soil tillage, the symptomatic BYDV occurred and 

how this knowledge could relate to future soil tillage applications. Secondly, analysing T. tenuis 

interactions in BYDV symptomatic H. vulgare may allow further analysis of T. tenuis prey capturing 

abilities and whether its web-site location and web-building are a response to Aphididae incidence. 

Aphididae incurrence are theorised to be of greater abundance in areas of symptomatic BYDV due to 

the volatile odours released on virus transference, attracting further Aphididae to feed (Dancewicz et 

al., 2018; Paulmann et al., 2018) (Section 2.2.6.2.). 

 

6.2. Aims and Specific Objectives 

6.2.1. Aims 

The aims behind measuring T. tenuis and prey interactions on H. vulgare infected with BYDV follows 

Research Aims 1 and 3 (Section 1.2., Page 2).  

1. Identify the potential biological control by T. tenuis of Aphididae within different intensities 

of tillage in an arable crop.  

3. Understand whether T. tenuis behaviour is stimulated by the presence of Aphididae. 

 

 

 

Figure 6.2a & b: Symptomatic BYDV H. vulgare. (Circled in yellow). Conventional. Field B. GS 87 - GS 91. 2017 / 2018 Season. 

a b 
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6.2.2. Specific Objectives 

Specific objectives were chosen to address the aims of this Chapter. 

• Confirm symptomatic BYDV as BYDV-PAV positive. 

• Measure abundance and extended phenotypes of T. tenuis, i.e. web construction, to calculate 

T. tenuis activity and output in areas of H. vulgare and BYDV symptomatic H. vulgare. 

• Quantify Aphididae activity by abundance in areas of H. vulgare and BYDV symptomatic H. 

vulgare. 

• Observe Aphididae web capture in areas of H. vulgare and BYDV symptomatic H. vulgare. 
 

6.3. Methodology 

6.3.1. Field Sampling 

Three 1 m2 areas, containing BYDV symptomatic H. vulgare, were randomly selected in the 

Conventional area of Field B, 61 - GS 65 2017 / 2018 season, via the same method of the main field 

samples (Section 4.2.). The same areas were then sampled in GS 87 - GS 91, 2017 / 2018 season. An 

area of BYDV symptomatic leaves at the margin of soil tillage transition zone was not used, as this was 

the only observation within this area. The sample plots were measured for T. tenuis and Linyphiidae 

activity by recording sheet web area and its anchor height. Webs were observed for Aphididae and 

exuviae. G-vac sampling was used to record T. tenuis and Aphididae numbers. Vegetation structure 

was recorded, H. vulgare density, height and A. myosuroides density.  

No symptomatic BYDV was observed in earlier GS of H. vulgare in the field. The distance between the 

sample areas in Conventional of GS 33 - 37 (May) 2017 / 2018 and the three 1 m2 randomly selected 

area containing BYDV H. vulgare in later growth stages, was calculated to understand if any S. avenae 

activity in May was potentially a precursor to BYDV manifesting in H. vulgare (Section 2.2.6.2. & Table 

5.1.1.). 

The summer of 2018 had higher than mean temperatures which resulted in South-Eastern regions 

experiencing drought conditions (Met Office 2018). The Delta™ Soil Moisture penetrometer was used 

to measure soil moisture content in the areas of suspected BYDV and other areas within the field, to 

determine whether the senescing of the leaves was due to poor moisture availability or BYDV (Davis 

et al., 2015; Knight et al., 2012; MacFarland et al., 2014). 
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6.3.2. Laboratory Testing 

To confirm if BYDV was present, laboratory testing was necessary (Davis et al., 2015; FERA, 2018; 

Valenzuela & Hoffmann., 2014). Samples were collected from three areas from GS 87 - GS 91 H. 

vulgare season. Following advice from FERA (2018), samples were air-dried, wrapped in clean 

absorbent paper and refrigerated at 4 oC prior to sampling.  

Barley Yellow Dwarf Luteovirus PAV was chosen over MAV, as the PAV strain of the virus is most likely 

to be transferred to a crop via S. avenae, whereas the MAV strain is most commonly associated with 

R. padi (Section 2.2.6.2.). From fieldwork, greater S. avenae abundance was identified in Field B than 

R. padi (Section 5.1.6.2.1.). The samples were tested for BYDV using Loewe® Barley Yellow Dwarf 

Luteovirus PAV - 2 % Blocking in Conjugate Buffer DAS ELISA (Enzyme-linked Immunosorbent Assay) 

using polyclonal antiserum from rabbit (Section 2.2.6.2.). 

Both positive and negative controls were used in the ELISA test. Positive control contained a purified 

protein which synthesises the BYDV-PAV antigen. The negative control used was a sample that did not 

contain a protein that produces the BYDV-PAV antigen. A negative control validated the results by 

removing the possibility of non-specific antigens synthesised being bound to the substrate (Lequin, 

2005) (Figure 6.3b & Section 2.2.6.2.).  

The sap from the phloem is the material used for detection of ELISA. The crops collected from the 

three areas from GS 87 - GS 91, were ground to extract sap with a pestle and mortar (Figure 6.3a & 

b). The protocol followed required washing the plates between each stage thoroughly with washing 

buffer. The buffers were used within one week, as this was the optimal period. The ELISA test was 

conducted over two days, requiring overnight incubation (Figure 6.3c & d). The plate was visually 

inspected for yellow after the procedure, BYDV antigen positively binding to PNPP (p-nitrophenyl 

phosphate) substrate (Section 2.2.6.2.). Positive and negative wells needed to be a yellow hue and 

blank, respectively. A colour spectrometer was not used as the presence of BYDV-PAV was all that was 

required and not intensity.   
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6.4. Statistical Analysis 

S. avenae presence was re-analysed in the field sampling of GS 33 – GS 37 (May sampling), to 

understand if there was an earlier indication of the onset of symptomatic BYDV. Two samples 

measured in the Conventional soil intensity in May 2018 were < 50 m away from random sample areas 

with BYDV infected H. vulgare in GS 61 - 65 (June) and determined as close enough to compare T. 

tenuis activity to S. avenae, as potential vectors of BYDV (Table 5.1.1. & Section 2.2.6.1.).  

The measurements taken within the six areas of BYDV symptomatic H. vulgare from the Conventional 

tillage (three from GS 61 - GS 65 and three from GS 87 - GS 91), were analysed against the 

measurements recorded in the six sample areas in the Conventional plots used in the main field 

sampling (three from GS 61 - GS 65 and three from GS 87 - GS 91), where no BYDV symptomatic leaves 

were identified (Section 4.2., Table 5.1.1. & Section 5.1.5.2.). 

a b 

c d 

Figure 6.3a - d: Procedures from the Lowe® DAS ELISA Kit.                                              

a = Grinding H. vulgare leaf to extract sap. b = Sap being placed into wells after first antigen applied. Green samples are sap 

from later mesocosm experimental trials. Brown samples are sap from NIAB Field B. (Yellow circle is positive. Red circle is 

negative sample). c = Sealed plate incubated overnight at 37 oC. d = Conjugate antigen added to samples as top of sandwich-

second antigen (Section 2.2.6.2.). 
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Statistics were run for data collected in sample periods of GS 61 - GS 65 and GS 87 - GS 91 together 

with Minitab18©. A PCA was run, where scores for two principal components were analysed to 

understand which variables measured held the greater influence (Bass, 2007). Normality testing and 

visualising distribution on histograms and probability plots, concluded data collected from all samples 

were non-normal (Khan, 2013) (Section 5.1.4.1.).  

Kruskal-Wallis was utilised to identify if significant differences existed between the medians for 

variables measured within Conventional samples without symptomatic BYDV and Conventional with 

symptomatic BYDV. The macro (KrusMC.mac) was not utilised to apply Dunn’s multiple comparison 

test due to only two sets of data inputted into the model, for example, anchor point height from 

Conventional symptomatic BYDV and Conventional no symptomatic BYDV (Section 5.1.4.2.). 

Correlations, using Spearman’s Rank (Rho), identified any significant relationships between variables 

recorded (Hawkins, 2014; Khan, 2013; Weather et al., 2011).  

Multiple regression models were built, the stepwise backwards elimination method, through the 

software Minitab18©. The model was created for the responses of anchor point height of support 

threads and web area measured in the symptomatic BYDV Conventional area and asymptomatic BYDV 

Conventional samples. As within fieldwork, the response was placed against certain explanatory 

independent variables (Section 5.1.4.2.). Backwards elimination removed insignificant variables at α 

<0.05 (Hawkins, 2014; Wheater et al., 2011). T. tenuis mass, cephalothorax length, abdomen length 

and plant height were again entered as means as explained in fieldwork (Section 5.1.4.2.). 

The quadratic equation was y = ax2 + bx + c, where b may have many terms. The outcome of this 

model, presented by a quadratic curve (parabola), allowed multiple interactions of independent 

variables with the response variables to be analysed. Normality was further checked via a residual vs 

fitted values plot, random distribution of residuals around the fit line confirming normality. If large 

residuals were observed their origin was located and were removed if datasets were not considered 

normal due to the large numbers of data placed into the model (Khan, 2013) (Section 5.1.4.2.). 

No bridge threads were identified in the sample areas. All anchor points and thread lengths noted 

relate to webs woven. 
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6.5. Results 

6.5.1. Laboratory Testing 

 

 

 

 

 

 

 

 

 

 

 

 

 

The presence of the BYDV antigen was identified by the yellow colour of PNPP in each field sample 

from GS 87 - GS 91 (Figure 6.4a - c) (Section 2.2.6.2.). The positive result showed the antigen and 

negative was blank. 

 

6.5.2. Sampling in GS 33 - GS 37 Concerning Later BYDV Infected H. vulgare 

A 1 m2 sample from GS 33 - GS 37 was 23.6 m south-east of one BYDV H. vulgare 1 m2 sample area, 

where five S. avenae nymphs were captured by g-vac and none identified in Linyphiidae webs. Another 

1 m2 sample from GS 33 - GS 37 was 33.2 m south-west from a BYDV H. vulgare 1 m2 sample, where 

two S. avenae nymphs were collected by the g-vac and one S. avenae captured in a Linyphiidae web.  

 

 

Figure 6.4a - c: Results of ELISA test. a - c = Overview of plate. 1. - 3. = Field samples 

from GS 87 - GS 91. 4. = Positive sample. 5. = Negative sample. 

a 

b c 

1 

5 

2 4 

3 
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6.5.3. T. tenuis Interactions with Asymptomatic and Symptomatic BYDV in Later Growth 

Stages of H. vulgare 

6.5.3.1. Summary of Results 

• Significantly higher median anchor point height was identified for Conventional area 

containing BYDV symptomatic H. vulgare (Figure 6.6.). Significantly higher median anchor 

point height was found for webs that contained S. avenae, in the same Conventional areas 

(Figure 6.7.).  

• Median thread length where S. avenae were captured was significantly longer in Conventional 

area containing BYDV symptomatic H. vulgare (Figure 6.9).  

• Conventional area with symptomatic BYDV was affected by S. avenae within the web and 

thread length shown by a PCA. Conventional area with asymptomatic BYDV identified mean 

plant height influenced variation in the data measured (Figure 6.5.).  

• Number of S. avenae and plant density exhibited a significant relationship with the dependant 

variable anchor point height, and both showed significant positive correlation to anchor point 

height and plant density was positively significantly correlated to thread length (Figure 6.8. & 

Table 6.3. Table 6.5.). 

• Number of T. tenuis was significantly negatively correlated to thread length and showed 

quadratic regression with anchor point height and thread length (Figure 6.8. & Figure 6.10. & 

Table 6.5.). 

• Number of Aphididae exuviae in the web showed significant regression with anchor point 

height and thread lengths recorded and was significantly positively correlated to each 

dependant variable measured (Figure 6.8. & Figure 6.10., Table 6.3., Table 6.5. & Table 6.6.).  

• Wind speed significantly affected anchor point height and thread length (Figure 6.8. & Figure 

6.10.) and held significant negative correlation to thread length and web area (Table 6.3., 

Table 6.5. & Table 6.6). 
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 Principal 1 Principal 2 

Variance 41.1% 16.9% 

Variables Eigenvalue Eigenvalue 

Thread Length (mm) 0.343  

Number of T. tenuis (male and female combined) -0.282  

Mean Plant Height (cm)  0.116 

Number of S. avenae in the Web  -0.551 

 

No clustering was identified, and no close associations existed within the PCA. Overall, it can be 

identified that the data recorded within the areas of symptomatic BYDV H. vulgare was influenced the 

most by S. avenae within the web whereas, for Conventional, where asymptomatic BYDV was 

identified in the H. vulgare, number of T. tenuis recorded and mean plant height affected the data the 

greatest.  

 

Figure 6.5: PCA of variables measured, along the first two principal components and variables correlating to each 

component. Interactions of T. tenuis and Linyphiidae with Aphididae causing Barley Yellow Dwarf Virus (BYDV) in H. 

vulgare. (Conventional with No Symptomatic BYDV H. vulgare = Red, Conventional with Symptomatic BYDV H. vulgare = 

Dark Red). 

Table 6.1: The variance in data explained by principal component 1 and principal component 2 and associated eigenvalues 

for the variables which held the most influence within the data in each component. Interactions of T. tenuis and 

Linyphiidae with Aphididae causing Barley Yellow Dwarf Virus (BYDV) in H. vulgare. 
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6.5.3.2. Anchor Point Height 

 

A significantly higher median of anchor point height was identified in the Conventional tillage that 

held symptomatic BYDV H. vulgare, which was 1.3 cm higher than the significant lower median for the 

anchor point heights measured in the Conventional tillage with no symptomatic BYDV (Figure 6.6.). 

The greater dispersion was identified between the median and upper quartile for Conventional with 

symptomatic BYDV H. vulgare.  

The significant higher median was established for anchor point heights of webs containing S. avenae 

in Conventional areas with symptomatic BYDV (Figure 6.7.). The greater variability in anchor point 

heights where there was S. avenae present in the webs was found in the top 25%. No S. avenae were 

identified in sheet webs of the Conventional areas where no symptomatic BYDV was identified. 

 

 

 

 

 

Figure 6.6: Median anchor point height (cm), soil tillage 

intensity and presence of BYDV. Interactions of T. tenuis and 

Linyphiidae with Aphididae causing Barley Yellow Dwarf 

Virus (BYDV) in H. vulgare. (df = 1, Adjusted for ties H - 11.09, 

P - 0.001, n = 289). (Conventional with Symptomatic BYDV H. 

vulgare = Dark Red, Conventional with No Symptomatic BYDV 

H. vulgare = Red). (Conventional with Symptomatic BYDV H. 

vulgare (n = 158), Conventional with No Symptomatic BYDV 

H. vulgare (n = 131)). 

 

Figure 6.7: Median anchor point height (cm) for Conventional 

with Symptomatic BYDV H. vulgare and presence of S. avenae 

inside webs. Interactions of T. tenuis and Linyphiidae with 

Aphididae causing Barley Yellow Dwarf Virus (BYDV) in H. 

vulgare. (df = 1, Adjusted for ties H - 10.77, P - 0.001, n = 158). 

(Yes S. avenae in web = Red, No S. avenae in web = Pink).  (Yes 

S. avenae in web (n = 121), No S. avenae in web (n = 37)). 
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An open, upward parabola was found for the interaction between plant density and anchor point 

height within the Conventional plot where no BYDV H. vulgare was recorded (Figure 6.8.), showing 

anchor point height tended to become higher as H. vulgare density increased. The same held for the 

areas were BYDV H. vulgare existed, however, a maximum vertex was reached as the plant density 

reached three hundred. Little quadratic regression existed for Conventional BYDV when wind speed 

was investigated against anchor point height, the trend shown to be negatively linear. A maximum 

vertex was reached for Conventional where asymptomatic BYDV was identified, where anchor point 

peaked at 7.9 cm when wind speed was 8.9 kmh-1.  

Continuous Coefficients Standard Error  T P VIF 

Predictor   Coefficients (SE Coeff)       

Number of Aphididae Exuviae in 
Web  0.1531  0.0224  7.56  0.001*  2.36 

Number of S. avenae in Web 0.771 0.288 1.80 0.039* 2.56 

Number of T. tenuis  -0.2230  0.0904  -1.98  0.021*  1.88 

Plant Density (Nom-2) 0.1754 0.0595 2.85 0.004* 2.46 

Wind Speed (kmh-1) 0.332 0.0989 3.04 0.001* 2.74 

Table 6.2: Significant predictors to the response anchor point height (cm). Interactions of T. tenuis and Linyphiidae with 

Aphididae causing Barley Yellow Dwarf Virus (BYDV) in H. vulgare. (n = 289, R-sq - 42.51%). (* relates to significant with α 

<0.05). 

Figure 6.8: Matrix plot with quadratic regression and intercept fitted for anchor point height (cm) with plant density (Nom-

2), wind speed (kmh-1), number of T. tenuis, number of Aphididae exuviae in web and number of S. avenae in web. Interactions 

of T. tenuis and Linyphiidae with Aphididae causing Barley Yellow Dwarf Virus (BYDV) in H. vulgare. (n = 289, R-sq - 42.51%). 

(Conventional with Symptomatic BYDV H. vulgare = Dark Red, Conventional with No Symptomatic BYDV H. vulgare = Red). 
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For the numbers of T. tenuis recorded, both Conventional samples (containing and not containing 

BYDV affected H. vulgare), open downward parabolas existed where the smaller and greater number 

of T. tenuis gave the lower anchor point heights. A maximum vertex was identified when anchor point 

height in Conventional asymptomatic BYDV was investigated against the number of Aphididae exuviae 

in the web. Weak regression was exhibited for the same dependent variable when BYDV was identified 

within Conventional. Due to no S. avenae recorded in webs of Conventional asymptomatic BYDV H. 

vulgare, no regression existed for these terms. A steep open upward parabola shows that the anchor 

point height increased, as greater numbers of S. avenae were observed in the web, in areas of BYDV. 

 (Rho) P n 

BYDV Symptomatic H. vulgare Density (Nom-2) 0.367 0.001* 289 

Mean Plant Height (cm) 0.177 0.003* 289 

Number of Aphididae Exuviae in Web 0.437 0.001* 289 

Number of S. avenae in Web 0.346 0.001* 289 

Plant Density (Nom-2) 0.339 0.001* 289   

BYDV symptomatic H. vulgare density, mean plant height, number of S. avenae and Aphididae exuviae 

in web and H. vulgare plant density were significantly positively correlated to anchor point height 

measured in Conventional areas of symptomatic and asymptomatic BYDV H. vulgare (Table 6.3.).  

 

6.5.3.3. Thread Length 

 

 

 

 

 

 

The significantly longer median (56.3 cm) was identified for threads spun for webs that had captured 

S. avenae (Figure 6.9.), the data skewed in a positive upward trend. 

Table 6.3: Correlations of independent variables measured in the field with the dependant variable anchor point height 

(cm). Interactions of T. tenuis and Linyphiidae with Aphididae Causing Barley Yellow Dwarf Virus (BYDV) in H. vulgare. (* 

relates to significant with α <0.05). 

Figure 6.9: Median thread length (mm) for Conventional with Symptomatic BYDV H. vulgare and presence 

of S. avenae inside webs. Interactions of T. tenuis and Linyphiidae with Aphididae causing Barley Yellow 

Dwarf Virus (BYDV) in H. vulgare. (df = 1, Adjusted for ties H - 16.74, P - 0.001, n = 158). (Yes S. avenae in 

web = red, No S. avenae in web = Pink). (Yes S. avenae in web (n = 121), No S. avenae in web (n = 37)). 
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Continuous Coefficients Standard Error  T P VIF 

Predictor   Coefficients (SE Coeff)       

Number of Aphididae Exuviae in 
Web 1.489 0.162 9.09 0.001* 1.47 

Number of T. tenuis -1.599 0.854 -1.87 0.049* 2.55 

Wind Speed (kmh-1) -2.477 0.881 -3.58 0.007* 1.90 

 

 

 

 

 

 

 

 

 

 

 

 

 

When thread length was analysed with wind speed and number of T. tenuis recorded, within the areas 

of Conventional that did not contain symptomatic BYDV H. vulgare, a similar trend of weak quadratic 

regression was identified (Figure 6.10.). A wide-open parabola here showed the maximum thread 

length was found when wind speed and number of T. tenuis measured were at their lower value. Only 

negative linear regression was observed for wind speed against thread length for areas that contained 

BYDV. A step downwards open parabola exhibited a maximum vertex where a maximum thread length 

was reached when three T. tenuis were recorded in areas of BYDV H. vulgare. Weak regression was 

seen when numbers of Aphididae exuviae were observed within the web in the Conventional areas 

free of symptomatic BYDV and containing symptomatic BYDV. Minimum vertex suggested thread 

length increased as numbers of Aphididae exuviae increased in the web. 

Table 6.4: Significant predictors to the response thread length (mm). Interactions of T. tenuis and Linyphiidae with 

Aphididae causing Barley Yellow Dwarf Virus (BYDV) in H. vulgare. (n = 289, R-sq - 43.42%). (* relates to significant with 

α <0.05). 

Figure 6.10: Matrix plot with quadratic regression and intercept fitted for thread length (mm) with wind speed 

(kmh-1), number of T. tenuis and number of Aphididae exuviae in web. Interactions of T. tenuis and Linyphiidae 

with Aphididae causing Barley Yellow Dwarf Virus (BYDV) in H. vulgare. (n = 289, R-sq - 43.42%). (Conventional 

with Symptomatic BYDV H. vulgare = Dark Red, Conventional with No Symptomatic BYDV H. vulgare = Red). 
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 (Rho) P n 

Mean Plant Height (cm) 0.539 0.001* 289 

Mean T. tenuis Abdomen Length (mm) 0.300 0.001* 289 

Number of Aphididae Exuviae in Web 0.600 0.001* 289 

Number of T. tenuis -0.136 0.017* 289 

Plant Density (Nom-2) 0.293 0.001* 289 

Wind Speed (kmh-1) -0.477 0.001* 289 

 

The variables of number of T. tenuis recorded and wind speed were significantly negatively correlated 

to thread lengths measured (Table 6.5.). Thread length within the sample areas of both Conventional 

that incorporated symptomatic and asymptomatic BYDV H. vulgare was significantly positively 

correlated to mean plant height, mean T. tenuis abdomen length, number of Aphididae exuviae within 

the web and plant density. 

 

6.5.3.4. Web Area 

 (Rho) P n 

Mean Plant Height (cm) 0.570 0.001* 78 

Mean T. tenuis Abdomen Length (mm) 0.298 0.008* 78 

Number of Aphididae Exuviae in Web 0.669 0.001* 78 

Wind Speed (kmh-1) -0.477 0.001* 78 

 

Four dependant variables measured were significantly correlated to web area measured in both the 

symptomatic and asymptomatic BYDV H. vulgare areas (Table 6.6.). Mean plant height, mean T. tenuis 

abdomen length and number of Aphididae exuviae within the web were significantly positively 

correlated to web area, while wind speed was significantly negatively correlated. 

 

 

 

 

 

Table 6.5: Correlations of independent variables measured in the field with the dependant variable thread length (mm). 

Interactions of T. tenuis and Linyphiidae with Aphididae causing Barley Yellow Dwarf Virus (BYDV) in H. vulgare. (* relates 

to significant with α <0.05). 

Table 6.6: Correlations of independent variables measured in the field with the dependant variable web area (mm2). 

Interactions of T. tenuis and Linyphiidae with Aphididae causing Barley Yellow Dwarf Virus (BYDV) in H. vulgare. (* relates 

to significant with α <0.05). 
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6.6. Discussion 

6.6.1. General Discussion 

Barley yellow dwarf virus (strain PAV-A), was identified in all three samples, tested from each sample 

plot. It can, therefore, be concluded the H. vulgare was infected by the virus by vectors in the form of 

direct feeding S. avenae that had been found throughout the H. vulgare fieldwork in GS 61 - GS 65 and 

GS 87 - GS 91 in late growth stages of H. vulgare (Table 5.1.1. & Section 5.1.6.2.2.).   

Mean anchor point height was significantly higher in Conventional areas with BYDV symptomatic H. 

vulgare (Figure 6.6.). Romero & Harwood (2010), through analysing Linyphiidae seasonal activity and 

Opatovsky et al. (2016), investigating web height differentials in T. eastivum in Israel, recognised that 

an increased web height is more likely to capture a specific array of prey which includes Aphididae. 

This is because the Aphididae can aerial disperse by the reproduction of alate morphs and cereal 

Aphididae dwelling in high canopies of H. vulgare at later growth stages, to benefit from leaves in high 

monosaccharide content (Goggin, 2007; Westwood & Stevens, 2010). The highest web found in the 

Conventional area was at >14 cm. Bell et al. (2002) and Davey et al. (2013) suggest that a sheet web 

found at this height may not be spun by T. tenuis, instead perhaps by a larger Linyphiidae such as 

Frontinella communis, a species that was noted in the g-vac sampling of the main field. The variation 

identified with the mean anchor point heights for both Conventional and Conventional BYDV, signifies 

the choice of distinctly different strata at each location (Romero & Harwood, 2010; Sanders & Platner, 

2007). One T. tenuis occupied a web in the Conventional area and four within Conventional BYDV, all 

within webs spun at a height of 3 - 6 cm, showing as previously discussed in fieldwork, T. tenuis 

preference for an above-ground habitat (Bell et al., 2002; Obrycki & Harwood, 2005; Sunderland & 

Samu 2000) (Section 5.1.6.1.2.).  Webs of one Conventional area of no BYDV, were identified in the 

furrows of the soil (Figure 6.6.). Due to the above, mean temperatures experienced in the summer 

months, the furrow width had increased due to shrinkage in the soil from moisture loss (Section 

5.1.6.2.2.). Such webs as shown by Diehl et al. (2013) and Rybac (2007) are unlikely to capture cereal 

Aphididae, being a greater distance from the crop canopy, suggesting the web was not spun as a result 

of cues from this prey species (Gan et al. 2015; Welch et al., 2013; Winder et al., 2013).  

Rodríguez & Gamboa (2000), Rodríguez & Gloudeman (2011) and Welch et al. (2013) discuss the 

possibility that a stimulus of a higher degree of S. avenae, due to cues of movement of high S. avenae 

density or from alate morphs, suggest Linyphiidae may have responded by constructing webs at a 

higher aspect (Figure 6.7. & Table 6.3.). The success of these webs of a greater height can be 

communicated by number of S. avenae observed in the upwards open parabola (Figure 6.8.). The S. 

avenae were found in webs >9 cm. With no alate S. avenae observed, it appears these S. avenae were 
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knocked from higher vegetation. Winder et al. (2013) discuss that S. avenae ‘fall off’ from a cereal crop 

is associated with high densities, especially later in a cropping season. Agabiti et al. (2016) agree, 

explaining a dropping from a host plant may be deliberate, initiated by high densities or could be 

accidental through physical disturbance. The maximum wind speed had reached 14 kmh-1 in a 

Conventional BYDV sample, however, Gish et al. (2012), explained that wind speed of this level is 

unlikely to dislodge S. avenae from direct feeding. Heavy rain, discussed by Parry (2013), can initiate 

dropping of S. avenae, though, at sampling here, no recent rain had been recorded (Met Office 2018). 

Agabiti et al. (2016) and Winder et al. (2013) noticed high densities drove dropping behaviour of 

Aphididae through g- vac sampling. However, it appears Aphididae density (with higher mean of five 

S. avenae in the 1m2 sample) did not seem to reach values that could be considered high, with Winder 

et al. (2014) finding a mean of 3.2 S. avenae per tiller within a T. aestivum crop of the equivalent 

sample time. Higher than mean temperatures were present at this GS, as discussed earlier in 2017 / 

2018 fieldwork sampling (Section 5.1.6.2.2.). Brabec et al. (2014) and Ma & Ma (2012) explain that 

cereal Aphididae drop due to high temperatures, which allows thermo-regulation of their body 

systems.  

No significant difference was identified for length of support threads between the two areas. Yet, 

thirty-five webs for Conventional and forty-three for Conventional BYDV were counted. It appears that 

a far greater abundance of webs was created in areas with BYDV symptomatic H. vulgare. The greatest 

activity of Linyphiidae and T. tenuis was in the Conventional BYDV areas and support thread length 

spun can be used as a measurement for this activity (Borges & Brown, 2001; Harwood et al., 2003; 

Toft, 1987). This clearly shows a greater degree of web-spinning was undertaken, due to a stimulus 

indicating S. avenae presence (Blackledge et al., 2002; Mortimer et al, 2016; Welch et al., 2013) (Figure 

6.5.). This can be confirmed again with the greater thread length alluding to the greater web area 

found where S. avenae was present in the web (Figure 6.9.). The stark difference in the number of 

webs from each GS, may be an indication of a continual presence of S. avenae in the areas where BYDV 

symptomatic H. vulgare was identified. Mehrparvar et al. (2013) comment that dispersal is important 

in the creation of meta-populations, key to their survival due to death of previous local sub-

populations, suggesting the likelihood that an Aphididae presence would not persist within the later 

growth stages in the same location. Ma & Ma (2012) comment that the propensity to disperse, is 

increased with Aphididae who have the potential to greatly damage the host in a limited time, with 

cereal Aphididae noted within this category. However, S. avenae were found in webs at both sampling 

periods (GS 61 - GS 65 and GS 87 - GS 91). It appears that a population had remained at these sites, 

wing polyphenism not occurring, which may be due to weakened fecundity and fitness shown to be 

affected by high temperatures. 
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It may be that S. avenae occurrence was sporadic in the Conventional area, with little dispersal activity. 

This may be a reason why patches of BYDV symptomatic H. vulgare were noted as confined to distinct 

areas. D’Arcy & Domier (2000) and Moore et al. (2011) discussed that isolated cases of alate vector 

can cause sporadic BYDV. It was noted that it is difficult for T. tenuis to respond to a stimulus of 

increased prey abundance, without movement of alate prey. It may be that T. tenuis and Linyphiidae 

were within the area and increased web height occurred due to local cues of S. avenae presence, 

vegetation disturbance, for example, or colour differentiation of S. avenae and H. vulgare (Glover, 

2013; Japyassú & Laland, 2017) (Figure 6.7.). Harwood et al. (2004) hypothesise that T. tenuis responds 

to the similar micro-habitat cues as cereal Aphididae and T. tenuis were simply in the ‘right place at 

the right time’. This accords with plant height and plant density significantly positively correlated to 

anchor point height, thread length and web area (Table 6.3., Table 6.5. & Table 6.6.) It can be viewed 

from the evidence that S. avenae presence causing BYDV in H. vulgare, can be identified as being the 

main driver in increased Linyphiidae activity (Table 6.3.). 

Plant physiognomy played an important role in web construction (Dennis et al., 2001; Gómez et al., 

2016; Stenchly et al., 2011) (Table 6.3. & Figure 6.6.). The greater plant density was found within the 

Conventional BYDV, it may be a healthy S. avenae centred within this area for a continual phloem 

supply to allow feeding sinks to be formed and accelerate growth rate (Goggin, 2007; Lombaert et al., 

2006) (Section 2.2.6.1.). It may seem that plant height and density was driving S. avenae reproduction. 

Much plant material is required to allow S. avenae to amass the amino acids required for protein 

molecules to be assembled, for growth and subsequent reproduction (Dixon, 1987, Gullan & Cranston, 

2010) (Section 2.2.6.1.). Plant height influenced the data in the opposite direction of number of S. 

avenae found within the web for BYDV Conventional (Figure 6.5. & Figure 6.8.). Greater plant height 

was found in Conventional with no BYDV occurrence (Figure 6.5.). BYDV was shown by Paulmann et 

al. (2018) to interrupt the function of the sieve cells, usually regulating pulses of electro-potential 

waves which transfer nutrients to outer organs of the plant (leaves) and leads to necrosis and stunted 

growth. Additionally, a protein accumulation forms a ‘wound gum’ which aims to repair the role of 

the sieve cells, requiring further energy to amass (Labandeira & Prevec, 2014; Paulmann et al., 2018).  

Number of Aphididae exuviae in web was significantly positively correlated to anchor point height, 

thread length and web area (Table 6.3., Table 6.5. & Table 6.6.). Sixteen more exuviae were noted 

inside webs of the Conventional BYDV area than Conventional. Alderweireldt (1994) and Muratori et 

al. (2008) explain that Aphididae exuviae within a web does not correlate to Aphididae density at the 

exact moment the exuviae fall into the web. In times of a predation threat, leaving exuviae can act as 

a ruse while Aphididae vacate (Muratori et al. 2008). This may explain why exuviae were found in 

webs with no presence of S. avenae in Conventional non-BYDV areas. Dispersal of apterous morphs, 
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(walking) is considered by Oliver et al. (2007) and Zhang et al. (2016) to be slow and laboured, 

therefore may be close to exuviae formed from instar development. Eberhard et al. (2006), 

Oelbermann & Scheu (2002) and Pekár (2000) explain that exuviae may remain after T. tenuis has 

sucked out the main body of Aphididae. It may seem that exuviae can show direct predation, in this 

case at a higher rate in Conventional BYDV than Conventional (Figure 6.8.).  Number of exuviae within 

the web exhibited a greater response of Linyphiidae in Conventional BYDV by increasing thread length 

at a greater rate, perhaps signifying a definite response from T. tenuis to spin larger webs, the decision 

to do so commits energy to lay the silk threads over an extended area (Obrycki, 2007; Simonneau et 

al., 2016; Thorbek & Bilde, 2004). (Figure 6.10.). It may be expected that a higher degree of debris, 

non-soft body appendages, would be left behind after consumption, or as Blackledge et al. (2011) and 

Rodríguez & Gloudeman (2011) discuss, the prey is wrapped in flexible flagelliform silk before 

consumption, evidence that exuviae have been wrapped in silk may be apparent if contents of S. 

avenae had been removed (Harwood et al., 2004). Further microscopic analyses would be able to 

verify this (Dondale, 2000; Eberhard et al., 2006; Harwood et al., 2004).  

The increase in thread length with S. avenae within the web was identified as a potential predator 

response to a high density of S. avenae (Figure 6.9.). Bonte et al. (2011), Harwood et al. (2003), 

Mclachan & Wratten (2003) and Samu et al. (1996) show that T. tenuis remain within one web-site, 

spinning new larger webs in the same vicinity if its purpose in prey capture has been successful. Halley 

et al. (1996) and Welch et al. (2013) explain a limiting factor in Linyphiidae survival is web-site security 

in beneficial areas. The increase in thread length, forming larger webs, in later growth stages, with 

cereal entering the later ‘dough’ growth stage, food scarcity is a concern, which may indicate that 

Conventional BYDV areas were prime web-sites with accessibility to a prey source.  

The greater number of T. tenuis were identified within the Conventional asymptomatic BYDV area 

where the greater number of smaller webs were recorded at a lower aspect, with low web occupation 

(Table 6.5. & Figure 6.6.). The increased T. tenuis presence may be due to dispersing Linyphiidae, 

frequently vacating and web-spinning small webs of low energy outlay to locate the idealistic web-site 

to benefit survival. Opatovsky et al. (2016) and Samu et al. (1996) describe the spinning of smaller 

webs alongside a high rate of web-abandonment may have been due to a lack of prey stimuli. The 

poor web-site location of these areas, lowers the threat of intra-specific predation, promoting T. tenuis 

tolerance in neighbouring web-weaving (Harwood & Obrycki, 2005; Houser et al., 2016; Opatovsky et 

al., 2016; Samu et al., 1996).  
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Optimum anchor point height was reached when the number of T. tenuis was found to be five for 

Conventional and three for Conventional BYDV (Figure 6.5. & Figure 6.8.). The greatest thread length 

was additionally found when T. tenuis numbers were lower in Conventional than Conventional BYDV 

(Figure 6.10.). This suggests some intra-specific behaviour altering T. tenuis web construction. This 

concurs with findings of Craig (1987), Houser et al. (2016), Nentwig & Heimer (1987), Segoli et al. 

(2004), and Toft (1987) who comment that larger-bodied T. tenuis may create larger webs to enforce 

dominance and enhance prey capture capability (Table 6.5. & Table 6.6.). There was a higher degree 

of web occupation by T. tenuis in webs of increased height. This accords with Gan et al. (2015) who 

identified a higher degree of web invasion of sheet webs at a greater height, due to the possibility that 

a higher abundance of prey can be seized.   

Even though wind speed may have not dislodged S. avenae, it affected T. tenuis activity in sites chosen 

for web-weaving and the quantity of silk spun (Figure 6.8., Figure 6.10., Table 6.3., Table 6.5. & Table 

6.6.). Within Conventional with no BYDV, anchor point height appeared to increase alongside wind 

speed, then declined once wind speed reached 8 - 9 kmh-1 (Figure 6.8). Wind speed is discussed to be 

the main variable that dictates the initiation of Aphididae flight to allow fast dispersal and within 0.3 

to 2 ms-1 (4 - 7.6 kmh-1), wind speed is low enough not to cause damage to a web, of a high aspect, 

rendering it functionless (Brunetta & Craig, 2010; Craig, 2003; Reynolds & Reynolds, 2009). It can be 

shown that within Conventional, when the wind speed was lower, webs were spun at a higher aspect 

to intercept aerial S. avenae, though no alate morphs were recorded. As discussed in fieldwork, 

Linyphiidae evolution has adapted to deal with environmental disturbance by the creation of the beta-

sheets in major ampullate silk (Blackledge et al., 2011; Craig, 2003) (Figure 2.3a, Section 2.1.2.1., Page 

10 & Section 5.1.6.1.2.). Linyphiidae can create a greater abundance of beta-sheets in a fibril by 

increasing the tension of the silk as it is spun (Blackledge et al., 2011). This is a costly process, and 

building webs at a lower aspect in the field may allow protection from the wind speed, without 

incurring the energy cost of creating a web to withstand high wind speeds (Benjamin et al., 2002; 

Segoli et al., 2004). However, may not have the same potential to ensnare prey as webs spun at a 

higher level. 

It is noted that the low soil moisture percentage (17 - 21%) was below field capacity of 40 - 45% for 

the high clay percentage, Hanslope soil, for Conventional and BYDV Conventional areas (Ashman & 

Puri, 2002; Cranfield University, 2017) (Section 2.2.2. & Section 3.1.3.2.). There were no significant 

differences in mean soil moisture percentage for both areas tested. It can be viewed that the drought-

stressed H. vulgare weakened a defence system, caused the rapid collapse of the sieve cells induced 

by the virus (Dorokhov et al., 2014; Paulmann et al., 2018; Reddy et al., 2009) (Section 2.2.6.2.). Davis 

et al. (2015) and Mornhinweg (2011) state that moisture stress weakens phloem tissue, allowing less 
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turgor pressure to restrict Aphididae direct feeding, thus creating a negative feedback loop. Low soil 

moisture may have increased BYDV infection rate; however, it is shown not to directly relate to T. 

tenuis predator dynamics with S. avenae (Nachappa et al., 2016) (Section 2.2.6.2). 

Aphididae capture rate was considered low, with Harwood et al. (2003) showing the potential of 

Linyphiidae webs to capture 0.5 A. pisum per cm2. Harwood et al. (2003) identified that significantly 

more Aphididae (mean 0.81), were collected from webs constructed by T. tenuis at sample sites (78.5 

cm2) compared with 0.56 being identified outside of webs. Brabec et al. (2014) and Valenzuela & 

Hoffmann (2014) identified peak S. avenae abundance in H. vulgare is at heading stage and ear 

emergence (GS 51 - GS 59) (Table 5.1.1.). The low green index of H. vulgare at the later growth stages, 

time of sampling, may explain Aphididae decline, as direct feeding is difficult due to thickened cellular 

walls and biochemical change in phloem, altering its nutritional availability (AHDB 2018; Ma & 

Bechinsk, 2008; Valenzuela & Hoffmann, 2014) (Section 2.2.6.2.). However, S. avenae were present, 

with one alate morph identified in a web, its morphogenesis a product of low food availability (Perry, 

2013; Price et al., 2011). The S. avenae identified may be a small remnant of a previous population, 

Watanabe et al. (2018), discuss the fitness of survival of small Aphididae population able to withstand 

low food availability. 

6.6.2. H. vulgare 2017 / 2018 Season - BYDV Confined to Conventional Tillage 

BYDV symptomatic H. vulgare were only found in the Conventional area and one small cluster in the 

margin between the tillage intensities of Direct Drill and Conventional (Section 4.2.). It may be due to 

the higher degree of straw that is incorporated into the soil with the deepened cultivation of 

Conventional (Section 3.1.3.4.). This finding agrees with Kennedy et al. (2010), who found that within 

minimum tillage, 48% fewer Aphididae were identified, relating to 78% fewer BYDV instances 

observed than with conventional plough. It was identified that straw may support a reservoir of 

natural enemies. Diehl et al. (2013) and Summers et al. (2004) showed that straw deters alate 

Aphididae morphs from colonising a crop by disturbing their landing potential, with key sites partially 

covered with the mulch. This may explain why low alate morph vectors were not dispersing into the 

Direct Drill area, a change in straw abundance was identified (Section 5.1.6.2.1.). There was no clear 

observation of BYDV incidences spreading into Direct Drill area in later growth stages.  

BYDV sustains in winter on marginal vegetation (grasses) of an agricultural field, transferred by over-

wintering S. avenae by direct feeding (Falks & Duffus 1981; Marshall & Rashed, 2014) (Section 2.2.6.2.). 

It may be possible to determine if the S. avenae vector over-wintered in a Conventional hedgerow 

after 2017 harvest to create morphs which subsequently dispersed BYDV into the Conventional area 

of the field as H. vulgare developed through the growth stages of 2018. Ben-Issa et al. (2017) and Perry 
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(2013) describe Aphididae dispersal as somewhat passive, whereas Reynolds & Reynolds (2009) 

suggest there may be some control using lift and drag to cues in wing movement. However, Crossley 

et al. (2017) explained the difficulty in forming a link between ‘sink’, over-wintering site, and ‘source’ 

of BYDV infected crop, due to short life spans providing little genetic traceability and non-linear flight 

patterns. It can be concluded that it is almost impossible to establish whether an over-wintering S. 

avenae alate vector came from a soil tillage intensity in the previous cropping season or from the field 

studied at all. 

BYDV was not observed in any soil tillage in the previous sampling season in a field-wide inspection, 

however, small pockets may have existed, symptomatic H. vulgare occurring sporadically and less 

easily observed (Chapman et al., 2013; Eberhand et al., 2006) (Table 5.1.1.). S. avenae abundance was 

greater in the 2016 / 2017 cropping season than 2017 / 2018, hypothesised to be due to high 

temperatures (Section 5.1.6.2.2.). Furthermore, within May sampling of 2017 / 2018 no greater 

abundance of S. avenae within the web or found by g-vac sampling was noted in sample areas <50 m 

from BYDV sampled areas. The high temperatures of the 2018 season causing drought stress to the H. 

vulgare rather than S. avenae abundance may be the over-riding factor to succumb to BYDV, unable 

to prevent the embedment of the virus thus enduring sieve cell function failure (Dorokhov et al., 2014; 

Reddy et al., 2009) (Section 2.2.6.2.).  

Within the later growth stages of cropping season 2017 / 2018, the greater S. avenae number was 

identified in the Direct Drill Managed areas with little dispersal activity occurring across the main field 

(Section 5.1.6.2.2.). A. myosuroides, greater abundance in Direct Drill Managed, are shown by Lutemen 

et al. (2013) and Milner (2002) to produce ‘green bridges’, to allow a colony of Aphididae to persist 

within early growth stages (Ball & Bingham, 2003).  The lower intensity of soil tillage of Direct Drill 

Managed enabling such weeds to prevail as reduced destruction of the seed from cultivators (Berry et 

al., 2014; Melander et al., 2013; Peigné et al., 2014). (Section 2.2.4. & Section 5.1.6.2.2.) 

With no BYDV cases within Direct Drill Managed, it can be seen that the alate vectors remained 

concentrated in the Conventional area and were unable or not inclined, to move across the Direct Drill 

tillage area in the centre of the field (Figure 3.5b, Section 3.1.3.3., Page 51). Lombaert et al. (2006) 

identified fitness as a driver to disperse and Mehrparvar et al. (2013) agreed, stating alate morphs 

have a reduced fecundity baseline due to accruing wings. Perhaps the S. avenae population in 

Conventional had weak heritable fitness. Higher dispersal rates into the Direct Drill area may have 

occurred if temperatures for this season were at normal mean and optimal for Aphididae fecundity 

(Asin & Pons 2001; Brabec et al., 2014; Zhang et al., 2016). However, without drought stress, H. vulgare 

may have been able to resist continued direct feeding.  The latent period is twelve to twenty-four 
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hours of continuous direct feeding to transfer the BYDV particulates in a high enough quantity for 

infection (Dorokhov et al., 2014; Paulmann et al., 2018; Reddy et al., 2009) (Section 2.2.6.2.). 

 

6.7. Final Discussion - Interactions of T. tenuis and Linyphiidae with Aphididae Causing 

Barley Yellow Dwarf Virus (BYDV) in H. vulgare 

That Linyphiidae and T. tenuis increased in web-spinning and choose prime web-sites, can be observed 

as a predatory response to the presence of S. avenae within the later growth stages, and not directly 

correlated with conditions of habitat (landscape heterogeneity). This addressed the first and third 

aims linking to biological control (Section 6.2.1.). Predatory capture through the extended phenotype 

of the web had ensnared S. avenae. T. tenuis is noted to be a positive biological control agent aiding 

reduction of potential vectors of BYDV. BYDV took hold in the Conventional area and was unable to 

spread across to the neighbouring soil tillage intensity of Direct Drill. It could be a function of the 

cultivation methods of inverting straw or it may relate to the climatic factors of the 2017 / 2018 

season. 
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Chapter Seven 

7.0. Method Development of Glasshouse Experiments 

7.1. Introduction 

To trial aspects of the whole field within a controlled environment is a useful way to clearly identify T. 

tenuis interactions with all features of a habitat. Enclosing a smaller version of the field enables 

external variables, e.g. weather and sheltered areas, to be removed and variables that are of key 

interest, e.g. plant height, to be clearly defined. 

Four laboratory experiments were designed to investigate the relationship between T. tenuis and prey 

interactions in differing levels of soil tillage. Prototyping and learning were involved in the design of 

each experiment until a final method was robust and the design accepted to adequately house the 

experiment. The final experiments form the focus of the following Chapters:  

• Chapter Eight - Effects of Soil Tillage Intensity on Prey Capture by T. tenuis in Mesocosms of 

H. vulgare 

This examines T. tenuis predatory behaviour throughout the growth of H. vulgare in a simulation 

of the three tillage intensities with the addition of Aphididae nymphs at germination of H. vulgare. 

• Chapter Nine - Effects of Primary and Secondary Cultivation on T. tenuis Behaviour Under 

Controlled Experimental Conditions: A Mesocosm Experiment 

T. tenuis behaviour was assessed in simulations of primary and secondary cultivations of the three 

tillage intensities of the NIAB field, in controlled conditions without the addition of prey. 

• Chapter Ten - T. tenuis Behaviour with Different Soil Tillage Intensities and Different 

Abundances of Cereal Aphididae: A Microcosm Experiment 

Microcosms were established with T. aestivum under simulations of the three soil tillage 

intensities of the NIAB fields. A range of cereal Aphididae abundances were used and T. tenuis 

predatory behaviour recorded. 

• Chapter Eleven - Choice Chambers for Selection of Upright Stubble and Furrow With or 

Without the Presence of Aphididae 

Observations were recorded of T. tenuis utilisation of upright stubble or a furrow, with dimensions 

corresponding to the three tillage intensities of the NIAB field, with and without the addition of 

cereal Aphididae.  
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7.2. Husbandry and Measuring T. tenuis and Prey 

7.2.1. Collection of T. tenuis 

It was planned to establish a T. tenuis colony for laboratory experiments, to provide eggs through 

instars to adulthood, thus offering enough adult T. tenuis for all glasshouse experiments. Vegetation 

material including soil, grass and straw formed the base of an artificial habitat (terrarium) created in 

a plastic container (81 (l) x 40 (w) x 51 (h) cm) to support T. tenuis activity. One hundred holes, 1 mm 

in diameter, were drilled into the plastic top to provide ventilation. Thereafter, a collection of T. tenuis, 

via g-vac from hedgerows of a T. aestivum field at Myerscough College (SD 49867 39959), was put into 

the plastic container. Females, males and spiderlings were incorporated to replicate the field and allow 

courtship and reproduction to occur. The box was maintained on a window ledge in the laboratories 

at Myerscough College to provide adequate daylight. Temperature was monitored. 

However, it became clear, due to incidences of cannibalism and evidence of escape that a larger more 

sophisticated terrarium was required to allow T. tenuis the space to acquire sufficient territory. This 

entailed further materials and time which was ultimately deemed unnecessary, when after several g-

vac visits to the hedgerows surrounding Myerscough College farmland, it became clear that there was 

an adequate supply of T. tenuis for glasshouse experiments available throughout the year. The 

terrarium was cleared of T. tenuis. Vegetation was replaced, for the terrarium to become a stabilising 

habitat to acclimatise g-vac captured T. tenuis, for twenty-four hours before being measured and 

placed into the glasshouse experiments. This was essential as the heightened sensory system of T. 

tenuis responds to any level of disturbance via a tendency to disperse or hide within vegetation (Diehl 

et al., 2013; Holland & Oakley, 2007; Mader et al., 2017). T. tenuis (up to n = 45) were starved to 

ensure parity in levels of satiation. Moisture was applied to the soil, if dry, as a source of liquid for the 

T. tenuis.  

After consideration, only adult female T. tenuis were used in glasshouse experiments (apart from 

choice chamber trials), due to reported behavioural differences in web construction between the 

genders, females expelling a greater energy expenditure to web-build (Peng 2013, Rojas, 2011; Segoli 

et al., 2004). Further, interactions between male and female (courtship) was felt to distract from the 

principal of the trials, for example for Chapter Ten the aim was to understand if soil intensity affected 

web-spinning at different abundances of Aphididae (Section 2.1.3.4.).  
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7.2.2. Measuring T. tenuis within Glasshouse Experiments 

It was determined that measuring T. tenuis dimensions required increased accuracy beyond the 

methodology used in the fieldwork trials. This was to explore more detailed relationships between 

body dimensions and web-building behaviour in the micro/mesocosms, but was a difficult task to 

achieve due to the small nature of the T. tenuis and its tendency to flee as a result of disturbance 

(Kovac & Mackay, 2009; Pommeresche, 2002). 

T. tenuis were left in a Petri dish until becoming motionless in a web (Figure 7.1a). This allowed 

cephalothorax and abdomen length to be measured to 0.01 mm with a KERNTM© Compound 

Microscope OBS-1 Binocular Achromat at resolution x4 and Measuring Magnifier Achromatic lens 10x 

multi-scale, graticule optical glass 8LED Scale TT10X50-1, instead of only to 0.1 mm within the field 

(Figure 7.1b - c). A calibration guide of graticule to mm was obtained by Microtec Microscopes© 2018 

TEC LTD (Kasumovic & Jorden, 2013; Miller, 2007: Prenter et al., 2010; Rodríguez & Gloudeman, 2011; 

Tanasevitch, 2014). 

 

T. tenuis mass was measured in a pre-measured test pot to 0.0001 g with the use of a Kern® ABS 

Analytical Balance. T. tenuis were randomly assigned to habitat of experiment (mesocosm, microcosm 

or choice chamber) after abdomen and cephalothorax length and mass had been determined. 

7.2.3. Culture of S. avenae and M. dirhodum 

S. avenae and M. dirhodum were required for several laboratory experiments to be able to analyse 

predatory behaviour of T. tenuis in controlled conditions. S. avenae nymphs were incorporated into 

the mesocosms for Chapter Eight, M. dirhodum nymphs were required for the microcosm experiment 

of Chapter Ten. Whereas, M. dirhodum adults were used as prey in the choice chamber trial (Chapter 

11.0.). 

a b c 

Figure 7.1a - c: Measuring a female T. tenuis for glasshouse experiments.   a = Female T. tenuis in Petri dish for 

measurement. b & c = Female T. tenuis abdomen and cephalothorax length measured in Petri dish with KERNTM© 

microscope and graticule. 
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An Aphididae culture of one hundred S. avenae and M. dirhodum were acquired from the Insectary of 

the Rothamsted Institute. It was agreed that the culture would contain a mixture of adults and nymphs 

of both species capable of parthenogenesis alate morphs, to aid representation of the field. S. avenae 

were orange coloured morphs (Section 2.2.6.1.). Once arrived, S. avenae and M. dirhodum were 

placed within pre-grown Synteger® Propino™ H. vulgare in a glasshouse to allow development of 

numerous colonies in plastic containers (81 (l) x 40 (w) x 51 (h) cm) (Figure 7.2a - c). The crop health 

was continually monitored to ensure enough food material was provided. 

7.2.4. Measuring S. avenae and M. dirhodum 

Identifying the mass of the Aphididae introduced into glasshouse experiments was an important 

variable to measure. First, this was to help identify the stage of Aphididae development, i.e. the 

greater the mass the likelihood the Aphididae would be in its final instar, thus able to reach the 

parthenogenesis stage more rapidly and contribute to Aphididae abundance. Second it has been 

shown that the greater the mass of Aphididae, the increased presence allowed T. tenuis a greater 

chance of its detection (Japyassú & Laland, 2017; Rodríguez & Gamboa, 2000) (Section 2.2.6.1.). 

Nymphs, used in experiments of Chapters Eight and Ten, were collected from the colony formed on 

the H. vulgare leaves. It proved difficult to manoeuvre the nymph from leaf to the sample pot (for 

measurement) without causing harm, as a nymph stylus is anchored to vegetation to allow continuous 

feeding (Parry et al., 2006; Parry, 2013) (Section 2.2.6.1.). To weigh each nymph on a cut section of H. 

vulgare took much time with inaccuracies occurring in the small mass obtained from each nymph. It 

was viewed that weighing the number of nymphs destined for each replicate in the experiment would 

suffice and give an indication whether greater mass of the nymphs collectively triggered increased T. 

tenuis activity and accelerated parthenogenesis rate. Therefore a section of leaf was found with the 

correct number of nymphs for each experiment and masses determined to 0.0001 g with the used of 

the Kern® ABS Analytical Balance on small pieces of pre-weighed H. vulgare entered into a pre-

weighed sample pot (Figure 7.3.). 

b 

Figure 7.2a - c: a= H. vulgare growing in a glasshouse to support a colony of cereal Aphididae. b= S. avenae. c = M. dirhodum. 

(Aphididae circled in yellow). 

c a 
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Agabiti et al. (2016) and Gish et al. (2012) showed that, adult Aphididae have a decreased penetration 

depth than nymphs, due to an increased tendency to rapidly detract from direct feeding of phloem 

and respond rapidly to predator threat (Section 2.2.6.1.). For experiments in Chapter Eleven, adult M. 

dirhodum, over 2 mm in body length, were used and collected from the colony and transferred to a 

pre-weighed sample pot. From here each adult had mass determined prior to addition into the habitat 

without the need of a H. vulgare leaf, as adults were easier to transfer between materials.  

7.3. Preparations for Chapter Eight - Effects of Soil Tillage Intensity on Prey Capture by T. 

tenuis in Mesocosms of H. vulgare 

7.3.1. Introduction 

A natural continuation from fieldwork was to simulate the conditions represented in the field within 

controlled conditions. This allowed the control of independent variables, for example temperature, 

and excluded large scale variables like the effects of wind. The data collected from such an experiment 

contributed to the results of the fieldwork, allowing greater understanding of T. tenuis interactions 

within tillage practices. From this, mesocosms with differing intensities of soil tillage, replicating the 

field were therefore designed and a robust method for running of the experiment developed.  

7.3.2. Method Development 

7.3.2.1. Lubricant 

Two lubricants, petroleum jelly and olive oil, were thinly applied to the inside of a prototype container. 

The lubricant was theorised to prevent attachment discs, of support threads, from the piriform gland 

from being able to adhere to the plastic container as the container was an artefact outside of the NIAB 

field (Benjamin & Zschokke, 2004; Harwood et al., 2003; Shaw et al, 2005) (Figure 2.3c., Section 

2.1.2.1., Page 11). This did not work as intended and attachment did occur. It was felt that this, and 

the fact that lubricant could not be applied uniformly, could cause bias. T. tenuis are shown to be 

incredibly sensitive to touch and may utilise points of less lubricant (Bradley, 2013; Roberts, 1993) 

(Section 2.1.1.). Therefore, lubricant was not used further in the method development. 

Figure 7.3: Mass determination of six M. dirhodum nymphs 

(circled in yellow) weighed on a H. vulgare leaf for microcosms 

of soil tillage and cereal Aphididae abundance, H. vulgare. 
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7.3.2.2. Soil Choice 

To test conditions as closely as possible, soil of the Hanslope series was collected from relevant tillage 

plots at the Cambridge field site. Using Hanslope series soil took into consideration the soil micro- and 

macro-biology and chemistry of the field site (Cranfield University, 2017; Paul, 2015) (Section 2.2.2. & 

Section 3.1.3.2.).  

7.3.2.3. T. tenuis Population Density Determination 

To determine the population density of T. tenuis for use in the mesocosm trials, fieldwork results were 

used. The highest number of T. tenuis recorded in GS 33 - GS 37 from the H. vulgare crop (2016 / 2017 

season) was 32 m-2, which gave 312 cm2 space for each T. tenuis (Table 5.1.1., Section 5.1.3.1., Page 

82). This is similar to the area provided for one Linyphiidae in the web-building trials of Benjamin & 

Zschokke (2003) which was 328 cm2. As the area of the proposed mesocosm was 1521 cm2, five T. 

tenuis were placed into each and therefore had 304 cm2 of individual space (Benjamin & Zschokke, 

2003; Harwood et al., 2003; Pasquet, 1999; Shaw et al., 2005). In this first mesocosm trial, adult 

females were used, as female T. tenuis propensity to web-spinning is greater than males (Rojas, 2011; 

Rundus et al., 2011; Segoli et al., 2004) (Section 2.1.3.2.).  

7.3.2.4. Prey Choice 

The first mesocosm were set up with Drosphila melanogaster (Common Fruitfly) as prey due to its 

ease of cultivation. D. melanogaster is viewed to be a food source of T. tenuis, its aerial movement 

allowing its capture within a web. De Keer & Maelfait (1988), Harwood & Obrycki (2005) and 

Oelbermann & Scheu (2002), used D. melanogaster as prey for Linyphiidae in laboratory trials, due to 

their rapid production rate under limited resources (Nouhaud et al., 2018). Bonte et al. (2008), Turney 

& Buddle (2019) and Zschokke & Herberstein (2005) discuss the benefits of using live prey in trials 

when monitoring Linyphiidae behaviour. It enables the field to be closely replicated and Linyphiidae 

web-spinning to be attributed to possible cues that moving prey can exhibit.  

Winged ebony body D. melanogaster were cultured in an incubator at 21 oC on a protein-based 

medium with added yeast (both acquired from Blades BiologicalLTD) (Blades Biological 2017). The 

larvae hatched were the food source for the prototype mesocosm. Five D. melanogaster larvae from 

the cultures were placed into each mesocosm at GS 21, germination and emergence of tillers, to 

produce a colony in line with the growth of the cereal seeded. This provided T. tenuis with live prey 

which further recreated the field environment. 
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In two trials, the population growth of D. melanogaster was weak, low fecundity (inbred from colony) 

observed as the main factor (Klick et al., 2016; Lachaise et al., 1988; Novoseltsev et al., 2005; Telonis-

Scot et al., 2006). Furthermore, with the rapid and chaotic flight of D. melanogaster, it was difficult to 

pinpoint where cues of their existence were intercepted by T. tenuis (Barnes et al., 2008; Bartholomew 

et al., 2015). Consequently, low numbers of D. melanogaster were observed in webs and after analysis 

there was little correlation between prey presence and T. tenuis movement. The aim of this research 

was to identify how differing soil tillage intensity may affect T. tenuis behaviour toward cereal pests, 

of which D. melanogaster is not one. Therefore, it seemed sensible to learn from the trials with D. 

melanogaster as prey and create further glasshouse experiments which used Aphididae as prey. This 

change represented prioritisation of prey that would most likely be sourced by T. tenuis in the NIAB 

fields. S. avenae is a crop pest which can damage crops and is the main vector for BYDV-PAV (Section 

2.2.6.2. & Chapter 6.0.). It was important to understand the relationship of T. tenuis and S. avenae 

under controlled conditions. 

7.3.2.5. Soil Tillage Intensity 

It was essential to replicate soil tillage intensity in the mesocosm accurately as this was the 

fundamental difference in the field trials in Cambridge. There were three distinct tillage stages that 

were required to be replicated: the sub-soiler for primary cultivation, the disc harrow for secondary 

cultivation and the creation of the seedbed. Several tools from the Myerscough workshop were 

applied until it was noted which tools to what extent would bring the desired effect. Straw and upright 

stubble was required to be included in the mesocosms to further simulate the field. The most reliable 

way to carry this through was to collect straw and upright stubble, dry to regain integrity and then 

correspond the field values of these variables to the dimensions of the mesocosms, to precisely 

replicate the conditions presented by the differing soil tillage intensities in the field. 

Furrows were identified to support T. tenuis activity, in the NIAB fields in Cambridge, by allowing a 

definite break in the soil to create anchor points (Section 4.3.11.1. & Section 5.1.5.2.). This was an 

important addition to the mesocosms to allow the glasshouse trials to mirror field trials. Again, 

furrows dimensions were to replicate the field and be formed from accessible tools as accurately as 

possible to the creation of the furrows in the field by the disc harrow. 
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7.4. Preparations for Chapter Nine - Effects of Primary and Secondary Cultivation on T. 

tenuis Behaviour Under Controlled Experimental Conditions: A Mesocosm Experiment 

7.4.1. Introduction 

In Direct Drill the abundance of upright stubble and straw (which remained on the surface due to zero-

till) allowed numerous small webs to be woven within the straw or near / on the apex of the stubble 

(Figure 7.4b & Section 5.1.5.1.). Volunteer crop, abundant in this soil tillage, was also acquired as an 

attachment material for threads (Section 5.1.5.1.3.). Within Conventional and Direct Drill Managed 

primary cultivation, the effects of the sub-soiler removed much upright stubble and straw from the 

surface and decreased the potential for this material to be used in web construction (Section 3.1.3.4.). 

The effects of the tillage practices (primary and secondary cultivation) however, created soil clods in 

the landscape (Section 4.3.11.2.). These were employed as additional anchor materials for support 

threads in web-building, in fieldwork, alongside patches of crop residues left on the surface (Figure 

5.1.3, Section 5.1.5.1.2., Page 91). The degree in height of soil clods differed between Conventional 

and Direct Drill Managed, because of different depths of soil attained by the cultivators (Figure 7.4a 

& Section 5.1.5.1.2.) 

 

 

To examine T. tenuis web-building behaviour more closely within these cultivations, further 

glasshouse trials were conducted post primary and secondary cultivation. Specific objectives were to 

measure web formations after a few days and compare the effects of soil tillage intensity. 

 

 

 

Figure 7.4a & b: Sheet webs after primary cultivation. H. vulgare 2017 / 2018 season. a = Conventional. Web anchored to 

soil clods. Elevated view. (Red arrow = 21.2 mm). b = Direct Drill. Web anchored to upright stubble. Elevated view. (Red 

arrow = 15.6 mm). 

a b 
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7.4.2. Method Development 

7.4.2.1. Experiment Set-Up 

These trials used the same soil in plastic containers as the previous trial, where mesocosms 

investigated the effect of soil tillage intensity on T. tenuis activity with S. avenae as prey (Section 7.3.). 

This required thought into how the mesocosms were going to be cleared and thus able to support a 

different glasshouse experiment. 

Within each mesocosm all contents apart from the soil were removed, it was felt too costly in time 

and resources to re-collect soil from the NIAB sites. Plus, cultivations in the field are carried out in the 

same soils as the harvested crops.  Contents removed included the H. vulgare crop, T. tenuis, prey of 

S. avenae and any T. tenuis activity in bridging threads and webs. Further upright stubble and straw 

used to replicate the soil intensities in the previous mesocosm were also removed, leaving the soil 

bare in the containers. Hand searching for additional prey occurred as an extra precaution to ensure 

no prey remained within the mesocosms (for example, S. avenae having fallen off the H. vulgare leaves 

as they were taken out of the mesocosm). The mesocosms were covered with muslin squares and left 

for one day. This was to allow any S. avenae remaining to be found and removed. When S. avenae 

were found trapped in the muslin twenty-fours later, it showed that hand searching alone was not an 

adequate tool to remove all Aphididae prey. It was key that no prey remained which could alter T. 

tenuis web-building activity, having identified in fieldwork that a prey source is likely to alter T. tenuis 

decision of where to locate a web and its formation (Section 5.1.5.2.). 

No vertical structures, e.g. in upright stubble or other crop simulations of any significant height were 

present in the mesocosms, so it was unnecessary to construct a surround here which if not structured 

correctly would weaken the integrity of the habitat. The surface of the mesocosms therefore consisted 

of the same plastic used to cover the sides of the earlier mesocosms of Chapter Eight. The plastic was 

stretched over the plastic containers providing a taut surface free of any creases. This took time to 

perfect but was identified as a necessity as creases could become a possible artefact for anchor point 

location. The plastic was pin-pricked fifty times with a needle in a ‘zig-zag’ pattern. The prototype 

suffered from condensation, therefore the number of needle holes made in the plastic was increased 

to one hundred establishing circulation throughout the area of the mesocosm. 
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7.4.2.2. Soil Clods 

Soil clods were an important aspect to incorporate, due to this formation shown as seemingly vital for 

attachment of threads in the Conventional and Direct Drill Managed areas. Twenty-nine soil clods 

were incorporated into Conventional, and twenty-six for Direct Drill Managed. These numbers 

represented field-related mean number and clod height identified in primary cultivation of H. vulgare 

(2017 / 2018 season). This feature allowed greater attachment of threads due to the increase in 

complexity of the landscape architecture, an element that was required to be conserved within these 

trials (Section 5.1.5.1.3.). It was important that variation in clod height representing the cultivations 

within the field was incorporated, as it was seen the use of the clods as anchor sites was due to the 

different levels that they bring to the environment (Bell et al., 2002). Therefore, soil clods were formed 

matching heights collected from the relevant cultivated areas of the field to the nearest 0.1 cm (Figure 

7.5a & b). 

 

 

 

 

 

 

 

For secondary cultivation clod heights, as with primary cultivation, varied and represented a height 

that was measured after secondary cultivation in the respective soil tillage area of the H. vulgare (2017 

/ 2018 season). Correlating to abundance recorded from the same season, twenty-nine clods were 

incorporated for Conventional and twenty-four for Direct Drill Managed. 

7.4.2.3. Volunteer Crops 

Volunteer crops, germination of seeds deposited by the harvester, were present in small numbers in 

areas sampled in the field (Figure 5.1.4., Section 5.1.5.1.2., Page 91). These were not incorporated into 

the mesocosms as they were not seen as a key material left on the soil surface after cultivation. 

Volunteer crops would be difficult to replicate in the mesocosms as they are due to grain randomly 

deposited by heavy machinery, adding unaccountable variation also (Ball & Bingham, 2003; Morris et 

al., 2010). 

Figure 7.5a & b Clod height measured to ensure correct height is reached for an investigation of 

primary and secondary cultivation mesocosms. a = Conventional.  b = Direct Drill Managed.  

a b 
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7.5. Preparations for Chapter Ten - T. tenuis Behaviour with Different Soil Tillage Intensities 

and Different Abundances of Cereal Aphididae: A Microcosm Experiment 

7.5.1. Introduction 

In fieldwork, it was shown that T. tenuis abundance and web building increased in areas of high 

Aphididae density (Section 5.1.6.2.1.). From this an idea for a controlled glasshouse experiment was 

identified where different Aphididae densities could be introduced in each soil tillage intensity 

(Conventional, Direct Drill Managed and Direct Drill) to analyse T. tenuis predator dynamics and gain 

further evidence (from a controlled environment) on Aphididae abundance and T. tenuis behaviour. 
 

7.5.2. Method Development 
 

7.5.2.1. Choice of Cereal Crop 
 

It was first proposed that the cereal of choice should be H. vulgare due to the fieldwork analysis 

centred on this cereal due to its continuity of field site in the NIAB trials (Section 5.1.5.). H. vulgare 

had also proved to be a successful cereal to early glasshouse trials. Fast growth had enabled weekly 

T. tenuis and S. avenae behavioural analysis following the growth of the crop (Chapter 8.0.). However, 

within the prototype and early glasshouse trials H. vulgare showed poor growth compared to the 

prototype trials of T. aestivum, theorised due to the higher glasshouse temperatures (range 29.3 oC - 

35.6 oC midday). The heat appeared to affect the habitat within smaller microcosms more than larger 

mesocosms with the clay loam of Hanslope soil, clay micelles locking in water molecules, thus 

unavailable to root penetration (Ashman & Puri, 2002; Paul, 2015) (Section 2.2.2.). H. vulgare is 

particularly sensitive to extremities of heat and water availability due to inbred seed adaptions in 

accelerating germination, lowering tolerance to water stress (McFarland et al., 2014). T. aestivum has 

a slower growth cycle which allows time to tolerate and excel through conditions of stress (Section 

2.2.1.). 

 

Due to little differences observed of T. tenuis activity between H. vulgare and T. aestivum measured 

in the NIAB fields, it was beneficial to run an experiment with T. aestivum as the cereal of choice 

(Section 4.4.). The important factor of the experiment was to gain a high percentage of plant growth 

within the microcosms to simulate the field and allow an adequate level of landscape heterogeneity 

to facilitate potential Aphididae growth and T. tenuis predatory behaviour.  
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7.5.2.2. Choice of Aphididae and Density 

 

S. avenae was considered due to its role as a crop pest previously incorporated into early mesocosms 

of H. vulgare. However, M. dirhodum was chosen as the growing colony of S. avenae was kept for the 

larger mesocosms to investigate possible BYDV - PAV incidences. M. dirhodum had colonised in the 

glasshouse habitats grown from the original Rothamsted colony and was viewed as having similar 

nutritional value as S. avenae for T. tenuis and similar potential reproductive fitness (Bilde & Toft, 

2008; Parry, 2013; Price et al., 2011; Toft, 1987). Further, M. dirhodum was present in the g-vac 

samples and observed in T. tenuis webs in the fieldwork (Section 5.1.5.2.4.).  

 

As the aim of this experiment was to focus on whether Aphididae density had a higher degree of 

influence on T. tenuis rather than soil tillage alone, it was considered paramount that different 

numbers of M. dirhodum were added to the microcosms. M. dirhodum were added as nymphs, as in 

the mesocosm experiment cultivating H. vulgare, as this experiment continued throughout the growth 

stages (GS) of T. aestivum and represented the field as closely as possible (Chapter 8.0.). Within the 

field at time of crop emergence, Aphididae activity was mainly in nymph form until vegetation density 

increased to enable accelerated parthenogenesis (Section 5.1.6.2.1.). The number of M. dirhodum 

nymphs added to the microcosm was considered and it was sensible to have a control microcosm that 

contained no M. dirhodum nymphs (Agabiti et al., 2016; Beck & Toft, 2000). The number of Aphididae 

to place into a further microcosm treatment was carefully considered, to choose a density of M. 

dirhodum greater than the field average, but also realistic. Many experiments reported within the 

literature describe incorporating Aphididae at abundances relevant to data gathered from fieldwork, 

this corresponded to a value of two for the microcosms (Beck & Toft, 2000; Madsen et al., 2004). Nine 

M. dirhodum nymphs were first trialled for the greater value; however, it became clear that the growth 

potential due to parthenogenesis was too great and unrealistic to mirror a field simulation. Therefore 

three times mean field value (six M. dirhodum) was chosen as this was observed as an extreme field 

value in a small area of the habitat, and from the literature was viewed as not an unrealistic scenario 

(Agabiti et al., 2016; Madsen et al., 2004). 
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7.6. Preparations for Chapter Eleven - Choice Chambers for Selection of Upright Stubble and 

Furrow With or Without the Presence of Aphididae 

7.6.1. Introduction 

These experiments were designed to give T. tenuis a choice between habitat features measured from 

fieldwork and in a second set of experiments, prey availability became an element of choice. This 

glasshouse experiment took much consideration and many prototypes trialling several ideas were 

implemented before commencement of the final experiments.  

7.6.1.1. Choice Chambers for Selection of Upright Stubble 

Fieldwork was carried out in H. vulgare after primary and secondary cultivation and before glyphosate 

application and drilling of seeds for 2016 / 2017 season and 2017 / 2018 season (Figure 7.6a - c & 

Table 5.1.1.). Differences in straw and upright stubble were identified in each field sampling period 

(Figure 5.1.1. & Figure 5.1.2., Section 5.1.5.1.2., Page 90).  

 

 

 

 

 

As a significant difference was seen in mean straw mass and upright stubble density from the field 

sampling, it was desirable to remove other variables and analyse how T. tenuis interacted with the 

straw and upright stubble more closely (Section 5.1.5.1.3. & Section 5.1.5.1.4.).  

a b 

c 

Figure 7.6a-c: After secondary cultivation, H. vulgare 2017 / 2018 season. a = Conventional, b = Direct Drill Managed, c = 

Direct Drill.      
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7.6.1.2. Choice Chambers for Selection of Furrow 

Fieldwork after cultivations (primary and secondary) and use of direct drill of H. vulgare cropping in 

season 2016 / 2017 and 2017 / 2018 season, identified limited upright stubble and straw in the 

Conventional and Direct Drill Managed plots (Figure 5.1.1. & Figure 5.1.2. & Section 3.1.3.4.). However, 

spider web activity was observed within the furrows in the soil left behind by the seed drill and before 

germination of crop (Figure 7.7a & b & Section 5.1.5.2.2.).  

 

Glasshouse analysis to explore whether sub-soiling impedes or promotes web-building and potential 

prey capture was thought useful (Section 3.1.3.4.). Understanding whether upright stubble or furrows 

in the soil provide an enhanced environment for web construction would help to identify whether the 

intensity of soil tillage affects the prey potential of T. tenuis.  

 

7.6.1.3. Addition of M. dirhodum to Choice Chambers 

To examine the relationship between soil tillage and predatory behaviour of T. tenuis, key to 

understanding T. tenuis capacity for biological control, choice chambers needed to be set up with a 

selection of upright stubble / furrow and including the addition of the choice element of prey 

(Aphididae). 

 

 

 

 

 

Figure 7.7a & b: Sheet web within a furrow in the Conventional area after drilling.  H. vulgare, 2017 / 2018 season. a = 

Elevated view. (Red arrow = 22.3 mm). b = Elevated view (Red arrow = 35.9 mm). 

a b 
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7.6.2. Methodology 

7.6.2.1. Choice Chambers for Selection of Upright Stubble 

7.6.2.1.1. Set-Up Design 

Stability was required for upright stubble, so a material was needed to mimic the action of the soil in 

the field, anchoring the material and providing rigidity. Blue Tac® was the initial thought, fixing the 

base of the upright stubble to the plastic container. However, doubts arose whether T. tenuis would 

be inclined to anchor to this point, a feature not present in the field. A prototype was set-up with 

upright stubble attached with Blue Tac® to one side of the choice chamber and run for twenty-four 

hours with one male T. tenuis being incorporated. No attachment occurred to the Blue Tac® and was 

incorporated into the main choice chambers trial. Lubricant to prevent T. tenuis attachment to plastic 

was once again trialled, thoughts were that the hard plastic of the containers would potentially 

support a thicker, more uniform layer of lubricant, however attachment still occurred. Any web that 

was only attached to the plastic was removed from the results as the use of the internal materials, 

stubble and straw, was the key factor. Further, Aphididae were applied in later trials to permit 

comparison and were allowed to move around the container freely as potential prey. However, they 

could be entangled in any lubricant used. 

 

7.6.2.1.2. Location of Choice Chambers 

The trial was carried out in a workshop area where natural daylight is received through large windows. 

A prototype trial was set-up in the glasshouse which created condensation in the plastic boxes, which 

an increased number of drilled holes (1.5 mm diameter) did not alleviate. Excessive moisture within 

the habitats did not align with representation of an open-air field site and moisture lying on materials 

may have reduced T. tenuis ability to lay silk for anchor points. The constant temperature of the 

workshop ensured no condensation was produced.  

7.6.2.2. Choice Chambers for Section of Furrow 

The principle was identical to the previous choice chambers with selection of upright stubble, the only 

change was the choice element of the furrow, with this only established on one half of the habitat. It 

was noted that Direct Drill tilled area had a furrow, even if not as defined as the other tilled areas, due 

to the previous crop seedbed being undisturbed from the lack of tillage. Soil used in this trial was 

Hanslope Series soil taken from the corresponding tilled areas from NIAB Field B (Figure 3.5b., Section 

3.1.3.4., Page 51). The dimensions of the furrows were related to data gathered after secondary 

cultivation and seed drilling of H. vulgare cropping season 2017 / 2018. 
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7.6.2.3. Abundance and Gender of T. tenuis 

This glasshouse experiment presented a great opportunity, due to its quick turnaround and small 

nature of the habitat, to manipulate abundance of T. tenuis and incorporate different genders. This 

was to allow further investigation into how T. tenuis behaviour may alter in the presence of another 

T. tenuis of the same or different gender. This was to relate more information to the field results where 

elements of intra-specific competition were observed (Section 2.2.2.1. & Section 5.1.5.). 

First, one female T. tenuis was placed into each soil tillage habitat. Then the trial was re-run with a 

single male adult T. tenuis, then with two adult female T. tenuis, followed by the addition of two adult 

male T. tenuis and finally a male and female adult T. tenuis. All five combinations of T. tenuis in gender 

and numbers mentioned above were replicated three times in each soil tillage. Intra-specific 

competition has been observed to alter T. tenuis behaviour which can translate to adjusting predatory 

behaviour (Prenter et al., 2010; Samu et al., 1996). For example, incorporation of two male or two 

female T. tenuis may promote competition for web-sites within the habitat. The addition of a male 

and a female may induce courtship behaviour as the principal goal rather than web construction 

(Section 2.1.3.4.). Examples of this were found in field sampling in areas where prey of S. mosellana 

and S. avenae were abundant (Section 5.1.6.2.1.). As only female T. tenuis had been used in the 

previous glasshouse trials, it was felt important to incorporate male T. tenuis into laboratory work to 

allow data collected under controlled circumstances to be analysed against equivalent data from the 

field (Section 5.1.5.).   

7.6.2.4. T. tenuis Nutritional Requirements 

For choice chambers that incorporated upright stubble as the variable of selection, a small piece of 

damp cotton wool was placed in the centre of the container to provide a source of moisture as T. 

tenuis are reported to obtain moisture from a material (e.g. soil or prey) (Zschokke & Herberstein, 

2005).  

For the experiment where furrow was the element being trialled, moist cotton wool was not 

incorporated, as T. tenuis are shown to use surface moisture from vegetation and the ground (Glime 

& Lissner, 2017). Soil kept at a given moisture content (30 - 35%), was adequate for T. tenuis needs in 

the twenty-four hour period of the trial and was comparable to the available water found in Hanslope 

soil (Paul 2015) (Section 2.2.2.). The percentage of soil moisture was difficult to keep consistent with 

the soil contained within a small environment, with no roots providing stability and no lower profiles 

to drain moisture away. A small pipette was used to drip water into several locations in the soil to 

allow soil moisture percentage to be relatively homogenous.  
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Within the choice chambers incorporating prey, T. tenuis destined for the experiment needed to be at 

a similar level of hunger to allow the potential influence of M. dirhodum to be equal. Sutherland & 

Samu (2000) showed enhanced hunger can increase T. tenuis receptors to the potential stimuli 

provided by prey. T. tenuis incorporated were therefore taken out of the artificial habitat which served 

as a place of transition between field and trial and were starved for twenty-four hours in individual 

Petri dishes with the same basic materials, three sticks, placed in each to provide web-building 

materials and a small piece of moist cotton wool (Section 7.2.1.). It was important not to induce 

additional stress on the T. tenuis. 

7.6.2.5. M. dirhodum Abundance and Instar 

Identifying M. dirhodum abundance and at what development stage to place them into the 

experiment took some deliberation. Since prey was acting here to potentially influence T. tenuis 

behaviour, any change in these two variables concerning M. dirhodum could significantly alter the 

results obtained.  

Adults were added as they receive a larger predatory response from T. tenuis than nymphs, due to 

easier identification and increased nutritional content sensed by T. tenuis (Agabiti et al., 2016; Madsen 

et al., 2004). Any M. dirhodum identified over 2 mm in body length was classed as an adult, having 

reached final instar. Alate morphs were not incorporated, as significantly less alate morphs were 

identified in T. tenuis webs and on H. vulgare in all field sampling where Aphididae were present 

(Section 5.1.6.1.2.). As shown in fieldwork, the environment of soil tillage was most beneficial when 

no crop was present or was within an early GS (Section 5.1.5.1. & Section 5.1.5.2.). At this period, early 

Aphididae emergence was likely to be from apterous morphs. It was also felt that alate M. dirhodum 

would render the trial void as rapid dispersal could allow M. dirhodum to be in both sides and the trial 

would not represent a choice between conditions of soil tillage and prey.  

It was desired that two adult apterous morph M. dirhodum would be incorporated into each habitat 

corresponding to data collected from GS 31 - GS 33 H. vulgare 2016 / 2017 season (Table 5.1.1. & 

Section 5.1.5.2.). This followed the set-up of other independent variables of the glasshouse 

experiments above, where the number relates to data in the field. Incorporation of only one M. 

dirhodum would have benefited the experiment, as there would then be a clear result that T. tenuis 

would end in the same side as the M. dirhodum, potentially allowing conclusions of Aphididae 

influence being drawn from this result. However, since other elements in the experiment 

corresponded to NIAB field data, two M. dirhodum were incorporated into each experiment, to allow 

T. tenuis the same opportunity to respond to a given Aphididae stimuli as in the field. To negate the 

fact that adding two Aphididae might upset the interpretation of the results, where it could be 
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questioned whether T. tenuis was influenced by prey or landscape feature, M. dirhodum were applied 

to the habitat immediately after T. tenuis into the centre of the choice chamber. Where M. dirhodum 

were found in separate sides results were void. 

7.7. Culmination 

Considerable learning took place within the planning and set-up of each glasshouse experiment. Each 

thought process and experimental design error allowed robust experiments to be constructed where 

results collected were valid, fair and met the desired objectives. The following Chapters (Chapter 8.0. 

- Chapter 11.0.) outline the developed experiments. 
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Chapter Eight 

8.0. Effects of Soil Tillage Intensity on Prey Capture by T. tenuis in Mesocosms of H. vulgare 

8.1. Introduction 

Following fieldwork, mesocosms were set up to observe the effects of landscape heterogeneity shown 

by soil tillage intensity. This was to investigate whether the increase in upright stubble or straw mass 

on a larger platform would directly promote T. tenuis activity, as in the early growth stages (GS) of 

fieldwork (Section 5.1.6.2.1.). Number of plants and height were measured to determine if levels of 

soil tillage affected plant development and if this impacted T. tenuis decision in web-weaving. This 

followed from later growth stages of H. vulgare in the field where greater plant height in Conventional 

affected placement of webs (Section 5.1.6.2.2.).  

8.2. Aims and Specific Objectives 

8.2.1. Aims 

This experiment sought to address Research Aims 1 and 4 (Section 1.2., Page 2). 

1. Identify the potential biological control by T. tenuis of Aphididae within different intensities 

of tillage in an arable crop.  

4. Comprehend if a certain level of landscape heterogeneity affects T. tenuis ability to predate 

on Aphididae. 

 

8.2.2. Specific Objectives 

The following specific objectives set out to meet the aims for this Chapter: 

• Measure T. tenuis behaviour in quantifying web size, height and instances of rappelling. 

• Calculate Aphididae (S. avenae) abundance under differing intensities of soil tillage.  

• Analyse whether different densities of Aphididae (S. avenae) affect T. tenuis actions. 
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8.3. Methodology  

Mesocosms were set up as in Figure 8.1 and Figure 8.2a & b. The points below follow the sequence of 

events applied to create the experiment, which was trialled twice using the same method. 

The cultivation machinery in the NIAB trials only affected the A-profile of the soil (0 - 25 cm). 

Therefore, soil samples (30 cm depth) were collected in 9000 cm3 blocks. These, pre-tillage, were dug 

out at random sample points and placed into plastic trugs (40 L Volume) maintaining the original 

orientation of the soil profile. Expanding clay pellets (hydroponic balls) were used for the lower B-

profile due to similarities with the sub-soil properties of Hanslope series. The use of hydroponics 

ensured no other soil properties disrupted the top layer of soil (Mascher et al., 2003; Paul, 2015). 

 

 

 

 

 

 

Figure 8.1: Schematic diagram for the elements that created the mesocosms for effects of soil tillage intensity on prey 

capture by T. tenuis in mesocosms of H. vulgare.  
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Nine plastic containers were used (108 cm height x 44 cm diameter) for three replicates of each soil 

tillage. The containers were labelled 1 to 9 (1 - 3 represented Conventional tillage, 4 - 6 represented 

Direct Drill Managed and 7 - 9 represented Direct Drill). The mesocosms were arranged in a random 

generated number sequence to remove bias as it had been observed that areas of the glasshouse 

experience different temperatures which might affect T. tenuis web-building design (Random.org, 

2017) (Figure 8.3). As the roots of H. vulgare can, at full growth, reach 70 cm in length, the containers 

had a depth greater than this (AHDB, 2015).  

 

 

 

 

 

 

 

 

To recreate the action of the sub-soiler in the mesocosm, an inverted soil corer, 19” Chrome Tool 

Probe, was used (Section 3.1.3.4.). The implement penetrated to 25 cm in one straight line, down the 

centre to allow the sub-structure to be loosened. For Direct Drill Managed, penetration reached 20 

cm in depth to portray its lightened cultivation in the field. To simulate the action of the disc harrow, 

a 3 cm diameter circular blade, Saxton TCT Circular Wood Saw Blade (300 mm x 30 x 60 teeth), was 

used. Teeth represented the notched blades of the Kelly Disc Harrow® used in Cambridge (Section 

3.1.3.4.). The blade worked the soil by being pressed down to 2 cm depth and then rolled along the 

Figure 8.2a & b: Set-Up of mesocosm for effects of soil tillage intensity on prey 

capture by T. tenuis in mesocosms of H. vulgare. 

Figure 8.3: Schematic diagram of random arrangement of mesocosm for effects of soil tillage 

intensity on prey capture by T. tenuis in mesocosms of H. vulgare. (Conventional = Red, Direct 

Drill Managed = Blue, Direct Drill = Green). 

a b 
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entire surface. This final action was the creation of two tramlines with the same circular saw, 15 cm 

apart, to mimic the seedbed. Direct Drill was imitated in all mesocosms by seeds being placed into the 

soil at 4 cm depth by a circular screw (Goldscrew® Woodscrews Double Self Countersunk (80 mm 

diameter)).  

An irrigation system (polythene 4 mm piping) was set up with four drip lines in each container to water 

each mesocosm for five minutes, twice daily, controlled by Galcon DC1 6100®. The four drip lines were 

placed at opposite points, providing water distribution across the mesocosm. Soil moisture was 

measured in % water content with a Delta T Devices© HH2 Moisture Meter, moisture required to be 

in the correct parameters for Hanslope soil series. Available water for cereal crops, for the heavy clay 

content, noted to be 25% to 40%, between permanent wilting point and field capacity. (Ashman & 

Puri, 2002; Badalı´kova, 2010; Paul, 2015; Williams, 1979) (Section 2.2.2., Section 3.1.3.2. & Section 

6.3.1.).  

Furrows were identified to support T. tenuis activity, in the NIAB fields in Cambridge, by allowing a 

definite break in the soil to create anchor points (Section 5.1.6.2.2.). This was an important addition 

to the mesocosms to allow the glasshouse trials to mirror field trials (Figure 8.4a - c). Mean width and 

depth of the furrows measured in the field after drilling of H. vulgare in 2018, were reproduced in the 

mesocosms using a gardener’s trowel. 

 

 

 

 

 

 

 

 

Straw and upright stubble were included in the mesocosms to further simulate the field. These 

additions corresponded with data collected from fieldwork, H. vulgare 2017 / 2018 season GS 11 - GS 

15, of the different tilled areas and were quantified to match the dimensions of the mesocosm (Figure 

8.5a - c) (Table 5.1.1., Section 5.1.3.1., Page 82). 

Figure 8.4a - c: Furrow creation in mesocosm for effects of soil tillage intensity on prey capture by T. tenuis in mesocosms 

of H. vulgare. a = Conventional. b = Direct Drill Managed. c = Direct Drill. 

a c b 
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Fertiliser is used in the NIAB trials in the form of Omex© Liquid Suspension Fertiliser 3x Solution™. It 

was important to be consistent with this approach. Soil blocks were collected prior to the season’s 

fertilisation application and thus it was deemed important to add a fertiliser simulation to aid the 

growth of H. vulgare, as in the field. Fertiliser application rate was informed from figures in the RB209, 

DEFRA Fertiliser Manual (AHDB, 2017). Data chosen related to medium / heavy clay soils with low 

rainfall (Section 3.1.2. & Section 3.1.3.2.)  From this, 80 g nitrogen (N), 31 g sulphur (S) and 60 g 

phosphate (P2O5) were required ha-1. Therefore, 1.28 g ammonium nitrate (NH₄NO₃), 1.70 g 

ammonium phosphate ((NH4)3PO4) and 1.94 g ammonium sulphate ((NH4)2SO4), formed from 

combining common salts, was added to each mesocosm before seeds were sown.  H. vulgare was 

chosen due to the rapid growth of a spring variety in Field B in Cambridge, where sampling had taken 

place and analysis of T. tenuis activity had occurred in the field (Sub-Chapter 5.1.).  

The H. vulgare seed chosen was Syngenta® Propino™ treated with the triazole fungicide Raxil® Star, 

active ingredients fluopyram, prothioconazole and tebuconazole. Propino™ is the variety used in the 

NIAB fields dressed with Redigo Pro®, also a triazole fungicide with active substances of 

prothioconazole and tebuconazole. In the field, seeds are planted 2 cm apart with a row spacing of 15 

cm, giving a mean of 200 seeds m-2, simulated in the mesocosm as in Figure 8.6. 

 

 

Figure 8.5a - c: Upright stubble and straw of mesocosms. Effects of soil tillage intensity on prey capture by T. 

tenuis in mesocosms of H. vulgare. a = Conventional. b = Direct Drill Managed. c = Direct Drill. 

a b 

c 
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Five adult female T. tenuis were incorporated into each mesocosm, collected from the same location 

at Myerscough College as discussed in Method Development of Glasshouse Experiments and 

habitualised for 48 hours before measurement and entering the experiment (Section 7.2.1.). T. tenuis 

dimensions were recorded by the same method discussed in Section 7.2.2. 

Five S. avenae nymphs, cultivated in the glasshouse (Figure 7.2b, Section 7.2.3., Page 210) were chosen 

which corresponded to the mean S. avenae density identified at GS 33 - GS 37 of H. vulgare in 2016 / 

2017 season of the NIAB fields (Table 5.1.1.). Mass of the S. avenae nymphs was calculated on the H. 

vulgare leaf as described in Section 7.2.4. The H. vulgare leaf, with five nymphs upon it, was placed 

next to a H. vulgare leaf in the mesocosm after seven days when H. vulgare reached germination (GS 

21). This period simulated when S. avenae nymphs may be present in the field with nutritional material 

in the form of H. vulgare tillers emerging. 

8.4. Data Collection 

Data was collected every seven days throughout the growth of H. vulgare until flowering (GS 61), 

anthesis. Data was recorded weekly to analyse how T. tenuis behaviour alters as prey density changes. 

Temperature was recorded via the smart glasshouse system employed at Myerscough College, the 

Tom TechLtd T200. The thermal screen closed when light fell below 10.0 k lx. Above 80.0 k lx shade 

screens operated. Further temperature was taken to the nearest 0.1 °C with a Portable Pen Digital 

Thermometer WT-1B®. Both values were used to validate temperatures recorded. 

 

Threads were observed as bridge threads for rappelling or support threads as webs. Anchor height of 

any threads to the nearest 0.1 cm and thread length to the nearest 0.1 mm were recorded. Web area 

was determined by length of all sides and Heron’s formula as in fieldwork (Section 4.3.4.). In addition, 

number of S. avenae nymphs and adults were counted on H. vulgare leaves. Webs were analysed for 

Figure 8.6: Schematic diagram of H. vulgare 

seed placement in Mesocosm. Each seed 

placement represented by a dot. Effects of soil 

tillage intensity on prey capture by T. tenuis in 

mesocosms of H. vulgare. 
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S. avenae presence, adult and nymph, and exuviae. The measurements obtained relate to T. tenuis 

activity stated in Table 5.1.2. (Section 5.1.3.2., Page 83). Additional variables recorded were H. vulgare 

density and mean H. vulgare height to nearest 0.1 cm. 
 

Analysis were split into two definite growth stages of H. vulgare (early and late) which follows the 

analysis presented in fieldwork (Section 5.1.5.). Each growth stage lasted three weeks and ‘early’ 

incorporated the main growth stages of germination, tillering, flag leaf development and stem 

elongation (GS 0 - GS 49). ‘Late growth’ stage relates to when H. vulgare underwent ear emergence, 

milk development of the kernel, dough development and ripening (GS 51 - GS 92) (AHDB, 2018) 

(Section 2.2.1.). 
 

8.5. Cleaning and Subsequent Preparations of Mesocosms 

Due to the experiment being trialled twice, the mesocosms required clearing before repeating the 

methodology. This to allow no T. tenuis or S. avenae behaviour from the first trial to influence the 

results of the second trial. All surface material (straw, upright stubble and T. tenuis activity) was 

removed and H. vulgare was uprooted. S. avenae (alive and deceased) identified through observation 

and hand searching, were further removed. Insurances were made that all five T. tenuis were 

identified and taken out of the habitat. Each mesocosm was then covered with a cotton muslin square 

(70 cm x 70 cm of 13.1 g weight) and left for twenty-four hours to allow the contents of the mesocosm 

to settle and prevent incursion from new animals. Any further S. avenae found were removed from 

the mesocosm (Section 7.4.2.1.). 

Before the seeding of H. vulgare for the second trial, the soil moisture content was analysed using the 

soil penetrometer Delta T Devices© HH2 Moisture Meter to allow adjustments of the irrigation system 

for adequate growth parameters of H. vulgare (Section 8.3.). All soil of the mesocosms were required 

to be of similar water moisture content. If lower than mean, additional water was applied (by hand 

spraying) to these mesocosms.  

The level of soil nitrate‐nitrogen (NO3‐N) was measured in each mesocosm. Filtered samples were 

analysed by colourimetric testing with the regent 2M potassium chloride (KCl). Samples were read at 

420 nm by a Colour Spectrometer INESA™ 721G. 
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8.6. Statistical Analysis  

Statistical analysis for this experiment was by multiple regression models, which, as in Section 5.1.4.2. 

and Section 6.5.2., used the stepwise backwards elimination method. The responses entered were 

dependent variables (y-axis variables) of anchor point height and thread length. Explanatory 

independent variables (x-axis variables), measured weekly, were placed into the models for each 

response variable. This included plant height, number of plants and temperature inside the 

mesocosm, for example. The backwards elimination method removed insignificant explanatory 

variables at the α >0.05, providing a robust regression model. Steps were analysed to assess the 

position at which a variable was removed. Associated statistics were referenced to negate factors of 

multicollinearity (VIF) and abnormally high standard error of the coefficients (Bass, 2007; Khan, 2013). 

As previously noted, T. tenuis mass, cephalothorax length, abdomen length and plant height were 

explanatory variables that were entered as means (Section 6.5.2.). Normality was checked for each 

stepwise regression model via a residual vs fitted values plot, analysing the pattern of residuals. Large 

numbers in each model aided to assure normality (Khan, 2013). 

A multiple regression model was run on the response of other variables measured, for example 

cumulative number of S. avenae found in the web, without the categorical predictor of soil tillage 

intensity. This was run to understand which variables held significant regression to the response, 

regardless to which mesocosm replicating soil tillage intensity the result was found. Parabolas were 

not graphed due to no categorical predictor grouping the variables (Section 6.5.2.). 

All data was found to be non-normal through normality testing and analysing distribution on 

histograms and probability plots (Section 5.1.4.1.). Interactions in two-way rank ANOVAs were 

examined between means of a response (dependant variable) and two categorical factors, soil tillage 

intensity a factor incorporated into each model, for any significance where P - value was set at the α 

<0.05. The other categorical factor was either attachment material of the anchor point height or 

whether the S. avenae was found in the web when the response was web area. (Hawkins, 2014; Zuur 

et al., 2007). As with Section 5.1.4.2. the programme FCSTats V2_1a© was used to find if significance 

existed in the interaction and Dunn’s test applied to understand where the significance occurred 

(Wheater & Cook, 2000). Again letters to identify significance was understood through the use of the 

Bonferroni post-hoc test on the rank data in Mintab18©. Correlations were examined between two 

variables recorded; utilising Spearman’s Rank (Rho) statistic for non-normality (Wheater et al., 2011). 
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8.7. Results 

Two trials which ran for six weeks, concluded when anthesis was at heights of 75.9 cm for Direct Drill 

Managed and 68.3 cm for Conventional. When anthesis occurred in one mesocosm the trial was 

ended. The set-up for each trial with S. avenae as prey was identical. Data was collected every seven 

days and placed together for all statistical analysis to strengthen trends observed. 

Only a small number of bridge threads were identified after seven and fourteen days in a mesocosm 

mimicking each soil tillage. No other bridge threads were recorded within subsequent monitoring. The 

bridge threads were not included in the model due to limited data. All measurements represented 

here were from support threads of webs.  

Alate morphs were identified in all soil tillage from week three of sampling. No significant relationship 

was identified between alate morphs and anchor point height and thread length due to low data 

entries. From this, they were removed from the dataset. Adult S. avenae recorded on leaves and within 

webs were apterous morphs only. Mass of S. avenae nymphs incorporated at the beginning of the trial 

did not significantly correlate to number of S. avenae observed on leaves and in the web at every 

recording. Therefore S. avenae mass of nymphs at the start was not included in the models. The 

variable of cumulative S. avenae in web reports the total biological control potential produced by the 

spinning of a web in each mesocosm of soil tillage intensity. 

The results were split into two definite growth stages of H. vulgare (early and late) which follows the 

analysis presented in fieldwork (Section 5.1.5. & Section 8.4.). The analysis of the dependant variables 

of anchor point height, thread length and web area that explain T. tenuis activity are presented in turn.  
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8.7.1. Summary of results 

• Direct Drill showed a significantly lower mean rank anchor point height when attached to upright 

stubble compared to plant, in Direct Drill and Direct Drill Managed, in early growth stages (Figure 

8.7.). 

• Significant negative correlation was found between number of S. avenae on plants, number of 

plants and mean plant height with anchor point height of early growth stages (Table 8.3.). 

• Number of plants, S. avenae nymphs on plant, cumulative S. avenae within web and mean 

abdomen length had a quadratic regression to anchor point height (Figure 8.9.). 

• Mean cephalothorax length was significantly positively correlated to anchor point height in both 

growth stages (Table 8.3.). Number of S. avenae on plant (nymph and adult) were significantly 

negatively correlated to anchor point height within early growth (Table 8.3.). 

• Webs of a greater height within Conventional was a response to a greater capture rate of 

cumulative S. avenae (Figure 8.9.). 

• Number of Aphididae in web at later growth stages was significantly positively correlated with 

anchor point height (Table 8.3.). This variable was a positive significant predictor, alongside number 

of plants, for the response cumulative number of S. avenae within web (Table 8.7.). 

• Lower anchor point height was recorded when temperature and cumulative S. avenae in web, was 

at the lower and higher in Direct Drill Managed (Figure 8.9.). 

• Straw mass was significantly positively correlated to anchor point height within early growth stages 

(Table 8.3.). 

• Anchor point height of Direct Drill webs was lower throughout the growth and capture rate of S. 

avenae (Figure 8.9.). 

• Mean cephalothorax length was significantly positively correlated to thread length within both 

growth stages (Table 8.5.). In Direct Drill Managed a greater mean cephalothorax length, spun 

smaller webs at later growth stages (Figure 8.10.). The same pattern was found for mean abdomen 

length (Table 8.5. & Figure 8.10.). 

• Straw mass and thread length were significantly positively correlated in early growth stages (Table 

8.5.). 

• Numbers of plant and mean plant height showed significant negative correlation to thread length 

in later growth stages (Table 8.5.). Number of plants presented weak open downwards parabolas 

to thread length in Direct Drill Managed and Conventional (Figure 8.10.). 

• Web area increased with temperature in Direct Drill Managed (Figure 8.10.). Web area was larger 

at lower temperature in Direct Drill (Table 8.5. & Figure 8.10.). 

• The larger webs of Direct Drill captured no S. avenae (Figure 8.10.). 
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8.7.2. Anchor Point Height 

Categorical Predictor df H P 

Soil Tillage Intensity 2 34.977 0.001* 

Anchor Point Attachment Material 1 27.466 0.001* 

Interaction: Soil Tillage Intensity * Anchor Point Attachment Material 2 8.202 0.017* 

 

 

 

 

 

 

 

 

 

 

 

Significance was exhibited within the interaction between mean rank anchor point heights of different 

soil tillage intensities and the different attachment materials used in the early growth stages (Figure 

8.7. & Table 8.1.). Heterogeneity was found between mean rank anchor point height of Direct Drill 

Managed attached to the material of plant and the mean rank anchor point height identified attached 

to plant for Direct Drill and attached to upright stubble for Direct Drill Managed and Direct Drill. 

Adding straw into the above model negated the significant interaction found between plant and 

upright stubble and therefore, was removed. 

 

 

Table 8.1: Response of rank anchor point height and factors of soil tillage intensity and anchor point attachment material 

in early growth stages, effects of soil tillage intensity on prey capture by T. tenuis in mesocosms of H. vulgare. (n = 336). 

(* relates to significant with α <0.05). 

Figure 8.7: Interaction of mean rank anchor point height, soil tillage intensity and anchor point attachment 

material in early growth stages, effects of soil tillage intensity on prey capture by T. tenuis in mesocosms of H. 

vulgare (n = 336). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional Plant 

±s.e.13.177 (n = 51), Conventional Upright Stubble ±s.e.26.848 (n = 10), Direct Drill Managed Plant ±s.e.10.968 

(n = 80), Direct Drill Managed Upright Stubble ±s.e.4.703 (n = 6), Direct Drill Plant ±s.e.10.474 (n = 84), Direct 

Drill Upright Stubble ±s.e.6.991 (n = 105)). (Points that do not share the same letter are significantly different 
at the p<0.05 level).  
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Categorical Predictor df H P 

Soil Tillage Intensity 2 1.756 0.416 

Anchor Point Attachment Material 2 201.205 0.001* 

Interaction: Soil Tillage Intensity * Anchor Point Attachment Material 4 7.651 0.048* 

 

 

 

 

 

 

 

Within all soil tillage of differing intensity, the mean rank anchor point measured on the attachment 

material of H. vulgare (plant) was significantly greater than the mean rank anchor points measured 

for the attachment material of soil (Figure 8.8. & Table 8.2.). The mean rank anchor point height 

attached to the material of plant for Direct Drill Managed was significantly higher than the mean rank 

anchor point height found attached to upright stubble for the same soil tillage intensity and for Direct 

Drill.   

 

 

 

Figure 8.8: Interaction of mean rank anchor point height, soil tillage intensity and anchor point attachment material 

in late growth stages, effects of soil tillage intensity on prey capture by T. tenuis in mesocosms of H. vulgare. (n = 361). 

(Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional Plant ±s.e.10.594 (n = 48), 

Conventional Soil ±s.e.4.831 (n = 42),  Conventional Upright Stubble ±s.e.42.978 (n = 5), Direct Drill Managed Plant 

±s.e.10.181 (n = 59), Direct Drill Managed Soil ±s.e.11.449 (n = 22), Direct Drill Managed Upright Stubble ±s.e.4.285 (n 

= 4), Direct Drill Plant ±s.e.9.102 (n = 74), Direct Drill Soil ±s.e.9.670 (n = 36), Direct Drill Upright Stubble ±s.e.6.957 (n 

= 71)). (Points that do not share the same letter are significantly different at the p<0.05 level).  

 

Table 8.2: Response of rank anchor point height and factors of soil tillage intensity and anchor point attachment material 

in late growth stages, effects of soil tillage intensity on prey capture by T. tenuis in mesocosms of H. vulgare. (n = 361). (* 

relates to significant with α <0.05). 
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 Early Late 

(Rho) P n (Rho) P n 

Cumulative S. avenae in Web -0.234 0.001* 271 0.037 0.432 443 

Furrow Depth (cm) -0.424 0.001* 271 0.026 0.585 443 

Mean Cephalothorax Length (mm) 0.403 0.001* 271 0.179 0.001* 443 

Mean Plant Height (cm) -0.187 0.002* 271 0.186 0.001* 443 

Mean T. tenuis Mass (g) 0.072 0.237 271 0.156 0.001* 443 

Number of Adult S. avenae on Plant -0.081 0.182 271 0.141 0.003* 443 

Number of Aphididae Exuviae in Web 0.104 0.087 271 0.269 0.001* 443 

Number of Nymph S. avenae on Plant -0.275 0.001* 271 0.146 0.002* 443 

Number of Plants -0.009 0.883 271 0.144 0.002* 443 

Number of Upright Stubble 0.127 0.037* 271 -0.137 0.004* 443 

Straw Mass (g) 0.424 0.001* 271 0.021 0.601 443 

Temperature (oC) -0.249 0.001* 271 -0.182 0.001* 443 

 
The mean cephalothorax length of T. tenuis was significantly positively correlated to anchor point 

height in the early and late growth stages of H. vulgare (Table 8.3.). Temperature measured in the 

mesocosms was significantly negatively correlated to anchor point height in both stages of H. vulgare 

growth (early and late). Mean plant height of H. vulgare and number of nymph S. avenae recorded on 

the plant were significantly negatively correlated to anchor point height during early growth stages of 

H. vulgare and significantly positively correlated in the later growth stages. Number of upright stubble 

was significantly positively correlated against anchor point height during the early growth stages and 

significantly negatively correlated within the later growth stages. The cumulative number of S. avenae 

recorded within the web and furrow depth was significantly negatively correlated with anchor point 

height recorded in the early growth stages of H. vulgare, whilst straw mass held a significant positive 

correlation at times when H. vulgare was at its early growth stages. Three variables were significantly 

positively correlated to anchor point height at the later growth stages only. These were mean T. tenuis 

mass, number of adult S. avenae found on the H. vulgare plant and number of Aphididae exuviae 

found within the T. tenuis web.  

 

 

 

 

 

 

Table 8.3: Correlations of independent variables measured in the mesocosm, with the dependant variable anchor point 

height (cm) in early and late growth stages, effects of soil tillage intensity on prey capture by T. tenuis in mesocosms of H. 

vulgare. (* relates to significant with α <0.05). 
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Continuous Coefficients Standard Error  T  P VIF 

Predictor   (SE) Coefficients     

Cumulative S. avenae in Web -0.0402 0.0128 -3.14 0.002* 4.10 

Mean Abdomen Length (mm) -5.28 2.53 -2.09 0.037* 1.58 

Mean Plant Height (cm) 0.1199 0.0303 3.95 0.001* 4.51 

Number of Nymph S. avenae on Plant 0.003100 0.000725 4.28 0.001* 4.27 

Number of Plants 0.447 0.106 4.21 0.001* 2.59 

Number of Upright Stubble -0.0522 0.0145 -3.60 0.001* 1.42 

Temperature (oC) -0.2897 0.0758 -3.82 0.001* 2.50 

 

 

For Direct Drill Managed mesocosms, the steep open upward parabola representing anchor point 

height relationship with number of S. avenae nymph found on H. vulgare plants, identifies a lower 

range of data was found within these mesocosms and the higher anchor point height was identified 

when peak nymph S. avenae were recorded (Figure 8.9. & Table 8.4.). The wide downwards open 

parabola for Conventional identifies a greater range of data along the x-axis (nymph numbers on the 

plant) and the maximum vertex, explaining peak anchor point height, was identified mid-range of the 

nymph numbers recorded. Conventional peaked when the greater cumulative S. avenae was recorded 

in the web, this is due to a steep upwards open parabola established. For Direct Drill Managed, the 

Table 8.4: Significant predictors to the response anchor point height (cm), in early and late growth stages, effects of soil 

tillage intensity on prey capture by T. tenuis in mesocosms of H. vulgare. (n = 712, R2 - 23.90%). (* relates to significant 

with α <0.05). 

Figure 8.9: Matrix plot with quadratic regression and intercept fitted for anchor point height (cm) with number of S. avenae 

nymph on plant, cumulative number of S. avenae in web, temperature (°C), mean T. tenuis abdomen length (mm), mean 

plant height (cm) and number of plants in early and late growth stages, effects of soil tillage intensity on prey capture by 

T. tenuis in mesocosms of H. vulgare. (n = 712, R2 - 23.90%). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill 

= Green). 
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downward open parabola gave a maximum vertex for anchor point height when sixty-two S. avenae 

were found in the web.  

Temperature appears to have affected the Direct Drill Managed mesocosms where a wide-open 

downwards parabola, shows anchor point height was greater when the temperature reached 25 to 29 

oC. Maximum vertices were established when mean abdomen length was analysed against anchor 

point heights recorded in the mesocosms for Conventional (at 1.4 mm abdomen length) and Direct 

Drill Managed (at 1.5 mm abdomen length), the greater anchor point established in Direct Drill 

Managed.  

Direct Drill Managed measured quadratic regression between mean plant height and density of H. 

vulgare against anchor point height. A minimum vertex of anchor point height was established, the 

greater anchor point height found when mean plant height and number of plants was at its highest.  

Weak regression existed in Direct Drill for all continuous predictors against the response. 

8.7.3. Thread Length 

 Early Growth Stage Late Growth Stage 

(Rho) P n (Rho) P n 

Cumulative S. avenae in Web -0.229 0.001* 271 -0.178 0.001* 443 

Furrow Width (cm) 0.385 0.001* 271 0.055 0.256 443 

Mean Abdomen Length (mm) 0.008 0.892 271 -0.116 0.016* 443 

Mean Cephalothorax Length (mm) 0488 0.001* 271 0.142 0.003* 443 

Mean Plant Height (cm) -0.327 0.001* 271 -0.217 0.001* 443 

Number of Adult S. avenae on Plant -0.021 0.733 271 -0.136 0.005* 443 

Number of Nymph S. avenae on Plant -0.281 0.001* 271 -0.159 0.001* 443 

Number of Plants -0.098 0.108 271 -0.165 0.001* 443 

Straw Mass (g) 0.318 0.001* 271 0.020 0.675 443 

Temperature (oC) -0.364 0.001* 271 -0.003 0.948 443 

 

The cumulative number of S. avenae within the web, number of nymph S. avenae identified in the 

web and mean plant height were significantly negatively correlated to thread lengths measured at 

both early and late growth stages of H. vulgare (Table 8.5.). The opposite was found for mean 

cephalothorax length, which was significantly positively correlated to the thread lengths measured in 

the mesocosms in the early and late growth stages. Furrow width and straw mass were significantly 

positively correlated to thread length in the early growth stages. Temperature in the mesocosms was 

significantly negatively correlated to thread length at the early growth stages of H. vulgare. Thread 

length at only the later growth stages of H. vulgare, was significantly negatively correlated to the mean 

abdomen length of T. tenuis, number of plants and adult S. avenae found on the plant. 

Table 8.5: Correlations of independent variables measured in mesocosm, with the dependant variable thread length (mm) 

in early and late growth stages, effects of soil tillage intensity on prey capture by T. tenuis in mesocosms of H. vulgare. (* 

relates to significant with α <0.05). 
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8.7.4. Web Area 

Continuous Coefficients Standard Error  T P VIF 

Predictor   (SE) Coefficients       

Cumulative S. avenae in Web -0.01276 0.00152 -8.39 0.001* 4.12 

Mean Abdomen Length (mm) -4.24 2.09 -2.02 0.044* 1.46 

Mean Cephalothorax Length (mm) -0.2164 0.0615 -3.52 0.001* 2.21 

Number of Nymph S. avenae on Plant 0.007655 0.000926 8.27 0.001* 3.88 

Number of Plants 0.0515 0.0241 2.14 0.033* 3.81 

Temperature (oC) -0.0896 0.0207 -4.33 0.001* 3.92 

 

 

 

An open downward parabola established for Direct Drill Managed, observed the greater web area was 

found when the number of nymph S. avenae recorded on the plant was within the middle of the 

dataset for this mesocosm (Figure 8.10. & Table 8.6.). For the cumulative number of S. avenae 

recorded in the web, the greatest range of this variable was found in the Direct Drill mesocosms with 

a wide parabola established. Maximum vertices were established in the Conventional and Direct Drill 

Managed mesocosms when web area was analysed with cumulative S. avenae identified in the webs. 

This explains the greater web area within these mesocosms was recorded when the median 

cumulative number of S. avenae was identified.  

Table 8.6: Significant predictors to the response web area (mm2) in early and late growth stages, effects of soil tillage 

intensity on prey capture by T. tenuis in mesocosms of H. vulgare. (n = 172, R2 - 29.72%). (* relates to significant with α 

<0.05). 

Figure 8.10: Matrix plot with quadratic regression and intercept fitted for web area (mm2) with number of  S. avenae 

nymph on plant, cumulative S. avenae in web, temperature (°C), mean T. tenuis cephalothorax length (mm), mean T. 

tenuis abdomen length (mm) and number of plants  in early and late growth stages, effects of soil tillage intensity on prey 

capture by T. tenuis in mesocosms of H. vulgare. (n = 172, R2 - 29.72%). (Conventional = Red, Direct Drill Managed = Blue, 

Direct Drill = Green). 
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A wide downward open parabola was identified for the relationship of web area with the temperature 

in the mesocosms for Direct Drill. The greater range of temperatures was identified in this soil tillage, 

the lower web areas were established when the temperature was 29 to 34 oC.  

Smaller web areas were measured when cephalothorax length was at its smallest and longest in the 

mesocosms of Direct Drill Managed. When mean abdomen length was at its smallest, the larger web 

areas were spun in the Direct Drill mesocosms. Only positive linear regression existed in the 

Conventional mesocosms for the variable mean abdomen length. The smaller webs were further spun 

by T. tenuis of mean longer and shorter abdomen length in the Direct Drill Managed mesocosms with 

an open downwards parabola established.  

Large data range of number of H. vulgare plants was found in all mesocosms of soil tillage. The web 

areas measured in the mesocosms of Direct Drill Managed and Direct Drill followed similar trends with 

a maximum vertex found when H. vulgare density was nine to thirteen plants.  

 

8.7.5. Other Variables Measured 

Continuous Coefficients Standard Error  T P VIF 

Predictor   Coefficients (SE Coeff)       

Number of Aphididae Exuviae in Web  0.2564  0.0360  7.13  0.001*  2.81 

Number of Nymph and Adult S. avenae 
on Plant 0.02334 0.00163 14.36 0.001* 4.21 

Number of Plants 2.344 0.469 5.00 0.001* 3.75 

Temperature (oC) 0.651 0.2630 2.47 0.001* 1.73 

      

      

Without the categorical predictor of soil tillage intensity, the variables of number of Aphididae exuviae 

recorded in the web, temperature, number of H. vulgare plants and number of nymph and adult S. 

avenae on H. vulgare were all significant predictors to the response of cumulative number of S. avenae 

within the web (Table 8.7.). These significant predictors were all significantly positive within the 

model. 

 

 

 

 

 

Table 8.7: Significant predictors to the response cumulative number of S. avenae within web, in early and late growth 

stages, effects of soil tillage intensity on prey capture by T. tenuis in mesocosms of H. vulgare. (n = 54, R2 - 79.16%). (* 

relates to significant with α <0.05). 
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8.8. Discussion 

The upright stubble was monopolised as an attachment material in Direct Drill at early growth stages, 

which follows the trend found in fieldwork sampling (Figure 8.7. Section 5.1.6.2.1.). This created a 

platform for web-weaving away from the soil and straw as an alternative of the plant when the crop 

was germinating (Harwood et al., 2003; Hogg & Danne 2018; Szymkowiak et al. 2007) (Table 8.3. & 

Figure 8.7.). Interestingly, the upright stubble was utilised at a significantly lower height to plant in 

Direct Drill in early growth stages (Figure 8.7.).  Chabert & Sarthou (2017) and Hein et al. (2019) discuss 

that the use of a multitude of attachment materials allows a plethora of webs at differing heights to 

be spun. The use of the upright stubble, in the Direct Drill, offered an extension into the environment 

of the mesocosm, to allow the plant at higher reaches to become an attachment point. Less upright 

stubble in the Direct Drill Managed tillage, facilitated the utilisation of the H. vulgare at higher tillers 

than within Direct Drill (Dennis et al., 2015; Fahrig et al., 2011; Henschel & Lubin, 2018) (Figure 8.7.). 

It was noteworthy that T. tenuis were not attaching to the growing plant with greater frequency. S. 

avenae, within the early growth stages, were confirmed to be in the basal layers, thus it appears webs 

were constructed in lower strata in consequence of this (Table 8.3.). Lombaert et al. (2006) and 

Mehrparvar et al. (2013) discuss that a colony requires time to establish, nymphs incorporated 

needing to reach maturity before reproductive potential is reached. S. avenae activity appeared to 

only increase T. tenuis web placement height at later growth stages, as colony size increased, pushing 

S. avenae to disperse (Table 8.3.).  

A similar pattern existed for number of S. avenae nymphs on leaves, exhibiting that S. avenae 

population growth was dependant on plant height and density (Figure 8.9). This follows, as H. vulgare 

was the only food source available, due to the confined nature of the trial the phloem required for 

fitness and viability could become a limited resource (Alignier et al., 2014; Ben-Issa et al., 2017; 

Gagnon et al., 2011; Goggin, 2007).  It appears that plant height and density had more influence in 

creating the higher anchor points for webs (Figure 8.9.). This agrees with fieldwork sampling, where 

vegetation structure appears to have been of greater importance (Section 5.1.5.2.2). However, this 

trend only occurred in the Direct Drill Managed mesocosms (Figure 8.9.). It may be that an increased 

fitness of T. tenuis in Direct Drill Managed enabled ease to climb upon H. vulgare to reach higher 

aspects of the mesocosm (Jakob et al., 1996; Jurczyk et al., 2012; Opatovsky et al., 2016; Prenter et 

al., 2010; Toft, 1989). Direct Drill Managed, a middle habitat, showed the lower utilisation of applied 

landscape features, upright stubble and furrow dimensions, for example (Figure 8.8). The maximum 

vertex is greater for Direct Drill Managed, in the interaction of abdomen length and anchor point 

height (Figure 8.9.). T. tenuis body size interacted with anchor point height, however, there was no 

clear linear relationship formed. T. tenuis, within Direct Drill Managed mesocosms, may have enough 
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resources for an adequate claim of territory for individual web-building (Birkhofer et al., 2007; Janetos, 

1984; Opatovsky et al., 2016; Schütt, 1997). 

Anderson & Prestwich (1975), Herberstein (2011) and Schmitz (2013) discuss that the hydrostatic fluid 

pressure pumps of Linyphiidae, which drive leg flexion in muscles of the tibia, are located in the 

cephalothorax (Table 8.3.). Prenter et al. (2010) comment that an increase in cephalothorax enables 

greater flexion to be attained. In fieldwork, larger-bodied T. tenuis showed dominance by spinning 

webs at a greater height, occupying a higher stratum (Section 5.1.6. & Section 5.3.6.). Gregori et al. 

(2015) discussed that body size increased Linyphiidae foraging effort. Lichtenstein et al. (2016) agreed, 

commenting that reduced body size decreases personality traits, one such being confidence. However, 

T. tenuis mass was not of importance within early growth stages, as noted earlier S. avenae colonies 

were confined to the lower aspects. It may be here that the difference in mass only had a subtle effect 

in spinning in the prime web-site. This can be further analysed when anchor point height was low in 

mesocosms where less cumulative S. avenae in the web were found within the first fourteen days 

(Figure 8.9.).  

Two webs, in Direct Drill Managed, were woven between H. vulgare tillers at 12 - 14 cm in height 

where low numbers of nymphs were identified (Table 8.3.). The experiment had run for fourteen days 

with zero S. avenae counted within the two webs. The greatest number of nymphs found on the plant 

at this time was thirty, with sheet webs capturing twenty-two S. avenae, counted in a Direct Drill 

mesocosm. Webs here were woven in between the soil, upright stubble and plants at a lower height 

(Figure 8.9.). It appears something was driving T. tenuis to spin webs at a greater height in Direct Drill 

Managed mesocosms, even though they were unsuccessful in prey capture. Perhaps it was the 

absence of S. avenae that drove T. tenuis of a greater abdomen to ascend higher. Blamires et al. (2013), 

Houser et al. (2016) and Segoli et al. (2004) note that in times of low food availability, foraging, 

creation of the extended phenotype, increased inactivity in search distance extended for a profitable 

web-site in prey capture. 

S. avenae can be identified as occupying all strata of H. vulgare leaf, as time continued, phloem access 

became a limited resource as the population grew (Sanders & Platner, 2007; Valenzuela & Hoffman, 

2014) (Figure 8.11a & b.). At the greatest number of nymph S. avenae (n = 3312) at week six, the 

anchor point height was the lowest found in a Conventional mesocosm (Figure 8.9. & Figure 8.11b.). 

This was due to three new webs formed in the basal stratum which together caught ten further S. 

avenae. This identified that the webs were a success which discords with Gómez et al. (2016), Kovac 

et al. (2009) and Roberson et al. (2016), who discuss the benefit of web-spinning within higher tillers 

to intercept a greater prey abundance. It appears that the size of the S. avenae colony became a 

https://scholar.google.co.uk/citations?user=q38c5eIAAAAJ&hl=en&oi=sra
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limiting factor and thus the propensity to drop increased, falling into underlying sheet webs (Alford et 

al., 2016; Ma & Ma, 2012; Mansion‐Vaquié et al., 2020). The greatest difference between adult and 

nymph numbers were identified in Direct Drill and Direct Drill Managed mesocosms, here nymph 

numbers were considerably greater at week five and six of the trial (Figure 8.9.). This explains a high 

population of S. avenae in early developmental stages, first instars, where ecdysis may not have 

commenced (Buriro et al., 2006; Price et al., 2011; Watanabe et al., 2018; Winder et al., 2013) (Section 

2.2.6.1.). In time, if the trial had continued and S. avenae reached later instars, exuviae could have 

fallen into webs. Furthermore, S. avenae propensity to drop may have increased due to over-crowding 

(Agabiti et al., 2016; Brabec et al., 2014).  

 

 

 

 

 

 

 

T. tenuis appear to be creating webs of a greater height within Conventional mesocosms due to a 

response of greater capture rate of cumulative S. avenae (Figure 8.9.). This agrees with research by 

Diehl et al. (2013), Feber et al. (1998) and Harwood et al. (2004) who showed that T. tenuis movement 

was determined by prey selection of Aphididae. However, Aphididae are known to occupy all heights 

of an H. vulgare leaf where addition phloem source may be reached (Goggin, 2007; Mestre et al., 

2018; Parry, 2013, Watanabe et al., 2018) (Figure 8.11a & b). The cumulative S. avenae in the web 

held no significant correlation in the later growth stages to anchor point height. It appeared that S. 

avenae were caught at any height, perhaps aided by no disturbances (wind and rain) in the 

mesocosms. Qin et al. (2015), Rodríguez & Gamboa (2000) and Welch et al. (2013) explain that S. 

avenae movement in a web can cause small ripples in the silk which stimulate T. tenuis sensory 

receptors, heightened when deprived of climatic disturbances. This may prompt web construction 

near a web with S. avenae capture and initiate a positive feedback system.   

The number of adults on leaves was less than nymphs, which was as expected with asexual 

reproduction (Price et al, 2011; Rispe et al., 1996). The apterous morphs, though noted by Zhang et 

al. (2016) to move in an awkward staggered way, are more likely to ascend to greater heights of the 

Figure 8.11a & b: S. avenae nymphs and apterous adults on H. vulgare leaves. (S. avenae 

circled in yellow). Effects of soil tillage intensity on prey capture by T. tenuis in 

mesocosms of H. vulgare. a = Direct Drill. Lateral view. b = Conventional. Elevated view. 

b a 
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tiller to begin a colony in an isolated territory (Gish, 2012; Oliver et al., 2007) (Table 8.3.). Moreover, 

fecundity requires high energy consumption, thus encouraging the feeding of new growth higher 

within the canopy (Brabec et al., 2014; Paulmann et al., 2018).  

Muratori et al. (2008) and Oelbermann & Scheu (2002) describe that exuviae in web cannot directly 

portray a predator and prey relationship. It is assumed that exuviae presence is evidence of juvenile 

development of S. avenae within the upper aspects of the plant (Oelbermann & Scheu, 2002; Pekár, 

2000). With S. avenae found in webs alongside Aphididae exuviae, it appears webs were spun at the 

appropriate location for prey capture, especially in later growth stages (Jurczyk et al., 2012; Kasumovic 

& Jordan, 2013) (Table 8.3. & Table 8.7.). Parry (2013), describing additional plant material, offers 

phenotypic factors that can aid fecundity with S. avenae (Table 8.7.). Of interest, in later growth stages 

S. avenae abundance achieved web-building at a greater height within the mesocosm. Bell et al. (2002) 

and Toft (1987) discuss that at times of great food availability, T. tenuis are prompted to gorge, this 

relaxing T. tenuis and additionally, if fed a continuous diet of Aphididae, will over time develop an 

adverse taste to this prey. This perhaps explained why not all Aphididae could be consumed in the 

web and were able to be recorded.  Negating a driving urge of starvation is explained to dissuade a T. 

tenuis into ascension (Toft, 1987; Toft, 1995; Toft, 2002). However, Toft (1987) and Toft (2002) 

describe the aversion lasts for approximately two days. With the current experiment lasting six weeks, 

T. tenuis may indeed have been responsive to prey stimuli and inclined to reach upper strata of the H. 

vulgare, later within the experiment, to ascertain new territories (Table 8.3.).  

The lower anchor point height was found when the temperature and cumulative S. avenae in web, 

was at its lower and higher point in Direct Drill Managed (Figure 8.9.). S. avenae are notably sensitive 

to extreme temperatures, above the optimal (Buriro et al., 2006; Mehrparvar et al., 2013; Newman, 

2004). While thermo-regulation pathways allow survival during times of heat stress, Jeff & Leather 

(2014) and Ma & Ma (2012) discussed that growth and viability of Aphididae are likely to be impaired. 

At points within this trial, temperature reached >34 °C in all soil tillage simulations. This temperature 

is noted to be in excess of S. avenae optimum for successful parthenogenesis and dispersal (Chen et 

al., 2000; Jeff & Leather, 2014; Newman, 2005). Low anchor point at times of high temperatures may 

relate to higher levels of S. avenae dropping from H. vulgare leaves (Table 8.3.). Alford et al. (2016) 

and Ma & Ma (2012) discuss propensity to drop increases as a response to heat stress, an outcome of 

diverting energy to reduce internal body temperature. Within Direct Drill Managed, two higher webs 

>10 cm were constructed when temperature was noted as 34.3 oC. at week five, with thirteen S. 

avenae noted within the web. Predator success was identified in this web placement. Angilletta et al. 

(2004) and Franken et al. (2018) are in accord, explaining Linyphiidae ‘sit and wait’ strategy provides 

a general sedentary existence which assists with the regulation of internal temperature. Energy can, 
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therefore, be further freely used to ascend to greater heights. Increased height allows access to 

possible advantageous web-sites (Borges & Brown, 2001; Dennis et al., 2001; Diehl et al., 2013; 

Prenter et al., 2010). 

It can be viewed that the increase in straw mass in Direct Drill and Direct Drill Managed, if only small, 

may have influenced S. avenae movement upwards and their reproductive potential in early growth 

stages (Kennedy & Connery, 2005; Kennedy et al., 2010; Summers et al., 2004) (Table 8.3. ). Straw 

presence was highlighted to be a reason of S. avenae persistence in the Conventional area when T. 

tenuis behaviour was understood in areas of symptomatic BYDV H. vulgare (Section 6.6.2.). Straw, in 

the mesocosms, may have covered lower aspects of the stem within the early crop growth stages, 

pushing S. avenae further up the stem and thus acquiring phloem of higher nutritional content 

(Goggin, 2007; Summers et al., 2004). Webs were spun at a greater height to intercept S. avenae 

residing in the upper tillers (Table 8.3.). S. avenae reproduce in situ, and if an apterous morph is higher 

on a plant, so it follows that its offspring will also have access to nutritional phloem (Goggin, 2007; 

Lombaert et al., 2006; Price et al., 2011). As H. vulgare went into later growth stages, straw held no 

influence on web placement. As plant height increased and plant growth held a greater green canopy, 

the higher strata provided higher levels of landscape complexities pushing T. tenuis activity upwards 

(Figure 8.9.). El-Nabawy et al. (2016), Entling et al. (2011) and Öberg (2007) comment that the web 

placement is often a product of landscape orientation.  

Anchor point height of Direct Drill webs was generally low throughout the population growth of S. 

avenae (Figure 8.9.). It appears that T. tenuis chose to remain web-spinning in the lower aspects of 

the Direct Drill mesocosm. This was shown by Buri et al. (2016), Davey et al. (2013) and Rybak (2007) 

to be the preferred anchor location of T. tenuis where optimal conditions are employed, with plentiful 

resources and low intra-specific competition. It appears that the greater level of fitness of S. avenae 

was observed in Direct Drill, thus a plentiful resource located at the base of the mesocosm. The 

requirement not to ascend to create a web at a greater height, identified as unnecessary energy 

expenditure, an element that a Linyphiidae is persistently aiming to keep balanced with energy reaped 

(Alderweireldt, 1994; Bonte et al., 2008; Ford, 1977; Harwood & Obrycki, 2007; Qin et al., 2015). 

Increased flexion of a larger cephalothorax can allow silk threads to be spun more rapidly and with 

greater ease (Bonte et al., 2008; Craig, 2003; Harmer et al., 2011; Spagna & Peattie 2012) (Table 8.5. 

& Figure 8.10.). Direct Drill Managed shows an anomaly when T. tenuis with a greater mean 

cephalothorax length, spun webs of a small length towards the end of the experiment (Figure 8.10.). 

The same pattern occurred for mean abdomen length (Table 8.5. & Figure 8.10.). This contradicts 

findings of Craig (1987), Houser et al. (2016), Nentwig & Heimer (1987), Segoli et al. (2004) and Toft 
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(1987) who comment that larger-bodied T. tenuis may spin webs of greater area to enforce dominance 

and enhance prey capture capability. However, here vegetation complexity may be more important 

at determining web area, the orientation of anchor materials observed from spatial modelling by 

Downie et al. (2000) and Prieto-Benítez & Méndez (2011) to be fundamental in allowing the 

development of a web. This observation was identified in field sampling, as the growth of H. vulgare 

progressed (Section 5.1.6.2.2.). The static environment of mesocosms provides a plethora of potential 

web-sites equating to low tendency to compete, where fitness level of a T. tenuis may be disregarded. 

Environmental factors are a key parameter when reviewing a potential web-site (Blake et al., 2013; 

Schütt, 1997; Tew & Hesselberg, 2017; Welch et al., 2011). 

Aphididae presence was noted on the straw, an occurrence explained by Barro (1991) and Dupuis et 

al. (2017) to be due to Aphididae’ poor optic ability. This makes them unable to discriminate between 

a tussock of straw residue and growing plant, moreover, able to visually ascertain the difference 

between bare soil and crop. The greater threads spun in between straw may have been T. tenuis 

orienteering its web, to traverse across large areas of the straw residue (Table 8.5.). As stem elongates 

further in later H. vulgare growth, the presence of the straw residue diminishes as a colony ascends 

the plant (Dupuis et al., 2017; Kennedy & Connery, 2005; Kennedy et al., 2010; Summers et al., 2004). 

In Conventional mesocosms, large horizontal sheet webs were spun across the length of the furrow, 

which discords with Blake et al. (2013) and Platen et al. (2013) who stated that T. tenuis prefers a web 

above the ground and will not actively seek to anchor to soil (Table 8.5.). Alderweireldt (1994) and 

Samu et al. (1996) discuss the positive use of soil for attachment if another material was limited, again 

transcribing the use of the soil when a physical feature created there reveals an anchor point. The use 

of a furrow, as an anchor material for web-spinning, was favoured in Conventional in times of 

fieldwork due to drought stressed H. vulgare exhibiting poor growth (Section 5.1.5.2.3.). 

Number of plants was shown to interact with thread length due to micro-habitat heterogeneity, it 

appears that number of plants drove the establishment of a greater range of thread lengths within 

webs  (Dennis et al., 2015; Öberg et al., 2008; Poggio et al., 2013; Thorbek & Topping, 2005) (Table 

8.5., Figure 8.10.). It may be that the arrangement of the tillering of the plants as they developed 

allowed spinning of different webs of varying thread lengths (Figure 8.12.). This is supported by Beals 

(2006), Sunderland & Samu (2000) and Warui (2004) who, through modelling plant physiognomy and 

Linyphiidae behaviour, identified that different spacing between anchor materials increased web-

building potential. There was little interaction for web area and number of plants within the 

Conventional mesocosms (Figure 8.10.). Therefore, the greater furrow width accessible for anchorage, 

due to the reduced straw mass and upright stubble, were provided in the Conventional mesocosms 

(Figure 8.8.). 
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At increased growth stages, stem elongation causes structural weakness and therefore causes 

bending, drawing a canopy closer together (AHDB, 2018; Mornhinweg, 2011). It may be that the 

change in orientation decreased thread length and thus web size (Table 8.5.). Krafft & Cookson (2012) 

and Lyons et al. (2018) discuss that a web is a configuration of the environment presented.  

At greater temperatures, within later growth stages, in the Direct Drill Managed mesocosms, web area 

was increasing as temperature reached its maximum (Figure 8.10.). For adult Linyphiidae, 

compensation at high temperatures is less costly than the thermo-regulation process of S. avenae 

thus, they can yield silk with the tension required (Angilletta et al., 2004; Pekár, 2000; Suter, 1981; 

Welch et al., 2011). Egg sac incubation and juvenile development during Linyphiidae life history where 

extreme temperatures (<15 oC and >30 oC) were found to impeded growth rate (Bonte et al., 2008; 

Thorbek & Bilde, 2004; Vanacker et al., 2001). Web area was larger at times of the lower temperature 

in Direct Drill (Table 8.5. & Figure 8.10.). This was driven by several webs >8,000 mm2 noted at 17.7oC- 

19.1oC. These webs were woven in the basal layer of the mesocosm within the last two weeks of the 

experiment. The similar trend for temperature and cumulative S. avenae (which is in time order) 

identified that temperature could be driving S. avenae parthenogenesis rate, which agrees with earlier 

discussions, where temperature was a limiting factor in the Aphididae life cycle (Honek et al. 2018; 

Jeff & Leather, 2014) (Table 8.7., Figure 8.10. & Section 5.1.6.2.2.). Poor canopy growth in density and 

height of H. vulgare was noted where low S. avenae abundance was found, which suggested that 

Aphididae success depended on a narrow range of phenotypic elements, with poor phloem availability 

as one of these (Dorokhov et al., 2014; Parry, 2013; Reddy et al., 2009)  Greater open space in the 

canopy may have allowed prey to be ensnared at a lower height (Badenhausser, 2020; Rosas-Ramos 

Figure 8.12: Sheet web woven across H. vulgare in Direct Drill Managed 

mesocosm. Effects of soil tillage intensity on prey capture by T. tenuis in 

mesocosms of H. vulgare. Lateral view. (Red arrow = 112.7 mm). 
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et al., 2018). Furthermore, low S. avenae abundance most likely to reside in the basal layer if new 

canopy growth is failing (Davis et al., 2015; Ma & Bechinski, 2008).  
 

The maximum vertex of web area was reached midway through its cumulative S. avenae capture in 

Conventional and Direct Drill Managed, perhaps related to subtleties in H. vulgare orientation, as 

growth developed more than S. avenae availability (Figure 8.10.). Alderweireldt (1994) and Herrmann 

et al. (2010) showed that small disparities in micro-habitat (mesocosm), may alter web dimensions. 

Less cumulative S. avenae were captured within Conventional than other mesocosms, however the 

greater number of nymph S. avenae were identified within Conventional (Figure 8.10.). Borges & 

Brown (2001), Heiling & Herberstein (1998) and Toft (1987) explain that thread length describes the 

size of the web, whereas anchor point height is a function of the web's location, thus anchor point 

height would result from an interaction with S. avenae in web more than thread length (Gómez et al., 

2016; Roberson et al., 2016; Stenchly et al., 2011). The action of web-spinning is discussed by Harwood 

et al. (2004) and Jurczyk et al. (2012) as not 100% fool-proof, as T. tenuis may have anticipated S. 

avenae capture. 

Dispersal of alate morph S. avenae, allowed morphs to reach all areas of the H. vulgare. Blackledge & 

Eliason (2007) and Kasumovic & Jordan (2013) discuss that web-spinning follows prey, with webs of 

shorter thread lengths woven into small areas of the mesocosm, exploiting pockets of heightened S. 

avenae activity (Figure 8.10.). Generally smaller webs were spun in Direct Drill mesocosms as greater 

cumulative S. avenae were recorded in the web (Figure 8.10.). This agrees with the above statement, 

with the greater S. avanae explanation of growth identified in a Direct Drill mesocosms. Webs were 

spun at an appropriate location to enforce predator dynamics (Clark et al., 2004; Marc & Canard, 1997; 

Stenchly et al., 2011; Tahir & Butt, 2009). The extended phenotype of webs therefore woven in the 

vicinity of a fecund colony of S. avenae (Asin & Pons, 2001; Klüken, 2008; Watanabe et al., 2018). 

With such extreme differences in S. avenae numbers (nymph = 10 to 3312) at the end of the 

experiment, it can be understood why number of nymphs found in the mesocosms significantly altered 

the web area that T. tenuis spun (Figure 8.10.). In Direct Drill Managed, a small data range existed for 

number of S. avenae identified on the vegetation compared to that of Conventional and Direct Drill. 

With S. avenae mass not holding any significant correlation, parthenogenesis rate may be slowed, 

fitness or low rate of instar development perhaps faltered. S. avenae were bred in the glasshouse 

where there was no interaction with an alternative colony (Section 7.4.2.). This may have led to 

excessive in-breeding where weaker genetic traits were amplified (Goggin, 2007; Jeff & Leather, 2014; 

Mehrparvar et al., 2013). The large webs for Direct Drill Managed, were spun when number of nymphs 

on the plant was 888 (Figure 10.11.). These webs, woven at high aspects of the plant, caught no S. 
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avenae, only exuviae were recorded. The greater number of webs (n = 22) were identified in the Direct 

Drill Managed mesocosms at this stage, week five of the experiment. It appears much web-

construction had occurred here in different spatial arrangements offered by the landscape 

heterogeneity of the mesocosm. Only thirty-five nymphs were caught in the webs in week four which 

showed little pest suppression occurring, T. tenuis not able to capitalise on the outlay of a woven web. 

T. tenuis required cues of S. avenae presence from small vibrations within the H. vulgare (Blackledge 

et al., 2011; Glover, 2013; Hesselberg & Vollrath, 2006; Tew & Hesselberg, 2017). Number of plants 

was high (n = 18) and thus, it is hypothesised that S. avenae were able to disperse amongst the 

abundance of green material available and be less inclined to show wing polymorphism or drop, both 

stimuli for web-spinning (Kraft & Cookson, 2012).  

8.9. Final Discussion - Effects of Soil Tillage Intensity on Prey Capture by T. tenuis in 

Mesocosms of H. vulgare 

The use of straw, upright stubble and furrow dimensions, key to the difference in soil tillage, made 

little difference to T. tenuis activity throughout the growth of H. vulgare with both prey species. 

However, straw and upright stubble was shown to affect the placement of S. avenae in Direct Drill 

tillage and higher webs spun in this mesocosm because of this. This relates to both aims of this 

Chapter, one and four, discussed in Section 8.2.1. Direct Drill had little variation within the response 

variables. Web location was confined to the basal stratum of the habitat, identifying this may be the 

preferred location of T. tenuis when competition is low and resources plentiful. Low variation in 

anchor point height and thread length in Direct Drill showed that greater prey abundance led to 

increased accessibility to resources. Here both aims of this Chapter have been met (Section 8.2.1.) 

It has been identified that T. tenuis dimensions do not directly relate to T. tenuis fitness, and thus the 

capability to ascend to greater heights and spin longer webs. It has been clear though that 

cephalothorax length may be a key parameter to understand an increase in energy output for T. tenuis, 

with leg movement controlled in this body segment. Interestingly, no T. tenuis rappelling was 

recorded. Exploratory behaviours appear to be limited, with the commencement of web-building 

beginning almost instantaneously. High web occupation expressed adequate capability of the web for 

prey capture, interception of prey was expected and a positive to biological control potential directed 

to the first aim (Section 8.2.1.).   

The population growth of S. avenae differed in the mesocosms, temperature and fecundity observed 

as the main factors. This showed differences in web anchor height due to differences in cues 

intercepted by T. tenuis. Anchor point height followed prey movement, T. tenuis ability to spin webs 

of appropriate location enhanced prey capture and addressed the fourth aim of Section 8.2.1.  
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Chapter Nine 

9.0. Effects of Primary and Secondary Cultivation on T. tenuis Behaviour Under Controlled 

Experimental Conditions: A Mesocosm Experiment 

9.1. Introduction 

After primary and secondary cultivation in the field, it was noted that landscape features differed on 

a large scale between the three intensities of soil tillage (Section 5.1.5.1.2.). Observations further 

noted differences in T. tenuis web-building and migratory behaviour within Conventional, Direct Drill 

Managed and Direct Drill. This was discussed as primarily due to landscape heterogeneity in the form 

of soil clods (Conventional) and the upright stubble and straw (Direct Drill). Direct Drill Managed, at 

times of cultivation, was shown to support low T. tenuis activity, thought to be due to increased 

landscape homogeneity with decreased straw and upright stubble abundance and lack of soil clod 

formation (Section 5.1.6.1.2. & Section 5.1.6.1.3.). To explore T. tenuis interaction with the landscape 

provided at cultivation in greater depth, it was useful to replicate the field habitats for the different 

cultivation intensities in a controlled experiment. 

9.2. Aims and Specific Objections 

9.2.1. Aims 

This experiment was designed specifically to address Research Aim 2 (Section 1.2., Page 2). 

2. Identify any differences in extended phenotypes of T. tenuis within tillage practices, e.g. web 

dimensions and bridge thread length. 

 

9.2.2. Specific Objectives 

• Assess T. tenuis performance by measuring size and location of extended phenotypes and 

quantify bridging in the different landscape heterogeneity created by replicating primary and 

secondary cultivation of the different tillage intensities. 

• Analyse whether body size of T. tenuis influences activity. 

9.3. Methodology 

This experiment used the mesocosms described in Chapter Eight. As noted in Section 7.4.2.1, all 

contents apart from the soil was cleared. S. avenae and T. tenuis were removed along with landscape 

features in H. vulgare, upright stubble and straw mass. 
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9.3.1. Primary Cultivation 

To produce a surface that mimicked the field cultivations of Conventional and Direct Drill Managed, 

thought was given of how to represent the conditions left after the cultivators, within a mesocosm 

setting (Section 3.1.3.4.). The soil in the Conventional and Direct Drill Managed mesocosms (used in 

the previous Chapter) were cultivated once with a soil corer to replicate primary cultivation of the 

field (Section 8.3.). To recreate the action of the sub-soiler, the same process was used as in the 

mesocosms growing H. vulgare, an inverted soil corer, was penetrated to 25 cm for Conventional and 

20 cm for Direct Drill Managed (Section 8.3.).  

The twenty-nine soil clods, for Conventional, and twenty-six, for Direct Drill Managed, were formed 

with the garden trowel and by hand after cultivation with the soil corer (Section 7.4.2.2.). Greater clod 

heights were found within the Conventional area than Direct Drill Managed, due to greater depth of 

soil cultivation (Figure 5.1.3, Section 5.1.5.1.2., Page 91). 

The corresponding mean straw mass, and total upright stubble was calculated from the sample plots 

of H. vulgare, 2017 / 2018 season after primary cultivation (Figure 9.1a & b) (Table 5.1.1., Section 

5.1.3.1., Page 82). The upright stubble of Direct Drill had not been disturbed by the cultivator in the 

field and therefore remained in the crop rows (Section 3.1.3.4.). This was important to replicate in the 

mesocosms as discussed previously in the fieldwork within the time of primary cultivation, the 

orientation of the upright stubble could be key to promoting attachment to the upright stubble and 

subsequent web-building (Section 5.1.6.1.2.). 

 

 

 

 

Figure 9.1a - c: Set-up of mesocosm of primary cultivation for effects of primary and secondary cultivation on T. tenuis 

behaviour under controlled experimental conditions: a mesocosm experiment. a = Conventional. b = Direct Drill Managed. 

c = Direct Drill. 

a b c 
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Three adult female T. tenuis were measured, had mass determined and were placed into each 

mesocosm in the same manner as previous glasshouse trials (Section 7.2.1. & Section 8.3.). Three 

animals equate to the mean number of T. tenuis recorded per unit area of H. vulgare 2017 / 2018, 

twenty-four hours after primary cultivation (Table 5.1.1.). 

The mesocosms were set as in Figure 9.2a - c with random placement as identified for previous 

mesocosm trials (Random.Org, 2018) (Figure 8.3., Section 8.3., Page 228). Plastic film, 60 µm thick, 

was attached over the surface with the use of tape, (3M Venture™ 921CW All Weather Translucent 

Tape) with care given to ensure no plastic creased or was damaged. One hundred pin prick-sized holes 

were zig-zagged across the surface to provide ventilation (Figure 9.2a-c). The trial ran for four days to 

ensure T. tenuis could explore their new environment and allow a web to be constructed in the best 

location. Extending the trial beyond four days was deemed irrelevant as all initial potential web 

construction should have commenced (Benjamin & Zschokke, 2003; Blackledge et al., 2009; Segoli et 

al., 2004; Zschokke & Herberstein, 2005). 

 

9.3.2. Secondary Cultivation 

This trial was set up in a similar way as the mesocosms of primary cultivation (Section 9.3.1.) but using 

similarities of variables relating to secondary cultivation. Data for variables relate to measurements 

collected from H. vulgare of the 2017 / 2018 season after secondary cultivation (Table 5.1.1.).  

No change occurred in the Direct Drill mesocosms to replicate zero-till of the field (Figure 9.3c). All 

straw and upright stubble was removed from Conventional and Direct Drill Managed mesocosms. The 

mesocosms were cleaned of T. tenuis activity in thread spinning and web-building, extra care was 

taken to check the Direct Drill mesocosms for webs without disturbing the integrity of the landscape 

of the mesocosm (Section 7.4.2.1.). 

a b c 

Figure 9.2a - c: Set-up of mesocosm primary cultivation for effects of primary and secondary cultivation on T. tenuis 

behaviour under controlled experimental conditions: a mesocosm experiment. a = Random sequence of Mesocosms. 

b = Direct Drill Managed enclosed. C = Direct Drill enclosed. 
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Soil cultivation was carried out to mimic the disc harrow of secondary cultivation as in mesocosms 

which grew H. vulgare in the previous experiment (Section 8.3.). The disc harrow was simulated again 

with the use of a Saxton™ TCT Circular Wood Saw Blade (300 mm x 30 x 60 teeth) at a depth of 2 cm.  

Twenty-nine clods were incorporated for Conventional and twenty-four for Direct Drill Managed 

(Section 7.4.2.2. & Figure 9.3a & b). Straw mass and total upright stubble incorporated into 

Conventional and Direct Drill Managed related to field data collected from this sampling period in 

2017 / 2018 season (Figure 5.1.1. & Figure 9.3a-c). Three female T. tenuis (relating to mean number 

found in the field in this sampling period) were collected from g-vac and placed into the terrarium for 

twenty-four hours (Section 7.2.1.). T. tenuis were measured as in all previous glasshouse trials (Section 

7.2.2., Section 8.3. & Section 9.3.1.) and then placed into each habitat. The trial ran for four days.  

 

 

 

 

 

 

 

 

 

 

 

9.4. Data Collection 

Data collected included anchor point height and material used for attachment, web dimensions of 

support thread length and web area, and whether the web was occupied. These measurements 

related to T. tenuis activity, as discussed in the fieldwork methodology of Table 5.1.2. (Section 5.1.3.2., 

Page 83). As the focus of this trial was T. tenuis web-building activity in the landscape created after 

primary and secondary cultivation, anchor point height was measured against materials of the 

mesocosm that had become attachment sites. Temperature was taken to the nearest 0.1 °C with a 

Portable Pen Digital Thermometer WT-1B®immediately after the ‘unveiling’ of each mesocosm, taking 

care not to disrupt any web-building activity. 

a b 

c Figure 9.3a-c: Set-up of mesocosm 

secondary cultivation for effects of 

primary and secondary cultivation on T. 

tenuis behaviour under controlled 

experimental conditions: a mesocosm 

experiment. a = Conventional. b = Direct 

Drill Managed. c = Direct Drill. 
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9.5. Statistical Analysis  

Statistical analysis was carried out with Minitab18©. A Principal Component Analysis (PCA) was run to 

examine the power of variables on the results and associations formed. The two variables that were 

noted to have had the greater influence on the data, from the first and second component, were 

identified and placed into a scatter plot (Hawkins, 2014; Khan, 2013). 

All data in this glasshouse experiment (primary and secondary) was found to be normal through 

normality testing (Section 5.1.4.1.). One-way ANOVA was applied to understand if any significant 

difference existed between the means of independent variables measured from the three different 

areas of soil tillage intensities (Conventional, Direct Drill Managed and Direct Drill) (Zuur et al., 2007). 

As data was tested as normal, the multiple comparison test used was Tukey. Pearson’s (r) testing was 

applied for correlation analysis.  

Multiple regression models were built using the stepwise backward elimination method discussed 

previously in Section 5.1.4.2. & Section 6.4. The regression model identified which continuous and 

categorical predictors held significant influence over a measured response (anchor point height, 

thread length and web area) (Wheater et al., 2011). Steps were analysed to understand which 

predictors were removed from the model and how this strengthened the model’s reliability. The R2 

(adj) value is reported to identify how well the data of the response fits the values given within the 

model (Bass, 2007; Khan, 2013).  

For both multiple regression and two-way ANOVA, the Variance Inflation Factors (VIF) and standard 

error of the coefficient was considered. A term with a VIF >5 was removed from the model as this 

indicated multicollinearity within the term, where a term can be readily predicted from use of the 

other predictors in the model. This can disrupt any real influence on the response. The standard error 

of the coefficient was evaluated, a high value signalled high deviation was present from the coefficient, 

this lowering the validity of the coefficient (Hawkins, 2014; Khan, 2013). 

9.6. Results 

All anchor point heights and thread lengths relate to support threads that were within webs. Only 

eight bridge threads were identified in the primary cultivation trial and six with the secondary 

cultivation trial and held no significance between soil tillage intensities. 
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9.6.1. Summary of Results 

Primary Cultivation 

• Mean abdomen length and mean soil clod height influenced the variance of data in different 

directions in the first principal component of the PCA (Figure 9.4). 

• Mean abdomen length, straw mass, and straw and upright stubble as attachment materials, 

influenced anchor point height (Figure 9.6. & Table 9.2.). Direct Drill held the significantly higher 

anchor point height and longer thread length (Figure 9.5. & Figure 9.7.).   

• Thread length was significantly positively correlated to mean cephalothorax length (Table 9.3.).  

Secondary Cultivation 

• Number of upright stubble and temperature held significant positive regression to anchor point 

height within webs (Table 9.5. & Figure 9.9.). Soil and straw, as attachment materials, were 

significantly negative predictors to the response anchor point height (Table 9.5.). 

• Mean web area held the most influence over the data within the Conventional mesocosms. Direct 

Drill mesocosms were affected the most by number of upright stubble (Figure 9.8.).  

• Web area was significantly positively correlated to temperature and mean T. tenuis mass (Table 

9.6.). 
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9.6.2. Primary Cultivation 

 

 

 

 

 Principal 1 Principal 2 

Variance 47.1% 19.7% 

Variables Eigenvalue Eigenvalue 

Mean Abdomen Length (mm) 0.355  

Mean Soil Clod Height (cm) -0.207  

Straw Mass (g)  0.316 

Temperature (°C)  -0.409 

 

Mean soil clod height affected data in the opposite direction to mean abdomen length of T. tenuis, it 

appeared to have had greater influence over the data collected in the Conventional and Direct Drill 

Managed mesocosms than mean abdomen length (Figure 9.4. & Table 9.1.). The opposite was found 

for the data within the Direct Drill mesocosms where mean abdomen length influenced the data away 

from mean soil clod height. Straw mass appeared to have affected the datasets of Direct Drill the most. 

Figure 9.4: PCA of variables measured in primary cultivation along the first two principal components and variables 

correlating to each component. Effects of primary and secondary cultivation on T. tenuis behaviour under controlled 

experimental conditions: a mesocosm experiment. (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). 

 

Table 9.1: The variance in data for primary cultivation explained by principal component 1 and principal component 2 

and associated eigenvalues for the variables which held the most influence within the data in each component. Effects of 

primary and secondary cultivation on T. tenuis behaviour under controlled experimental conditions: a mesocosm 

experiment. 
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Mean anchor point height was significantly higher in the Direct Drill Mesocosms at 4.8 cm compared 

to 2.6 cm for Conventional and 1.9 cm for Direct Drill Managed (Figure 9.5).  

Continuous Categorical Coefficients Standard Error  T P  VIF 

Predictor Predictor  Coefficients     

Mean Abdomen Length (mm)   6.03 1.68 3.60 0.001* 2.03 

Straw Mass (g)   0.01773 0.00794 2.23 0.027* 2.45 

  
Attachment 
Material           

  Soil -1.954 0.506 -3.86 0.001* 2.12 

  Straw -3.705 0.599 -6.19 0.001* 1.85 

  Upright Stubble 2.724 0.709 3.85 0.001* 1.60 

 

 

 
 

 

 

 

 

 

 

Figure 9.5: Mean anchor point height (cm) for soil tillage intensity in primary cultivation. Effects of 

primary and secondary cultivation on T. tenuis behaviour under controlled experimental conditions: a 

mesocosm experiment. (n = 130, P - 0.001). (Conventional = Red, Direct Drill Managed = Blue, Direct 

Drill = Green) Conventional ±s.e.3.604 (n = 35), Direct Drill Managed ±s.e.1.413 (n = 64), Direct Drill 

±s.e.3.70 (n = 41)). (Bars that do not share a letter are significantly different at the p<0.05 level). 

Table 9.2. Significant predictors to the response anchor point height (cm) in primary cultivation. Effects of primary and 

secondary cultivation on T. tenuis behaviour under controlled experimental conditions: a mesocosm experiment. (n = 130, 

R-sq - 61.36%). (* relates to significant with α <0.05). 

Figure 9.6: Matrix plot with quadratic regression and intercept fitted for anchor point height (cm) with mean abdomen 

length (mm) in primary cultivation. Effects of primary and secondary cultivation on T. tenuis behaviour under controlled 

experimental conditions. (n = 130, R-sq - 61.36%). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). 
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The continuous predictors of mean T. tenuis abdomen length and straw mass significantly positively 

influenced the response (Table 9.2.).  The categorical predictor of attachment material of the anchor 

point further significantly influenced anchor point height described for the materials of straw, upright 

stubble, and soil. Straw and soil a significant negative predictor. A shallow and wide parabola exists 

for mean abdomen length for Direct Drill and Conventional, identifying a general trend where a small 

range of anchor point heights were recorded over a large range of values for the x variables (Figure 

9.6.). For the mean T. tenuis abdomen length from the Conventional mesocosms, the parabola is open 

downwards giving a maximum vertex (anchor point height) reached at an abdomen length of 1.5 mm.  

Straw mass held the same value within each soil tillage intensity respectively, thus was not present on 

the graph. 
 

 

 

 

 

 

 

 

 

 

 
Direct Drill mesocosms showed a significantly longer mean thread length, 3.4 mm greater than 

Conventional and 12.5 mm greater than Direct Drill Managed (Figure 9.7). Direct Drill Managed mean 

thread length was significantly shorter than Direct Drill. 

 (r) P df 

Mean Abdomen Length (mm) 0.320 0.001* 128 

Mean Cephalothorax Length (mm) 0.277 0.001* 128 

Straw Mass (g) 0.184 0.035* 128 
 

Length of support threads was significantly positively correlated against mean T. tenuis abdomen and 

cephalothorax length placed into the mesocosms, and straw mass incorporated into the mesocosms.  

Figure 9.7: Mean thread length (mm) in primary cultivation. Effects of primary and secondary cultivation on T. tenuis 

behaviour under controlled experimental conditions: a mesocosm experiment. (n = 130, P - 0.005). (Conventional = Red, 

Direct Drill Managed = Blue, Direct Drill = Green) (Conventional ±s.e.8.6670 (n = 35), Direct Drill Managed ±s.e.2.634 

(n = 64), Direct Drill ±s.e.7.722 (n = 41)). (Bars that do not share a letter are significantly different at the p<0.05 level). 

Table 9.3: Correlations of independent variables measured in mesocosm, with the dependant variable thread length (mm) 

in primary cultivation. Effects of primary and secondary cultivation on T. tenuis behaviour under controlled experimental 

conditions: a mesocosm experiment. (n = 130). (* relates to significant with α <0.05). 
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9.6.3. Secondary Cultivation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Principal 1 Principal 2 

Variance 45.6% 35.2% 

Variables Eigenvalue Eigenvalue 

Mean Web Area (mm2) 0.394  

Straw Mass (g) -0.206  

Mean Soil Clod Height (cm)  0.356 

Number of Upright Stubble  -0.435 

 

Data recorded within the Direct Drill mesocosms was affected the greatest by number of upright 

stubble (Figure 9.8. & Table 9.4.). It appears that mean web area held more influence over the data 

recorded within the Conventional mesocosms than mean soil clod height. Straw mass was holding 

influence over the Direct Drill mesocosms more than the other two soil tillage intensities. 

Figure 9.8: PCA of variables measured in secondary cultivation along the first two principal components and variables 

correlating to each component. Effects of primary and secondary cultivation on T. tenuis behaviour under controlled 

experimental conditions: a mesocosm experiment. (Conventional = Red, Direct Drill Managed = Blue and Direct Drill = 

Green). 

 
Table 9.4: The variance in data for secondary cultivation explained by principal component 1 and principal component 2 

and associated eigenvalues for the variables which held the most influence within the data in each component. Effects of 

primary and secondary cultivation on T. tenuis behaviour under controlled experimental conditions: a mesocosm 

experiment. 
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Number of upright stubble and temperature were both significantly positive in a regression model 

when the response was anchor point height of support threads (Table 9.5.). The attachment materials 

of soil and straw both held significant negative regression. The weak open upwards parabola for 

Conventional explains the higher anchor point height was established when temperature was not at 

is highest (Figure 9.9.). For Direct Drill, like with Direct Drill Managed, the greater temperature found 

the higher anchor point height, though the regression was weak.  

No graphical representation is found for the predictor of number of upright stubble due to the same 

number of upright stubble placed into each mesocosm representing soil tillage intensity.  

 

Continuous Categorical Coefficients Standard Error  T P VIF 

Predictor Predictor   Coefficients       

Number of Upright Stubble  0.03119 0.00599 5.21 0.001* 2.82 

Temperature (oC)  0.332 0.115 2.89 0.004* 1.17 

 
Attachment 
Material      

 Straw -1.640 0.391 -4.19 0.001* 1.95 

 Soil -1.165 0.274 -4.25 0.001* 1.81 

Table 9.5: Significant predictors to the response anchor point height (cm) in secondary cultivation. Effects of primary 

and secondary cultivation on T. tenuis behaviour under controlled experimental conditions: a mesocosm experiment. 

(n = 230, R-sq - 29.98%). (* relates to significant with α <0.05). 

Figure 9.9: Matrix plot with quadratic regression and intercept fitted for anchor point height (cm) 

with temperature (oC) in secondary cultivation. Effects of primary and secondary cultivation on T. 

tenuis behaviour under controlled experimental conditions: a mesocosm experiment. (n = 230, R-

sq - 29.98%). (Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). 
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Table 9.6: Correlations of independent variables measured in mesocosm, with the dependant variable web area (mm2) in 

secondary cultivation. Effects of primary and secondary cultivation on T. tenuis behaviour under controlled experimental 

conditions: a mesocosm experiment. (n = 41) (* relates to significant with α <0.05). 

 

 

 

Both temperature and mean T. tenuis mass were significantly positively correlated to web area (Table 

9.6.).  

No regression model for thread length or web area could be attained due to extreme values in the 

standard error of the coefficients. 

 

9.7. Discussion 

9.7.1. Primary Cultivation 

T. tenuis abdomen length had a key role in web construction, in design and location within the 

individual mesocosms (Figure 9.4. & Figure 9.6.). The abdomen of T. tenuis is where the spinnerets are 

organised and silk is produced and spun into threads (Saravanan, 2006). When H. vulgare was grown 

in the mesocosms, the larger the abdomen of the female T. tenuis, the more able to exert strain onto 

the thread when it is laid producing a longer stable thread, able to anchor securely at a greater height 

(Brunetta & Craig, 2010; Saravanan, 2006) (Section 8.7.2.). The second, third and fifth-longest mean 

abdomens were randomly placed into the Direct Drill mesocosms, the mesocosms containing the 

greater straw mass (Figure 9.3c., Figure 9.4., Figure 9.6 & Table 9.2.). The increased straw mass on the 

soil surface, provided greater anchor point height potential for threads in Direct Drill than the soil 

clods of the other soil tillage intensities where some soil features were below surface height (Figure 

9.5.). This agreed with Diehl et al. (2013) and Thomson & Hoffmann (2007) who identified that an 

increase in straw mulch led to higher Linyphiidae abundance due to the straw use as a shelter. All 

anchor points connected to straw in Direct Drill were part of a small web concealed by straw, which 

may indicate that T. tenuis was taking refuge with no apparent prey availability (Figure 9.10.). This 

followed the trend measured in the field where straw was used as refugia within primary cultivation 

(Section 5.1.6.1.2.). Therefore, greater anchor point height may not be due to increased abdomen 

length of the female T. tenuis but simply the availability of material used to establish threads.  

  (r) P df 

Mean T. tenuis Mass (g) 0.497 0.001* 39 

Temperature (oC) 0.213 0.001* 39 
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Increased landscape features (straw mass and upright stubble) allowed longer support threads and 

subsequently larger webs to be anchored higher within the Direct Drill Mesocosms (Table 9.3. & Figure 

9.7.). These webs were anchored to the plastic container, as well as the straw and upright stubble. 

The plastic container can be viewed as an extension to the mesocosms where the presence of the 

straw and stubble allowed the container to be utilised further. This supports the idea that landscape 

heterogeneity can increase Linyphiidae silk weaving output through the creation of differing anchor 

points in height and material (Badenhausser et al., 2020; Miyashita et al., 2012; Öberg & Ekbom, 2006; 

Thorbek & Topping, 2005).  Indeed, the limited number of upright stubble and straw mass 

incorporated into the Conventional mesocosms allowed large support threads to be spun at a greater 

height attached from the apex of the stubble to the side of the container (Figure 9.4.). Furthermore, 

two different strata of web anchorage were identified against mean abdomen length in the 

Conventional mesocosms (Figure 9.6.). The T. tenuis with greater abdomen length was found under 

the web attached to upright stubble in Conventional, further referencing the point that larger 

abdomen lengths aid a T. tenuis into ascension. The remaining two T. tenuis in this mesocosm were 

found to be <0.20 mm smaller. Houser et al. (2016), Řezáč & Řezáčová (2019) and Thorbek & Bilde 

(2004) note that female T. tenuis are highly competitive and a small increase in body size can produce 

an act of dominance, utilisation of the upright stubble as the prime web-site for potential prey capture 

when no stimuli of prey was present in the mesocosms.  

Increased flexion from a larger cephalothorax has allowed longer thread lengths to be spun (Huber, 

2004; Prenter et al., 2010) (Table 9.3.). The effect of a larger cephalothorax was viewed in the previous 

glasshouse experiment where S. avenae was incorporated into a growing H. vulgare crop (Section 

8.7.2.). 

Figure 9.10: Sheet web created in the straw and upright stubble of Direct Drill in primary 

cultivation. Effects of primary and secondary cultivation on T. tenuis behaviour under controlled 

experimental conditions: a mesocosm experiment. Lateral view. (Yellow arrow = 21.1 mm). 
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The soil features of the mesocosms, appear to have influenced data recorded in the opposite direction 

than abdomen length (Figure 9.4.) This led to the attachment material of soil holding a significant term 

in influencing anchor point height (Figure 9.5.). T. tenuis as a ‘sit and wait’ predator’ do not forage 

along a soil surface, thus are behaviourally adapted to avoid construction of a web flush with the soil 

surface or within a crevice, opting for a web-site higher within the habitat. This allows aerial prey, that 

fall into webs in a higher degree than ground-dwelling prey, chance to intercept the web (Harwood et 

al., 2003; Harwood & Obrycki, 2005; Pfister et al., 2015) (Section 2.1.3.1.). The result may relate to the 

fact that the mean lowest abdomen length, was incorporated into the Direct Drill Managed mesocosm 

which held the least straw and upright stubble for potential anchor points (Wise 2006). It is likely that 

intra-specific completion, led T. tenuis of smaller mass to create webs in less attractive web-sites 

closer to the soil surface, anchoring threads to soil to avoid cannibalism (Romero & Harwood, 2010; 

Wise, 2006).  

9.7.2. Secondary Cultivation 

Anchor point height was not significant between mesocosms representing soil tillage intensities, 

which was a different result from the time of secondary cultivation in the field (Section 5.1.5.1.3.). This 

was an unusual result as through fieldwork and within the previous mesocosm trial of H. vulgare with 

S. avenae, anchor point showed a significant difference to subtle alterations in landscape complexity 

(Section 5.1.6.1.3. & Section 8.7.). The upright stubble and straw through these earlier trials and in the 

field, were shown to significantly influence anchor point height when the field was cultivated or in 

early growth stages of crop, providing key anchor materials (Harmer et al., 2011; Moya-Laraño, et al., 

2008; Schütt, 1997; Szymkowiak et al., 2007). It appears that in each mesocosm replicating soil tillage 

intensity, the architecture of landscape features was of enough intricacy to provide an abundance of 

attachment opportunities at various heights (Table 9.5.). Aaserud (2005), Dennis et al. (2001) and 

Glover (2013) describe that an attractive web-site is formed from an abundance of possible anchor 

sites, the material form of which is of less importance if an abundance exists.  

Soil features appear to have more influence over T. tenuis web-building within the secondary 

cultivation, than the primary cultivation (Figure 9.11a & b). This suggested an increase in soil clod 

height created a suitable habitat for T. tenuis, allowing a greater height difference to be gained 

between soil surface and top of soil clod (Table 9.5.). Sunderland & Samu (2000) identified that T. 

tenuis occupied holes in the soil up to 9.5 cm in diameter. Conventional held the greater mean soil 

clod height, therefore driving the placement of mean soil clod height in principal component one 

(Figure 9.8). The difference in height may allow T. tenuis to construct a web, to occupy a solitary space 

and be at a suitable height above the surface to allow for ‘sit and wait’ predation (Alderweireldt, 1994; 
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Bell et al., 2001; Harwood et al., 2003; Harwood & Obrycki, 2005). Interestingly, straw held a negative 

coefficient in the regression model explaining the response of anchor point height (Table 9.5.). This is 

an unusual result, with at times of fieldwork the straw residue increasing height of anchorage by 

providing an additional layer (Section 5.1.6.1.). This was due to negative values of anchor point heights 

attached to straw found in the Conventional mesocosms, straw residue naturally falling into crevices 

revealed by the formation of the soil clods. Campbell et al. (2020) and Pfingstmann et al. (2019) note 

that Linyphiidae are highly sensitive to difference in material composition for anchorage. T. tenuis 

perhaps choosing to attach to soil and straw to manipulate spinning silk in favourable orientations, 

straw residue noted to offer extensions into an area. 

 

 

Unlike primary cultivation mesocosms, the greatest mean web area was identified in Direct Drill 

Managed and Conventional (Figure 9.8.). Smaller webs were created in the Direct Drill mesocosms of 

secondary cultivation, the majority at the base of the upright stubble attached to the surrounding 

straw. This agrees with web creation identified in field Direct Drill plots (Section 5.1.5.1.4.). In the 

Conventional and Direct Drill Managed mesocosms, the materials available for anchorage were 

observed to be of a greater distance apart, which may have resulted in the larger webs. The thread 

length increased as T. tenuis spun thread from one potential anchor point to the next (Rusch et al., 

2016; Schellhorn et al., 2014). This explained the greater mass of straw in Direct Drill pulling data away 

from the web area (Figure 9.8.). The opportunity to allow webs of a greater area to be spun may be 

beneficial in an agricultural setting. The larger surface area to ensnare ground-dwelling prey may assist 

Linyphiidae to remain in-situ until a crop is seeded (Birhofer et al., 2008; Jansen et al., 2013; Oxbrough 

et al., 2006) 

Figure 9.11a & b: Sheet webs created in between soil clods of Conventional mesocosms in secondary cultivation. Effects of 

primary and secondary cultivation on T. tenuis behaviour under controlled experimental conditions: a mesocosm 

experiment. Elevated view. (a: Yellow arrow 33.3 = mm b: Yellow arrow = 30.2 mm). 

a b 
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The absence of larger T. tenuis webs amongst the soil clods of the primary mesocosm, may have been 

due to the short mean abdomen length placed into the Direct Drill Managed mesocosms, preventing 

long threads being strained correctly to yield a high abundance of silk at one time (De Meester & 

Bonte, 2010; Vollrath et al., 2001). Level of fitness, not measured, for T. tenuis incorporated in both 

mesocosm trials may correspond to whether a T. tenuis is able to spin a large web between anchor 

points of a certain distance (Vollrath et al., 2001).  

There was no significance identified between thread lengths and web area between the mesocosms 

of differing soil intensity. It appears that in each secondary cultivation simulation; T. tenuis were 

spinning webs of differing dimensions in a multitude of spatial orientations available. In Direct Drill 

Managed, five threads ˂ 10 mm were identified in between a small amount of upright stubble within 

the mesocosm. These were identified as rappel threads and exhibited possible web-site searching by 

a T. tenuis (Bonte et al., 2008; De Meester & Bonte, 2010). It may be possible that the upright stubble 

was a preferred web-site, though after exploration it was viewed that the limited stubble present 

could not support a web (Horváth et al., 2015; Rusch et al, 2016). No webs were observed solely 

amongst the upright stubble of the Conventional and Direct Drill Managed mesocosms of secondary 

cultivation. The energy of rappelling here appears to have been at a cost with no web established 

(Bonte, 2013). Knight & Vollrath (2002) and Kraft & Cook (2012) discuss webs spun with ease are that 

which fluidly glide across material of similar height and structure. 

Increased mass of T. tenuis was an indicator of positive nutritional content before the T. tenuis was 

incorporated. This may mean that the T. tenuis had a higher degree of energy at its disposal to produce 

a larger web (Ford, 1977; Harwood et al., 2003; Segoli et al., 2004) (Table 9.6.). T. tenuis mass was not 

significantly different amongst the mesocosms. It was observed that the mean higher mass was placed 

into a Conventional and a Direct Drill Managed mesocosms where the large webs were spun amongst 

the soil clods. It may have been that the energy for increased nutritional content, allowed webs to be 

spun in a landscape lacking in anchor point sites. Thread length was required to yield more strength, 

as stretched in distance between anchor points (Blackledge & Eliason, 2007; De Meester & Bonte, 

2010; Harwood et al., 2003; Vollrath et al., 2001). 

Temperature recorded ranged from 9 to 12 oC, it appears that a small difference in temperature 

affected the thread length that was spun and the anchor point height of the thread (Table 9.5., Table 

9.6. & Figure 9.9.). Hesselberg & Vollrath (2012) and Shehata et al. (2019) identified that a small 

increase in temperature can ease the strain required for major ampullate silk to be extended to the 

correct tension for proteins to dis-form and organise into functional units (Craig, 2003; Tokareva et 

al., 2014) (Figure 2.3a, Section 2.1.2.1., Page 10). Additionally, Japyassú & Laland (2017), Stenchly et 



268 
 

al. (2011) and Tokareva et al. (2014) discuss that, if a greater yield of piriform silk can be obtained, 

attachment discs, which anchor thread to substrate, can be laid in a greater thickness (Figure 2.3c, 

Section 2.1.2.1., Page 11). Thus, the anchor point of the thread will be attached with increased 

security, allowing longer silk to be held tightly at a greater height. Temperature has been shown to 

ease energy commitment required to yield piriform silk (Craig, 2003; Humphreys, 1991; Vollrath et al., 

2001; Zhang & Tso, 2016).  

 

9.8. Final Discussion - Effects of Primary and Secondary Cultivation on T. tenuis Behaviour 

Under Controlled Experimental Conditions: A Mesocosm Experiment 

The clear difference was the material favoured by T. tenuis for anchor points, and subsequent web 

construction. In primary cultivation, the increased number of upright stubble and straw mass enabled 

the highest T. tenuis activity in web construction, to be in the Direct Drill mesocosms. For the 

secondary cultivation trial, the soil physical features in the clods provided the material for most anchor 

points. Both points meet the research aim of this Chapter (Section 9.2.1.).  

The running themes through both cultivation mesocosms, identify that the different tilled 

environments provide different landscape heterogeneity, in the materials available for anchor points. 

If appropriate materials are provided for successful web construction, T. tenuis of differing dimensions 

use material provided in different ways. This may be due to low nutritional content or temperature 

which may alter ability to extend silk to the correct degree to lay a support thread from one potential 

anchor point to the next.  
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Chapter Ten 

 

10.0. T. tenuis Behaviour with Different Soil Tillage Intensities and Different Abundances of 

Cereal Aphididae: A Microcosm Experiment 

  

10.1. Introduction 

 

To support information gained from field sampling, it was deemed beneficial to carry out an 

experiment on T. tenuis behaviour that incorporated different densities of a cereal Aphididae. Within 

early and later growth stages for H. vulgare, 2017 / 2018 season of fieldwork, it was seen that web-

building may have been driven by increased prey density in all soil tillage intensities (Table 5.1.1., 

Section 5.1.3.1., Page 82, Section 5.1.6.2.1. & Section 5.1.6.2.2.). Therefore, this trial was set-up to 

investigate whether T. tenuis activity is influenced to a higher degree by cereal Aphididae population 

size, or the level of intensity of soil tillage applied. In this experiment, T. aestivum was used as the 

cereal crop (Section 7.5.2.1.).  

 

10.2. Aims and Specific Objectives 

 

10.2.1. Aims 

 

This experiment was set-up to address Research Aims 1, 2, and 3 (Section 1.2., Page 2). 

1. Identify the potential biological control by T. tenuis of Aphididae within different intensities 

of tillage in an arable crop.  

2. Identify any differences in extended phenotypes of T. tenuis within tillage practices, e.g. web 

dimensions and bridge thread length. 

3. Understand whether T. tenuis behaviour is stimulated by the presence of Aphididae. 

 

 

10.2.2. Specific Objectives 

Specific objectives were to:  

• Quantify M. dirhodum abundance in each microcosm to explore reproductive fitness of M. 

dirhodum in the microcosms mimicking differing intensities of soil tillage.  

• Measure T. tenuis behaviour in web-building and rappelling and relate this to M. dirhodum 

density and location. 

• Observe T. tenuis prey capture ability by measuring M. dirhodum abundance in webs.  

• Analyse if T. tenuis body dimensions affect its web-building and bridging behaviour. 
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10.3. Methodology 

 

To permit observations at an appropriate scale, smaller arenas were desirable. Therefore mesocosms 

(Chapter 8.0. & Chapter 9.0.) were replaced with more appropriate microcosms. These were created 

using flowerpots with dimensions of 19 cm circumference and 15 cm height. Soil used was Hanslope 

series, collected from the corresponding soil tillage areas of the NIAB fields and added to a height of 

11.5 cm in the microcosms before any simulated tillage was applied (Section 3.1.3.4.).  

Note, T. aestivum was chosen for this experiment as both T. aestivum and H. vulgare were examined 

in the field. However, due to similarities re T. tenuis behaviour, only fieldwork relating to H. vulgare 

has been presented (Section 7.5.2.1.). 

Soil tillage was carried out on Conventional and Direct Drill Managed microcosms with small 

equipment (trowel and small domestic rotating disc) and applied twice at different depths to simulate 

primary (10 cm) and secondary cultivations (8 cm) (Section 3.1.3.4.). Furrows were made after 

simulating tillage, of the dimensions corresponding to fieldwork of T. aestivum 2017 / 2018 season 

after secondary cultivation and T. aestivum seeds drilled. Furrows were created after the soil had been 

tilled (Figure 10.1.).  

 

 

 

 

 

 

Straw and stubble corresponding to data collected in T. aestivum 2017 / 2018 season GS 11 - GS 15 of 

the different tilled areas were incorporated into the pots (Figure 10.2.). T. aestivum used was 

FrontierLTD Cordinally™, seeds were collected from the NIAB trial field in the 2016 / 2017 season and 

dressed with Redigo Pro® (Bayer), a triazole fungicide with active substances of prothioconazole and 

tebuconazole.   Seeding was 15 cm apart horizontally, and 2 cm apart vertically, in rows, as used in the 

field. The experiment was set up in August 2018. 

Figure 10.1: Furrows implemented in microcosms after 

secondary tillage and seeds have been drilled. T. tenuis 

behaviour with different soil tillage intensities and 

different abundances of cereal Aphididae: a microcosm 

experiment. Top Row = Direct Drill. Middle Row = 

Conventional. Bottom Row = Direct Drill Managed.
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The experiment ran until one T. aestivum plant within a microcosm reached 40 cm in height (GS 41 - 

GS 45). T. aestivum has a slow growth rate compared to H. vulgare and anthesis would not have 

occurred until the following spring after a period of over-wintering (AHDB, 2018). Data from fieldwork 

of T. aestivum in 2016 / 2017 and 2017 / 2018 seasons showed no significant differences in T. tenuis 

activity with the different tillage areas after a height of 40 cm. It was therefore determined that data 

collected after a height of 40 cm would add no further information to this investigation. 

Thin polythene sheet (60 µm thick) was wrapped around the outside of the pots and attached 

externally to bamboo canes (Figure 10.3. & Figure 10.4.). The sheet reached 70 cm above the top of 

the pot to allow for adequate T. aestivum growth. An upper surface was created with a fine mesh 

(holes 0.28 mm x 0.79 mm), preventing movement of Aphididae out of the microcosm, if alate morphs 

were produced. A small window (5 x 5 cm) was inserted into the plastic to allow T. tenuis to be 

incorporated into the centre of the microcosm and Aphididae to be placed under the emerging crop. 

Corresponding to data collected in a T. aestivum 1m2 sample at GS 11 - GS 15, three female T. tenuis 

were placed into each microcosm, after a period of twenty-four hours in the terrarium and body 

dimensions measured (Section 7.2.1 & Section 7.2.2.). 

Microcosms were maintained in a glasshouse, but an irrigation system was not deemed necessary due 

to their small habitats. A plant tray, kept watered to the level of the base of the pot, was sufficient to 

maintain soil moisture in the correct parameters (Figure 10.4., Section 2.2.2. & Section 8.3.). 

 

a b 

c 

Figure 10.2a - c: Addition of straw and upright stubble in microcosms. T. tenuis behaviour 
with different soil tillage intensities and different abundances of cereal Aphididae: a 
microcosm experiment. a = Conventional. b = Direct Drill Managed. c = Direct Drill. 
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As with the mesocosm experiment incorporating S. avenae, Aphididae nymphs had masses 

determined on small pieces of pre-weighed T. aestivum and placed into the microcosms after one 

plant had emerged (GS 21) in one microcosm mimicking each soil tillage intensity (Section 7.2.4. & 

Section 8.3.). The piece of T. aestivum was laid next to the highest plant emerging to give each M. 

dirhodum nymph the greater chance of survival (Bonkowski et al., 2001). 

Twenty-seven microcosms were prepared, nine relating to each soil tillage intensity. Three 

microcosms from each tillage had no M. dirhodum, three had two M. dirhodum and three had six M. 

dirhodum nymphs incorporated (Figure 10.5a & b & Section 7.5.2.2.). The numbers one to twenty-

seven were placed into a random number generator to identify a sequence (Random.Org, 2018). The 

microcosms were placed into that sequence on the workbench from left to right (Figure 10.5a & b).  

 

Figure 10.3: Direct Drill microcosm with polythene. T. tenuis 

behaviour with different soil tillage intensities and different 

abundances of cereal Aphididae: a microcosm experiment. 

Figure 10.4: Set-up of T. tenuis behaviour with different 

soil tillage intensities and different abundances of 

cereal Aphididae: a microcosm experiment. 

Figure 10.5a & b: Schematic diagram showing arrangement of T. tenuis behaviour with different soil tillage intensities 

and different abundances of cereal Aphididae: a microcosm experiment. a = Soil tillage intensity. b = Number of M. 

dirhdoum nymphs placed into each microcosm at the start of the trial. (Conventional = Red, Direct Drill Managed = Blue, 

Direct Drill = Green). 

a 

b 
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10.4. Data Collection 

All measurements were recorded at the end of the experiment when one T. aestivum plant in each 

soil tillage intensity reached a height of 40 cm. Data collection followed the pattern of the previous 

glasshouse experiments and fieldwork with thread length to the nearest 0.1 mm and height of anchor 

point to the nearest 0.1 cm measured (Table 5.1.2., Section 5.1.3.2., Page 83, Chapter 8.0. & Chapter 

9.0.). Complex web structures were divided into shapes for area calculation using Heron’s formula 

(Section 4.3.4.). Web occupation was recorded to assess web-site selection. Number of M. dirhodum 

nymphs and adults were counted on the crop to establish fecundity. Webs were analysed for M. 

dirhodum presence, adult and nymph, and exuviae identified which sought to analyse prey capture 

ability of T. tenuis in each microcosm. Temperature of microcosms was recorded every seven days to 

the nearest 0.1 °C with a Portable Pen Digital Thermometer WT-1B™. Mean temperature was 

calculated for each microcosm. 

10.5. Statistical Analysis 

A PCA was run to examine the association between variables and where the most influence lay in the 

dataset. The first two principal components are reported (Bass, 2007; Khan, 2013).  

After normality testing and analysing pattern of distribution with a histogram and probability plot, the 

data was concluded as non-normal (Section 5.1.4.1.). Therefore two-way rank ANOVAs assessed 

differences in means of variables measured within the different treatments of soil, the anchor point 

attachment material utilised and Aphididae abundance incorporated into the microcosms (Hawkins, 

2014; Zuur et al., 2007). FCSTats V2_1a© was used to find significance with Dunn’s post-hoc test 

(Wheater & Cook, 2000). Bonferroni post-hoc test on the rank data, run on Mintab18©, found the 

letters to represent the significance (Section 5.1.4.2.). Spearman’s Rank (Rho) correlation examined 

whether a significant, positive or negative, relationship existed between variables measured when 

normality was not present. Software used was Minitab18© (Bass, 2007; Wheater et al., 2011). 

A stepwise backwards method was utilised to create multiple regression models, in Minitab18©, 

analysing significance in the independent variables to the response of dependant variables recorded 

(anchor point height, thread length and web area). The formation of this regression model followed 

that created in Section 6.4. for BYDV occurrence in the field. Significance was gained at α <0.05. 

Associated statistics were reviewed to assess the model’s validity (R2(adj), VIF, standard error of co-

effcients and F - value), as with previous fieldwork and experimental chapters (Section 5.1.4.2., Section 

6.4. & Section 8.4.). Parabolas were established in matrix plots. Multiple regression was further used 

to understand the significant predictors to the response variable mean mass of M. dirhodum nymphs 

added into microcosms, outside of soil tillage intensity  (Bass, 2007; Khan, 2013; Wheater et al., 2011).  
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10.6. Results 

Results are split into two main sections, firstly data collected after the germination of T. aestivum 

(signified as GS 21), before M. dirhodum nymphs were incorporated, and secondly at the end of the 

experiment when the growth of T. aestivum reached a height of 40 cm within a microcosm 

representing each soil tillage intensity. This was to assess T. tenuis early predatory behaviour before 

prey was incorporated into the microcosm. 

The results follow the dependant variables measured (anchor point height, thread length and web 

area) which express T. tenuis activity within the microcosms. The anchor point heights and thread 

lengths represented within these results relate to support threads (threads inside webs) only. This is 

because, before the addition of M. dirhodum, bridge threads were only identified in the microcosms 

of Conventional tillage. At the end of the experiment, five bridge threads were identified (three in 

Direct Drill Managed and two in Conventional). This data was removed from the results. 

The interaction plots, for the two-way rank ANOVAs, displaying the response of anchor point height 

with the categorical factor of attachment material for the anchor point, was run twice. Firstly, with 

the additional categorical factor of soil tillage intensity and secondly with the categorical factor of 

number of M. dirhodum nymphs placed into the microcosms at the beginning of the experiment (zero, 

two and six). This was to understand if the number of prey within the microcosm affected the height 

at which a material was used as an anchor point, alongside analysing the use of attachment materials 

within the microcosms of differing soil tillage intensities. 

In the multiple regression models, the data was categorised by the number of M. dirhodum placed 

into the microcosms at the start of the experiment. Soil tillage intensity was represented by the 

features of landscape heterogeneity within each soil tillage microcosm, number of upright stubble, 

straw mass, upright stubble height and furrow dimensions. The model, therefore, represents both 

categorical factors of soil tillage intensity and number of M. dirhodum nymphs added. T. tenuis body 

dimensions (abdomen length, cephalothorax length and mass) and plant height from each microcosm 

were incorporated as means into the model (Section 5.1.4.2. & Section 6.4.). 

 

10.6.1. Summary of Results 

After Germination (GS 21) and Before the Addition of M. dirhodum 

• Upright stubble, attachment material, within the Direct Drill and Direct Drill Managed tillage held 

a significantly higher mean rank anchor point height than found attached to plant and soil in each 

soil tillage intensity (Figure 10.6.). 
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After Addition of M. dirhodum and End of Trial 

• Significantly higher mean rank anchor point was in Direct Drill microcosms, with two M. dirhodum 

added (Figure 10.8.). Upright stubble, attachment material, when two M. dirhodum were added 

held the significantly higher mean rank anchor point height (Figure 10.10.).  

• Number of M. dirhodum on plant was a significant predictor to mean mass of M. dirhodum nymphs 

(Table 10.12.). Anchor point height was higher when adult M. dirhodum numbers were low for two 

M. dirhodum (Figure 10.11.). 

• Significant lower mean rank anchor point height with zero M. dirhodum was found in Conventional 

tillage (Figure 10.8.).  

• Anchor point height was significantly positively correlated to number of adult and nymph M. 

dirhodum recorded within web and on plant (Table 10.7.). 

• Mean rank thread length was significantly longer in Conventional and with six M. dirhodum and 

Direct Drill with two M. dirhodum than for zero M. dirhodum of all soil tillage intensities (Figure 

10.12.). 

• Direct Drill with two M. dirhodum captured the greater number of nymphs (Figure 10.7.).  

• Mean abdomen length was significantly positively correlated to thread length (Table 10.10.). Mean 

T. tenuis mass was significant to the response mean mass of M. dirhodum nymphs (Table 10.12.). 

• Lower anchor point heights occurred when three T. tenuis occupied webs than two (Figure 10.11.). 

• Mean abdomen length was significantly positively correlated to anchor point height (Table 10.7.). 

• Thread lengths increased as more Aphididae exuviae entered webs (Figure 10.13.). Thread length 

and web area were significantly positively correlated to number of Aphididae exuviae found in the 

web and number of nymph M. dirhodum recorded in web (Table 10.10. & Table 10.11.). 

• Thread length increased when a lower number of adult M. dirhodum were recorded on plant with 

two M. dirhodum incorporated (Figure 10.13.). 

• Thread length was positively significantly correlated to temperature (Table 10.10.). For two M. 

dirhodum, anchor point height generally decreased as temperature increased (Figure 10.11.). 

• Number of plants was positively correlated to thread length and web area (Table 10.10. & Table 

10.11.). Number of plants influenced the PCA in the opposite direction than number of nymph M. 

dirhodum within the web (Figure 10.7.). 

• Six M. dirhodum held similar anchor point height when mean plant height was at the lower and 

higher height (Figure 10.11.). 

• Number of adult M. dirhodum on plant held greater influence than nymphs on plant. Number of 

nymphs in web influenced data greater than adults in web (Figure 10.7. & Figure 10.11). 

• Mean cephalothorax length was significantly negatively correlated to thread length (Table 10.10.). 



276 
 

10.6.2. After Germination (GS 21) and Before the Addition of M. dirhodum 

 

 

 

 

 

 

 

 

There was a significant difference for the interaction between the mean rank anchor point height, 

attachment material used and soil tillage intensity (Figure 10.6. & Table 10.1.). Mean rank anchor point 

height for Direct Drill and Direct Drill Managed attached to upright stubble was significantly higher 

than the mean rank anchor point height measured attached to the T. aestivum plant and soil within 

all three different soil tillage intensities. Significant difference in mean rank anchor point existed 

between the attachment material of upright stubble within Conventional and the material of soil for 

each soil tillage intensity.  

Straw was not included in the model due no anchor points attached to this material within the 

Conventional mesocosms. 

 

Categorical Predictor df H P 

Soil Tillage Intensity 2 9.762 0.007* 

Anchor Point Attachment Material 2 0.773 0.679 

Interaction: Soil Tillage Intensity * Anchor Point Attachment Material 4 42.915 0.001* 

Table 10.1: Response of rank anchor point height and factors of soil tillage intensity and anchor point attachment material. 

After germination (GS 21) and before the addition of M. dirhodum. T. tenuis behaviour with different soil tillage intensities 

and different abundances of cereal Aphididae: a microcosm experiment (n = 65). (* relates to significant with α <0.05). 

Figure 10.6: Interaction of mean rank anchor point height, soil tillage intensity and anchor point attachment material. 

After germination (GS 21) and before the addition of M. dirhodum. Microcosm experiment of T. tenuis behaviour with 

different soil tillage intensities and different abundances of cereal Aphididae (n = 65). (Conventional = Red, Direct Drill 

Managed = Blue, Direct Drill = Green). (Conventional Plant ±s.e.2.173 (n = 16), Conventional Soil ±s.e.1.438 (n = 15), 

Conventional Upright Stubble ±s.e.6.323 (n = 7), Direct Drill Managed Plant ±s.e.4.002 (n = 2), Direct Drill Managed Soil 

±s.e.4.955 (n = 4), Direct Drill Managed Upright Stubble ±s.e.0 (n = 1), Direct Drill Plant ±s.e.0.997 (n = 2),  Direct Drill Soil 

±s.e.1.673 (n = 9), Direct Drill Upright Stubble ±s.e.2.487 (n = 9)). (Means that do not share the same letter are significantly 

different at the p<0.05 level).  
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10.6.3. After Addition of M. dirhodum and End of Trial 

 

 

 

 

 

 

 Principal 1 Principal 2 

Variance 26.5% 20.3% 

Variables Eigenvalue Eigenvalue 

Number of Adult M. dirhodum on Plant 0.394  

Straw Mass (g) -0.298  

Number of Nymph M. dirhodum in the web  0.365 

Number of Plants  -0.136 
 

The data collected in the Direct Drill microcosms was influenced most by the number of adult M. 

dirhodum on the T. aestivum plant, while for the microcosm of Direct Drill Managed, the number of  

T. aestivum plants affected the data recorded the most (Figure 10.7. & Table 10.2.). In contrast, mean 

thread length appeared to have had the greatest influence on data recorded in the Conventional 

microcosms. 

Table 10.2: The variance in data explained by principal component 1 and principal component 2 and associated 

eigenvalues for the variables which held the most influence within the data in each component. After addition of M. 

dirhodum and end of trial.  T. tenuis behaviour with different soil tillage intensities and different abundances of cereal 

Aphididae: a microcosm experiment. 

Figure 10.7: PCA of variables measured, along the first two principal components and variables correlating to each 

component. After addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities and 

different abundances of cereal Aphididae: a microcosm experiment. (Conventional = Red, Direct Drill Managed = Blue, 

Direct Drill = Green). 
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10.6.3.1. Anchor Point Height 

Categorical Predictor df H P 

Soil Tillage Intensity 2 37.556 0.001* 

Number of Aphididae Placed in Microcosm 2 6.789 0.049* 

Interaction: Soil Tillage Intensity * Number of Aphididae Placed in Microcosm 4 77.857 0.001* 

 

 

 

 

 

 

 

 

 

 

The mean rank anchor point height found in the Direct Drill microcosms with two M. dirhodum added 

at the beginning of the experiment was significantly higher than all other mean rank anchor point 

heights measured in the experiment (Figure 10.8. & Table 10.3.). Conventional with zero M. dirhodum 

showed a significantly lower mean rank anchor point height than that found in the Direct Drill and 

Direct Drill Managed soil tillage with zero M. dirhodum incorporated and when six M. dirhodum were 

placed into Conventional and Direct Drill Managed tillage. 

 

 

 

Table 10.3: Response of rank anchor point height and factors of soil tillage intensity and number of Aphididae placed in 

microcosm. After addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities and 

different abundances of cereal Aphididae: a microcosm experiment (n = 1303). (* relates to significant with α <0.05). 

Figure 10.8: Interaction of mean rank anchor point height, soil tillage intensity and number of Aphididae placed in 

microcosm. After addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities 

and different abundances of cereal Aphididae: a microcosm experiment (n = 1303). (Conventional = Red, Direct Drill 

Managed = Blue, Direct Drill = Green). (Conventional Zero ±s.e.26.424 (n = 168), Conventional Two ±s.e.63.064 (n = 

42), Conventional Six ±s.e.28.242 (n = 178), Direct Drill Managed Zero ±s.e.29.506 (n = 126), Direct Drill Managed Two 

±s.e.36.819 (n = 130), Direct Drill Managed Six ±s.e.24.790 (n = 199), Direct Drill Zero ±s.e.34.731 (n = 130), Direct Drill 

Two ±s.e.23.571 (n = 140), Direct Drill Six ±s.e.25.515 (n = 190). (Means that do not share the same letter are 

significantly different at the p<0.05 level).  
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Categorical Predictor df H P 

Soil Tillage Intensity 2 6.868 0.032* 

Anchor Point Attachment Material 2 147.749 0.001* 

Interaction: Soil Tillage Intensity * Anchor Point Attachment Material 4 50.107 0.028* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean rank anchor point height found on the attachment material of the T. aestivum plant was 

significantly higher within all soil tillage intensities than that found upon the attachment material of 

straw (Figure 10.9. & Table 10.4.). A mean rank anchor point height, found within Conventional tillage, 

was significantly higher than found in the Direct Drill Managed microcosms when the attachment 

material was the T. aestivum plant. Heterogeneity was identified between the mean rank anchor point 

height of Direct Drill Managed and Direct Drill attached to upright stubble. 

 

 

 

 

Figure 10.9: Interaction of mean rank anchor point height, soil tillage intensity and anchor point attachment 

material. After addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities 

and different abundances of cereal Aphididae: a microcosm experiment (n = 541). (Conventional = Red, Direct Drill 

Managed = Blue, Direct Drill = Green). (Conventional Plant ±s.e.13.983 (n = 77), Conventional Straw ±s.e.9.020 (n 

= 25), Conventional Upright Stubble ±s.e.94.650 (n = 4), Direct Drill Managed Plant ±s.e.13.423 (n = 133), Direct 

Drill Managed Straw ±s.e.14.462 (n = 41), Direct Drill Managed Upright Stubble ±s.e.32.512 (n = 20), Direct Drill 

Plant ±s.e.11.559 (n = 132), Direct Drill Straw ±s.e.16.572 (n = 42), Direct Drill Upright Stubble ±s.e.16.591 (n = 67)). 

(Points that do not share the same letter are significantly different at the p<0.05 level). 

 

Table 10.4: Response of rank anchor point height and factors of soil tillage intensity and anchor point attachment 

material. After addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities and 

different abundances of cereal Aphididae: a microcosm experiment (n = 541). (* relates to significant with α <0.05). 
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Categorical Predictor df H P 

Number of Aphididae Placed in Microcosm 2 12.584 0.036* 

Anchor Point Attachment Material 2 129.235 0.001* 

Interaction: Number of Aphididae Placed in Microcosm * Anchor Point 
Attachment Material 

4 77.759 0.010* 

 

 

 

 

 

 

 

 

The shape of the interaction plot of Figure 10.10., follows the similar trend as that represented in 

Figure 10.9. The mean rank anchor point height identified on the attachment material of T. aestivum 

plant was significantly higher with all numbers of M. dirhodum applied, than the mean rank anchor 

point heights calculated attached to the materials of straw (Figure 10.10. & Table 10.5.). When that 

attachment material was upright stubble the mean rank anchor point height was significantly higher 

when two M. dirhodum were placed into the microcosms, compared to when zero and six M. 

dirhodum were incorporated. 

 

 

Figure 10.10: Interaction of mean rank anchor point height, numbers of Aphididae placed in microcosms and anchor point 

attachment material. After addition of M. dirhodum and end of trial.  T. tenuis behaviour with different soil tillage intensities 

and different abundances of cereal Aphididae: a microcosm experiment (n = 541). (Zero Aphididae = Orange, Two Aphididae 

= Purple, Six Aphididae = Pink) (Zero Plant ±s.e.14.182 (n = 107),  Zero Straw ±s.e.9.145 (n = 29), Zero Upright Stubble 

±s.e.14.143 (n = 18), Two Plant ±s.e.15.400 (n = 99), Two Straw ±s.e.9.774 (n = 17), Two Upright Stubble ±s.e.17.304 (n = 

29), Six Plant ±s.e.12.001 (n = 136), Six Straw ±s.e.8.140 (n = 62), Six Upright Stubble ±s.e.9.725 (n = 44)). (Points that do 

not share the same letter are significantly different at the p<0.05 level).  

 

Table 10.5: Response of rank anchor point height and factors of number of Aphididae placed in microcosm and anchor 

point attachment material. After addition of M. dirhodum and end of trial.  T. tenuis behaviour with different soil tillage 

intensities and different abundances of cereal Aphididae: a microcosm experiment (n = 541). (* relates to significant with 

α <0.05). 
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Continuous Coefficients Standard Error  T P VIF 

Predictor   Coefficients (SE Coeff)       

Mean Plant Height (cm) -0.05194   0.0224  7.56  0.001*  2.36 

Number of Adult M. dirhodum on Plant -0.002763 0.000766 3.61 0.001* 2.12 

Number of Nymph M. dirhodum in 
Web 0.1102  0.0124  8.29  0.001*  1.82 

Number of T. tenuis in Web 0.2306 0.0979 2.36 0.019* 1.60 

Temperature (oC) -0.2117 0.0582 -3.64 0.001* 1.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With zero Aphididae within the microcosm, an open upwards parabola was formed with a minimum 

vertex, the lower anchor point height was recorded when the mean plant height was midway within 

the dataset (Figure 10.11. & Table 10.6.). With two Aphididae placed into microcosms, the opposite 

of an upward open parabola resulted, where the greater anchor point height was reached when mean 

plant height was around 19 cm. Similar anchor point heights were recorded when mean plant height 

was at the lower and higher height recorded in microcosms of six M. dirhodum. 

Figure 10.11: Matrix plot with quadratic regression and intercept fitted for anchor point height (cm) with mean plant height 

(cm), number of nymph M. dirhodum in web, number of T. tenuis in web, temperature (°C) and number of Adult M. dirhodum 

on H. vulgare plant. After addition of M. dirhodum and end of trial.  T. tenuis behaviour with different soil tillage intensities 

and different abundances of cereal Aphididae: a microcosm experiment. (Zero Aphididae = Orange, Two Aphididae = Purple, 

Six Aphididae = Pink) (n = 1303, R-sq - 14.81%). 

Table 10.6: Significant predictors to the response anchor point height (cm). After addition of M. dirhodum and end of trial.  

T. tenuis behaviour with different soil tillage intensities and different abundances of cereal Aphididae: a microcosm 

experiment (n = 1303, R-sq - 14.81%). (* relates to significant with α <0.05). 
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Number of M. dirhodum nymphs found within the web, containing six Aphididae, held a small data 

range, visualised by the narrow downward facing parabola. This combined with a maximum vertex,  

identified the higher anchor point was reached when there were low M. dirhodum nymph numbers 

observed within the web. The wide parabola, with a weak trend of quadratic regression, shows 

number of adult M. dirhodum on the plants held little influence over anchor point height with the 

same number of Aphididae incorporated. Number of nymph M. dirhodum found in webs and number 

of adult M. dirhodum found on the plant, were shown to have a strong relationship with anchor point 

height when two Aphididae were added. Trends for both variables was a downward-facing parabola 

with maximum vertexes.  

The highest anchor point height was determined when two T. tenuis were recorded underneath sheet 

webs in microcosms containing zero and two M. dirhodum, identified by maximum vertices. A wide-

open upwards parabola for the microcosm with six M. dirhodum explains a different relationship, 

where the anchor point height peaked when one T. tenuis was recorded underneath a sheet web.  

Opposite relationships were displayed when anchor point height was analysed against temperature 

in the microcosms beginning with zero and two M. dirhodum nymphs. Following the trend, the higher 

anchor point heights of both microcosms occurred at a similar temperature. However, the lower 

anchor point height was found at a higher temperature within the microcosms of two M. dirhodum. 

 (Rho) P n 

Furrow Depth (cm) -0.165 0.001* 1303 

Mean T. tenuis Abdomen Length (mm) 0.082 0.023* 1303 

Mean T. tenuis Cephalothorax Length (mm) -0.061 0.027* 1303 

Mean Upright Stubble Height (cm) 0.163 0.001* 1303 

Number of Adult M. dirhodum in Web 0.224 0.001* 1303 

Number of Adult M. dirhodum on Plant 0.150 0.001* 1303 

Number of Aphididae Exuviae in Web 0.230 0.001* 1303 

Number of Nymph M. dirhodum in Web 0.156 0.001* 1303 

Number of Nymph M. dirhodum on Plant 0.161 0.001* 1303 

Number of Upright Stubble 0.165 0.001* 1303 

Straw Mass (g) 0.163 0.001* 1303 
 

Anchor point height was significantly positively correlated to mean abdomen length of T. tenuis placed 

into the microcosms, mean upright stubble height, number of upright stubble, number of adult and 

nymph M. dirhodum counted in the web and on the plant, number of Aphididae exuviae recorded in 

the T. tenuis webs and straw mass (Table 10.7.). The opposite was found for the variables of mean T. 

tenuis cephalothorax length and furrow depth, which were significantly negatively correlated to 

anchor point heights measured. 

Table 10.7: Correlations of independent variables measured in the microcosms with the dependant variable anchor point 

height (cm). After addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities and 

different abundances of cereal Aphididae: a microcosm experiment. (* relates to significant with α <0.05). 
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10.6.3.2. Thread Length 

Categorical Predictor df H P 

Soil Tillage Intensity 2 8.773 0.001* 

Number of Aphididae Placed in Microcosm 2 37.477 0.001* 

Interaction: Soil Tillage Intensity * Number of Aphididae Placed in Microcosm 4 43.224 0.001* 
 

 

 

 

 

 

 

 

 

For Conventional and Direct Drill Managed, where six M. dirhodum were added, and Direct Drill, with 

two M. dirhodum incorporated, the mean rank thread length identified was significantly longer than 

when zero M. dirhodum were added for all soil tillage intensities. Further the mean rank thread length 

from Direct Drill Managed microcosms for two M. dirhodum was significantly shorter than that 

measured in all other microcosms of soil tillage intensity of two and six M. dirhodum incorporated 

(Figure 10.12. & Table 10.8.).  

 

 

 

 

Figure 10.12: Interaction of mean rank thread length, soil tillage intensity and number of Aphididae placed in the 

microcosms. After addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities 

and different abundances of cereal Aphididae: a microcosm experiment (n = 1278). (Conventional = Red, Direct Drill 

Managed = Blue, Direct Drill = Green). (Conventional Zero ±s.e.2.002 (n = 166), Conventional Two ±s.e.34.283 (n = 42), 

Conventional Six ±s.e.32.447 (n = 161), Direct Drill Managed Zero ±s.e.28.853 (n = 130), Direct Drill Managed Two 

±s.e.30.035 (n = 122), Direct Drill Managed Six ±s.e.24.550 (n = 199), Direct Drill Zero ±s.e.28.695 (n = 130), Direct Drill 

Two ±s.e.28.404 (n = 140), Direct Drill Six ±s.e.26.055 (n = 188). (Means that do not share the same letter are 

significantly different at the p<0.05 level)).  

 

Table 10.8: Response of rank thread length and factors of soil tillage intensity and number of Aphididae placed in 

microcosms. After addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities and 

different abundances of cereal Aphididae: a microcosm experiment (n = 1278). (* relates to significant with α <0.05). 
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Continuous Coefficients Standard Error  T P VIF 

Predictor   Coefficients (SE Coeff)       

Number of Adult M. dirhodum on Plant -0.10848 0.00938 -11.57 0.001* 3.55 

Number of Aphididae Exuviae in Web 0.1697  0.0116 14.49  0.001*  3.77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the number of adult M. dirhodum identified on the plant within the microcosms, the relationship 

with thread length showed open downwards parabolas for microcosms containing two and six M. 

dirhodum at the beginning of the experiment (Figure 10.13. & Table 10.9.). The maximum vertex for 

both parabolas identified the longest thread length was shown when the number of adult M. 

dirhodum on the plant was mid-range of the data. Microcosms with two M. dirhodum added held a 

smaller range of data for the x-axis (number of adult M. dirhodum on plant).  

Weak regressive relationships were identified against thread length and the number of Aphididae 

exuviae found within the web when both two and six M. dirhodum nymphs were added. The upwards 

parabola in both cases explained the longer thread length found when the greater number of 

Aphididae exuviae were counted within the web.  

Table 10.9: Significant predictors to the response thread length (mm). After addition of M. dirhodum and end of trial. T. 

tenuis behaviour with different soil tillage intensities and different abundances of cereal Aphididae: a microcosm 

experiment (n = 1278, R-sq - 21.32%). (* relates to significant with α <0.05). 

Figure 10.13: Matrix plot with quadratic regression and intercept fitted for thread length (mm) with number of adult M. 

dirhodum on the H. vulgare plant and number of Aphididae exuviae in web. After addition of M. dirhodum and end of 

trial. T. tenuis behaviour with different soil tillage intensities and different abundances of cereal Aphididae: a microcosm 

experiment (Zero Aphididae = Orange, Two Aphididae = Purple, Six Aphididae = Pink) (n = 1278, R-sq - 21.32%). 
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 (Rho) P n 

Mean Mass of M. dirhodum Nymphs (g) 0.107 0.001* 1278 

Mean T. tenuis Abdomen Length (mm) 0.111 0.001* 1278 

Mean T. tenuis Cephalothorax Length (mm) -0.091 0.001* 1278 

Number of Adult M. dirhodum in Web 0.242 0.001* 1278 

Number of Adult M. dirhodum on Plant 0.210 0.001* 1278 

Number of Aphididae Exuviae in Web 0.275 0.001* 1278 

Number of Nymph M. dirhodum in Web 0.158 0.001* 1278 

Number of Nymph M. dirhodum on Plant 0.223 0.001* 1278 

Number of Plants 0.105 0.001* 1278 

Temperature (oC) 0.102 0.001* 1278 
 

Only one variable was found to be significantly negatively correlated to thread length, mean 

cephalothorax length of the T. tenuis added into the microcosms (Table 10.10.). Mean mass of M. 

dirhodum nymphs added, number of T. aestivum plants, mean abdomen length of T. tenuis, 

temperature, number of adult and nymph M. dirhodum on plant and in web and number of Aphididae 

exuviae in web were significantly positively correlated to thread lengths measured within the 

microcosms. 

 

10.6.3.3. Web Area 

 (Rho) P N 

Number of Adult M. dirhodum on Plant 0.135 0.015* 325 

Number of Aphididae Exuviae in Web 0.191 0.001* 325 

Number of Nymph M. dirhodum in Web 0.218 0.001* 325 

Number of Nymph M. dirhodum on Plant 0.152 0.006* 325 

Number of Plants 0.152 0.006* 325 

Straw Mass (g) 0.151 0.009* 325 

 

Web area measured was significantly positively correlated to number of adult and nymph M. 

dirhodum recorded on the T. aestivum plant and number of nymph M. dirhodum and Aphididae 

exuviae found in the web, number of T. aestivum plants and straw mass placed into each microcosm 

(Table 10.11.). 

Table 10.10: Correlations of independent variables measured in the microcosms with the dependant variable thread length 

(mm). After addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities and different 

abundances of cereal Aphididae: a microcosm experiment. (* relates to significant with α <0.05). 

Table 10.11: Correlations of independent variables measured in the microcosms with the dependant variable web area 

(mm2). After addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities and different 

abundances of cereal Aphididae: a microcosm experiment. (* relates to significant with α <0.05). 
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10.6.3.4. Overall - Concerning Data Outside of Soil Tillage Intensity 

Continuous Coefficients Standard Error  T P VIF 

Predictor   Coefficients (SE Coeff)       

Mean T. tenuis Mass (g) 0.570 0.155 3.68 0.013* 1.00 

Number of Nymph and Adult 
M. dirhodum on Plant 0.000001  0.000001 2.67  0.001*  1.00 

 

The number of adult and nymph M. dirhodum found on T. aestivum and mean mass of the T. tenuis 

placed into the microcosms were both significant predictors to the response mean mass of M. 

dirhodum nymphs placed into the microcosms (Table 10.12.). Both variables held significant positive 

regression to mean mass of M. dirhodum nymphs. The model is not grouped by any categorical 

predictor due to the mean M. dirhodum mass assigned randomly to each microcosm replicating soil 

tillage intensity. 

 

10.7. Discussion 

10.7.1. After Germination (GS 21) and Before the Addition of M. dirhodum 

The mean anchor point height was found to be significantly greater in Direct Drill and Direct Drill 

Managed microcosm attached to upright stubble than plant, before the addition of M. dirhodum 

(Figure 10.6.). Over three-quarters of anchor points of support threads at this stage were to upright 

stubble in the Direct Drill treatments. This clearly related to the zero-till of Direct Drill when the field 

was sampled out of crop (Section 5.1.5.1.3.). The upright stubble provided anchorage for support 

threads and agrees with Dennis et al. (2001) and Welch et al. (2013) who described the need for an 

increase in landscape heterogeneity for increased web-spinning, even at a micro-scale. This is an 

opposite trend to Figure 8.7. in the experimental Chapter focusing on replicating the field, where 

Direct Drill held the significant lower height on upright stubble (Section 8.7.2., Page 236). The plant 

had established tillers in the early growth stages of the mesocosms, thus stubble was found to be a 

platform to enable higher reaches of the plant to be utilised. At this stage in this experiment T. 

aestivum growth had only established. 

Alternative materials in plant and soil were shown to be of influence on anchor point height (Figure 

10.6). Bell et al. (2002), Bonte et al. (2011) and Thorbek (2003), describe the use of soil depressions 

by T. tenuis, as a less favourable alternative to above-ground features, such as upright stubble. 

However, a web was spun in the furrow of Direct Drill Microcosms. With the absence of prey, it of 

Table 10.12: Significant predictors to the response mean mass of M. dirhodum nymphs (g) added into microcosms. After 

addition of M. dirhodum and end of trial. T. tenuis behaviour with different soil tillage intensities and different abundances 

of cereal Aphididae: a microcosm experiment (n = 27, R-sq - 41.91%). (* relates to significant with α <0.05). 
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interest, why a prominent web was woven across the furrow. These microcosms ran from late in 

August 2018 to September, so it may be that fecundity level in T. tenuis was high, thus a female may 

have exhibited signs of expected courtship. A reproduction window in Linyphiidae is shown to 

correlate with crop harvest and usually lasts for two weeks (Maklakov et al., 2003; Welch et al., 2013). 

A web is required to be spun to exert dominance over a male and allow courtship to commence. This 

can occur without a male present in the vicinity, as it is expected that females draw the males in with 

the use of pheromones (Gregori et al., 2015; Maklakov et al., 2003; Prenter et al. 2010) (Section 

2.1.3.4).  

10.7.2. After Addition of M. dirhodum and End of Trial 

A Direct Drill microcosm with two M. dirhodum nymphs incorporated held the significantly highest 

mean anchor point height (Figure 10.8.). This increase in anchor point height appeared to be due to 

the presence of upright stubble (Table 10.7. & Figure 10.10.). Stubble shown to provide a rigid vertical 

platform for robust anchoring (Hogg & Danne 2018; Szymkowiak et al., 2007). The use of stubble as 

an anchorage structure is low compared to the utilisation it received when no plant was present 

(Figure 10.9. & Figure 10.10.). This accords with fieldwork in later growth stages, where the use of the 

stubble was of less importance due to the plethora of anchor materials in the crop (Section 5.1.6.2.2.). 

Bell et al. (2002) and Stenchly et al. (2011) noted that Linyphiidae have little preference over anchor 

material, with its organization of greater importance.  

Gómez et al. (2016) and Opatovsky et al. (2016) commented that webs spun at a higher level, is a 

response to increased Aphididae abundance. It was shown that an increased number of M. dirhodum 

nymphs, allowed greater reproduction potential (Table 10.12.). Brabec et al. (2014) and Parry (2013) 

comment that Aphididae rapid population growth is due to each female’s ability for parthenogenesis. 

However, anchor point height appeared to peak when adult M. dirhodum numbers were noted as low 

for two M. dirhodum (Figure 10.11). Honek et al. (2018) and Winder et al. (2013) identify M. dirhodum 

as a crop canopy Aphididae, that prefers the underside of higher tillers, where an increased food 

source, phloem, is likely to exist. There were approximately four hundred more M. dirhodum nymphs 

within the Direct Drill six M. dirhodum microcosms than with two M. dirhodum added. Lombaert et al. 

(2006) and Winder et al. (2014) show that in times of overcrowding, cereal Aphididae are driven to 

relocate, usually by the production of an alate morph. However, even at low abundance, the confined 

nature of the microcosm restricted movement, thus promoting the use of whole T. aestivum leaf 

(Figure 10.14a & b). Therefore, when a cereal Aphididae occupation exists at all levels of a crop, the 

lower areas of a microcosm were the favourable positions for web location with the use of lower 

substrate (Figure 10.9.). This observation fits with work by Bell et al. (2002), Davey et al. (2013) and 
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Sutherland & Samu (2000) and where T. tenuis was found at the base of a crop, shown to allow aerial 

prey interception and access a degree of shelter from the vegetation.  

 

 

 

Where zero M. dirhodum nymphs were incorporated, the significant lower anchor point height 

recorded was due to the use of the furrow, which was at a greater depth within the Conventional 

treatment (Figure 10.8.). The use of the furrow was seen to be utilised from field sampling at time of 

poor soil moisture (Section 5.1.6.2.2.). This negates the above comment where T. tenuis were shown 

to spin their webs above ground. It may be that throughout the experiment no cues were collected of 

available aerial, above ground prey. Glover (2013) and Uetz (1990) suggest that T. tenuis process cues 

from the local habitat to sense prey, movement in vegetation and its density. Lubin et al. (2011), 

Mclachlan and Wratten (2003) and Öberg et al. (2008) discuss the capture of ground-dwelling prey 

within a sheet-web. It may be the construction of a web close to the soil surface allowed entrapment 

of small prey, Collembola (springtails) and Thysanoptera (thrips), that may have been residing in the 

soil collected from the NIAB fields (Liu et al., 2013a; Shayler, 2005).  

It can be observed that prey may be driving anchor placement of a web, specifically within microcosms 

containing two M. dirhodum (Figure 10.11. & Table 10.7.). This would agree with fieldwork of H. 

vulgare in early and late growth stages (Section 5.1.6.2.1. & Section 5.1.6.2.2.). Ryndock et al. (2011), 

discussing anchor point availability during woodland restoration, and Uetz (1990), commenting on 

prey interaction, discuss that anchor point height is a key decision in establishing successful prey 

capture. It appears that increasing anchor point height has allowed webs to collect a higher degree of 

M. dirhodum prey. 

Figure 10.14a & b: M. dirhodum nymphs and adults depicted on the leaves of the T. aestivum tillers (Blue circle identifies 

M. dirhodum on other side of leaf). Direct Drill 9c. Six M. dirhodum nymphs. After addition of M. dirhodum and end of trial. 

T. tenuis behaviour with different soil tillage intensities and different abundances of cereal Aphididae: a microcosm 

experiment. Lateral view. 

a b 
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Interestingly, mean thread length was significantly longer in Conventional microcosm with six M. 

dirhodum and Direct Drill with two M. dirhodum added than zero (Figure 10.12.). In Conventional, this 

was due to large webs spanning across half of the microcosm, attached to the rim of the plastic 

container and materials in the centre of the microcosm (Figure 10.8. & Figure 10.15). In Direct Drill, 

large webs were woven between plant and upright stubble. The webs within Direct Drill with two M. 

dirhodum captured the greater number of nymphs within the web, shown to influence this variables 

placement within the first principal component (Figure 10.7.). It seems that the greater web areas 

identified in Conventional six microcosms, were created by female T. tenuis of a larger body size (Table 

10.10.). This follows where the greater mean T. tenuis mass was significant in the model representing 

mean mass of M. dirhodum nymphs (Table 10.12.). A T. tenuis with a greater body size and mass can 

communicate a higher level of fitness by weaving longer silk threads for a larger web, which was 

identified by Bonte et al. (2008) and Harmer et al. (2011) to be an energy-draining process (Figure 

10.15). By occupying half of the microcosm, it can be seen that this web construction removed web-

site opportunities for other T. tenuis within the microcosm, thus an act of intra-specific competition 

(Bianchi et al., 2017; Harwood et al., 2003; Pekár, 2000; Samu et al., 1996), possibly driven by the 

timing of the experiment as discussed earlier. Possibly a response to greater mean M. dirhodum mass, 

accelerating parthenogenesis rate (Table 10.12.). 

 

 

 

 

 

 

 

 

 

Webs constructed were observed to have been successful in prey capture, however, abandonment 

for a new web-spinning location had also clearly occurred. The frequency of web-building stated by 

an individual T. tenuis was therefore shown. Alderweireldt (1994), Benjamin et al. (2002), Harmer et 

al. (2011) and Segoli et al. (2004) explain that T. tenuis have an inherent instinct to constantly search 

for a possibly more productive web-site, in terms of prey capture. At the end of this experiment, T. 

Figure 10.15: Large web spanning from plastic to crop. Conventional 2c. Six M. 

dirhodum nymphs. After addition of M. dirhodum and end of trial. T. tenuis 

behaviour with different soil tillage intensities and different abundances of cereal 

Aphididae: a microcosm experiment. Elevated view. (Yellow arrow = 50.1 mm). 
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tenuis showed a greater web occupancy rate per area than found from field sampling (Section 5.1.5.). 

However, it can be noted that within the microcosms there was no other location to reside. 

It is of relevance that a T. tenuis was not occupying a web in some microcosms. The lower web 

occupancy was identified within the Conventional microcosm of all M. dirhodum nymphs incorporated 

and was higher in Direct Drill with zero and two M. dirhodum added (Figure 10.11.). The lower anchor 

point heights of webs occupied, were attached to straw in the Direct Drill mesocosms, which 

incorporated the greater straw mass (Figure 10.9. & Figure 10.10.). Straw was used as an anchorage 

material; however, no web was completely spun into the straw. Within fieldwork, it was shown in 

times of soil cultivations that the straw of the Direct Drill cultivation provided a refuge and a possible 

source of ground-dwelling prey (Diehl et al. 2013; Nyffeler & Sunderland, 2003; Schmidt et al. 2008b) 

(Section 5.1.6.2.1.). It can be seen within the microcosms that little refugia was required, due to the 

enclosed nature of the trial and T. tenuis were accessing prey of M. dirhodum in microcosms where 

nymphs were incorporated. It may have simply been due to intra-specific interactions of T. tenuis 

driving web occupancy. Some larger female T. tenuis were observed to have been added to 

Conventional microcosms, however smaller-bodied T. tenuis were also incorporated to some 

Conventional, as the addition of T. tenuis was random. Bonte et al. (2011), Gan et al. (2015) and Toft 

(1989) discuss Linyphiidae web take-over with T. tenuis exerting greater fitness and dominance 

through increased size. Corcobado et al. (2010) and De Mas et al. (2009), noted female T. tenuis have 

a greater degree of inter-gender competition than males. Therefore, females of lower abdomen mass 

may be required to opt for a web-site in lower strata or was searching for a new location when the 

experiment was terminated (Table 10.7.). 

The exuviae showed whether T. tenuis changed the dimensions of web-spinning due to the potential 

stimulus that M. dirhodum presence could initiate (Lichtenstein et al., 2016; Rodríguez & Gamboa, 

2000) (Figure 10.13.). Within all tillage intensities, webs seemed to be spun to locate M. dirhodum 

within the same way. Thread lengths only began to increase as more Aphididae exuviae became 

available and greater numbers fell into the web (Figure 10.13.). Exuviae found in webs were viewed 

as the growth rate of M. dirhodum, with higher exuviae observed relating to increased developmental 

rate from nymph to adult (Beck & Toft, 2000) (Section 2.2.6.2.). The greatest number of Aphididae 

exuviae was identified in the Direct Drill mesocosm with two M. dirhodum and Conventional with six 

M. dirhodum (Figure 10.16. & Figure 10.17.). This corresponds with the pattern of the greater thread 

length identified within these two microcosms (Figure 10.12., Table 10.10. & Table 10.11.). The webs 

woven here provided potential biological control, situated at the nucleus of parthenogenesis activity 

(Birkhofer et al., 2018; Campbell et al., 2020). 
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The smaller webs of the Direct Drill and Direct Drill Managed microcosms had not appeared to capture 

a greater number of M. dirhodum than the large webs of Conventional with six M. dirhodum nymphs 

(Figure 10.7., Figure 10.18., Table 10.10, Table 10.11. & Table 10.12.). This is a different result to that 

found in fieldwork with early growth stages (Section 5.1.6.2.1.). Moreover, discords with Dennis et al. 

(2015) and Gómez et al. (2016) who discuss the advantage of smaller webs to manipulate location in 

response to prey, low energy expenditure further allowing rapid construction. Glover (2013), Harwood 

et al. (2003) and Obrycki & Harwood (2005) who comment that webs of low energy cost may be a 

compromise; however, they harness a greater return due to ease of successive web-building. Web-

site optimal possibly altered as the population of M. dirhodum grew. Jurczyk et al. (2012), Pekár (2000) 

and Toft (1987) comment on the fine balance between the choice of web location and its desired 

effect. Thread length peaked when number of adults recorded was lower on T. aestivum when two 

M. dirhodum were placed into the microcosms (Figure 10.13.). Larger webs perhaps spun to hold a 

greater surface area under the crop canopy, to enable greater potential contact of M. dirhodum to the 

fibrils of the sheet web. Blackledge & Eliason (2007) and Kraft & Cookson (2012) explain that any 

aspect of a webs surface area has an opportunity to entrap prey, this seen in the case of Conventional 

with six M. dirhodum. A positive aspect to the biological control a web can exert (Campbell et al., 

2020). 

 

Figure 10.17: M. dirhodum caught in sheet web along 

with exuviae. (M. dirhodum circled in yellow).  

Conventional 3c. Two M. dirhodum nymphs. After 

addition of M. dirhodum and end of trial.  T. tenuis 

behaviour with different soil tillage intensities and 

different abundances of cereal Aphididae: a microcosm 

experiment. Elevated view. (Red arrow = 54.1 mm). 

Figure 10.16: M. dirhodum caught in sheet web along with 

exuviae. (M. dirhodum circled in yellow) Direct Drill 6b. Six 

M. dirhodum nymphs. After addition of M. dirhodum and 

end of trial. T. tenuis behaviour with different soil tillage 

intensities and different abundances of cereal Aphididae: 

a microcosm experiment. Lateral view. 
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Brabec et al. (2014) and Parry (2013) comment that Aphididae rapid population growth is due to each 

female’s ability for parthenogenesis.  Adult and nymph M. dirhodum numbers on leaves were greater 

in Direct Drill with six M. dirhodum nymphs incorporated (Table 10.12.). This identifies that within 

Direct Drill microcosms the reproductive capacity of M. dirhodum was greater than Direct Drill 

Managed and Conventional with six M. dirhodum nymphs added. Brabec et al. (2014) and Parry et al. 

(2006) explain that temperatures outside M. dirhodum optimum range can affect fecundity, however, 

temperatures ranging from 16.2 - 21.1 oC are acceptable conditions for reproduction of a clone to be 

triggered (Figure 10.11.). With no associations identified between number of M. dirhodum on leaves 

and the structure of the mesocosm relating to soil treatment, the fitness of M. dirhodum was greater 

in the Direct Drill microcosms. Moreover, Asin & Pons (2001) and Rispe et al. (1996) explain that due 

to the nature of parthenogenesis producing clones, reproductive fitness can be inherently low if 

genetic dispersal is low. With the Aphididae cultivated in house, different levels of fitness of nymphs 

may have occurred (Section 7.2.3.). 

Vollrath et al. (2001) identify that warmer temperatures allow T. tenuis to accomplish the required 

tension for thread spinning with the requirement of less energy (Craig, 2003; Hesselberg & Vollrath, 

2012) (Table 10.10.). This may have allowed longer threads to span within an environment, although, 

Bonte et al. (2011) have discussed the high energy cost associated with yielding greater silk in one 

action. It appears the temperature presented T. tenuis with optimum conditions for greater web-

spinning. For two M. dirhodum, anchor point heights decreased when the temperature inside the 

microcosm was measured at over 19 oC, however, for zero M. dirhodum, the anchor point peaked at 

Figure 10.18: Small sheet web woven within crop and upright stubble, only 

containing exuviae. Direct Drill 9c. Two M. dirhodum nymphs. After addition 

of M. dirhodum and end of trial.  T. tenuis behaviour with different soil tillage 

intensities and different abundances of cereal Aphididae: a microcosm 

experiment. Lateral view. (Yellow arrow = 33.3 mm). 
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similar temperatures (Figure 10.11.). With Brabec et al. (2014) and Klüken (2008), finding that M. 

dirhodum reproductive potential increased with temperature (decreasing after optimal reached), 

irregularly there was no significant correlation identified between temperature and number of M. 

dirhodum on the plant and M. dirhodum nymphs within the web. Interestingly, T. tenuis were spinning 

webs at the basal stratum of the microcosm when M. dirhodum were feeding on the more recent 

growth of T. aestivum, the tillers that created the upper canopies. With plant height and density 

performing at the higher end of the scale with six M. dirhodum, than the other microcosms, the T. 

tenuis had a level of vegetation complexity to spin a web between. It appeared that the M. dirhodum 

density was weaker within this microcosm with two M. dirhodum incorporated (Figure 10.11.), lower 

abundances residing in the lower levels of the T. aestivum, where there was little competition for the 

phloem content of the main T. aestivum stem (Reynolds & Reynolds, 2009). Perhaps T. tenuis cognitive 

abilities had sensed prey at the lower levels and constructed webs over the depressions in the soil to 

find adequate anchorage (Kraftt & Cookson, 2012). 

Number of plants was positively correlated to thread length and web area (Table 10.10. & Table 

10.11.). This result discords with Dennis et al. (2001), Gómez et al. (2016) and Stenchly et al. (2011) 

when increased plant physiognomy related to small webs woven between adjacent stems. Within the 

microcosms, the developing T. aestivum appeared to provide the greater plant material within the 

upper levels, tillers at later growth stages extending outwards (AHDB, 2015; Holopainen-Mantila, 

2015; McFarland et al., 2014). With the additional growth provided by greater plant densities, it is 

curious why T. tenuis were spinning webs of a greater size. Benjamin & Zschokke (2004) and Toft 

(1987) describe that support threads are expected to expend more energy as they are generally spun 

marginally thicker to allow attachment points visualised to be met. Krafft & Cookson (2012) discuss 

that a sheet-weaving spider does not fully comprehend the complete architecture of the web they are 

weaving until the structure is complete. Eberhand et al. (2019) discuss that web-weaving is a learning 

process where the complex cognitive behaviour to web propensity leads to a multitude of variations 

to be comprehended before each thread is laid. It may be that the larger webs were constructed at 

the earlier growth of T. aestivum, T. tenuis here, weaving webs in an environment of lower landscape 

complexity, to process the spatial orientation of the environment.  

Number of plants further influencing the PCA in the opposite direction than number of nymph M. 

dirhodum within the web (Figure 10.7.). Poorer growth of T. aestivum was noted within the 

Conventional microcosms (Figure 10.7.). Even though moisture was measured in correct percentages 

for clay, fissures had occurred in the soil, which produced poor germination. Conventional tillage 

microcosms were the worst affected, theorised to be because an increase in bulk density impeding 

moisture permeability due to the greatest tillage intensity (Knight et al., 2012; Morris et al., 2010) 
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(Section 2.2.2.). Though this micro-habitat held a small area for soil tillage intensity to be represented. 

Direct Drill, with two M. dirhodum, held the most biological control success with the lower number of 

plants than Direct Drill Managed (Figure 10.7.). Increased levels of biological control, via web capture, 

may have been due to the low density of the plant material. Thus, allowing cues of the M. dirhodum 

(in sight and vibrations) to be accepted and webs woven in the vicinity of the prey. From here, M. 

dirhodum having removed their stylets from the stem, may have dropped directly into a web, and 

become entangled in the flagelliform silk (Brunetta & Craig, 2010; Craig, 2003; Segoli et al., 2004).  

Kraftt & Cookson (2012) state that Linyphiidae entrap mobile prey, thus a web must efficiently be set 

in the location where vibrations of prey movement are displayed, the M. dirhodum of this microcosm 

had dispersed along the length of the stem perhaps ascending to tillers due to limited plant material. 

Six M. dirhodum were shown to hold similar anchor point heights of T. tenuis webs when plant height 

was the lower and higher end of the scale (Figure 10.11.). The common theme within the contributing 

microcosms was low numbers of adult and nymph activity recorded. Mansion‐Vaquié et al. (2020) 

show that apterous morphs of low density are not inclined to migrate, food is in plentiful supply in 

lower reaches of the T. aestivum. Parthenogenesis occurs at any aspect of plant if nutrition is 

sufficient, thus M. dirhodum appear not to have dispersed from the origin of the colony, at the base 

of the stem (Agabiti et al., 2016; Mansion‐Vaquié et al., 2020) (Section 2.2.6.2.). Low webs did indeed 

capture some M. dirhodum, an energy source captured with little energy expenditure of ascending 

the crop (Craig, 2003; Hesselberg & Vollrath, 2012).  

Adult M. dirhodum upon the vegetation held a greater effect than nymphs recorded on the vegetation, 

however, the number of nymphs in the web was a significant term but not number of adults ensnared 

within the web (Figure 10.7., Figure 10.11. & Figure 10.13.). More nymphs were captured by T. tenuis, 

which disagrees with Parry (2013) and Parry et al. (2006), who discuss that nymphs have a low 

propensity to drop due to the stylus anchored to vegetation to allow continuous feeding. Overall, 

there was a greater population of nymphs than adults upon the vegetation which explains how more 

nymphs were captured by T. tenuis, overcrowding initiating dropping behaviour, or driving dispersal 

to higher tillers of T. aestivum with greater flexibility to subdue stylus penetration depth of the 

Aphididae (Parry 2013; Price et al., 2011; Summers et al., 2004). The parameters of the microcosm in 

vegetation and low disturbance ensured the process of parthenogenesis producing nymph clones at 

a steady rate (Goggin, 2007; Westwood & Stevens, 2010). The fecundity rates were not equally 

representative; for example, 405 adults M. dirhodum and 639 nymphs were recorded in a Direct Drill 

mesocosm and 264 adults and 594 nymphs for another Direct Drill mesocosm both containing six M. 

dirhodum at the outset. It appears that T. tenuis activity was more sensitive to the positioning of adult 

M. dirhodum within the microcosms, T. tenuis known to have poor cognitive ability, the macrosetae 
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(fine hairs) of T. tenuis able to respond to the greater vibration cues presented by larger Aphididae 

that are laboured in movement (Bradley, 2013; Eberhard et al., 2019; Macfadyen et al., 2019; Zhang 

& Tso, 2016) (Section 2.1.1.). In the field of a cereal crop it would be beneficial if capture rate of nymph 

Aphididae was greater, to remove Aphididae of early generation before parthenogenesis may occur 

(Asin & Pons, 2001). The climatic disturbances noted in the field, void in the microcosms, have shown 

to aid capture of nymphs within a sheet web (Section 5.1.6.2.3.). 

As discussed in previous chapters, a larger cephalothorax increases flexion to be able to spin longer 

threads at a faster rate (Anderson & Prestwich, 1975; Prenter et al., 2010) (Section 8.5.2.) However, 

the T. tenuis with the smaller cephalothorax length were placed into the mesocosms that held plant 

densities >9, it appears that the number of plants with mesocosms that incorporated M. dirhodum, 

held the greater influence over thread length than body dimension of T. tenuis (Table 10.10.). The 

habitats are of a much smaller scale than that of a field setting. The fundamental use of increased leg 

flexion has held little consequence to T. tenuis within a small environment with no external 

disturbances to disrupt silk-weaving.  

10.8. Final Discussion - T. tenuis Behaviour with Different Soil Tillage Intensities and 

Different Abundances of Cereal Aphididae: A Microcosm Experiment  

Prey abundance has been shown in all treatments to drive increased web-spinning in height and area. 

This is beneficial to the bio-control potential of T. tenuis, and explains if prey is available, the power 

that webs can bring to allow prey entrapment. This follows aim number one and three of this Chapter 

concerning T. tenuis relationship with implementing biological control (Section 10.2.1.).  

The elements of number of upright stubble and height corresponding to the different soil tillage 

intensities have been of low influence on T. tenuis ability to spin webs at certain orientations. This 

meeting the second aim analysing T. tenuis action against soil tillage intensity (Section 10.2.1.). Within 

this experiment, prey appears to have over-ridden landscape heterogeneity of each microcosm, 

however, these microcosms are of a much smaller scale than that of a field setting. The fundamental 

nature of the soil tillage appears to be of little consequence to T. tenuis within a small environment 

where prey is abundant and addresses aim number one, noted in Section 10.2.1. 

Discussing the second aim of Section 10.1.2., the furrow appears to be utilised at times of T. tenuis 

intra-specific competition. However, it appears that furrow presence was enough to provide an 

adequate web-site, regardless of dimensions. Additionally, it was identified that Direct Drill Managed 

is a mid-habitat, offering features of straw mass, upright stubble abundance, which sits between 

Conventional and Direct Drill. This ‘midway’ tillage seems to be limited in driving T. tenuis activity 

within this glasshouse experiment.  
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Chapter Eleven 

11.0. Choice Chambers for T. tenuis Selection of Upright Stubble and Furrow With or 

Without the Presence of Aphididae 

 

11.1. Introduction 

 

The glasshouse experiments so far described, placed T. tenuis into meso/microcosms where one factor 

was assessed, e.g. in landscape heterogeneity and/or Aphididae abundance (Chapter 8.0. - Chapter 

10.0.). The experiment described in this Chapter took elements from the differing soil intensities and 

offered T. tenuis a choice of these elements under controlled conditions. The premise was that, results 

could potentially identify which elements have the greatest influence over T. tenuis decisions in web-

site location and design.  
 

There were four trials within this glasshouse experiment. As the abundance of upright stubble and 

furrow dimensions had been shown to enhance T. tenuis capacity for web-building (Section 5.1.5.), 

this was further tested in choice chambers, where T. tenuis could utilise upright stubble of certain 

heights and densities and furrows of specific dimensions. From fieldwork and previous glasshouse 

experiments, the presence of Aphididae (M. dirhodum and S. avenae) had been shown to influence 

web-site selection. It was therefore appropriate to incorporate prey into the choice chambers, as the 

foundation of this research was to understand how the conditions in arable agriculture could affect T. 

tenuis prey capturing ability. M. dirhodum were incorporated into the choice chambers alongside the 

presence of upright stubble and furrow to investigate whether T. tenuis alters its web construction 

decisions if Aphididae are detected. 
 

 

11.2. Aims and Specific Objectives 

11.2.1. Aims 

This research sought to address Aims 2, 3 and 4 from Section 1.2., Page 2. 

 

2. Identify any differences in extended phenotypes of T. tenuis within tillage practices, e.g. web 

dimensions and bridge thread length. 

3. Understand whether T. tenuis behaviour is stimulated by the presence of Aphididae. 

4. Comprehend if a certain level of landscape heterogeneity affects T. tenuis ability to predate. 
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11.2.2. Specific Objectives 

• Locate T. tenuis, web-site and bridge thread in the choice chamber and determine the position 

of M. dirhodum (if incorporated), to assess which factors are of influence. 

• Evaluate web area, anchor point height and bridge thread length and relate to elements in 

the choice chamber. 

• Assess the effects of specified T. tenuis (number, gender, and body size) on the utilisation of 

features in the choice chambers. 

11.3. Selection of Upright Stubble With or Without the presence of Aphididae 

11.3.1. Selection of Upright Stubble Without the presence of Aphididae 

11.3.1.1. Introduction  

The first two trials took the element of upright stubble and confined this variable into a choice 

experiment, where T. tenuis had a choice to utilise the upright stubble for web-building. This was to 

ascertain if upright stubble led to promotion of web-site selection and web-building.  
 

11.3.1.2. Methodology 

Each trial was conducted in a choice chamber (a plastic box: 28 (l) x 16 (w) x 14 (h) cm) with 15 small 

holes (diameter 1.5 mm) drilled into the lid for ventilation. Each choice chamber was divided into two 

equal halves. Straw mass (g), corresponded to the mean amount collected in sample plots of the 

different soil tillage from growth stages (GS) 31 - GS 33, H. vulgare 2017 / 2018 cropping season, as in 

Section 8.3., and was placed in both halves of the choice chamber (Table 5.1.1., Section 5.1.3.1., Page 

82). In each choice chamber, upright stubble, corresponding to the same fieldwork data was placed 

only on one side (Figure 11.1a & b). This gave T. tenuis the option to inhabit and construct webs on 

upright stubble amongst straw or on straw alone. The arrangement (clusters) of the upright stubble 

simulated the stubble arrangement found in the plots of the different soil tillage intensities, using the 

same methodology from the field trial of addition of upright stubble on cultivated land (Section 5.2.3.).  

One trial consisted of a choice chamber representing one of the three soil tillage intensities 

(Conventional, Direct Drill Managed or Direct Drill) incorporating a given abundance of T. tenuis, run 

at the same time. There were five treatments of T. tenuis: 1 x Female; 1 x Male; 1 x Female and 1 x 

Male; 2 x Female; and 2 x Male, replicated three times (n = 15 chambers) (Section 7.6.2.3.). Animals 

were measured according to the methodology established for all glasshouse experiments, after 

stabilising in the terrarium (Section 7.2.1. & Section 7.2.2.). T. tenuis were added simultaneously, if 

two incorporated, at the centre of the choice chambers. Each trial ran for twenty-four hours, 

commencing at midday. 
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11.3.2. Selection of Upright Stubble With the Presence of Aphididae 

11.3.2.1. Introduction 
 

This trial involved upright stubble and incorporated M. dirhodum. The addition was to investigate if 

prey availability influenced T. tenuis behaviour alongside upright stubble, or if it was a more dominant 

factor. 

11.3.2.2. Methodology 

Choice chambers were set up as in Section 11.3.1.2. except that T. tenuis incorporated had been 

starved for twenty-four hours in Petri dishes with three sticks and a small piece of moist cotton wool 

(Section 7.6.2.4.).  

M. dirhodum were cultivated on H. vulgare from initial stock acquired from The Rothamsted Institute 

(Section 7.2.3.). Two adult apterous morph M. dirhodum were added into each choice chamber 

corresponding to data collected from GS 55 - GS 61 H. vulgare 2016 / 2017 season, when temperatures 

in the field were optimal for parthenogenesis (Table 5.1.1. & Section 5.1.6.2.1.). The two Aphididae 

were placed into the centre of the habitat at the same time and then the unit sealed (Section 7.6.2.5.). 

 

 

 

 

 

 

Figure 11.1a & b: Set-up of choice chambers of selection of upright stubble trials. a = Direct Drill. b = Direct Drill Managed. 

(Upright stubble circled in yellow).     

 

a b 
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11.4. Selection of Furrow With or Without the Presence of Aphididae 

11.4.1. Selection of Furrow Without the Presence of Aphididae 

11.4.1.1. Introduction 

Two further trials concerned the addition of another landscape feature identified from the field, a 

furrow, constructed in the soil for a seedbed. Differing depths and widths of a furrow were identified 

in each soil tillage intensity. It was, therefore, an important element to be investigated, as in earlier 

glasshouse trails (Chapter 8.0. & Chapter 10.0.). As with upright stubble, trials were run with no 

Aphididae to discover how the depth and width of a furrow might influence web-site selection. 

11.4.1.2. Methodology 

The principle was identical to the previous choice chambers with selection of upright stubble, but with 

the choice element of the furrow, which was only established on one half of the choice chamber 

(Section 11.3.1.2.). It was noted that Direct Drill tilled area had a furrow, even if not as defined as the 

other tilled areas, due to the previous crop seedbed being undisturbed from the lack of cultivation. 

Soil used in this trial was Hanslope Series soil taken from the corresponding tilled areas from NIAB 

Field B (Figure 3.5b, Section 3.1.3.3., Page 51). As in mesocosm trials, the dimensions of the furrows 

used related to data gathered after secondary cultivation and direct drilling of H. vulgare cropping 

season 2017 / 2018 (Figure 11.2.a - c) (Table 5.1.1. & Section 8.3.). 

 

 

b 

Figure 11.2a - c: Set-up of choice chambers of selection of furrow trials (Furrow circled in black).  a = Conventional. 

b = Direct Drill Managed. C = Direct Drill. 

a 

c 
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To replicate the field as closely as possible, upright stubble and straw mass were incorporated into 

both sides of the trial. The same amount of each equalled that of the choice chamber for selection of 

upright stubble allowing any potential relationship to be identified between both choice chambers 

trials. This was to explore whether there is a preference for T. tenuis web construction in either upright 

stubble or an incision into the soil (Figure 11.3a - c).   

 

 

 

 

 

No food source was added for this duration. The same combination of T. tenuis (by gender and 

numbers) in each soil tillage intensity, as in choice chambers for upright stubble with and without 

Aphididae was incorporated (five treatments of T. tenuis with three replicates of soil tillage) and run 

for twenty-four hours, commencing at midday (Section 11.3.1.1. & Section 11.3.2.1.).  

 

11.4.2. Selection of Furrow With the Presence of Aphididae 

11.4.2.1. Introduction 
 

It was important that the choice chambers for furrow selection also incorporated the choice element 

of prey (Aphididae). This allowed comparison between the choice chamber trials for selection of 

upright stubble and furrow against Aphididae, which enabled predator dynamics and biological control 

potential to be further understood.  

 

Figure 11.3a - c: Set-up of choice chambers of selection of furrow trials with the addition of straw and upright stubble. 
(Upright stubble circled in yellow).  a = Conventional. b = Direct Drill Managed. c = Direct Drill. 

a b 

c 
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11.4.2.2. Methodology 

Another set of trials were carried out with the addition of two adult apterous M. dirhodum added into 

the centre of each choice chambers. Each T. tenuis was starved, as in choice chambers selection of 

upright stubble with Aphididae (Section 11.3.2.2.).  

11.5. Data Collection 

Data recorded after twenty-four hours included measuring anchor point height and thread length in 

and out of webs (support and bridge threads respectively). The material that each thread was 

anchored to was also noted. Web area was calculated with the thread length in webs along with 

internal distances placed into Heron’s formula, identical to fieldwork sampling (Section 4.3.4.). Data 

was gathered separately from each side of the choice chambers. Any information recorded (e.g. bridge 

thread) crossing the centre of the choice chambers was discounted. 

In addition, the final position of T. tenuis in the habitat, (stubble or non-stubble / furrow or non-

furrow), was recorded. This was related to how T. tenuis interacts with landscape heterogeneity and 

/ or presence of prey (in the form of M. dirhodum). In trials incorporating Aphididae, the location of 

M. dirhodum, by side of chamber, was recorded and whether this was in the same side as T. tenuis 

noted.  

As T. tenuis have been noted to have a preference to construct webs at a certain time of the day, (early 

morning), the hours of daylight were recorded for each trial to determine if this influenced web-

building activity (Krol et al., 2018) (Section 2.1.3.1.). Temperature was measured to the nearest 0.1 °C 

with a Portable Pen Digital Thermometer WT-1B®, as soon as the trial ended and the choice chamber 

was opened, taking care not to disturb any T. tenuis activity.  

11.6. Statistical Analysis 

A three-way log-linear analysis was run to cross-tabulate categorical data. Three categorical variables 

were incorporated; soil tillage intensity with corresponding sides (Conventional, Direct Drill Managed 

and Direct Drill and stubble and non-stubble, for example), number and gender of T. tenuis placed into 

the choice chambers and position of T. tenuis at the end of the trial (side of choice chamber). In the 

trials without Aphididae, there were two terms within the latter variable, stubble side / non-stubble 

side, and furrow side / non-furrow side. In the choice chamber where Aphididae were incorporated 

there were four terms, stubble side Aphididae / stubble side no Aphididae / non-stubble side 

Aphididae / non-stubble side no Aphididae. The same configuration was also used for furrow-related 

choice chambers. Any significant relationships were recorded, hierarchical level of significance in 
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terms of the level of interaction. If the higher hierarchical level was identified, odds ratios were 

calculated for a specific question, for example odds ratio that a T. tenuis would be found in the side of 

an Aphididae. Normality was tested through analysing if the expected results were identical to the 

outcome calculated from the model. The chi-square likelihood of ratio (χ2 = (1)) in goodness of fit 

should be significant at the beginning of the analysis (χ2 (0) = 0 and P - 0.001) to confirm the expected 

model is a good fit for the data presented, from here terms can be removed to identify the highest 

order of interaction. The model was then seen to fit normal parameters. Software used for the log-

linear analysis was IBM® SPSS Statistics© 25 (Field, 2009). 

The basis of log-linear analysis is to analyse the frequency that observations occur in each cross-

classification category (a classification category being a T. tenuis ending in the side of the choice 

chamber of Conventional tillage of non-stubble when one male was incorporated at the start of the 

experiment), also known as exploratory variables (Menard, 2010; Tansey et al., 1996). Log-linear 

models were chosen over logistic regression as all variables in the design were categorical / discrete 

and nominal, log-linear analysis performs well in this situation due to the nature of this test an 

extension of the chi-square test (Menard, 2010; Ranganathan et al., 2017; Upton, 1991). There was 

further no clear distinction between the dependant variable (frequency counts) and explanatory 

variables, the spider had equal chance to end in either side of the choice chamber in each soil tillage 

intensity, thus, no special status was assigned to the variables. Every input was independent of one 

another (Menard, 2010; Tansey et al., 1996). Log-linear analysis is based on Poisson distribution 

(probability of an event occurring in a given space and time), useful here as each observation was 

independent and not dependant on the sample size, whereas logistic regression is based on bi-nominal 

distribution where there are only two possible outcomes (Field, 2009; Ranganathan et al., 2017;  

Upton, 1991; Wheater et al., 2011). 

 

Due to the principle of log-linear analysis to respond to frequency of observations a frequency plot 

represents the outcomes of the model, frequency a T. tenuis will end up in one side of the choice 

chamber of a particular soil tillage intensity and of a particular number and gender of T. tenuis 

incorporated into the experiment (Field, 2009; Menard, 2010). Understanding assumptions, reliability 

in expected frequencies is a given, due to more than two exploratory variables utilised in this 

experiment, allowing 20% of cells (counts) to have a frequency less than 5 (Field, 2009; Menard, 2010; 

Tansey et al., 1996). 

 

Minitab18© was utilised to perform normality testing (Anderson-Darling and Ryan-Joiner for 

clarification) alongside visual interpretation of histograms and probability plots (Section 5.1.4.1.). The 

hypothesis was rejected (P - value α <0.05) on all data in this experimental Chapter. Correlations were 
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carried out with the Spearman’s rank (Rho) test to understand if any significant correlations were 

found within the variables measured (Bass 2007, Wheater et al., 2011). 

Two-way rank ANOVAs examined if there were any significant relationships between the response 

variable (anchor point height and thread length) and two categorical factors, a factor represented in 

every model was soil tillage intensity and side of choice chamber (e.g. Conventional stubble side etc). 

The other categorical factor was either: the attachment material used for an anchor point or whether 

the response variable belonged to a thread inside or outside a web. As with other experimental 

Chapters where data was non-normal, degrees of freedom (df) and sums of squares (SS) were 

identified and placed into FCSTats V2_1a© to be able to assign significance if it existed. Mean rank 

values were tested with the multiple comparison Dunn’s test to locate where the significance lay 

within the samples. The Bonferroni test, through Minitab18©, allowed letters to be assigned to the 

samples when graphed (Hawkins, 2014; Wheater & Cook, 2000) (Section 5.1.4.2.).  

General linear models (GLM) were used to establish interactions between the response variables 

(anchor point height and thread length) that were measured alongside the factors of number and 

gender of T. tenuis that were added into the choice chambers (e.g. one male, two male etc) and the 

soil tillage intensity. T. tenuis (in number and gender) were nested into the soil tillage intensity and 

the side of selection (e.g. Conventional stubble etc), where activity was recorded. Nesting allowed all 

combinations of the factor (number and gender of T. tenuis) to be analysed within their co-ordinating 

factor of soil tillage intensity / side of choice chamber. The fixed factors of soil tillage intensity / side 

of choice chamber and number and gender of T. tenuis (nested) were each mutually exclusive. No 

two-way rank ANOVA could be modelled on these variables due to not all sides of the choice chambers 

utilised by T. tenuis in each trial. Analysis was carried out on support threads only, the key to predator 

dynamics to understand differences in the size and location of webs spun. Normality was assured using 

a residual plot, where residuals were close to the trend line, and residuals versus order plot, where no 

cyclic pattern was established. Both indicate variables are independent of one another (Bass, 2007; 

Field, 2009; Wheater & Cook, 2000; Wheater et al., 2011; Zuur et al., 2007). Outliers were removed 

where normality could not be ascertained.  
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11.7. Results 

The results are set out into four sections following each set of trials. Selection of upright stubble with 

and without Aphididae (M. dirhodum) and selection of furrow with and without Aphididae. Within 

each section, the dependant variables of anchor point height and length for threads inside and outside 

of webs were analysed. Web areas were measured in all sides of the choice chambers with each trial; 

however, no statistical significance could be identified. Thread length found inside webs (of support 

threads) is a representation of web area. Within each section where Aphididae (M. dirhodum) were 

included in the trials, dependant variables measured in correlations and general linear models, refer 

to the side where M. dirhodum was recorded and to support threads of webs only. T. tenuis response 

to M. dirhodum presence was the key factor to be analysed in these trials and the web is a direct 

response to potential prey capture. 

The term ‘soil tillage intensities’ within this glasshouse experiment refers to the six sides in the 

selection of stubble. These are Conventional (stubble and non-stubble), Direct Drill Managed (stubble 

and non-stubble), Direct Drill (stubble and non-stubble). The same holds for the furrow experiment; 

Conventional (furrow and non-furrow) for example.  

11.7.1. Summary of Results 

Selection of Upright Stubble Trials Without the Presence of Aphididae 

• The greater frequency of T. tenuis was found in the stubble side (Figure 11.4.) The same sides 

showed a significantly higher mean, found for the attachment material of upright stubble (Figure 

11.6.). Conventional and Direct Drill stubble sides showed a significantly higher mean rank anchor 

point of support threads (Figure 11.5.). Number of upright stubble was significantly positively 

correlated to anchor point height of support threads (Table 11.3.) 

• Conventional non-stubble side exhibited significant longer mean rank bridge thread length (Figure 

11.9.). Straw mass was significantly positively correlated to anchor point height of support threads 

(Table 11.3.). Significantly longer mean length of support threads was shown in Conventional 

stubble side with two male T. tenuis (Figure 11.10.).  

• The highest mean anchor point height was found in Direct Drill stubble side when one female and 

one male and two females were incorporated (Figure 11.7. & Figure 11.8.) 

• Cephalothorax length was significantly positively correlated to anchor point outside of webs and 

thread length of support webs (Table 11.3. & Table 11.5.).  

• Sunlight duration was significantly negatively correlated to length of bridge and support threads 

(Table 11.5.).  
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Selection of Upright Stubble Trials With the Presence of Aphididae 

• Number and gender of T. tenuis incorporated into the choice chambers significantly affected the 

side where T. tenuis was found at end of trial (Figure 11.11.).  

• Straw mass was significantly positively correlated to anchor point height and length of support 

threads (Table 11.6. & Table 11.7.). 

• Direct Drill stubble showed significantly higher anchor point height at side with M. dirhodum, when 

one male T. tenuis was incorporated (Figure 11.12.). Number of upright stubble was significantly 

positively correlated to anchor point height of support threads (Table 11.6.). 

 

Selection of Furrow Trials Without the Presence of Aphididae 

• Mean rank higher anchor point height was found attached to the material of upright stubble than 

straw and soil for Conventional and Direct Drill furrow and non-furrow sides (Figure 11.13. & Figure 

11.14.). 

• Furrow depth held significant negative correlation with anchor point height of bridge threads 

(Table 11.12.). Whereas, furrow width and depth were significantly positively correlated to length 

of bridge threads (Table 11.13.). 

• Mean anchor point height outside of webs in Conventional furrow was significantly lower than that 

of the Direct Drill (Figure 11.16.). Significantly higher mean anchor point height of support threads 

was calculated for Direct Drill non-furrow and Direct Drill Managed furrow side (Figure 11.15.).  

• Temperature and sunlight duration were significantly positively correlated to the anchor point 

height and length of support threads (Table 11.12. & Table 11.13.). 

 

Selection of Furrow Trials With the Presence of Aphididae 

• Significance was identified in the three-way interaction for the log-linear analysis (Figure 11.17. – 

Figure 11.22.). Odds ratios for T. tenuis sharing the side of M. dirhodum, after twenty-four hours, 

was low for all soil tillage intensities. 

• Significant mean anchor point height, side of M. dirhodum, was recorded in Direct Drill non-furrow 

with one and two male T. tenuis in the chamber (Figure 11.23. & Figure 11.24.). 

• Anchor point height of support threads was significantly negatively correlated to furrow 

dimensions and significantly positively correlated to number of upright stubble (Table 11.14.). 
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11.7.2. Selection of Upright Stubble Trials Without the Presence of Aphididae 

 

 
 

 

 

 

 

 

 

 

 

The three-way log-linear analysis produced a final model where the main effect, the lowest order 

hierarchical level, was significant and was retained in the model. Backward elimination of orders of 

interaction noted the end position of T. tenuis to be the main effect where the significance lies. No 

interaction between the three categorical terms was significant. Difference between the end positions 

of T. tenuis in the non-stubble side or stubble side was significant regardless of treatment or gender 

(Figure 11.4.). A greater frequency of T. tenuis was noted to be within the stubble side (64.30%) than 

the non-stubble side (35.70%) when the trial ended.  

 

 

 

 

 

 

 

Figure 11.4: Frequency plot showing the frequency (%) of T. tenuis end position, in the non-stubble side or stubble 

side. Choice chambers of selection of upright stubble trials without Aphididae. (χ2 = (1) - 95.71, P - 0.001) (Non-

Stubble Side = Purple, Stubble Side = Brown). 



307 
 

11.7.2.1. Anchor Point Height  

Categorical Predictor df H P 

Soil Tillage Intensity 2 1.603 0.449 

Side of Choice Chamber 1 13.791 0.001* 

Interaction: Soil Tillage Intensity * Side of Choice Chamber 2 3.498 0.174 

 

 

 

 

 

 

 

 

Significance in the response of mean rank anchor point height of support threads with the side of the 

choice chamber was found (Figure 11.5. & Table 11.1.). Homogeneity was found in the mean rank 

anchor point height between the sides of choice chamber representing Direct Drill Managed. The 

Conventional and Direct Drill stubble side held a significantly higher mean rank anchor point height 

inside of webs than that found in the non-stubble side of the same soil tillage intensities. 

 

 

 

Table 11.1: Response of rank anchor point height inside webs (of support threads), factors of soil tillage intensity and 

side of choice chamber. Choice chambers of selection of upright stubble trials without Aphididae (n = 223). (* relates to 

significant with α <0.05). 

Figure 11.5: Interaction of mean rank anchor point height inside webs (of support threads), soil tillage intensity and side 

of choice chamber. Choice chambers of selection of upright stubble trials without Aphididae (n = 223). (Conventional = 

Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional Non-Stubble ±s.e.10.075 (n = 16), Conventional 

Stubble ±s.e.18.457 (n = 27), Direct Drill Managed Non-Stubble ±s.e.6.701 (n = 18), Direct Drill Managed Stubble 

±s.e.7.837 (n = 49),  Direct Drill Non-Stubble ±s.e.8.761 (n = 8), Direct Drill Stubble ±s.e.6.068 (n = 105)). (Points that do 

not share the same letter are significantly different at the p<0.05 level).  
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Categorical Predictor df H P 

Soil Tillage Intensity 2 3.341 0.188 

Anchor Point Attachment Material 1 33.785 0.001* 

Interaction: Soil Tillage Intensity * Anchor Point Attachment Material 2 2.910 0.233 

 

 

 

 

 

 

 

 

The Conventional and Direct Drill choice chambers held a mean rank anchor point height, utilising the 

attachment material of upright stubble, that was significantly higher than the mean rank anchor point 

height attached to straw (Figure 11.6. & Table 11.2.).  

The non-stubble sides were discounted due to straw the only attachment material within these sides. 

 

Table 11.2: Response of rank anchor point height inside webs (of support threads) and factors of soil tillage intensity of 

stubble side and anchor point attachment material. Choice chambers of selection of upright stubble trials without 

Aphididae (n = 169). (* relates to significant with α <0.05). 

Figure 11.6: Interaction of mean anchor point height inside webs (of support threads) and factors of soil tillage intensity 

of stubble side and anchor point attachment material. Choice chambers of selection of upright stubble trials without 

Aphididae (n = 169). (Conventional = Red, Direct Drill Managed Blue, Direct Drill = Green). (Conventional Straw 

±s.e.26.536 (n = 6), Conventional Upright Stubble ±s.e.13.633 (n = 9), Direct Drill Managed Straw ±s.e.6.220 (n = 11), 

Direct Drill Managed Upright Stubble ±s.e.4.795 (n = 93),  Direct Drill Straw ±s.e.6.360 (n = 25), Direct Drill Upright Stubble 

±s.e.7.060 (n = 25)). (Points that do not share the same letter are significantly different at the p<0.05 level). 
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Significance was found within the mean anchor point heights of support threads recorded within the 

different sides of soil tillage intensities when one female and one male T. tenuis were incorporated 

into the choice chamber (Figure 11.7.). The Conventional stubble side, mean anchor point height 

inside webs of 10.2 cm, and Direct Drill stubble, mean of 9.1 cm, showed significantly higher mean 

anchor point heights of support threads than that of Direct Drill non-stubble side (mean of 1.6 cm) 

and Direct Drill Managed stubble side (mean of 1.0 cm).  

 

 

 

 

 

 

 

 

 

Figure 11.7: Mean anchor point height (cm) inside webs (of support threads) of soil tillage 

intensities with 1 x female and 1 x male T. tenuis. Choice chambers of selection of upright stubble 

trials without Aphididae. (n = 256, df - 13, F - 8.55, R-sq - 35.36%, P - 0.001). (Conventional Stubble 

= Red, Direct Drill Managed Stubble = Blue, Direct Drill Stubble = Green, Direct Drill Non-Stubble = 

Dark Green,). (Conventional Stubble ±s.e.2.512 (n = 12), Direct Drill Managed Stubble ±s.e.0.149 

(n = 3), Direct Drill Stubble ±s.e.1.165 (n = 39), Direct Drill Non-Stubble ±s.e.0.084 (n = 6)). Bars that 

do not share the same letter are significantly different at the p<0.05 level).  

 

Figure 11.8: Mean anchor point height (cm) inside webs (of support threads) of soil tillage 

intensities with 2 x female T. tenuis. Choice chambers of selection of upright stubble trials without 

Aphididae. (n = 256, df - 13, F - 8.55, R-sq - 33.36%, P - 0.001). (Conventional Non-Stubble = Dark 

Red, Direct Drill Managed Stubble = Blue, Direct Drill Stubble = Green, Direct Drill Non-Stubble = 

Dark Green). (Conventional Non-Stubble ±s.e.0.321 (n = 7), Direct Drill Managed Stubble 

±s.e.0.489 (n = 8), Direct Drill Stubble ±s.e.0.793 (n = 21), Direct Drill Non-Stubble ±s.e.0.118 (n = 

7)). Bars that do not share the same letter are significantly different at the p<0.05 level).  
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Significant difference was established between the mean anchor point heights inside webs and the 

sides of soil tillage intensity for two female T. tenuis (Figure 11.8.). The Direct Drill stubble side held 

the anchor point height 9.6 cm which was the significantly higher. Conventional non-stubble side 

exhibited the significantly lower mean anchor point height (mean 1.9 cm) to that measured in Direct 

Drill stubble and non- stubble side.  

 Inside Web Out of Web  

(Rho) P n (Rho) P n 

Mean Abdomen Length (mm) 0.369 0001* 256 -0.104 0.124 64 

Mean Cephalothorax Length (mm) 0.025 0.690 256 0.276 0.027* 64 

Number of Upright Stubble 0.303 0.001* 256 0.207 0.027* 64 

Straw Mass (g) 0.200 0.001* 256 -0.023 0.858 64 

Sunlight Duration (mins) 0.157 0.013* 256 -0.534 0.001* 64 

Temperature (oC) 0.306 0.001* 256 -0.373 0.002* 64 

 

Mean abdomen length of T. tenuis placed into the choice chamber, straw mass, sunlight duration of 

the experiment, temperature inside the choice chamber and number of upright stubble were found 

to be significantly positively correlated to anchor point heights measured inside webs (of support 

threads) (Table 11.3.). Only mean cephalothorax length of T. tenuis and number of upright stubble 

were found to be significantly positively correlated to anchor point outside of web (of bridge threads), 

whereas temperature and sunlight duration recorded were significantly negatively correlated to 

anchor point heights of bridge threads.  

 

 

 

 

 

 

 

 

 

Table 11.3: Correlations of independent variables measured in choice chambers, with the dependant variable anchor point 

height (cm) inside and outside of web. Choice chambers of selection of upright stubble trials without Aphididae. (* relates 

to significant with α <0.05). 
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11.7.2.2. Thread Length 

Categorical Predictor df H P 

Soil Tillage Intensity 2 8.806 0.012* 

Side of Choice Chamber 1 0.033 0.857 

Interaction: Soil Tillage Intensity * Side of Choice Chamber 2 2.430 0.297 

 

 

 

 

 

 

 

 

The Conventional non-stubble side held the significantly longer mean rank thread length of bridge 

threads, than that found in the Direct Drill non- stubble side (Figure 11.9. & Table 11.4.). There was 

no significance within the interaction of mean rank thread length, soil tillage intensity and side of 

choice chamber the mean was found in.  

No significance was identified in all terms in a two-way rank ANOVA for mean rank thread length of 

support threads. 

 

  

 

 

Table 11.4: Response of rank thread length outside of webs (of bridge threads) and factors of soil tillage intensity and side 

of choice chamber. Choice chambers of selection of upright stubble trials without Aphididae (n = 43). (* relates to 

significant with α <0.05). 

Figure 11.9: Interaction of mean rank thread length outside of webs (of bridge threads), soil tillage intensity 

and side of choice chamber. Choice chambers of selection of upright stubble trials without Aphididae (n = 43). 

(Conventional = Red, Direct Drill Managed = Blue, Direct Drill = Green). (Conventional Non-Stubble ±s.e.0.894 

(n = 3), Conventional Stubble ±s.e.3.797 (n = 9), Direct Drill Managed Non-Stubble ±s.e.7.993 (n = 7), Direct 

Drill Managed Stubble ±s.e.4.377 (n = 10), Direct Drill Non-Stubble ±s.e.3.164 (n = 3), Direct Drill Stubble 

±s.e.1.716 (n = 11)). (Points that do not share the same letter are significantly different at the p<0.05 level). 
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Significant heterogeneity within mean thread length only existed when two male T. tenuis were placed 

into the choice chamber (Figure 11.10.). The Conventional stubble side with a mean of 80.1 mm and 

Direct Drill Managed stubble side, 73.2 mm mean thread length, both held the significantly longer 

mean thread lengths inside webs. Conventional non-stubble and Direct Drill stubble side held the 

significantly lower.  

 Inside Web Out of Web 

(Rho) P n (Rho) P n 

Mean Cephalothorax Length (mm) 0.255 0.001* 234 0.137 0.392 42 

Straw Mass (g) 0.010 0.873 234 -0.423 0.005* 42 

Sunlight Duration (mins) -0.323 0.001* 234 -0.379 0.013* 42 
 

 

Mean cephalothorax length of T. tenuis was significantly positively correlated to lengths of support 

threads (Table 11.5.). The opposite was found for straw mass and thread length outside of webs which 

showed significant negative correlation. Sunlight duration was significantly negatively correlated to 

both the lengths of support threads and bridge threads. 

Figure 11.10: Mean thread length (mm) inside webs (of support threads) of soil tillage intensities 

with 2 x male T. tenuis. Choice chambers of selection of upright stubble trials without Aphididae. 

(n = 234, df - 13, F - 11.34, R-sq - 41.36%, P - 0.001). (Conventional Stubble = Red, Conventional 

Non-Stubble = Dark Red, Direct Drill Managed Stubble - Blue, Direct Drill Stubble = Green). 

(Conventional Stubble ±s.e.0.521 (n = 7), Conventional Non-Stubble ±s.e.0.442 (n = 7), Direct Drill 

Managed Stubble ±s.e.8.892 (n = 7), Direct Drill Stubble ±s.e.0.653 (n = 21). Bars that do not share 

the same letter are significantly different at the p<0.05 level). 

 

Table 11.5: Correlations of independent variables measured in choice chambers, with the dependant variable thread length 

(mm) inside and outside of web. Choice chambers of selection of upright stubble trials without Aphididae. (* relates to 

significant with α <0.05). 
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11.7.3. Selection of Upright Stubble Trials With the Presence of Aphididae 

The log-linear analysis model for the choice chambers of selection of upright stubble with Aphididae 

states the second level of hierarchy is significant. The model stops here and the three-way interaction 

between the categorical variables is not retained. The term involved in the significant two-way 

interaction is the number and gender of T. tenuis incorporated and the end position of T. tenuis 

(stubble side or non-stubble side, with or without Aphididae) (Figure 11.11.).  

 

  

 

The interaction displays the greatest frequency of female T. tenuis end position, when one female was 

incorporated, was shared by the side of non-stubble without Aphididae and stubble with Aphididae 

(Figure 11.11.). All sides were chosen when two female T. tenuis were incorporated, the greatest being 

the non-stubble side with Aphididae. Female, when added with a male T. tenuis, only frequented the 

non-stubble side, with and without Aphididae. The male T. tenuis when added with a female, was 

found in the greatest frequency of the side of stubble without Aphididae. With one male T. tenuis, no 

males were found in the side of stubble without Aphididae, the greatest frequency being non-stubble 

side without Aphididae. The side of stubble without Aphididae held the greatest frequency and the 

stubble with Aphididae the lowest, when two male T. tenuis were added. 

Figure 11.11: Frequency plot showing the frequency (%) of the T. tenuis end position, in the non-stubble side or stubble 

side, with or without Aphididae, grouped by number and gender of T. tenuis incorporated into each choice chamber. 

Choice chambers of selection of upright stubble trials with Aphididae. (χ2 = (1) - 31.255, P - 0.007). (Non-Stubble Side 

Aphididae = Orange, Non-Stubble Side No Aphididae = Purple, Stubble Side Aphididae = Light Green, Stubble Side No 

Aphididae = Brown). 
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11.7.3.1. Anchor Point Height 

 

 

 

 

 

 

 

 

 

 

Significance existed in mean anchor point height inside webs when one male was added, at the side 

of the M. dirhodium, in the Conventional non-stubble side and the Direct Drill stubble and non-stubble 

sides only (Figure 11.12.). A mean anchor point height found within the Direct Drill stubble side was 

significantly higher than that of Conventional and Direct Drill non-stubble sides.  

 (Rho) P n 

Mean Cephalothorax Length (mm) 0.229 0.044* 79 

Number of Upright Stubble 0.564 0.001* 79 

Straw Mass (g) 0.301 0.001* 79 
 

Anchor point inside the web, where M. dirhodum was identified, was significantly positively correlated 

to mean cephalothorax length of T. tenuis, straw mass and number of upright stubble (Table 11.6.).  

11.7.3.2. Thread Length 

 (Rho) P n 

Number of Upright Stubble 0.243 0.033* 79 

Straw Mass (g) 0.326 0.004* 79 
 

Length of support threads was significantly positively correlated to the amount of straw mass and 

number of upright stubble (Table 11.7.).  

Figure 11.12: Mean anchor point height (cm) inside webs (of support threads) where M. dirhodum was 

recorded of soil tillage intensities with 1 x male T. tenuis. Choice chambers of selection of upright 

stubble trials with Aphididae. (n = 79, df - 8, F - 3.68, R-sq - 43.45%, P - 0.015). (Conventional Non-

Stubble = Dark Red, Direct Drill Stubble = Green, Direct Drill Non-Stubble = Dark Green). (Conventional 

Non-Stubble ±s.e.0.045 (n = 4), Direct Drill Stubble ±s.e.0.101 (n = 7), Direct Drill Non-Stubble ±s.e.0.082 

(n = 6)). (Bars that do not share the same letter are significantly different at the p<0.05 level).  

 

Table 11.6: Correlations of independent variables measured in choice chambers, with the dependant variable anchor point 

height (cm) inside web (of support threads), side of M. dirhodum. Choice chambers of selection of upright stubble trials 

with Aphididae. (* relates to significant with α <0.05). 

Table 11.7: Correlations of independent variables measured in choice chambers, with the dependant variable thread 

length (mm) Inside web (of support threads), side of M. dirhodum. Choice chambers of selection of upright stubble trials 

with Aphididae. (* relates to significant with α <0.05). 
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11.7.4. Selection of Furrow Trials Without the Presence of Aphididae 

11.7.4.1. Anchor Point Height 

Categorical Predictor df H P  Categorical Predictor df H P 

Soil Tillage Intensity 
(Furrow Side) 

2 0.962 0.918  Soil Tillage Intensity 
(Non-Furrow Side) 

2 6.268 0.043* 

Anchor Point 
Attachment Material 

2 121.802 0.001*  Anchor Point 
Attachment Material 

2 52.786 0.001* 

Interaction: Soil Tillage 
Intensity * Anchor Point 
Attachment Material 

4 15.778 0.022*  Interaction: Soil Tillage 
Intensity * Anchor Point 
Attachment Material 

4 12.662 0.013* 

 

 

The mean rank anchor point height of support threads, found on the attachment material of upright 

stubble of Conventional and Direct Drill furrow side, was significantly higher than the mean rank 

anchor point height recorded when the attachment material was straw and soil for the furrow side of 

choice chambers representing all three soil tillage intensities (Figure 11.13. & Table 11.8.).  

Figure 11.13: Interaction of mean rank anchor point 

height inside webs (of support threads), soil tillage 

intensity of furrow side and anchor point attachment 

material. Choice chambers of selection of furrow trials 

without Aphididae (n = 184). (Conventional Furrow = Red, 

Direct Drill Managed Furrow Blue, Direct Drill Furrow = 

Green). (Conventional Soil ±s.e.4.208 (n = 23), 

Conventional Straw ±s.e.6.230 (n = 3), Conventional 

Upright Stubble s.e±.2.082 (n = 6), Direct Drill Managed 

Soil ±s.e.3.730 (n = 49), Direct Drill Managed Straw 

±s.e.4.695 (n = 4), Direct Drill Managed Upright Stubble 

±s.e.7.358 (n = 21), Direct Drill Soil ±s.e.6.121 (n = 13), 

Direct Drill Straw ±s.e.2.607 (n = 5), Direct Drill Upright 

Stubble ±s.e.0.400 (n = 60)) (Points that do not share the 

same letter are significantly different at the p<0.05 level).  

 

Table 11.8: Response of rank anchor point height inside 

webs (of support threads) and factors of soil tillage intensity 

of furrow side and anchor point attachment material. 

Choice chambers of selection of furrow trials without 

Aphididae (n = 184). (* relates to significant with α <0.05). 

Table 11.9: Response of rank anchor point height inside 

webs (of support threads) and factors of soil tillage 

intensity of non-furrow side and anchor point 

attachment material. Choice chambers of selection of 

furrow trials without Aphididae (n = 128). (* relates to 

significant with α <0.05). 

Figure 11.14: Interaction of mean rank anchor point 

height inside webs (of support threads), soil tillage 

intensity of non-furrow side and anchor point attachment 

material. Choice chambers of selection of furrow trials 

without Aphididae (n = 128) (Conventional Non-Furrow = 

Dark Red, Direct Drill Managed Non-Furrow Dark Blue, 

Direct Drill Non-Furrow = Dark Green). (Conventional Soil 

s.e.±1.323 (n = 16) Conventional Straw s.e.±3.408 (n = 5), 

Conventional Upright Stubble s.e.±0.418 (n = 17), Direct 

Drill Managed Soil ±s.e.2.595 (n = 26), Direct Drill 

Managed Straw ±s.e.22.928 (n = 3), Direct Drill Managed 

Upright Stubble s.e.6.715 (n = 12),  Direct Drill Soil ±s.e.0 

(n = 1), Direct Drill Straw ±s.e.3.589 (n = 10), Direct Drill 

Upright Stubble ±s.e.3.267 (n = 38)). (Points that do not 

share the same letter are significantly different at the 

p<0.05 level).  
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Significant was found in the interaction of anchor point attachment material and soil tillage intensity 

(Figure 11.14. & Table 11.9.). Mean rank anchor point height, of support threads, attached to upright 

stubble within the non-furrow side was significantly higher than the mean rank anchor point height 

attached to soil for all soil tillage intensities and attached to straw for Conventional and Direct Drill. 

 

Categorical Predictor df H P  Categorical Predictor df H P 

Soil Tillage Intensity 2 64.118 0.001*  Soil Tillage Intensity  2 13.779 0.001* 

Side of Choice Chamber 1 12.488 0.012*  Side of Choice 
Chamber 

1 10.173 0.001* 

Interaction: Soil Tillage 
Intensity * Side of 
Choice Chamber 

2 2.436 0.296  Interaction: Soil Tillage 
Intensity * Side of 
Choice Chamber 

2 15.827 0.001* 

The mean rank anchor point height of support threads calculated within the Direct Drill Managed 

furrow side and Direct Drill non-furrow side, were significantly higher than the mean anchor point 

height of Direct Drill of the furrow side (Figure 11.15. & Table 11.9.).  

Interaction was significant with mean rank anchor point height of bridge threads in Direct Drill of both 

sides of the choice chamber, the means significantly higher than that recorded in Conventional and 

Direct Drill Managed furrow and non-furrow sides (Figure 11.16. & Table 11.10.). 

Table 11.10: Response of rank anchor point height inside 

web (of support threads) and factors of soil tillage 

intensity and side of choice chamber. Choice chambers of 

selection of furrow trials without Aphididae (n = 392). (* 

relates to significant with α <0.05). 

Figure 11.15: Interaction of mean rank anchor point height 

inside web (of support threads), soil tillage intensity and 

side of choice chamber. Choice chambers of selection of 

furrow trials without Aphididae (n = 392). (Conventional = 

Red, Direct Drill Managed = Blue, Direct Drill = Green). 

(Conventional Furrow ±s.e.20.950 (n = 44), Conventional 

Non-Furrow ±25.103 (n = 54), Direct Drill Managed Furrow 

±s.e.15.380 (n = 98), Direct Drill Managed Non-Furrow 

±s.e.23.871 (n = 47), Direct Drill Furrow ±s.e.26.271 (n = 

96), Direct Drill Non-Furrow ±s.e.35.322 (n = 53)). (Points 

that do not share the same letter are significantly different 

at the p<0.05 level).  

 

Table 11.11: Response of rank anchor point height 

outside of web (of bridge threads) and factors of soil 

tillage intensity and side of choice chamber. Choice 

chambers of selection of furrow trials without Aphididae 

(n = 109). (* relates to significant with α <0.05). 

Figure 11.16: Interaction of mean rank anchor point height 

outside of web (of bridge threads), soil tillage intensity and 

side of choice chamber. Choice chambers of selection of 

furrow trials without Aphididae (n = 109). (Conventional = 

Red, Direct Drill Managed = Blue, Direct Drill = Green). 

(Conventional Furrow ±s.e.6.008 (n = 20), Conventional 

Non-Furrow  ±4.364 (n = 44), Direct Drill Managed Furrow 

±s.e.3.331 (n = 3), Direct Drill Managed Non-Furrow 

±s.e.0.997 (n = 2), Direct Drill Furrow ±s.e.7.589 (n = 12), 

Direct Drill Non-Furrow ±s.e.4.634 (n = 28)). (Points that do 

not share the same letter are significantly different at the 

p<0.05 level). 

 



317 
 

 

 Inside Web Out of Web 

(Rho) P n (Rho) P n 

Furrow Depth (cm) -0.201 0.001* 392 -0.326 0.001* 109 

Number of upright stubble 0.365 0.001* 392 0.218 0.023* 109 

Straw Mass (g) 0.365 0.001* 392 0.218 0.023* 109 

Sunlight Duration (mins) 0.229 0.001* 392 0.363 0.001* 109 

Temperature (oC) 0.332 0.001* 392 0.190 0.052 109 
 

Anchor point heights of support threads and bridge threads were significantly negatively correlated 

to furrow depth (Table 11.12.). Whereas, straw mass, sunlight duration and number of upright stubble 

were significantly positively correlated to both anchor point heights. Anchor point heights of support 

threads were significantly positively correlated to the temperature measured in the choice chamber. 

 

11.7.4.2. Thread Length 

 Inside Web Out of Web 

(Rho) P n (Rho) P n 

Furrow Depth (cm) -0.030 0.577 353 0.329 0.007* 67 

Furrow Width (cm) 0.038 0.482 353 0.294 0.017* 67 

Sunlight Duration (mins) 0.362 0.001* 353 0.203 0.052 67 

Temperature (oC) 0.395 0.001* 353 0.221 0.051 67 
 

Sunlight duration of the experiment and temperature recorded within the choice chamber were 

significantly positively correlated with length of support threads (Table 11.13.). Furrow width and 

depth were found to be significantly positively correlated to length of bridge threads.  

 

11.7.5. Selection of Furrow Trials With the Presence of Aphididae 

The three-way log-linear analysis produced a final model that retained all effects in two and three-

way interactions. Due to the hierarchical nature of the log-linear model, the highest order interaction 

(treatment x gender x end position of T. tenuis) was significant, and all other two-way interaction were 

ignored. To break down this effect, odds ratios were performed for the end position of T. tenuis 

variable for each treatment. Emphasis was placed on the effect of the soil tillage intensity due to this 

being the key interaction studied in the fieldwork (Chapter 5.0.). The odds ratio of choosing Aphididae 

was also included as this factor displays predatory response by T. tenuis, enabling biological control. 

Table 11.13: Correlations of independent variables measured in choice chambers, with dependant variable thread length 

(mm) inside and outside of web. Choice chambers of selection of furrow trials without Aphididae. (* relates to significant 

with α <0.05). 

Table 11.12: Correlations of independent variables measured in choice chambers, with the dependant variable anchor 

point height (cm) inside and outside of web. Choice chambers of selection of furrow trials without Aphididae. (* relates to 

significant with α <0.05). 
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The odds ratios indicated that for Conventional soil tillage intensity the odds that a T. tenuis would go 

towards a side with Aphididae was 0.636, Direct Drill Managed 0.571 and Direct Drill 0.525. This result 

suggests that soil tillage intensity had little effect on the choice of T. tenuis for the side with Aphididae. 

Further, the low odds ratio (<1) explains Aphididae had little impact in the end position of T. tenuis. 

The significance appears to lie in the interaction of the number and gender of T. tenuis incorporated 

into the choice chamber.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.17: Frequency (%) of the T. tenuis end position 

of 1 x Female T. tenuis in choice chambers of selection of 

furrow trials with Aphididae grouped by soil tillage 

intensity. (χ2 = (1) = 52.900, P - 0.006) (Non-Furrow Side 

Aphididae = Orange, Furrow Side Aphididae = Light 

Green, Furrow Side No Aphididae = Brown). 

Figure 11.18: Frequency (%) of the T. tenuis end position 

of 2 x Female T. tenuis in choice chambers of selection of 

furrow trials with Aphididae grouped by soil tillage 

intensity. (χ2 = (1) = 52.900, P - 0.006) (Non-Furrow Side 

Aphididae = Orange, Non-Furrow Side No Aphididae = 

Purple, Furrow Side Aphididae = Light Green, Furrow Side 

No Aphididae = Brown). 

Figure 11.19: Frequency (%) of the T. tenuis end position of 

female T. tenuis in 1 x female and 1 x male in choice 

chambers of selection of furrow trials with Aphididae 

grouped by soil tillage intensity. (χ2 = (1) = 52.900, P - 

0.006) (Non-Furrow Side No Aphididae = Purple, Furrow 

Side Aphididae = Light Green, Furrow Side No Aphididae = 

Brown). 

Figure 11.20: Frequency (%) of the T. tenuis end position 

of male T. tenuis in 1 x female and 1 x male in choice 

chambers of selection of furrow trials with Aphididae 

grouped by soil tillage intensity. (χ2 = (1) = 52.900, P - 

0.006) (Non-Furrow Side Aphididae = Orange, Non-

Furrow Side No Aphididae = Purple, Furrow Side 

Aphididae = Light Green, Furrow Side No Aphididae = 

Brown). 
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Figure 11.17. describes female T. tenuis were found in the furrow side with Aphididae and non-furrow 

side with Aphididae in the soil tillage Conventional, when one female was incorporated. In Direct Drill 

Managed, all female T. tenuis were found in the furrow side without Aphididae. For Direct Drill, the 

female T. tenuis were only found in the furrow side, the greatest frequency being the side without 

Aphididae. 

When two female T. tenuis were incorporated into the treatment of Conventional and Direct Drill, T. 

tenuis were found in both sides of the choice chambers with and without Aphididae (Figure 11.18.). 

The greatest frequency for Conventional was non-furrow side without Aphididae, for Direct Drill the 

furrow side with Aphididae and non-furrow side without Aphididae. For Direct Drill Managed the 

greatest frequency for end position of T. tenuis was the furrow side without Aphididae. 

Only the furrow side without Aphididae was found to be the end position of female T. tenuis in 

Conventional, when one male and one female T. tenuis were placed into the choice chamber (Figure 

11.19.). This side held the greatest frequency for Direct Drill under the same conditions of one of both 

female and male T. tenuis. The greatest frequency for Direct Drill Managed was the non-furrow 

without Aphididae. 

In Conventional, the greatest frequency was found in the side of furrow with no Aphididae, for male 

when one male and one female were added (Figure 11.20.). Males were found in non-furrow side with 

Aphididae in this soil tillage intensity treatment. All sides, except the non-furrow with Aphididae held 

a male at the end of the trial in Direct Drill Managed, therefore sharing an identical frequency. For 

Direct Drill of this category, the greatest frequency was furrow without Aphididae, with another male 

being in the non-furrow side without Aphididae only. 

Figure 11.22: Frequency (%) of the T. tenuis end position of 

2 x male T. tenuis in choice chambers of selection of furrow 

trials with Aphididae grouped by soil tillage intensity. (χ2 = 

(1) = 52.900, P - 0.006) (Non-Furrow Side Aphididae = 

Orange, Non-Furrow Side No Aphididae = Purple, Furrow 

Side Aphididae = Light Green, Furrow Side No Aphididae = 

Brown). 

Figure 11.21: Frequency (%) of the T. tenuis end 

position of 1 x male T. tenuis in choice chambers of 

selection of furrow trials with Aphididae grouped by soil 

tillage intensity. (χ2 = (1) = 52.900, P - 0.006) (Non-

Furrow Side Aphididae = Orange, Non-Furrow Side No 

Aphididae = Purple, Furrow Side No Aphididae = 

Brown). 
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When one male was inserted into the choice chambers, the greatest frequency of end position for 

Conventional was the furrow side without Aphididae (Figure 11.21.). The same was observed for Direct 

Drill Managed, however, a male was found in the non-furrow side with Aphididae, whereas in 

Conventional, a male was in the non-furrow side without Aphididae at the end of the trial. The 

frequency of 100% identifies that all the male T. tenuis in the Direct Drill treatment were in the non-

furrow side with Aphididae. 

With two males incorporated, a frequency of 50% males for furrow and non-furrow side without 

Aphididae, were found in these two sides in Conventional and Direct Drill (Figure 11.22.). For Direct 

Drill Managed, 50% of male T. tenuis were found in the furrow without Aphididae side. Male T. tenuis 

were also located in the furrow and non-furrow side with Aphididae, the greatest frequency of these 

categorical variables held by the furrow side. 

11.7.5.1. Anchor Point Height 

 

  

 

 

 

 

 

 

 

 

When one male T. tenuis were placed into the choice chamber significant difference was identified 

within the mean anchor point height of support threads found in Direct Drill Managed furrow and 

Direct Drill non-furrow sides (Figure 11.23.). The mean anchor point height of 8.4 cm, for Direct Drill 

non-furrow side was significantly higher than the mean anchor point height found in the Direct Drill 

Managed furrow side of -0.4 cm.  

 

  

Figure 11.23: Mean anchor point height (cm) inside web (of support threads) where M. 

dirhodum was recorded of soil tillage intensities with 1 x male T. tenuis. Choice chambers 

of selection of furrow trials with Aphididae. (n = 149, df - 9, F - 21.62, R-sq - 63.69%, P - 

0.001) (Direct Drill Managed Furrow = Blue, Direct Drill Non-Furrow = Dark Green). 

(Direct Drill Managed Furrow ±s.e.0.058 (n = 3), Direct Drill Non-Furrow ±s.e.0.919 (n = 

12). Bars that do not share the same letter are significantly different at the p<0.05 level).  
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The mean anchor point height of support threads in the Direct Drill non-furrow side, 7.4 cm, was 

significantly higher than the mean found in the Direct Drill Managed non-furrow area, 0.6 cm (Figure 

11.24.). This recorded a difference in mean anchor point height of 6.8 cm.  

 

 (Rho) P n 

Furrow Depth (cm) -0.324 0.001* 149 

Furrow Width (cm) -0.346 0.001* 149 

Number of Upright Stubble 0.353 0.001* 149 

Straw Mass (g) 0.353 0.001* 149 
 

Two variables were found to be significantly positively correlated to anchor point heights found inside 

webs of the side where the M. dirhodum was recorded: straw mass and number of upright stubble 

(Table 11.14.). The furrow depth and width were found to be significantly negatively correlated to 

anchor point height of support threads.  

No significance existed for thread length of support threads where M. dirhodum was recorded and 

dependant variables measured. 

Figure 11.24: Mean anchor point height (cm) inside web (of support threads) where M. 

dirhodum was recorded of soil tillage intensities with 2 x male T. tenuis. Choice chambers of 

selection of furrow trials with Aphididae. (n = 149, df -9, F - 21.62, R-sq - 63.69%, P - 0.001). 

(Direct Drill Managed Non-Furrow = Dark Blue, Direct Drill Non-Furrow = Dark Green). (Direct 

Drill Managed Non-Furrow ±s.e.0.145 (n = 3), Direct Drill Non-Furrow ±s.e.0.628 (n = 14). Bars 

that do not share the same letter are significantly different at the p<0.05 level).  

 

Table 11.14: Correlations of independent variables measured in choice chambers, with the dependant 

variable anchor point height (cm) inside web (of support threads) where M. dirhodum was recorded. 

Choice chambers of selection of furrow trials with Aphididae. (* relates to significant with α <0.05). 
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11.8. Discussion 

11.8.1. Selection of Upright Stubble Without the Presence of Aphididae 

The incorporation of the upright stubble influenced T. tenuis abundance and web-building more than 

rappelling (Figure 11.4. & Figure 11.6.). Further, the significant higher mean anchor point within webs 

was found in the side where stubble was present for Conventional and Direct Drill (Figure 11.5. & 

Figure 11.25.). This is an unusual result with previous findings in the field suggesting at times of no 

crop, upright stubble allowed short-range dispersal by providing stepping-stones of a high aspect, key 

to facilitating rapid dispersal. As discussed earlier, anchoring to the apex of structures to facilitate the 

extension of the abdomen (Bonte et al., 2008; De Meester & Bonte, 2010; Simmoneau et al. 2016) 

(Section 5.1.6.1.2. & Table 11.3.). Very few bridge threads were identified in the increased number of 

upright stubble of the Direct Drill stubble side. This could be concerned with spatial scales, the choice 

chambers offering a much-reduced spatial scale than the main field, therefore less opportunity given 

for short range exploration (Bonte et al., 2011; Halley et al., 1996; Tscharntke et al., 2011). Similar 

sized trials from work by Benjamin et al. (2002), Segoli et al. (2004) and Zschokke & Herberstein (2005), 

with adequate attachment sites for web commencement, identified little prior exploration by 

rappelling of the habitat. It was recorded in times of cultivation in the field and before the addition of 

the M. dirhodum in the microcosms analysing different Aphididae abundance, that upright stubble has 

supported web-building allowing a site of increased sturdy anchorage (Armendano & González, 2011; 

Bianchi et al., 2017) (Section 5.1.5.1.3. & Section 10.5.2.). 

 

 

 

 

 

 

 

 

 

 

Figure 11.25: Use of upright stubble for web-building in the stubble side of 1 x female 

in Direct Drill. Choice chambers of selection of upright stubble trials without 

Aphididae. Elevated view. (Red arrow = 19.2 mm). 
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The mean thread length within the Convention non-stubble side, was significantly longer than that of 

Direct Drill Managed and Direct Drill (Figure 11.9.). There was only the landscape factor of straw within 

these sides, the only bridge thread found was attached to pieces of straw residue, the web found 

within this area was further attached to the straw. It appears rappelling behaviour traversing the 

straw, directly led to web construction (Table 11.3.). This identifies a greater return on the energy 

output for spinning the bridge threads (Bonte 2013; De Meester & Bonte, 2010; Harmer et al., 2011; 

Zhang et al., 2016).  However, when two males were incorporated into the mesocosms the greater 

thread length within webs was identified in the stubble side of the Conventional tillage (Figure 11.10.) 

Within these choice chamber, the two males were within the different sides. One male spun a web of 

a larger area within the straw and upright stubble, while the other male constructed a small web 

within the straw only. This could signal intra-specific competition with males requiring definite 

territory for sanctuary and spinning of sperm webs. Eichenberger et al. (2009) and Entling et al. (2011) 

describe that intra-specific competition of Linyphiidae can arise due to differences in body size, Sexual 

Sized Dimorphism (SSD), the male T. tenuis within the stubble holding an abdomen length 0.41 mm 

larger (Section 2.1.2.2.). 

There was no significant difference in the interaction of gender and number of T. tenuis with soil 

treatment and its final position. This can be observed as surprising, as the addition of another T. tenuis 

to the choice chambers could be seen to alter the way materials are utilised within. Downie et al. 

(2000) showed clear divisions in space between web-sites when a male and female E. atra were 

combined into a microcosm. Glover (2013), identifying similar results, explained division to be due to 

threat of competition. However, in this trial, the end position of T. tenuis was shared eight out of nine 

times for the trial of two males, and every trial when a male and female were incorporated. This is 

viewed unusual as T. tenuis are noted to be a solitary arachnid, territorial of a space assigned for web-

building (Janetos, 1984; Opatovsky et al., 2016; Toft 1987). It can be noted that 66.67% of this sharing 

was found on the stubble side within all soil tillage intensity treatments (Figure 11.4.). The strength of 

the upright stubble proved an extensive material for web-building at a greater height (Figure 11.7., 

Figure 11.8. & Table 11.3.). With Harwood et al. (2004) and Sereda et al. (2012) commentating on T. 

tenuis fierce competition for key web-sites, it appears that the addition of the upright stubble was 

creating a suitable location and offering the ideal web-building site in the choice chambers. T. tenuis 

can be observed to utilise a small web-building site, explaining that webs may be built in close 

proximity and still allow T. tenuis to hold dominance over a territory (Černecká, et al., 2017; Halley et 

al., 1996; Oxbrough et al., 2006) (Figure 11.8.). Di-Rienzo & Aonuma (2018) and Japyassú & Laland 

(2017) describe that the extended phenotype of the web allows a definition of the habitat, and a highly 

defendable territory erected.  
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In the mesocosm trial analysing T. tenuis activity with soil tillage intensity and S. avenae (Section 8.7.2. 

& Section 8.7.3.) and the mesocosm trial with primary cultivation (Section 9.6.2.), it was shown that a 

small increase in cephalothorax length allowed a greater energy output to be reached, to spin larger 

threads and ascend higher (Anderson & Prestwich, 1975; Coddington, 2005; Prenter et al., 2010; 

Rodríguez-Gironés et al., 2010). A difference in cephalothorax length may have influenced the final 

position of T. tenuis to reside higher in the stubble side from investigative rappelling, spinning larger 

webs (Table 11.3. & Table 11.5.).  However, the choice chamber’s features were small in size, therefore 

perhaps an ability to a greater energy output in increase leg flexion would create little difference if 

larger distances and heights were not available to be attained. This may be the reasons why abdomen 

length was not significantly correlated to thread length, which had been shown previously (Section 

8.7.3. & Section 10.6.3.2.). Perhaps the random assignment of T. tenuis into the different replicates of 

the trial did not allow any correlations to prevail, for example, the T. tenuis of the longest and smallest 

abdomen was placed into the Direct Drill Managed choice chamber, where the level of landscape 

heterogeneity was the same. This identified the strength of the available materials to dictate the 

dimensions and orientations of a web.  

Sunlight duration was negatively correlated to length of bridge and support threads (Table 11.5.), 

which was surprising, with Król et al. (2018) describing T. tenuis as most active after day-break, to 

claim territory and avoid predation. Within this experiment, no threat of predation existed. Though 

the T. tenuis would not identify the absence of prey within the first response, especially when the 

experiment commenced at midday. An experiment running for twenty-four hours is recorded by 

Janetos (1984), Segoli et al. (2004), Sensenig et al. (2010) and Toft (2002) as enough time to spin a 

web in a confined area. Temperature of the choice chambers was shown to have had no significance 

to web-weaving. Though temperature was measured as 18 to 21 oC, shown by Craig (2003) and 

Hesselberg & Vollrath (2012), an optimum for yielding greater expanse of thread at a low energy cost. 

The conditions were enclosed environments, where the physical disturbance was low to non-existent 

and may have removed the significance that temperature may have had on web construction and 

need for thermo-regulation of T. tenuis (Humphreys, 1991; Simonneau et al., 2016; Suter, 1981). 

Mader et al. (2017) and Pedley & Dolman (2014) comment that the results of physical disturbance can 

alter competition for a web-site, due to additional variables of shelter and protection required.  
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11.8.2. Selection of Upright Stubble With the Presence of Aphididae 

It is of interest that the number and gender of T. tenuis incorporated into the choice chambers was 

shown to significantly affect the side where T. tenuis chose to be at the end of the trial (Figure 11.11.). 

It appears that the addition of M. dirhodum created this interaction, as this was the only change 

between this choice chambers and the previous (Section 11.7.2.).  

Five out of nine females chose the same side as the males. It could not be identified which gender 

spun any web recorded first, however it is clear the T. tenuis in these choice chambers were prepared 

to share a small amount of space. As noted in the previous trial, with little physical disturbance, both 

T. tenuis can attain a solitary web-site in a small space (Černecká, et al., 2017; Halley et al., 1996; 

Štokmane & Spuņģis et al., 2016) (Section 11.8.1.).  Males and females were found in the non-stubble 

sides without M. dirhodum, this was surprising as these sides were void of prey abundance and 

plethora of attachment sites, two elements shown by Alderweireldt (1994), Dennis et al. (2015) and 

Romero & Harwood (2010) to drive T. tenuis abundance (Figure 11.11.). Prenter et al. (2010), Rundus 

et al. (2011) and Watson (1993) discuss the movement of male T. tenuis to locate a female for 

copulation, however, the current trials were carried out in July, shown to be early for courtship in the 

life history of T. tenuis (Bell et al., 2002; Kasumovic & Jordon, 2013). The temperature identified in the 

choice chamber, higher than would be observed in the field, may induce courtship behaviour due to 

increasing T. tenuis metabolic rate (Jiao et al., 2009; Keil & Watson, 2010, Herberstein 2011; 

Hesselberg & Vollrath, 2006). From this information it can be hypothesised that the females 

constructed the webs first, this gender the dominate web-builder (Bonte et al., 2008; Thomas & 

Jepson, 1999). If this was the case, then it could be questioned why the non-stubble side was chosen 

if no Aphididae were present. This side appeared not to present any benefits to the web-spinning (in 

food availability, shelter, or increased anchor height). It may be that a factor outlined the non-stubble 

side as a potential web location due to its sparse nature, T. tenuis are often driven to pioneer a 

disturbed landscape. However, this is unlikely with no previous experience of the habitat, Buchholz & 

Hartmann (2008), Halley et al. (1996) and Nyffler & Sunderland (2003) suggested that this pioneer 

ability comes from learnt behaviour of previous vegetation complexity. It may be that the small nature 

of the habitat reduced the spatial effect of the low structural heterogeneity (Horváth et al. 2015; 

Mclachlan & Wratten, 2003; Miyashita et al., 2012; Villard & Metzger, 2014). 

All sides were chosen when two female T. tenuis were incorporated, the greatest being the non-

stubble side with Aphididae (Figure 11.11.). This can show that Aphididae may have been easier to 

identify without the stubble. With poor vision of distant objects, removal of obstructing features may 

allow the vibrant green of M. dirhodum to be received by the eyesight of female T. tenuis (Herberstein, 
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2011; Lichtenstein et al., 2016; Young & Wanless, 2009). Preston-Mafham & Preston-Mafham (1996) 

and Young & Wanless (2009) showed that the contrast in colour aids reception of the Linyphiidae optic 

system. Cues from movement in straw, may be transmitted in clear pathways to T. tenuis receptors 

without stubble acting to perhaps impede this motion.  The two trials of one and two female T. tenuis 

explained that straw may be key to understanding why the M. dirhodum chose to reside in the straw 

during the trial (Table 11.6. & Table 11.7.). This disagrees with Kennedy et al. (2010) and Summers et 

al. (2004) who suggested that straw aided Aphididae capture due to pushing the Aphididae to a higher 

stratum within a habitat. Within the choice chamber, low landscape architecture overall and lack of 

vegetation, may have allowed the straw to become an attractive dwelling for the M. dirhodum. Hesler 

& Berg (2003) and Schmidt et al. (2004) explain that crop residue provided a suitable habitat for 

Aphididae in times of no crop, explained as due to offering shelter whilst searching for an alternative 

food source. 

With only one male T. tenuis, the greatest frequency of end position was in the non-stubble side 

without Aphididae (Figure 11.11. & Figure 11.26.). With M. dirhodum not located on the stubble, it 

appeared likely that the greater density of stubble in the Direct Drill side influenced T. tenuis decision 

to construct a web at a higher level (Figure 11.12. & Table 11.6.). Krafft & Cookson (2012) explain a 

web architecture is not foreseen, rather Linyphiidae rely on sensory guidance from the surrounding 

structures to complete a web, the upright stubble clusters in Direct Drill providing easily identifiable 

cues in each step of web-building.  

 

 

 

 

 

 

 

In only three out of the nine choice chambers, two male T. tenuis were identified on the same side, 

each in the side without Aphididae (Figure 11.11.). There appeared to be a factor preventing the 

predator dynamics of male T. tenuis, especially when starved. Bell et al. (2002) and Harwood et al. 

(2003) explain that T. tenuis can endure times of extended starvation, thus, this may not have altered 

the predator capacity of a T. tenuis starved for twenty-four hours, plus time within the terrarium 

Figure 11.26: Use of straw for web-building in the non-stubble side of 1 x male in 

Direct Drill. Choice chambers of selection of upright stubble trials with Aphididae. 

Elevated view. (Abdomen Length = 1.59 mm, Cephalothorax length = 1.02 mm). 
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previous (Section 7.2.1.). Sunderland et al. (1986) agreed, describing a heightened response to prey 

capture was shown to increase after seven days of starvation. With the mass of the Aphididae not 

significant to the end position of the T. tenuis, an increase in the mass of M. dirhodum did not alter 

the intensity of cues in movement, which may have allowed a greater response from T. tenuis. 

However, three M. dirhodum were caught in the webs woven into the straw, one in the non-stubble 

side and two in the stubble side when two female T. tenuis were incorporated. It appeared that the 

predatory ability was greater in female T. tenuis in this circumstance than males. Gavish-Regev et al. 

(2009) and Mansour & Heimbach (1993) both detailed that female Linyphiidae have a higher success 

in a greater degree of prey capture over males. Corcobado et al. (2010) and De Meester & Bonte 

(2010) identified that female Linyphiidae require a greater amount of energy, thus are prone to act on 

received evidence of prey. 

11.8.3. Selection of Furrow Without the Presence of Aphididae 

The implantation of the furrow of differing dimensions for the soil tillage simulations or arrangement 

of T. tenuis added into the trial in numbers and gender, held no effect over the final position of the T. 

tenuis once the trial ended. This suggests that in all soil tillage intensities, both sides of the choice 

chambers, with or without the furrow, held enough vegetation complexity for adequate web-building 

to be identified. Indeed, all materials of both sides provided attachment points for support threads 

(Lyons et al., 2018; Mestre et al., 2018; Rusch et al., 2016) (Figure 11.13., Figure 11.14., Figure 11.27., 

Figure 11.28. & Table 11.12.).  

 

 

 

Figure 11.27: Use of soil for web-building in the non-

furrow side of 1 x female in Conventional. Choice 

chambers of selection of furrow trials without Aphididae. 

Elevated view. (Red arrow = 23.4 mm). 

Figure 11.28: Use of upright stubble and straw for web-

building in the furrow side of 1 x female in Direct Drill. 
Choice chambers of selection of furrow trials without 

Aphididae. Elevated view. (Red arrow = 11.2 mm). 
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Webs and rappel threads were shown to be made at all locations and heights across all sides of each 

choice chamber, regardless of soil tillage intensity treatment (Figure 11.15., Figure 11.16., Figure 

11.27. & Figure 11.28.). This agrees with Borges & Brown (2001), Lowe et al. (2014), Platen et al. (2017) 

and Sunderland & Samu (2000) who describe that if a high abundance of possible anchor materials 

exists, and these are in a spatial arrangement to allow threads to be woven between, the possibility 

for potential web-spinning of differing heights and areas is great. It appears that definite strata of web 

building commenced, with significance found of mean rank anchor point height between the 

attachment materials of soil and upright stubble (Figure 11.13. & Figure 11.14.). With upright stubble 

accessible in all choice chambers, it is of interest that some webs were woven into the soil and straw, 

when the strength of the upright stubble material was shown in the previous trial and by Bianchi et 

al. (2017) and Blake et al. (2013) to be a functional web-building structure (Figure 11.15. & Section 

11.7.3.1.). It was established that within most choice chambers representing soil tillage intensity, 

number of webs exceeded that of the T. tenuis incorporated into the choice chamber, expressing web 

abandonment had taken place. The small webs woven into the structures of the habitats are likely to 

be of low energy consumption and thus more readily vacated (Henschel & Lubin, 2018; Rodríguez-

Gironés et al. 2010). It is reported that a starving T. tenuis that has identified limited cues to possible 

prey may choose to construct a new web of a different aspect in a rapid time frame to intercept 

potential stimuli of prey (Kraftt & Cookson, 2012). Though, the T. tenuis had only been without food 

for two days (in the artificial habitat and choice chamber), any prolonged period without any prey, 

stimuli is noted to heighten the predatory response (Japyassú & Laland, 2017) (Section 7.2.1.). 

T. tenuis dimensions showed no significant correlation to T. tenuis silk-spinning behaviours suggesting 

no competition existed between T. tenuis of differing body dimensions when two T. tenuis were 

incorporated. Heiling & Herberstein (1998) and Prenter et al. (2010) explain that body dimensions may 

not measure T. tenuis fitness. This was noted to be the case in the mesocosms following T. tenuis 

activity over H. vulgare growth, where larger webs were spun from low averages of body length and 

mass (Section 8.7.4.). However, with no log-linear analysis model established for the sides chosen by 

the different T. tenuis of the trial, the probability of fitness having an effect is shown to be void. 

Several rappel threads were observed traversing across the furrow (Table 11.13.). This was shown to 

be greatest in Conventional, where the furrow was at a greater depth (Figure 11.29. & Table 11.12.). 

It appeared that furrow depth influenced rappelling more than width, a different result to field 

sampling, when soil of poor moisture availability allowed furrows to widen (Section 5.1.6.2.2.). This 

was an unexpected result concerning rappelling, which usually commences higher within a habitat, 

laying bridge threads onto sturdy structures, additional height allowing rapid dispersal with little 

obstruction (Blandenier, 2014; Bonte et al., 2016; Hogg & Danne, 2018; Szymkowiak et al., 2007). It 
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may be that there was less upright stubble within the Conventional trial and thus an exploration of 

the furrow may have been occurring before web-spinning (Figure 11.16.). Rosa et al. (2019) 

commented that Linyphiidae are sensitive to changes in physical properties of soil and the subsequent 

features promoted, for example, soil of high bulk density altering landscape features such as seedbed 

(furrow). Linyphiidae were further identified to be attracted to increase Aluminium (lll) ion (Al+3) within 

soil through the sense of smell, the soil of Hanslope contains high Al+3 due to the cation exchange 

capacity (Cranfield University, 2017; Paul, 2015; Rosa et al., 2019) (Section 2.2.2.). Thus, the furrow in 

Conventional may have been an attractive web-site in a habitat low in landscape complexity. 

 

 

 

Temperature range inside the choice chambers of this trial was 17.3 - 19.6 °C. It was generally 

identified that the higher temperatures allowed webs to be spun to a greater area and a higher height 

as discussed earlier (Table 11.12. & Table 11.13., Section 11.8.1.). The greatest web areas were spun 

at times of two male T. tenuis and two female T. tenuis when the temperatures were recorded at 19.2 

°C and 19.6 °C, respectively. It was identified in earlier discussions, that higher temperatures allowed 

a higher degree of energy to be expelled into thread spinning, due to low thermo-regulation required 

(Bonte & Saastamoine, 2013; Humphreys, 1991) (Section 8.8.). At the temperatures discussed in these 

choice chambers, thermo-regulation would not be a requirement (Schütt, 1997; Suter, 1981). 

However, Harmer et al. (2011) and Zhang & Tso (2016) commented that a small increase in 

temperature reduces the tensile stress needed to yield the correct loading capacity for the major 

ampullate silk (Blackledge et al. 2009; Craig 2003; Saravanan, 2006) (Figure 2a, Section 2.1.2.1., Page 

10). This allows greater distances to be spun, with the requirement of less energy and ability to obtain 

the structural stability needed for a support thread of a web.  

 

Figure 11.29: Use of furrow sides for attachment sites for a bridging thread in 

the furrow side of 1 x female in Conventional. Choice chambers of selection of 

furrow trials without Aphididae. Lateral view. (Red arrow = 7.3 mm). 
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11.8.4. Selection of Furrow With the Presence of Aphididae 

When one female T. tenuis was added to the choice chamber, differences were identified in all soil 

tillage intensity treatments in the end position chosen by the individual T. tenuis (Figure 11.17.). This 

is interesting due to no competition existing in these choice chambers; therefore, the whole habitat is 

a potential area for web construction, no disturbance (physical or intra-specific) affecting this decision. 

However, the presence of the furrow appeared to attract the single female T. tenuis (Figure 11.17.). 

M. dirhodum presence does not seem to have influenced web-building in Direct Drill Managed and 

Direct Drill (Figure 11.17.). The complexity of an environment has been shown to curb cues of a prey’s 

whereabouts (Kraft & Cookson, 2012). This point is heightened as M. dirhodum were apterous and 

therefore no aerial movement occurred with the habitats. Moreover, Gravesen (2008) suggested bare 

soil can promote M. dirhodum locomotion and apterous morphs were identified commuting along 

furrows. It can be identified that the complexity of the habitat with the addition of the soil and upright 

stubble on both sides, suppresses any stimuli that may be accessed by the female T. tenuis (Schütt, 

1997; Spears, 2012; Štokmane & Spuņģis, 2016; Welch et al., 2013) (Figure 11.3a - c).  

When two female T. tenuis were incorporated, the dynamics changed within the choice chamber, all 

potential of the habitat for web-building was thought to be shared at the outset of this trial (Figure 

11.18.). It was expected that more areas of the choice chamber would be thus utilised. It was therefore 

surprising that female T. tenuis were found in the greatest frequency sharing the furrow side without 

Aphididae in Direct Drill Managed (Figure 11.18.). With only three upright stubble incorporated into 

Direct Drill Managed, the furrow can be observed as perhaps a much-needed increase in attachment 

points for threads in the landscape (Figure 11.3b). In Conventional, both female T. tenuis did occupy 

webs, where a M. dirhodum was within a web of the furrow side (Figure 11.18.). The low landscape 

heterogeneity in the Conventional treatment may have allowed cues of M. dirhodum presence to have 

been interpreted. It may take additional T. tenuis to intercept cues of prey availability, due to none 

found in webs of one female T. tenuis trial. Even though T. tenuis have been described as territorial 

species, highly defending a key web-site, Glover (2013), Harwood et al. (2004), Japyassú & Laland 

(2017) and Sunderland & Samu (2000) identified that a high abundance of Linyphiidae is a cue that 

the area habituated may be of high prey availability. Gan et al. (2015), Samu et al. (1996) and Toft 

(1989) describe web take-over usually occurs as an act of dominance where fundamentally the 

previous building of this web was at a key location. This was identified in field sampling when many 

Linyphiidae webs were found in one sampling area in the early growth stages of H. vulgare (Section 

5.1.6.2.1.). This may have been what was occurring within habitats of the current trials, low physical 

disturbance decreasing a need to compete, a female T. tenuis followed the example of another whose 

decision to reside in a side may have been due to receiving a stimulus from M. dirhodum.  
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Only the furrow side without Aphididae was found to be the end position of female T. tenuis in 

Conventional, when a male and female were added (Figure 11.19.). The greatest frequency for the 

males of the same choice chamber were found to be at the same side (Figure 11.20.). Indeed, in two 

replicates out of three, males and females were shown to be occupying the same side of furrow with 

no Aphididae. The addition of the furrow provided additional attachment sites with less upright 

stubble and straw incorporated. One male did build a web in the side without a furrow, the side where 

the M. dirhodum were located. M. dirhodum was found in the web in this location. It can be 

hypothesised that the prey did dissuade the T. tenuis from locating the web of greater vegetation 

complexity within the furrow side. De Meester & Bonte (2010), Harwood et al. (2004) and Thomas et 

al. (2003) discuss that females expel a greater amount of energy to act on prey cues, however, 

Japyassú & Laland (2017), Romero & Harwood (2010) and Willemart & Lacava (2017) identified no 

difference in the capability of interpreting a stimulus of prey capture between genders. Perhaps the 

male of this choice chambers was of higher fitness and this heightened reaction time to respond to 

prey (Gregori et al., 2015; Harwood & Obryck, 2005; Jeperson & Toft, 2003; Peng et al., 2013). 

For Direct Drill Managed, one female and one male did access the M. dirhodum furrow side in the 

same choice chambers (Figure 11.19. & Figure 11.20.). No female or male T. tenuis was found sharing 

a web which described that courtship was not taking place. The question is whether T. tenuis were 

responding to the greater availability of anchor points or the availability of prey in the form of M. 

dirhodum. This is difficult to establish as male and female have been seen to share the same side 

without the presence of M. dirhodum in the previous choice chambers (Section 11.7.2.). However, a 

small exuviae lying in the female T. tenuis web suggests the web was placed near to M. dirhodum 

activity. As observed in earlier fieldwork, exuviae were a sign of a near presence of Aphididae (Beck & 

Toft, 2000; Muratori et al., 2008) (Section 5.1.6.2.1.). Female and male T. tenuis were, however, 

viewed not to be reacting to the addition of M. dirhodum, when in most replicates, they were found 

inhabiting sides that did not contain Aphididae (Figure 11.19. & Figure 11.20.).  This is incorporated 

into the low odds ratio of all soil treatments, that a T. tenuis would choose the side of an Aphididae. 

This was the case for female and male T. tenuis within the Direct Drill choice chamber, where only the 

side without Aphididae, were shown to house the T. tenuis at the end of the trial (Figure 11.19. & 

Figure 11.20.). The complexity of the Direct Drill areas may allow the cues of M. dirhodum to be hidden 

to the T. tenuis as discussed earlier in this trial. The furrow is still key within Direct Drill, in times where 

above-ground vegetation may be shown to be adequate (Figure 11.19. & Figure 11.20.). Alderweireldt 

(1994) and Samu & Sunderland (2000) discussed the use of soil for a T. tenuis web in times of other 

structures providing potential anchor points. However, Bell et al. (2002) and Landsman & Bowman 

(2017) explained the orientation of structures, physiognomy, is a driver for enhancing web-building 
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abundance. It may be that the random orientation of the upright stubble may suit web-spinning, due 

to the slight increase in distance between the stubble due to the furrow (Figure 11.3c). 

When one male was present in the choice chambers, the greatest frequency of end position for 

Conventional and Direct Drill Managed was the furrow side without Aphididae. (Figure 11.21.). It 

appeared that the presence of M. dirhodum may not have been intercepted, again linking to the low 

odds ratio. This is clear when literature and previous findings suggest T. tenuis are primarily driven to 

construct webs in areas of higher prey abundance (Pfingstmann et al., 2019; Pompozzi et al., 2019; 

Rosas-Ramo et al., 2018) (Section 5.1.5.2.4. & Section 10.6.3.1.). It may be the furrow, increasing the 

complexity of the vegetation was a learnt cue from the field environment that prey is possibly more 

likely in an area of increased landscape features (Glover, 2013; Willemart & Lacava, 2017). One male 

in Conventional chose the non-furrow side without the M. dirhodum, which negates the previous 

statement (Figure 11.21.). Only bridge threads were identified in this choice chamber, woven between 

the straw. It may be that an exploration of the habitat was occurring and perhaps the fitness of this 

male T. tenuis was such that it was able to expel energy for web-site exploration. The male was 

generally low mass and abdomen length, although these two dimensions did not show any significance 

to T. tenuis silk-spinning behaviour. As described earlier in the choice chambers of selection of upright 

stubble, fitness cannot be described directly by body dimensions measured, fitness being related to 

genetic traits and environmental factors (Higgins, 1993; Jakob et al., 1996; Jurczyk et al., 2012; 

Opatovsky et al., 2016) (Section 11.8.1.).  Indeed, Prenter et al. (2010) discussed that a male with a 

smaller mass could lay threads at a faster, more energy-efficient pace. For Direct Drill Managed and 

Direct Drill, males were found in the furrow side with Aphididae, linking the significant lower mean 

anchor point height for the furrow in Direct Drill Managed (Figure 11.21., Figure 11.23. & Table 11.14.).  

As stated earlier, it can be questioned as to whether M. dirhodum was the driving factor in the decision 

to create a web in the furrow side for Direct Drill Managed and Direct Drill. The M. dirhodum was 

identified dead within the straw residue away from the web at termination of the trial of Direct Drill 

Managed. Exuviae of M. dirhodum were shown to be attached to splinter in an upright stubble, it may 

be that this was a cue to create a web within. Hatano et al. (2008) and Muratori et al. (2008) identified 

Aphididae exuviae in the field can often act as a cue to Aphididae existence. However, the web was 

anchored to the soil of the furrow. A greater web height would be expected if above ground prey were 

identified, a position frequented by T. tenuis (Bell et al., 2002; Davey et al., 2013; Harwood & Obrycki, 

2005). It can be identified that the inclusion of a greater number of potential anchor sites offered, 

obscured the exuviae presence. Within the Direct Drill habitat, it could be that the need for the furrow 

had been negated by the additional material added into the choice chamber. Additionally, no M. 

dirhodum were identified in the webs, though webs were spun at a greater height attached to the top 
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of stubble, perhaps a response to a stimulus of the prey (Diehl et al. 2013; Feber et al. 1998; 

Oelbermann & Scheu, 2009; Schütt, 1997) (Table 11.14.). Conceivably, if the trial had been extended, 

the capture of the apterous M. dirhodum may have occurred, Willemart & Lacava (2017) explaining 

that T. tenuis foraging ability sharpens as habitat becomes familiar. 

When two male T. tenuis were put into the trial, low utilisation of the sides containing M. dirhodum 

was found (Figure 11.22.). This clearly explains their presence went unnoticed, again expressing the 

increased capacity for females to entrap prey (De Meester & Bonte, 2010; Lichtenstein et al., 2016; 

Watson, 1993; Welch et al., 2016). There appeared to be no element of competition within six out of 

the nine trials (with all soil tillage simulations). T. tenuis were found occupying the same side of the 

choice chambers. This may display the behaviour noted earlier, where the propensity to web-build in 

an area was due to following the choice of web-site location by another T. tenuis (Section 11.8.2.). This 

is described as ‘mass action’ by Bianchi et al. (2017) and Entling & Tscharntke (2011), where 

Linyphiidae are driven into an area due to the cue of an increasing Linyphiidae density emerging. This 

may have inspired the anchor point heights to be higher within the non-furrow side of Direct Drill 

(Figure 11.24.). Two males here were under webs of differing strata attached to upright stubble where 

M. dirhodum was identified, however, neither web contained M. dirhodum. It appears that if high 

densities of one species exists, competition occurs for occupancy of the stratum (Janetos, 1984; 

Miyashita et al., 2012). This difference in strata for web occupation, in times of increased Linyphiidae 

abundance, was also observed within sampling of hedgerows (Section 5.3.6.1.). 

In one choice chamber of Direct Drill Managed, two male T. tenuis shared the furrow side where M. 

dirhodum was noted, with a M. dirhodum found in the web woven half-way into the upright stubble, 

occupied by one male T. tenuis (Figure 11.22.). In another Direct Drill Managed choice chamber, a M. 

dirhodum was within the web of a male T. tenuis in the non-furrow side. From the evidence of web 

capture, it can be viewed that the appropriate web-site was established and its location may have 

been deliberately placed in response to a cue by M. dirhodum (Mark & Canard, 1997; Pekár, 2000; 

Welch et al., 2016). The low straw mass and number of upright stubble may have enabled prey to be 

identified. However, in the field, increased vegetation complexity is often a cue to T. tenuis that prey 

may be in abundance, phytophagous pests requiring vegetation for a food source (Glover, 2013; 

Mansion‐Vaquié et al., 2020; Rodríguez & Gamboa, 2000). The mechanics of the choice chambers are 

different from the field, when in general terms a simplified landscape of the field is offered to the T. 

tenuis here (Figure 11.3a - c.). Additionally, with no vegetation in the trial, other stimuli for prey 

occurrence was required, primarily in movement (Benhadi-Marín et al., 2019; Schellhorn et al., 2014; 

Welch et al., 2013). Interestingly, low attachment for the webs were chosen when there were no 

definite breaks in the soil to offer suitable anchorage and upright stubble was present (Figure 11.24.). 
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It may be vibrations of M. dirhodum within the soil surface, movements laboured, alerted T. tenuis to 

their presence, T. tenuis sensitive to subtle differences in vibration patterns (Japyassú & Laland 2017; 

Willemart & Lacava, 2017). 

It can be observed, that the selection of furrow choice chambers showed significance in interactions 

of soil tillage intensity, the differing T. tenuis incorporated and the end position of the T. tenuis, when 

in the selection of upright stubble trial only the latter two variables showed significant interaction 

(Section 11.7.3. & Section 11.7.5.). It would be thought that the addition of upright stubble in both 

areas of the choice chambers, the furrow the only difference, would negate the differences between 

soil tillage intensities further.  It may be simply that the greater movement of Aphididae occurred. 

Even though prey capture was limited, expressed in low odds ratios, 50% more Aphididae were 

captured in the selection of the furrow trial. Perhaps, the M. dirhodum were responding to the habitat 

of the furrow with a higher level of fitness and development rate due to the increasingly complex 

environment. Mehrparvar et al. (2013) discussed phenotypic plasticity in cereal Aphididae. This is 

where environmental factors may offer alternative phenotypes, higher level of alate morphs which in 

turn increases fecundity rate. One factor described is vegetation complexity. This is agreed by 

Lombaert et al. (2006) and Parry (2013), where vegetation complexity offers protection for increased 

Aphididae movement and subsequently wing polymorphism. Whereas in the upright stubble trial the 

M. dirhodum appeared to be confined to the straw, in the furrow trial M. dirohodum was located at 

various heights and locations within the habitat (Figure 11.30.). Mehrparvar et al. (2013) and Parry et 

al. (2006) stated that environmental factors may take several generations to alter fitness and offer 

alternative phenotypes, however, a choice chambers of increased small-scale landscape 

heterogeneity seemed to alter M. dirhodum activity.  

 

 

 

 

 

 

 

 

 

Figure 11.30: M. dirhodum and exuviae at a high level on plastic 

within choice chambers in the furrow side of 2 x female in Direct 

Drill. Choice chambers of selection of furrow trials with Aphididae. 

Lateral view. (M. dirhodum circled in yellow). 
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11.9. Final Discussion - Selection of Upright Stubble or Furrow With or Without the Presence 

of Aphididae 

It was interesting to see that in all stubble trials a side was chosen and only three instances had to be 

rejected in the furrow trial due to T. tenuis occupying a central position. It appeared that T. tenuis 

were keen to occupy a definite space.  

Throughout the selection of upright stubble and furrow, landscape heterogeneity appeared to be 

more important at driving T. tenuis occupation and web-spinning than the incorporation of M. 

dirhodum addressing the three aims noted for this Chapter (Section 11.2.1.). This was clearly shown 

with more T. tenuis activity occurring in the furrow side with and without Aphididae and low odds 

ratios in favour of choosing the Aphididae side. 

The results of this trial are not conclusive in determining that in a choice between landscape 

heterogeneity, prey abundance has a decreased priority. The decision not to follow M. dirhodum and 

the low capture observed, may mean more time was required. This could allow the cues of prey to be 

gained by the T. tenuis and thus a reaction would result in movement to locate prey which would 

require more time. T. tenuis require a period of learning before web commencement to collect 

information on the architecture of the landscape and where possible prey may lie. The two M. 

dirhodum may not have provided enough signals of their presence. Perhaps a greater quantity of a 

prey stimulus was needed to be processed by T. tenuis.   

One surprising finding was the sides of the choice chambers shared where two T. tenuis were 

incorporated into the trial, especially on learning T. tenuis will defend a high profitable web-site. This 

may show the power of ‘mass action’ which is an element that supports the biological control potential 

of this Linyphiidae and refers to the third aim mentioned in Section 11.2.1. The influence can be shown 

in the number and gender of T. tenuis having a significant interaction of the log-linear analysis model 

of selection of furrow with Aphididae. However, it was noted that it would be beneficial if T. tenuis 

power of biological control could suppress pest abundance at times of lower densities.  

Soil tillage intensity was shown to have a very limited effect (in the upright stubble, straw mass and 

furrow dimensions) on the decision of a T. tenuis to choose a particular side with or without Aphididae, 

clearly meeting the second and fourth aims for this experiment (Section 11.2.1.). It may be that the 

small size of the choice chambers reduced the spatial effect that the elements of the increased 

landscape complexity of Direct Drill had in the field (Section 5.1.5.). Due to the much-reduced scale of 

the choice chambers to the field, landscape heterogeneity was present in all soil tillage intensity 

simulations regardless of the amount of upright stubble, straw mass or furrow dimensions. 
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Chapter Twelve 

12.0. DNA Bar-Coding of Aphididae in T. tenuis Gut Contents and Linyphiidae Web 

12.1. Introduction 

To further understand the prey capturing ability of T. tenuis and Linyphiidae within the field, it was 

thought that the technique of DNA bar-coding could allow predator-prey interactions to be measured 

at a molecular level. DNA bar-coding offers a definitive answer as to whether a T. tenuis has 

encountered a prey species. This can therefore be used to support field observations of prey 

abundance in webs and measurements of web area for example. 

This Chapter consists of two parts. The first sought to determine if prey DNA could be found in the gut 

of T. tenuis collected from the areas of differing tillage intensities and how the results could aid further 

understanding of T. tenuis prey capturing ability. The second concentrated on whether Aphididae DNA 

could be retrieved from Linyphiidae webs collected within Conventional, Direct Drill Managed and 

Direct Drill areas of the NIAB fields.  

12.2. Aims and Specific Objections 

12.2.1. Aims 

This part of the research sought to address Aims 1 and 5 (Section 1.2., Page 2). 

1. Identify the potential biological control by T. tenuis of Aphididae and S. mosellana within 

different intensities of tillage in an arable crop.  

5. Quantify T. tenuis biological control by comparing Aphididae and S. mosellana DNA presence 

in T. tenuis gut and Linyphiidae webs with Aphididae and S. mosellana populations within 

different intensities of tillage. 

 

12.2.2. Specific Objectives 

Specific objectives were to: 

• Analyse T. tenuis gut content and Linyphiidae webs for presence of crop pests, in the form of 

cereal Aphididae and S. mosellana, and relate results to T. tenuis interaction with prey. 

• Sample T. tenuis from each area of differing soil tillage intensity to indicate if level of intensity 

affects T. tenuis and Linyphiidae web-building behaviour towards prey capture. 
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12.3. DNA Bar-Coding to Analyse T. tenuis Gut Contents for Aphididae 

12.3.1. Introduction 

DNA bar-coding involving DNA extraction and Polymerase Chain Reaction (PCR) was used to gain 

verification of T. tenuis prey interactions from the different soil tillage intensities in the H. vulgare and 

T. aestivum fields that were utilised in field sampling (Section 4.3.12.2. & Sub-Chapter 5.1.). Results 

from T. aestivum are represented here, alongside H. vulgare, due to abundance of S. mosellana adults 

found to be greater within the T. aestivum sampling of 2017 / 2018 (NIAB Field A) (Table 3.1., Section 

3.1.3.3., page 50). S. mosellana larval survival rate was higher upon T. aestivum grains. The ear of T. 

aestivum able to shield larvae from environmental disturbance to a greater degree than that of H. 

vulgare (AHDB, 2016; Oakley et al., 2005) (Section 2.2.6.3.). The damage of larval feeding in cereals is 

costly in grain deterioration and it would be useful if T. tenuis acts as a biological control to S. 

mosellana (Elliott et al., 2011 & Knight et al., 2012) (Section 2.2.6.4.). Gut content of T. tenuis was 

analysed for the presence of a specific short genetic marker which belonged to a particular Aphididae 

or S. mosellana (Birkhofer et al., 2014; Davey et al., 2013; Furlong, 2015; Symondson et al., 2013) 

(Section 2.3.3.).  

12.3.2. Methodology 

12.3.2.1. Sample Collection 

T. tenuis were collected from g-vac sampling of random plots in fieldwork. This action was carried out 

after all other fieldwork was complete. T. tenuis were sampled from GS 11 - GS 15 to GS 87 - GS 91 for 

H. vulgare and GS 11 - GS 15 to GS 71 - GS 74 for T. aestivum, in 2017 / 2018 cropping season (Table 

5.1.1., Section 5.1.3.2., Page 82). Two female adult T. tenuis were collected at each sample, due to 

their greater prey demands and increased activity in web-spinning to entrap prey (Section 2.1.3.2.).  

The digestion process for T. tenuis is complete within a six hour time frame per prey item consumed, 

however Davey et al. (2013), Harwood et al. (2004) and Powell et al. (2004) comment that between 

two to four hours of digestion of Aphididae is the optimal time period for molecular analysis to detect 

the Aphididae DNA markers within the T. tenuis gut. It was felt that direct freezing of the T. tenuis field 

samples was paramount to impede the digestion process and preserve any protein markers of S. 

avenae, M. dirhodum and S. mosellana within the gut (Eitzinger et al., 2013). T. tenuis, once collected, 

were thus placed into 1.5 ml microcentrifuge tubes and into a freezer box containing ice. This was to 

preserve the samples on the four-hour journey from the field to the laboratory. 
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12.3.2.2. DNA Extraction 

T. tenuis DNA was extracted using Qiagen DNeasy Blood & Tissue Kit™. T. tenuis were placed in 1.5 ml 

microcentrifuge tubes and the process of lysis of cells begun by the addition of 200 µl of Phosphate 

Buffered Saline Solution (PBS Buffer) and T. tenuis mechanically broken down with the action of a mini 

pestle (Cold Spring Harbour Laboratory, 2015; Wagner et al., 2016) (Section 2.3.3.). Macías-Hernández 

et al. (2018) identified all parts of a Linyphiidae body contain some quantity of a consumed Aphididae 

antigen in the later stages of digestion. This is due to the Linyphiidae expelling digestive enzymes 

externally, meaning feeding is in liquid form. This, and a branched gut forming diverticula (pockets), 

allows ingested liquid to be present in appendages as well as the central body (Davey et al., 2013; 

Eberhard, 2006; Macías-Hernández et al., 2018; Nyffeler & Sunderland, 2003). It has been identified 

however, that DNA from prey ingested was extracted in greater concentration within the abdomen 

and the cephalothorax of an arachnid and limited DNA was extracted from the appendages (Davey et 

al., 2013; Macías-Hernández et al., 2018). Legs of T. tenuis were the hardest element to break down 

and took considerable time. Therefore, if the tissues and cells of the T. tenuis cephalothorax and 

abdomen were fully incorporated in the solution, the sample was moved onto the next stage of DNA 

extraction even if legs remained. ATL (tissue-cell lysis) Buffer and Proteinase K were then added to aid 

further lysis. The samples were periodically heated to 56 oC in a heat block as denaturing may occur 

at a higher temperature, and vortexed for 15 seconds. This process lasted until most cells of the T. 

tenuis cephalothorax and abdomen were broken down and entered solution.  

The next steps involved precipitation of DNA with 200 µl absolute ethanol and AL (cell lysis) Buffer. 

The samples were centrifuged at 8,000 rpm (rotation per minute) for 1 minute. The supernatants were 

then transferred to mini-spin columns where two separate washes were used to clean the DNA, 

centrifuging the first at 8,000 rpm for 1 minute and then the second wash at 13,000 rpm for 3 minutes. 

The exuded buffer was then pipetted directly onto the mini-spin column and further centrifuged at 

8,000 rpm for 1 minute. The supernatant collected was the extracted DNA.  

12.3.2.3. DNA Amplification 

Generic and specific cereal Aphididae primers were structured from Chen et al. (2000) (Section 2.3.3.). 

Specific primers that were manufactured were for the main cereal Aphididae prevalent in the UK and 

therefore the NIAB fields, M. dirhodum and S.avenae (Figure 12.1a & b, Section 5.1.5.). S. mosellana 

primer design, Cecid‐F4 and Cecid‐R4, was referenced from King et al. (2012), who screened several 

invertebrates for multi-plex PCR. The primers, segments of mitochondrial COII (Cytochrome c-oxidase 

subunit II), were transported dry and rehydrated with PCR water to a specified level. A negative control 

(PCR water) and positive control (Aphididae and S. mosellana DNA) were incorporated into each PCR.  
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12.3.2.4. Bar-Coding DNA 

TAE (Tris/Acetate/EDTA) 0.5 M buffer was added to electrolysis trays after agarose gel had set. The 

disassociation of ions aided movement of the current and further provided an environment of 

constant pH maintaining the integrity of the amplicon (PCR product) (Collins, 2018) (Figure 12.2a). 

Thermo Scientific™ 6X DNA Loading Dye was added to amplicons (Figure 12.2b). Genomic DNA 

sequences obtained were read in 2% agarose gel for clarification under UV light box (Powell et al, 

2004). DNA sequence length was read to nearest kilo-base pair (kbp). Nucleotide base pairs were read 

to identify presence of specific Aphididae mtDNA (mitochondrial DNA) COII sequence (Chen et al., 

2000; Cold Spring Harbour Laboratory, 2015; Powell et al., 2004; Vink et al., 2011) (Section 2.3.3.). 

 

 

 

Figure 12.1a & b: M. dirhodum forward primer 0.2 µl pipetted with use of Gilson® Pipetman P2™ (0.1 - 2.0 µl). 

Figure 12.2a & b: Procedure for DNA Bar-coding. a = TAE Buffer solution added to electrolysis tray to assist movement 

of DNA. b = 9 µl Amplicon (PCR product) with loading buffer loaded into wells of agarose gel. 

a b 

a b 
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Two rows of bands appeared on the agarose gel. This was due to the loading dye used, allowing the 

presence of DNA at different bp (base pairs) widths to be tracked on the agarose gel (Section 2.3.3.). 

The different rates of movements, due to the electric current of electrophoresis, of two chemicals 

(Bromophenol Blue and Xylene Cyanol) allowed this to occur. The low bp of Aphididae and S. 

mosellana is tracked through the faster moving of the two chemicals: Bromophenol Blue 

(ThermoFisher Scientific, 2017).  

12.3.2.5. Primer Verification 

T. tenuis identification was verified with primers designed by Folmer (1994), to amplify the DNA of 

mitochondrial cytochrome c subunit I from diverse metazoan invertebrates. The forward primer was 

LCO01606 and reverse primer HCO2042 (Section 2.3.3.). Live T. tenuis, frozen for an hour were used 

to verify the specific T. tenuis primer. 

Dead adult samples of S. avenae and M. dirhodum were acquired from the Rothamsted institute and 

were frozen on arrival to verify the primers. The samples were amplified first with the generic 

Aphididae primer to confirm this primer and then amplification occurred using the relevant specific 

Aphididae primer. It was seen that faint bands came from S. avenae in the generic and specific primers. 

Live samples of the Aphididae for DNA extraction had been identified to yield higher quality DNA (Chen 

et al., 2000; Telesnicki et al., 2012; Wagner, 2016). Live samples of alate morph adult S. avenae and 

M. dirhodum were obtained from the Insectary at the Rothamsted institute (Section 7.2.3.). S. 

mosellana specimens were collected live from the T. aestivum field. The Aphididae were placed into 

the freezer for immediate death for one hour, the S. mosellana frozen in-field, and DNA then 

extracted. The bands from gel-electrolysis on the killed samples were clearer and in the correct band 

length verifying the primers.  

Due to DNA bar-coding, here analysing the presence of Aphididae and S. mosellana within the gut of 

T. tenuis, it was important to verify the generic and specific Aphididae and S. mosellana primers when 

the prey were within the gut. T. tenuis were starved in a sealed Petri dish for twenty-four hours and 

then five S. avenae, M. dirhodum and S. mosellana adults were added to a specific dish (Figure 12.3a 

- c). The Petri dish was checked daily. When it was clear an Aphididae / S. mosellana had been eaten 

by evidence of remains in the web or the removal of an Aphididae / S. mosellana from the dish, the T. 

tenuis was frozen and DNA bar-coding procedure was applied.  
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12.3.2.6. Adaptations to Methodology 

Primer dimers were identified early on in gel-electrophoresis (Figure 12.4a & b). This is an effect where 

the band has smudged within the gel. Primer dimers occur when molecules from the primer hybridize 

because of the complimentary base pairs that are contained within the primer. The hybridisation 

competes against the primer reagents from attaching to the base pairs to replicate the samples DNA 

(Brownie et al., 1997; Ye et al., 2017) (Section 2.3.3.).  

 

 

 

To combat primer dimer, the annealing temperature was increased. This increases the bond between 

the primer molecules making it more difficult for them to dissociate and thus be free to hybridize. 

Three annealing temperatures (55 oC, 57 oC and 59 oC) were assessed to produce results with less 

primer dimers (Brownie et al., 1997; Ye et al., 2017). 

a b 

Figure 12.4a & b: Primer dimer on agarose gel for DNA Bar-coding (primer dimer identified circled in white). 

Figure 12.3a - c: Female T. tenuis given an Aphididae for feed primer verification. (12.3b = Aphididae circled in yellow, 

12.3c = Aphididae remains circled in yellow. 12.3a & c = T. tenuis circled in blue). 

a b c 
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Smearing occurred, which may have been due to the over-filling of the wells or the agarose gel being 

too thick. The voltage in electrophoresis may have been too high, which caused proteins to be pushed 

too hard through the gel causing smearing. Agarose was set to incorporate wells of a greater size; this 

was to aid with ease of PCR product application and to gain clearer positive bands. Less PCR mix was 

placed into the wells, (9 µl instead of 10 µl), and voltage was set at 70 V instead of 100 V for the 

electrophoresis for this and the subsequent PCR (Brownie et al., 1997).  

The PCR with the annealing temperature of 57 oC exhibited the clearest results with a band being 

present for the two Aphididae tested with the specific and generic primers, with little primer dimer. 

This gave evidence that lowering electrophoresis voltage and placing less liquid into the wells aided 

prevention of smearing and reduced primer dimers (Section 2.3.3.).  

 

12.3.3 Results 

12.3.3.1. Summary of Results 

• Verification for the S. avenae and M. dirhodum primer was identified. S. mosellana primer was 

not verified. 

• S. avenae was found in the guts of a T. tenuis collected from a Conventional and Direct Drill 

Managed sample at GS 33 - GS 37 of H. vulgare. 
 

GS   

 

 

 

 

 

 

 

A band was present in the correct band width for M. dirhodum (301 bp) for the positive control (Chen 

et al., 2000) (Figure 12.5.). No band appeared for the negative control. From these results, no M. 

dirhodum DNA was present in the gut of the T. tenuis collected from the different soil tillage intensities 

in H. vulgare at different growth stages. 

Figure 12.5:  Agarose gel with M. dirhodum Primer 

in T. tenuis gut. 

Wells reading from left to right on gel - T. tenuis 

sampled from: - 

1. Conventional GS 11 - 15. H. vulgare 
2. Direct Drill Managed GS 11 - 15. H. vulgare 
3. Direct Drill GS 11 - 15. H. vulgare 
4. Conventional GS 33 - 37. H. vulgare 
5. Conventional GS 33 - 37. H. vulgare 
6. Direct Drill Managed GS 33 - 37. H. vulgare 
7. Direct Drill Managed GS 33 - 37. H. vulgare 
8. Direct Drill GS 33 - 37. H. vulgare  
9. Direct Drill GS 33 - 37. H. vulgare 
10. Conventional GS 61 - 65. H. vulgare 
11. Direct Drill Managed GS 61 - 65. H. vulgare  
12. Positive Control 

13. Negative Control 
 

1     2     3    4    5    6    7    8     9   10   11  12  13 
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S. avenae appeared to be present in the gut of a T. tenuis in Conventional and Direct Drill Managed GS 

33 - GS 37 of the H. vulgare 2017 / 2018 cropping season (Figure 12.6.). The band is matched with the 

positive control and aligns with the bp of S. avenae (bp 281) (Chen et al., 2000). No band appears for 

the negative control. No other T. tenuis sampled appeared to contain S. avenae in the gut. 

 

 

 

 

 

 

 

 

 

 

 

 

There was no band present in the positive sample (Figure 12.7.). It is concluded that the primers were 

not correctly specified to identify S. mosellana or that the positive sample did not yield enough DNA 

to be amplified. 

 

Figure 12.6:  Agarose gel with S. avenae Primer in T. 

tenuis gut. 

Wells reading from left to right on gel - T. tenuis 

sampled from: - 

1. Conventional GS 11 - 15. H. vulgare 
2. Direct Drill Managed GS 11 - 15. H. vulgare 
3. Direct Drill GS 11 - 15. H. vulgare 
4. Conventional GS 33 - 37. H. vulgare 
5. Conventional GS 33 - 37. H. vulgare 
6. Direct Drill Managed GS 33 - 37. H. vulgare 
7. Direct Drill Managed GS 33 - 37. H. vulgare 
8. Direct Drill GS 33 - 37. H. vulgare  
9. Direct Drill GS 33 - 37. H. vulgare 
10. Conventional GS 61 - 65. H. vulgare 
11. Direct Drill Managed GS 61 - 65. H. vulgare  
12. Positive Control 

13. Negative Control 
 

Figure 12.7:  Agarose gel with S. mosellana Primer in T. 

tenuis gut. 

Wells reading from left to right on gel - T. tenuis 

sampled from: - 

1. Conventional GS 31 - 33. T. aestivum 
2. Conventional GS 31 - 33. T. aestivum 
3. Direct Drill Managed GS 31 - 33. T. aestivum 
4. Direct Drill GS 31 - 33. T. aestivum 
5. Conventional GS 33 - 37. H. vulgare 
6. Direct Drill Managed GS 33 - 37. H. vulgare 
7. Direct Drill GS 33 - 37. H. vulgare  
8. Conventional GS 47 - 51. T. aestivum 
9. Conventional GS 47 - 51. T. aestivum 
10. Direct Drill Managed GS 47 - 51. T. aestivum 
11. Direct Drill 47 - 51. T. aestivum 
12. Positive Control 
13. Negative Control 

 

 1     2    3    4    5    6    7    8    9  10   11  12  13 

 1     2     3    4     5    6     7     8    9   10   11  12  13 

10   11  12  13 
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12.3.4. Discussion 

Only S. avenae was identified in the gut of T. tenuis in the Conventional and Direct Drill Managed 

tillage from GS 33 - GS 37 of the H. vulgare 2017 / 2018 season (Figure 12.6.). This related to fieldwork 

where the greater number of S. avenae, collected by the g-vac and in webs, at this time was found in 

the Conventional and Direct Drill Managed areas (Section 5.1.5.2.1.). It appears that biological control 

in these soil cultivations had taken place and T. tenuis had consumed S. avenae that were captured 

within the webs (Oelbermann & Scheu, 2009; Nyffeler & Sinderland, 2003; Schmidt & Tscharntke, 

2005; Welch et al., 2016). The Conventional area is of key importance as this is the area where BYDV 

was identified from GS 61 - GS 65 and confirmed from samples at GS 87 - GS 91 (Section 6.1. & Section 

6.5.1.). The T. tenuis sampled came from an area 1.3 m from H. vulgare with early symptomatic signs 

of BYDV. Perhaps the S. avenae consumed by the T. tenuis was a vector of the viral infection and the 

predator dynamics of T. tenuis prevented this S. avenae from inoculating another H. vulgare plant 

(Burio et al., 2006; Falks & Duffus, 1981; Moore et al., 2011).  

 

It is surprising however, that not more cases of T. tenuis consuming S. avenae and M. dirhodum were 

identified by the appearance of a band (Figure 12.5. & Figure 12.6.). It would be expected that a 

greater degree of T. tenuis consumed S. avenae and M. dirhodum within these time periods, having 

understood T. tenuis capability for positive biological control of cereal Aphididae through the 

literature (Bell et al., 2002; Chapman et al., 2013; Schmidt et al., 2004; Toft, 1987). Toft (1987) and 

Welch et al. (2016) suggest Linyphiidae will tolerate high consumption of Aphididae even though they 

are of poor taste and nutritional quality to the Linyphiidae palate. However, as noted in the 2017 / 

2018 season for both cereals, temperatures were unusually high which were shown to affect S. avenae 

and M. dirhodum fecundity and dispersal rate (Alford et al., 2016; Brabec et al., 2014; Jeffs & Leather, 

2014; Parry, 2013) (Section 5.1.6.2.2.). This concluded in low numbers identified. Perhaps in times of 

greater S. avenae and M. dirhodum abundance, greater cases of consumption by T. tenuis would have 

been observed.  

 

Bands of the agarose gel for the presence of S. avenae in T. tenuis gut could have been sharper, 

identifying purification of the DNA (Figure 12.6.). This could be implemented by further ethanol 

precipitation, further precipitating the S. avenae DNA nucleic acids out of solution (Chen et al., 2000; 

Vink et al., 2011). This may have allowed bands to be of a higher definition. In turn, this may have 

allowed traces of S. avenae that were within the T. tenuis gut, after nearly complete digestion and 

assimilation into cellular proteins, to have been amplified by the primer as a faint band after gel-

electrophoresis. However, with no faint indication of a band in the original gel, it is unlikely that DNA 
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purification will have yielded any different results, only creating sharper bands already present 

(Furlong, 2015; Harper et al., 2005; Pommeresche et al., 2013).  

 

In terms of biological control, the extended phenotype of the web is a great asset to the potential 

Linyphiidae can bring to lower pest prey abundance (Blackledge et al., 2011; Gregori et al., 2015; 

Japyassú & Laland, 2017). The web is a vehicle to allow prey capture and therefore removal from the 

local ecosystem without the need of consumption by T. tenuis. This allows recordings of web contents 

to be placed against the PCR results of gut analysis for a combined biological control effect. Therefore, 

it appears that in GS 33 - GS 37, Conventional and Direct Drill Managed supported a higher degree of 

biological control of S. avenae than Direct Drill. However, at this GS, it appears due to a greater 

abundance of S. avenae being within these areas and not relevant to soil tillage intensity (Section 

5.1.6.2.1.).  

 

Chapman et al. (2010), Greenstone et al. (2012), King et al. (2012) and Rondoni et al. (2018) note that 

there may be contamination of Aphididae DNA from the g-vac bag relating to previous collections. 

When collecting samples for T. tenuis gut examination in H. vulgare, perhaps a fragment of S. avenae 

DNA may have transferred to the body of T. tenuis chosen for sampling, with whole body of T. tenuis 

dissolved to acquire adequate DNA (Section 12.3.2.2.). The bag from the g-vac was sterilised with 

Kilco© Virex™ Disinfectant (dilution rate 1:300) at Myerscough College after sampling visits, to remove 

dirt and permit adequate air flow for the next sampling period (Section 4.3.12.1.). However, this will 

not have removed all traces of DNA, as DNA requires dissociation of proteins with specialist chemical 

and heat treatment to degrade, and this action cannot be carried out in-field, with the g-vac used to 

collect specimens for DNA extraction at the end of the experiment (Section 12.3.2.1). It was ensured 

that no Aphididae were captured in acquiring the T. tenuis DNA samples due to the g-vac employed 

for a short duration, though S. avenae DNA may have persisted from earlier sampling during the day. 

 

It appears that there was a problem with the known DNA sample, methodology or primer when T. 

tenuis guts were sampled for S. mosellana DNA. This was due to no DNA being read for the actual S. 

mosellana sample. The primer does relate to the literature where successful results had been attained. 

The G (Guanine) C (Cytosine) content was in line for successful intron (area of gene expression) 

attachment of the primer (Chen et al., 2000; King et al., 2011; Vink & Kean, 2013) (Section 2.3.3.). It 

appears that the problem lay with the S. mosellana sample or the procedure that was used. This 

sample was collected from GS 47 - GS 51 T. aestivum 2018. The same methodology was used as with 

Aphididae and samples were extracted into solution apart from S. mosellana wings and legs (Section 

12.3.2.2.). Using literature to troubleshoot the ‘no band’ in the positive S. mosellana control, it may 

be that the PCR cycle needed to increase the time for annealing of the primer to the template DNA. 
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The Tm (melting temperature) of the primer was greater than that for the S. avenae or M. dirhodum 

primers. The Tm is the temperature that the DNA strand will separate allowing annealing of the primer 

into an intron (Von Ahsen et al., 2001). It has been identified that a longer time period of annealing 

with a greater Tm could allow successful amplicons (an amplification of introns) to be formed, 

amplified and then S. mosellana DNA read by gel-electrophoresis (Vink et al., 2011; Von Ahsen et al., 

2001).  

 

 

12.4. Aphididae DNA Identification in T. tenuis and Linyphiidae Webs 

12.4.1. Introduction 

Further analysis of prey potential was obtained from DNA analysis of Linyphiidae sheet webs. This 

offers further evidence of biological control from a non-invasive perspective and may allow questions 

(against results of gut analysis) of surplus killing to be explored and if this may benefit pest control 

(Sint et al., 2014). DNA of Latrodectus mactans (Southern Black Widow Spider), and its prey Acheta 

domesticus (House Cricket), were found on the L. mactans web 88 days after prey had been consumed 

and L. mactans removed from the web. Xu et al. (2015) successfully amplified L. mactans DNA at 257 

bp and 311 bp, and presence of A. domesticus at 248 bp. The DNA for both species was mtDNA COI, 

DNA sequence confirmed from NCBI BLAST and BOLD IDS. This identifies the resilience of the DNA 

captured on the fibrils of the silk threads (Xu et al., 2015). This has the potential to allow the biological 

control capacity of a Linyphiidae to be analysed long after prey capture. 

12.4.2. Methodology 

12.4.2.1. Sample Collection 

Linyphiidae webs, containing no visible prey or prey exuviae, were collected from early and late 

growth stages of H. vulgare (GS 33 - GS 37 to GS 61 - GS 65) 2017 / 2018 cropping season (Table 5.1.1.). 

Additionally, a web was collected from the areas that were sampled containing BYDV symptomatic H. 

vulgare leaves (Section 6.1.). Prey and exuviae that were counted in webs of the sampled areas and 

used in the datasets were already identified to contribute to biological control and no further analysis 

was needed. Web areas chosen for DNA sampling were above 50.00 mm2, to be able to have enough 

material for DNA analysis. Webs were collected on sterile cotton wool buds sealed in sterile tubes and 

preserved in an ice container with the T. tenuis samples collected, until laboratory provided cold 

storage of -19oC (Figure 12.8a & b) (Section 12.3.2.1.). 
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12.4.2.2. Laboratory Procedure 

The laboratory experimental design was based on a method of Xu et al. (2015), who modified a DNA 

extraction process from reptile skins to be able to identify L. mactans, along with its prey A. domesticus 

within its web. The DNA extraction process used mtDNA COI / COII (Section 2.3.3.). 

The sterile cotton wool buds were snipped into 1.5-mL microcentrifuge tubes using scissors sterilised 

via UV light and 70 % ethanol (Figure 12.8c). AL (cell lysis) buffer, 800 μL from the Qiagen DNeasy 

Blood & Tissue Kit™ that was used in DNA bar-coding of Aphididae within the gut of T. tenuis (Section 

12.3.2.2.). The microcentrifuge tubes were inverted ten to twenty times and incubated for 4 hours at 

55 °C (Figure 12.8b & d). The sample reached room temperature and then 4 μL of RNase A was added 

followed by twenty inversions. Samples were incubated at 37 °C for 15 minutes and then brought 

down to room temperature. A protein precipitation solution of 7.5 M ammonium acetate, 300 μL, was 

added to each sample and vortexed for 20 seconds followed by incubation in an ice bath for 15 

minutes (Figure 12.8e). Samples were centrifuged at 14,000 rpm for 3 minutes. Supernatants formed 

were then placed into sterile 2 mL microcentrifuge tubes and 750 μL of isopropanol, at below freezing 

temperature, was added. The supernatants were inverted fifty times with centrifugation at 14,000 

rpm for 2 minutes. The supernatants were drained and 750 μL of 70% ethanol was added followed by 

further centrifugation at 14,000 rpm for 3 minutes. All liquids were again drained, and the pellets 

formed were air-dried in a sterile UV chamber.  

For DNA amplification, the DNA pellets were rehydrated using 100 μL of TE buffer (10 mM Tris, 0.1 

mM EDTA). The PCR methodology and primers used were identical to that used for the identification 

of Aphididae in the gut of T. tenuis (Section 12.3.2.3. - Section 12.3.2.5.). 

Presence of S. mosellana DNA was not DNA bar-coded within the Linyphiidae webs due to the specific 

primer not verified at this time. 
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A negative control, to test for reagent contamination, was a web taken from a female T. tenuis that 

was solitarily within an enclosed Petri dish. No Aphididae were added and present within the 

enclosure.  The positive control for M. dirhodum, to ensure primer viability, was a web collected from 

the microcosm experiment of differing prey abundance, where a M. dirhodum adult was observed 

within the web (Section 10.6.3.). The mesocosm experiment provided a positive control for S. avenae, 

where a web containing a S. avenae adult was used (Section 8.7.). Any visible Aphididae and exuviae 

were removed prior to examination to ensure any DNA present was located from the web. 

 

12.4.3. Results 

12.4.3.1. Summary of Results 

• S.avenae and M. dirhodum primers were both verified. 

• Neither S. avenae nor M. dirhodum DNA were bar-coded on the Linyphiidae web samples. 

a b c 

d 

e 

Figure 12.8a - e: Procedure of extracting cereal Aphididae from T. tenuis and Linyphiidae webs. a = Web 

from BYDV Sample GS 61 - GS 65, H. vulgare 2018, collected on a sterile cotton bud. b =Sterile cotton bud 

with web. c = Sterile cotton bud in microcentrifuge. d = Cotton bud samples after four hours incubation at 

55 oC. e = Web precipitated in Ammonia Acetate. 
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The positive controls for both S. avenae and M. dirhodum both have bands at the correct bp, 

concluding the PCR had produced the correct products (Chen et al., 2000) (Figure 12.9.). The negative 

control incorporated no bands which explains there was no contamination of the reagents.  

There was no band present for the positive control of S. avenae and M. dirhodum in the Linyphiidae 

sheet web. It appears that no S. avenae or M. dirhodum DNA upon webs was able to be amplified and 

read on the agarose gel.  

 

12.4.4. Discussion 

No Aphididae DNA could be acquired from the Linyphiidae webs, positive samples or those sampled 

from the field (Figure 12.9.). Revisions to the methodology are required. The original paper used for 

the methodology above were from large orb webs woven by L. mactans (Xu et al., 2015). It seems that 

the DNA collected from this web may have been in a higher quantity or successfully amplified to that 

found in the S. avenae and M. dirhodum placed onto the sheet web. The silk of the flagelliform sheet 

threads, comprising the centre of the sheet web, where prey is likely to be captured, is fine, the β-

helix creating fibrils with little surface area for DNA to be tethered (Pasquet, 2014; Rojas, 2011; Toft 

1987) (Figure 2d., Section 2.1.2.1., Page 11). Additionally, the disorderly molecular structure with weak 

bonds may allow the cereal Aphididae DNA to disassociate over a relatively short time frame 

(Blackledge et al., 2011; Craig, 2003; Harmer et al., 2011; Saravanan, 2006; Xu et al., 2015) (Section 

Figure 12.9:  M. dirhodum and S. avenae Primer on 

Linyphiidae web. 

Wells reading from left to right on gel - Web 

sampled from: - 

S. avenae Primer -  

1. Conventional GS 61 - 65 H. vulgare 
2. Conventional BYDV GS 61 - 65. H. vulgare 
3. Conventional BYDV GS 61 - 65. H. vulgare 
4. Direct Drill Managed GS 61 - 65. H. vulgare 
5. Positive Control - S. avenae on Web 
6. Positive Control - S. avenae 
7. Negative Control 

 
M. dirhodum Primer -  

 
8. Conventional GS 61 - 65. H. vulgare 
9. Direct Drill Managed GS 61 - 65. H. vulgare 
10. Direct Drill GS 61 - 65. H. vulgare 
11. Positive Control - M. dirhodum on Web 
12. Positive Control - M. dirhodum 
13. Negative Control 

 

 1   2   3   4    5   6    7   8   9  10  11 12 13 

10   11  12  13 
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2.1.2.1.). Dire webs of starved orb-weaving L. mactans are created from viscid threads where the DNA 

of prey is likely to be left entrapped within a viscid molecule, in higher concentration and with slow 

dissociation (Blackledge et al., 2011; Craig, 2003; Harmer et al., 2011; Saravanan, 2006; Xu et al., 

2015). It is thought that a greater amount of sample of known Aphididae presence on the sheet web 

may be required for success.  

Webs from the field sample and microcosm and mesocosm experiments were collected with small 

particles of debris consistent with a H. vulgare field (plant material, soil) (Figure 12.8a - e) (Section 8.4. 

& Section 10.4.). The work involving DNA amplification of L. mactans web was carried out under full 

laboratory conditions (Xu et al., 2015). It may that be that an extra step in the methodology of DNA 

purification is necessary. This would involve repeating ethanol precipitation (absolute ethanol) and 

washing the product with 70% ethanol to remove salts and impurities without further re-suspension 

(Chapman et al., 2013; Chen et al., 2000; Harper et al., 2005; King et al., 2011). From the purified DNA 

sample, any Aphididae present would allow a primer to insert into an intron and begin amplification.  

It is still felt that identifying Aphididae DNA on a Linyphiidae web would be an important step in 

determining predator dynamics of T. tenuis and their biological control potential. Revisions to the 

methodology are required however, allowing the attainment of DNA from different molecular 

composition of varying silks and ensuring DNA is free from field contamination when run through PCR.   

 

12.5. Final Discussion - DNA Bar-Coding Aphididae in T. tenuis Gut Contents and Linyphiidae 

Web 

Biological control in the realm of gut analysis of T. tenuis has been found in an area of soil tillage 

intensity addressing the first and fifth aims of this Chapter (Section 12.2.1.). 

Through the above research it is apparent that DNA bar-coding on gut analysis is an important tool 

alongside observations taken in the field of prey contents of the web. With this, a fuller picture of the 

predator dynamics of T. tenuis and Linyphiidae can be explored. 
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Chapter Thirteen 

13.0. Final Discussion and Recommendations for Integrated Pest Management Plan 

This Chapter is divided into three key elements. The first discusses the current research as a whole 

and the second analyses how it may be developed in the future. The final section looks at 

recommendations from this research that may aid an Integrated Pest Management Plan for the arable 

industry, focusing on incorporation of biological control for pest suppression. 

13.1. Final Thesis Discussion 

This research set out to analyse whether there was a significant difference in the ability of T. tenuis to 

weave webs to facilitate prey capture depending on the intensity of soil tillage on a cereal crop. The 

fieldwork was a key element to this project and aspects of the results obtained allowed glasshouse 

trials to be developed.  

From the fieldwork, it was identified that Direct Drill Managed and Conventional tillage did eradicate 

T. tenuis abundance and activity immediately after cultivation had taken place (Section 5.1.5.1.5.). The 

predator potential of this Linyphiidae had been removed, though remained relatively undisturbed in 

Direct Drill. Pioneer abilities of T. tenuis and response to survival were identified with much rappelling 

(threads) measured on the upright stubble immediately after cultivation in Direct Drill and webs were 

woven in Conventional and Direct Drill Managed areas twenty-four hours later (Section 5.1.5.1.). 

Pioneering ability was further identified in the addition of an upright stubble trial, where a small area 

of upright stubble induced web construction, when previously no T. tenuis or Linyphiidae were 

observed (Table 5.2.5., Section 5.2.6., Page 145). 

Soil clods, of greater height, were the key material that gained attachment of support threads in times 

of cultivation in Conventional and Direct Drill Managed. The action of a sub-soiler (non-inversion 

technique) clearly upholding Linyphiidae activity (Section 3.1.3.4.). Direct Drill Managed, at times of 

cultivation in the field and later stages of H. vulgare growth, provided a landscape with reduced web-

spinning observations (Section 5.1.6.1.). The lower cultivation depth created a more homogenous 

landscape than Conventional, with soil clods of lesser variability in height (Figure 5.1.3., Section 

5.1.5.1.2., Page 91).  In secondary cultivation of H. vulgare, the landscape was altered, changing the 

circumstances available for potential web-building. The further breakdown of clods decreased 

abundance of attachment materials.  
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The potential for T. tenuis as a biological control agent was demonstrated in all soil tillage intensities 

within the fieldwork and glasshouse trials. A critical finding was greater webs (in area and abundance) 

capturing S. avenae in areas containing BYDV symptomatic leaves and S. avenae within the gut of T. 

tenuis collected from the field (Figure 6.9., Section 6.5.3.3., Page 197, & Figure 12.6., Section 12.3.3., 

Page 343). The action of T. tenuis here may have removed a vector of BYDV (S. avenae) from the micro-

habitat and destroyed its potential to affect H. vulgare. In all trials, prey appeared to drive T. tenuis 

activity more than conditions created by the intensity of soil tillage. In the microcosm trials, with 

differing Aphididae abundance and growth of T. aestivum, anchor placement of webs appeared to be 

related to the growth of M. dirhodum (Section 10.6.3.1.). The highest Shannon-Weiner Diversity Index 

was calculated in Conventional area of the field, though no significant difference in abundance of prey 

captured was recorded with each soil tillage intensity (Figure 5.1.18., Section 5.1.5.2.5., Page 112). It 

appeared that prey diversity was low and may have been a consequence of the level of predator 

dynamics T. tenuis could perform. 

Throughout this research, measurement of the anchor point height of a bridge thread for rappelling 

or a support thread for web construction, was a crucial variable. In most of the fieldwork and 

glasshouse trials, there were significant differences in the anchor point height obtained between the 

soil tillage intensities. It was clear that the decision of height at which T. tenuis anchors a web was 

principal to the potential prey-capturing ability of the web. Webs of a higher level intercepted no prey 

within a Conventional area whereas webs at lower strata captured S. avenae (Figure 5.1.16., Section 

5.1.5.2.4., Page 109). An increased anchor point height further allowed webs to capture a greater 

abundance of S. avenae in areas of BYDV symptomatic leaves (Figure 6.7., Section 6.5.3.2., Page 195). 

By measuring anchor point height, it was established that different layers were used in the trial of 

addition of upright stubble to cultivated land. This trial clearly showed that the different Linyphiidae 

web-spinning potential between species, occupying different strata, can exert a greater degree of 

predatory behaviour (Section 5.2.7.).  

Landscape heterogeneity appeared to be vital to allow the support of Linyphiidae webs. In the trial 

where upright stubble was added to Conventional cultivated land, this clearly increased the 

opportunities for web-spinning and rappelling (Table 5.2.5.). Use of upright stubble, of the same 

height within soil tillage intensities, was theorised to promote rappelling, due to a landscape 

homogeneity effect (Section 5.2.7.). Small changes in upright stubble altered T. tenuis behaviour in its 

increased height of the Direct Drill Managed area and showed minor alteration to a landscape affected 

the propensity to bridge (Figure 5.2.4b., Section 5.2.3., Page 140). With the microcosms for T. 

aestivum, the upright stubble at early growth stages (GS) provided additional anchor point material 

(Figure 10.6., Section 10.6.2., Page 276). This was further identified in the mesocosm of primary 
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cultivation, where the upright stubble allowed large webs, using the rim of the plastic container as an 

attachment site (Section 9.7.1.). Upright stubble promoted the idea that increased availability of 

attachment materials enabled greater web abundance to be spun, increasing predator pressure. 

As H. vulgare went forward into later GS, T. tenuis relied heavily on the plant for thread attachment. 

The differences created in plant height and density were the main variations and a result of the 

conditions of the soil tillage intensity involved in web-spinning. This was shown by the greater plant 

height of Conventional allowing webs at a higher level to be spun and ensnare a greater number of 

prey (Figure 5.1.16.). In the mesocosms with S. avenae as prey, where H. vulgare growth progressed, 

the lack of upright stubble and straw in the Conventional mesocosm, which had previously shown to 

demote T. tenuis activity at GS 21, was of no concern as the emerging crop allowed increased 

anchorage opportunities (Figure 10.6., & Figure 10.9., 10.6.3.1., Page 279). 

It appeared that layers of landscape heterogeneity were favoured, where straw and upright stubble 

together supported the creation of T. tenuis webs.  Both were in greater abundance in Direct Drill area 

of the field and glasshouse trials. Straw was noted to be a favourable refugia and was further found 

to increase the height of the ground layer for webs to be spun at a greater height in times of cultivation 

and early GS (Table 5.1.3., Section 5.1.5.1.3., Page 92). Straw was also identified as an area of shelter 

in the Direct Drill mesocosm of primary cultivation, theorised to be due to no prey availability (Section 

9.6.1.). In the field, refugia allowed T. tenuis and its biological control potential to persist in the micro-

habitat. Straw was shown to perhaps aid prey density with M. dirhodum observed utilising straw as a 

habitat in the choice chambers for selection of upright stubble and straw thought to be facilitating S. 

avenae ascension in mesocosms replicating the field (Table 8.3., Section 8.7.2., Page 238 & Section 

11.8.2.). Straw residue in Conventional tillage of fieldwork (from the non-inversion tillage) may have 

aided capture of S. avenae by ‘pushing’ the Aphididae to a greater height on the crop (Section 3.1.3.4. 

& Section 6.6.2.). The act of soil tillage intensity aiding prey abundance was identified in Direct Drill 

Managed, where the greater number of A. myosuroides were situated (Section 5.1.6.2.2.). The lower 

intensive tillage may have allowed growth of A. myosuroides to persist and provide a ‘green-bridge’ 

for development of a S. avenae population (Section 6.6.2.).  

Throughout this research, furrows were extensively used to support web creation, like the soil clods, 

the surface of the furrow created an attachment site. For example, high temperatures altered the 

dimensions of the furrows in in the field of H. vulgare, where its use as a web-site was observed 

(Section 5.1.6.2.2.). The furrows, incorporated into the microcosm experiments for prey abundance 

and selection of furrow with and without Aphididae, were further used extensively in Conventional 

choice chambers (Section 10.7.2., Section 11.8.3. & Section 11.8.4.). Its use appeared to be at times of 
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low plant height and density where the availability of the furrow was attractive for web-spinning, 

however, little Aphididae prey were captured in the webs anchored to furrows. Capture of ground-

dwelling prey may be exerted, though this prey may not be of consequence to the health of the plant, 

as with cereal Aphididae. To increase the predator pressure on cereal Aphididae and aerial pests such 

as S. mosellana, a web is required to be anchored higher in a habitat than a furrow. The Conventional 

tillage intensity had not helped this cause in these circumstances, the greater intensity of tillage 

compacting the Hanslope soil, causing furrows to widen (Section 2.2.2., Section 3.1.3.4. & Section 

5.1.6.2.2.) 

The web, as the extended phenotype, is the territory of T. tenuis and its web-site location is crucial to 

the outcome of the web. With the T. aestivum microcosm, holding differing prey abundance and the 

choice chambers of furrow selection, it was apparent that T. tenuis altered web-site location 

frequently (Section 10.6.2. & Section 11.8.4.). The ability to spin a web in many locations is of an 

advantage to Linyphiidae pest control. It was noted that there were differences to the prey-capturing 

ability of sheet webs anchored in various orientations. This was identified by smaller webs that held 

greater S. avenae capture in Direct Drill of fieldwork (Section 5.1.6.2.1.). These smaller webs had a 

greater energy return. There is a balance between energy output in web creation and input in prey 

consumption identified in each soil tillage. Large webs of Conventional field site, spun across plant 

rows, had no prey capture thus low energy was recuperated (Figure 5.1.16.). Keeping T. tenuis in 

energy surplus allowed future webs to be spun.  

It has been important to consider how T. tenuis sense and respond to prey cues incurred, when 

understanding their predator dynamics. There were elements where T. tenuis appeared to be 

following Aphididae dispersal through movement of alate morphs in all soil tillage intensities of the 

field (Section 5.1.6.2.1.). Within mesocosms growing H. vulgare, S. avenae were mostly apterous 

morphs, their laboured movement meant H. vulgare density was used as a signal that prey may be 

present (Section 5.1.6.2.2. & Section 8.8.). In the choice chamber experiment for selection of furrow, 

it was identified that T. tenuis did not respond to M. dirhodum due to limited cues. Potential capture 

rate appeared greater in times of a bare landscape in Conventional, where a small stimulus could be 

intercepted (Section 11.8.4.). In the field, prey was most likely within the vegetation of a higher 

density, this vegetation a cue that prey may be in the vicinity. It has been noted that prey may have 

to be in greater abundance to produce effective cues to allow T. tenuis to respond. Soil tillage at times 

of prey abundance (at later GS) did not seem to affect stimuli that prey can produce (Section 

5.1.6.2.2.). 
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During a few sampling periods at fallow, low T. tenuis or Linyphiidae activity was noted in the 

Conventional and Direct Drill Managed area (Section 5.1.6.1.1.). In the realm of predator dynamics of 

crop pests, this occurrence was not of a distinct disadvantage, due to low Aphididae migration and S. 

mosellana pupation identified at this stage. As the crop entered later GS, T. tenuis ability to capture 

prey in Conventional was identified when symptomatic BYDV leaves emerged and webs with Direct 

Drill Managed caught alate M. dirhodum (Section 5.1.6.2.2. & Figure 6.9.). Additionally, T. tenuis from 

Conventional and Direct Drill Managed areas held DNA evidence of S. avenae in the gut (Figure 12.6.). 

It appears that the low T. tenuis activity, within periods of fallow, did not translate to poor biological 

control potential when major crop pests were abundant.  

Web occupancy was crucial to ensure that prey was removed from the micro-habitat. Prey can 

disentangle themselves from the web and escape. T. tenuis are required to be present to secure the 

prey through silk wrapping. A general theme throughout the fieldwork was that more unoccupied 

webs were found in Conventional tillage (Section 5.1.6.2.2.). The lowest web occupancy was seen to 

be Conventional tillage of T. aestivum microcosms when analysing T. tenuis behaviour with different 

abundance of Aphididae (Section 10.7.2.). It has been noted that web-site selection requires a time of 

exploration beforehand to gather information on where the greatest prey capture potential exists and 

gain protection from inter-specific / intra-specific competition. A period of learning was identified in 

the choice chamber selection experiments when webs were observed not to be woven at the 

appropriate location to capture the prey within (Section 11.8.2. & Section 11.8.4.). 

Rappelling was an important precursor to web-building, to identify a suitable location, however, 

bridge threads did not relate directly to prey capture. Difference in length of bridge threads in 

fieldwork showed variations in exploration distances. Long threads were spun over the homogenous 

landscape of a Conventional area for the trial of addition of upright stubble (Figure 5.2.8., Section 

5.2.6., Page 145). This identified that greater energy was expended in web-site searching of a 

landscape that was low in complexity. Rappelling altered in response to prey availability at times when 

H. vulgare was in early and late growth stages in fieldwork, as greater migration occurring when prey 

was low (Section 5.1.6.2.1. & Section 5.1.6.2.2.). Rappelling was limited in the choice chambers for 

selection of upright stubble or furrow (with and without Aphididae) due to the small spatial scale 

promoting little area of exploration (Section 11.8.1. - Section 11.8.4.). Few prey were captured in this 

trial, which may have altered if a propensity to bridge had occurred.  

Intra-specific relationships outside of the difference in intensity of soil tillage were found to have been 

an important consideration. Body size of T. tenuis, at times held significance to T. tenuis activity 

output. Larger bodied females were shown to be unable to bridge large distances, in the addition of 
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upright stubble trial, due to the gravity hypothesis through SSD (sexual size dimorphism) and thus may 

have lost prime web-site occupation (Section 2.1.2.3., & Section 5.2.7.). Increased cephalothorax 

length identified a greater ability to spin webs over a larger area and abdomen length allowed a 

greater strain placed onto silk yield (Table 8.5., Section 8.7.3., Page 240  & Table 10.10., Section 

10.6.3.2., Page 285). Both factors increased the level of predator dynamics that T. tenuis could exhibit. 

With the selection of the upright stubble choice chambers, it was identified that females and males 

exhibited predator dynamics in a different manner. The females had an inherent ability to respond to 

prey cues at an enhanced rate allowing a greater prey capture ability (Section 11.8.2. & Section 

11.8.4.). 

Environmental factors outside of soil tillage have played an important role in both field and glasshouse 

work. Wind speed in fieldwork altered T. tenuis predator dynamics within each soil tillage. Web 

location lowered due to high wind speed in fieldwork (Table 5.1.5., Section 5.1.5.1.3., Page 93). 

Temperatures altered prey abundance in the mesocosms, replicating field conditions (Table 8.7., 

Section 8.7.5., Page 242). This modified biological control that T. tenuis exerted by increasing 

Aphididae parthenogenesis rate and initiating dropping behaviour of S. avenae into webs. Higher 

temperature enabled T. tenuis to ascend higher and yield longer threads with less energy output, the 

latter due to less tensile stress required to yield the silk (Figure 8.10., Section 8.7.4., Page 241 & Table 

10.10.). Webs were thus spun more rapidly with higher energy retention to capture potential prey or 

further web-build. 

The hedgerows held high abundance of T. tenuis throughout the life cycle of the crop in the field 

opposite, presenting this area as a crucial reservoir to allow T. tenuis to persist (Figure 5.3.7., Figure 

5.3.8., Section 5.3.5.4., Page 168 & Page 169). Generally, the activity found in the hedgerows did not 

differ greatly between the intensity of soil tillage that the hedgerows were bordering. This was 

demonstrated when greater T. tenuis abundance was recorded in the hedgerows bordering all soil 

tillage intensities at times of cultivations (Figure 5.3.7. & Figure 5.3.8.). T. tenuis were noted to be of 

greater abundance within the hedgerows when the field was cropped with H. vulgare which was of 

consequence to the biological control capacity T. tenuis were able to exert in the main field (Figure 

5.3.8.). Whether web-occupancy was at the front or rear of the hedgerow was key to understanding 

migration out of the field. In periods out of crop, where prey abundance had been low in the field, 

webs were woven at the back of the hedgerow (Section 5.3.6.1.). The favoured web-site was shown 

to be the forefront of the hedgerow at lower strata, potential here for T. tenuis to be dispersing in and 

out of the hedgerow regularly, a positive to pest suppression in the field (Table 5.3.15., Section 

5.3.5.3.2., Page 166). Hedgerows were shown not to relate directly to T. tenuis and Linyphiidae 
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predator dynamics in the field, however, prey capture in the hedgerow (opposite each soil tillage) 

prevented migration of prey into the crop (Figure 5.3.5., Section 5.3.5.3.1. Page 165.). 

The fieldwork was the only area that allowed the reproductive potential of T. tenuis and the different 

soil tillage intensities to be explored. This is important, as it promotes a future of biological control 

candidates in Linyphiidae. There appeared to be no direct relationship between the conditions of the 

field after tillage and egg sac location. In the hedgerows, egg sacs were littered along the entire length 

of the hedge, which showed ‘bet-hedging’ to secure a future generation (Section 5.3.6.4.). This was 

concluded not to be associated with soil tillage intensity; thus, level of soil tillage was found not to be 

important in establishing the next generation. 

13.2. Recommendations for Further Research 

The glasshouse trials allowed the cephalothorax length to be measured to 0.01 mm with laboratory 

equipment, which enabled a greater degree of discrimination to be observed between cephalothorax 

lengths of T. tenuis (Section 7.2.2.). From this information, it was observed that a greater 

cephalothorax facilitated greater thread lengths to be spun and greater heights attained for web-

building. Within fieldwork, digital callipers measured cephalothorax length to the nearest 0.1 mm. This 

permitted little difference between cephalothorax lengths to be obtained as this body segment is 

smaller than the abdomen (Figure 2.1, Section 2.1.2., Page 7 & Section 4.3.4.). At times, where greater 

height of webs had enabled a higher degree of prey capture, it would have been useful to analyse if a 

T. tenuis of a larger cephalothorax had spun the web or it was a response to prey stimuli (Figure 

5.1.16.). If this was the case, it may be that the T. tenuis was not responding to prey cues, able to expel 

a greater rate of energy with increased leg flexion potential. For field cephalothorax measurement it 

would therefore be useful to use an in-field cordless microscope at 40x magnification capable of 

graticule attachment. 

In-field microscopy would be a useful technique to apply to analyse the Aphididae exuviae found 

within the webs. The exuviae in webs was a useful observation in the field as presence explained that 

a T. tenuis web was constructed in the vicinity of a recent Aphididae colony (Table 5.1.21., Section 

5.1.5.2.4., Page 109). It was commented within all fieldwork periods that closer analysis of the 

Aphididae exuviae would have been useful to explore whether the soft Aphididae had been broken 

down with expelled digestive enzymes and sucked from the outer skin, the feeding method of 

Linyphiidae (Section 2.3.3. & Section 12.3.2.1.). This would allow another element of definite T. tenuis 

predation to be measured. This result could stand with DNA bar-coding for gut analysis to understand 

where in the field the greatest consumption, element of biological control, of pests was taking place 

(Section 12.3.). 
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Direct Drill tillage in the centre of the NIAB field trials means that this area is surrounding by hedgerow 

on only two sides, whereas Conventional and Direct Drill Managed had three (Figure 4.1., Section 4.2., 

Page 53). This at times, theorised to be the reason why Aphididae were seen in greater abundance in 

the cultivated areas (Section 6.6.2.). Climatic conditions were noted to have limited dispersal within 

the 2017 / 2018 cropping season (Section 5.1.6.2.2.). Placement of the Direct Drill area at the edge of 

the cultivated plot may help to understand if the greater migration from the hedgerows, hypothesised 

to be directed from the greater hedge surround, is dealt with differently by T. tenuis. Perhaps the use 

of the upright stubble present in the early GS of the crop would allow greater web abundance to be 

woven, to deal with a prey dispersal event (Section 5.1.6.2.1.). 

It was identified that rappelling was low in the glasshouse trials, therefore explaining little exploration 

was required before a suitable location was identified for web-site construction (Section 8.7., Section 

9.6., Section 10.6. & Section 11.8.1. - Section 11.8.4.). This communicates that the habitat may have 

been too small a spatial scale to allow accurate representation of the field. It was noted that the 

landscape heterogeneity scale was lowered, meaning landscape complexity was identified in 

Conventional with attachment of threads to the sides of the microcosms analysing differing Aphididae 

prey abundance (Figure 10.15., 10.7.2., Page 289). The idea of microcosms is to produce replicable 

trials allowing results to be examined on a close scale. A recommendation for future work would be 

to create the microcosms with a material that T. tenuis would be unable to anchor threads to. This is 

of some difficulty, due to the nature of the piriform silk producing the attachment discs and no 

frictionless materials exist (Figure 2.3c., Section 2.1.2.1., Page 11). Graphene coatings may allow low 

attachment with almost no friction due to the singular-layered structure of carbon atoms; however, 

this would be at a cost (Hung et al., 2018). Previous literature has favoured Perspex, the surface 

holding low surface-tension (Howard et al., 2004; Sunderland & Samu, 1996; Toft, 1987). It appears 

that elimination of the potential of attachment in a glasshouse trial would be difficult. 

The idea that T. tenuis usually display a learning period before a web-site is selected and the evidence 

that M. dirhodum was on many occasions not intercepted, gives evidence that running the choice 

chamber experiments (for selection of upright stubble and furrow with Aphididae) for longer would 

have been beneficial (Section 11.3.2. & Section 11.4.2.).  A greater time period may allow greater 

learning and the small stimuli of M. dirhodum to be read or the prey location determined by cues in 

resource availability, and greater capture of M. dirhodum. Further, an increased experimental time 

would allow M. dirhodum growth from parthenogenesis, which might promote greater stimuli. 
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It is still of high consideration that the DNA bar-coding of the gut contents of T. tenuis, allowing 

predator dynamics of this Linyphiidae to be understood, could be utilised alongside fieldwork. It is 

therefore recommended for future work that the PCR cycle is amended to allow S. mosellana to be 

identified in the gut of T. tenuis, as this prey is of high consequence to the yield of cereal crops (Section 

2.2.6.4. & Section 12.3.4.). The idea of retrieving prey DNA from Linyphiidae webs is important to re-

consider and amendments to the methodology need to be trialled (Section 12.4.). The advantages of 

observing prey DNA on a web is its longevity, the DNA detection able to be read after prey 

consumption and its assimilation within the gut of the Linyphiidae. It is noted that there are 

advantages in the use of many tools that can be applied to understand the full biological control 

potential of a Linyphiidae. 

13.3. Recommendations for an Integrated Pest Management Plan 

The aim of this research was to understand if soil tillage intensity affected the predator dynamics of 

T. tenuis and Linyphiidae within an arable crop. The use of this was to examine the level of biological 

control to pests that the Linyphiidae can apply in each soil tillage intensity. This was in response to the 

need to reduce the level of chemical control used due to government bans for environmental concerns 

or increasing pests acquiring knock down resistance (kdr) (Section 2.2.6.5.). The desire was to gain the 

greatest yield possible of a crop, void of pest damage, with respect to the soil health and ecosystem 

services. This is of benefit to sustain a large human population and ensure an environment that can 

continue producing food in the future (Bommarco et al., 2013; Jonsson et al., 2014).  

From this research, the choice to use non-inversion techniques for the Conventional and Direct Drill 

Managed areas has been of great advantage in obtaining Linyphiidae presence in the field after 

cultivation has occurred (Section 5.1.6.1.2.). This was due to crop residues and clods left on the surface 

providing clear attachment sites for threads spun (Section 3.1.3.4.). The information gained at times 

of soil cultivation identify that the lighter cultivation of Direct Drill Managed held a habitat of lower 

landscape heterogeneity, thus not able to support a high level of T. tenuis or Linyphiidae abundance.  

It is vital that yields of the NIAB fields in the trial are considered for this research, as growth of food is 

the trials primarily goal. From NIAB summery reports of the seasons and Field B where T. tenuis activity 

was measured, there were differences in yield between the different soil tillage (Figure 3.5b, Section 

3.1.3.4., Page 51). For H. vulgare (2016 / 2017 season) the greater yields were identified in Direct Drill 

Managed (4.92 t ha-1) and Direct Drill (4.71 t ha-1). The yield of Conventional was 3.72 tha-1, over one 

t ha-1 lower than the tillage of Direct Drill Managed (NIAB TAG, 2017). Plant population (plant m-2) 

followed the pattern of the yield results within the report, and in greater population the landscape 

heterogenieity increased for spider abundance. At GS 75, head counts of H. vulgare found no 
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comparable difference, similar complexity in landscape architechture existed in each soil tillage 

intensity, for greater probability of web-spinning where crop pests may still be present (NIAB TAG, 

2017). H. vulgare for 2017 / 2018 season, recorded yields of 5.48 t ha-1 for Conventional, 0.52 t ha-1 

greater than Direct Drill Managed and 1.29 t ha-1 greater than the yield of Direct Drill (NIAB TAG, 2018). 

This equated to a difference in plant population of 43 plant m-2 between the Conventional and Direct 

Drill tillage (NIAB TAG, 2018). The Conventional tillage system for H. vulgare had generally greater 

yields and plant population which is of beneifit to food production and T. tenuis web-spinning, where 

the increase in plant population is likely to provide Linyphiidae with greater opportunities for 

anchorage sites.  

A. myosuroides, at times, appeared to influence greater T. tenuis abundance in increased complexity 

of landscape architecture and had an indirect influence on T. tenuis and Linyphiidae propensity to 

web-spin (Section 5.1.6.2.2.). From the NIAB field wide survey, the establishment of A. myosuroides 

had a considerable effect on lowering yields, thus a consequence to food production. The low yield of 

Conventional for H. vulgare in 2016 / 2017 season was due to an aggressive patch of A. myosuroides 

identified in the field edges (NIAB TAG, 2017). It was found, in the field research, that in areas of high 

plant density, A. myosuroides was not used as an attachment point, therefore its removal would be of 

no consequence to T. tenuis behaviour. In H. vulgare (2016 / 2017) there was an A. myosuroides 

population of 47 heads m-2 in Conventional, 9 heads m-2  greater than Direct Drilll (NIAB TAG, 2017) 

and  in 2017 / 2018, A. myosuroides population was 151 heads m-2  in Direct Drill, 54 heads m-2  greater 

than Conventional (NIAB TAG, 2018). Direct Drill supported a greater density of A. myosuroides which 

concluded to zero-till leaving A. myosuriodes to persist (NIAB TAG, 2018) (Section 3.1.3.4.). 

From NIABTAG 2017 and 2018 report data and T. tenuis activity recorded from the fieldwork, it 

appears that Conventional is a viable soil tillage to allow T. tenuis activity to sustain and allow optimum 

yields to be obtained. Conventional in times of primary cultivation, supported web abundance 

equalling Direct Drill area twenty-fours hours after cultivation had occurred (Section 5.1.6.1.2.). Direct 

Drill Managed was found to have yields and plant populations in between Conventional and Direct 

Drill and principally had less A. myosuriodes than Direct Drill. This area supported T. tenuis activity in 

later growth stages of H. vulgare and therefore is a viable tillage technique to use, however, at times 

of cultivation very little T. tenuis activity was observed (Section 5.1.6.1.2. & Section 5.1.6.1.3.). 

Conventional appears to be the best method of tillage from this research with high yields obtained 

and T. tenuis able to spin webs and capture prey when its presence was noted. However, there are 

further environmental effects to Direct Drill tillage and at times greater prey was captured with low 

energy output due to small webs woven at a greater height, noted to be due to a dense crop canaopy 

(Section 5.1.6.2.1.). The NIAB trial has been established for six years, it can take time for breakdown 
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of organic matter from crop residue to improve soil health and microbial build-up to assist in nutrient 

assimilation (Mbuthia et al., 2015; Shrestha et al., 2015). These factors can potentionally allow greater 

nutrient availability and accessibility to a growing crop and allow yields to restore in Direct Drill 

(Section 2.2.4.). Perhaps if yields increase along with plant populations in Direct Drill, the effect of 

zero-till allowing dynamic T. tenuis activity, in rappelling and web-spinning, at times of cultivation can 

translate to greater prey capture in all GS of H. vulgare.  

A. myosuroides is of much concern for arable farms in this region, its invasive nature able to out 

compete for resources to thrive while drastically reducing possible crop yields (Jarvis & Woolford, 

2017; Melander et al., 2013). A. myosuroides reduction is key to reduce pressure on yields of Direct 

Drill in the NIAB trial. It is noted that the farmer has adopted a sheep grazing regime on fields outside 

of the NIAB trial as a control measure for A. myosuroides (Section 3.1.1.). This allows A. myosuroides 

to germinate and be grazed off at early GS before its establishment. Aaserud (2005), Dennis et al. 

(2001) and Mclachlan & Wratten (2003) showed that high Linyphiidae assemblages were established 

in areas of sheep grazing, more so than mixed livestock or cattle. At times, greater dwarf Linyphiidae 

were in medium-grazed sheep pastures than found in an arable crop (Downie et al., 2000; Topping & 

Lövei, 1997). This was commented to be due to the greater landscape heterogenity reached with 

sheep feeding in a sporadic manner creating vegetation of different heights (Paschetta et al., 2013).  

Perhaps permitting sheep grazing will allow Direct Drill and Direct Drill Managed tillage (when the field 

is put to crop) greater potential to support Linyphiidae and produce greater yields through increase in 

plant populations not pressured by A. myosuroides persistance. The ‘green-bridge’ would also be 

removed at times of cultivation with low A. myosuroides density present and therefore Direct Drill and 

Direct Drill Managed may support a lesser degree of prey (Dahlin & Ninkovic, 2013.).  

During the fieldwork, a higher degree of T. tenuis abundance and activity was identified in the 

hedgerows bordering the field (Section 5.3.5.4.). The advantages of a hedgerow with high landscape 

heterogeneity was noted to allow a generation to persist by offering a reservoir of high bio-diversity 

and shelter (Schirmel et al., 2016; Ysnel & Canard 2000). At times of fieldwork, it was considered if a 

greater density of T. tenuis were found in the field instead of the shelter habitats, it would be beneficial 

for biological control, especially in early GS of a crop when a tolerance to damage had not been built 

(for example tolerance to feeding from vectors of BYDV). Removal of the hedgerows would be of a 

disadvantage to predator dynamics of Linyphiidae, as the shelterbelt is important for the persistence 

and continuity of generations (Pfister et al., 2015; Pywell et al., 2005). It may be that another slow 

growing ‘companion plant’ (companion due to mutualistic benefits) could be grown in the field 

margins to ‘push’ T. tenuis into the main field. This, known as intercropping, can involve the use of 

wildflowers such as Lotus corniculatus (Birds Foot Trefoil) and Trifolium pratense (Wild Red Clover) 
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(Howard, 2016). These wildflowers are suitable for heavy clay soils, able to persist in times of high 

surface moisture with the soils’ high bulk density permitting low permeability (Ashman & Puri, 2002) 

(Section 2.2.2.). It has been noted that a small increase in landscape heterogeneity is of great appeal 

to a web-building Linyphiidae (Médiène et al., 2011; Ratnadass et al., 2012).  Midega et al. (2008) 

identified, in arable crops, a ‘pull’ crop increased migration of Linyphiidae into the field and Cook et 

al. (2007) found planting of Desmodium uncinatum (Silver Desmodium) at a field edge increased 

abundance of natural enemies into the main area of a maize field. It is key that a non-invasive native 

crop is planted into the arable crop not to invade root systems or impede growth of the main crop by 

obtaining excessive nutrients. 

It was noted that a gap of 1 m between the field edge and shelterbelt may be too great to facilitate 

the rapid dispersal of a ballooning or rappelling T. tenuis in and out of a hedgerow. This area within 

the NIAB trials was noted to be mowed, incorporating limited landscape heterogeneity (Figure 4.1., 

Section 4.2., Page 53). It is understood that this area is used to allow machinery ease of access into 

the field. It may be beneficial to create ‘green-bridges’ to aide movement of T. tenuis and Linyphiidae 

into the main field (Baldissera et al., 2004; Feber et al., 2015; Mestre et al., 2018). This may be a small 

‘corridor’ which is not disturbed (mowed), where the grass species are allowed to succeed and provide 

a linear patch of landscape heterogeneity to connect the field to the sanctuary of the shelterbelt 

(Horváth et al., 2015; Villard & Metzger, 2014). Rappelling requires upright structures of a height to 

provide anchorage for the successive bridge threads (Bonte et al., 2008). Two to three ‘corridors’ each 

side of the field margin may be sufficient to facilitate movement, perhaps in locations where limited 

herbicide (glyphosate) drift occurs i.e. corners. It is noted that drift can cause reduced vegetation 

growth in a margin, defeating the goal of a ‘green-bridge’ to allow a continuous patch of landscape 

heterogeneity for increased Linyphiidae web-spinning (Haughton et al., 2001; Hof & Bright, 2010). It 

is noted the idea of ‘green-bridges’ within field margins may further encourage early pest, for example 

Aphididae, migration into the field. However, facilitating Linyphiidae movement before crop 

germination would encourage biological control upon Aphididae before accelerated parthenogenesis 

had chance to occur. 

The NIAB experiment is of continuing great scientific value in obtaining key information to help guide 

recommendations for agriculture sustainability in the future. The forward-thinking of Mr. Martin 

Jenkins and his farming enterprise in Childerly in Dry Drayton, Cambridgeshire, has allowed a large 

long-term trial to establish and where scientific exploration is encouraged.  
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13.4. Final Word 

One research observation that has been greatly appreciated is the web-spinning ability of Linyphiidae. 

The mechanisms of silk production in web construction are quite astounding. Webs of Linyphiidae and 

T. tenuis have been recorded woven to a multidude of structures, creating sheet webs of varying 

dimensions and orientations. The extended phenotype of webs is an incredible feat of natural 

engineering, which is capable in the appropriate conditions for exerting pressure on pests which cause 

much damage to arable agricutural industry, reducing the need for chemical control. 
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