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Abstract: Carbon dots (C-dots) represent an emerging class of nontoxic nanoemitters that show
excitation wavelength-dependent photoluminescence (PL) with high quantum yield (QY) and min-
imal photobleaching. The vast majority of studies focus on C-dots that exhibit the strongest PL
emissions in the blue/green region of the spectrum, while longer wavelength emissions are ideal
for applications such as bioimaging, photothermal and photodynamic therapy and light-emitting
diodes. Effective strategies to modulate the PL emission of C-dot-based systems towards the red end
of the spectrum rely on extensive conjugation of sp2 domains, heteroatom doping, solvatochromism,
surface functionalization and passivation. Those approaches are systematically presented in this
review, while emphasis is given on important applications of red-emissive suspensions, nanopowders
and polymer nanocomposites.

Keywords: fluorescence; carbon dots; red-emitting; bioimaging; light-emitting diodes

1. Introduction

The dynamic presence of carbon dots (C-dots) in the field of nanoemitters over the
last 15 years is directly related to their unique combination of three desired characteristics:
inexpensive preparation, nontoxic nature and superior photophysical properties in terms
of light absorption, chemiluminescence, electroluminescence, phosphorescence and up-
conversion [1–5]. Typically, C-dots are spherical nanoparticles with size 2–20 nm that are
composed of C, O and H along with heteroatoms such as N, P and S.

Their carbogenic cores can be predominantly amorphous or highly graphitic in na-
ture [6], while the term graphene quantum dots (GQDs) is typically reserved for nanodisks
of single- or few-layered graphene sheets [7]. In that sense, GQDS are considered as a
distinct subgroup of C-dots and are synthesized by various strategies including chemical
vapor deposition on hexagonal boron nitride substrates [8], all-organic synthesis starting
from polyphenylene dendrimers [9] and ring opening of fullerenes adsorbed to Ru metal
terraces [10]. Alternatively, GQDs can be prepared by oxidation or electrooxidation of
carbon-rich sources such as coal [11], carbon black [12], graphite [13], carbon fibres [14]
and carbon nanotubes (CNT) [15].

Well-defined C-dots are prepared at a large scale following hydrothermal, microwave
and calcination protocols performed on a wide range of feedstock materials, including
renewable and abundant resources such as crude biomass [16], coffee beans [17], fruit
juice [18], etc. Pyrolytic decomposition of suitable precursors gives rise to molecular
fluorophores that are embedded within the carbogenic cores or are adsorbed on their
surfaces [19,20]. For example, thermal treatment of urea and citric acid (CA) generates
blue-emissive citrazinic acid and green-emissive 4-hydroxy-1H-pyrrolo(3,4-c) pyridine-
1,3,6(2H,5H)-trione [21].

The PL properties of aqueous solutions of C-dots have been systematically investi-
gated with emphasis on theragnostics [22], gene delivery [22], drug delivery [23], antimi-
crobial applications [24], bioimaging [25] and biosensing [26]. At the same time the PL
properties of polymer-based nanocomposites [27,28] and powder formulations based on
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C-dots [29,30] are directly relevant to nanoforensics [29,30], light-emitting diodes [31] and
catalytic platforms [32].

In contrast to conventional semiconducting quantum dots that are based on heavy
metals, C-dots are considered as nontoxic, biocompatible and environmentally benign nano-
materials. Nevertheless, it has been demonstrated that surface functionalization can dramat-
ically modify their cytotoxicity as well as cell uptake and intercellular trafficking [33,34].

Although a large variety of blue/green-emissive C-dots with advanced PL properties
have been developed, it has been demonstrated that extensive π-conjugated domains,
high levels of surface oxidation, incorporation of heteroatoms such as N, S and P and
solvatochromism can give rise to red-shifted emissions [35,36]. It has been recently sug-
gested that the red/NIR-emissive signals recorded on C-dot based systems stem from
organic-like dye molecules encapsulated within carbonaceous nanostructures and might
not be related to the intrinsic properties of nanoparticles [37]. This approach, however,
might not explain the behaviour observed in GQDS and in related systems not prepared via
pyrolysis. There is general consensus that pyrolytic treatments of precursor molecules give
rise to complex mixtures of carbonaceous nanoparticles, crosslinked systems and organic
molecules, necessitating further systematic studies in order to accurate deconvolute and
identify the emissive contributions of each one of those components.

In this review we present promising strategies for the synthesis of C-dot-based sys-
tems with predominantly red-shifted optical signals. Particular attention is given to the
preparation of red-emissive liquid suspensions, polymer nanocomposites and nanopowder
formulations. The distinct advantages of those nanomaterials in emerging applications
such as bioimaging, biosensing, photothermal and photodynamic therapy, light-emitting
diodes, pollutant detection and nanoforensics are highlighted.

2. Discussion
2.1. Strategies to Generate Red-Shifted C-Dots

The main strategies that give rise to red-shifted C-dots rely on: (i) heteroatom dop-
ing, (ii) extensive conjugation length, (iii) surface functionalization and passivation and
(iv) solvatochromism.

2.1.1. Heteroatom Doping

Heteroatom doping is a well-explored strategy to modify the electronic and optical
properties of C-dots, ultimately leading to red-shifted C-dots [38]. It has been supported
that N doping can reduce the bandgap and improve bandgap uniformity of C-dots, thus
enhancing red emissions with a narrow full width at half maximum. Moreover, B and S
doping leads to reduced nonradiative recombinations, in essence intensifying red signals.
Incorporation of La results in local structural rearrangements, increased charge transfer
and ultimately stronger red emissions [35].

To that end, Hola et al. [39] synthesized N-doped graphitic C-dots following the
solvothermal treatment of urea and CA in formamide (Figure 1a) that were subsequently
subjected to column chromatography yielding blue- (b-C-dots), green- (g-C-dots), yellow-
(y-C-dots) and red- (r-C-dots) emissive fractions as shown in Figure 1b,c,d,e, respectively.
In water, at λex = 440 nm, the QY of b-C-dots, g-C-dots, y-C-dots and r-C-dots were 13.3%,
10.0%, 11.6% and 4.0%, respectively. Transmission electron microscopy (TEM) imaging
suggested that the average diameter (dav) of these C-dots was 2–3 nm (Figure 2a–d). X-ray
photoelectron spectroscopy (XPS) indicated a lower concentration of oxygen, hydroxyl and
carboxyl groups and an increased content of graphitic nitrogen for y-C-dots and r-C-dots
(Figure 2e–l), while nitrogen stemming from surface amide groups was dominant in b-C-
dots and g-C-dots. Fourier transform infrared spectroscopy (FT-IR) confirmed the presence
of carboxylic C=O bonds and surface C−N bonds for b-C-dots and g-C-dots, whereas the
most pronounced FT-IR peaks were ascribed to C−N= and C=N bonds for y-C-dots and
r-C-dots, verifying the dominant role of graphitic nitrogen for the red-shifted fractions.
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Figure 1. (a) Schematic illustration of the synthesis followed to generate a family of C-dots from
CA/urea in formamide. (b–e) Fluorescence excitation−emission map of: (b) b-C-dots, (c) g-C-dots,
(d) y-C-dots and (e) r-C-dots. Reprinted (adapted) with permission from [39]. Copyright 2021
American Chemical Society.

Moreover, Ding et al. [40] fabricated red graphitic C-dots (QY = 28% at λex = 533 nm)
with dav = 4.6 nm by means of solvothermal treatment of lemon juice in ethanol (λex
stands for excitation wavelength). The PL spectra of these C-dots suggested λex-dependent
behaviour, with the maximum of their emission peak at λmax = 615 nm. FT-IR suggested
the presence of O–H, N–H, –COOH and C–O on their surface, while C=C/C=N and C–N
vibrations were attributed to the polyaromatic structures of the carbogenic cores. XPS
confirmed the presence of C–C/C=C, C–N, C–O, C=O/C=N and COOH groups along with
the presence of pyridinic C–N–C, pyrrolic C2–N–H and graphitic N–C3 groups.

Capitalizing on similar concepts, Guo et al. [41] used various ratios of two types
of functionalized polythiophene derivatives to prepare a series of graphitic C-dots with
tuneable PL emissions ranging from blue to near infrared (NIR). All C-dots consisted of C,
O and S, while the N content was higher for the red-shifted fractions. Pan et al. [42] synthe-
sized graphitic C-dots with dav = 6.8 nm, through microwave heating of CA and formamide
solution in an autoclave with QY close to 11.9%, 16.7% and 26.2% at λex = 360 nm, 450 nm
and 540 nm, respectively. Likewise, Pan et al. [43] followed microwave-assisted heating of
glutathione formamide to synthesize graphitic NIR-emitting C-dots with dav =2.9 nm and
QY = 16.8% at λex = 420 nm.
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Figure 2. TEM images of: (a) b-C-dots, (b) g-C-dots, (c) y-C-dots and (d) r-C-dots with diameter histogram and HR-TEM
images for g-C-dots and r-C-dots in the inset. High-resolution C 1s and N 1s XPS spectra for (e,i) b-C-dots; (f,j) g-C-dots; (g,k)
y-C-dots and (h,l) r-C-dots. Reprinted (adapted) with permission from [39]. Copyright 2021 American Chemical Society.

In terms of multiheteroatom doping, Huang et al. [44] followed a hydrothermal
method using 3-aminobenzeneboronic acid and 2,5-diaminobenzenesulfonic acid as pre-
cursors to synthesize N, B and S codoped C-dots (NBS-C-dots) with dav = 2.8 nm and
QY = 11.6% at λex = 520 nm. NBS-C-dots showed λex-independent behaviour with
λmax = 605 nm for 410 nm ≤ λex ≤ 530 nm (Figure 3a). The high-resolution C 1s XPS
spectrum indicates the presence of C–B (283.89 eV), C–C/C=C (284.78 eV), C–O/C–S
(285.55 eV) and C–N/C–O (286.00 eV) (Figure 3b). The N 1s XPS spectrum can be decon-
voluted into three main peaks at 401.95 eV, 401.20 eV and 399.48 eV, which are related to
N–H, C–N and C–N–C, respectively (Figure 3c). The B 1s XPS spectrum reveals three peaks
at 192.23 eV, 191.10 eV and 190.43 eV, corresponding to B–S, B–O and B–C, respectively
(Figure 3d). The S 2p XPS spectrum indicates two peaks at 167.90 eV and 168.45 eV, which
relate to the S 2p3/2 and S 2p1/2 spectra of the C–S–C bond, and one peak at 167.9 eV,
which is attributed to –C–SOx– (x = 2, 3, and 4) (Figure 3e). The O 1s XPS spectrum shows
three peaks at 532.93 eV, 532.08 eV and 531.15 eV, ascribed to O=C–O, C–O and C=O,
respectively (Figure 3f). FT-IR spectroscopy suggests the presence of O–H, N–H bonds,
-SCN- groups and C=O, C=C, C–N, C–C, C–S and C–O–C bonds, along with B–O, B–O–H,
C–B and B–O–H bonds.

Xu et al. [45] followed a hydrothermal treatment of L-methionine and urea using
water and dimethylformamide (DMF) as the solvent to produce red- (N,S-doped) and
blue-emitting (N-doped) graphitic C-dots, respectively. Miao et al. [46] followed a hy-
drothermal treatment of CA and thiourea in acetone to synthesize graphitic red-emitting
N,S-doped C-dots with QY = 22% in water. Ge et al. [47] followed a hydrothermal treat-
ment of polythiophene phenylpropionic acid (PPA) to synthesize graphitic, red-emissive
S-doped C-dots with dav = 10 nm exhibiting λex-independent properties with QY = 2.3%.
Yang et al. [48] followed a hydrothermal treatment of 2,5-diaminobenzenesulfonic acid to
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synthesize graphitic, red-emissive N,S-doped C-dots with dav = 4.9 nm and QY = 2.7% at
λex= 500 nm.

1 
 

 

 
 
 

 

Figure 3. (a) PL spectra of NBS-C-dots with λex ranging from 410 nm to 530 nm. C 1s (b), N 1s (c), B 1s (d), S 2p (e), and O
1s XPS spectrum (f) of NBS-C-dots. Reprinted (adapted) with permission from [44]. Copyright 2021 Elsevier.

In situ chromophore doping can lead to red-shifted C-dots by introducing new elec-
tron transition pathways that alter their highest occupied molecular orbital and lowest
unoccupied molecular orbital (HOMO–LUMO) levels. Karami et al. [49] developed a syn-
thetic procedure to synthesize chromophore-doped graphitic C-dots with dav = 5 nm via a
hydrothermal treatment of glucose and 3-nitroaniline dissolved in sulfuric acid. The C-dots
exhibited three λex-independent emissions (blue, red and yellow) under acidic, neutral
and alkaline environments, respectively. At pH = 2 the C-dots showed λmax = 385 nm
(QY = 43.0%), but at pH = 3 a weak red peak appeared along with the dominant blue
peak. Upon increasing the pH, the intensity of the blue emission peak declined, whereas
the red emission peak was enhanced, and at pH = 7 there was a single emission peak
at λmax = 610 nm (QY = 14.4%), which at pH =12 shifted to λmax = 565 nm (QY = 24.3%).
FT-IR spectra showed peaks related to O–H and N–H groups, C–H stretching vibrations,
the C=O band of amide and carbonyl groups, C=C stretching/N–H bending bands and
C–S/C–N/C–O stretching vibration bands. At the same time, a pH-dependent FT-IR
peak centred at 1545 cm−1 was attributed to the presence of azo groups (–N=N), showing
maximum intensity at neutral pH and minimum intensity at acidic pH.

2.1.2. Extensive Conjugation Length

Early studies indicated the crucial role of quantum confinement in π-bonded hexago-
nal carbon clusters on the broadband emission of carbon-based films [50]. More recently,
it has been shown that the HOMO–LUMO gap energy decreases as the size of GQDs
increases [51]. Moreover, it has been demonstrated that the emission wavelength shows
a linear size dependence in defect-free, functionality-free, zigzag-edged GQDs and that
the fluorescence emission covers a broad spectrum from deep UV (λem = 235.2 nm) to NIR
(λem = 999.5 nm) as the size varies from 0.46 nm to 2.31 nm [52]. At the same time, the
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presence of armchair edge widens the band gap in and blue shifts the emissive signals of
GQDs [53].

Yeh et al. [54] relied on the oxidation of GO sheets to generate GQDs that were
separated (via polyethersulfone membranes with different cutoff molecular weights) to
fractions with dav = 1.0 nm (QD10), 1.6 nm (QD16), 2.6 nm (QD26), 5.4 nm (QD54), 6.1 nm
(QD61) and 7.9 nm (QD 79), all of which exhibited excitation-wavelength independent PL
with λmax at 460 nm, 490 nm, 520 nm, 540 nm, 560 nm and 580 nm, respectively (Figure 4).
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Figure 4. Normalized PL spectra (λex = 350 nm) of QD10, QD16, QD26, QD54, QD61 and QD79.
Reprinted (adapted) with permission from [54]. Copyright 2021 American Chemical Society.

Li et al. [51] explored alkali-assisted electrooxidation of a graphite rod by applying dif-
ferent current densities to fabricate a series of C-dots and demonstrated that small- (1.2 nm),
medium- (1.5–3 nm) and large-sized (3.8 nm) C-dots emit within the UV (350 nm), visible
(400–700 nm) and NIR (800 nm) regions, respectively (Figure 5a,b). FT-IR spectroscopy
indicated the presence of carbonyl (C=O) groups on the surface of these C-dots that can be
eliminated via hydrogen plasma treatment without altering the PL properties of C-dots, an
effect that points to the dominant role of quantum confinement for this class of materials.
Figure 5c suggests that as the size of the C-dots increases, the HOMO–LUMO energy gap
decreases, and therefore the PL emission is shifted towards the NIR region of the spectra.
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Yuan et al. [55] followed solvothermal treatment of CA and diaminonaphthalene in
ethanol and allowed different reaction times in the presence of concentrated sulfuric acid,
yielding GQDs with dav = 1.9 nm, 2.4 nm. 3.8 nm, 4.9 nm and 6.7 nm emitting respectively
within the blue, green, yellow, orange and red regions, in agreement with the expected
behaviour owing to quantum confinement effects. Similar trends were confirmed by
Tian et al. [56], who explored the solvothermal treatment of CA and urea in water, glycerol,
DMF and their mixtures to generate C-dots with tuneable size and PL emissions.

2.1.3. Surface Functionalization and Passivation

Surface functionalization strategies have been shown to dramatically modify the PL
properties of C-dots via defect and intrinsic state emission mechanisms [57] and charge
transfer effects [58]. In principle, the presence of functional groups on C-dots generates
structural defects and midgap states facilitating π*→midgap states→π transitions, thus
enhancing the red components on their PL spectra [59]. An interesting study showed
that within a series of C-dots with similar size distribution and graphitization degree, the
bandgap was gradually reduced upon increasing the degree of surface oxidation, leading
to a pronounced red shift from 440 to 625 nm [60]. In electrochemically oxidized C-dots it
was shown that the PL mode stemming from the organic fluorophores was blue-shifted,
while the PL component originated by the carbogenic cores was red-shifted [61].

Xiong’s group [60] synthesized a series of graphitic C-dots via hydrothermal treatment
of urea and p-phenylenediamine (p-PD) yielding a mixture of four fractions (A, B, C and
D in Figure 6a) that could be separated via silica column chromatography because of
their different polarities. TEM imaging indicated that all fractions consisted of C-dots
with dav = 2.6 nm, while FT-IR spectra revealed the presence of O–H, N–H, C–O and
–COOH groups on their surfaces. XPS indicated a systematic enhancement of the oxygen
content when moving from fraction A to D, a trend that is accompanied by a systematic
shift from blue to red PL emission at λex = 365 nm. It has been suggested that as the
population of surface oxygen atoms increases, the HOMO–LUMO bandgap gradually
narrows, ultimately facilitating red PL emission (Figure 6b).
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Liu et al. [62] followed a microwave-assisted pyrolysis of m-PD, o-PD and p-PD in
formamide to generate three types of C-dots that exhibited λex-independent emission with
λmax at 360 nm, 450 nm and 530 nm, respectively. On the basis of FT-IR and XPS data, the
authors demonstrated that the red-shifted C-dots exhibited a higher level of surface oxida-
tion and possessed a larger population of amino groups on their surface. Zhang et al. [63]
reported that blue-emitting C-dots (derived via pyrolysis of polyethylene glycol (PEG))
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can be turned into green- and orange-emissive systems when treated thermally with PEG
and 2,20-(ethylenedioxy)-bis(ethylamine), respectively.

Pang et al. [64] suggested that the PL of C-dots is directly related to surface-state
emission, but the energy gap is controlled not only by the nature of the surface, but
also by the size of the carbogenic core. In particular, they reported the synthesis of C-
dots via HNO3-assisted oxidation of carbon fibres (CFs). By means of ultrafiltration
and using membranes with molecular cutoffs < 3 kDa, 3–10 kDa and 10–30 kDa, three
different fractions were isolated with dav= 2.7, 3.3 and 4.1 nm, respectively. Evidently, low
concentrations of HNO3 facilitate the commencement of exfoliation from the defect sites of
CFs, leading to small and blue-shifted C-dots. In contrast, higher concentrations of HNO3
and larger oxidation times give rise to larger, red-shifted C-dots with a higher degree of
surface oxidation. By accurately controlling the oxidation conditions (reaction time, size
of cutoff membranes, concentration of nitric acid), a series of well-defined C-dots were
prepared that exhibited λex-independent emission, but their λmax varied from 430 nm to
610 nm (λex = 360 nm).

2.1.4. Solvatochromism

Solvatochromism effects are common in C-dot dispersions and have been attributed
to extensive nanoparticle–solvent dipole–dipole interactions and H-bonding [65]. By
virtue of their highly responsive nature, solvatochromic C-dots have been explored as
sensitive optical sensors to detect volatile organic compounds [66]. Interestingly, emissive
contributions arising from edge and surface bands might induce solvatochromic shifts
in the opposite directions [67]. At the same time, pyrrolic nitrogen- and amino nitrogen-
enriched C-dots show wider solvatochromic shifts and impart higher QY [68].

Wang et al. [69] used p-PD and diphenyl ether as precursors to synthesize spherical
C-dots with dav = 2.6 nm. FT-IR revealed the presence of –OH, N–H, C–H, C=N, C=C, C–N
and C–O groups. C 1s XPS indicated the presence of C–C/C=C, C–N, C–O and C=N; N 1s
XPS indicated the presence of pyridinic, amino and pyrrolic N and O 1s XPS suggested
the presence of C–O bonds. When the C-dots were dispersed in CCl4, toluene, CHCl3,
acetone, DMF, CH3OH and H2O, their λmax was at 511, 525, 545, 554, 568, 602 and 615 nm,
respectively. In other words, the PL of C-dots systematically red-shifts as the polarity of
the aprotic solvent increases. In protic solvents (such as methanol, ethanol, benzyl alcohol,
1-hexanol and 1-octanol), the C-dots emitted identical red PL regardless of the nature of
the solvent, an effect that has been attributed to the formation of hydrogen bonds between
the N and O atoms on the surface of C-dots and the -OH groups of the solvent molecules,
which stabilize the excited states.

In addition, Li et al. [70] followed thermal treatment of CA, DMF and urea to synthe-
size C-dots that showed enhanced red (λmax =640 nm) and NIR (λmax =760 nm) emission
in aprotic solvents such as DMSO, DMF and N-methyl-2-pyrrolidone. However, in water,
these C-dots exhibited weaker signals in the red region and showed no NIR emission.
This solvatochromic effect was ascribed to electron-acceptor groups (S=O/C=O) of the
aprotic solvents attached to the outer layers and the edges of the C-dots. Yang et al. [71]
synthesized triphenylphosphine (P(Ph)3) functionalized C-dots (p-C-dots) with dav = 4 nm
and QY up to 58%. It was observed that λex of p-C-dots systematically red-shifted from 431
to 641 nm upon increasing the dielectric constant (ε) of the dispersion medium (Figure 7),
an effect that has been attributed to the reduced electron-donating capacity of the P(Ph)3
groups in environments with increased polarity.

2.2. Applications of Aqueous Dispersions of Red C-Dots
2.2.1. Bioimaging

Red/NIR-emissive C-dots are considered to be ideal for bioimaging applications
because they allow larger penetration depth without damaging the surrounding tissue. To
that end, Liu et al. [72] suggested a rapid synthesis of red-emitting C-dots (λmax = 630 nm)
with QY = 10.8% in water and 31.5% in ethanol (λex = 540 nm) using o-PD as a precursor
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in diluted HNO3 via a one-step hydrothermal procedure. The C-dots showed low level
of toxicity against mice osteoblasts MC3T3-E1 and bone marrow stromal cells (BMSCs)
(Figure 7a,d). The bright field and FL images (λex = 530 nm) of MC3T3-E1 and BMSCs
incubated with C-dots at a concentration of 200 µg/mL for 24 h at 37 ◦C are displayed in
Figure 7b,c,e,f, suggesting that C-dots are predominantly distributed into the cytoplasm
and not the nucleus, thus facilitating high resolution cell imaging without affecting the
replication or the transcription of DNA.

Tan et al. [73] followed electrochemical exfoliation of graphite in 0.01 M K2S2O8
solution to synthesize red C-dots with dav = 3 nm and λmax = 610 nm at λex = 500 nm.
Those C-dots, when used without any further surface treatment, showed minimal toxicity
against HeLa cells and were able to stain both their cell membranes and their cytoplasm,
offering clear images under an FL microscope while exhibiting excellent photostability
over a prolonged period.
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2.2.2. Sensing/Biosensing

Oftentimes, heteroatom doping is coupled with surface patterning strategies and
sp2 domain engineering in order to optimize red-shifted emissions. Along those lines,
Li et al. [74] followed hydrothermal treatment of CA and thiourea to synthesize red-
emitting S,N codoped C-dots that were functionalized with phenylboronic acid tags
yielding S,N-C-dots-PBA with QY = 23% and λmax = 593 nm under λex = 550 nm. The
S,N-C-dots-PBA showed excellent biocompatibility and were able to illuminate PC12 cells
under the FL microscope 20 min after their injection (Figure 8a). Interestingly, the PL
intensity decreased upon the addition of 1.0 and 5.0 µM Fe3+ (Figure 8b,c), and the corre-
sponding intracellular PL was compared to the S,N-C-dot-free sample (control) (Figure 8d).
The quenching efficiency was 73% and 96% for 1.0 µM and 5.0 µM Fe3+ ions, respectively.
This behaviour indicates that S,N-C-dots-PBA can be explored for the highly sensitive
intracellular detection of Fe3+.
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Figure 8. FL images of living PC12 cells stained with 5.0 µM S,N-C-dots: (a) in the absence of Fe3+ (control sample), (b) in
the presence of 1.0 µM Fe3+, (c) in the presence of 5.0 µM Fe3+. (d) The PL intensity of samples described in (a–c). Reprinted
(adapted) with permission from [74]. Copyright 2021 Elsevier.

In addition, Gao et al. [75] followed hydrothermal treatment of CA and neutral red
dye (NR) (ratio of 1000:1) to prepare red-emissive C-dots, the PL of which quenched in the
presence of Pt2+ (ethanol as solvent) due to a rapid electron-transfer process between the
metal ions and the C-dots’ surface. Moreover, zebrafish (ZF) that were loaded with Pt2+ and
C-dots exhibited PL properties in a manner that critically depended on the concentration
of the internalized Pt2+ (Figure 9), indicating that C-dots can be used as sensors to quantify
the Pt2+ levels present in living organisms.



Nanomaterials 2021, 11, 2089 11 of 21

Nanomaterials 2021, 11, x FOR PEER REVIEW 11 of 21 
 

 

In addition, Gao et al. [75] followed hydrothermal treatment of CA and neutral red 
dye (NR) (ratio of 1000:1) to prepare red-emissive C-dots, the PL of which quenched in 
the presence of Pt2+ (ethanol as solvent) due to a rapid electron-transfer process between 
the metal ions and the C-dots’ surface. Moreover, zebrafish (ZF) that were loaded with 
Pt2+ and C-dots exhibited PL properties in a manner that critically depended on the con-
centration of the internalized Pt2+ (Figure 9), indicating that C-dots can be used as sensors 
to quantify the Pt2+ levels present in living organisms. 

 
Figure 9. FL imaging of Pt2+ in ZF: (a1−e1) Optical images and (a2−e2) FL images stemming from C-
dots in ZF loaded with several concentrations of Pt2+: 0 (a1,a2); 30 (b1,b2); 60 (c1,c2); 100 (d1,d2) and 150 
μM (e1,e2). Reprinted (adapted) with permission from [75]. Copyright 2021 American Chemical So-
ciety. 

2.2.3. Photothermal Therapy (PTT) 
Photothermal therapy (PTT) relies on radiation-absorbing particles to cause thermal 

ablation of tumour cells and subsequent cell death. Red-shifted C-dots are ideal candi-
dates as PTT agents due to their low phototoxicity, great photothermal conversion effec-
tiveness and deep tissue penetration. 

As mentioned in the Heteroatom doping section, Ge et al. [47] developed a hydrother-
mal approach of PPA to fabricate red-emissive C-dots (u-C-dots) that showed a wide ab-
sorption range from 400 to 750 nm and 38.5% photothermal conversion. Those properties 
make u-C-dots suitable for PL and photoacoustic (PA) imaging as well as PPT. In Figure 
10a IR images of a mouse that was subjected to intertumoral injection of u-C-dots indicate 
that the temperature of the tumour cells rose up to 58.4 °C within 10 min of laser radiation, 

Figure 9. FL imaging of Pt2+ in ZF: (a1–e1) Optical images and (a2–e2) FL images stemming from
C-dots in ZF loaded with several concentrations of Pt2+: 0 (a1,a2); 30 (b1,b2); 60 (c1,c2); 100 (d1,d2)
and 150 µM (e1,e2). Reprinted (adapted) with permission from [75]. Copyright 2021 American
Chemical Society.

2.2.3. Photothermal Therapy (PTT)

Photothermal therapy (PTT) relies on radiation-absorbing particles to cause thermal
ablation of tumour cells and subsequent cell death. Red-shifted C-dots are ideal candidates
as PTT agents due to their low phototoxicity, great photothermal conversion effectiveness
and deep tissue penetration.

As mentioned in the Heteroatom doping section, Ge et al. [47] developed a hydrothermal
approach of PPA to fabricate red-emissive C-dots (u-C-dots) that showed a wide absorption
range from 400 to 750 nm and 38.5% photothermal conversion. Those properties make
u-C-dots suitable for PL and photoacoustic (PA) imaging as well as PPT. In Figure 10a IR
images of a mouse that was subjected to intertumoral injection of u-C-dots indicate that
the temperature of the tumour cells rose up to 58.4 ◦C within 10 min of laser radiation,
thus causing permanent damage to cancer cells. Following a 16-day course, the tumour
disappeared and the mouse fully recovered, while the mouse receiving saline treatment
failed to do so (Figure 10b,c). At the same time, no distinct inflammation, cell necrosis or
apoptosis in the heart, liver, spleen, lung or kidney were observed, confirming the absence
of undesired side effects induced by u-C-dots (Figure 10d).
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Figure 10. (a) IR images of u-C-dots injected into mice tumour locations under laser irradiation (671 nm at 2 W/cm2);
(b) photos of the mice tumours on several days after the two treatments; (c) relative change in the tumour volume over
time during the treatments utilizing only u-C-dots, only NIR irradiation and their combination; (d) haematoxylin- and
eosin-stained slices of the heart, liver, spleen, lung and kidney in mice after PTT. Scale bar is 50 µm. Reprinted (adapted)
with permission from [47]. Copyright 2021 John Wiley and Sons.

2.2.4. Photodynamic Therapy (PDT)

Photodynamic therapy (PDT) has distinct advantages over traditional cancer treat-
ments (surgery, chemotherapy and radiotherapy) such as low toxicity, minimal damage
to healthy tissue and mild side effects. In PDT, a laser beam excites the photosensitizer to
generate reactive oxygen that eventually destroys the tumour cells.

Jia’s group [76] followed solvothermal treatment of Hypocrella Bambusae to synthe-
size red-emissive HBC-dots with dav = 4.8 nm and λmax = 610 nm at λex = 540 nm. After
10 min of laser irradiation (635 nm at 0.8 W/cm2), the temperature of the HBC-dot solu-
tion (200 µg/mL) rose by 26.9 ◦C, while it increased by only 3.7 ◦C upon irradiation at
0.1 W/cm2. The results confirmed that the HBC-dots, at 0.1 W/cm2, could produce 1O2,
facilitating PDT, but at 8 W/cm2 they could generate both 1O2 and thermal energy, facilitat-
ing both PDT and PTT treatments. Upon a 6-hour incubation of HeLa cells with HBC-dots,
it was observed that the cytoplasm emitted red PL (Figure 11a). The coincubation of HeLa
cells with HBC-dots and 2′,7′-Dichlorofluorescin diacetate (DCF-DA), a green dye that
is commonly used to probe intracellular 1O2 formation, followed by 635 nm irradiation
gave rise to strong green PL emission (Figure 11b), thus confirming the presence of 1O2.
Moreover, standard MTT assay showed that HBC-dots exhibited low toxicity against HeLa
cell under dark conditions (black bars in Figure 11c). The cell viability was compromised at
power density at 0.1 W/cm2 (PDT system, red bars in Figure 11c), and the effect was more
pronounced at power density at 0.8 W/cm2 (PDT+PTT system, blue bars in Figure 11c),
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given that 99% of HeLa cells incubated with 200 mg/mL HBC-dots did not survive. After
intravenous injection of HBC-dots in mice, the PL intensity in cancer sites rose with time,
reaching its maximum value after 8 h (Figure 11d).
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Figure 11. (a) FL images of HeLa cells incubated with HBC-dots. (b) FL imaging of HeLa cells stained
with HBC-dots, DCF-DA and their combination. (c) Viability of HeLa cells incubated with HBC-dots
after several treatments. (d) In vivo FL images of mice after intravenous injection of HBC-dots in
PBS. Reprinted (adapted) with permission from [76]. Copyright 2021 Elsevier.

Ge et al. [77] synthesized C-dots with excellent water solubility using polythiophene
derivatives as the precursor via a hydrothermal method. The C-dots showed interesting
properties such as a broad absorption region from the visible to the NIR, superior biocom-
patibility and photostability, high 1O2 yield and strong emission with λmax = 680 nm at
λex = 488 nm.

2.3. Solid-State Red C-Dots and Their Applications

Significant progress has been made in solid-state red C-dot-based systems such as
hybrid powders and polymer nanocomposites typically derived via in situ polymerization,
mechanical and melt mixing and solution blending.

2.3.1. WLEDs (White Light-Emitting Diodes)

Yuan et al. [78] fabricated graphitic, excitation-independent, green-emitting GnC-
dots (dav = 6.5 nm, λmax = 515 nm, λex = 460 nm, QY = 81%) following solvothermal
treatment of perylene that were further treated with NaOH to produce red-emitting RdC-
dots (dav = 6.45 nm, λmax = 610 nm, at λex = 560 nm, QY = 80%), as shown in Figure 12a,b.
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FT-IR proved the presence of –NO2 and –NH2 for the GnC-dots and the C=O in the
quinone structure for the RdC-dots. The dispersion of GnC-dots into methyltriethoxysilane
(MTES) and RdC-dots into 3-triethoxysilylpropylamine (APTES) gave rise to transparent
nanocomposite gel glasses that under UV radiation appeared green and red, respectively
(Figure 12c). To form WLEDs, the GnC-dots/MTES gel was deposited (and allowed to
dry) on a blue LED chip (27 lm/W at 20 mA, λex = 460 nm), followed by the deposition
of RdC-dots/APTES gel (Figure 12d). The electroluminescence (EL) spectra of both cold
and warm WLED lamps revealed three emission peaks located at 460, 508 and 615 nm,
corresponding to the emissions of the LED chip, GnC-dots and RdC-dots (Figure 12e),
respectively. Moreover, the warm WLED lamp showed a high colour rendering index (CRI)
of 92.9, compared to CRI = 81.1 for the cold lamp.
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from [78]. Copyright 2021 American Chemical Society.

Jin et al. [79] followed hydrothermal treatment of a l-tyrosine, o-PD, l-tyrosine/o-PD
mixture to generate blue (dav =5.1 nm, QY = 8.6% at λex = 365 nm), green (dav = 5.7 nm,
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QY = 12.6% at λex = 430 nm) and orange/red C-dots (dav = 4.4 nm, 20.9% at λex = 405 nm).
Subsequently, the C-dots were dispersed in polyvinyl alcohol (PVA) to generate blue-,
green- and orange/red- emissive films. The films were deposited on a UV chip to generate
WLED with Commission Internationale de L’Eclairage (CIE) chromaticity coordinates (0.30,
0.33), compared to pure white light (0.33, 0.33).

As aforementioned, Wang et al. [69] followed a solvothermal treatment of p-PD into
diphenyl ether to synthesize graphitic C-dots that exhibited λmax at 511, 525, 545, 554, 568,
602 and 615 nm in CCl4, toluene, CHCl3, acetone, DMF, CH3OH and H2O, respectively. To
prepare liquid LEDs, C-dot dispersions in toluene, DMF and methanol were encapsulated
in silica glass boxes and packed above a UV-LED chip (λem = 370 nm) in order to generate
green, yellow and red PL contributions respectively. Moreover, the green-emissive C-dots
in methyl methacrylate nanocomposite and the red-emissive C-dots in PVA nanocomposite
were deposited on a UV-LED chip to assemble solid LEDs.

Zhang et al. [80] synthesized a colour-tuneable solid-state luminescent material via
a hydrothermal procedure using CA, urea and Eu (DPA)3 and a 2D-layered-structure
nanoclay. The hybrid material obtained showed tuneable emission colours from red to blue
under different λex, where the Eu3+ and C-dots mainly contributed to the red and blue emis-
sion, respectively, making them potential candidates for WLED applications. Yuan et al. [81]
synthesized amorphous, red-emissive C-dots using 1,2,4-triaminobenzen as carbon source
and PEG200 as passivation agent via a solvothermal method. The C-dots showed λex-
independent behaviour, with a QY up to 25% in ethyl acetate (λex = 460 nm), and were
combined with silica to fabricate red PL powder in order to construct warm WLEDs.

2.3.2. Pollutant Sensing

Liang’s group [82] followed the carbonization of sugarcane bagasse in a mixture of
concentrated sulfuric and phosphoric acid to synthesize red-emitting C-dots that were
subsequently coated on polyvinylidene fluoride (PVDF) membranes. The PVDF/C-dot
membranes exhibited red PL (λex = 365 nm) that was quenched in the presence of ammonia,
but not in the presence of acetonitrile, o-nitrotoluene, toluene, cyclohexylamine, hydrazine,
ethanediamine, dimethyl sulfoxide, acetic acid, acetone, chloroform or hydrochloric acid
(Figure 13a,b). The PVDF/C-dot system was shown to be a highly selective and highly
sensitive sensor for ammonia with a detection limit of 1.7 ppm and a response time of 30 s
(Figure 13c).

 

2 

 

 

 
Figure 13. (a) Images of PVDF/C-dot membranes under visible light (i) and before (ii) and after (iii) exposure to saturated
vapours of various solvents with a response time of 30 s (λex = 365 nm): 1, acetonitrile; 2, o-nitrotoluene; 3, toluene; 4, cyclo-
hexylamine; 5, hydrazine; 6, ethanediamine; 7, ammonia; 8, dimethyl sulfoxide; 9, acetic acid; 10, acetone; 11, chloroform;
12, hydrochloric acid. (b) Quenching efficiency in the presence of molecules 1–12. (c) Quenching efficiency as a function
of vapour pressure of ammonia. Inset: Images of the PVDF/C-dots before (left) and after (right) exposure to 310 ppm of
ammonia with a response time 30 sec (λex = 365 nm). Reprinted (adapted) with permission from [82]. Copyright 2021 John
Wiley and Sons.
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Lu et al. [83] followed hydrothermal treatment of citric acid and ethylenediamine in
formamide−water binary systems to generate a mixture of blue and red-emissive C-dots.
Subsequently, ion imprinted mesoporous polymers were prepared using Cr3+ and Pb2+

as templates and the mixture of blue and red C-dots as fluorescent probes to generate
a dual channel detection system, given that Cr3+ only quenches the emission of blue C-
dots and Pb2+ only quenches red C-dots. The detection limits for Cr3+ and Pb2+ were
27 nm and 34 nm, respectively. Hu et al. [84] followed a solvothermal treatment of o-
phenylenediamine and selenourea in HCl to synthesize red-emissive Se,N,Cl codoped
C-dots with QY = 23.6%, the emission of which can be selectively quenched in the presence
of malachite green (MG), thus functioning as nanosensors for MG with a limit of detection
close to 20 nM.

2.3.3. Nanoforensics

Li et al. [85] synthesized red-emissive, λex-independent, graphitic C-dots (pC-dots)
with dav = 12.5 nm following solvothermal treatment of p-PD. FT-IR of pC-dots showed
the stretching vibrations of N–H, C=N, C=C and C=C, and XPS spectra revealed they
consisted of C (79.56%), N (15.61%) and O (4.83%). As shown in Figure 14a, incorporation
of pC-dots into starch gave rise to highly PL powders (the PL spectra of pC-dots in ethanol
is also displayed for comparison). The pC-dot/starch powder was used to develop latent
fingerprints deposited on a glass substrate and was able to reveal well-defined ridges with
minimal background interference (Figure 14b).
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from [83]. Copyright 2021 Elsevier.

Yuan et al. [86] followed a solvothermal treatment of o-phenylenediamine and 1,8-
diamino naphthalene in DMF in the presence of boric acid to synthesize red-emissive
B-doped C-dots with QY = 12%. The B-C-dot dispersion in PVA was used as an ink
for advanced anticounterfeit applications, given that it appears blue upon UV excitation
but becomes pink after alkali treatment and returns to blue after acid treatment in a
reversible manner.

3. Conclusions

Although the large-scale production of well-defined, red-emissive C-dots remains
an open challenge, a number of promising approaches towards this direction have been
demonstrated. These synthetic strategies rely on heteroatom doping, surface functionaliza-
tion and the formation of extensively conjugated domains, while a combination of two or
more of those engineering principles is usually more effective in terms of PL performance.
In contrast to their blue and green counterparts, the synthesis of red C-dot-based systems is
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rather tedious and energy intensive and largely depends on the use of aromatic precursors,
organic solvents and toxic compounds. Overcoming those barriers will allow the devel-
opment of a new generation of photoactive materials that can potentially advance crucial
biomedical treatments, sensing applications and lighting technologies.

4. Outlook

There is no doubt that C-dots are a highly promising class of nanomaterials with
distinct advantages with respect to conventional organic fluorescent dyes because of their
multicolour nature and enhanced structural stability, while they are superior in terms of
environmental friendliness and preparation ease compared to heavy metal-based quantum
dots. These nanoemitters can be used in isolation for a variety of applications [38] or can be
combined with other materials to generate advanced nanocomposites and devices, such as
polymeric hybrids [27], powder compositions [87], ordered mesoporous frameworks [88]
and C-dot-based Forster resonance energy transfer systems [89]. At the same time, their
photoluminescence mechanism is not fully understood, and more studies are needed in
order to gain further insights on the structure–properties relationships of those complex
systems. This observation is particularly true for red-emissive C-dots, which are only re-
cently gaining significant attention from the scientific community, although both challenges
and benefits associated with their production are well-recognized.

First is the observation that the majority of C-dots typically display weak emissions on
the red end of the spectrum, while certain approaches allow the synthesis of predominantly
red nanoemitters. A recent theoretical study indicated that improved red emission is
expected for C-dots bearing abundant weakly interacting surface emission centres [90].
Simple post-modification treatments (such as the reaction with acetaldehyde [91]) can
modulate the PL emission, essentially converting blue-emitting into red-emitting C-dots. In
addition, C-dots with reversibly switchable green–red emissions have been reported [78,86].

Second is the realization that a number of effective strategies for the large-scale produc-
tion of blue and green C-dots that require a relatively low capital investment are emerging
in the literature, but those efforts are less advanced for their red-emissive counterparts.
Nevertheless, cost-effective approaches that are compatible with standard industrial pro-
cessing are present in the literature. For example, far-red C-dots with QY = 18.5% were
prepared via a 3 min microwave treatment of glutathione in formamide followed by cen-
trifugation and dialysis [92]. Moreover, red C-dots with QY = 53% can be produced on a
gram scale by heating a formamide solution of citric acid and ethylenediamine [93].

Third is the understanding that the nature of the precursor material plays a significant
role on the PL properties of the red-emissive C-dots. For example, red C-dots with QY = 84%
are derived from the highly conjugated molecular precursor tris(4-aminophenyl)amine [94].
In analogy to blue and green C-dots, organic fluorophores developed in situ during the syn-
thesis of red C-dots are expected to have a pronounced impact on their PL properties. We
note that it has been suggested that red emission might be associated exclusively to organic
fluorophores entrapped within the carbogenic structure [37]. In terms of biomass utilization,
we note that red-emitting N,Mg codoped C-dots from the leaves extract of Bougainvillea
plant showed λex-independent emissions with λmax = 678 nm and QY = 40% [95], while
NIR-C-dots with QY = 31% and 15.3% were synthesized by heating a formamide solution
of lemon juice [40] and via solvothermal treatment of spinach [96].
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