UNIVERSITY OF CENTRAL LANCASHIRE

FACULTY OF SCIENCE AND TECHNOLOGY

School of Engineering and Computing

Augmenting Zero Trust Architecture to
endpoints using Distributed Ledger
Technologies and Blockchain

by

Charalampos (Lampis) Alevizos

Submitted in partial fulfilment for the requirements for the degree of Doctor of
Philosophy at the University of Central Lancashire

September 2023

STUDENT DECLARATION FORM

1.

Concurrent registration for two or more academic awards.

| declare that while registered as a candidate for the research degree, | have not been
aregistered candidate or enrolled student for another award of the University or other
academic or professional institution.

Material submitted for another award.

| declare that no material contained in the thesis has been used in any other
submission for an academic award and is solely my own work.

Collaboration.

Where a candidate’s research programme is part of a collaborative project, the thesis
must indicate in addition clearly the candidate’s individual contribution and the extent
of the collaboration. Please state below: (N/A)

Use of a Proof-reader.

Professor Janet Read proofread this thesis in accordance with the Policy on Proof-
reading for Research Degree Programmes and the Research Element of Professional
Doctorate Programmes. A copy of the confirmatory statement of acceptance from
that service has been lodged with the Research Student Registry.

Signature of Candidate: Charalampos Alevizos

Type of Award : Doctor of Philosophy (PhD)
Print Name : Charalampos Alevizos
School : School of Engineering and Computing

Abstract

With the increasing adoption of cloud computing and remote working, traditional
perimeter-based security models are no longer sufficient to protect organizations' digital
assets. The need for a more robust security framework led to the emergence of Zero Trust
Architecture (ZTA), which challenges the notion of inherent trust and emphasizes the
importance of verifying endpoints, users, and applications. However, within ZTA, the already
authenticated and authorized communication channel on an endpoint poses a critical
vulnerability, making it the Achilles' heel of the architecture [1]. Once compromised, even
with valid credentials and authorized access, an endpoint can become a gateway for attackers
to move laterally and access sensitive resources. Addressing the vulnerability of endpoints
within ZTA is crucial to bolster overall security. By mitigating the risks associated with
compromised endpoints, organizations can prevent unauthorized access, privilege escalation,
and potential data breaches.

Traditional security measures, such as firewalls, antivirus technologies, and Intrusion
Detection and Prevention Systems (IDS/IPS), have become less effective in the face of evolving
threats and complex network infrastructures. Perimeter-based security models are gradually
being replaced by ZTA, which focuses on identity-based perimeters and continuous
verification. To enhance endpoint security within ZTA, this research introduces the
Blockchain-enabled Intrusion Detection and Prevention System (BIDPS). By integrating
blockchain technology, the BIDPS aims to detect and prevent attacker techniques at an early
stage before lateral movement occurs. Furthermore, the BIDPS shifts the trust from
compromised endpoints to the immutable and transparent nature of the blockchain, creating
an explicit system of trust.

Through a systematic design and development methodology, a prototype of the BIDPS was
created. Extensive testing against various Advanced Persistent Threat (APT) attacks
demonstrated the system's high success rate in defending against such attacks. Additionally,
novel strategies and performance-enhancing mechanisms were implemented to improve the
effectiveness and efficiency of the BIDPS [2]. The BIDPS was evaluated through a combination
of observational analysis and A/B testing methodologies. The evaluation confirmed the
BIDPS's effectiveness in detecting and preventing malicious activities, as well as its improved
performance compared to traditional security measures. The research outcomes validate the
viability of the BIDPS as a solution to enhance endpoint security within ZTA. Conclusively, the
integration of blockchain technology into ZTA, as exemplified by the BIDPS, offers a promising
approach to mitigate the vulnerability of endpoints and reinforce the security of modern IT
environments.

Table of Contents

ABSTRACT 3
ACKNOWLEDGEMENTS 9
INTRODUCTION AND CONTEXT OF RESEARCH 11
STRUCTURE OF THE THESIS 12
CHAPTER 1: METHODOLOGY AND METHODS 14
1.1 INTRODUCTION ...eiiuttteitreeesereeestteessseeasesesasssssesssssaasssesasssseessssseasssssssssssessssesassssesssssssssssessssseessssessssssesssssenn 14
1.2 METHODOLOGY ..eeeuuvtteitrieesereeessteessseeasssesessseesssssaasssesssssssessssssasssssssssssessssesasssssssssssesssseessssesssssssssssseessssees 14
1.3 RIGOUR AND TRUSTWORTHINESS0eeeitteesureesureeasereeessseessssseassseessssssessssesasssees 17
TLA IMETHODSoiiittiieiiteeetteeesteeeeteeestaeeasaseeeassseessssaaasssesaasssaeassssaassseeanssaseasssesassseeaassssessssesansseeansseeensseesnssennn 19
1.4.1 PRASE I — ARGLYSIS ...ttt 19

1.4.2 PRASE 2 = D@SIGI ...ttt et 21

1.4.3 Phase 3 — Development and IMplementation..................ccccouevueeuenicoicoiioiioiiiniiesese e 21

1. 4.4 PRaSE 4 — EVAIUQLION ...ttt 22

1.5 THE ENDPOINT PROBLEM TO ZTA.....uveeiieieeeeee et ettt e e e e et e e e e eatae e e e e eentraaeaeenn 23
CHAPTER 2: ANALYSIS PHASE - INTERSECTION OF ZTA, DLT AND BLOCKCHAIN.cc..c.. 26
2.1 INTRODUCTIONeeeuutiieiuteeestieeeereeasseaessseeaassseesassesassssesassssessssssasssesssssssessssssssssesssssssesssssssssssessssssnsssesssssees 26
2.2 ZERO TRUST .eeutiieeiiieeiitteestteeesitteestseeessteeaassseessseaassseaaassssessssseassseeaassssessssseasssessassseesssseesssseessssssenssessssseenn 28
2.2.1 History of Zero Trust AVCRILECIUTEc.cceivueieiiieie ettt sae e 28

2.2.2 From Traditional Perimeter-Based Architectures t0 ZTA.................coueveeeiieeeeeiiiieeeeeieeeeeeeieeeeeeea, 28
2.2.3710 TrUSE COFE TERELS ...ttt e e e e e e e e 30

2.2.4 Zr0 Trust CAPADIIILIESc..ccoooeeiiiiiiiaiii ettt ettt 31
2257810 TrUSEMOEIScoooieeeeeeeeeeeeeee et e e e 33

2.2.6 Zero Trust Architecture Approaches and Implementations...................cccccoecveveenceicieseseeneaeeeennn, 37

2.4 POTENTIAL SOLUTIONS TO THE ZTA ENDPOINTS PROBLEMoceiiiuiiiiieieeciree e e e 44
2.4.1 Distributed Collaborative INtrusion DeteCtion................ccccc..ooueeiuiiieeeeeiiieeeeeeeee et 44

2.4.2 Blockchain Based INtrusion DeELeCtioN.ccccccuieeeeeiiiiee e 47

2.4.3 The Intersection of ZTA and Blockchain-Based IDScccccocuimiioiiniiniiniinineneseieeeeana 53

2.5 SUMMARY AND DISCUSSION......cccutiitieitieirieitteeiteesteeeseesseesseasseessseasssessssesssessseassessssesssesssseasssesssssssessssssnsens 54
2.5.1 Challenges to the Integration of Blockchain and ZTA.................cccccccccocviioininiiniiniinininicieeeees 54

2.5.2 FUTUFE DIFECIIONS ..ottt et e et st aaeeeeeeeeas 55

2.0 CONCLUSIONuviitieiteeeteestteeteeeteeeseesseaaeseassseasssesseasssessesssseaassessssassassssessessseasesssseeseessseasseessssansessssessens 55
CHAPTER 3: DESIGN PHASE — DESIGN PRINCIPLES & CORE CONCEPTS 56
3.1 INTRODUGCTIONuuviiiiiieeeiteeeeteeesiveeesteeeesseeesssesessseeeassseesassseasssssasssseesssseeasssssssssssessssessssssessssseesssseesnssesnnes 56
3.2 DESIGN PRINCIPLESuvieettieeettteestteeetteeeseseeessseeessseseassseessssseasssesssssssesssssessssssssssssesssssssssssesssssssssssessssseennes 56
3.3 CORE CONCEPTSeeeutietieetteeteeieteeiteestreeseesssseseassseaseessseassaasseesssaasssessssssaasesasseassseasseessseasseesssesseesssesnsens 60
3.3.1 BIOCKCRQIN QA DLT ...ttt e eeas 60

3.3.2 Permissioned versus Permissionless BIOCKCRAINSc...cooeviiciiieeiiiiiiieeeeeee e 61

3. 3.3 IATE COMIFACES ...ttt ettt e e e e e e e e eaae e e e e 62

3.3.4 Performance and SCAIADILity................cccccociiiiiiiiiiiiiiiiiiie ettt 63

3.5 CONCLUSIONoiiitiietteetieeteeteesteesteeeeseesseesssseseassseasessaseasssaasssesssaasssasssesssaansssasseasseasseessseasseessesseessseansens 63
CHAPTER 4: DEVELOPMENT & IMPLEMENTATION PHASE — PROTOTYPE’S DEVELOPMENT,
OPERATING NETWORK, AND ARCHITECTURE 64
4.1 INTRODUCTIONeeeutiiesureeestteeasereesseseeessseeeasseesassesassssssasssssssssssssssssssssssesssssessssesssssssesssssesssssessssssssssesssssees 64
4.2 ZERO TRUST ARCHITECTURE.......0cceitteeitieeeereessseeesreeeasseessssesasssesssssseesssssessssessssssssssssessssseessssssessssesssssees 65
4.2.1 RemOte EMPIOYEE...........cc.coucoiiiiiiiiiiiiit ittt 66

4.2.2 ZT Gateway and CONIIOLIETccccciciiiiiiiiiiiiii ettt 67

4.2.3 Minimizing AtHACK SUFTACE.............ccccociiiiiiiiiiiiiiiiiieeeeee ettt 68

4. 2.4 TAVGEE RESOUFCE ...ttt 69

4.2.5 Single Packet AUthOTIZALION (SPA)c.ccooiiiiiiiiiiiiiiieieeeee ettt 70

G260 LIMUILATIONSoooooeieeeeeeeeeeeeeeeeee et ettt et e e e e e e e e e e e e e e e e et e et s aaaeeeeeeeeas 73

. 2.7 SPECTIICALIONS ...ttt ettt b ettt b e sttt b e bttt et 73

4.3 HASH-BASED BLOCKCHAIN-ENABLED WHITELISTING........cccvvteeeieiitrieeeeeeitreeeeeeeinreeeeeesnrseeeeeesnreseeeesesnsens 74

4.3.1 Executable EXtension DEfiRitiON..............c.ccccuuiririmininiiiiiieieet ettt sttt 75

4.3.2 Windows-based HASRING OPLIONScccoviriiriiininiiiieieieeet ettt 75
4.3.3 PerfOrm HASIMING.cc.ccoovuiiiiiiiiieiiet etttk sttt 76
4. 3.4 LIMUTEALIONS ... ettt ettt e ettt e e e e ettt e e e e et e e e e eeet e e e e e e eeaaaeeeeeenas 78
43,5 SPCCTFICALION. ...ttt etttk b et b e ettt ettt 79
4.4 BLOCKCHAIN NETWORK LAYERccutiitiiiiiiiiiiiiiieie ettt ettt ettt et saeeae st saesaeesneesnesneeanens 80
B4] OFGANIZALIONS ...ttt ettt h bbb bbbttt eaeas 80
G .2 POOFS ... e et e e e a e e e 80
God.3 LOAGET ...ttt ettt bt ettt eaea 81
B4 CRANNEL ...ttt ettt ettt e et e et e e eae e et e e ta e et e et eereeeae e 82
G5 OFACICE ... ettt 82
B0 COMSCISUS ...ttt e e e e et e e et e e e eaae e e eaaeeeaeeeens 82
4.4.7 CertifiCate AUINOFILICS.c..ceeieiiieiiit ittt ettt ettt sttt 86
Go 8 CLICRL ... et 86
4.4.9 Considerations Towards a Production ERVIFONMENEccccoueecueeeieiiieeeeeecieeeeeeieeeie e, 86
4.4.10 Prototype’s NetwWork CORfIGUFALION...............ccccouiiiriniiiiiiieieiet ettt 87
G4 11 LIMTEQEIONS ... ettt ettt e et e et e e e e ettt e e e e e et e e e e e eeaeeeeeeenas 91
4412 SPECIFICALIONS ...ttt ettt b et bttt sttt 91
4.5 BLOCKCHAIN APPLICATION LAYER ...ccuttiitiiiiiiiteiteeieesite sttt sttt ettt e st sbee st steesat e sbeesaeesabeesanesasees 93
A.5.1 PPEPATATION ...ttt et 94
4.5.2 Administrator-User Enrolment and ReGISIFALIONcccocevecuioiiciiiiiiiioiiiiinenieeiese e 95
4.5.3 Connecting to Channel and CRAINCOAE......................ccccovieuioiiiiiiiiiiiiiiiist ettt 97
4.5.4 Ledger INItIQLIZATION.c.cccccueiiiiioiiiaiet ettt sttt st 98
4.5.5 Application Calls and Chaincode FURCLIONSc.ccccceuieuiriioiiiiiiiiiiiiteeee et 99
4.5.6 Leder UPAQLecc.coueiiiiiiiiiiicieict ettt ettt 105
4.5.7 ApPlicAtion RALIONAIEcc.coueoiiiiiiciiiiiiit ittt 106
G.5.8 LIMEIATIONS ...ttt e ettt e e ettt e e e e et e e e e eate e e e e eeaaaeaeeeens 107
4.5.9 SPECTFICALIONS ...ttt ettt ettt ea ettt sttt 109
4.6 CONCLUSION ..cuiuiiuteiteitetteitete st eteet st st te st e st et et et ebe et e ebeeh e e bt bt sa e st et et et eatemtemtebeebe e bt ebeeb e e bt sbe st e be st etennennene 109
CHAPTER 5: EVALUATION PHASE — EFFECTIVENESS AND PERFORMANCE EVALUATION 110
S.TINTRODUCTIONeoutiiieuiinitenteniteteeitesteeenesteeesesteensesteessesteesstsueesseemsesseeanesbeemsenseensesaeenseeseemseeneenneennenseennennes 110
5.2 EFFECTIVENESS EVALUATIONc.utiiiiiiiiiiieienttetentteteste et eteesaeeitesteesnesieesnesueesnesaeesnesueenseeneennesnnenseennennes 110
5.2.1 Advanced Persistent TRFEALS (APTS)cccuouioiiieiieieei ettt ens 110
5.2.2 Detection and Prevention Evaluation RAtionalec..ccccocoviieeeeieieeieeeieeeeeeeeeeen 111
5. 2.3 File-BaSed AACKS...............occoue oot 115
5.2, Fileless ATLACKSooooeeeeeeeeeeee et 139
5. 2.5 LIMUTEQIIONS ... ettt et e et e ettt e e e et e e e e e eaaaeae e 143
5.2.0 SPECIfICALIONS ...ttt ettt ettt ettt ettt 143
5.3 CONCLUSION AND DISCUSSION ON EFFECTIVENESScueetirtetetetentententeiteeesestestessestessesseseessessessensensennens 145
5.4 PERFORMANCE EVALUATIONcocutiiiiiiiiiietenttetenieete st etesieesteeseesaeesnesaeessesueennesueenneeneenseeueenneennenseennennes 148
5.4.1 Environment DEfIRILIONSccceueruirieieiiiiteieite ettt sttt ettt 149
5.4.2 Key Metrics DEfINItIONSc..coueeueiiiiieiiiiit ettt ettt ettt 150
S A3 AVCRITECIUFC. ... ettt 151
5.4.4 Performance Problem StQIEMENLccccuciiiiiiiiiniinininenieie ettt 155
5.4.5 Problem Analysis and OBSErVALIONSccocociiiimiiiiiiiiiiiniiieeeteetet ettt 158
5.4.6 Hyperledger Fabric Performance Related WOrK............c..ccccoccuviriniiincniiiiiiiiiiiiieieee e 161
5.4.7 A Novel Approach to Enhance the BIDPS Performance................cccoccoececioieniicinocnonienienenennens 163
5.5 CONCLUSION AND DISCUSSION ON PERFORMANCEc.ueetiienietenientententeiteieeiestesiessestestesieseessenseneensensennens 171
CHAPTER 6: SUMMARY AND DISCUSSION 174
6.1 ANALYSIS PHASE - INTERSECTION OF ZTA, DLT AND BLOCKCHAINcvviiiiiieeiiieeeiee e e eiveeeree e 174
6.2 DESIGN PHASE — DESIGN PRINCIPLES AND CORE CONCEPTS.cccveitieieiieieneeeieseeeeeeneeseeneessesneesseennennes 174
6.3 DEVELOPMENT & IMPLEMENTATION PHASE — PROTOTYPE’S DEVELOPMENT, OPERATING NETWORK, AND
ARCHITECTUREeoutiiieitinitete st ete st esteeese it e e esteeesesaeessesaee st eatesaeemsesbeessesseeasesseeaseetaenseeneenstensenaeennesueennesunennens 175
6.4 EVALUATION PHASE — EFFECTIVENESS AND PERFORMANCE EVALUATIONcccutiiiiniieniienieenieeeieenieenae 175
6.5 SUMMARY OF RESEARCH QUESTIONS AND RESULTSuverutertieuieteaeenseeeesseesesseesesseensesseessesssessesssessesssesses 178
CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTION 180
7.1 CONCLUSIONS.....c.eitetititententeteat et et eut et e at et et esbesee et e besae st et et et estesbemtesteut e bt ebeebeebesbesbeebesbese et enbententensennene 180

7.2 THREATS TO VALIDITY ..vvvtvtitieieieieeeieeeeeeeeeeeeeesassaeaeeeeeeeeeesaeaeseeesssessssssssssssssssssssesseseeesesessssssssssssssssssrannes 183

7.3 FUTURE DIRECTIONSoeiiiiiiittiieeeeeiittteeeeeeiitreeeeeeseaseeeeeeeetssaeeeeeesssseeseeestsseeeseesisssseseeeassssseseenssseeeeenssrseeesas 184
APPENDIX 186
PREREQUISITES.....cceitttieeeeeitteeeeeetiteeeeeeeeitteeeeeeestsseeeeeeetsseeeeeeeataseeeeeassseseseeassseeseeassssaeeeeeessraseeeeanssseeeeennnnees 186
GUE ettt e et e e et e e e e e 187
CURL ... e ettt et et a e 187
DOCKEE ...ttt 187

JO et he ettt h e bkt b ettt e at e bt nteeheenteeheenbeereebeeneebeeneentean 189

GO e ettt e e e e 189
Fabric, Fabric Samples, Fabric Contract APIs, Application SDKS..............c.cccociviiioiinciiieniiieiiaene 189
REFERENCES 191

List of Tables and Figures

Table 1 — Advantages-Disadvantages & Attribution Table of NIST’s ZT deployment models.

... 36
Table 2 - Real-World ZTA implementations mapped to NIST deployment models. 43
Table 3 - Properties of permissionless-permissioned blockchains and central database. 49
Table 4 - Consensus mechanisms comparative evaluation [62].........ccceveiievienieenienieenieennen. 51
Table 5 - ZTA & blockchain intersection elements.cocceeierieniniinieninieneeenieseeee 54
Table 6 — Permissioned-Permissionless Blockchains vs traditional database [71]. 61
Table 7 - ZTA Enclave-based lab setup specifications.cceeveueeveenieeniienieeniienie e 73
Table 8 - List of executable extensions in remote user’s workstation [102]............ccceeenneen. 75
Table 9 - Remote user workstation Specifications.cccuervieriierireiienie e 79
Table 10 - Blockchain lab SpecifiCations............cccueecuieriieriieiiieiiecie et 91
Table 11 - “CreateAsset” argument sequence, type, purpose, and explanation. 102
Table 12 - Ownership transter itcocvoviiiiiiniiiiie e 108
Table 13 - Blockchain lab SpecifiCations............cccueecuierierciienieiiieie e 109
Table 14 - APT simulation lab SpecifiCations.cccceecuieriiiiiienienieee e 143
Table 15 - INVOKE VETSUS QUETY.eeeiuiieiieiieeieeiie ettt ettt eeteesieeste et e enbeeseessaeeseesneeenne 156
Table 16 - Summary of research questions and aNSWETS.ccveruieriieenieriieeniienie e 178
Figure 1 - MethodOlOZY OVETVIEW. ...cc..ieiiiiiiiiieiieeiteeie ettt ettt 15
Figure 2 - Detailed methodology fIoW.c.cocieiiiiiiiiiiiiee e 19
Figure 3 - Remote exploitation and insider threat scenario within ZTA context [94]. 25
Figure 3 - A traditional security architeCture.coceevuerierieriiriieniieneeeteeeeee e 29
Figure 4 - A high-level ZTA reference.ccccooeriiriiiiiiinieecicsee et 30
Figure 5 - An example ZTA capabilities reference.ccoceeverierieniinienieeniecieneeeeeseeee 33
Figure 6 - NIST Device Agent/Gateway-Based Deployment.cccceeceieviienieenienieenneennen. 34
Figure 7 - NIST Enclave-Based Deployment.ccccecuierieiiieniieniieiiecie e 35
Figure 8 - NIST Resource Portal-Based Deployment.ccccceeviienieniieniienieeieeieeeeee. 36
Figure 9 - BeyondCorp Traffic/Access Flow & Components.ccecveveevverieneenennieneennns 39
Figure 10 - Forrester's NGFW used as a segmentation engine forming MCAPs [23]............. 40
Figure 11 - SDP Reference Workflow [32]....cc.eoeiieiiiieiieiieeiieee et 41
Figure 12 - Reference ZTA using NSX [30]. .oueeiiieiiiiiieieeieeieeee ettt 42
Figure 13 - DCIDS Reference Architecture [47].....ccveeiierieriieiienie e eie et 45
Figure 14 - Blockchain decision flowchart [56].......c.cccouiviieiiiiiiiiiiiieeieeeeeeeee e 49
Figure 15 - High level overview of blockchain based CIDN [62].c.cccocevviiniiniineniinieeene 52
Figure 16 - Top 10 technologies used by the top 100 institutions [68].ccccevvereriierennnens 60
Figure 24 - Notional bank high-level architecture...........ccoceveriiniiiiniiniiiieeeeeeeee 64

Figure 25 - High-level Enclave based deployment model Lab implementation. 66

Figure 25 - Remote employee (1) virtual hoSt........coceeriiiiiiiiiiiciieec e 67
Figure 26 - SDP Gateway and Controller...........cccoveeririiniiiiiniiiniiiesieeeieeeeseee e 68
Figure 27 - SDP Controller private KeY.......c.coovueriieiieriieiieeieeiiecee ettt 68
Figure 28 - SDP controller command line interface (CLI)........ccccoocvveiieniiiniieniiiieeieeeeee, 69
Figure 29 - Resource target (application) (5). c.eeeveeereeriiieniieiieeiiesie ettt 70
Figure 30 - Setting up the access context for remote employee (1) and resource target (5)... 71
Figure 31 - Setting up the resource target (5) SEZMENL.........covueriirierieriinienieeieneee e 72
Figure 32 - Setting up the access policy (lampis-rule) for remote employee (1).c..c.c...... 72
Figure 33 - Remote employee (1) accessing the target resource (5)coevvveveeerveenieenieenneennen. 72
Figure 35 - List of hash values on remote users” workstation.............cccccvceeveriiniencnienennns 77
Figure 36 - Hashing eXecution tiMe.coeeruirierieiienieniieieetesie ettt st 78
Figure 37 - BIDPS blockchain network architecture [77]......ccccoceevvvienieniiienienieeieeieeeeeen 80
Figure 38 - Ledger StrUCLUIE.ooiiiiiiiiiiiiiieieeterteee ettt ettt 82
Figure 39 - Transaction invocation WOTK{IOW.cccceceriiriiiiriiinieienieeeeeeeee e 84
Figure 40 - Hyperledger Fabric sample production network.ccoceveeviniiniencniencnnnns 87
Figure 41 - Peer anchoring on "mychannel”.cociiiiiiiiiiiiiiiic e 89
Figure 42 - Successful output of "mychannel" creation.cccoecveevieniieiienciieieeieeeeee, 89
Figure 43 - Genesis block eNeration.cceevuirierieiinienieieciese et 89
FIgure 44 - GENerate CAS.uovuiiiiiieieeie ettt ettt sttt ettt sbeeae s 90
Figure 45 - Invoking the chaincode lifecycle package.ccooeeiviiiiiiniieiiinicieeeeeeee, 90
Figure 46 - Successfully committing and initializing chaincode on peers.c..ccccevvverueenene 91
Figure 48 - Application and chaincode interaction with blockchain network...........c...c......... 93
Figure 49 - Basic flow between IDPS application and chaincode.cccceevvierierirenennen. 94
Figure 50 - Docker containers running.coceevereererienienienienieeie sttt sae e 95
Figure 51 - Docker information on blockchain lab named "blocklabz".c..ccccooeninin. 95
Figure 52 - AssetTransfer chaincode.coeeviiriiniiiiiiiinieccieeeeee e 96
Figure 53 - Application invokes enrollAdmin function.ccccceceeveriinieninieneencnieneeee 96
Figure 49 - Admin and UserApp certificate and private Keys.ccccoevvveriirerienieenienieeneeee. 97
Figure 50 - Channel and chaincode reference.cccoovevieviiiiniiniiniiniecceccec 97
Figure 56 - Simplified qUETy flOW. ...c..cooiiiiiiiiiiiiie e 100
Figure 57 - GetAllAssets terminal OULPUL........cc.eevueriiriiiiiiieicceecee e 101
Figure 58 - Application rationale.............ccceviiriiiiiiiiniiieieeeeeseee e 106
Figure 59 - MITRE's ATT&CK Enterprise MatriX.cccceecvereerierieneenenieneeieeieneenee e 112
Figure 60 - MITRE's Adversary Emulation Plan.ccoccooiiiiiiniiiiiiiiece 114
Figure 61 - Sticky Notes payload initial-access.ccceeveriiririirieniinienierceeeeseee e 116
Figure 62 - Query the ledger for StickyNOteS.€Xe.oovuieriieriiiiieiieeieeee e 117
Figure 63 - StickyNotes.exe eXeCUtion OULPUL........ccueeruerriirieriieieeiienieeie sttt 117
Figure 64 - Macro-Enabled word document executing CMD and ping command. 118
Figure 65 - art.jse Jscript hash not found on-chain............cccccoceeiiiiiniinnine 119
Figure 66 - JScript through word macrocode blocked.cccooeviiniiiiniininiiice 119
Figure 67 - Execution scenario through excel macrocode, VB script and process explorer as

PAYL0AA EXECULION. ...eiieiiieiii ettt ettt ettt e et e et e st eeteesabeesbeessaeeseesnseenseesssasnseens 121
Figure 68 - Successful execution of .bat script and windows calculator............c...cccevenee. 122
Figure 69 - Excel 4 Macro module execution denied............cccoeeerienieneniineenenienieenne 123
Figure 70 - Unsuccessful execution of .bat script and windows calculator.c..cccc...... 124
Figure 71 - Query ledger for art1204.bat.ccccooeiiiiiiiiiiiiieeeceeeeee e 125
Figure 72 - Successful persistence setup through Microsoft Word and malicious .dll file... 126
Figure 73 - Ledger query for lcxfxqy.dll and cmd.exe ownership.ccceveeveriieniencnnene. 127
Figure 74 - Execution denied and connection with victim endpoint failed............c..ccc....... 127

Figure 75 - Malicious lexfxqy.dll denied eXecution.occeeevieriierieenieniiieiieeie e 128

Figure 76 - Successful DLL hijack spawns administrator level command prompt............... 129
Figure 77 - Unsuccessful try to hijack wow65log.dll...........cccoeiiiiiiniiiiniiiiieeee, 130
Figure 78 - Akagi64.exe execution denied.ccceevuereriiiiiinieiiinieneeeseeee e 130
Figure 79 - Successful defence evasion.coeevuevieriiiiiniinieieeeneeeeeeee e 131
Figure 80 - Execution of defence evasion payload denied............cccceoeueenieniiienieniiiniienee, 132
Figure 81 - Successfully acquiring web browser credentials.cccccccerieveenerienienennene 133
Figure 82 - Successful SAM access through registry and PowerShell...............ccccooeeneien 134
Figure 83 - Unsuccessfully attempt to acquire web browser credentials.ccccoceevuenee. 134
Figure 84 - Unsuccessful SAM access through registry and PowerShell for both user and

AdMINISTrAtOr PIOTIIES. .. .eiiieiiieiieie ettt s eae e 135
Figure 85 - Network diSCOVETY USING NEL.EXE. ...ccvuiieiieriieeiieriieeieeiee ettt 136
Figure 86 - DiSCOVETry USING NIMAP.......ccouiiiiiiiieriieeiieie ettt siee st ete bt esaeeseeseeeenne 137
Figure 87 - Command line execution denied............cccoeeveriiniiiiniiniiienieceieceneeeeee 138
Figure 88 - Nmap blocked while in Blockdown ON mode..........cccccoceeveriiiniineniieniencnene 139
Figure 89 - Calc.exe injected through vulnerable word instance.cocceveeveriieniencnnene. 141
Figure 90 - mavinject64.exe execution denied.cccueevuierieeiiienienieeee e 142
Figure 91 - Successful execution of calculator through reflective injected shellcode. 143
Figure 92 - Launched tactics and techniques within lab environment.cccccecerienennene. 145
Figure 93 - Sysmon event ID 8, in memory attacks detection.ccccceeveveeveriieniencnnene. 147
Figure 94 — BIDPS success rate against file and files attacks.c.ccoocerveniiiinicniencnnene 148
Figure 95 - Blockchain Performance Evaluation Sample Configuration.cccccuvennee.e. 149
Figure 96 - High level representation of performance evaluation architecture...................... 151
Figure 97 - Ledger-Query transaction OVEIVIEW.c.ccocuerverieerierienieenienienieeieeseseeeneesaeene 158
Figure 98 - CPU & Memory Performance.cccoocveverviiiiiniiiinienicienieeeeeeseee e 159
Figure 99 - Time to complete and TPS per USer Zroup.ccceeeveeriieeieenienieeiieeie e 160
Figure 100 - PREFER_MSPID SCOPE_ROUND_ROBIN drawback.ccccccceruirreruennee. 164
Figure 101 - Peer environment indexing and MONItOTING.........cccveerueerieeniieriieeniienieeieeseeenn 165
Figure 102 - Dynamic throttling algorithm flowchart.c.ccoceoiiniiiiniini 166
Figure 103 - CPU & Memory performance using D THROTTLE.ccccceviriiniinennene. 167
Figure 104 - Time to complete & TPS per User roup.eccveeeveeriieeieeneeeieeieeie e 167
Figure 105 - Overall time to completion — Seconds vs transactions.ccceecvereeneennnene 168
Figure 106 - Time to completion per transaction group — Seconds vs transactions............... 168
Figure 107 - Ledger-query overview with caching mechanism.c.ccoceveeveriieniencnnene 169
Figure 108 - Application rationale improved with caching process........c...cccceeevvverienennnene 170
Figure 109 - Dynamic throttling vs caching proxy usage and trendlines..............ccccuvenneenne. 171
Figure 17 - HPLF application Stack layers.ccccecveviiviiriiniiiiinieneeeneeeeee e 186
Figure 18 - Git successful installation and VErSiON............ceceeveeierieniinenieneeieeenceeeee 187
Figure 19 - cURL successful installation and Version.cccceceevvereenenieneenienienieneenene 187
Figure 20 - Docker Engine installation successful output of hello-world image. 188
Figure 21 - JQ successful installation and VErSION.ccecueveerierienienenieneeieeeneeee e 189
Figure 22 - Golang successful installation and Version.c..cccceecveveenerieneenenieneenennn 189

Acknowledgements

Little did | know the day | announced to family and friends that | have just embarked onto a
new journey. | wanted to broaden my horizon in every conceivable way by pursuing a PhD,
hence for me it was always about the journey and not the destination per se. From the very
first moment | understood nonetheless that this is not going to be an easy journey. | recall
specifically one of my first meetings with the supervisory team, where | presented the
research directions and plan through a complex mind map. Every connection on the map was
advancing further into more complex structure, much like a tree grows its root on the ground.
However, there was one idea, one branch was left alone without growth paths on the exact
opposite direction that | referred to the very end of the presentation as “plan b”. It was for
this one branch left alone and the first “push” from my supervisory team to explore this idea
more, that led to this journey becoming my Odyssey. There were many times where the sea
was rough, and even more times where my sail was broken. Thankfully, it is for these times
that one learns to make his own raft and sail again. Oftentimes | had to row and row for days
until the wind was again on my back to propel me forward. So, in my Odyssey this wind was
not only a nature’s miracle, but the people who stood by me and therefore helped me in
several ways firstly to broaden my knowledge horizons, and secondly to grow both personally
and professionally and reach my Ithaca.

That said, primarily | am grateful for having Vinh Thong Ta and Max Hashem Eiza not only
for that very first decisive push mentioned previously, but having them on my side coaching,
mentoring, teaching, pushing, helping, even oftentimes rowing together with me. This goes
down to countless nights (since daytime | had my job role to fulfil) discussing, arguing,
exchanging emails, planning, and helping me always pull through. Professional circumstances
did not stop them from continuing doing what we started, and that is something | admired,
and | will always be thankful for, and must be written that this work would have not been
possible without you. | also want to express my utmost gratitude to the rest of the PhD team,
Janet C Read, Daniel Bowen Fitton, Rupak Kharel, Hamed Balogun, Gavin Sim, Eliana Stavrou,
Jeannie Judge, Ambreen Chohan, who all helped me in several ways throughout. Every one of
you helped me tremendously in your own ways that | would need another paper to detail,
but to name a few, writing and publishing papers, reviewing, explaining methodologies,
teaching, advising, mentoring, refereeing, taking care of the administrative details, keeping
up with timelines and deliverables, planning, training, small and big steps towards Ithaca that
| sincerely appreciate. An invaluable part of my PhD were the academic and professional peers
throughout the PhD Odyssey. Martijn Dekker, Coen Klaver, Jagmeet Arora, Irina van Elst,
Sander Maas, Robert van Lierop, Jochem de Ru, Peter-Bob Smits, Peter van der Nagel, Michel
Kempes, Joel Blaauw, Bernard Knaapen, Tiago Madureira Teles, Rodrigo Dias, Yati Goel, Anshu
Sharma, Eslam Mohamed Reda you all helped me directly or indirectly in many ways,
knowingly or sometimes unknowingly. Some of you helped in securing the necessary funding
and had great discussions that | cherish and appreciate, others did peer reviews of my papers,
argued on my ideas and research directions, helped me navigate and anticipate problems,
showed me the way to connect with the right people, taught me to ask for help, mentored
me to challenge and look for the root cause of the problems, eventually kept me pushing
through the boundaries and break off my shell.

Finally, my father was always an advocate of scientific methods and academia. He urged me
many times to follow this path, or at least try to learn. Due to several circumstances, | delayed
my academic journey, which | now regret and at the same time proudly admit that | should
have embarked much earlier. So, heartfelt thank you to my father, my mother, and my
brother. You supported me with your own unique way, that only | can understand, but | am
reassured that your own, unique way, can move mountains. The ultimate thank you and
infinite appreciation belongs to my wife, Foteini Skouteri and our two little boys Panagiotis
and Sakis. You helped me immensely throughout my PhD Odyssey, serving constantly as my
lighthouse during storms, a source of perseverance and motivation, a calm voice during night-
time efforts but also a strong voice that helped in decision making during crossroads of
navigation. | can now discern Ithaca because of you and our young boys, to whom | owe an
apology for reading to them blockchain related papers rather than knight and dragon fairy
tales before going to bed. As a small sign of gratitude, | would like to devote this thesis to you.

10

Introduction and Context of Research

With the revolution of cloud computing, most businesses’ resources and data are no longer
stored on premises. Moreover, the recent COVID-19 pandemic has significantly changed work
patterns, as most employees and businesses had to switch to working from home.
Homeworking (and remote working) open organisations up to new and severe security risks,
as many “untrained” employees connect to their work Information Technology (IT) systems
with their own devices. Cloud computing and remote working are examples of why businesses
must expand their digital security perimeter and adapt to the contemporary trends.

In a traditional perimeter-based security model, the organisation’s resources, and assets,
inside the perimeter, are assumed to be benign and trusted. Perimeters are usually protected
by security measures such as firewalls or intrusion detection systems. This model seems to be
less effective in the world of cloud computing and remote working, as indicated by several
cyber-attacks (e.g., [3] [4] [5] [6] [7]) targeting employees working remotely.

Trust is the fundamental principle a traditional perimeter-based security model relies on.
The employees’ or collaborators’ devices and organisation assets (i.e., endpoints) are typically
trusted by default regardless of their condition. If attackers can take control over any of these
endpoints, the perimeter is compromised and further access to information and data can be
potentially achieved via lateral movement.

Firewalls, antivirus technologies, Intrusion Detection and Prevention Systems (IDS/IPS),
and Web Application Firewalls (WAFs), in other words, the big stone walls and armoured front
doors, are no longer enough to keep modern IT and Operational Technology (OT)
environments safe [8]. Perimeter-based security was the main concept adopted by multiple
companies, especially when their data resided in on-premises data centres. The traditional
defensive model founded on internal and external disparity is becoming obsolete [9], while
at the same time the threat landscape is dramatically evolving [10], ultimately leading to the
fall of perimeter-based security architecture.

To cope with today’s complex network infrastructures and the current and advancing
threat landscape, a new security architecture is needed. ZTA has emerged by establishing a
borderless digital identity-based perimeter, where data is at the epicentre of the security
architecture and the breach mindset dominates the threat model leading the access control
landscape, operations, hosting environments, endpoints, and inter-connecting
infrastructures. ZTA fosters a new security architecture in which, by default, any device,
system, user, or application should not be inherently trusted based on its location in a
network. On the contrary, trust shall always be earned and verified regardless of the location.
Nevertheless, this does not necessary mean that in the ZTA context trust is eliminated but
should be minimised until proven otherwise via the ZTA tenets and core components.

With traditional perimeter-based defences, determined attackers can still bypass ZTA
security health checks if they can establish an authenticated and authorised foothold on the
endpoint. For instance, a potential malware in the operating system kernel can tamper with
the security checks conducted in the context of a ZTA. This eventually results in bypassing
fundamental controls implemented in a ZTA, which would allow attackers to perform several
user and device centric malicious activities besides lateral movement. Therefore, an effective
intrusion detection approach is required to address the endpoints’ vulnerability, which can
be seen as the Achilles heel of ZTAs.

11

Structure of the thesis

The thesis starts with an introduction, followed by this section to help the reader navigate
and understand this thesis better. In continuation, there are 7 chapters. Chapter 1 discusses
the methodologies and methods used in this research, both wholistically and for each phase
individually. Chapters 2 to 5 are the building blocks of this thesis where we discuss and
present in detail each phase from analysis up to evaluation separately. In chapter 6 we discuss
the findings of this research. Chapter 7 provides conclusions and future directions.

0

Introduction and context of research provides the background of the inevitable
technological revolution from perimeter-based security architectures to borderless
networks and thereby the need for new security defences. Describes the context of
ZTA and introduces the notion of trust as a fundamental element. Subsequently, the
motivation of this research is highlighted through an identified gap in ZTA, being its
Achilles heel.

Structure of this thesis outlines the structure of the thesis with the goal to help the
reader navigate and understand this thesis.

Chapter 1 discusses the overarching methodology and the methods used to conduct
this research. Starts with high-level overview of the methodology, as well as a
summary of the specific methods and techniques used during each of the four phases.

Chapter 2 explores the dynamics between ZTA, DLTs and blockchain. We first review
the core tenets, capabilities, and requirements of zero trust. Secondly, we categorise
existing real-world zero trust implementations and discuss their strengths and
weaknesses. Thirdly, we explore the potential of blockchain in developing and
improving Distributed Collaborative Intrusion Detection Systems (DCIDSs) that can
alleviate the Achilles heel of ZTA (i.e., endpoints’ vulnerability). Finally, we discuss the
open questions and challenges, as well as highlight potential solutions and research
directions to ZTA and distributed blockchain-based IDS and answers our first research
question RQ1.

Chapter 3 initiates the design phase and core concept of the research. We consider all
the inputs from the analysis phase in Chapter 1, to form further research questions,
namely RQ2, and RQ3. Furthermore, the analysis phase highlighted certain design
principles that should be met for the potential solution to be both effective and
efficient, thereby we lay out the design principles and perform additional research. In
continuation, the core concepts of a blockchain-enabled intrusion detection and
prevention system are being presented, alongside with all the prerequisites. We
conclude Chapter 3 with solid input and clear directions for the next phase, Chapter
development and implementation.

Chapter 4 describes the development and implementation phase, which consists of
four core sections. The first section describes the ZTA implementation, second is the
hash-based blockchain-enabled application whitelisting that is used as input to
develop and implement the third section, the blockchain network and the fourth

12

section, the actual BIDPS application. Each of the four sections presents in detail our
development and implementation process for the four pillars of the BIDPS.

(1 Chapter 5 is devoted to the evaluation of the BIDPS’s detection and prevention
effectiveness, as well as its performance evaluation. Thus, the chapter is divided in
two parts, the effectiveness evaluation of the BIDPS, followed by conclusions. The
performance evaluation of the BIDPS, directly followed by the relevant conclusions.
Finally, we provide answers to RQ4, RQ5, and RQ6.

(1 Chapter 6 provides a summary and discussion grounded on each phase of this
research.

{1 Chapter 7 draws the conclusions and highlights potential future directions.

13

Chapter 1: Methodology and methods

1.1 Introduction

The overarching research methodology used for this research is the Design and
Development Research (DDR) methodology. It is a research approach developed by Sage [2]
as a way of conducting research that is focused on the design, development, and evaluation
of interventions, programs, and systems. It emphasizes on the importance of conducting
research that is both rigorous and relevant to practitioners. It is also particularly well-suited
for product development, as it seeks to understand the needs and constraints of users,
stakeholders, and the broader context within which products will be used.

DDR is a flexible approach that can be applied to various settings, such as education,
healthcare, aviation, maritime, finance and more [2]. It allows researchers to take a direct
approach to solving problems and improving systems, and it emphasizes the importance of
testing and evaluating interventions in real-world settings to ensure that they are effective
and have the desired impact. DDR is an iterative process which allowed the researcher to
return to previous phases as needed. For example, after evaluating an intervention, the
researcher returned to the design phase to make revisions before conducting another round
of development and evaluation. At the same time, we incorporated several other methods
that were well suited for each individual phase of the DDR, that we describe in detail in the
next section.

1.2 Methodology

The DDR methodology is a multi-disciplinary and comprehensive approach, which allowed
a thorough and complete understanding of the problem. Its iterative nature encouraged
testing and refinement of ideas, and it promoted active engagement with stakeholders
throughout the research process. It is a good fit for product development as it provides a
framework that helps the development of relevant, practical, and successful products [2].
DDR is an iterative, cyclical process that involves four main phases, as seen in Figure 1.

14

Supervisory Supervisory

Team Phase 1 - Exploration and Analysis Team
Intersection of ZTA, DLT and Blockchain

1st

Publication) Technical
Phase 2 — Desug_n. Experts
Core Concepts, Preconditions and
1st Requirements

Conference
Presentation

N
3
o

2dualadX3 Weal /umQ — d10eId |BUOISS30Id

Conference
Presentation

Phase 3 - Development and
Implementation

Literature Review

Critical Peers Prototype Development, Operating

Network and Architecture

Publication

Phase 4 - Evaluation
Effectiveness (Prevention — Detection)
and Performance Evaluation

Professional
Peer Reviews

Supervisory

Figure 1 - Methodology overview.

Phase 1 - Exploration and Analysis: we conducted a thorough exploration and analysis
of the problem or need that the intervention and the system is intended to address.
This included reviewing existing literature, conducting fieldwork and data gathering.
[0 Research Question 1: Are there common attributes between ZTA, DLTs and
blockchain?

Phase 2 - Design: we used the information gathered in the exploration and analysis
phase to design the BIDPS. This involved creating detailed specifications, prototype
prerequisites and design principles.
{1 Research Question 2: How can we solve the highlighted Achilles Heel of
ZTA? Namely, will the proposed BIDPS detect and prevent attacks against
endpoints prior the 10t stage of MITRE’s ATT&CK threat knowledge base,
thus proving effectiveness?
(] Research Question 3: How can we augment ZTA on endpoints using DLTs
and blockchain?

Phase 3 - Development and Implementation: we developed and implemented a
prototype BIDPS based on the design. This included coding, pilot testing, and other
forms of implementation.

Phase 4 - Evaluation: we evaluated the effectiveness and the performance of the
BIDPS by collecting data and analysing it to determine whether the objectives were
met and to identify areas for improvement.

15

[] Research Question 4: What happens when hundreds of users (or even
thousands in the case of a notional bank) try to execute an application and
thereby start a ledger-query transaction all at once?

[0 Research Question 5: How can we achieve optimal resource utilization that
will enhance performance while supporting the same number of users
(remote employees) and applications?

[0 Research Question 6: How can we achieve the maximum TPS given the lab
resources, to minimize waiting time while preserving the integrity of data
on-chain with the same user group and applications?

DDR is particularly relevant and important in the context of our research for several reasons.

0

Systematic problem identification: DDR provided a structured framework for
identifying and analysing the problem at hand. In our case it helped in systematically
identify the vulnerability of endpoints within the Zero Trust Architecture (ZTA) and
recognize the need for an effective intrusion detection and prevention solution.
Rigorous needs analysis: DDR emphasizes the thorough analysis of needs and
requirements related to the problem. It enabled us to delve into the specific
requirements and challenges associated with building an intrusion detection and
prevention system within the ZTA. This analysis was crucial for designing a solution
that effectively addresses the identified problem.

Holistic solution design: DDR guided the design phase to conceptualize and outline
the key principles and functionalities of the BIDPS. It helped in concluding various
aspects such as system architecture, integration with the ZTA principles, scalability,
and usability. This comprehensive approach ensured that the BIDPS was well-designed
and aligned with the objectives of the research.

Iterative development and refinement: DDR supported an iterative development
process, allowing us to build and refine the BIDPS prototype in a controlled manner.
We continuously evaluated and improved the prototype based on feedback and
insights gained throughout the development process. This iterative approach greatly
increased the chances of building an effective and efficient system.

Effectiveness and performance evaluation: DDR emphasized in the evaluation of both
performance and effectiveness. This is crucial in determining the viability and
usefulness of the BIDPS prototype. Through the evaluation phase, we measured the
system's performance and detection capabilities within the ZTA.

Research contribution: By employing the DDR methodology, we contributed to the
field of intrusion detection and prevention within the ZTA in a systematic and rigorous
manner. Following a structured research methodology strengthened the credibility
and validity of our research findings and helped in establishing our research as a
reliable reference for future work in the domain.

In similar context other researchers have used several methodologies such as design
science research (DSR), user centred design (UCD), and participatory design (PD). DSR is a
broader research methodology that encompasses various domains, including information
systems, and aims to generate new knowledge through the creation of innovative artifacts
[11]. DDR, however, is a specific methodology focused on the design and development of

16

information systems, providing a structured framework for research and development
activities in this context. DDR incorporates scientific research principles into the design and
development process of information systems, emphasizing iterative refinement and
evaluation.

Participatory Design is an approach that emphasizes active stakeholder involvement and
collaboration in the design process to ensure user-centred outcomes. It focuses on
empowering users and incorporating their insights. DDR, on the other hand, is a research
methodology that incorporates design and development activities to create functional
systems or prototypes, with a primary focus on addressing research problems. While both
approaches involve stakeholders, participatory design places a stronger emphasis on
collaboration and user involvement, therefore not the best fit for our research [12].

User-centred design is an approach that prioritizes the needs, preferences, and usability of
the end-users throughout the process. It focuses on understanding users' goals, tasks, and
contexts of use to create intuitive and user-friendly designs. The primary goal of UCD is to
optimize the user experience and satisfaction by creating products or systems that align with
user expectations and requirements. While both DDR and UCD emphasize the importance of
understanding user needs and preferences, they differ in their focus and objectives. primarily
focuses on designing products, systems, or interfaces that optimize the user experience and
meet user needs, as opposed to DDR, which combines research principles with design and
development activities to create functional prototypes or systems [13].

1.3 Rigour and Trustworthiness

The rigour and trustworthiness of this thesis are essential elements in ensuring the validity
and reliability of the research findings. Rigour refers to the degree to which the research
design and methods used in the study are sound and able to generate valid and reliable data.
Trustworthiness, on the other hand, refers to the degree to which the results of the study can
be trusted and the extent to which the research process and findings can be replicated by
other researchers. In this section we discuss the strategies used to ensure rigour and
trustworthiness in the present research. In the next section 1.4 Methods, we emphasize on
the methods employed per phase to achieve rigour and trustworthiness.

Ensuring rigour is crucial to establish the credibility and trustworthiness of the conclusions
and findings. One of the most important strategies employed to ensure rigour in this research,
is the use of a clearly defined research design and methodology. This involves specifying the
research questions, developing a plan for data collection and analysis, and selected
appropriate methods for data collection and analysis. The researcher together with the
supervisory team ensured that the methods used are appropriate for the research questions
and can generate valid and reliable data. A thorough literature review was also part of
ensuring rigour, as it provided the necessary background and context for the research to
identify gaps, and any potential sources of bias or error.

To ensure trustworthiness of the present research, several strategies were employed. One
of the key strategies was to ensure that the study was conducted in a transparent manner, by
keeping detailed records of the research process and always making these records available
for review. Additionally, the study employed a convergence triangulation type, where data
was collected using multiple methods, to ensure that the findings of the study were robust
and dependable.

17

Trustworthiness is an important aspect of qualitative research [14], as it ensures that the
findings of this research can be trusted and that the research process and results can be
replicated by other researchers. Ensuring the validity and reliability of this research is a key
element, thereby to establish trustworthiness we utilized several strategies, such as member
checking, triangulation, and reflexivity.

Member checking is a strategy that involves reviewing the findings of the research [12]
with the participants to ensure that their perspectives and experiences have been accurately
represented. In the context of this research the members were the direct supervisors and
team members, as well as professionals and experts in the field. This helped to ensure that
the findings of the study are valid and dependable, as the participants provided continuous
feedback on the accuracy of the study's conclusions.

Triangulation is a strategy that involves collecting data from multiple sources, such as
diverse types of participants or different methods of data collection, to ensure that the
findings of the study are robust and dependable [12]. By collecting data from multiple
sources, researcher and supervisory team cross-checked their findings to ensure that they are
consistent and accurate. This eventually helped to increase the trustworthiness of the study,
as it provided multiple perspectives towards answering the research questions.

Reflexivity is a strategy to self-reflecting on the researcher's own biases, assumptions, and
perspectives and how they may have influenced the research process [12]. Researcher is
aware of the potential for bias in their research and took steps to minimize its impact. This
was achieved primarily through self-reflection, peer debriefing, and audit trails with the
supervisory team and a group of experts in the field. Ultimately reflexivity helped to ensure
that the findings of the study are duly influenced by the researcher's own perspectives and
biases. Nonetheless, self-reflection on this research is highly likely to continue for much
longer, as the process was highly educating, productive and provided for multiple topics and
points for improvement for the researcher.

The researcher and the team did the utmost to deem this research transparent. In
gualitative research, this means that the researcher kept detailed records of the research
process, including data collection, data analysis, and interpretation. This information was
made available for review by the supervisory team as well as other researchers who were
direct colleagues of the researcher, to ensure that the study can be replicated. Additionally,
detailed descriptions of methods, procedures, and sampling techniques are provided in the
following sections and chapters in this thesis, to enable others to evaluate the quality of the
study.

To summarize, trustworthiness is a critical aspect of qualitative research and thereby was
established through strategies such as team member or professional peers checking,
triangulation, reflexivity, and transparency. These strategies helped to ensure that the
findings of the study are valid, dependable and can be replicated by other researchers. It is
important to note that trustworthiness should not be seen as a one-time achievement but
rather as an ongoing process that begun at the planning stage of this research and continued
throughout the research and data analysis stages. It is worth noting also, that achieving
trustworthiness in qualitative research may not be as straightforward as in quantitative
research, but it is still a critical aspect that is needed for the conclusions and findings of this
research. Ultimately the trustworthiness was evaluated by peers and members of top tier
venues, as our work was published in reputable journals. Finally, the research community,
peers and other scholars will ultimately decide if the study is trustworthy through the
publications made during this journey.

18

1.4 Methods

The researcher employed the DDR methodology as previously discussed. DDR systemically
identifies a problem; analyses the needs and requirements of the problem; designs, develops,
and implements an intervention or a solution and then evaluates the solution’s practicality
and effectiveness [2]. However, within each individual phase we employed several other
methods (1) to help us maximize the benefits per phase, and (2) to tailor each phase
specifically to our problem and focus on potential solutions.

Evaluation Phase
Effectiveness & Performance

Analysis Phase Design Phase Devel: and Impl ion Phase ‘ l

| Researchers | ! . :
Experience : i v

vy v | » Bwent
Problem 1] Review
% ! 1 Design s \
?;2::;3;;:: o Ydusuy 1 P'i"(irﬁﬂ/ Deslen/ (| plops 1 Prototype |
L Analysis | ® Specific » Theory Concept || | Prototype k ik I‘V? +—» Implementation evaluation
Requirements] Walkthrough || ticulation
! Development]

i » TryOuts :
A . ¥ | T -

Literature

> a
Review

| Revise Design Principles <

TEAM
Resear cher/Industry
Stakeholders

Responsibilities/ Roles ! ! Team (Collabor ative)
Individual: Resear cher /Designer : Researcher/Designer, Developer, Industry Stakeholders

RESEARCH OUTPUTS RESEARCH OUTPUTS ! RESEARCH OUTPUTS ! RESEARCH OUTPUTS

Review
' Documents,
Review Documents, Design H Prototype 1 Comments, Prototype 2
H Reports, Revise
Design

Review Documents, Revise Design
Requirements/principles

Problem Statement Design goals/Design
Research Questions Guidelines

Figure 2 - Detailed methodology flow.

A detailed explanation of each of the four phases shown in Figure 2 is provided below.
Namely, we begin with (from left to right) Phase 1 — analysis and describe all the activities in
section 1.4.1 Phase 1 - Analysis. Then we explain Phase 2 — Design in the relevant section 1.4.2
Phase 2 - Design. Next, in section 1.4.3 - Development and Implementation we detail the
development and implementation phase. Lastly, in section 1.4.4 Phase 4 — Evaluation, we
explain both the effectiveness and performance evaluation.

1.4.1 Phase 1 — Analysis

The analysis phase started with a snowballing systematic literature review (SLR) [13], on
top of the standard steps included in the DDR methodology, to shed light on the current
developments, strengths, and limitations of ZTA, Distributed Collaborative Intrusion
Detection Systems (DCIDS) and blockchain & DLT technologies. This helped to identify and
shape our research questions further. SLR is a specific method used to identify relevant
literature for a systematic review on complex and emerging fields, such as ZTA, DLTs and
Blockchain. This technique was used because the initial search results were limited, and the
researcher seek to expand the search to include more articles. The name "snowballing" comes

19

from the idea that the search starts with a small number of articles and gradually "snowballs"
to include more articles as the search progresses.

The process of snowballing begun with an initial search of the literature using keywords,
databases, and inclusion criteria. The articles retrieved from the initial search were examined
for additional relevant articles that might have not been captured in the initial search. The
reference lists of these articles are checked, and any additional articles that meet the inclusion
criteria are included in the review. This process is repeated, with each new article adding to
the pool of included articles, until the search reaches a point of saturation, meaning that new
articles are no longer being identified.

This method proved especially useful due to the researcher studying and exploring a niche
and emerging field where the research base was exceedingly small, specifically on the topic
of DLTs and blockchain. Thereby, the researcher broadened the scope of the search to include
related fields such as blockchain and DLT application in internet of things. Snowballing was
also used to identify articles that might have not been indexed by the major databases, such
as grey literature [14]. It is important to note however, that since Snowballing SLR is primarily
used when the initial search is not exhaustive, the researcher and supervisors were aware
that this method might have introduced bias to the search, as the initial search might not
include articles that do not cite the articles found in the first search, and the search might
miss important articles.

To effectively manage this limitation, we combined and applied elements of qualitative
research methodology. Qualitative research methodology is a type of research that aims to
understand and explain the meanings, experiences, and perspectives of individuals and
groups of people. Qualitative research is a great match considering the context of our
research since it is typically used to study complex and multi-faceted phenomena that cannot
be easily quantified or measured using quantitative methods [11]. It focuses on
understanding the rich, detailed, and complex data and information that emerges from
scoped topics.

That said, we collected data through observations and document analysis and interpreted
the data to understand the different meanings, and perspectives. More specifically, we used
gualitative research methodology to minimize bias that might be introduced through SLR, and
because it is very well suited to study the convergence of topics. Namely, this approach was
particularly useful when studying complex and multi-faceted issues, such as the convergence
of ZTA, DLTs and blockchain.

During the analysis phase, a significant finding was the identification of the already
authenticated and authorized communication channel on an endpoint (user device) within a
network as a critical vulnerability and thereby the Achilles' heel of a Zero Trust Architecture
(ZTA). This observation shed light on a fundamental problem in the context of ZTA
implementation.

The analysis revealed that despite the rigorous authentication and authorization processes
inherent in a ZTA, once an endpoint is compromised, it can pose a significant threat to the
overall security of the architecture. This realization highlighted the need to focus on endpoint
security as a primary concern within the ZTA framework.

The compromised endpoint, even with valid credentials and authorized access, can be
leveraged by attackers to traverse the network, elevate privileges, and potentially gain access
to sensitive resources. This vulnerability can be exploited through various means, including
the use of compromised credentials, malware infections, or insider threats originating from
the compromised endpoint.

20

1.4.2 Phase 2 - Design

To analyse the collected data and leverage every input from the exploration and analysis
phase, we used the empirical research method. Empirical research methodology is a research
approach that relies on the collection and analysis of data to generate knowledge and
understanding about a phenomenon or problem, in this research context, the ZTA endpoint
problem. It is based on the principle that knowledge and understanding can be gained by
observing and studying real-world events and phenomena [15].

One of the research outputs utilizing empirical research in this phase, is that it allows for
the testing of hypothesis and the generation of new knowledge and understanding through
the collection and analysis of data. It is particularly suitable for studying complex and multi-
faceted phenomena and for understanding cause-and-effect relationships. Thereby, it
provided the design principles as well as the pre-requisites towards the development and
implementation phase and set the stage for a successful prototype implementation.
Moreover, the observations and the collection of data from the real-world ZTA mappings to
high-level models, helped to increase the external validity of our research. Meaning that the
findings are more generalizable to the population of interest and applicable to a wide range
of blockchain technologies. Lastly, leveraging the principles of empirical research we
identified patterns and trends that would be difficult to detect using other methods, such as
the design principles described in Chapter 3, the design phase.

The design phase of this research is particularly well-suited for empirical research, as it
allowed for the testing of hypotheses and the identification of patterns and relationships
within the data. Empirical research was used to also understand the underlying factors that
contribute to the ZTA endpoint problem, and to identify potential solutions or interventions.
As a result, we were able to gain a deeper understanding of the problem and inputs were
used to guide the development of the proposed BIDPS prototype.

One of the main benefits noted during the design phase, was that empirical research
allowed for rapid prototyping and iteration, which means that the BIDPS prototype was
developed, assessed, and refined quickly and efficiently. This iterative process led to a more
effective and user-cantered prototype. Furthermore, it helped us to identify potential issues
and constraints early in the design process, which eventually led to saving time and effort
overall, e.g., completely changing platforms that form the building blocks for the BIDPS
prototype.

Finally, by following empirical research in the design phase we managed to gather data
from users and their systems, which helped to increase the external validity of the prototype
even further. Meaning that it is more likely to be successful and effective when it is used by
the intended users in the real-world.

1.4.3 Phase 3 — Development and Implementation

The principles of DDR are a perfect match with the prototyping methodology during the
development and implementation phase, thereby it was used throughout this phase.
Prototyping is a process that involves creating a working model or simulation of a system to
assess and evaluate its functionality, usability, and feasibility. This methodology is typically
used during the development and implementation phase of a project, to help identify and
resolve issues early on and to ensure that the final product meets the users' needs and
requirements [16]. Although there are several types of prototyping methodologies, each with

21

its own strengths and best-use cases, we used the medium-fidelity prototyping methodology
due to hardware limitations. An overview of the available prototyping methodologies
however is the following [16]:

0 Low-fidelity prototyping: This type of prototyping uses simple and quick techniques to
create a basic representation of the product or service. It is useful to quickly assess
early concepts and get user feedback.

0 Medium-fidelity prototyping: This type of prototyping uses more detailed and
complex techniques to create a more realistic representation of the product or
service. It is useful to assess specific features and user interface design.

0 High-fidelity prototyping: This type of prototyping uses the most detailed and complex
techniques to create an almost definitive version of the product or service. It is useful
to assess overall product usability and to get user feedback on the final product design.

Medium-fidelity prototyping was used for early testing and evaluation of the BIDPS
prototype, which helped to identify and resolve issues early on, and increase the chances of
success of the final BIDPS. In addition, it enabled us to bring aspects of a user-centred design
into this research and specifically into this phase, by thinking the overall user experience in
the development process and gathering related feedback on the prototype. Thus, increased
the chances that the final BIDPS to meet the users' needs and requirements. Prototyping
additionally allows for incremental development and iteration, where the BIDPS can be
modified, improved, and refined based on several groups of people feedback (e.g.,
supervisory team, professional peers, other scholars, critical peers in academia), which
ultimate contribute and increase the chances of success of the BIDPS. Lastly, this method
allowed for the testing of distinctive design options and features, thereby we concluded with
high-level of confidence that the BIDPS prototype is the best possible version at the time of
authoring this thesis.

1.4.4 Phase 4 — Evaluation

For the evaluation phase we used again the principles of empirical method, however this
time in the context of the BIDPS evaluation. This refers to the use of data and evidence from
observations and experimentation to evaluate the effectiveness; when it comes to detection
and prevention, and performance of the BIDPS. Empirical methods can be used to gather data
on the usability, effectiveness, and user satisfaction of prototypes, as well as its performance
in relation to a set of metrics or requirements, hence an exceptionally good match for this
phase of our research.

To evaluate the effectiveness of the BIDPS prototype, we employed user-system testing,
and usability testing. These methods involve evaluating the BIDPS prototype with a sample of
users and systems, with the aim to gather data on their interaction with the BIDPS. This data
was used to identify issues with the prototype's design, usability, and effectiveness, as well
as to identify areas for improvement. User-system testing was conducted in different
fidelities, depending on the stage of the prototype development and the objectives of the
test. For example, the first user-testing was conducted from the adversary’s perspective,
while the second test involved the user experience angle.

To evaluate the performance of the BIDPS prototype, we used the user-system testing
method from the user’s angle, observation, and monitoring methods. In

22

Chapter 5: Evaluation Phase — Effectiveness and Performance Evaluation, we explain the
differences of benchmarking and testing; and why we chose the latter over the former.
Briefly, benchmarking involves comparing the prototype to similar existing systems and
measuring its performance against established metrics or standards. Thereby, one could use
this data to identify areas where the prototype outperforms or underperforms other systems,
and to identify areas of improvement. However, this is novel work in the field and the
definition of “similar systems” is not directly applicable in our case. Although we set a basis
and define metrics, the best approach to evaluate performance was through testing, rather
than comparison with similar systems.

Testing is the process of running the BIDPS prototype in specific test scenarios and
monitoring the system's performance in relation to a set of predefined metrics and
requirements, such as response time, throughput, and error rate. This allowed the researcher
and the supervisory team to identify any issues with the prototype's performance, identify
areas of improvement, and even produce novel contributions. The strengths of using
empirical methods in this context are that they allow for the gathering of data from real users
and in real-world scenarios, which eventually increase the external validity of the findings,
making them more generalizable to the population of interest towards a BIDPS. Additionally,
the data gathered through these methods were quantified and analysed, which ultimately
contributed towards the identification of patterns and trends that would be difficult to detect
using other methods.

1.5 The Endpoint Problem to ZTA

The analysis phase highlighted the primary goal of ZTA, if properly implemented, is to
perform a fine-grained identity-based access control [9] that can specifically prevent the
increasingly severe risk of lateral movement. There are multiple access control types such as
role-based and attribute-based access controls, however, ZTA performs access control on the
identity of the user (i.e., identity-based access control). Moreover, the zero-trust approach
primarily focuses on protecting assets, network/user accounts, workflows, and services rather
than network segments. The location of the network (e.g., home, work, or a public place) is
deemed irrelevant within the ZTA context and its relationship to the overall security posture
of the resource.

However, the above argument comes with a fundamental assumption that the core
components of a ZTA should be able to contextualise user access requests before granting
them access to enterprise resources. Namely, before a user is granted access to corporate
resources, several conditions must be met, such as the operating system version, software
patch levels, IP address or source/origin, the time of a request (e.g., is it between 09:00-
17:007?). Such information is of course subject to each corporate policy and the context. This
approach can be effectively implemented if, for instance, we assume extremely locked-down
devices, or fully managed devices like in BeyondCorp [21], where only corporate Google
Chromebook devices are granted access, without support for the BYOD capability [21].

It should be noted, nevertheless, that currently most enterprises run Windows as their
core operating system [41], and may run a wide variety of legacy, outdated applications
and/or middleware increasing their security risks. Determined attackers have previously
demonstrated how the traditional perimeter-based defences can be bypassed, for example,
with malware and phishing attacks, to gain a foothold in enterprise networks. Once a device

23

is compromised, the operating system (and the device that runs it) can no longer be trusted,
since a potential malware in the operating system kernel can tamper with the ZTA security
health checks, which are part of the context built by ZTA. This eventually results in bypassing
the fundamental control implemented in a ZTA.

As a result, enterprises that implement one of the current ZTA models might mistakenly
trust user devices (or endpoints), as attackers are still able to compromise those devices, and
thereafter, ride the already authenticated user’s session to perform several user and device
centric malicious activities other than lateral movement. A good example is The Adversarial
Tactics, Techniques, and Common Knowledge or MITRE ATT&CK, which is a guideline for
classifying and describing cyberattacks and intrusions commonly used to compromise
endpoints [42]. In case the compromised device belongs to an administrator, the inherent
impact of such a scenario is of critical severity. Considering the discussion above, one could
argue that ZTA relies on a mixture of health and security checks and context that can be
eventually forged once an endpoint is compromised.

During the analysis phase we identified at least two threat scenarios that are immediately
applicable and can be referenced as examples why a mature ZTA goes beyond traditional
perimeter-based security indeed, however, at the same time showcasing there is still room
for improvement when it comes to detection time or preventive capabilities [1]. Literature
showed that the problem to ZTA was highlighted by the National Security Agency (NSA) of the
United States in their relevant report [6], as well as several other scholars [20], [21], [22], [23].
Considering a mature ZTA and the wider field of security controls that are applied, most of
the above-described adversaries’ attacks would be blocked. Nonetheless, some attacks would
only be limited, while others would be allowed, as shown in Figure 3. More specifically, with
our proposed BIDPS we aim to improve ZTA by augmenting its tenets and therefore solving
the below two problems:

{1 Remote exploitation or insider threats.

Adversaries can compromise a user’s endpoint through Internet, utilizing exploit code
targeting endpoint’s software. In many cases, exploit code is not even required as attackers
have displayed their creative offensive mindset and social engineering capabilities, tricking
the user directly to install malicious tools without knowing, therefore cracking the perimeter,
and providing foothold to adversaries [93]. Same applies for cyber actors being already within
the corporate network, having malicious intents. Common attacks are hijacking user’s
credentials, perform network enumeration, privilege escalation on the endpoint, and,
ultimately moving laterally through the network to compromise further resources and data
while setting up persistent malicious communication channels.

24

ATTEMPTS TO ACCESS NETWORK VISIBILITY &
ACCESS METHOD REPOSITORIES (SERVERS & SOFTWARE) ANALYTICS

Allowed: User role and device are authorized to
access specific data based on policy and context

u Blocked: Lateral movement prevented by
segmentation and default-deny policy
Malicious actor compromises
user’s device and credentials

.-
e > (iees Blocked: User role is not authorized access - {
s —
5 - : i 8 Limited: Access to application or service is Logged analysis
/¥oces3 v Uger's devics ‘ limited based on least priviege | IR

Blocked: Dynamic analytics detect suspicious
activity by user account and block access

Alert based on suspicious behavior «------

Blocked: Device is not authorized

Access via malicious actor’s device
using user’s stolen credentials

Figure 3 - Remote exploitation and insider threat scenario within ZTA context [94].

[0 Compromised user credentials.

If cyber adversaries have already established foothold on an authorised endpoint by
installing malicious tools (e.g., malicious remote administration tools) they can simply follow
the already authenticated and authorised communication channel all the way up to their level
of authority according to ZT policy engine. Although this scenario would be limited by a
mature ZTA and the relevant security controls, it is still applicable. In fact, compromised user
credentials refer to situations where an attacker gains unauthorized access to a user's login
credentials, such as usernames and passwords. This can happen through various means as
observed during the analysis phase, including phishing attacks, keylogging malware, or
credential leaks from data breaches. Incalculably important is the fact that such actions but
also actions towards compromising user credentials, typically happen before lateral
movement, and thereby the scenario may be limited but still applicable.

25

Chapter 2: Analysis phase - Intersection of ZTA, DLT and
Blockchain

2.1 Introduction

In this chapter, we examine the intersection of ZTA, DLTs and blockchain. Specifically, if and
how ZTA can be augmented onto endpoints using the potential of blockchain’s immutability
fortifying the intrusion detection process to eliminate the problem highlighted in the
introduction. As discussed in Chapter 1: Methodology and methods, and specifically in section
1.4.1 Phase 1 — Analysis, we conducted a snowballing systematic literature review in the
context of zero trust architecture, DLTs (Distributed Ledger Technologies), blockchain, and
distributed collaborative intrusion detection. The full SLR process we followed is described
below in steps:

1. Defined research question: we started by clearly defining the research question 1,
namely, (RQ1) Are there common attributes between ZTA, DLTs and blockchain? This
guestion guided the literature review and helped identify the relevant studies.

2. Initial keyword search: we performed an initial keyword search to identify relevant
articles and papers. We used a combination of keywords related to the research topic.
Specifically, "zero trust architecture,” "DLTs," "blockchain," "distributed collaborative
intrusion detection,", “distributed ledger technology”, “zero trust architecture gaps”
and related terms. Next, we performed this search in the most relevant academic
databases.

3. Database selection: we identified the most appropriate academic databases for our
literature review being the ones with the most cited content on computer science and
information technology. Databases such as IEEE Xplore, ACM Digital Library, Scopus,
Web of Science, Google Scholar, MDPI Security, Elsevier Computer Science, and
USENIX Cryptography. These databases provided access to a wide range of scholarly
articles, conference papers, and technical reports. However, due to the lack of zero
trust architecture’s practical implementation other than the government sector, we
used the learnings of the mentioned sector from sources such as the National Security
Agency (NSA) and The National Institute of Standards and Technology (NIST) of the
United States of America

4. Primary search: we performed a primary search using our initial keywords in the
selected databases. This search helped to identify the initial set of relevant articles
and papers. We reviewed the titles, abstracts, and keywords of the retrieved results
to determine their relevance to our research questions.

5. Inclusion and exclusion criteria: we established inclusion and exclusion criteria based
on the relevance and scope of RQ1l. The criteria helped in filtering the initially
retrieved articles and papers.

1. Inclusion criteria:

[0 Relevance: the study directly addresses or discusses the topics of zero trust
architecture, DLTs, blockchain, and distributed collaborative intrusion
detection.

[0 Publication type: peer-reviewed journal articles, conference papers, and
technical reports found on one of the accepted databases described above.

26

10.

[0 Publication date: studies published within the last 10 years.
Language: English.
0 Methodology: studies employing qualitative, quantitative, or mixed-method
research approaches.
[0 Focus: studies that present empirical findings, theoretical frameworks, case
studies, or systematic reviews related to the research topics.
[0 Domain: studies from computer science, information technology,
cybersecurity, distributed systems, and related fields.
2. Exclusion criteria:
[Irrelevance: studies that do not address the topics of zero trust architecture,
DLTs, blockchain, or distributed collaborative intrusion detection.
[0 Publication type: non-academic sources, such as blog posts, opinion pieces, or
news articles.
[0 Publication date: due to the already limited available literature, we did not
restrict the publication date exclusion criterion.
[0 Language: studies published in languages other than English.
[0 Methodology: studies with inadequate research methodology or lack of
methodological rigor.
[0 Focus: studies that only provide high-level overviews or general discussions
without presenting any specific findings or insights.
(] Domain: studies from unrelated fields or domains that do not contribute
significantly to the research topics.
Screening and selection: we begun the screening process by reviewing the titles and
abstracts of the identified articles and papers and applied the inclusion and exclusion
criteria to select the studies that met our research objectives. Next, we obtained,
stored the full text of the selected articles in our common storage environment read
them, and discussed them in our weekly meetings.
Snowballing Process: after selecting a set of relevant articles, we initiated the
snowballing process. Snowballing in this context means that we examined the
reference lists of the selected studies to identify additional relevant sources. This
process helped to find older or highly influential works that may not have appeared in
our initial keyword search.
Snowballing Iterations: as step nr.7 yielded good result by pointing out at least three
new papers adhering to inclusion criteria, we repeated the snowballing process for
each newly identified source. We checked the reference lists of the additional articles
and papers found in the previous iteration and continued this iterative process until
we could no longer discover any new relevant sources. The source tree of papers
alongside the results from each iteration was also stored in our common storage
folder to maintain traceability.
Analysis and Synthesis: we analysed the content of the selected articles and papers
to extract relevant information, and searched for common themes, methodologies,
findings, and gaps in the existing research. We utilized mind maps and spreadsheets
to organize and synthesize the information systematically and kept all records in our
weekly meetings minutes.
Reporting: finally, we documented the findings of the snowballing systematic
literature review. We summarized the key themes, trends, and insights and gaps
identified from the analysed sources. Since the goal was to answer RQ1, we firstly

O

27

focused on documenting the core tenets, capabilities, and requirements of zero trust.
Secondly, we categorise existing real-world zero trust implementations and discuss
their strengths and weaknesses. Thirdly, we explore the potential of blockchain in
developing and improving Distributed Collaborative Intrusion Detection Systems
(DCIDSs) that can alleviate the Achilles heel of ZTA (i.e., endpoints’ vulnerability).
Finally, we discuss the open questions and challenges, as well as highlight potential
solutions and research directions to ZTA and distributed blockchain-based IDS.

2.2 Zero Trust

We begin this research by provide a brief history of “zero trust” and ZTA, and we discuss
the core tenets, core capabilities, models, and existing approaches of zero trust including real-
world implementations.

2.2.1 History of Zero Trust Architecture

The Jericho Forum in 2004 introduced the idea, radical at that time, of de-perimeterization
[4], which subsequently developed into the broader concept of zero trust. The term “zero
trust” was coined by J. Kindervag [28] back in 2010; however, the zero-trust concept was
present in the cyber security domain before that. The United States Department of Defence
and Defence Information Systems Agency (DISA) proposed a secure strategy, named “black
core”, which was published in 2007 [18]. Black core discussed the transition from a perimeter-
based security architecture to one that emphasises on securing individual transactions.

The wide-spread adoption of cloud and mobile computing greatly contributed to the
evolving of ZTAs, and as part of it, for instance, approaches such as identity-based
architectures slowly gained attention and broader acceptance. Google published a series of
documents under the name “BeyondCorp” on how to achieve a zero-trust architecture [19]
[31] [20]. The BeyondCorp project advocates for the concept of de-perimeterization, arguing
that perimeter-based security controls no longer suffice, and that security should be
expanded to users and devices. As a result of this project, Google abandoned the traditional
way of remote working based on Virtual Private Networks (VPNs) and managed to provide a
reasonable assurance that all corporate users could access Google’s network via insecure and
unmanaged networks.

2.2.2 From Traditional Perimeter-Based Architectures to ZTA

As a philosophy, “zero trust” assumes that trust in users, devices, workloads, and network
traffic should not be implicitly granted [17] with the consequence that all entities must be
explicitly verified, authenticated, authorised, and constantly monitored. One of the core
objectives of zero trust is to severely inhibit the ability of adversaries to move laterally, once
they successfully manage to compromise a user’s device, or even simply steal their
credentials. As such, the IT infrastructure needs to be shaped and prepared accordingly.

The traditional perimeter-based security architecture creates multiple zones of trust [4].
Not all zones adhere to the same rules or to the same level of trust. In fact, users might not
be able to even reach into the next zone if not explicitly allowed by the relevant component.

28

This is referred to as defence-in-depth, as discussed by Smith [22] or as the castle-and-moat
approach [23]. Note the different zones (Internet, demilitarized zone, trusted, and privileged)
are being protected by various perimeter-based controls such as a local broker, a VPN
gateway, multiple firewalls, and application services prior to reaching the mainframe. In this
example (i.e., Figure 4), the mainframe is a core banking system, responsible for all
transactions hence it is separated entirely in a privileged zone.

INTERNET DMZ TRUSTED PRIVILEGED

% [d

Internal rvices
Remote Office

i |
V” =3

Mobile Devices %I
E Appthtlon ervices

Untrusted Client

Remote Employee

Mainframe

vbg
%
L

Figure 4 - A traditional security architecture.

Unlike a traditional security architecture, zero trust calls for thinking, building, and
protecting from the inside out. Based on works from Google [19] [20], Jericho [5] and
Kindervag [17], [24] there is one immediate and important observation. In the context of ZTA
the virtual private network (VPN) technology can be eliminated once the network locality
dependency becomes irrelevant. VPN, in short, allows a user (denoted by “Remote Employee”
in Figure 4) working remotely, to connect to an office (denoted as “TRUSTED” in Figure 4), via
a secure encrypted channel. However, the endpoints should be protected by other means
since VPN encryption only addresses the tunnel between the “Remote Employee” and the
“TRUSTED” zone. When the “Remote Employee” is authenticated and the tunnel is
successfully established, he/she receives an IP address in the remote network of the
“TRUSTED” zone. On that tunnel, the traffic from the “Remote Employee” to the “TRUSTED”
zone is decapsulated and routed, therefore, leading to an “official” backdoor. Moreover, the
single-entry point denoted as “VPN Gateway” acts as a single point of failure or strangle point
for the architecture and the network. Hence, if we start considering the network location as
irrelevant, while at the same time applying a proper set of controls, then VPN can be
eliminated if there are no further dependencies (e.g., apps with legacy protocols). That said,
authentication and authorisation alongside policy enforcement should immediately move
closer to the network edge and endpoints.

To reflect the arguments above, we draw Figure 5 that shows a reference to ZTA. For the
sake of simplification, in Figure 5, we include only the core components, for instance, a Local
Broker (LB), the remote employees, mobile devices, untrusted clients, and numerous services
that require protection. Compared to the perimeter-based architecture shown in Figure 4,
there are no zones, and the security is being built from the inside out. In addition, there are
neither VPN gateways, nor firewalls to filter network traffic, and most importantly there is no

29

single gateway of entrance. We notice; however, a policy enforcement point at the control
plane. This ZTA reference does not create any strangle point like in the case of the perimeter-
based architecture.

INTERNET
> Control Plane — [egacy server /
Secure GW service
A —=
5 r—{[@I}"ﬁ
Remote Employee
Y
- I T
' ; i [< 2 Private Service /
. . @(ﬂ) Service
Mobile Devices
A
Mainframe
Application server /

Untrusted Client I—

M services
— @
& H -
LB

Figure 5 - A high-level ZTA reference.

To make this ZTA reference vendor agnostic, we simply use the generalised term of control
plane, and distinguish between control plane and data plane. This is a known concept in cloud
architectures, and we use the same analogy here to leverage the fact that the control plane
poses inherent and unlimited access to the data plane. All access requests to resources must
be directed through the control plane, where a set of authorisation and authentication
policies, rules and context parameters must be met. Access to more private resources (e.g., a
payment router or a mainframe resource) can be further restricted based on Role-Based
Access Controls (RBAC) enhanced by Context-Based Access Controls (CBAC) on the same level.
Finally, if the control plane concludes that the request should proceed, then it coordinates
and configures as necessary the data plane to accept the connection from the requestor.
Additionally, the control plane can potentially coordinate the setup of an encrypted tunnel
for the requestor and the destination resource.

2.2.3 Zero Trust Core Tenets

Based on the works of DeCusatis et al. [25], Rose et al. [9], Samaniego and Deters [26], and
Jericho [5], ZTA is governed by the following five tenets. Jointly, these five core tenets form
the concept of zero trust. Although the above-mentioned papers can be found with slightly
different titles or descriptions, they share the same essence. Those principles must be applied
at many distinct levels, for instance, users as well as administrators, and on many different
domains, such as traditional networks as well as on cloud infrastructures. It needs to be
highlighted that, although zero trust is gaining momentum and the market for the related
products are expected to double by 2024 [27], there is limited vendor agnostic, scientific
critical literature available.

30

[1 Access Segmentation: every access to a resource must be appropriately segmented,
in order that no single entity can access the entire network or even a large part of it.
Furthermore, a minimum number of entities must be able to explicitly access critical
data. This explicit access applies particularly to administrators, where in most cases
they tend to preserve unlimited and uncontrolled access throughout the whole
network.

0 Universal Authentication: all entities, including users, devices, applications, and
workloads, having any form of interaction with the corporate network must be
authenticated regardless of their location in the network.

[l Encrypt as Much as Possible: ZTA assumes a breach (i.e., the worst-case scenario),
therefore, the network is always considered hostile, and trust cannot be inherently
granted. That said, one must always assume that a potential adversary can intercept
any type of communication happening throughout the network. As a result, all
communications should be end-to-end encrypted externally or internally.

[l The Principle of Least Privilege: all entities in a ZTA must be restricted to the least
amount of privilege required for that specific entity to complete its mission or
operation. This includes, for instance, what an entity can access, and where and for
how long. Moreover, the overall trustworthiness of an entity must be evaluated based
on the context or attributes, ultimately indicating if it shall be trusted or not.

[l Continuous Monitoring and Adjusting: every entity (internal or external) in a ZTA
should be monitored. In this context, all network traffic, system events, and access
attempts should be monitored and recorded regardless of failure or success. These
must be continuously analysed and cross-checked against the security policy. The
outcome should be then used to adjust the relevant policies when needed.

2.2.4 Zero Trust Capabilities

The core capabilities of a ZTA are presented based on the National Institute of Standards and
Technology (NIST) special publication 800-207 [9], Google’s BeyondCorp [21] and Kindervag
et al. [17]. The core capabilities include network and system access control, traffic filtering,
application segmentation and execution control, operational analysis, and policy
enforcement.

[l Network Access Control: network access control states that the authentication of all
entities should happen before allowing entities further access to organisational assets.
This can be achieved by proper network segmentation and a robust access control

policy.
[l System Access Control: this category of capabilities deals with the file and user access

controls. These can be implemented by using login agents and different cryptographic
controls, such as full disk encryption.

31

Traffic Filtering: this category of capabilities is about the enforcement of network
segmentation and prevention of unauthorised connections. For this purpose, firewall
technologies along with IDS/IPS and traffic analysis tools can be applied. In addition,
monitoring of unusual traffic behaviour should be implemented.

Application Segmentation: like network segmentation, applications must be isolated
from each other, and user access should be explicitly limited to only those applications
users need to successfully perform their duty.

Application Execution Control: this deals with the prevention of unwanted, potentially
malicious, applications that have not been previously authorised and approved to be
executed. Application whitelisting is a common control for this category.

Operational and Forensic Analysis: this deals with analysing the systems and
resources for evidence of breach or to detect anomalies. The most common technical
approaches that support this include (i) host-based intrusion detection systems, (ii)
application monitoring, (iii) forensic tools, (iv) honeypots/honeynets, (v) vulnerability
scanners, (vi) penetration testing, (vii) threat intelligence, and (viii) red teaming. In
addition, Security Information and Event Management (SIEM) tools, as well as
Advanced Persistent Threat (APT) detection and prevention methods have been
widely used to tackle more advanced threats.

32

[l Policy Engine / Policy Enforcement: this includes vulnerability analysis and
prioritisation, operational risk, and behavioural analysis. To help readers understand
the connection among the core capabilities, in Figure 6, we draw a typical application
of the seven capabilities in an example notional bank’s information technology
architecture.

In Figure 5, the green stickers highlight the measures to satisfy the zero trust core capabilities
and core tenets.

Moblle Users \
Public Users ‘ r N
(P m»m nal Bank Network Data / Access |
S B oMz [
;v ’
2 N SR
AAAAAAAAAAAAAAA st g W L) QAT r.
g [. ncnpton
Dalnal st/
Vendors / Supphers / e i
User / Device T
8 E -
S |l INTERNET Nopbcaton

| Contrel

| D gl

Remoté Branch ‘7“; S
65 E'E,‘gm Administration @ & ‘\]ﬁ ‘\J
= %ﬂ é} oo 1E~5«°=‘"’~«1 # |
?E' F, sg 1aasS Xaa$ ii ii ‘ ‘ COM
- e .
) w | Conrok | iji | l\‘&:_ s - HE g< ,,,,,

Figure 6 - An example ZTA capabilities reference.

2.2.5 Zero Trust Models

We discuss the three zero trust deployment models, presented in the NIST standardisation
document [9]. These deployment models are high-level concepts, without any real-world
implementation examples. Each model is composed of a control plane and a data plane. The
control plane includes the policy engine and policy administrator, while the data plane
contains the components that support data transmission. Note that the core tenets and
capabilities outlined in the previous two subsections can be implemented as part of each high-
level deployment model.

33

2.2.5.1 Device Agent / Gateway-Based Deployment

In this deployment model, as shown in Figure 7, the Policy Enforcement Point (PEP) must
be highly integrated with two major components, the endpoints, tagged as ‘Enterprise
System’ (which can be laptops, PCs in a remote location, or handheld devices), and the
resource or application(s) that is subject to a user access request.

To implement this model, an agent is required to be installed on the endpoints. This model
provides the best overall control among the three models, because the agent acquires real
time contextual information of the resources the users are trying to access for the endpoints
and the users, at any time. As a result, a decision by the control plane can be made at any
point and the necessary configuration of the data plane is instant and highly accurate.

Nonetheless, a drawback of this model is the overhead that comes with the agent
installations and the full integration of the data resource with the gateway. A good example
of this model is the Google’s BeyondCorp implementation [19].

o E
- I N\
/- Nk |

: Gatewa Data
— Al Resource

Policy
Administrator

A

. Enterprise
System Agent

Figure 7 - NIST Device Agent/Gateway-Based Deployment.

34

2.2.5.2 Enclave-Based Deployment

Like the previous case, this model again requires an agent to be installed on the user’s
endpoint, however, the PEP is placed in front of an enclave of resources. Unlike the first
deployment model, there is no requirement for a tight integration between the resources,
which is one of the advantages of this model as shown in Figure 8. A disadvantage, however,
is that a zone of implicit trust is automatically created amongst the gateway and the
resources, and therefore, the advantage that comes with the acquired contextual
information, as seen in the first model, is lost.

- | o
< mam

I (Resource \ \'

Policy
Administrator

Resource

Control Plane

Data Plane

NIJCS —— Enterprise Agent
System '

\ /

Figure 8 - NIST Enclave-Based Deployment.

35

2.2.5.3 Resource Portal-Based Deployment

In this model, the PEP is neither integrated with the user endpoint nor the application or
service, as shown in Figure 9. A gateway is positioned accordingly in the network corridor,
and responsible for controlling access to the subject resources. The advantage of this
deployment model is that it is agentless, namely, no special software is required to be
installed on the user’s endpoint(s), and the subject application(s) / resource(s) do not require
any modifications. However, its drawback is the loss of fine-grained access control towards
the resources or applications, and hence, limiting zero contextual information that can be
used to make context aware decisions. The first example of this model was presented by
Forrester [24] utilising technologies such as Virtual Local Area Networks (VLANs) and Next
Generation Firewalls (NGFWs) to achieve segmentation.

/
/ Policy Engine

|

Policy
Administrator

Control Plane

Data Plane

\

\

—

SIS — System

tamd Gateway Qoms

N

Data
Resource

Figure 9 - NIST Resource Portal-Based Deployment.

/

=4

To conclude this section, in Table 1, we provide a comparison of the three zero trust
deployment models based on the four discussed characteristics, alongside their advantages
and limitations.

Table 1 — Advantages-Disadvantages & Attribution Table of NIST’s ZT deployment models.

NIST PEP Agent Control/ Contextual Advantages Limitations
Deployment Location Required Data plane information / fine
Model Integration grained access
controls

Device Attached System & Tight Universally A context aware De facto
Agent/Gatew | to resource available —yes environment can be requirement of
ay-Based resources introduced agent

installation

36

In front of Medium Limited There is no need for The

Enclave- resources System availability — not tight integration introduction of
Based possible between resources a context aware
environment is
lost

Resource In Limited to zero — It is agentless Loss of fine-
Portal-Based between None Loose not possible grained access
system & controls
resources towards the
resources or
applications

2.2.6 Zero Trust Architecture Approaches and Implementations

In this section, we discuss the existing approaches and implementations for ZTAs. First, we
discuss the more theoretical approaches and concepts proposed in research papers.
Afterwards, we present some important real-world ZTA implementations by enterprise. At
the end of this section, we summarise and compare the real-world implementations based
on the NIST deployment models in Table 2.

2.2.6.1 Theoretical Approaches for ZTAs

Cloud and mobile computing introduced and enabled borderless networks; therefore, it is
imperative to re-design cyber security controls accordingly and not just focus on the
corporate perimeter. DeCusatis et al. [25] identified the limitations of the existing best
practices regarding network segmentation. Grounded on a steganographic overlay, they
discussed a novel architecture as an enabler to a zero-trust approach. Technically, the so-
called steganographic overlay embeds authentication tokens within the first-packet
authentication and Transmission Control Protocol (TCP) requests. An experiment deployment
was demonstrated in both the traditional and cloud computing environments.

The concept of a steganographic overlay presents an intriguing solution, as it enables
enhanced security measures beyond traditional perimeter-based defences. By incorporating
authentication tokens within the network traffic, itself, this architecture offers a more robust
and dynamic approach to ensuring trust and access control. The authors successfully
demonstrate the feasibility of this approach through experiment deployments in both
traditional and cloud computing environments. However, it is important to acknowledge
potential challenges and considerations associated with the implementation of such a system.
One key aspect to consider is the potential impact on network performance and latency, as
the embedding and extraction of authentication tokens within network traffic may introduce
additional processing overhead. Moreover, ensuring the seamless integration of this
steganographic overlay with existing security frameworks and protocols is crucial to prevent
compatibility issues and vulnerabilities. Further research and validation are necessary to
assess the scalability, efficiency, and resilience of this novel architecture. Additionally,
potential risks and vulnerabilities associated with steganography-based authentication
mechanisms should be thoroughly investigated to ensure that they do not introduce new
attack vectors or compromise data integrity. In conclusion, DeCusatis et al.'s [25] exploration
of a steganographic overlay as an enabler for a zero-trust approach offers a promising
direction for enhancing cybersecurity controls beyond the traditional corporate perimeter.
However, further investigation and evaluation are required to address potential

37

implementation challenges and validate the overall effectiveness and security of this
approach in real-world scenarios.

Rose et al. [9] first provided an abstract definition of ZTA, while also contributing to the
common body of knowledge by specifying general deployment models and use cases where
ZTA could enhance an overall cyber security posture of an enterprise. Embrey [28] identified
the top three factors driving the adoption of ZTA and stressed its necessity to enhance
security and policy controls at both the user’s and device’s level. Mehraj and Banday [29]
proposed a conceptual zero trust strategy, explicitly designed for cloud environments. Their
efforts also emphasise trust establishment and the further trust challenges applicable to
cloud computing. Yan and Wang [30] performed a survey on zero trust components and the
key technologies for ZTA. They also applied some of the subject technologies and related
them to specific scenarios, to highlight further the advantages of ZTAs. Collectively, these
works deepen our understanding of ZTA and its potential as a cybersecurity paradigm.
Nevertheless, it is important to acknowledge that ZTA is still an evolving field, and further
research is needed to address implementation challenges, scalability, and integration with
existing systems. Additionally, practical deployment considerations, interoperability issues,
and potential trade-offs associated with implementing ZTA should be explored to ensure the
effective and secure adoption of this architectural approach.

Keeriyattil studied the whitelisting approach [31], at the network level. The ingress and
egress traffic of a virtual Network Interface Card (NIC) were examined against a given list of
firewall policies. Based on the whitelisting concept, if no matching rule is found for a specific
traffic flow, then the packet is simply dropped. Using specific technologies (e.g., VMWare
NSX) the author demonstrated how only the traffic that is checked against specific records
would be allowed. Implementing whitelisting at the network level can be complex and
requires ongoing maintenance to keep the whitelist up to date. Additionally, managing false
positives and false negatives can be a challenge, as accurately identifying legitimate traffic
flows while avoiding blocking legitimate communications is crucial. Mital [32] discussed the
features of DLT and blockchain technology that would be applicable to the zero-trust context.
Specifically, the author discussed how the immutability property of blockchain could help in
establishing higher integrity standards. In addition, the elimination of a possible single point
of failure in ZTA could help with maximising the availability of the system/network, due to the
“inherent” relevant attributes of DLT. While the discussion of DLT and blockchain technology
in the context of zero trust is promising, it is essential to acknowledge that the first step would
be to map the theoretical approached into practical zero-trust frameworks, as this, is still an
ongoing challenge.

2.2.6.2 Real World ZTA Implementations

There are four relevant “real-life” ZTA approaches, namely, Google’s BeyondCorp [21],
Forrester NGFW/ZTX [24], Cloud Security Alliance (CSA), Software-Defined Perimeter (SDP)
[33], and VMWare NSX [31]. Those architectures are the current dominating real-world
deployment models [34], unlike the previous high-level architectures.

38

2.2.6.2.1 Google’s BeyondCorp

Following a hacking campaign by the Anonymous group named Operation Aurora in 2009
[35], Google produced the BeyondCorp project. Based on a detailed report published by
McAffee labs on the lessons learned from Operation Aurora [36], the attackers were able to
access the internal network. The attackers specifically targeted the sources of intellectual
properties and used the compromised system as a starting point (also known as “jump-point”)
to move laterally. Consequently, Google’s primary goal was to remove the inherent trust
acquired by its users and devices, due to their placement (physical or electronic) within the
corporate network. Moreover, in case a user or a device was compromised, as seen during
Operation Aurora, a secondary goal was to minimise the probability of an adversary moving
laterally through the network and compromising further entities. Three core tenets were the
derivative of the first whitepaper of BeyondCorp in 2014 [7]:

1. The services that a user/device can access must not be determined by a specific
connection and especially the location of the connection.

2. All access to services must be determined based on contextual information.

3. Allaccess to services must be authenticated, authorised, and encrypted.

Figure 10 highlights the access and traffic flow alongside the components of the
BeyondCorp zero trust implementation. The components include the access proxy, the access
control engine, the pipeline that receives input from the device inventory database, the
user/group database, and finally, the trust inference alongside the certificate issuer. Such an
approach can be mapped back to the Device Agent/Gateway-based deployment model
proposed by NIST.

Certificate
Issuer

Figure 10 - BeyondCorp Traffic/Access Flow & Components.

Note that in this model, the public and the internal networks inside a Google’s building
have absolutely no differences when it comes to user and device privileges as both are
considered unprivileged. Device authentication on the internal unprivileged network is
performed via the 802.1x standard through a Remote Authentication Dial-In User Service

39

(RADIUS) server. Prior to accessing that network, all users follow the same flow through a
Single Sign On (SSO) mechanism, which provides authentication to resources. Complementing
this zero-trust model, an innovative element is their Identity Aware Proxy (IAP), which works
synergistically with context-based access control. The access to resources is not implicitly
allowed for the user/device being simply part of the corporate network. Quite the reverse,
access is explicitly granted based on context and policy.

The BeyondCorp model authenticates the users on the application layer of the network.
There is a heavy reliance on this aspect since most of their applications and services are web-
based. Furthermore, as Google applications are mostly developed internally, combined with
their own existing SSO system, this has led to a successful implementation of the new
architecture. However, companies without heavy internal development or heavy reliance on
web-based services, will probably require a different model. Google has since productized
BeyondCorp’s evaluated model as BeyondProd, which is a cloud native security solution [37].

Overall, if an organisation has multiple publicly exposed services with several cloud-based
applications accessed by public users, then this is likely to be a suitable model. However, we
note that Google only applies this on their cloud infrastructure and, to the best of our
knowledge, currently no other organisation offers a similar solution. As a result, applying the
BeyondCorp model for a non-cloud environment is not straightforward, and the relocation of
several core management controls may be required.

2.2.6.2.2 Forrester Zero Trust eXtended (ZTX)

In this model, as depicted in Figure 11 [24], a centralised segmentation engine manages and
isolates the enterprise network into multiple Micro Core and Perimeter (MCAP) segments,
when and where appropriate. As such, it can enforce traffic rules in between MCAPs. Figure
11 shows the NGFW being used as a segmentation engine to form multiple MCAPs. Such an
approach can be mapped back to the “Resource Portal” model outlined by NIST.

WL MCAP |
— 3

=7
o | =

DB
MCAP

=l

e (5] g -

G
I

!

@:'
’ =
v & ey
MGMT sim NAV »
Secver DAN MCAP WWW MCAP

Figure 11 - Forrester's NGFW used as a segmentation engine forming MCAPs [23].

As highlighted in Table 1 in reference to the Resource Portal model, the required changes
in components for this model prior to implementation are minimum or near zero, hence, it
can be an attractive choice. However, this model makes use of the information available in
the data packets to enforce trust. This approach is less “granular” compared to the
architectures that integrate tightly with endpoints and services. Another drawback of this

40

approach is that users cannot be directly authenticated with the NGFW segmentation engine.
More specifically, the segmentation engine is not capable of enforcing policies based on the
contextual information of users and devices.

Many organisations are already deploying a resource portal architecture, which can be
seen as a good match for this ZTA. This architecture alongside the enclave-based, is likely to
be the best for, and the easiest to deploy in, a Bring Your Own Device (BYOD) or an Internet
of Things (loT) environment, because the devices can be placed within their own enclave or
MCAP. However, an important shortcoming is that the access control mechanism in this
model can be less fine grained than in other architectures. In addition, there is a dependency
on further integration with other technologies such as Identity and Access Management
(IAM), device management systems or VPNs, to achieve the same security levels as other
architectures.

2.2.6.2.3 CSA’s Software Defined Perimeter (SDP)

The concept of SDP was introduced by a non-profit organisation called the CSA in 2013
[33]. Since then, several SDP based solutions have been developed, and have been proven for
large organisations holding its fair share in the market. Using the NIST high-level models to
conduct a mapping, SDP would match the Enclave-Based Deployment Model. Namely, an
agent is required to be installed at the endpoint and the service, however, there is no
integration with the target resource or the target application. Therefore, the agent itself can
be taking on the role of a gateway on the service side.

We can find some similarities between this model and the Forrester ZTX approach. For
instance, like the NGFW solution described in the previous point, the SDP approach performs
network segmentation as a central firewall. It undertakes the role of an overlay network
beyond the current network infrastructure. User authentication and identity verification
happen at the SDP server, therefore, instantly creating a VPN tunnel between the subject
resource and the authenticated user. Figure 12 shows the described SDP controller
connection handling process. As can be seen, the workflow is split into control and data
channels, and eventually results in a direct VPN tunnel between SDP hosts.

1. Controllers on line

4. List of authorized
SDP Controller Accepting Hosts determined

5. Accept communication
from Initiating Host

3. Mutual VPN 7 N T
to Controller //’ " S
6. Receive list of IP’s Accepting SDP Host
of Accepting Hosts P
Initiating SDP Host 7. Mutual VPNs \\ 2. Mutual VPN
™, to Controller

N,
S

----- Control Channel Accepting SDP Host

w=ss Data Channel

Figure 12 - SDP Reference Workflow [32].

41

The key difference, however, relies on how a VPN and the SDP approach manage and
establish the overall trust towards users and devices. For instance, in case of VPN, once a user
and/or a device is authenticated and authorised, he/she can access most of the network with
trust being implicitly applied by default considering the network location. On the other hand,
once a user and/or a device authenticates itself with the SDP controller, a set of role-based
access, attributes, and context of user trust is enforced. An important advantage of SDP,
nonetheless, is the elimination of the integration with the subject resource (or application).
At the same time, installation, and configuration on both the resource and endpoint are still
required. For details on the real-world ZTA implementations mapped to NIST deployment
models, see Table 2 below.

Conclusively, SDP is a new concept being continuously improved, and the relevant market
offerings are not yet mature enough, at least at the time of this writing, though they have
reached a point where enterprise adoption can be achieved with no significant issues or
complications. Moreover, SDP does not require a costly integration with the applications, due
to its inherent architecture principle. Finally, SDP can be seen as a perfect match for
organisations with multiple loT systems, or operational technology in general since the
gateway can act on behalf of the mentioned devices. Barcelo et al. [38] and Anggorojati et al.
[39] confirmed this via the SDP and IoT/OT integration and heavy testing.

2.2.6.2.4 VMWare NSX

The deployment based on VMWare NSX is another real-world ZTA deployment. However,
this model is mainly referring to organisations that already leverage the Virtual Desktop
Infrastructure (VDI) [31]. The model matches the Device-Agent/Gateway Deployment model,
although it assumes that all resources are based on virtualised systems, namely, the
applications are hosted on virtual servers. A reference zero trust architecture using NSX is
shown in Figure 13.

| L e B R]

! I Finance : ! B =R H ! B Engineering |

H 1, i 3 1

)]]

Perimeter firewall : + : : U :
; } 3 g i DMZ

: il - i

= d & :

Inside : : : :: :

firewall 1 1 - .
H & i i App

: i} il i

]

= | | |

H i iy i 3 1

: HIl HIlL H

i
i 'y ' § ' DB

: P B ;

: i o ;

Services e ————— e | b e ’

VM VM VM VM VM
AD NTP DHCP DNS CERT

Figure 13 - Reference ZTA using NSX [30].

As depicted in Figure 13, the workflow of this architecture starts with a user authentication
step on the VDI server. Thereafter, a remote session on a virtual desktop is established and

42

presented to the user. The virtual server and the virtual desktop are the two core components
of the NSX based approach. In this case, NSX acts as a firewall where policy decisions and trust
management are performed and enforced throughout the network as a whole and in multiple
points. Hence, the administrative team can perform access control fine graining in manifold
segments, which can be also referred to as micro-segmentation [31] .

A major advantage of this approach is the concept of the virtualised desktop. Particularly,
the administrator group, who control the full Virtual Machine (VM) or virtual desktop fleet,
could refresh or rebuild it on a frequent basis (e.g., at night). Therefore, if we assume an
adversary compromising an endpoint via one of the most common adversary methodologies,
such as phishing or spear phishing, establishing a persistent foothold would be highly unlikely.
Hence, this approach would disrupt the so-called cyber kill chain [40] at an exceedingly early
stage. On the other hand, most organisations are already deploying a highly virtualised model,
but switching into a VDI-based architecture would be costly. In contrast to the SDP approach,
this model may be a bad choice for loT systems due to the virtualisation requirement in the
sensors and OT.

Finally, building upon Table 1, we map the real-life ZTA implementations to the NIST
deployment models, and provide Table 2 with summarised information.

Table 2 - Real-World ZTA implementations mapped to NIST deployment models.

NIST PEP Agent Control/ Contextual Real-World
Deployment Location Required Data plane information / fine Implementation
Model Integration grained access
controls

Device Attachedto System & Highly-available —yes =~ Google’s BeyondCorp &
Agent/Gateway- resources resource Tight VMWare NSX
Based

In front of Limited availability — Software Defined
Enclave-Based resources System Medium not possible Perimeter
Resource Portal- In between Limited to zero — not NGFW / Forrester ZTX
Based system & None Loose possible

resources

43

2.4 Potential Solutions to The ZTA Endpoints Problem

Addressing the integrity of the endpoints, and detecting compromised endpoints are
necessary to improve the effectiveness of ZTAs. In this section, we review some potential
approaches and technical solutions to the ZTA endpoints problem.

2.4.1 Distributed Collaborative Intrusion Detection

Deploying Intrusion Detection Systems (IDSs) is a well-known approach to effectively
detect intrusions based on the anomaly caused by malicious or compromised devices. Hence,
it is one of the most promising solutions for problem in discussion. However, implementing a
standalone IDS is often insufficient in case of large companies due to the substantial number
of false positives and negatives. Shortcomings of standalone IDS systems have been studied
by Fung et al. [43], Duma et al. [44] and Weizhi et al. [45]. As a result, DCIDSs have been
proposed to improve the efficiency and availability of standalone IDSs.

Collaborative Intrusion Detection Systems (CIDSs) or Collaborative Intrusion Detection
Networks (CIDNs) are deployed to eliminate limitations [46] of standalone IDSs. CIDSs consists
of cooperating IDSs, using collective knowledge to achieve superior intrusion detection
accuracy. Furthermore, DCIDSs deal with various IDS weak cases, such as Distributed Denial
of Service (DDoS) attacks. Wu et al. [47] showed that in practice, compared to a standalone
IDS setting, CIDSs can reduce the number of missed alarms (to 1 from 7 cases), and they
managed to eliminate the number of false alarms in their test system based on Snort, Libsafe,
and a new kernel level IDS called Sysmon.

To make this paper as relevant to ZTA in relation to APTs context as possible, we focus
our review on three pillars of DCIDSs and the recent advances in the literature for each.
Specifically, (1) architecture, (2) alert correlation and (3) alert trustworthiness.

2.4.1.1 Architecture

DCIDSs can greatly reduce the rate of false positives and negatives by correlating and
analysing multiple suspicious pieces of evidence from diverse sources or sensors throughout
the network. There is also potential to decrease computational costs because the intrusion
detection resources can be shared between networks. An overview of a DCIDS is shown in
Figure 14 [48]. We notice a bidirectional communication in circular format, namely, any
detection and correlation unit can potentially connect and communicate with any other unit
on the network.

Each participating IDS in the DCIDSs architecture has two core functional units:
[0 Detection unit, which is responsible for the data collection locally.
[0 Correlation unit, which is a segment of the overall distributed correlation architecture.

It is worth noting that, despite the benefits brought into the defensive landscape from the
DCIDSs, the overall attack surface increases in these architectures, because of their
distributed nature. The attackers would have more IDS nodes to target to start working their
way towards a stealthy foothold establishment, or simply covering their tracks on a single
endpoint. The main security issue identified in the context of DCIDSs is the integrity of the

44

data shared among the IDS nodes, which can be incorrect/incomplete either because of lack
of trust (e.g., an IDS node refuses to reveal sensitive data) or the data is sent by a
compromised IDS node. Ensuring integrity of the shared data is crucial. Blockchain and the
distributed ledger technology can be a promising approach, which we discuss later in this
chapter.

Detection Unit
» | Correlation Unit ™~ \
/ ¢ ~
Detection Unit | Detection Unit
Correlation Unit | I —— Correlation Unit

’ \
/ < :

Detection Unit | - Y b Detection Unit

Correlation Unit RN — { Correlation Unit

\ \ /
\ | | /

Detection Unit | — Detection Unit
Correlation Unit |- [Correlation Unit

-~ »l)clecti(m Unil_) -
Correlation Unit

Figure 14 - DCIDS Reference Architecture [47].

Another issue in the context of DCIDSs is the dissemination of the alert messages and
shared data. Garcia et al. [48] in their study, proposed a DCIDS architecture that correlates
alerts from participating nodes effectively via a secure multicast infrastructure, which
demonstrated a great capability to detect attacks against and possibly even prevent them.
Their architecture was based on local IDS, called “prevention cells”, which detect and record
the attack patterns locally. Thereafter, the alert messages were exchanged between the local
IDSs to achieve a more effective detection rate.

To cope with APTs, Dash et al. [49] proposed a collaborative host-based IDS approach
which detects network intrusion using distributed probabilistic inference. Based on a
hierarchical architecture, they proposed three core components in their system: Local
Detectors (LDs), being the first component, which serve as a local version of the IDS, analysing
the endpoint state and relevant local traffic patterns, secondly, the Global Detectors (GDs)
capture the global views of potential attacks by analysing the information gathered through
LDs, using a probabilistic model and finally, the Information Sharing System (ISS) which acts
as a communication enabler between LDs and GDs via a gossip protocol. In addition,
approaches such as binary classifiers are used by LDs to analyse both the incoming and
outgoing traffic of the potentially compromised host. Alerts can be triggered if a pre-
configured threshold is crossed. The state of the overall security of LDs is constantly
transmitted to randomly selected GDs at predefined intervals through the ISS. Finally, the GDs
provide global monitoring based on the analysis from data collected from LDs.

45

This approach could be adapted for the zero-trust context. If an APT had compromised an
endpoint within a notional ZTA, or when the attacker had established a foothold on the
network, performed data exfiltration from the endpoint, and stolen available credentials, this
would be detected. However, detection would be relatively late since the data and credential
exfiltration would have already taken place.

2.4.1.2 Alert Correlation

We categorise the DCIDSs based on the alert correlation approaches. These generally
include the filter-based approach, the multi-stage approach, the similarity-based approach,
and the attack scenario-based approach. In the first case, a prioritisation of alarms takes place
based on the criticality of the protected system, while in the second case, the correlation of
alerts is based on the causality of former and latter alarms. The third case is simply based on
the similarities of alarm attributes. Finally, the attack scenario-based approach is based on
predefined attack scenarios.

Dain and Cunningham [50], presented an algorithm that can combine the alerts produced
by heterogeneous IDSs via a probabilistic approach. This approach uses three variations of
Bayesian Networks (BNs) for effectively detecting network intrusions. Specifically, in the
presented algorithm, the CIDS consists of multiple types of IDSs generating alerts, which are
converted into an acceptable machine-readable format, and then stored in a standard
Structured Query Language (SQL) database. The algorithm then reads the database,
categorizes, and relates the alerts into attack scenarios. As soon as new alerts are generated
in the IDSs and stored in the database, they are automatically checked against the constructed
attack scenario(s).

Cuppens and Ortalo [51] introduced Language to Model a Database for Detection of
Attacks (LAMBDA), an attack description language aiming to correlate alerts from various IDSs
to CIDSs. LAMBDA can be used to specify the pre and post condition of a target system.
Namely, what a system looks like before an attack scenario is launched, and how is it affected
after a successful attack scenario. As a result, a wide range of alerts are generated and
processed by LAMBDA that eventually are correlated to draw an outcome regarding an
ongoing attack scenario or not. During the specification, the overall attack scenario is
considered, including all possible threat events and threat types applicable to the target
system. In addition, the overall steps for detecting an attack, which might be different in each
attack scenario, and the verification of an attack are also considered.

Cheung et al. [52] proposed Correlated Attack Modelling Language (CAML), a modelling
language to detect various attack scenarios. Compared to LAMBDA, CAML is also based on
the specification of the pre and post condition of the subject system, however, it allows lower-
level specification and therefore, lower levels of details are delivered to the IDS nodes. In
addition, deep diving into the lower-level specifications provides CAML an advantage when it
comes to accurate decision making regarding an ongoing attack.

Templeton and Levitt [53] proposed another attack specification language for DCIDSs,
named JIGSAW. Like LAMBDA and CAML, their work is heavily based on pre and post
conditions of an attack and the subject target system. A major differentiation with CAML and

46

LAMBDA, however, is that JIGSAW intends to describe specific attacks on the threat event-
type level, namely attacks, rather than attack scenarios.

2.4.1.3 Alert Trustworthiness

Within a distributed collaborative intrusion detection network, it is imperative to maintain
trust between nodes, while also trust the alerts generated by participating nodes. As we
mentioned previously, DCIDSs can be particularly effective if IDSs share intrusion-related
information with each other; however, the validity and completeness of the information is
crucial. In some cases, this is prevented either by compromised devices, or the lack of
willingness, as in the case of different organisations to share. Intrusion Detection and Rapid
Action (INDRA), a DCIDS approach based on Peer-to-Peer (P2P) infrastructure by Janakiraman
et al. [54], proposed an authentication-based solution for alert messages. Specifically,
message authentication, based on digital signatures, is used to provide a reasonable level of
assurance that alerts are originating from a trusted node by using a central certification
authority to authenticate a node’s credentials. However, this does not guarantee the
completeness and correctness of the messages in the case of compromised nodes or benign
nodes that may refuse to ‘provide’ complete information. Finally, regarding scalability, the
central certification authority can be subject to bottleneck as the participating nodes increase.

Chen and Yeager built upon the previous work and proposed the use of “Web of Trust”
between participating nodes [55]. The concept is based on the reputation of the nodes, and
so the collection, exchange, and evaluation of all information between participants are fully
“transparent” to the nodes. Participating nodes can build, over time, a certain level of
reputation among themselves, which is ultimately the essence of P2P trust relationships. This
approach indeed amplifies the trust bonds required for the purpose of alert broadcasting, in
case of an intrusion, and as such it seems promising. However, there is still a problem
requiring further study. For example, if a peer takes the necessary time to build a high
reputation among the IDS network, then it could potentially broadcast malicious or forged
alerts.

2.4.2 Blockchain Based Intrusion Detection

Recently, blockchain has been widely investigated as an approach to achieve message
integrity in a decentralised or distributed network environment. Blockchain can be either
public or private depending on the group of authorised users. Blockchain is closely related to
DLT that refers to a database where records of decentralised and transactional data are stored
in a sequence (not necessarily grouped in blocks), in a continuous ledger spread through a
network and across multiple locations. Blockchain can be considered as a DLT subset, in which
batches of transactions are held in blocks, which in turn are linked with hash pointers in a
chain [56]. In continuation, each block contains the hash of the previous block in the chain,
and therefore, the integrity of each data set in the chain is preserved.

In the following, we review how blockchain has been used to ensure or improve the
integrity of shared alert messages and for enforcing trust in IDSs. We start by looking at
blockchain types (permissioned vs. permissionless), the consensus mechanisms and finally the

47

related works in the literature for blockchain-enabled IDS. Note that blockchain has been
investigated mainly in the context of CIDSs to achieve the integrity of the information shared
among the IDSs.

2.4.2.1 Blockchain Types

By drawing an analogy between blockchains and databases, as Wiist et al. [57], we can
refer to the blockchain participants as readers and validators, or appenders. A reader refers
to a role or entity who can read, analyse, or audit the blockchain. A validator (appender) on
the other hand, describes a role or entity that participates in the consensus protocol, collects
transactions into a block and finally appends the block to the blockchain. Based on the roles
of the participants, we can differentiate between permissionless and permissioned
blockchains.

2.4.2.1.1 Permissionless Blockchains

In permissionless blockchains, the peers can leave or join the network at any moment,
whether they possess the role of a reader or a validator. One of the most interesting parts of
this setup is the elimination of a central entity that controls membership overall. Therefore,
the written content onto such blockchains is readable by any peer at any given moment. As
of today, however, there are implementations using cryptographic primitives that allow for a
permissionless blockchain to hide privacy related information. For instance, the Zerocash
[58], which acts as a privacy preserving version of Bitcoin. Two prevalent examples of
permissionless blockchains include Bitcoin [59] and Ethereum [60].

2.4.2.1.2 Permissioned Blockchains

In this setup, a central authority performs the decision making and relevant attribution to
peers participating in the read or append roles within the blockchain. Most prevalent
examples of permissioned blockchains now are Hyperledger Fabric [61] and R3 Corda [62].
This approach is leaning towards enterprise grade adoption, due to its inherent
implementation of a central authority managing peers and their identities. Considering the
overly sensitive and confidential use case of blockchain in cyber security and specifically in
intrusion detection and prevention, it becomes evident that the permissioned blockchain
implementation has better attributes than the permissionless.

It is well-known that blockchains impose computation overhead and extra cost (due to the
hash calculations and consensus protocol), and the security of private blockchains greatly
depends on the number of the participants. While private blockchains have been
implemented by businesses in different sectors such as banks, healthcare, and supply chains?,
mainly to verify the integrity of contracts and secure access to health data, it is still important
to see that there are some cases when blockchain is not a suitable solution. Specifically, in
our case, we raise the following question:

1 Forbes, Blockchain 50, https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/blockchain-50/ (accessed March 2021)

48

Which conditions would make blockchains suitable for the intrusion detection context, and
in general, cyber security related use cases?

The “obvious” answer is when multiple entities lack trust in each other, while at the same
time wanting to interact with a system and are not willing to agree on a trusted third party.
To ease the decision process, Wiist et al. [57] provided a decision flowchart as shown in Figure
15, to help determine whether blockchain addition would be the correct technical solution of
a problem. Through a series of simple questions one can conclude if the addition of blockchain
would have an added value, and if that is the case, what kind of blockchain would be most
suitable (e.g., private, public, permissioned or permissionless).

Are there
multiple
writers?

Do you need

no Permissionless
to store state? i

Blockchain

known?

Are all Is public Public
writers verifiability Permissioned
trusted? required? Blockchain

yes

Private
Permissioned
Blockchain

Don't use
Blockchain

Figure 15 - Blockchain decision flowchart [56].

Wist et al. [57] also provided a performance evaluation among permissioned,
permissionless blockchains and a typical database. The results are summarised in Table 3
below, which can help system designers or architects with decision making on blockchain
implementations.

Table 3 - Properties of permissionless-permissioned blockchains and central database.

Permissionless Permissioned Central
blockchain blockchain Database
Throughput Low High Very High
Latency Slow Medium Fast
Number of readers High High High
Number of validators High Low High

49

Number of untrusted users High Low Zero

Consensus mechanism Mainly PoW BFT protocols None
Some PoS
Centrally managed No Yes Yes

In general, blockchain adds complexity, due to the use of consensus mechanisms.
Therefore, using a central database or centralised systems enhance the performance in the
sense of throughput and latency. On one hand, one can refer to Bitcoin, which is capable of
handling 7 transactions per second and can extend up to 66 with no compromise in security.
On the other hand, Visa International Service Association Inc. (VISA) an American
multinational financial services corporation, which operates a highly centralized system that
can manage throughput of approximately fifty thousand transactions. Conclusively, there is a
trade-off between scaling and throughput. Specifically, for a blockchain enabled IDS, how well
that system would scale to many validators with thousands of hashes as inputs (e.g., detection
rules) versus how much throughput such a system would produce in a predefined amount of
time. Such trade-offs should be considered when we try to incorporate blockchain elements
into intrusion detection.

2.4.2.2 Consensus Mechanisms

Assuming a blockchain enabled IDS, where multiple nodes function as peers are spread
throughout the network for monitoring, gathering and data correlation purposes, they must
reach consensus somehow. There must be an effective, practical, dependable, efficient,
continuous, and secure mechanism to guarantee that all events and alerts are received and
sent and are real and unaltered while all peer members concur to the status of the ledger.
That said, there are several consensus mechanisms providing such capabilities, each one with
their different attributes [63].

2.4.2.2.1 Proof of Work (PoW)

This serves as the most popular consensus protocol and was first introduced in Bitcoin.
PoW introduces the roles of the miners, those who are responsible to solve cryptographic
puzzles while competing for a reward. However, PoW is probably not suitable for blockchain
enabled IDS (within a private enterprise environment) as the concept of rewarded miners
would introduce huge security gaps and trust loopholes in the system.

2.4.2.2.2 Proof of Stake (PoS)

In this case, there is no competition between the miners. Instead, PoS relies on the
validators, who are pseudo-randomly selected to validate a block. In addition, it introduces
the so-called stake tokens, where, to participate in this sequence, the validator enrols by
staking some of his/her own tokens. Therefore, participants are rewarded based on the
number of staked tokens. Considering the blockchain based IDS use case, such a mechanism
would create a bottleneck as participants with a high number of tokens staked would
automatically have better chances of being selected for validation, which in turn creates a
security risk when we talk about events, rules, and alerts of an IDS.

50

2.4.2.2.3 Practical Byzantine Fault Tolerance (PBFT)

In PBFT, a predefined group of individuals function as validators. Participants must reach
consensus when a new event occurs while at the same time, they must verify that no data
has been modified during the event transmission. If 2/3 of the participants reach consensus,
then the decision is considered final.

2.4.2.2.4 Proof of Burn (PoB) & Proof of Capacity (PoC)

Like the above-mentioned mechanisms PoB and PoC are mining and reward-based
mechanisms, which, as outlined above, have an inherent disadvantage when it comes to
enterprise grade adoption for the use case of a blockchain enabled IDS, due to confidentiality
and integrity reasons [63].

To summarise this section, a comparative evaluation of the most widely implemented
consensus mechanisms can be found in Table 4.

Table 4 - Consensus mechanisms comparative evaluation [62].

Consensus Mechanisms PoW PoS BFT

Energy Consumption Requires high amount Requires less energy Requires less energy
of energy consumption consumption

Advanced Hardware Required Not Required Not Required

Requirement

Centralization Decentralized Partially Centralized Centralized

Double Spending Possible Difficult N/A

Attack

Scalability Not Scalable Scalable Scalable

Memory Requirement Significant due to Significant due to public Less than PoW or PoS

public ledger ledger

Security Attack with 51% is Attack with 51% not May have a single

possible possible point of failure

2.4.2.3 Related Works on Blockchain-Enabled IDSs

A universal architecture that incorporates CIDS with permissioned blockchain has been
described by Alexopoulos et al. [64], together with a design decisions analysis process
required when implementing such architecture. In this architecture, a set of intrusion related
alerts are defined as transactions within the blockchain. Then, using the consensus protocol,
all collaborating IDS nodes can verify the validity of the transactions prior to conveying them
into a block. Eventually, the stored set of alerts shall be tamperproof within the blockchain.
However, neither implementation details nor practical results are provided in their paper,
hence, the idea remains explicitly theoretical.

51

Similar work at a theoretical level was published by Meng et al. [65], where they studied
data and trust management challenges on current IDS architectures. The authors delivered
the first review corresponding to the intersection of intrusion detection systems and
blockchain technology, while also outlining the prospective application of such collaboration.
One of the key conclusions they made was that the blockchain technology can greatly assist
in enhancing an intrusion detection system’s core tasks such as trust computation, exchange
of alerts and data sharing.

A step further in detecting adversaries via blockchain enabled cyber defence capabilities
was addressed by Li et al. [66]. They specifically studied the integrity property in CIDS, by
considering a highly likely scenario which we often encounter nowadays, namely, insider
attacks such as a malicious node generating forged signatures and then sharing it throughout
peers. If that scenario becomes a reality, intruders could potentially remain undetected,
which would greatly affect the effectiveness of a CIDS. In addition, the authors used the
blockchain technology to solve the subject issue in a verifiable manner and evaluated the
results via a so-called Collaborative Blockchained Signature-Based Intrusion Detection System
(CBSigIDS) development, a generic framework of CIDS based on blockchain. Figure 16 depicts
a high-level overview of the proposed blockchain based CIDS framework.

CIDN — IDS Module - - IDS Module -

Node , !] - i :
. \ ! " ! '
Major Comp N Gy ¢) -
: L L -
. : ! ' ' '
' A— P :
! — PR :
1 ' H
! '
CIDN
Blockchain e R p— e
Layer OO s A s s e s A A ..

Figure 16 - High level overview of blockchain based CIDN [62].

On the other hand, a more practical approach was proposed by Golomb et al. [67], namely,
a Collaborative loT Anomaly Detection (CloTA) framework. This is a lightweight framework
that leverages blockchain technology to accomplish collaborative and distributed anomaly
detection. In this framework, blockchain is being used to incrementally feed an anomaly
detection model and establish consensus among loT devices. Eventually, the authors created
their own distributed loT simulation platform consisting of 48 Raspberry Pi’s to evaluate and
demonstrate CloTA’s ability to enhance security via blockchain.

Conclusively, we can say that the previous works validate, mainly at the theoretical level,
the potential of blockchain enhancing intrusion detection. There is, however, a practical

52

demonstration of the above conclusion performed by Golomb et al. [67] with CloTA, although
its focus and scope are limited to loT. Moreover, an loT network is different from an
enterprise network in the sense that it provides less control maturity compared to the current
applicable control frameworks and standards. Besides the immense potential of using
blockchains in intrusion detection (and prevention), there are probably other advantages that
require further research. For instance, a blockchain enabled IDS can be a trusted source of
logging, which in turn can further enhance and maximise trust in auditing.

One of the core principles of ZTA, namely, “never trust but verify”, seems to match greatly
with blockchains’ inherent attribution where every transaction must be validated, consensus
must always be achieved, while ledger’s immutability seals integrity.

2.4.3 The Intersection of ZTA and Blockchain-Based IDS

In this section, we build upon the ZTA core principle of assuming breach to discuss how
blockchain-based IDS can be employed. For this discussion, we use an example of a ZTA
enabled notional bank network, where we assume that a single endpoint has been
compromised via a spear phishing attack. As per our review, and the abovementioned
assumption, the lateral movement is highly unlikely once ZTA is in full force [6], adhering to
all principles and all mandated controls in place. However, the endpoint itself remains
compromised, together with the already authenticated and authorised sessions of the subject
user in the endpoint. Moreover, the adversaries can abuse the authenticated and authorised
sessions of the user and extend their attack to the systems in reach of the subject user.

Based on the review (see 2.4.1 Distributed Collaborative Intrusion Detection systems
would be able to detect such attacks via a plethora of methodologies. Specifically, the attack
scenario-based approach for alert correlation when used by DCIDS is an effective and efficient
approach for adversary detection. A major shortcoming can be identified, however, with this
approach. In the context of ZTA and APTs, (1) the adversaries characteristically use legitimate
tools in a malicious manner, and (2) they also use advanced evasive techniques against the
standard controls (e.g., signature based / heuristic-based anti-virus) Therefore, the attack
scenarios can fluctuate greatly. Until the attack scenario-based approach eventually
constructs the relevant and matching scenario, adversaries probably have already established
a stealthy foothold into the network, deeming the detection process ineffective, again, in a
ZTA context. In addition, the integrity of DCIDSs nodes is questionable as per the literature
review in certain scenarios. Our assumption of an APT compromising an endpoint is subject
to the same scenario since a determined adversary would likely try to influence the integrity
of a node and/or tamper with logs and audit trails to render the attack invisible.

Based on the review (see 2.4.2 Blockchain Based Intrusion Detection, greatly increases the
integrity of the audit trail and log files, as well as the overall integrity of the information stored
in the blocks themselves. Additionally, blockchain could potentially enhance the efficiency of
intrusion detection by extending the immutability aspect of the context of each single
identity. Specifically, zero trust security health checks can be used to create the so-called
endpoint context. This context, then, could be further fortified by the distributed ledger
technology to achieve integrity. ZTA, DCIDSs and blockchain technology seem to have a great
intersection and many potential use cases. In fact, some use cases could even be extended
beyond detection, to implement blockchain based prevention capabilities.

53

2.5 Summary and Discussion

2.5.1 Challenges to the Integration of Blockchain and ZTA

As we can see, ZTA and blockchain take a different approach on trust management,
security, and architecture overall, in contrast to the traditional, perimeter-based approach.
Table 5 shows the previously mentioned intersection elements in ZTA and blockchain, in
contradiction to the traditional perimeter-based approach.

Table 5 - ZTA & blockchain intersection elements.

Traditional Perimeter- Zero Trust Blockchain
Based Architecture Architecture
Overall Approach Centralised Decentralised Decentralised
Architectural focus Perimeter-Focused Borderless / Distributed
Distributed
Infrastructure trust level | Trusted or semi-trusted in ~ Untrusted or trust Untrusted
some cases but verify in some
cases

In perimeter-based approaches, we have the element of centralisation, and the
architectural focus is to protect the perimeter. This means that trusted data and assets are
placed behind an extremely strict perimeter, assuming that anyone and anything inside that
perimeter is trusted, either partially or fully, to access those resources. Ultimately, maximum
effort is put into making sure that adversaries will not be able to get beyond that perimeter,
while at the same time authorised and authenticated users can still access the data and
resources behind it.

This is vastly different from ZTA and blockchain based technologies, which both run in a
borderless and decentralised manner. Since there is no perimeter on both ZTA and
blockchain, security comes from efficient and effective management of trust. In fact, for
blockchain, security comes from the incredible amount of repetition because every node is
being asked to keep the same copy of the ledger and periodically reach majority consensus
on what the proper data in that ledger should be. As such, the amount of work that an
attacker would have to do is practically impossible if adversaries wanted to change, hack, or
alter the ledger. That said, it seems that blockchain and ZTA can complement each other in
various use cases, since both share at least some fundamental principles.

Determined attackers, such as in case of APTs, with the necessary knowledge and
resources have demonstrated their ability to compromise various endpoints with ease, and
plant malware to establish footholds into corporate networks. The different ZTA deployment
models (see 2.2.5 Zero Trust Models) and implementations (see 2.2.6.2 Real World ZTA
Implementations) are great instruments in the hands of defenders, in their effort to prevent
lateral movement. The result is a highly secure, trust less and borderless architecture with
fine grained identity-based access controls always seeking to verify. However, the endpoints
are still the Achilles heel of ZTA. Adversaries can potentially tamper with ZTA’s security health
checks once an endpoint is compromised, therefore leveraging the already authenticated and
authorised user’s session.

54

2.5.2 Future Directions

Blockchain technology can enhance ZTA implementations in several use cases. As
described in 2.4.3 The Intersection of ZTA and Blockchain-Based IDS, a blockchain-based
intrusion detection system could help in amplifying the detection capability. At the same time,
it is possible to fortify the backend storage of relevant logs and audit trails in the blockchain,
providing immutability. Blockchain-based authentication could also be used to enhance
remote working. For instance, a blockchain based layer could be added on top of an SDP to
strengthen the endpoint's integrity. Enhancing the prevention capability with blockchain is of
equal, if not more, interest. Combining a blockchain-based intrusion detection and prevention
system would ultimately augment ZTA onto the endpoints, significantly enhancing the
detection and prevention capabilities.

However, issues such as performance, computing overhead and choosing the right
implementation of blockchain remain the main questions to adopting this approach. These
guestions need further research to answer sufficiently.

2.6 Conclusion

In this chapter, we provided a state-of-the-art review on zero-trust and ZTAs, which are
relevant and emerging research and development areas. Based on 53 papers in literature, we
reviewed several aspects of the zero trust approaches and open questions. We discussed the
main differences between traditional perimeter-based models and zero trust approaches. In
addition, the core tenets and core capabilities of the zero-trust concept were presented, with
different existing theoretical and real-world implementations of ZTAs.

Thereafter, based on examples, we discussed the potential security problems with current
ZTAs, and outlined some potential and promising approaches that can be used to tackle those
problems. Specifically, one of the approaches we explored is the possibility of adapting DLT
and blockchain to verify the integrity of the endpoints in a ZTA, which in turn answers our
first research question (RQ1). Based on the state-of-the-art in this area, we concluded that
DLTs and blockchain can play a critical part in augmenting one of the core tenets of zero trust
architectures, namely, the assumed breach mindset. However, their implementation requires
thoughtful consideration due to computation overhead and the potential trade-offs between
security and usability.

55

Chapter 3: Design Phase — Design Principles & Core
Concepts

3.1 Introduction

Several future research directions were identified during the analysis phase. Among them,
a blockchain enabled intrusion detection, and possibly prevention system that would
augment ZTA on endpoints by building and extending upon the core ZTA tenet, viz., the
assume breach mindset. Briefly, by adopting the assume breach mindset, the users and their
endpoints should be considered as compromised.

The pandemic and COVID-19, alongside the cloud technologies emergence, provided for
a new reality where the majority of corporate endpoint fleet resides anywhere in the world,
so does the corporate data and services. ZTA strips trust out of identities, endpoints, data,
processes, and transactions within a corporate network in a primary effort to stop lateral
movement once the corporate network has been breached, or assumed breach, and foothold
has been established [68].

Considering the potential research directions highlighted during analysis phase in
conjunction with the answer for (RQ1): Are there common attributes between ZTA, DLTs and
blockchain? during the same phase, we believe a blockchain enabled intrusion detection and
prevention system (BIDPS) should be able to detect and prevent in many cases subject to
further research and evaluation, adversaries trying to compromise or already have
compromised an endpoint. This provokes new research questions:

(] (RQ2) How can we solve the highlighted Achilles Heel of ZTA? Namely, will the
proposed BIDPS detect and prevent attacks against endpoints prior the 10" stage of
MITRE’s ATT&CK threat knowledge base, thus proving effectiveness?

] (RQ3) How can we augment ZTA on endpoints using DLTs and blockchain?

3.2 Design Principles

In section 2.4.2 Blockchain Based Intrusion Detection, we performed research on the basic
characteristics of blockchains, DLTs, and reviewed the relevant works. The outcome is four
key design principles based on extensive research by scholars, industry best practices, and
considerations in the design of blockchain-based systems, including intrusion detection and
prevention systems. The input from the analysis phase is also clear when it comes to designing
the BIDPS, it is therefore imperative to adhere to the following design principles and rationale:

1. Permissioned & private blockchain:

Cachin et al. [74] introduced permissioned blockchains, which restrict participation to
a predetermined set of nodes with known identities. They discussed the applications of
permissioned blockchains, such as supply chain management, healthcare, and financial
systems. Chapter 8 of their book covers the key features, benefits, and challenges
associated with permissioned blockchains, including security considerations for
enterprise grade systems that run on public and permissionless blockchains, as opposed
to private and permissioned.

56

Androulaki et al. [75] presented Hyperledger Fabric, an open source blockchain
platform designed for permissioned networks. They provided insights into the
architecture, consensus mechanisms, and privacy features of Hyperledger Fabric. The
paper also discusses the use cases of Hyperledger Fabric in industries such as finance,
supply chain, and healthcare, highlighting its capabilities in enabling secure and efficient
business networks.

Singh et al. [76] conduct a comprehensive survey on blockchain consensus protocols,
including those used in permissioned blockchains. They categorize and compare different
consensus mechanisms, such as Practical Byzantine Fault Tolerance (PBFT), Raft, and
Proof of Authority (PoA). The survey explores their characteristics, performance,
scalability, and fault tolerance, providing a comprehensive understanding of consensus
protocols being suitable for permissioned blockchains according to business need. The
privacy, security and regulatory risks of a public and permissionless blockchain network
was also highlight in a similar manner in the work of Litoriya et al. [77], They stress om
the importance of a private and permissioned setup specifically for the financial services
sector as being highly regulated, after conducting and extensive survey on the adoption
of blockchain technology, studying the obstacles but also the opportunities.

Irrefutably, a permissioned and private blockchain provides a controlled environment
for the BIDPS, ensuring the privacy and confidentiality of corporate data. A permissioned
blockchain framework allows organizations to define access controls and restrict
participation to known entities. This enables enterprises to control who can join the
network, verify transactions, and access sensitive information. By implementing
permissioned access, organizations can ensure that only trusted participants with the
necessary authorization can contribute to the IDPS, reducing the risk of malicious actors
infiltrating the network.

Consensus protocol must not require a native cryptocurrency:

Bano et al. [78] provided an overview of consensus mechanisms in the age of

blockchains. They discussed various protocols, including Proof of Work (PoW), Proof of
Stake (PoS), PBFT, and Delegated Proof of Stake (DPoS), examining their strengths and
weaknesses. The paper explores consensus properties, such as safety, liveness,
decentralization, and scalability, without assuming a dependency on native
cryptocurrencies specifically designed for private sector.
Castro and Liskov [79] propose Practical Byzantine Fault Tolerance (PBFT), a consensus
protocol that tolerates arbitrary faults in distributed systems. PBFT is widely regarded as
a foundational algorithm for Byzantine fault tolerance and has influenced the design of
subsequent consensus algorithms.

Kevin Werbach in his work named “Trust but verify” elaborates on why blockchains
must be on the right side of the law while abiding by the local rules, laws, and regulations.
Specifically, avoiding the use of a native cryptocurrency in every business use case, to
disincentivize the user from potentially becoming malicious insider [80].

Buterin et al. [81] presented Ethereum, a decentralized platform for executing smart
contracts. They introduce the Ethereum Virtual Machine (EVM) and its execution model.
The paper emphasizes Ethereum's use of PoW as the consensus mechanism, which does
not require a native cryptocurrency but instead relies on computational puzzles to secure
the network and validate transactions, thus enabling business cases without relying on a
user incentivization model.

57

It is therefore evident that the consensus protocol must not require a native
cryptocurrency to reduce risk and attack vectors. Opting for a consensus protocol that
does not require a native cryptocurrency mitigates risks and potential attack vectors
associated with managing and securing a cryptocurrency ecosystem. For instance, the
Practical Byzantine Fault Tolerance (PBFT) consensus algorithm which is widely used in
permissioned blockchains. PBFT ensures Byzantine fault tolerance by requiring a two-
thirds majority agreement among network participants. This consensus mechanism
eliminates the need for resource-intensive mining processes and reduces the risk of 51%
attacks that can compromise the integrity of the blockchain. By avoiding native
cryptocurrencies, the focus can be on the security and performance of the BIDPS rather
than managing complex economic systems.

Smart contracts must be authored in general-purpose programming languages:

Peter Hegedus [82] analyzed the complexity of Ethereum smart contracts developed
on Solidity and focused on the EVM bytecode and its inherent challenges. They propose
metrics to quantify contract complexity, including bytecode size, control flow complexity,
and data access complexity. The study sheds light on the potential risks and
vulnerabilities associated with complex smart contracts and therefore suggest the switch
to general-purpose programming language to boost adoption in the first place.

Kuswaha et al. [83] investigated the security of Solidity, the programming language
used for developing smart contracts on Ethereum. They analysed vulnerabilities,
compiler bugs, and unsafe code patterns, identifying potential security risks and
suggesting best practices for writing secure contracts. The paper provides insights into
common pitfalls and potential attack vectors in Solidity programming language. This is
due to the inherent complexity of a new programming language and technology. The use
of general-purpose programming languages is advised by the authors to avoid both
potential security gaps, but also to enable a broad audience of developers to participate
into the expansion and development of blockchain ecosystems where the use case
demands so.

Androulaki et al. [75] present the Chaincode Development Guidelines for Hyperledger
Fabric, focusing on smart contract development in the context of permissioned
blockchains. The guidelines cover best practices for authoring chaincode (smart
contracts) using general-purpose programming languages, such as JavaScript, Golang,
and Node.js. They provide recommendations on code organization, security, and
performance optimizations, making it easier for enterprises to develop robust and secure
smart contracts. Such guidelines provide the foundation for blockchain adoption in the
enterprise world.

Decisively, enabling smart contract development in widely adopted general-purpose
programming languages offers numerous benefits for the BIDPS. For example, the use of
JavaScript, Golang, or Node.js allows organizations to leverage existing developer
expertise and well-established programming ecosystems. Support of chaincode (smart
contract) development in various languages, including JavaScript and Golang, is an
excellent example. With a broader pool of developers proficient in these languages,
organizations can accelerate smart contract development and leverage existing libraries
and frameworks. This reduces the barrier to entry and facilitates collaboration, ultimately
leading to faster and more robust smart contract implementations for the BIDPS. This
ultimately means that most enterprises will already have the required expertise to

58

develop smart contracts without specific training, as opposed to, for instance, Solidity
used by Ethereum.

4. Open-source, enterprise-grade performance, and scalability:

Luu et al. [84] proposed a secure sharding protocol for open blockchains, addressing
the scalability challenge by dividing the network into smaller partitions called shards.
They present a comprehensive analysis of sharding techniques and discuss their benefits
and limitations. The paper provides insights into the design considerations and security
guarantees of sharding protocols.

Pandey et al. [85] investigated the performance and scalability of blockchain
consensus protocols in real-world applications. They evaluated various protocols,
including PBFT, PoW, and PoS, based on parameters such as transaction throughput,
latency, and network overhead. The study provides a comparative analysis of consensus
algorithms, enabling a better understanding of their performance characteristics when it
comes to enterprise use. The authors conclude that scalability is a necessity. Namely, the
platform must be able to handle more transactions and more nodes with either native or
custom optimizations, for successful enterprise adoption.

Gervais et al. [86] focused on the scalability of blockchains and propose optimizations
to improve performance. They address issues related to transaction processing and
validation, suggesting techniques like parallelization, pruning, and compression. The
paper provides insights into the practical challenges of achieving enterprise-grade
performance in blockchain systems. The authors also provide relevant guidance in
achieving enterprise grade performance and discuss several platform performance
related characteristics.

Conclusively, choosing an open-source blockchain platform with enterprise-grade
performance and scalability is vital for an effective BIDPS. An open source blockchain
platform, provides a rich ecosystem of tools and resources for building enterprise
applications. Organizations can leverage the extensive developer community,
documentation, and well-tested infrastructure components to build a performant BIDPS.
Additionally, the platform must be known for their scalability, and must be capable of
handling thousands of transactions per second, making them suitable for enterprise-
grade applications. Scientific research backing or evaluation capability or benchmarking
adds credibility and ensures that the chosen platform has undergone rigorous testing and
evaluation, giving organizations confidence in its performance and scalability.

Although the industry provides already a plethora of solutions, they are primarily targeting
use cases that do not serve the corporate world. However, there are solutions built for the
private sector by design, as seen in Figure 17. According to Blockdata [69] Hyperledger fabric
is the most used blockchain technology amongst the top 100 institutions and holds the
greatest adoption by far. Moreover, compared to the next two available solutions Quorum
and Corda, Hyperledger Fabric (HPLF) is still open source, therefore HPLF [70] satisfies all the
above design principles and was chosen as the selected platform.

59

BLOCKDATA TOP 10 TECHNOLOGIES USED BY THE TOP 100 INSTITUTIONS E

26
B3 Microsoft
Alphabet
) NOVARTIS
dils AIA 18
TOYOTA) shopify
0Cs i P PayPal
Honeywell 1NVIDIA
S | SR
oracLe || U5
Yy
SAMSUNG = @shell n
Walmart [Lowes |
amazon SAMSUNG accenture 8
moderna | | Alphabet JPMorgan
2
BHP M| | 0, novarms | | B Microsoft | | e
VISA G2 amazon LVMH accenture
CATL || svicosot || & || E
[SAPGS 3 3
Y Gt VISA r;'\;) = | | S 2 2 2 2
t:o MERCK 2 -":" e & rovora ‘% BlackRock
Nestie 5 | | Ceetity || @sven reine e iz || P PayPal || Exonmoil | | £ SARd
- o
abbvie || € merek || < Citl|| coovie CItl| | 52 microsote | | e = s
e é @Quorum c-rda & mediLedger '\ AXON bitcoin DATA ANTCHAIN @ MultiChain

BLOCKDATA IS A CB INSIGHTS COMPANY WWW.BLOCKDATA.TECH | INFO@BLOCKDATA.TECH

Figure 17 - Top 10 technologies used by the top 100 institutions [68].
3.3 Core Concepts

Hyperledger Fabric offers substantial confidentiality, integrity, resiliency, scalability, and
flexibility. This is achieved through a modular architecture which underpins the overall
distributed ledger solution utilized by the Hyperledger Fabric platform.

3.3.1 Blockchain and DLT

In the context of a private permissioned blockchain, every authorized entity involved in
a transaction is enabled to know with certainty “what” and “when” happened. In addition,
they can confirm that all participating entities receive the same output without the need for
an intermediary to provide assurance, and without the need for subsequent data
reconciliation. The two terms, “blockchain” and “DLT” are often used interchangeably and to
understand blockchain, it is imperative to understand DLT, the framework that underpins it.

DLT is a decentralized database managed by multiple participants, across multiple nodes.
Blockchain is a type of DLT, where transactions are recorded with an immutable cryptographic
signature called a hash. All transactions are gradually arranged into blocks where every block
contains the hash of the previous block, and as such they are chained together. Therefore,
distributed ledgers are usually called blockchains.

Blockchains are distributed by design and bounded to be collaborative due to the
consensus mechanism but also due to the ledger’s replication across many participants.
Moreover, they are also inherently immutable because of the information recorded on-chain
is append-only. This is accomplished by applying cryptographic techniques, which in turn they
provide guarantees on transactions committed to the ledger cannot be modified in any way.
For this reason, participants are always assured that information has not been altered after
the fact, and therefore blockchains are often referred to as “systems of proof” [71].

60

3.3.2 Permissioned versus Permissionless Blockchains

Permissionless blockchains are governed by two core principles. First, all participants are
anonymous. Second, anyone can virtually participate. Therefore, trust cannot exist in such
case besides the inherent immutability provided by the blockchain itself. This trust deficiency
in permissionless blockchains is mitigated using “mined” native cryptocurrencies or introduce
transaction fees as a financial incentive to counterbalance the enormous costs of participating
in a proof of work (PoW) based consensus mechanism, such as bitcoin.

In permissioned blockchains on the contrary, the participants are known, identified, and
in our case scrutinized as well. These governance model and principles generate an
undeniable and often pre-defined amount of trust depending on the scrutinization level.
Moreover, in a permissioned blockchain two or more entities that do not fully trust each
other, are provided with a secure way to perform transactions. Ultimately permissioned
blockchains rely on the identity of the participants and as such they can use consensus
protocols that do not require costly and resource intensive mining activities. From security
perspective and considering the permissioned context where identities of participants are
known, there are two additional benefits. First, the risk of intentional introduction of
malicious code to the network through a smart contract becomes highly unlikely. Next, every
transaction, modification of network configuration or smart contract deployment is recorded
on chain followed by the relevant endorsement policy. This means that, a malicious
participant can be easily and quickly identified compared to being completely anonymous,
therefore greatly speeding up the incident handling process [71]. Finally, and building upon
Table 3, in Table 6 we compare the discussed attributes of permissioned and permissionless
blockchains to those of a traditional database.

Table 6 — Permissioned-Permissionless Blockchains vs traditional database [71].

Permissioned
blockchain

Permissionless
blockchain

Traditional
database

Participants must verify No requirements, An administrator
their off-chain identity first. participants can freely assigns user
Identity Know your Customer participate with or credentials after
(KYC) and/or Anti Money without sharing tracking
Laundering (AML) along information. authorization.
with other conditions might
be required to participate in
the network.
Such information may not
be shared with other
participants.
Pre-defined participants Explicitly on-chain Monitoring of
might be able to undo or mechanisms manage the activity occurs
edit transactions. verification of centrally to
Governance Networks might depend on transactions and achieve
and off-chain dispute resolution resolution of conflicting compliance with
censorship processes (e.g., arbitration). data. internal policies.
resistance Transactions placed on
chain are practically
impossible to be reversed.
Technical Code can be either Open-source code An administrator
development proprietary or developed by implements
communities. software &

61

and adapted/contributed to open [J Updates / upgrades can be security updates

maintenance source. proposed by any subject to relevant
[l Contractual clauses might community member. licensing, on
force users/participants to [J Update implementation is behalf of user.
implement ultimate user’s decision.
updates/upgrades.

3.3.3 Smart Contracts

One of the core components when designing, developing, and implementing later the
test blockchain network are smart contracts. In the context of Hyperledger Fabric they are
often referred to as chaincode. Chaincode can be seen as a trusted distributed application
which acquires the necessary trust and security from the blockchain network and the
fundamental consensus among peers.

Despite the majority of existing smart-contract enabled blockchain platforms following
the order-execute architecture, Hyperledger Fabric utilizes an innovative approach named
execute-order-validate. Examples of the order-execute architecture are platforms such as
Ethereum [72] (based on PoW consensus), Tendermint [73], Quorum [74], and Chain [75]. The
consensus protocol of these architectures works in two phases:

1. Alltransactions are validated, ordered, and propagated to all peer nodes.
2. Each peer will sequentially execute the transactions.

It is imperative to note and understand that blockchains operating with the order-
execute architecture, and their smart contracts executing on top of the blockchain must be
deterministic, otherwise, it is highly likely that consensus will never be reached. Determinism
in the context of blockchains, simply put, means that if one enacts the same steps in a pre-
defined order, the same results as anybody else who follows the exact process should be
achieved. To eliminate the non-deterministic operations, the relevant platforms require that
the smart contracts be developed in domain-specific languages (e.g., Solidity [76]) or in
general, non-standard programming languages. As a result, developers would need to learn a
new programming language from scratch, which in turn might lead to programming errors
due to lack of experience, therefore introducing implementation as well as security risks.

On the contrary, the architecture used by Hyperledger Fabric named execute-order-
validate, addresses the shortcoming of order-execute architecture by splitting the transaction
flow into three phases:

1. All transactions are executed and checked for correctness, thereby resulting in
endorsement.

2. Next, transactions are ordered via the consensus protocol.

3. And lastly transactions are validated against an application-specific endorsement
policy prior committing them to the ledger.

Execute-order-validate architecture is a radical approach compared to the order-execute
architecture, for that in the former transactions are executed before even reaching final
agreement on their order. This results in non-determinism elimination as any possible
inconsistent outcomes will be filtered out before ordering. Because of that pioneering

62

differentiation, standard programming languages such as Java, JavaScript, Node.js, and
Golang [71] can be used.

3.3.4 Performance and Scalability

A blockchain platform’s performance can be affected by many parameters such as network
size and architecture, hardware limitations, and the transaction and block size. In the smart
contract section (chaincode) the two relevant architectures were discussed, namely the
order-execute, and the one that used on Hyperledger Fabric lab, execute-order-validate. In
the former architecture we highlighted that all transactions are executed sequentially by all
nodes, therefore performance and scale is inherently limited. Moreover, smart contracts
execution by all nodes means that the overall system demands complex safeguards to be in
place, for the protection against malicious contracts and to achieve a high degree of resiliency
[94].

In the latter architecture however, we highlighted that an endorsement policy indicates
which or how many of the peer nodes required to vouch for the correct execution of a subject
smart contract. Thereby every transaction must be executed only by the specific subset of
peer nodes required to fulfil the transaction’s endorsement policy. This results in parallel,
instead of sequential, execution eventually increasing the overall performance and scaling
capability of our lab setup. Finally, several research papers have been published [95], [96]
investigating and testing the performance of Hyperledger Fabric, while at the same time a
performance and scale working group introduced a benchmarking framework named
Hyperledger Caliper [97].

3.5 Conclusion

In this Chapter, we take into consideration the input of analysis phase and (1) draft two
new research questions, RQ2, RQ3, and (2) we draw the design principles for the BIDPS. Based
on the literature review, researcher’s experience, and industry specific requirements for the
BIDPS use case, it is evident that a successful and fit for purpose BIDPS prototype must adhere
to four key design principles. Namely, it must be permissioned & private blockchain, the
consensus protocol must not require a native cryptocurrency, the smart contracts must be
authored in general-purpose programming languages, open-source, enterprise-grade, and
scalable. Hyperledger Fabric meets all the design principles, where all the alternatives fail to
meet at least one of them, hence making it the best choice for our use case. We discussed the
core design concepts of Hyperledger Fabric and addressed all the design prerequisites that
will prepare and allow for a successful development and implementation phase afterwards.

63

Chapter 4: Development & Implementation Phase —
Prototype’s Development, Operating Network, and

Architecture

4.1 Introduction

The development and implementation phase consists of four core sections. The first
section describes the ZTA implementation, second is the hash-based blockchain-enabled
application whitelisting that is used as input to develop and implement the third section, the
blockchain network and the fourth section, the actual BIDPS application. Each of the four
sections presents in detail our development and implementation process for the four pillars
of the BIDPS, as shown in Figure 18, more specifically:

Mobile User(s) Notional
ATM Network

Public U;er(s)

,‘_ &W

U
Administration |

bank high-level architecture

hain Network

Server Popl / Services

P 4138

Vo e i

S

User Pool 4 WOrkforce

Mainframe

Payments / Isolated
Network

[é =

Figure 18 - Notional bank high-level architecture.

WIFI - :
[-R-1)) | Air gapped network -
: 3
' [= ':

Secure! GW

1. The ZTA where the BIDPS operates: we develop and implement a notional bank high-
level architecture and a remote employee working from home. However, it could be
any other remote location e.g., hotel, airport. The red dotted line from point nril.
“Remote User(s)” towards point nr.6 “Blockchain Network” represents the remote
employee connecting directly to the BIDPS without the need for VPN, leveraging ZTA’s
PEP. For a detailed description on how the ZTA and the PEP allow for the remote
employee to connect to the blockchain network, see Figure 19.

2. The hash-based blockchain-enabled application whitelisting: we develop and
implement an application whitelist based on existing encryption algorithm to serve as
input for our BIDPS. This activity happens directly on point nrl. Namely, the “Remote

64

User(s)” endpoint. The outcome is transferred directly into the blockchain network
through the blockchain application as a transaction.

The Fabric blockchain network: this is the enabling layer for the BIDPS to be grounded.
It is placed on the internal zone of the notional bank in our case using a hybrid
infrastructure. Nonetheless, it could be also entirely cloud hosted or hosted anywhere
else subject to organisations overall architecture. In our case, the blockchain network
was hosted entirely on-premises as shown in Figure 18 to control operational costs of
the lab. More details and a focused view of the blockchain network are presented in
Figure 31.

The BIDPS application: this is the actual BIDPS application, which runs on top of the
fabric blockchain network and performs all the user-backend interactions. We detail
and demonstrate the interaction of the BIDPS application with the blockchain network
in Figure 41.

The four pillars together (sections 4.2, 4.3, 4.4, 4.5) comprise the BIDPS prototype within the
ZTA environment.

4.2 Zero Trust Architecture

In Chapter 2, analysis phase, we discussed the currently available Zero Trust Models,
device-agent-gateway-based, enclave-based and resource-portal-based respectively. In
continuation, we presented the real world ZTA implementations and conclude to a one-to-
one match of the available models versus the real world available ZTA implementations. For
our testbed ZTA lab, we implement the enclave-based model, since it is the best fit for our
architecture and use case for the following reasons:

g

g

g

Device agent/gateway-based deployment is de-scoped, as our notional bank adheres
to a bring your own device (BYOD) policy. Therefore, our policy enforcement point
cannot be attached to resources.

The best and easiest way to deploy ZTA on a BYOD enabled organisation, is the
enclave-based deployment [87] because the devices can be placed within their own
enclave or micro core and perimeter (MCAP).

The policy enforcement point (PEP) location resides on cloud, as our notional bank
architecture uses a hybrid network architecture, and therefore the only model
allowing for the PEP location to be in front of resources is the enclave-based
deployment [87].

A typical enclave-based deployment implementation, such as software defined perimeter
(SDP) consists of three core components: The SDP controller, the SDP gateway, and the SDP
client. Figure 19 shows a high-level diagram of our SDP testbed lab.

65

Cloud hosted Notional Internal Bank
infrastructure Network - Target resource
used to host SDP / application
Controller / Gateway

ﬂ— @ w [é I

O,) Web Server
SDP Contrbiter Apache Test VM

Gateway VM

Remote User(s) IPTABLES B n a
IN

DROP ALL MODE

SPA PACKET—

Figure 19 - High-level Enclave based deployment model Lab implementation.

The remote working employee for the notional bank with an enclave-based deployment,
is using an SDP agent at the employee’s endpoint, in the context of their broader ZTA
implementation. This is contrary to the traditional virtual private network (VPN) for remote
access. As such, the so called “black-cloud or black core” [88] is achieved, where the target
resource or application is automatically deemed invisible for the attackers. At the same time,
the target resource or application does not require any open ports to be open at the notional
bank’s side, therefore resulting in significantly reduced, if not nearly eliminated, threat
surface.

More specific, on the left-hand side of Figure 19, the remote employee (1) is using a laptop
provided by the notional bank running a standard version of Windows 10. User is ultimately
accessing the target resource (application) (5) by using all three SDP components. The target
resource (in blue box) (5) is only allowed to connect to the SDP gateway/controller (3) (red
box) via a direct connection and has zero ports exposed to internet. The SDP
gateway/controller (3) (red box) has zero ports exposed on the internet as well, ultimately
leading into a near-zero attack surface for our SDP testbed lab. Firewalls (2) and (4) are
marked to provide the reader with better understanding of the placements in the overall
notional bank architecture shown in Figure 18.

4.2.1 Remote Employee

Remote employee (1) is hosted and simulated via a virtual machine (VM1), installed operating
system (OS) Windows 10, and SDP client installed, as shown in Figure 20.

66

000 I B R} > 8 8 @ o < & Win10MS - SDP (]

ecycle Bin

exehtm

Connectivity

Username lalevizos @tatajuba.org
ON

Service Status - ¢
Off-Trusted Network | ©

Authentication Status

Broker 185.46.213.254

v‘ﬂ)

Time Connected Mon, Mar 1 2021 11:19:36 PM

\
J

y

o
-

Figure 20 - Remote employee (1) virtual host.

4.2.2 ZT Gateway and Controller

Both gateway and controller (marked with 3 in Figure 19 of the SDP are hosted on the
notional bank’s hybrid cloud infrastructure, in the same virtual machine (VM2) running on
open-source Debian Linux operating system, depicted in Figure 21. Despite controller and
gateway components being open sourced based, we utilize Zscaler’s versions as well to
ensure compatibility in connection and configuration with client, and to guarantee
persistence and consistency in evaluation results later.

67

000 I B = <] zpa-connector-2020.06

inet6 2601:1cB4 : 2911 :fecB:efe? prefixlen 64 peid Bx8<global>
inetb fed@ e? prefixlen 64 scopeid 8x20 >
ether 00:8 @ ueuelen 1868 (Ethernet)
RX 1 (5.8 MiB)
g A frame @
iB)
carrier @ collisions @

UP, LOOPBACK, RUNNIN mtu 65536
6.8.8
inetb ::1 prefixlen 12 opeid Bx18<host>
loop txgueuelen 1888 (Local Loopback)
8 bytes 3048 (2 KiB)
dropped 8 o @ frame @
8 bytes 3048 (2 B)
TX errors 8 dropped 8 overr arrier @ collisions 8

admin@zpa-connector ~19 telnet localhe
elnet: command not found
ystemct] status sshd up
~ daemon
systemd/system/sshd.service; disabled; vendor preset: enabled)

abled; vendor preset: enabled)

e could not be found
or ~1§ systemct] status start
ould not be found.
~19 systemctl start sshd
OR ore eed). Sy rd1.manage-uni
rvices or units.

ip 35 min, 2 users, load average: 8.41, 8.12, 0.88
TY FROM LOGING IDLE U PCPU WHAT

ttyl B81Feb21 y B.14s w
pts/8 192.168.178.88 @1Feb21 28days 0.86s 0.85s -bash
zpa-connector ~1§ §

Figure 21 - SDP Gateway and Controller.

4.2.3 Minimizing Attack Surface

The firewall (2) on VM2 is configured to drop all traffic. This is imperative compared to the
traditional architectures, where a range of ports or a single port for the target service would
be typically open or listening for the service to be accessible. As such, this is a known and
typical example of security risk subject to traditional architectures, also referred to as attack
surface [89]. A threat actor could potentially try to directly exploit the exposed service or try
to perform various techniques to break into the system. Having a default state of “drop all”
on SDP gateway/controller, immediately exposure to threats is minimized, therefore attack
surface is minimized. Figure 22 and Figure 23 show the provisioning key used to establish the
secure connection and the controller host respectively. Provisioning key is generated in
advance in the form of a text string and functions as a unique identifier for the client and
gateway.

Review Documentation

Figure 22 - SDP Controller private key.

68

-bash: warning: setlocale: LC_CTYPE: cannot change locale (UTF-8): No such file or directory
[admingzpa-connector ~]$ 1s -al
1 2021

1 2021
1 2020 .bash_logout

2 admin admin 62 Feb
3 root root 19 Feb
1 admin admin 18 Apr
1 admin admin 193 Apr 1 2020 .bash_profile
1 admin admin 231 Apr 1 2020 .bashrc

connector ~]$ sudo systemctl stop zpa-connector

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things

#1) Respect the privacy of others.

#2) Think before you type.
#3) With great power comes great responsibility

[sudo] password for admin:
[admin@zpa-connector ~]$ sudo systemctl stop zpa-connector
[admin@zpa-connector sudo touch /opt/zscaler/var/provision_key
[admin@zpa-connector ~1$ sudo chmod 644 /opt/zscaler/var/provision_key
[admin@zpa-connector ~1$ sudo vi /opt/zscaler/var/provision_key
[1]+ Stopped sudo vi /opt/zscaler/var/provision_key
[admin@zpa-connector ~1$ nano /opt/zscaler/var/provision_key
[admin@zpa-connector ~1$ sudo nano /opt/zscaler/var/provision_key
[admin@zpa-connector ~1$ cat /opt/zscaler/var/provision_key
cat: /opt/zscaler/var/provision_key: Permission denied
[admin@zpa-connector ~1$ sudo cat /opt/zscaler/var/provision_key
1|api.private.zscaler. con|ZHBUQBERK11Nf3UdhOIROLCPZhgBO UXROGPBETKMk1duqj W+xWMIp1pC/aAkyigLWUU1At5Vt7Q83DAYULXpFGr19GxoIFxpP3HXTiHPOQOPTHEN6ZSsePHTMSLqCO
04yDheY9cVxsHBsyOheHL cw622LMvpSZSTFN3nwQhcTTeqGVLYIZQI4iFA9wn672D258TUSKYArq8jUTATA3ZS j 7W+nwZKLxj TwKTOUBSY fALrPal7qh829TKILptLcomBESut05aEL] 72YnBNmIix34XBh
QZuBYvW6wNaee r+TVVhBKb2K1er0afh7QVowxEIOL rMCv+6RKXV/YnS6 fVMAF2aADE/e+Q BfbNTQNo4Cr36e j rz7NDoDesRQIGASa
[admin@zpa-connector ~]$ sudo systemctl start zpa-connector
[admin@zpa-connector ~]$ ifco
eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.178.45 netmask 255.255.255.8 broadcast 192.168.178.255
00:20c:291f: fecO:efe7 prefixlen 64 scopeid @xd<global>

c0:efe7 prefixlen 64 scopeid 0x20<link>

txqueuelen 1000 (Ethernet
bytes 11059695 (10.5 MiB)

RX packets 10152
frame @

RX errors @ dropped @ overruns @

TX packets 4434 bytes 458139 (447.4 KiB)
TX errors @ dropped @ overruns @ carrier @ collisions @

Figure 23 - SDP controller command line interface (CLI).

To validate the above statement, a network mapping scan (Nmap [90]) is performed
against our SDP gateway/controller, returns that all 65535 ports appear to be filtered,

demonstrating the near-zero attack surface.

S sudo nmap -sS -PO -vvv -p 1-65535 192.168.178.45
S nmap scan report for 192.168.178.45

S host is up (0.035s latency)
S All 65535 scanned ports on 192.168.178.45 are filtered

4.2.4 Target Resource

A test web server is being hosted in the internal network (5) of the notional bank without
direct internet interface. Meaning, no network exposure towards internet, no open/listening
ports, nor it is possible for a remote employee (1) to reach this test web server without being
previously authorised and authenticated by the SDP controller and gateway (3). A version of
Ubuntu Linux is used for that purpose on a virtual machine (VM3) with the only allowed

communication being towards the SDP gateway/controller (3).

69

000 Il R} @ 8 ¢ o < & Ubuntu 14.04.6

root@ubuntu: ~ 1y 3 @) 237PM 3
Setting up libapr1:i386 (1.5.0-1) ...

Setting up libaprutili:i386 (1.5.3-1) ...

Setting up libaprutili-dbd-sqlite3:1386 (1.5.3-1) ...
Setting up libaprutili-ldap:i386 (1.5.3-1) ...
Setting up apache2-bin (2.4.7-1ubuntu4.22) ...
Setting up apache2-data (2.4.7-1ubuntu4.22) ...
Setting up apache2 (2.4.7-1ubuntu4.22) ...

Enabling module mpm_event.

Enabling module authz_core.

Enabling module authz_host.

Enabling module authn_core.

Enabling module auth_basic.

Enabling module access_compat.

Enabling module authn_file.

Enabling module authz_user.

Enabling module alias.

Enabling module dir.

Enabling module autoindex.

Enabling module env.

Enabling module mime.

Enabling module negotiation.

Enabling module setenvif.

Enabling module filter.

Enabling module deflate.

Enabling module status.

Enabling conf charset.

Enabling conf localized-error-pages.

Enabling conf other-vhosts-access-log.

Enabling conf security.

Enabling conf serve-cgi-bin.

Enabling site 000-default.

| * Starting web server apache2

AHO0558: apache2: Could not reliably determine the server's fully qualified domain name, using 127.6.1.1. Set the 'Serve
Name' directive globally to suppress this message
*

Processing triggers for libc-bin (2.19-0ubuntu6.15) ...
Processing triggers for ufw (0.34~rc-6ubuntu2) ...
Processing triggers for ureadahead (0.100.6-16) ...
root@ubuntu:~# apache

apache2 apache2ctl apachectl

root@ubuntu:~# apache2

o
"
9
:
A
a
7

.bash_logout Desktop/ .gconf/ Pictures/ .Xauthority
« |.bashrc .dmrc .ICEauthority .profile .xsession-errors

Figure 24 - Resource target (application) (5).

This provokes the following question; How does the remote employee, from his endpoint
(1) VM1, can access the target test web server (5) on VM3, since all ports are filtered in the
gateway/controller VM2? Note that the only way for the remote employee to reach the target
resource (5) VM3, is via the SDP gateway/controller (3) VM2, therefore, there is near zero
attack surface on both VM2 (3) and VM3 (5).

4.2.5 Single Packet Authorization (SPA)

As demonstrated in section 4.2.1 Remote Employee, the remote employee on his endpoint
(1) VM1 has the SDP client already installed and configured. The SDP client sends a Single
Packet Authorization (SPA) to the SDP gateway (3) VM2. Prior becoming a core component of
SDP, SPA was used to mitigate unauthorized access for high privileged users (root) via secure
shell (SSH). The idea of SPA was brought into SDP to create the near-zero attack surface. For
instance, one of the very first common steps of adversaries is to perform network
reconnaissance for locating open ports and exposed services. Tools such as Nmap can
automate this step for adversaries. The same tool was used in section 4.2.3 Minimizing Attack
Surface to verify our near-zero attack surface. Nonetheless, our VM2 firewall is configured in
drop-all state, which means that only IP addresses that can prove their identity via a passive
methodology will be allowed. There is no need for TCP/IP stack for remote IP authentication.
As a result, and by utilizing SPA, if an adversary performs a Nmap scan against our lab, he/she
will not be able to even determine if our web server (5) (VM3) or the gateway/controller (3)
(VM2) is up and running. Therefore, even if adversaries possess zero-day exploits, they
automatically become irrelevant due to the near-zero attack surface and inherent invisibility.
The SPA packet is a UDP packet, encrypted and cryptographically signed, which cannot be

70

faked unless someone steals the legitimate user’s keys and re-formulates a SPA packet. In
that case, no SPA packets are ever the same which automatically takes out of the equation
the replay attacks. The SPA process flow is demonstrated in Figure 19.

In continuation and for the remote employee (1) (VM1) to access the web server (5) (VM3),
the SDP gateway/controller (3) (VM2), which sniffs the IP stack, must receive a SPA packet.
Once this is received, the controller takes a two-stage action.

[0 First, it verifies the HMAC signature and secondly it decrypts the package. As a
result, the gateway/controller knows that there is a legitimate user knocking the
door.

[] Second, the gateway/controller will perform a check within that same SPA packet,
whether the user has access to the requested service. In case that all three checks
are validated, the controller and gateway will respond.

Respond however, does not assume it replies by no means to the user itself. The
controller/gateway (3) will explicitly and dynamically reconfigure the firewall, in our case
IPTABLES, to allow that specific user, from his specific IP address, to access the pre-defined
service in a pre-defined port for a brief time. In this case it is port 443, and the time is
configured to zero, which means unlimited allowed time. Additionally, geolocation
specification of the remote employee could be possible; however, such will come down to
hardening the lab, which is considered out of scope. Configurations performed regarding
access context, target application, policy add, policy edit, and finally, the remote employee
(1) successfully accessing the target resource application (5) are shown in Figure 25, Figure
26, Figure 27, and Figure 28 respectively.

O o o

Connection (2) UTC Policy User Senvice Edge App Comnector Appiication

Feb 1st, 11:47.29.781 CET e Y meremers@tatapbacy T EU-NL-436 T © Unavalable lampis.tatajuba.org 22 TCP Y
Feb 18, 11:4729.791 CET Ao 6225189041 Amsterdam, M. Unavltie TCP 7 i-apps T &

Y 72063551157567681 Amersioot L b5 ms Unavalabie Unavallable22 TCP

/81 clartyalig7/VGo,yODYGHLA \f

Figure 25 - Setting up the access context for remote employee (1) and resource target (5).

71

© DofinoAppications @) SegmentGrop @) SeverGroups @) Servers @) Roview Q) Polckes

Figure 26 - Setting up the resource target (5) segment.

Name
lampis-rule
Description
AcTION
App Connector Selection Method
ok Access Specific App Connector groups or Server groups for t
Server Groups
xQ
Az] datacenter-
paladipenwog
CRITERIA . i
intornet-based) lampis-servers
LAN-fortinet
Select Al Clear Selection

Cancel
Figure 27 - Setting up the access policy (lampis-rule) for remote employee (1).

00 I B3 J B8 8 @ O <« &< &) Win10MS - SDP a

Connectivity

Username lalevizos@tatajuba.org
oN
B Stat 1) TURN OF
ervice status of-Trusted Network | @ TVRN OFF
Authentication Status Authenticated
Broker 185.46.213.254
Time Connected Tue, Mar 9 2021 11:04:16 PM
Statistics
Total Packets Sent Obytes
Total Packets Received Obytes

HTTP SERVER PROJECT

Welcome to the Apache HTTP Test Project

This project is focused on designing test tools for the Apache HTTP Server Project. This is a subproject of the Apache HTTP
Server Project

Essentials
-+ Download! Currently, the following components are available:
- About « Flood - a profile-driven HTTP load tester
- License
- FAQ « Perl Framework - a perl-centric HTTP test kit

- Security Reports
- Apache-Tes! - the testing engine behind the Perl Framework and other HTTP-based projects like mod_perl
Source Repositories.
+ Modules for SPECWebg9 tests
+ General Information
- Trunk

Figure 28 - Remote employee (1) accessing the target resource (5)

72

4.2.6 Limitations

To implement an enclave-based deployment model as required by our specifications, the
software defined perimeter (SDP) architecture is the perfect match. Nonetheless, this subject
is twofold. On one hand, the Open-source SDP Client required to be installed on the remote
employee’s endpoint states [91]:

“The SDP Client is currently only being assessed on macOS along with Debian and RHEL
versions of Linux. It is unlikely to function on Windows at present. Support for other
platforms will be provided in the future”.

Conclusively and considering the wide adoption of Windows-based endpoints, the open-
source version of SDP is out of scope.

On the other hand, there are several commercial SDP versions available. All of them offer
a similar product with a variety of different hosting and security options, however, there is no
additional benefit in this case as the plan is to leverage the architecture explicitly to setup the
ZTA lab rather rely on the additional features. Zscaler for instance offers a deep packet
inspection feature where the traffic from remote employee’s endpoint is scanned for
malicious traffic, and then based on analysis an alert or action can be configured accordingly
[92]. Nonetheless and during evaluation phase, we were forced to turn this feature on and
off where detection occurred on Zscaler side, to focus explicitly on the efficacy of the BIDPS.

In this research, we focus solely on the host-based blockchain-enabled intrusion detection
and prevention prototype capabilities. As a result, additional security features of all
commercial ZTA candidates are descoped. That said, we choose the one candidate offering
an extended trial version, and in addition adheres to all enclave-based deployment model
principles, namely Zscaler.

4.2.7 Specifications

Table 7 - ZTA Enclave-based lab setup specifications.

Remote employee SDP Gateway - Resource target —
SDP Client (1) (VM1) SDP Controller (3) Apache test web server
(VMm2) (5) (VM3)
Operating System Windows 10 Pro x64 Linux 3.10.0 — Ubuntu 14.04.6
(0S) 1127.10.1.el7.x86_64
CentOS Linux
Hard Disk Drives 25GB 1.4GB 3GB
(HDD)
Central Processing 2.19 GHz Quad Core Intel 2.2 GHz Quad Core 1.5 GHz Quad Core Intel
Unit (CPU) Core 17-4770HQ Intel Core i7 Core i7 x86_x64
Random Access 6.23GB 4GB 2GB
Memory (RAM)
Software (SW) Zscaler SDP Windows Client CentOS 7.2 basic Ubuntu 14x basic
3.1.0.117, HashMyFiles software installation installation with advanced
2.3.7.0, SysMon64, Google with yum repository package tool (APT),
Chrome 95.0.4638, Adobe and utils Apache 2.4.18
Reader DC

73

2021.007.20099 english_x64,
Microsoft Office 2016, Java 8
Update 291, Java SE Dev Kit
16.0.1 x64, Visual C++
2008,2010,2015-2019,
NPCAP, VMWare tools

4.3 Hash-based Blockchain-enabled Whitelisting

Cryptographic hashing algorithms are one-directional mathematical formulas designed to
generate a unique value for every possible input, in this case all executable extensions within
a given system. Common hashing algorithms include but not limited to MD5, SHA-1, SHA-256
and SHA-512 and are based on a construct known as Merkle—-Damgard construction [94].
Output of hashing algorithms or hashing functions is commonly referred to as hash, hash
value, message digest or digital fingerprint. The American National Institute of Standards and
Technology (NIST) specifies the approved hash algorithms for generating a condensed
representation of a message, otherwise known as message digest, within two Federal
Information Processing Standards (FIPS) [95]. Moreover, NIST has introduced a policy on hash
functions where the usage of SHA-1 is strongly not advised for use by federal agencies. On
the other hand, SHA-2 with a minimum of SHA-256 for any application of hash functions
requiring interoperability is strongly encouraged. Further guidance is provided on the relevant
NIST’s special publication 800-57 part 1, revision 5, section 5.7.2 [96] and SP 800-131A Rev. 2
[97].

It is imperative to note that hashing functions are prone to two known attacks:

[0 First, when two inputs result in the same output after hashing, this is called hash
collision. Algorithms that produce shorter hashes are prone to hash collision. MD5 and
SHA-1 hashing algorithms have been proven [98] prone to hash collision that threat
actors can exploit and eventually hide malicious content, which is also known as
collision attacks. Hashing algorithms subject to collision attacks are MD5, SHA-O and
SHA-1 [99].

[0 Second, a more difficult attack to perform because it requires adversaries to have at
least a basic internal (to the notional bank) knowledge up to a certain extent, although
an existing one and known as length extension attack. Adversaries that have
knowledge of the hash value of an executable on the remote user’s endpoint, might
be able to extend it and forge a new hash, ultimately allowing for adversaries to
pretend that the original hash was not properly terminated. Hashing algorithm subject
to length extension attacks are MD5, SHA-0, SHA-1, and SHA-2 up to SHA-256 [100].

Conclusively, in this setup we select and utilize the SHA-512 hashing algorithm to produce
hashes of all executable extensions within the remote employee’s workstation to, at least,
avoid known attacks at this stage. Nonetheless implications of this decision must be
considered and discussed in section 4.3.4 Limitations, e.g., in what ways and how much user
experience is hindered.

74

The list of hash values of all known executable extensions within the remote employee’s
workstation is produced and described in the following three sub-sections:

1. Define executable extension within the given system.
2. Consider windows-based hashing options.
3. Acquire hashed values and setup a time-based measurement.

4.3.1 Executable Extension Definition

Although the objective is to simply acquire the hashed values, we intentionally add further
options into the equation to potentially provoke and facilitate further research on the subject.
All file names in Windows 10 operating system of the assumed remote employee have two
parts separated by a period. First, the file name, and second a three- or four-character
extension which also defines the file type. For instance, in test.docx, the first part of the file
name is “test” while the second part “docx” is the extension. Scope is to list all executable file
extensions, object code, dynamic link library (DLL) and others within the given system, which
eventually this will indicate files that support some ability to execute an automatic task. In
contrast to other file extensions and file formats that simply display data, play music or videos,
or more broadly stated, they present content rather than executing system commands. Table
8 presents a list of all executable extensions gathered within the given system, alongside a
brief explanation [101].

Table 8 - List of executable extensions in remote user’s workstation [102].

Extension | Format Extension | Format

.bat Batch file .paf Portable application installer file
.bin Binary executable .pif Program information file
.cmd Command script .psl Windows powershell Cmdlet
.com Command file .reg Registry data file

.cpl Control panel extension .rgs Registry script

.exe Executable .scr Screensaver executable
.gadget Windows gadget .sct Windows scriptlet

.infl Setup information file .shb Windows document shortcut
.ins Internet communication settings .shs Shell scrap object

.inx InstallShield compiled script .u3p U3 smart application

.isu InstallShield uninstaller script .vb VBscript file

.job Windows task scheduler job file .vbe VBscript encoded script

Jse Jscript encoded file .vbs VBscript file

Ink File shortcut .vbscript Visual basic script

.msc Microsoft common console document WS Windows script

.msi Windows installer package .wsf Windows script

.msp Windows installer patch .wsh Windows script preference
.mst Windows installer setup transform file

4.3.2 Windows-based Hashing Options

There are plenty of options to acquire hash values of all executables within the given
system. Since this is a standalone task and we are using the manual way of transferring the
output (list of hashes) back to the blockchain network, we can choose any of the below
options with only three criteria in mind, namely (1) support of SHA-512, (2) graphical user

75

interface (GUI) for ease of use at this stage, (3) multiple input options to speed up the process,
and (4) multiple output options e.g., xls, xIsx, csv, txt, xml and others.

0

Microsoft provides the File Checks Integrity Verifier (FCIV) [102]. This is a standalone
command line utility that can both hash and verify hash values. Although Microsoft
does no longer support this tool, it still works on modern Windows operating system
(OS) up to Windows 10. Supported hash functions, however, are limited to MD5 and
SHA-1. Our objective is to use SHA-512 algorithm for the above-mentioned reasons
referring to known attacks, therefore FCIV is descoped.

Microsoft provides another stand-alone command-line program which is shipped
within Windows 7 and newer versions of the OS, named “CertUtil” [103]. It supports
MD5, SHA-1, SHA-256 and SHA-512 algorithms and can be easily executed via
command line by properly passing on three parameters, viz. (1) declare function -
hashfile (2) choose algorithm (3) declare the path of a single file. While this is a good
option because it does not require installation or external executable files to be loaded
on the remote employee’s workstation, it is (a) command line based (b) one would
have to execute the tool several times to get the desired output since it only accepts
single line arguments (or write another script to automate it) and (c) there are very
limited output options, hence descoped.

SigCheck by Sysinternals [104] is another command-line tool that can calculate file
hashes supporting MD5. SHA-1 and SHA-256 algorithms. This is descoped for the same
reasons as “CertUtil” but also for not supporting SHA-512 algorithm.

HashMyFiles by Nirsoft [105], is a stand-alone GUI based tool freely available. It
supports several hashing algorithms such as CRC32, MD5, SHA-1, SHA-256, SHA-384
and SHA-512 and even more. Via the GUI one can specify to hash entire folders based
on wildcards and extensions while the output can be based on either text file, excel
sheets or xml output, which makes it a suitable candidate.

HashCheck is another freely available (open source) hash calculation tool [106]. This
offers the greatest support of algorithms like all before, adding SHA3-512 on top.
Nonetheless the output format is limited, and the wildcard usage for hashing entire
folders at once is not mature enough hence it cannot provide a full hashing capability
throughout the entire system in a single click (or even clicks).

4.3.3 Perform Hashing

Hashing and hash value extraction is performed using the HashMyFiles tool by Nirsoft. The
only selection in the tool is the hashing algorithm (SHA-512) and the output file being an excel
sheet. However, and although not required nor essential at this stage, we want to keep track,
at least, of the initial time requires to hash every executable within the given system.
Therefore, a visual basic script will be used to launch the HashMyFiles tool and keep track of
its execution time in seconds. The timer script is as follows:

76

Set WshShell = WScript.CreateObject("WScript.Shell")

sCmd = chr(34) & "C:\users\george\desktop\HashMyFiles.exe" & chr(34)

dtmStartTime = Timer

Return = WshShell.Run(sCmd, 1, true)

Wscript.Echo "The task completed in " & Round(Timer - dtmStartTime, 2) & " seconds."

Output of the execution of the script in the user’s workstation and full hashing of the
extensions in Table 8, along with the consumed time (52,83 seconds) is shown in Figure 29

and Figure 30 respectively.

- R

] @) Win10MS - SDP

Recycle Bin' HashMyFile::

[E] HashMyFiles — m] X
File Edit View Options Help
laa0@mQ| BE QA

Filename SHA-512 Full Path Modified Time Created Time Entry Modifie ~
[(E7zaexe || 121943cd7teldbeadfBcfcTaaci04dbd4d28... | Ci\Program Files\VMware\VMware Tools\7za.exe 16/04/2021 11:07:02

138cf42dfc1275cc12550e317f0f80761edad69...
db22e68eaB4bab24a49f23b8bf59dc845d5cT...
2a5db6adf6e867b3abd20983638bfcBbab7b3...
c50177a2b64c5b5725fab993a3dfE7a0291af9...
ee0069afb9d501bdba5e9a89c3a3c37767677...

07/09/2021 10:12:12
22/09/2021 14:17:44
11/09/2021 05:28:50
11/09/2021 05:2%:51
11/09/2021 05:29:57

[]BrowserCore.exe
\:} chrmstp.exe
G chrome.exe

07/09/2021 10:12:12
22/09/2021 14:20:00
26/05/2021 15:11:25
26/05/2021 15:11:25
22/09/2021 14:19:58

C\Program Files\Windows Security\BrowserCore\Brows...
C:\Program Files\Google\Chrome\Application\93.0.4577...
C:\Program Files\Google\Chrome\Application\chrome....

[®:] chrome_proxy.exe C\Program Files\Google\Chrome\Application\chrome_...

chrome_pwa_launche... C:\Program Files\Google\Chrome\Application\93.0.4577...

[comreg.exe €53f2d094c4716453476bf832333f6af 1b08bb... C:\Program Files\Common Files\VMware\Drivers\vss\co.. 16/04/202111:10:36 16/04/2021 11:10:36
[ConfigSecurityPolicy... 2c5fb071137d809f967b0843854419b8a0a05b... C:\Program Files\Windows Defender\ConfigSecurityPoli.. 07/12/201910:08:16 07/12/2019 10:08:16
[culauncher.exe 62ebf833eb5baal2cfab56716c05d4af28c6e9... C:\Program Files\CUAssistant\culauncher.exe 27/06/2020 16:20:02 27/06/2020 16:20:02
[deveon.exe c243b680981d8d6db042b52b7b5c5e92078df... C:\Program Files\Zscaler-Network-Adapter\bin\devcon... 09/02/2010 04:56:32 09/02/2010 04:56:32

3c1a82c2c4dbicedb093b20e04ebealccT4c24. .
4ebdeeaacaldsbe2d5e]5b2cef75100cfc30618...

[elevation_service.exe C:\Program Files\Google\Chrome\Application\93.0.4577...

C:\Program Files\Microsoft Update Health Tools\expedit...

11/09/2021 05:29:58
17/08/2021 01:22:50

22/09/2021 14:19:59

[expediteupdater.exe 17/08/2021 01:22:50

07/09/2021 12
22/09/2021 1:
22/08/2021 1+
22/09/2021 1¢
22/08/2021 1+
21/05/2021 12
22/09/2021 1
18/01/2021 12
26/01/2021 1¢
22/08/2021 1+
13/09/2021 13

[InputPersonalization.e...
[jabswitch.exe
[#jaccessinspector.exe
[jaccesswalker.exe
[:)jar.exe
[]jarsigner.exe

[java.exe

[Ejava.exe

| £java.exe

[javac.exe
[#Ejavac.exe

[ExtExport.exe 8bdch574dbd83e805e101e325b081e1abe19... C:\Program Files\Internet Explorer\ExtExport.exe 07/12/2019 10:08:38 07/12/201910:09:39 07/09/2021 1(
Eiediagemd.exe d977fd885befe35644f398b809dc59be20ed5d... C:\Program Files\Internet Exploreriiediagemd.exe 07/12/201910:09:39 07/12/2019 10:09:39 07/09/2021 1(
& ieinstal.exe eaabc79b810edcb7ec0c99011eb0fe7f8b45¢c.. C\Program Files\Internet Explorer\ieinstal.exe 07/12/201910:09:39 07/12/201910:09:39 07/09/2021 1(
Eielowutil.exe 879446600f21135¢c6e0ed3df8991906f621356... C:\Program Files\Internet Exploreriielowutil.exe 07/12/201910:09:38 07/12/201910:09:38 07/09/2021 1(
Eiexplore.exe 3642e117230e910318a555f012824605fe4a%... C:\Program Files\Internet Exploreriexplore.exe 07/09/2021 10:14:37 07/09/2021 10:14:37 07/09/2021 1:
G ImagingDevices.exe 058a564cab337a66e9efa2106baab5ed305c40... C:\Program Files\Windows Photo Viewer\ImagingDevic.. 07/12/201915:4&:50 07/12/201910:10:08 07/09/2021 1(

9db2c401f8cBb75c83f514e9cf Tedb1556c144...
58966bcdaelal276a9d40c20d0f92704f31359...
da2051921a%aa39db5¢15500db810cd27d99...

196d9d0277a7edbc3b2c452bb3c5d6a05942...

8cab4976c958d104c728a73333b5c5943¢605...
ecb36d93f1214a5937bd4db4f9d9da3adddel. .,
a326ac6907871e04a587c84d6c55e9e78cfSec...
a326ac6907871e04a587c84dbc55e9e78cf Sec...
clbac3d319d3dc2fbee54ce66209b59a61e71...
a326ac6907871e04a587c84d6c55e9e78cfSec...
3326ac6907871e04a587c84dbc55e9e78cf Sec...

C:\Program Files\Common Files\microsoft shared\ink\l...
C\Program Files\Java\jdk-16.0.1\bin\jabswitch.exe
C:\Program Files\Java\jdk-16.0.1\bin\jaccessinspector.exe
C:\Program Files\Java'jdk-16.0.1\bin\jaccesswalker.exe
C\Program Files\Java\jdk-16.0.1\bin\jar.exe

C:\Program Files\Java'\jdk-16.0.1\bin\jarsigner.exe

07/09/2021 10:13:30
27/05/2021 19:52:20
27/05/2021 18:52:20
27/05/2021 19:52:20
27/05/2021 19:52:20
27/05/2021 19:52:20
26/03/2021 18:02:20
26/03/2021 18:02:20
27/05/2021 19:52:20,
26/03/2021 18:02:20
26/03/2021 18:02:20

07/09/2021 10:13:30
27/05/2021 19:52:20
27/05/2021 19:52:20
27/05/2021 19:52:20
27/05/2021 19:52:20
27/05/2021 19:52:20
27/05/2021 19:52:23
27/05/2021 19:52:23
27/03/202119:52:20
27/05/2021 19:52:23
27/05/2021 19:52:23

07/08/2021 12
27/05/2021 1¢
27/05/2021 1¢
27/05/2021 1¢
27/05/2021 1¢
27/05/2021 1¢
27/05/2021 1¢
27/05/2021 1¢
27/05/2021 1¢
27/05/2021 1¢
27/05/2021 1¢ v
>

C:\Program Files\Common Files\Oracle\Java\javapathl...
C:\Program Files\Common Files\Oracle\Java\javapath_t...
C:\Program Files\Java\jdk-16.0.1\bin\java.exe

C:\Program Files\Common Files\Oracle\Java\javapathj...
C:\Program Files\Common Files\Oracle\Java\javapath_t...

<
H L Type here to search

14:27
= 22/09/2021

® 2 c

=

A dx

Figure 29 - List of hash values on remote users’ workstation.

77

The task completed in 52.83 seconds.

Figure 30 - Hashing execution time.

4.3.4 Limitations

Two limitations identified while trying to acquire the hash values of the remote users’
workstation.

1. Hardware specifications (see Table 9) are highly influencing the time required to
complete hashing. For instance, possibly using a physical solid state disk drive with an
additional 2 gigabytes of memory would lower the required time. Nonetheless this
requires further research, testing and evaluation.

2. The list of extensions used to feed the hashing tool should be ideally the outcome of
a centralized baseline repository of the notional bank, including all corporate software
installed providing for a real-world timed hashing. In other words, within the test lab,
a basic set of applications is installed in the users’ workstation (e.g., Adobe reader,
Microsoft Office, Google Chrome, and others) which eventually allow for, possibly, a
much faster hashing time compared to a real-world users’ workstation, subject to
further research, testing and evaluation.

The proposed solution is applicable in both cases of enterprise provided endpoints and BYOD.
Essential difference that needs to be noted nonetheless, during the former, hashing time and
hence potential user experience impact, will be far less than the latter scenario. More
specifically:

[0 Corporate endpoint provided: in this scenario the time to hash is minimum. Our lab
measured at 52,83 seconds from start to finish. This is because hashing takes place

78

prior providing the endpoint to the remote employee against a corporate application
whitelist baseline repository, therefore minimum to zero impact on user experience.

Ll BYOD: in this scenario the time to hash will be significantly increased based on several
factors, e.g., computational resources or user’s activity while hashing is performed.

4.3.5 Specification

Table 9 - Remote user workstation specifications.

Remote employee
SDP Client (1) (VM1)

Operating System (0OS)

Hard Disk Drives (HDD)
Central Processing Unit (CPU)

Random Access Memory (RAM)
Software (SW)

Windows 10 Pro x64

25GB
2.19 GHz Quad Core Intel Core i7-4770HQ,

6.23GB

Zscaler SDP Windows Client 3.1.0.117, HashMyFiles 2.3.7.0,
SysMon64, Google Chrome 95.0.4638, Adobe Reader DC
2021.007.20099_english_x64, Microsoft Office 2016, Java 8
Update 291, Java SE Dev Kit 16.0.1 x64, Visual C++
2008,2010,2015-2019, NPCAP, VMWare tools

79

4.4 Blockchain Network Layer

To help the reader gain understanding of the components and dynamics within the
prototype’s blockchain network, we present Figure 31, which demonstrates the BIDPS
network through a magnifying lens. The next subsections are devoted into detailed
explanations of both the prototype’s network components, as well as the application
specifics.

Org1-CA Org2-CA
/ Fabric Blockcha!n Network \ :
» Org1 - Peer Org2 - Peer
Client - \’_‘/_

Channel A]

Founder - CA

_[
\

Figure 31 - BIDPS blockchain network architecture [77].

4.4.1 Organizations

Also known as blockchain network “members”. The prototype’s blockchain network
includes two members, namely, Orgl and Org2, as shown in the orange oval shapes.

{1 Orgl represents the notional banks headquarter (HQ) office.
[0 Org2 represents a single branch within the notional bank ecosystem.

For simplification purposes only one branch of the notional banks broader architecture is
being considered, viz. Org2. Organizations or members can represent any entity regardless of
size or properties, for instance they could represent a multi-national corporation, a branch, a
division, or department within a corporation, or even a single individual. The prototype’s
organizations or otherwise members Orgl and Org2 form a consortium.

4.4.2 Peers

Also known as nodes, are network entities that host and maintain a ledger, and in addition
running chaincode containers to be able to perform read/write operations to the ledger.

80

(] Orgl - Peer, represents the peer/node of the notional bank HQ office.
(] Org2 — Peer, represents the peer/node of a single branch within the notional bank
ecosystem.

Each organization Orgl and Org2, is running its own peer Orgl — Peer and Org2 - Peer
respectively within the prototype’s blockchain network. Finally, in a production environment
peers or nodes are owned, hosted, and maintained by each organization/member, therefore
Orgl — Peer should be owned and operated by the notional banks HQ while Org2 — Peer
should be owned and operated by the notional banks branch. Both peers are hosting their
own ledger alongside their smart contracts or chaincode. Their ledger immutably records all
transactions generated by smart contracts.

4.4.3 Ledger

The ledger is a core component of the prototype’s network, for it stores the current hashes
of the remote employee’s endpoint. Furthermore, ledger stores the past hashes as history of
transactions that eventually resulted in the current values, providing for a reliable source of
chain of events in case of a required software update on remote employee’s endpoint.
Nonetheless the current hash will always supersede previous hashes chained in the form of
transactions, hence assurance that the latest version of the software on remote employee’s
endpoint will be allowed to execute is provided, while in parallel outdated versions will not
be allowed.

Ledger Structure comprises of two separate segments, although highly related, namely,
the world state database and the blockchain. On one hand, world state database contains
the current values of the hashes produced from remote employee’s endpoint. On the other
hand, however, the blockchain records all changes leading up to and including the current
value of the world state database, in form of transactions. Next, transactions are “placed”
inside blocks and ultimately appended on the blockchain which enables for better
understanding of historical changes that led into the current value in the world state
database. Blocks enclose ordered transactions. They are bounded cryptographically with the
previous and next block (see 3.2.1 Blockchain and DLT), ultimately forming a chain of
transaction logs in the form of chained blocks of transactions. The first block in such chain of
blocks, however, is known as the generis block. Concussively, it is imperative to understand
that the blockchain is different than the world state database in the sense that, once data
written on blockchain, it can no longer be modified and therefore it is immutable. Figure 32
shows a zoom in Orgl — Peer ledger for a visual representation of the ledger structure,
highlighting the blockchain and the world state database (DB) [77].

81

Orgl - Peer

Figure 32 - Ledger Structure.

4.4.4 Channel

Within the prototype’s blockchain network our channel is named “Channel A”. It is a
communication mechanism for organizations 1 & 2 (and their components) within the
blockchain network to communicate and transact privately. For the sake of simplicity and
understanding, one can view Channel A as a private “subnet” of communication between
“Orgl” and “Org2” organizations (members), which eventually enables them to conduct
private and confidential transactions. For the two peers of each organization respectively to
join the channel, an identity is required. For every transaction that is executed via the channel,
the peers and entities must first acquire authentication and gain authorization. Simply stated
and demonstrated in Figure 31, “Channel A” connects “Orgl — Peer”, “Org2 — Peer”, “Founder
— Orderer” and finally the “Client”, which is the actual BIDPS application.

4.4.5 Orderer

The Orderer is named after “Founder — Orderer” and is a special node responsible for
ordering transactions, creating a new block of ordered transactions, and distributing the
newly created block to all peers on Channel A, therefore always keeping ledgers on “Orgl —
Peer” and “Org2 — Peer” consistent. In the prototype’s blockchain network there is only one
orderer (or ordering node) due to limited hardware resources, nonetheless the “Founder —
Orderer” as shown in Figure 31, performs the transaction ordering, which can also be referred
to as ordering service. The ordering service, or the orderer if we look at it from a component
perspective, is one of the most important components within the prototype’s blockchain
network due to its fundamental role in reaching consensus.

4.4.6 Consensus
Consensus is used as an overarching broader term for the overall transactional flow. The

meaning and goal are to produce an agreement on order of transactions comprising a block,
while at the same time confirming their correctness.

82

Several distributed permissionless blockchain networks (e.g., Bitcoin or Ethereum) allow
for any node to participate in the consensus process, and therefore order transactions which
in turn are grouped into blocks. This fact of permissionless chains means that their network
relies on probabilistic consensus algorithms [107] [108], which ultimately provides for ledger
consistency to be achieved with a high degree of probability. On the other hand, the concept
of probabilistic consensus in this context, is vulnerable to divergent ledgers, also referred to
as forked ledgers. This means that one or several participants in the network may have altered
view of the accepted order of transactions, for instance if a “malicious acting” node joins the
permissionless network and becomes part of the consensus process.

The prototype’s blockchain network is based on Hyperledger Fabric, therefore, inherently
relying on deterministic consensus algorithm [107] [108]. Determinism in the context of
blockchains, simply put, means that if one enacts the same steps in a pre-defined order, the
same results as anybody else who follows the exact process should be achieved. This
eventually provides guarantee that any block validated by peers is correct and final.
Moreover, leveraging this architecture, ledger(s) cannot fork as they do in other distributed
permissionless blockchain networks. In this context and architecture, an abundance of
multistage and multi hierarchy endorsement, validity and versioning checks happens in the
prototype’s blockchain network to achieve consensus. Since this is permissioned network,
there is an inherent assumption that participating nodes “Org2 — Peer” and “Orgl — Peer”,
are partially trusted. Before changes can be written on a block of transactions onto the
ledger(s), there are several phases to guarantee endorsement, data synchronization across
all participants, transaction order and finally, correctness. More specific, the prototype’s
consensus can be divided into the following three phases (A) endorsement, (B) ordering, (C)
validation and commitment, shown in Figure 33.

83

e Event Delivery

Transaction Submission o

Endorsed Proposal cient Endorsed Proposal

9 Response Responsee

Transaction
4 Proposal 2

) (
> Org2 - Peer J
Chaincode
e Transaction Transaction 9
i i Simulation
Simulation New Block
Distribution

Orgl - Peer |«

Chaincode

Founder - Orderer J‘

Transaction Ordering
e and New Block
Creation

Figure 33 - Transaction invocation workflow.

A. Endorsement happens through steps 1 to 3.

¢ Step 1 - Transaction proposal: since this is a notional bank network most likely an
administrator will oversee and submit transactions, however, there are “users” and
“administrators” allowed to propose transactions for the sake of completeness and
more accurate replication of an enterprise system, casually based on user and
administrator roles. With that in mind, an administrator or user proposes a transaction
to submit a new executable’s hash for whitelisting through the “Client” which is signed
by the user’s or administrator’s certificate. Next, the proposal is sent to the pre-
defined endorsing peers “Orgl — Peer” and “Org2 — Peer” through “Channel A”.

¢ Step 2 - Transaction simulation: endorsing peers “Orgl — Peer” and “Org2 — Peer”
perform a sequence of verification checks. Namely the peers verify:
i. A well-formed transaction is proposed.
ii. The proposed transaction is unique, viz., it has not been submitted in the past,
which ultimately provides for replay-attack protection.
iii. User/administrator signature is valid.
iv. “Client” is authorized and joined in “Channel A” and adheres to “Channel’s A”
writer’s policy.
These are the basic arguments invoked in the chain code’s function, which is in turn
executed against the world state database to generate transactions results. At this
point there are zero updates made on the ledger. The transaction simulation results

84

coupled with “Orgl — Peer” and “Org2 — Peer” signatures are reverted as an “endorsed
proposal response”.

¢ Step 3 - Endorsed proposal response: the prototype application, or “Client”,
accumulates and verifies the endorsing “Orgl — Peer” and “Org2 — Peer” signatures
and compares the proposal responses to conclude if the “endorsed proposal
responses” are identical. Since the intention is to indeed submit a new executable’s
hash to be whitelisted in the form of transaction to the ordering service and update
the ledger, then the application will determine if “Orgl — Peer” and “Org2 — Peer” both
endorse. If the intention, however, was to simply query the ledger to find out if an
executable’s hash is already written, then the prototype application would only
inspect the query rather than submit the transaction to the ordering service.

B. Ordering happens through steps 4 to 5.

¢ Step 4 — Transaction submission: once a “transaction message” is formed, containing
the transaction proposal and response (outcome of step 3) the “Client” sends it to the
“Founder — Orderer”.

¢ Step 5 - Transaction ordering and new block creation: In continuation, the “Founder
— Orderer” only needs to arrange the transactions received via “Channel A”
chronologically, generates a block of transaction and signs it with its certificate.

C. Validation and commitment happen through steps 6 to 7.

¢ Step 6 — New block distribution: “Founder — Orderer” broadcasts the generated block
to “Orgl — Peer” and “Org2 — Peer” on “Channel A”. Next and since both peers are
endorsing peers, a versioning check named multi-version concurrency control (MVCC)
check takes place. The MVCC check validates the correctness of each transaction in
the received block. More specifically, “Orgl — Peer” and “Org2 — Peer” compare each
transaction’s details against the ledger’'s world state database. If the result is
successful, then the transaction is marked as valid while “Orgl — Peer” and “Org2 —
Peer” world state databases get updated. If the result is unsuccessful, the transaction
is marked as invalid and does not affect “Orgl — Peer” and “Org2 — Peer” world state
database anyhow. Lastly, the received block will be appended into “Orgl — Peer” and
“Org2 — Peer” local blockchain. Such will happen regardless of the MVCC outcome,
namely, irrespective of the block being marked as valid or invalid, it will be appended
into peer’s local blockchain hence providing for an immutable source of tracking.

¢ Step 7 — Event delivery: An event is delivered by “Orgl — Peer” and “Org2 — Peer” to
notify the “Client” that:
i. The transaction has been appended (immutably) on chain.
ii. The transaction has been validated or invalidated.

85

4.4.7 Certificate Authorities

The Certificate Authorities, otherwise known as CAs are responsible for managing user
certificates such as user registration, user enrolment and user revocation. The network setup
is based on private permissioned blockchain network, therefore only permitted users can (1)
query peer ledgers and access information or (2) invoke, namely create new transactions via
Channel A. To achieve this, X.509 standard [109] [110] certificates are used to represent
permissions, roles and attributes to users, administrators, “Orgl — Peer” and “Org2 — Peer”
and “Founder — Orderer”. X.509 standard defines the format of public key infrastructure (PKI)
certificates. PKl is subsequently used within the prototype’s network to verify the actions of
all network participants. As a result, “Orgl” operates its own CA “Orgl — CA”, “Org2” operates
“Org2 — CA” and “Founder — Orderer” operates “Founder — CA”.

4.4.8 Client

The Client, considered to be the actual application (or even a set of applications) that
interacts with the prototype’s blockchain network. The blockchain Lab (Figure 31) is
virtualised on a single host running Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic
x86_64). Some of the internal components described above are running as containers (e.g.,
peers) for the sake of architecture simplification, but also for resource minimization. Prior
moving the Fabric test lab into production environment multiple parameters would have to
be considered and ultimately changed, therefore the prototype cannot function as a
production blueprint, rather than a test environment to facilitate evaluation and validation of
capabilities effectiveness. In a production environment one should consider parameters such
as, security of the blockchain network e.g., how to properly segment and secure it from the
rest of the network, resource management e.g., separate hosts should contain peers and/or
orderer, and high availability e.g., single, or double CAs, peers and orderer.

4.4.9 Considerations Towards a Production Environment

Finally, due to the simplified blockchain network architecture, network traffic congestions
might be one of the most likely issues due to a single “Founder — Orderer” and multiple peers,
in our case “Orgl — Peer” and “Org2 — Peer”. If we assume that the notional bank is growing
over time, and more branches are joining the blockchain network therefore more
Organizations and hence more peers joining “Channel A”, the single “Founder — Orderer”
would most likely get overburdened with tasks such as distributing blocks of transactions. As
a result, the “Founder — Orderer” might become a single point of failure.

Although, a secondary orderer can always be added or even a cluster of orderer nodes
ideally, Hyperledger Fabric currently supports two implementation of crash fault tolerance
(CFT) to “Founder — Orderer”, namely Raft and Kafka. A third option is under development
and testing at the same time and based on the Byzantine Fault Tolerant (BFT) ordering service.
Regarding the possible network congestion due to block distribution overhead, the concept
of leading peers is utilized as mitigating measure. For this concept to be triggered an
organization e.g., “Orgl” would need more than one peer and as such, for example, one peer
would take the leading role while the other would function as an endorsing peer. As a result,
the leading peer would disseminate the received block to other peers in the same
organizations offloading the steps described in Figure 33. If the test network performs

86

sufficiently, and the notional bank’s branches are starting to join the network (as organization
entities) while moving the infrastructure into production, then the production network would
look like Figure 34 [77] [110].

-

Client#1

Founder —
Rest API
Server

-
S

Orgl - LDAP
Server

Orgl -

Fabric SDK

~—

Org2 - LDAP Org3 - LDAP
Server Server

Client#2

Channel A

Founder -
Fabric CLI

J

SR

E d
F

[Channel B

Fabric CA

I

Founder -
LDAP

server

Founder — ZooKeeper

Cluster (\ﬁ

f;\\rﬁ

Founder -
Raft Cluster

Figure 34 - Hyperledger Fabric sample production network.

4.4.10 Prototype’s Network Configuration

Logged on the virtualized blockchain lab with hostname “blocklabz”, the following
command switches to the necessary working directory and brings any previously running

network down.

S cd /home/blocklab/Desktop/hyperlab/fabric-samples/test-network; ./network.sh down

Network.sh is a powerful shell script used to start, stop, and configure the blockchain
network. Sample output of running the script without any switches is shown below. The aim
is to display the network.sh shell script’s options for explanation purposes regarding the
switches used in continuation:

87

blocklab@blocklabz:~/Desktop/hyperlab/fabric-samples$ cd test-network; ./network.sh
Usage:
network.sh <Mode> [Flags]
Modes:
up - Bring up Fabric orderer and peer nodes. No channel is created
up createChannel - Bring up fabric network with one channel
createChannel - Create and join a channel after the network is created
deployCC - Deploy a chaincode to a channel (defaults to asset-transfer-basic)
down - Bring down the network

Flags:

Used with network.sh up, network.sh createChannel:

-ca <use CAs> - Use Certificate Authorities to generate network crypto material
-c <channel name> - Name of channel to create (defaults to "mychannel")

-s <dbtype> - Peer state database to deploy: goleveldb (default) or couchdb

-r <max retry> - CLI times out after certain number of attempts (defaults to 5)

-d <delay> - CLI delays for a certain number of seconds (defaults to 3)

-verbose - Verbose mode

Used with network.sh deployCC

-c <channel name> - Name of channel to deploy chaincode to

-ccn <name> - Chaincode name.

-ccl <language> - Programming language of the chaincode to deploy: go, java, javascript, typescript

-ccv <version> - Chaincode version. 1.0 (default), v2, version3.x, etc.

-ccs <sequence> - Chaincode definition sequence. Must be an integer, 1 (default), 2, 3, etc

-ccp <path> - File path to the chaincode.

-ccep <policy> - (Optional) Chaincode endorsement policy using signature policy syntax. The default
policy requires an endorsement from Orgl and Org2

-cccg <collection-config> - (Optional) File path to private data collections configuration file

-cci <fcn name> - (Optional) Name of chaincode initialization function. When a function is provided, the
execution of init will be requested and the function will be invoked.

Next, using the network.sh shell script the Fabric test network is launched with the following
command, using certificate authorities hence the -ca switch.

S sudo ./network.sh up createChannel -c mychannel -ca

III

First, a channel named “mychanne
Figure 35.

is created and anchored on both peers, as shown in

88

+ peer channel fetch config config_block.pb -o orderer.example.com:7050 --ordererTLSHostnameOverride orderer.example.com -c mychannel --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/organiza
tions/ordererOrganizations/example.con/orderers/orderer. example. con/msp/tlscacerts/tlsca. example. com-cert . pem
Endorser and orderer connections initialized
Received block: 1
Retrieving last config block: 1
Received block: 1

+ + jq '.data.data[0).payload.data.config"
configtxlator proto_decode --input config_block.pb --type common.Block

*.channel_group..groups. Application.groups.Org2MsP.values += {"AnchorPeers":{"mod_policy": "Admins","value":{"anchor_peers": [{"host": "peer®d.org2.example.com","port": 9951}]},"version": "0"}}' Org2MSPcon
fig.json

+ configtxlator proto_encode --input Org2MSPconfig.json --type common.Config

+ configtxlator proto_encode --input Org2MSPmodified_config.json --type common.Config

+ configtxlator compute_update --channel_id mychannel --original original_config.pb --updated modified_config.pb
+ configtxlator proto_decode --input config_update.pb --type common.ConfigUpdate

+ 39 .
++ cat config_update. json
+ echo '{"payload":{"header": {"channel_header" : {"channel_id": "mychannel", "type":2}},"data":{"config_update":{' '“channel_id":" '*mychannel”," '*isolated_data":' '{},' '"read_set":' '{' '"groups':
ication":" "g *"0rg2Ms| 00005 "{}," ""mod_policy":' *™"," ""policies:' '{' '"Admins":' '{' '"mod_policy” ' *"poli *“version:' '"0"' *“Endorsement”: '
“mod_policy" . '}," '"Readers’ “mod_ policy": "ol L' W mod_policy”:' '"",' ""policy”:' null,
on": " '} od_policy":' '""," " 5 R0 7 0 (g0 U

policies”: 0
"“policies™:' '{' '"Admins 0 05,070
*"policy":' null, -
"anchor_peers":" '['{ r0.org2.example.con”," '"port”:’ ‘o051 '} 17 *"version":' '"0"*

{3," ""value '{}," '"version": ' '} '}, ""mod_policy!

B of
version":' * 'hL " olicies

i,
+ conf\gtxlator‘ proto_encode --input config_update_in_envelope.json --type common.Envelope
Endorser and orderer connections initialized
Successfully submitted channel update

root@blocklabz: /home/blocklab/Desktop/hyperlab/fabric-samples/test-network#
rootéblocklabz: /home/block1ab/Desktop/hyperlab/Fabr\c samples/test-network#
root@blocklabz:/home/blocklab/Desktop/hyperlab/fabric-samples/test-network# ./network.sh deployCC -ccn basic -ccp ../asset-transfer-basic/chaincode-j

Figure 35 - Peer anchoring on "mychannel”.

Successful creation of “mychannel” and the genesis block generation are shown in Figure 36
and Figure 37 respectively.

[+ peer channel join -b ./channel-artifacts/mychannel.block
+ res=0
Endorser and orderer connections initialized
Successfully submitted proposal to join channel

+ peer channel join -b ./channel-artifacts/mychannel.block
+ res=0
Endorser and orderer connections initialized
Successfully submitted proposal to join channel

+ peer channel fetch config config_block.pb -0 orderer.example.com:7050 --ordererTLSHostnameOverride orderer.example.com -c mychannel --tls --cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/organiza
tions/ordererOrganizations/example. com/orderers/orderer . example. con/msp/t1scacerts/t1sca. exanple. con-cert..pem
Endorser and orderer connections initialized
Received block: @
Retrieving last config block: 0
Received block: @

[+ configtxlator proto_decode --input config_block.pb --type common.Block

[+ jq '.data.data[@].payload.data.config"

[+ jq *.channel_group.groups.Application.groups.OrgIMSP.values += {"AnchorPeers":{"mod_policy": "Admins","value":{"anchor_peers": [{"host": "peer@.orgl.example.com","port": 751}]},"version": "0"}}' OrglMSPcon
fig.json

+ configtxlator proto_encode --input OrgIMSPconfig.json --type common.Config
[+ configtxlator proto_encode --input OrgIMSPmodified_config.json --type common.Config
+ configtxlator compute_update --channel_id mychannel --original original_config.pb --updated modified_config.pb
+ configtxlator proto_decode --input config_update.pb --type common.ConfigUpdate
+ jq .
++ cat config_update.json
+ echo '{"payload":{"header":{"channel_header": {"channel_id": "mychannel", "type 'Z}},"data' {"config_update":{' '"channel _id":' “mychannel”," '*isolated_data":' '{},' '"read_set
ication":' '{' '"groups":' '{' "'OrglMSP '{" ""groups":' '{}," '"mod_j poll:y N "'uol\c\es ' '{" ""Admins":" '(' ""mod_policy":" i , '"version”
"",' tpolicy”:' mull, '"version":' '"0"' '}," '*Readers”:' '{’ L : 1, v 2 '{""mod_policy":
"'}t '"values":' '{' 'M '{" ""mod_| pol\cy"" HH v ' ' i "’pel\:\es
'""' '} '}," '"mod_policy":' '""," '"policie 0 O values”:' {1, i Y ' u o i '(‘ "groups":' '{' '“OrgIMSP" .
"mod_policy":' '"Admins",' '"policies":' '{' '"Admins":' '{' ' _policy": s icy": L 0 }," '"Endorsement”:' '{' "'mod pol\cy : :
'}, ""Readers”:' '{' "*mod_policy":' '™*,' '"policy":' null, '"version’ "'}, "Writers®:' '{' '"mod_policy":' '**,' "“policy":' null, '*version':' '*0
'{* ""mod_policy":" ""value":" '{" '""anchor_peers":' '[' '{' ""h st" '"peerd.orgl.example.com”,' '"port":' 7051 '}' ']' '},' ' '{" ""mod_policy
:' null, '"versio 0 }' '}, '"version”:' '"1"' '}' '}," ""mod_policy” policies":' '{}," '"values '{}," '"version":' i » policies™:" ‘{)
{}," '"version":
+ configtxlator proto_encode --input config_update_in_envelope.json --type common.Envelope
Endorser and orderer connections initialized
Successfully submitted channel update

Figure 36 - Successful output of "mychannel" creation.

Creating volume "docker_orderer.example.com” with default driver

Creating volume "docker_peerd.orgl.example.com” with default driver

Creating volume "docker_peerd.org2.example.com” with default driver

WARNING: Found orphan containers (ca_orderer, ca_org2, ca_orgl) for this project. If you removed or renamed this service in your compose file, you can run this command with the --remove-orphans flag to clean
it up.

Creating orderer.example.com

Creating peerd.orgl.example.com ...

Creating peerd.org2.example.com ...

Creating cli

CONTAINER ID IMAGE COMMAND CREATED STATUS

NAMES
a4a509dfbfa7 hyperledger/fabric-tools:latest "/bin/bash" 1 second ago Up Less than a second

cli
2e39fc422f35 hyperledger/fabric-peer:latest “peer node start" 2 seconds ago Up Less than a second 0.0.0.0:9051->9051/tcp, :::9051->9051/tcp, 7051/tcp, ©.0.0.0:19051->19051/tcp, :::19051->190
51/tcp peerd.org2. example. com
960d53846bca hyperledger/fabric-peer:latest “peer node start" 2 seconds ago Up Less than second 0.0.0.0:7051->7051/tcp, :::7051->7051/tcp, 0.0.0.0:17051->17051/tcp, :::17051->17051/tcp
peerd.orgl.example. com
20b24bfcfl4e hyperledger/fabric-orderer:latest “orderer” seconds ago Up Less than a second ©0.0.0.0:7050->7050/tcp, :::7050->7050/tcp, 0.0.0.0:7053->7053/tcp, :::7053->7053/tcp, 0.0.0.
0:17050->17050/tcp, 17050->17050/tcp orderer.example. com
hyperledger/fabric-ca:latest “sh -c 'fabric-ca-se." seconds ago Up 6 seconds 0.0.0.0:9054->9054/tcp, :::9054->9054/tcp, 7054/tcp, 0.0.0.0:19054->19054/tcp, :::19054->190
ca_orderer
hyperledger/fabric-ca:latest “sh -c 'fabric-ca-se." seconds ago Up 6 seconds 0.0.0.0:7054->7054/tcp, 054->7054/tcp, 0.0.0.0:17054->17054/tcp, 7054->17054/tcp
ca_orgl
9475b331712e hyperledger/fabric-ca:latest “sh -c 'fabric-ca-se." seconds ago Up 6 seconds 0.0.0.0:8054->8054/tcp, :::8054->8054/tcp, 7054/tcp, 0.0.0.0:18054->18054/tcp, :::18054->180
4/tcp ca_org2
b3fad2aea7fe hello-world "/hello” days ago Exited (0) 6 days ago
quirky_goodall

/home/blocklab/Desktop/hyperlab/fabric-samples/test-network/. ./bin/configtxgen

Figure 37 - Genesis block generation.

Finally, the certificate authorities (CAs) are generated as demonstrated in Figure 38

root@blocklabz: /home/blocklab/Desktop/hyperlab/fabric-samples/test-network# ./network.sh up createChannel -c mychannel -ca

Creating network "fabric_test” with the default driver
creating ca_org2 .
[Creating ca_orgl :
Creating ca_orderer ...

L+ fabric-ca-client enroll -u https://admin:adminpwelocalhost:7054 --caname ca-orgl --tls.certfiles /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/fabric-ca/orgl/tls-cert.pem
2021/09/01 03:18:06 [INFO] Created a default configuration file at /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example.com/fabric-ca-client-config.yaml
2021/09/01 03:18:06 [INFO] TLS Enabled
2021/09/01 03:18:06 [INFO] generating key: &{A:ecdsa S:256}
18:06 [INFO] encoded CSR

[INFO] Stored client certificate at /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example.com/msp/signcerts/cert.pem

[INFO] Stored root CA certificate at /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peer0rganizations/orgl.example.con/msp/cacerts/localhost-7054-ca-orgl. pem

[INFO] Stored Issuer public key at /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example. con/msp/IssuerPublicKey
2021/09/01 03:18:06 [INFO] Stored Issuer revocation public key at /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.exanple. com/msp/IssuerRevocationPublicKey

L+ fabric-ca-client register --caname ca-orgl --id.name peerd --id.secret peerdpw --id.type peer --tls.certfiles /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/fabric-ca/orgl/t1s-cer
.pem

2021/09/01 03:18:06 [INFO] Configuration file location: /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example.com/fabric-ca-client-config.yaml

2021/09/01 03:18:06 [INFO] TLS Enabled

2021/09/01 03:18:06 [INFO] TLS Enabled

Password: peerdpw

+ fabric-ca-client register --caname ca-orgl --id.name userl --id.secret userlpw --id.type client --tls.certfiles /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/fabric-ca/orgl/tls-c|

2021/09/01 03:18:06 [INFO] Configuration file location: /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.exanple. con/fabric-ca-client-config.yaml
2021/09/01 03:18:06 [INFO] TLS Enabled

2021/09/01 03:18:06 [INFO] TLS Enabled

Password: userlpw

L fabric-ca-client register --caname ca-orgl --id.name orgladmin --id.secret orgladminpw --id.type admin --tls.certfiles /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/fabric-ca/org
1/t1s-cert.pem

2021/09/01 03:18:06 [INFO] Configuration file location: /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example.com/fabric-ca-client-config.yaml

2021/09/01 03:18:06 [INFO] TLS Enabled

2021/09/01 03:18:06 [INFO] TLS Enabled

Password: orgladminpw

L+ fabric-ca-client enroll -u https://peer®:peerdpwelocalhost: 7054 --caname ca-orgl -M /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example. con/peers/peerd.of
rgl.example.com/msp --csr.hosts peerd.orgl.example.com --tls.certfiles /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/fabric-ca/orgl/tls-cert.pem

18:07 [INFO] TLS Enabled

18:07 [INFO] generating key: &{A:ecdsa S:256}

2021/09/01 03:18:07 [INFO] Stored client certificate at /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example.com/peers/peerd.orgl.example.con/msp/signcerts/|
cert.pem

2021/09/01 03:18:07 [INFO] Stored root CA certificate at /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example. con/peers/peerd.orgl. example. con/msp/cacerts/|
ocalhost-7054-ca-orgl.pem

2021/09/01 03:18:07 [INFO] Stored Issuer public key at /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example.con/peers/peerd.orgl.example. con/msp/IssuerPubli

cKey
2021/09/01 03:18:07 [INFO] Stored Issuer revocation public key at /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example.com/peers/peerd.orgl. example. com/msp/|
IssuerRevocationPublicKey

+ fabric-ca-client enroll -u https://peerd:peer@pwelocalhost: 7054 --caname ca-orgl -M /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example.con/peers/peerd.o
rg1.example.com/tls --enrollment.profile tls --csr.hosts peerd.orgl.example.com --csr.hosts localhost --tls.certfiles /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/fabric-ca/orgl/t]
Ls-cert.pem

2021/09/01 03:18:07 [INFO] TLS Enabled

2021/09/01 03:18:07 [INFO] generating key: &{A:ecdsa S:256}

2021/09/01 03:18:07 [INFO] encoded CSR

2021/09/01 03:18:07 [INFO] Stored client certificate at /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/peerOrganizations/orgl.example.com/peers/peerd.orgl.example.con/tls/signcerts/|
cert.pem

Figure 38 - Generate CAs.

The following command performs several steps at once. Namely, the blockchain network is
deployed with two peers, one ordering service, and three certificate authorities (one for each
peer and one for the orderer).

S ./network.sh deployCC -ccn basic -ccp ../asset-transfer-basic/chaincode-javascript/ -ccl javascript

The chaincode name is set to “basic”, programming language is set to JavaScript. The invoked
script will use chaincode lifecycle to perform packaging, installation, querying of installed
chaincode and finally approval of chaincode for both Orgl and Org2.

|+ peer lifecycle chaincode package basic.tar.gz --path ../asset-transfer-basic/chaincode-javascript/ --lang node --label basic.1.0
|+ res=

L+ peer lifecycle chaincode install basic.tar.gz
[+ res=0

Installed remotely: response:<status:200 payload:"\nJbasic_1.0:8c486aa50eb8b372cd7c1d5d019baB2b8f1b5614d1e9086ee239F3c27
ba184a7\022\tbasic_1.

Chaincode code package identifier: basic_1.0:8c486aa50eb8b372cd7c1d5d019ba82b8f1b5614d1e9086ee239f3c27bal84a?

+ peer lifecycle chaincode install basic.tar.gz
Lt res=0

Installed remotely: response:<status:20@ payload:"\n)basic_1.0:8c486aa50eb8b372cd7c1d5d019ba82b8f1b5614d1e9086ee239f3c27
[ba184a7\022\tbasic_1.

Chaincode code package identifier: basic_1.0:8c486aa50eb8b372cd7¢c1d5d019ba82b8f1b5614d1e9086ee239f3c27bal84a7

L+ peer lifecycle chaincode queryinstalled

[+ res=

Installed chaincodes on peer:

[Package ID: basic_1.0:8c486aa50eb8b372cd7c1d5d019ba82b8f1b5614d1e9086ee239f3c27bal84a7, Label: basic_1.0

|+ peer lifecycle chaincode approveformyorg -o localhost:7@50 --ordererTLSHostnameOverride orderer.example.com --tls --cafile /home/blocklab/Desktop/hyperlab/fabric-samples/test-network/organizations/ordererOr
jganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/t1sca.example.com-cert.pem --channelID mychannel --name basic --version 1.0 --package-id basic_1.0:8c486aa50eb8b372cd7c1d5d019ba82b8f1b5614d
1e9086ee239f3c27bal84a7 --sequence 1

|+ res=0

txid [c4c2631929e14695d0e214c247d9617103f903d251fdf24cd5c331393f6c6a8f] committed with status (VALID) at localhost:7@51

Figure 39 - Invoking the chaincode lifecycle package.

90

Ultimately it commits the chaincode. After successful script execution and chaincode
deployment, the key output is the following. The full console output is shown in Figure 40

Committed chaincode definition for chaincode 'basic' on channel 'mychannel':Version: 1.0, Sequence: 1,
Endorsement Plugin: escc, Validation Plugin: vscc, Approvals: [Org1MSP: true, Org2MSP: true]

Query chaincode definition successful on peer0.org2 on channel 'mychannel’
Chaincode initialization is not required

peer lifecycle chaincode querycommitted --channelID mychannel --name basic

res=0
ommitted chaincode definition for chaincode 'basic' on channel 'mychannel’:
ersion: 1.0, Sequence: 1, Endorsement Plugin: escc, Validation Plugin: vscc, Approvals: [0rglMSP: true, Org2MSP:

peer lifecycle chaincode querycommitted --channelID mychannel --name basic

res=0
ommitted chaincode definition for chaincode 'basic' on channel 'mychannel':

ersion: 1.0, Sequence: 1, Endorsement Plugin: escc, Validation Plugin: vscc, Approvals: [OrgIMSP: true, Org2MSP:

oot@blocklabz:/home/blocklab/Desktop/hyperlab/fabric-samples/test-network#
Figure 40 - Successfully committing and initializing chaincode on peers.

4.4.11 Limitations

The overall notional bank network (Figure 18) operates in asynchronous mode. This means
that a manual process needs to take place for the necessary information to be transferred
from and to the remote employee’s endpoint (1) and the blockchain lab (6). Two possible
ways of automation would be:

(] Asemi-automatic bridge between remote employee’s endpoint (1) and blockchain lab
(6) using encrypted software to replicate a copy-paste mechanism in timed intervals.

[0 Development of a specific agent and installation on the assumed remote employee’s
endpoint (1) to constantly send and receive data via an encrypted channel.

To overcome the lack of an automated channel, a manual process takes place to simulate as
much as possible one of the above automated or semi-automated way of data exchange.
Namely, manually transferring the hashes from the assumed remote employee’s workstation
back to the blockchain lab server. In addition, the hashes are imported on-chain using the
JavaScript application “app.js”, invoking the “CreateAsset” call via “CreateAsset” chaincode
function, all in form of a transaction.

4.4.12 Specifications

Table 10 - Blockchain lab specifications.

| Hyperledger Fabric Blockchain Lab “Blocklabz” (6) (VM)

Operating System (OS) Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic x86_64)
Hard Disk Drives (HDD) 25GB
Central Processing Unit (CPU) 2.22 GHz Quad Core Intel Core i7-4770HQ

91

Random Access Memory (RAM)

Software (SW)

6GB

Git, cURL, Docker, JQ, GO, Hyperledger fabric 2.3, Ubuntu 20x
basic installation with advanced package tool (APT) and APT
essentials

92

4.5 Blockchain Application Layer

In this section we describe how the prototype intrusion detection and prevention
application, and smart contract (chaincode) will interact with the deployed blockchain
network. Utilizing sample programs built into Hyperledger Fabric performing basic functions,
the asset-transfer smart contract is invoked and therefore enables an administrator (or even
a user if permissioned appropriately) to accomplish two basic tasks through the application:

[l Query the ledger content: for instance, an administrator could query for imported
hashes (belonging to executable extensions as described in 4.2 Hash-based
Blockchain-enabled Whitelisting). Therefore, the administrator can manually
crosscheck if a hash exists on the chain and conclude if an executable extension, is, or
will be able to run on the remote employee’s endpoint.

[l Submit transactions to the ledger: for instance, update the ledger with new hashes in
case a hash is not imported automatically. Another case might be an ad-hoc request
of an executable extension’s hash, requiring an immediate import for emergency
execution on the remote employee’s workstation.

Expanding on Figure 31, Figure 41 shows the relation between (1) the application, and (2)
the chaincode, the last two out of five core components of the blockchain enabled intrusion
detection and prevention prototype. Third core component being the blockchain network
(see 4.3. Blockchain Network Layer), second, the hashes of the executable extensions on
remote employee’s endpoint (see 4.2 Hash-based Blockchain-enabled Whitelisting) and
finally, the overall operating ZTA environment (see 4.1 Zero Trust Architecture).

— I
Admin User
— lele S Org1-CA Org2-CA
Application [~ —
Orgl Org2
Fabric Blockchain Network
Client Org1 - Peer Org2 - Peer

) -I

Channel A -]

Founder - Orderer

(-]

-

1. Run chaincode

o o [
{

2. Receive ledger updates (L)

Founder - CA 7

Figure 41 - Application and chaincode interaction with blockchain network.

93

The goal of the setup is to utilize the asset transfer samples as provided by Hyperledger
Fabric, to build a working IDPS prototype application and chaincode, ultimately interacting
with each other through Fabric SDK. The basic flow of how this interaction between the
application and the chaincode in relation to the blockchain network, is shown in Figure 42.

Application SDK Chaincode

1. Enroll an administrator
* Create admin wallet

appraisedValue) {

const exists = await this.AssetExists(ctx, id);

2. Enroll a user if (exists) {
* Create user wallet throw new Error('The asset ${id} already
3. Connect to the blockchain network exists');
e Connect to “Channel A” }
+ Connect to “Chaincode” 99%&.255‘9" ={
tid,

4. |Initialize the ledger

Color: color,
* Import test data / hashes g“i%ffrs;: o
5. Invoke "Chaincode’s” functions Owner: owner,
* GetAllAssets AppraisedValue: appraisedValue,
* CreateAsset |7
* ReadAsset await ctx.stub.putState(id,
o AssetExists Buffer.from(JSON.stringify(asset)));
« UpdateAsset return JSON.stringify(asset);
* TransferAsset i }

Figure 42 - Basic flow between IDPS application and chaincode.

The IDPS application invokes the chaincode through Fabric SDK. Figure 42 also
demonstrates the application invoking chaincode’s functions to submit a new hash into world
state database in the form of transaction. If the hash already exists then another function is
triggered (AssetExists), and therefore administrator would be presented with an error, while
printing in the console the existing hash details for reference.

4.5.1 Preparation

The blockchain network is already up and running, hence we can proceed with the
application setup. To verify that the network is operational we run the below command to
check the peer(s) status, orderer, CAs and containers.

root@blocklabz:/home/blocklab# docker ps -a ; docker info

The output shown in Figure 43 and Figure 44 confirms all critical components are
operational. Moreover, chaincode is already committed and initialized.

94

D2:/nome/DLOCK LGbE dOCKE ps -
THAGE CREATED STATUS
NAVES
hello-world D 4 meeks ago Exited (9) 4 weeks ago
hardcore_neitner
hello-world D 4 meeks ago Exited (8) 4 weeks ago
musing_haibt
hello-world > 4 meeks ago Exited (8) 4 weeks ago
crazy_banza
dev-peerd.orgl. exanple. con-basic_1.0-8c4860a50eb8b372cd7 145401968208 10561401¢90860¢239 3c270a184a7-0983d0b 1853002CaI067b36145dac392ddeBe39630d3ac47722913f00ec378 do " 6weeks ago Up 6 weeks
dev-peerd. orgl. example. con-basic_1.9-8c486aa50eb8b372cd7c1d5d019a82b8 1056141e9086e
dev-peerd.org?.exanple. con-basic_1.0-8c486aa50eb8b372cd7c1454019ba82b8 105614190860e239F 3c27bal84a7-bRo4 0369649247596 12941c313d2f cS627cc F 70e20ac2fac fEcOS1693d862 5. 6meeks ago Up 6 weeks
dev-peerd. org2. example. con-basic.1.9-8c486aas0ebs d50019682b8 105614d1090860e23973
hyperledger/fabric-tools: latest “/bin/bash” 6 meeks ago Up 6 weeks
ai
-peer:latest “peer node start™ 6 meeks ago Up 6 weeks 0.0.0.0:9051->9051/tcp,
51->19951/tcp, :::19051->19051/tcp peerd.org2. example. com
hyperledger/fabric-peer: latest “peer node start” 6 meeks ogo Up 6 weeks 0.0.0.0:7051->7051/tcp,
b 0.0.0.0:17051->17051/tcp, :::17051->17051/tcp peerd.orgl. example. com
povaavfcrise hyperledger/fabric-orderer:latest “orderer™ 6 meeks ago Up 6 weeks 0.0.0.0:7050->7050/tcp,
pse/tcp, 0..0.0:7053->7053/tcp, :::7053->7053/tcp, 0.0.0.0:17050->17050/tcp, :::17050->17050/tcp orderer. exanple.com
ecef20adccé hyperledger/fabric-ca:latest “sh - 'fabric-ca-se." 6 meeks ago Up 6 weeks 0.0.0.0:9054->9054/¢cp,
ps/tcp, 7054/tcp, 0.0.0.0:19054->19054/tcp, :::19054->19954/tcp ca_orderer
hyperledger/fabric-ca:latest “sh -c 'fabric-ca-se." 6 weeks ago Up 6 weeks 0.0.0.0:7054->7054/tcp,
.0:1 54/tcp, :::17054->17054/tcp ca_orgl
hyperledger/fabric-ca: latest “sh -c "fabric-ca-se." 6 weeks ago Up 6 weeks 0.0.0.0:8054->8054/tcp,
54/tcp, 0.0.9.0:18054->18054/¢cp, :::18054->18054/tcp ca_org2
hello-world “/hello” 7 weeks ago Exited (9) 7 weeks ago
quirky_goodall

Figure 43 - Docker containers running.

‘oot@blocklabz:/home/blocklab# docker info
lient:
default
Debug Mode: false
Plugins:
app: Docker App (Docker Inc., v@.9.1-beta3)
buildx: Build with BuildKit (Docker Inc., v@.6.1-docker)
scan: Docker Scan (Docker Inc., v@.8.

Containers: 13
Running: 9
Paused: @
Stopped: 4
Images: 16
Server Version: 20.10.8
Storage Driver: overlay2
Backing Filesystem: extfs
Supports d_type: true
Native Overlay Diff: true
userxattr: false
Logging Driver: json-file
Cgroup Driver: cgroupfs
Cgroup Version: 1
Plugins:
Volume: local
Network: bridge host ipvlan macvlan null overlay
Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog
Swarm: inactive
Runtimes: io.containerd.runc.v2 io.containerd.runtime.vl.linux runc
Default Runtime: runc
Init Binary: docker-init
containerd version: e25210fe30a0a703442421b0f60@afac609f950a3
runc version: v1.0.1-0-g4144b63
init version: de4@ade
Security Options:
apparmor
seccomp
Profile: default
Kernel Version: 5.11.0-27-generic
Operating System: Ubuntu 20.04.3 LTS
0SType: linux
Architecture: x86_64
CPUs: 4
Total Memory: 4.789GiB
Name: blocklabz
ID: OASU:CMOS:R52G:GOAL:LQKJ:AIEO: ISOH:RUUD: TKX0:3ZR4: CWSP:BREV
Docker Root Dir: /var/lib/docker
Debug Mode: false
Registry: https://index.docker.io/v1/
Labels:
Experimental: false
Insecure Registries:
127.0.0.0/8
Live Restore Enabled: false

Figure 44 - Docker information on blockchain lab named "blocklabz".

The next step is to modify the JavaScript version of Asset Transfer application, which will
be used to interact with the deployed chaincode. To do so we change the working directory
with the following command.

root@blocklabz:/# cd /home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/application-
javascript/

4.5.2 Administrator-User Enrolment and Registration

It is fundamental to enrol an administrator and at least one user. Administrator role
replicates one of the administrators within the notional bank while the user role is required
for the remote employee to be able to interact with the blockchain enabled IDPS. A common
pitfall when it comes to user enrolment is that the application interacts with the chaincode,
nonetheless. It is imperative to note that the user or administrator role enrolment alongside

95

the application registration interactions happens explicitly between the application and the
relevant CAs. Examining the chaincode AssetTransfer.js, which is in
“/home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/chaincode-
javascript/lib”, there is no reference to enrolment function, as shown in Figure 45.

assetTransfer.js

Open v "M Save — o x
assetTransferjs
86 const asset)SON = awalt ctx.stub.getState(id); // get the asset from chaincode state
87 if (lasset]ISON || asset]SON.length) { I e - |
88 throw new E (S{id} H
89 }
90 return assetJSON.t ing();
91 }
92
93 // UpdateAsset updates an existing asset in the world state with provided parameters.
94 async UpdateAsset(ctx, id, color, size, owner, appraisedvalue) {
95 const exists = awalt this.AssetExists(ctx, id);
96 if (lexists) {
97 throw new E (${id})
98 }
99
.00 // overwriting original asset with new asset
01 const updatedAsset = {
02 10: id,
.03 Color: color,
.04 Size: size,
.05 Owner: owner,
.06 Appraisedvalue: appraisedvalue,
.07 i H
.08 return ctx.stub.putState(id, Buffer.from(JSON.stringify(updatedAsset)));
.09 }
.10
11 // DeleteAsset deletes an given asset from the world state.
12 async DeleteAsset(ctx, id) {
13 const exists = awalt this.AssetExists(ctx, id);
14 if (lexists) {
15 throw new Error(s{id})
.16 }
a7 return ctx.stub.deletestate(id);
.18
19
20 /| AssetExists returns true when asset with given ID exists in world state.
21 async AssetExists(ctx, id) {
22 const asset)SON = await ctx.stub.getState(id);
.23 return assetJSON && assetJSON.length > 0O
24 3}
25
.26 // TransferAsset updates the owner field of asset with given id in the world state.
27 async TransferAsset(ctx, id, newOwner) {
.28 const assetString = awalt this.ReadAsset(ctx, id);
29 const asset = JSON.parse(assetString);
30 asset.Owner = newOwner;
31 return ctx.stub.putState(id, Buffer.from(JSON.stringify(asset)));
32 }

Figure 45 - AssetTransfer chaincode.

On the other hand, however, examining the add-read-hash.js, our modified version of the
assetTransfer.js application, a search for the relevant string returns matching results as shown
in Figure 46. It is also visible that “enrollAdmin” invokes other scripts to complete the
operation, such as “CAutil.js” and “Apputil.js”.

Oct 15 14:24

add-read-hash.js

add-read-hash.js

11 const path = require(

12 const { buildCAClient, registerAndEnrollUser, enrollAdmin } = require(); L enrolladmin|
13 const { buildCCPOrgl, buildWallet } = require();

14

15 const channelName = H

16 const chaincodeName = :

17 const mspOrgl = H

18 const walletPath = path.join(__dirname,)H

19 const orgiUserId = H

20

21 function prettyJSONString(inputString) {

22 return JSON.stringify(JSON.parse(inputString), , 2);

23}

24

25 async function main() {

26 try {

27 // build an in memory object with the network configuration (also known as a connection profile)
28 const ccp = buildccrPorgi();

29

30 // build an instance of the fabric ca services client based on

31 // the information in the network configuration

32 const caClient = buildCAClient(FabricCAServices, ccp,)

33

34 // setup the wallet to hold the credentials of the application user

35 const wallet = awalt buildWallet(Wallets, walletPath);

36

37 /1 in a real annlication this would be done on an administrative flow. and onlv once

Figure 46 - Application invokes enrollAdmin function.

Figure 46 (line 18) depicts something equally important, which is the directory name where
the CAs administrator’s credentials will be stored. The certificate and the private key will be

96

in the same directory. Lastly the administrator enrolment happens while executing the
“enrollAdmin”, which returns the following output:

Wallet path: /home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/application-
javascript/wallet

Successfully enrolled admin user and imported it into the wallet

Similarly, and since we already have the administrator’s credentials in a wallet, the “add-read-
hash.js” via the administrator role registers and enrols an application user calling the
“registerAndEnrollUser”. Execution completes successfully and reverts the following output:

Successfully registered and enrolled user appUser and imported it into the wallet

As a result, we have created two different identities for the separate users that can interact
with the application. Namely, admin and appUser, their certificate and private key “admin.id”
and “appUser.id” are shown in Figure 47 respectively.

root@blocklabz:/home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/application-javascript# 1s -al
total 104
drwxrwxr-x
drwxrwxr-x 1
-rW-rw-r--

4 blocklab blocklab 4096 Sep 30
2 blocklab blocklab 4096 Aug 25
1 blocklab blocklab 52 Aug 25 2 .eslintignore
-rw-rw-r-- 1 blocklab blocklab 921 Aug 25 8 .eslintrc.js
-rw-rw-r-- 1 blocklab blocklab 199 Aug 25 8 .gitignore
-rwxrwxrwx 1 root root 6842 Sep 30
-rw-rw-r-- 1 blocklab blocklab 8882 Sep 30 3 app.js
-rw-r--r-- 1 root root 8779 Sep 30 : app.js.original
drwxr-xr-x 75 blocklab blocklab 4096 Sep 1
-rw-r--r-- 1 root root 8750 Sep 1 3 original-app-js
-rw-r--r-- 1 blocklab blocklab 28383 Sep 1 : package-lock. json
-rw-rw-r-- 1 blocklab blocklab 399 Aug 25 3 package. json
drwxr-xr-x 2 root root 4096 Sep 1 06:24
root@blocklabz:/home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/application-javascript# cd wallet/
root@locklabz:/home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/application-javascript/wallet# 1s -al
total 16
drwxr-xr-x 2 root root 4096 Sep 1 06:24
drwxrwxr-x 4 blocklab blocklab 4096 Sep 30 04:51
-rw-r--r-- 1 root root 1101 Sep 1 ©6:24 admin.id
-rw-r--r-- 1 root root 1299 Sep 1 06:24 appUser.id
root@locklabz:/home/blocklab/Desktop/hyperlab/fabric-samples/asset-transfer-basic/application-javascript/wallet#

Figure 47 - Admin and UserApp certificate and private keys.

4.5.3 Connecting to Channel and Chaincode

The administrator and user credentials are now generated, registered, and placed in the
wallet. Subject to permissions per role, the application user and admin can call chaincode
functions after establishing a successful connection first to “Channel A” and a proper
reference to the contract.

o J1 SYYUSU Uy LIILD USEI UILIY LT LI SUSHLLOLI JLUIEU LI LIS WOLLE L.

54 await gateway.connect(ccp, {

55 wallet,

56 identity: orgiUserld,

57 discovery: { enabled: , asLocalhost: } // using asLocalhost as this gateway
is using a fabric network deployed locally

58 19K

59

60 // Build a network instance based on the channel where the smart contract is deployed

61 const network = await gateway.getNetwork(channelName);

62

63 // Get the contract from the network.

64 const contract = network.getContract(chaincodeName);

65

Figure 48 - Channel and chaincode reference.

97

Since the client is running on the same network as “Orgl — Peer” and “Org2 — Peer” the
“asLocalhost” parameter must be set to “true”, as shown in Figure 48. Moreover, the channel
name is referenced via the “gateway” and the contract name via “Contract”.

4.5.4 Ledger Initialization

At this point, the application is ready to submit transactions. Transactions are submitted by
utilizing:

1) The application call named “InitLedger”. This call will initialize the first set of hashes from
remote employee’s workstation on “Channel A” using the relevant chaincode, namely the
“Initledger” function. The “InitLedger” call follows:

console.log('\n--> Submit Transaction: InitLedger, function creates the initial set of assets on the ledger');
await contract.submitTransaction();
console.log('***);

2) The chaincode function named “InitLedger”. This is where we hold the output of hashed
executable extensions of remote employee’s workstation. Part of the “InitLedger” function
follows:

98

async InitLedger(ctx) {
const assets = [
{

ID: 'svchost.exe',

Hash:
'bb93d19¢35d751468b09b275ded48452ff8724569167b43f42d6af74639f95121b84f59fa88bcefd70baba23c
2722d5d40f775e636141bfdc52e887e866e670el’,

Size: 44.496,

Owner: 'remote-employee’,

AppVersion: 10.0.1493,

5
{

ID: 'notepad.exe’,

Hash:
'b3c6a6b158b914e612166eb49fb5a7543b0272d20e84577d9e051876¢711b0dd5472976a07b6521b09d8e
0779fa0cc33b14f7cef1b08831b6db7829abf3blc26',

Size: 88.92,

Owner: 'remote-employee’,

AppVersion: 10.0.1493,

5
{

ID: 'Bubbles.scr',

Hash:
'364a7f9088330e9439432d585f81153bc924d2685d9cc934c1c45f2c545d2ce2d4ed4d29df631f2c02b3062c
fal67bbaab05c10a4c7e454db87bb2edda27463a’,

Size: 806.4,

Owner: 'remote-employee’,

AppVersion: 10.0.1493,

|3
I;
for (const asset of assets) {
asset.docType = 'asset’;
await ctx.stub.putState(asset.ID, Buffer.from(JSON.stringify(asset)));
console.info('Asset ${asset.ID} initialized");

}

}

Next, the “submitTransaction()” function is invoking the above chaincode “InitLedger”
function to occupy the ledger with three sample hashes extracted from remote employee’s
workstation. The “submitTransaction()” function will then perform the following actions:

[0 start service discovery to find the endorsing peers within the blockchain network,

namely “Orgl — Peer” and “Org2 — Peer”.

[0 invoke the chaincode on the same peers.

[0 collect the chaincode endorsed results from the same peers.

(] submit the transaction to “Founder — Orderer”.

4.5.5 Application Calls and Chaincode Functions

Querying the ledger is one of the most essential functions of the blockchain enabled intrusion
detections and prevention system. For instance, querying for existing on-chain hashes will
result in a decision of whether an executable extension will be allowed to execute, or not, on
the remote employee’s workstation. To achieve this, the application will need to query the

99

ledger of either “Orgl — Peer” or “Org2 — Peer” using read-only invocations of the smart
contract. Figure 49 shows a simplified query flow.

Admin User
rQL;_I /Q|E_|
:RE =
Application |
3. Return
query 1. Run query
""""""""" results [T
'@
-y
! (2]
Orgl - Peer -3
' B
E
Chaincode : 3
Ledger : g
-}
PR

2. Read-Only invocation of smart
contract (chaincode) - Query

Figure 49 - Simplified query flow.

Typical queries comprise the current value of hashes in the ledger’s world state. Through
the application the administrator can perform query against one or multiple hashes, since
those are represented as a set of key-value pairs within the world state. World state runs on
Apache CouchDB [111] therefore by modelling data in JavaScript Object Notation (JSON) we
can execute multiple complex queries all at once. This is imperative for the efficient function
of the overall blockchain enabled IDPS, as multiple queries are required to be executed
continuously against executable extensions having a particular owner (e.g., remote
employee) and with a certain hash value without submitting a transaction to the ordering
service. Figure 42 shows the available IDPS application calls and chaincode functions. In the
next paragraphs we explain in detail how they work and what is the expected outcome.

4.5.5.1 Application “GetAllAssets”

Calling the “GetAllAssets” application will perform a query type operation. As shown in the
code below, when calling “GetAllAssets” the “evaluateTransation() function gets triggered
which queries the peer without submitting a transaction to the ordering service.

console.log("\n--> Evaluate Transaction: GetAllAssets, function returns all the current assets on the
ledger');
let result = await contract.evaluateTransaction('GetAllAssets');

100

4.5.5.2 Chaincode “GetAllAssets”

The “GetAllAssets” chaincode or smart contract returns all assets found in the world state.

async GetAllAssets(ctx) {
const allResults = [];
const iterator = await ctx.stub.getStateByRange(", "');
let result = await iterator.next();
while (!result.done) {
const strValue = Buffer.from(result.value.value.toString()).toString('utf8');
let record;
try {
record = JSON.parse(strValue);
} catch (err) {
console.log(err);
record = strValue;
}
allResults.push({ Key: result.value.key, Record: record });
result = await iterator.next();
}
return JSON.stringify(allResults);

}

Sample terminal output of “GetAllAssets” is shown in Figure 50.

--> Evaluate Transaction: GetAllAssets, function returns all the current assets on the ledger

comreg.exe",
: "9700asjdhasda7sdh2hedb",
"remote-employee”,
. 50",
"AppraisedValue": "2019"

"stickynotes.exe",
50",
"Owner": "Vinh-laptop",
"AppraisedValue": "7.1"

Figure 50 - GetAllAssets terminal output.

4.5.5.3 Application “CreateAsset”

Calling the “CreateAsset” application submits an actual transaction. However, the
transaction is being sent to both peers and as opposed to “GetAllAssets” where we perform
a query to one of the peers. If both peers endorse the submitted transaction, then the
endorsed proposal is being sent to the “Founder — Orderer” to be committed by both “Orgl
— Peer” and “Org2 — Peer” to the ledger. A test hash is created with the below code calling
the “CreateAsset” and the results are committed.

101

console.log('\n--> Submit Transaction: CreateAsset, creates new asset with ID, hash, owner, size, and
AppVersion arguments');

await contract.submitTransaction('CreateAsset’, 'notepad.exe', '
b3c6a6b158b914e612166eb49fb5a7543b0272d20e84577d9e051876¢711b0dd5472976a07b6521b09d8e0
779fa0cc33b14f7cef1b08831b6db7829abf3b1c2’, '88.92', 'remote-employee’, '10.0.1493');
console.log('*** Result: committed');

4.5.5.4 Chaincode “CreateAsset”

The chaincode “CreateAsset” function shown below, issues the new hash to the world state
alongside with application name notepad.exe, its file size is 88.92 kilobytes, file version being
10.0.1493 and owner being the “remote-employee”.

async CreateAsset(ctx, id, hash, size, owner, applicationVersion) {
const asset = {

ID: id,
Hash: hash,
Size: size,

Owner: owner,
AppVersion: applicationVersion,
b
return ctx.stub.putState(id, Buffer.from(JSON.stringify(asset)));
}

When utilizing both the “CreateAsset” application and chaincode, it is imperative to note that
the chaincode is expecting five arguments in the correct type and sequence as per Table 11.

Table 11 - “CreateAsset” argument sequence, type, purpose, and explanation.

Arguments Sequence Type Purpose Example / explanation
ID 1 String Executable Application name e.g., notepad.exe
extension
full name
Hash 2 String Hash value The hash value of the application notepad.exe, in
this case:

b3c6a6bb158b914e612166eb49fb5a7543b0272d20e
84577d9e051876¢711b0dd5472976a07b6521b09d
8e0779fal0cc33b14f7ceflb08831b6db7829abf3blc

2V

Size 3 Integer Application size The size of application during hashing, in this case
88.92 KB

Owner 4 String Username The username and owner of the application during

hashing, in this case hashing was performed on
remote-employee’s workstation therefore Owner
parameter is set to “remote-employee”

AppVersion 5 Integer Application The version of application during hashing, in this
version case 10.0.1493

102

4.5.5.5 Application “ReadAsset”

Calling the “ReadAsset” application is of foremost importance in the context of the
blockchain-enabled IDPS. Although it is a quite simple call, it is the first step towards a decision
of an application to be allowed or denied execution on the remote employee’s workstation.
Subsequently it is also the first step prior triggering several other processes, such as detection
process, a prevention rule, an update of the application’s hash, a transfer of ownership and
others. The “ReadAsset” is shown below.

console.log("\n--> Evaluate Transaction: ReadAsset, function returns an asset with a given assetID');
result = await contract.evaluateTransaction('ReadAsset’, 'notepad.exe');
console.log(**** Result: ${pretty)SONString(result.toString())}’);

4.5.5.6 Chaincode “ReadAsset”

Invoking the chaincode “ReadAsset” function will return the specified asset’s information
stored in the world state.

async ReadAsset(ctx, id) {
const assetJSON = await ctx.stub.getState(id);
if (lassetJSON | | assetJSON.length === 0) {
throw new Error('The asset ${id} does not exist’);

}
return asset)SON.toString();

If the requested hash exists, then the application’s information will be printed in the terminal
output as follows:

Evaluate Transaction: ReadAsset, function returns an asset with a given assetID

Result: {

"ID": "notepad.exe",
"Hash":"b3c6abb158b914e612166eb49fb5a7543b0272d20e84577d9e051876¢711b0dd5472976a07b6521
b09d8e0779fa0cc33b14f7cef1b08831b6db7829abf3b1c2",

"Size": "88.92",

"Owner": "remote-employee",

"AppVersion": "10.0.1493"

}

If the requested hash does not exist, then an error message with asset’s ID is printed alerting
the user (or admin) for the result.

4.5.5.7 Application “AssetExists”

Calling the “AssetExists” application provides for a great sequence alongside the “ReadAsset”
application and chaincode. For instance, an administrator might call the “AssetExists” to verify
if a hash is present on-chain, and if that is true then call “ReadAsset” to print the relevant
information on screen. “AssetExists” is another key application (and chaincode) because it

103

provides for a starting point of triggering other processes likewise “ReadAsset”. Another
example would be to subsequently call the “AssetExists” with “CreateAsset” and submit a
transaction proposal for a new hash to be submitted on-chain in case it does not exist.

console.log("\n--> Evaluate Transaction: AssetExists, function returns "true" if an asset with given asset|D
exist');

result = await contract.evaluateTransaction('AssetExists', 'notepad.exe');

console.log(**** Result: ${pretty)SONString(result.toString())}’);

4.5.5.8 Chaincode “AssetExists”

Similarly, the chaincode works with Boolean values, which means if the hash exists in world
state, then “true” is returned to the user.

async AssetExists(ctx, id) {
const assetJSON = await ctx.stub.getState(id);
return assetJSON && assetJSON.length > 0;

}

4.5.5.9 Application “UpdateAsset”

Calling the “UpdateAsset” application will update one or several arguments of an existing
asset. In the below code snippet, we update the notepad.exe version from 10.0.1493 to 11.

console.log("\n--> Submit Transaction: UpdateAsset notepad.exe, update the version to 11');

await contract.submitTransaction('UpdateAsset’, 'notepad.exe’,
'b3c6abb158b914e612166eb49fb5a7543b0272d20e84577d9e051876¢711b0dd5472976a07b6521b09d8e0
779fa0cc33b14f7cef1b08831b6db7829abf3b1c2’, '88.92', 'remote-employee’, '11');

console.log('*** Result: committed');

4.5.5.10 Chaincode “UpdateAsset”

async UpdateAsset(ctx, id, hash, size, owner, appVersion) {
const exists = await this.AssetExists(ctx, id);

if (lexists) {

throw new Error('The asset ${id} does not exist’);

}

const updatedAsset = {

ID: id,

Hash: hash,

Size: size,

Owner: owner,

AppVersion: applicationVersion,

|3

return ctx.stub.putState(id, Buffer.from(JSON.stringify(updatedAsset)));
}

104

4.5.5.11 Application “TransferAsset”

Calling the “TransferAsset” application submits a transaction to transfer notepad.exe from
the current owner “remote-employee” to a new owner, namely “Dr.Vinh”.

console.log("\n--> Submit Transaction: TransferAsset notepad.exe, transfer to new owner of
Dr.Vinh');

await contract.submitTransaction('TransferAsset', 'notepad.exe', 'Dr.Vinh');

console.log("*** Result:);

4.5.5.12 Chaincode “TransferAsset”

The chaincode function will update the owner field of notepad.exe in the world state
database, from “remote-employee” to “Dr.Vinh”.

async TransferAsset(ctx, id, newOwner) {

const assetString = await this.ReadAsset(ctx, id);

const asset = JSON.parse(assetString);

asset.Owner = newOwner;

return ctx.stub.putState(id, Buffer.from(JSON.stringify(asset)));
}

4.5.6 Ledger Update

Updating the ledger from an application perspective is rather simple. The application submits
a transaction to the blockchain network to be validated and committed. If successful, a
notification is sent back to the application. This involves the consensus process however, as
explained in section 4.4.6 Consensus, whereby the core components of the blockchain
network collaborate to ensure that every proposed update to the ledger is acceptable and
performed in an agreed and consistent order.

105

4.5.7 Application Rationale

The goal of the blockchain enabled IDPS, is to effectively detect, and prevent where
possible, attacks on the endpoints. To achieve this, we leverage the application calls and
chaincode functions (see section 4.5.5 Application Calls and Chaincode for details) as shown
in Figure 51.

Patch
Management

Interoperability with centralized
patch mgmt system Allow execution App False

f

App repository|
(new apps)

positive
allowed check

A 4

Deny execution

\ 4

App | Deny execution
<
Process 4 denied

Process 5 Process 3

Call UpdateAsset

"UpdateAsset"
Information update
of existing app

"GetAllAssets"

"AssetExists"
Verifies existing
app on-chain

"ReadAsset"
Query for
specific app

—_—

Revert and invoke =
AssetExists for verification

Alert Process 6
Y Y Y Asset not found

n
Prevention
triggers

Y VY

Blockchain Intrusion Detection and Prevention (Interaction with Ledger)

Corporate
Endpoint

— Endpoint

Wallet ID Enroliment Issue
&

certificate &
already issued certificate

Alert
Admin owned
Data execution
on-chain
Start

hashing
«—

BYOD "CreateAsset"
Imports new apps
=

Process 1 Process 7

Process 2

Fileless
attacks
facilitators

"TransferAsset"
Transfers app

New

>
>

wallet ID WMI Objects

Submit
hashes

Add new hashes (if required)
Figure 51 - Application rationale.

There are seven core processes (shown in green) and 7 inputs or outputs, all of them
together interconnected and interdependent with the overall blockchain enabled intrusion
detection and prevention ecosystem. The essential part, however, is the interaction between
the designated processes and on-chain data, described below:

[l Process 1 - New endpoint enrolment: this is the first step where either a new employee
will be provided with a corporate endpoint, or he/she will opt in for the BYOD option. In
the design and implementation phase we take both scenarios into account to be
pragmatic and realistic with the current corporate IT landscape.

o Corporate endpoint provided: in this scenario the time to hash is minimum. Our

current lab setup measured at 52,83 seconds from start to finish. This is because
hashing takes place prior providing the endpoint to the remote employee against
a corporate application whitelist baseline repository, therefore minimum to zero
impact on user experience. Lastly, a wallet ID is already configured by
administration team and the necessary certificate is issued beforehand.

BYOD: in this scenario the time to hash will be significantly increased based on
factors such as (1) committed computational resources, (2) user actively using the
endpoint or being idle, (3) a hybrid combination of options 1,2 namely, increasing
computation resources while user is idle and decreasing computation resources
while user is working. Finally in this case, a new wallet ID and a certificate must
be issued for the user to be able to interact with process 2 and import the newly
hashed apps data on-chain. Note that in the BYOD case, the smart contract will

106

only hash against the corporate baseline while the remaining host applications
will be considered untrusted, and therefore run in isolation.

[l Process 2 — Import new apps on-chain: this process utilized the “CreateAsset” app
function and chaincode. It enables for newly hashed application’s information to be
transferred and recorded on-chain, providing immutability.

[l Process 3 — Verify existing apps on-chain: this is a key process as few other processes are
dependent. Utilizing the “AssetExists” app function and chaincode we can verify against
an immutable source of truth whether an app’s information is present on chain, and
thereby draw relevant conclusions and take further actions. For instance, an app can be
allowed or denied execution, or the “UpdateAsset” can be called to update apps
information and facilitate the corporate patch management process.

[l Process 4 — Query for specific app(s): utilizing either of “GetAllAssets” or “ReadAsset”
apps functions and chaincodes, an administrator can query the ledger for specific
information. For instance, manually verify on-chain presence of applications, or request
certain information to expedite incident triaging if needed.

[l Process 5 — Update existing app(s) information: this process can be sequentially invoked
explicitly via Process 3 and “AssetExists”. Through “UpdateAsset” app function and
chaincode we can update certain information fields of applications.

[l Process 6 — Detection and prevention triggers: this process serves as an output
processor, e.g., an app is trying to execute without the relevant data being present on-
chain, then an alert is being generated. In this case we focus on generating two types of
alerts, viz. (1) an app is trying to execute without relevant data being present on-chain,
and (2) admin owned app (see Process 7 below) is trying to execute, both cases signal
potential intrusion. Nonetheless alerts and rules can be configured and further refined at
a later stage to include countless cases.

[l Process 7 — Transfer app(s) ownership: utilizing “TransferAsset” app function and
chaincode we can transfer ownership of apps on-chain creating a sequence and reference
in the form of transactions. We leverage this ability to create a user-aware on-chain
environment where detections and prevention decisions can be drawn based on user
context rather than a workstation on its entirety. As a result, we significantly increase the
aptitude for detection and prevention of fileless malware [112] and Living-Off-The-Land
(LotL) attacks [113].

4.5.8 Limitations
In the context of application, two limitations are identified:
0 We utilize and modify the AssetTransfer sample set of apps and chaincode provided
by Hyperledger Fabric to fit the needs of a prototype blockchain enabled intrusion

detection and prevention system. Therefore, the prototype is limited to the above
described six apps and their respective chaincodes.

107

0

In continuation, since we perform hashing based on the apps existing on disk,
specifically on remote employee’s workstation, it accounts for the ultimate detection
and prevention for malware dropped or executed from disk. If an adversary can
compromise the remote employee’s endpoint, it is extremely unlikely that further
malicious tools will be able to execute from disk as their hash and relevant information
are not present on-chain. Nevertheless, malware executed directly from memory e.g.,
fileless malware [112] or malicious activities leveraging valid and legitimate system
tools such as PowerShell, also known as Living-Off-The-Land (LotL) attacks [113], are
still a risk to take into consideration.

To address this, we introduce the user-aware on-chain data context. Namely, based
on work done from academics [112] [114] [115] [116] and industry professionals [117]
[118] [119] analysing and replicating fileless and LotL attacks, we conclude to the
following Table 12 subject to Process 7, transfer of ownership for the effective
detection and prevention of mentioned attacks. Note that some of the below
applications, such as certutil.exe, cmd.exe or wmic.exe are extensively used for
legitimate OS purposes, therefore spotting execution does not automatically
constitute of malicious activity. Further enhancing methodologies via machine
learning and artificial intelligence have been proposed [120] aiming to narrow down
the noise.

Lastly, we utilize Microsoft’s Sysmon [121] to further enhance in-memory
attacks detection and prevention by monitoring for specific event IDs. Sysmon logs
loading of drivers and DLLs with their signatures and hashes, thereby when a remote
thread is created (e.g., a DLL is reflectively called via a malicious VB script within a
word document) Sysmon created the event ID 8 [121]. Event ID 8 is also used to detect
the full class of attacking techniques to inject code or hide within other processes.

Table 12 - Ownership transfer list.

Filenames
Addinprocess.exe Extexport.exe Powershell ise.exe Setupapi.dll
Addinprocess32.exe Gprslt.exe Presentationhost.exe ~ Syssetup.dll
Addinutil.exe Infdefaultinstall.exe = Regasm.exe
At.exe Installutil.exe Regedit.exe
Bcededit.exe Mavinject32.exe Regsvces.exe

Bitsadmin.exe

Mavinject64.exe

Regsvr32.exe

Certutil.exe Mmc.exe Rundll32.exe
Cmd.exe Msbuild.exe Sc.exe
Cmdkey.exe Msdt.exe Sctasks.exe
Cmstp.exe Mshta.exe Vssadmin.exe
Control.exe Msiexec.exe Wevtutil.exe
Csc.exe Msinfo.dll Wmic.exe
Cscript.exe Net.exe Wsecript.exe
Esentutl.exe Odbcconf.exe Advpack.dll
Eventvwr.exe Powershell.exe Dfshim.dll

108

4.5.9 Specifications

Prototype’s application is running on the same virtual machine as the blockchain network.
Table 13 outlines the specifications.

Table 13 - Blockchain lab specifications.

Hyperledger Fabric Blockchain Lab “Blocklabz” (6) (VM)
Operating System (OS) Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-generic x86_64)
Hard Disk Drives (HDD) 25GB
Central Processing Unit (CPU) 2.22 GHz Quad Core Intel Core i7-4770HQ

Random Access Memory (RAM) 6GB

Software (SW) Git, cURL, Docker, JQ, GO, Hyperledger fabric 2.3, Ubuntu 20x

basic installation with advanced package tool (APT) and APT

essentials

4.6 Conclusion

As stated in the beginning of this chapter, this phase consists of four building blocks. Each
of the blocks was successfully developed and implemented, as well as interoperate seamlessly
with each other. More specifically (i) the ZTA where the BIDPS operates is in place and
simulates a notional bank with employees working from remote locations via their endpoints.
Next, (ii) the hash-based blockchain-enabled application whitelisting was produced We have
finalised the development and implementation phase of the BIDPS prototype successfully.
Moreover, we further enhance the whitelist by introducing a context-aware mechanisms that
is being leveraged at a later stage from the BIDPS application. This helps us to potentially
refine, subject to evaluation, the effectiveness of the BIDPS against cyber-attacks. In
continuation (iii) we built the blockchain network, which acts as the foundation for the BIDPS
application and chain codes to run. Lastly, (iv) the BIDPS and its respective chain codes were
deployed and operationalized.

109

Chapter 5: Evaluation Phase — Effectiveness and
Performance Evaluation

5.1 Introduction

In this chapter we perform an evaluation of the BIDPS’s detection and prevention
effectiveness, and later we evaluate its performance efficacy. Thus, the chapter is structured
in two parts, subsections 5.2 and 5.3 respectively. We begin with the prevention and
detection effectiveness evaluation and continue with the performance evaluation.

5.2 Effectiveness Evaluation

A recent report from the World Economic Forum highlighted that cyberattacks are one of
the six major dangers of digital innovation [122]. At the same time, sophisticated cyber
criminals team up to exchange knowledge that eventually leads into the birth of advanced
offensive tools, tactics, techniques, and procedures. These well-resourced and highly
sophisticated adversaries often target high profile companies or individuals, and most widely
known and referred to with the abbreviation APTs. In most cyber-attacks, different threat
actors would exploit a single vulnerability and steal data that would immediately seek to
monetize in the underground economy. This is known as the “hit and run” modus operandi
[123]. An example in the spotlight during the last decade is ransomware. Adversaries in this
case, once compromising an endpoint would either encrypt the victim’s data demanding
ransom to offer a decryption key, or some variants observed to steal the encrypted data and
further resell it to the underground economy regardless if ransom is paid or not [124],
eventually feeding and growing an underground economy.

On the contrary, threat actors in APT attacks preserve a low profile to produce the least
noise possible and retain their initial access to compromised systems as much as possible.
APTs objectives can be political, military, technical or even economical (in the form of
intellectual property), depending on the goals of the threat actor’s controlling entity. During
APT attacks several vulnerabilities can be exploited, also known as vulnerability chaining [125]
with the ultimate goals always being (1) to remain stealthy within a compromised host or
network for prolonged access preservation and, (2) maintain access to related resources for
the objective to be successful.

In this section we define two classes of APT attacks that span from the most traditional up
to the most sophisticated. Namely, the file-based and fileless attack classes. Next, we
construct scenarios for each class of attacks and evaluate the efficacy of the proposed
blockchain enabled intrusion detection and prevention system. The rational for evaluation is
described in section 5.2.2 Detection and Prevention Evaluation Rationale.

5.2.1 Advanced Persistent Threats (APTs)

APTs objectives can take months or years to be met, therefore long-term stealthy and
persistent access to the victim’s computing resources is required. As a result, the modus
operandi of an APT comes in complete contrast with the previously described “hit and run”
of typical cyber-attacks. Deconstructing the term APT, we can note the following:

110

[l Advanced means that cyber adversaries are operating at the highest level and do not
limit themselves to public tools and exploits. The operate throughout the full
spectrum of intrusion exploiting single vulnerabilities, using freely available tools,
following known attack patterns, or in case their objective demands, they can elevate
to leverage vulnerability chaining, create custom tools, and develop their own exploits
specifically for the victim’s computing infrastructure.

{1 Persistent means the cyber adversaries are not opportunistic intruders, rather they
are formally tasked to accomplish a mission. However, persistent should not be
related to constant malicious code execution on victims computing infrastructure.
Persistent in this context refers to the strong motives and most likely incentives
provided by their commanding entities, usually nation state or state sponsored. That
said, cyber adversaries involved in APT attacks will take any action to maintain the
required level of interaction with the victim’s computing infrastructure to achieve
their objectives.

[] Threat in this context means that the human element, the cyber adversaries are
constantly interacting with their code and tools, while at the same time altering their
decision making and attack patterns based on both victim’s and compromised
endpoint behaviour. Consequently, the adversary cannot be treated as a piece of
mindless code that can be brought down with ease, once detected.

Cyber adversaries during APT attacks can achieve initial access into the notional bank’s
network, through several techniques. We construct, simulate, and examine the most
prevalent scenario of achieving initial access nowadays, namely, spear-phishing. Once cyber
adversaries achieve initial access on the remote employee’s workstation through successful
exploitation of a vulnerability, there is a limited window of opportunity to execute malicious
code that will help them achieve their objectives. This initial stage of access provokes the
following definition of attack classes:

[0 If the malicious code often named after “payload”, is written, or the code itself writes
data on the victim endpoint’s disk for any reason and in any form, from now on will
be referred to as file-based attacks.

[If the malicious payload is (1) loaded directly in memory of the exploited process, thus
leaving no trace on disk, or (2) uses legitimate processes, programs, scripts, and their
memory space to hide or execute, from now on will be referred to as fileless attacks.

5.2.2 Detection and Prevention Evaluation Rationale

To establish an evaluation rationale of our proposed blockchain-enabled IDPS against APTs,
we must first understand how these attacks are typically performed. That said, threat
modelling becomes imperative [126]. The industry standard threat model for APT attacks is
the Cyber Kill Chain (CKC) framework by Lockheed Martin [127]. The term “kill-chain” refers
to the entire chain of events until a successful attack is performed, or in other words, it
describes an end-to-end process [128]. CKC’s attack stages being with reconnaissance and
weaponization reaching up to command and control and actions on objectives. Those last

111

stages are the main arguments for damaging criticism against CKC being perimeter-based and
malware-focused [129]. Although the latter is not necessarily negative, the former certainly
is, considering our architecture is based on a borderless zero trust enabled architecture.

Moreover, one needs to zoom-in much more into the last stages of “command and control
and actions on objectives”, for firstly, these are the stage where attackers thrive nowadays,
and secondly, to evaluate our IDPS in the greatest extent possible. That said, a more
comprehensive model dealing with APTs beyond perimeter and with far greater details in
malware attacks, especially after initial access obtained, is MITRE’s ATT&CK framework [130].
Leveraging ATT&CK’s knowledge base and attack model, we can describe the behaviour of a
threat actor throughout the entire attack lifecycle and evaluate our IDPS efficacy. To visualize
the full attack lifecycle, we utilize a circular dendrogram as shown in Figure 52, representing

MITRE’s ATT&CK enterprise matrix.

$
H E $
H §
P S §
2 if: 55
g g2 P -0
i gff & F§
So5 82 5$ -sé" 55
9%8:4 2§ §§§\.§ . g’
L1208t 588485 S5 2§
I T
Sr@ E N <
FESSSECSEEFIINSSSEEL S8 N
8332 muigafﬂoa'c:; SFLES ‘:‘\b“@
3

&
4, o,
20
%,
)
5
o ¢
gt
% 8 o
, < ‘*?) §o°
Y o ‘p\ﬁ o o™
5 \\“ooo q‘°*1 o
S, g i
p e, ey, ol e
5&%”’0»,,, Oty 4y \““\“g S et
e £ S o v"“‘d‘\ o
Con 2 tor o, Com, S
i, Vi, AT "
Conmyp, " Actyy, Dop, ™ &y, ey e o
e e
% W
sy‘l"" Shp”"g ';"Co,"',:/»,, B “‘\\d\“\\g\é‘:‘eﬂp‘:“.\“‘
U e, g e 2
oy Preg 3 et e o
R Rep, £ 15\-“ ‘D\!'“‘ DS
Notyg o50Urc, uy"' Stop, e ot O overy
Inhityy Ml of g king AP Cookmark O L overy
it Syston o S - st
irmw, 'Cova c\o“““:,i Dashbod
Endpormﬂon“ iPtion Cloud SEVIES 1 covery
Of Seryjce Joud SerV Object Discovery
Disk Wipe o Sorage el
v Container and Reso!
Domain Trust Discovery
File and Directory Discovery
Group Policy Discovery

Data Manipulation
Data Encrypted for Impact
Data Destruction

Account Access Removal
Valid Accounts

:ntwork Sorvice Scanning
lotwork Share Discov
Netw it
B ork Sniffing

ass

Discovery g

scheduled TlquJ\t;:
Process InlacFl‘w
ution
wijack \E“” Escalaton issi © Discoyep,
privi cutio" Toces, D;
jon fof g Execiol s D isco
explote un*“‘wf_,cw" :c\‘o\‘ k’i‘:’yk'ﬂl; =
ific e §,
P ‘)“;\"‘“.-s. s°"’~a,,,°’;‘ M Djge,
oo o Y on 5 R Ingg “COVep,, Very
ot et eo M g, O
we OF 1\ e oo Log,
O oo™ st e’ o7 Nogyon ! Olsco,
“oe\ﬂ _og°“'}°w““\‘\a o o 4,:! - "‘"ﬂv. Vor,
goo\‘“ ce.,s e oy %"'b,*c %”au,
L ey, Sop, s e, Mop
.E\"“ R At % '7;,,. /000/ o Vg, O o /31.-0',.
v S Yo, Vsey O, Vo, oy, Y
RS Sy b, @
PR T p/o:’%%:
< ¥ a8 vv\\"‘g oy i,
A o oy,
”,
7o <o, e
o N
W & o oy 7
«© &
& ¥ é"'élé‘, ;:5:, aug!"g o 4, %, % %, %, 0/"")—
& S s & 02%2%%% 7%,
A S TR R L A LA R L O R S
< E8 % = g £ 9 2
o § TPy i fsraarianagssinnainsity e
€ e S e 0233583335895%% © &% %%
if{’ﬁe‘ga-’i §35% 2r3992% %o % %
SSETEsa8:5888367% $8e5%5s ©% A
ISEGEQ IS5 E 2822°%% o %
s s E 22833Ze e %%
& 5 €5 u 38.3%e 23 %% ks
§ §3 BR*L 235 £y
£ 3 T2 %23 %
3= e >® 3 -] EY
£5 THIVER
s 22 32
g 2 :%%
it
H [-]
§
o

Figure 52 - MITRE's ATT&CK Enterprise Matrix.

112

The highest level of abstraction within the enterprise version of ATT&CK’s model is tactics.
This can be visualized within the inner part of the circle in Figure 52. Each tactic includes a set
of techniques that APTs have been observed to follow. Tactics are tied with the “why” of an
APT attack objective while techniques correspond to the “how” part. APT29 according to
MITRE’s APT database records [131], gained world-wide attention due to (1) the identity of
their compromised targets including Government(s), telecom providers, consulting firms,
technology companies etc., (2) the impact of the attack, and (3) the original threat group’s
attribution to Russia’s Foreign Intelligence Service. Therefore, and during APT29, attackers
achieved initial access through spear phishing, executed malicious files though compromised
user accounts on compromised endpoints, and established persistent access on their victim’s
computer infrastructure by inserting malicious registry keys, ultimately achieving a long-term
malicious communication channel to eavesdrop on their victims.

Tactics can be described on a high-level and with the order they happen as follows:

[Initial access — Any technique in this category providing for initial access into the
notional bank’s network and specifically granting access to and from remote
employee’s endpoint.

[1 Execution — Any technique allowing for adversary controlled-code to be executed on
the compromised, or any other endpoint.

[1 Persistence — Any action, access, or configuration change to remote employee’s
endpoint that will eventually allow for persistent presence in the notional bank’s
computing infrastructure. This is a crucial step in the context of APTs, as cyber
adversaries seek resilience against interruptions such as process, task, or even
endpoint restart that will disrupt the malicious communication channel.

[l Privilege escalation — Any technique within this category will result into adversaries
obtaining a higher level of permissions on the compromised remote employee’s
endpoint.

[l Defence evasion — Any technique within this category can be used by adversaries with
the purpose of evading detection.

[1 Credential access — Any technique providing access or control over system or domain
credentials. This can be remote employee’s browser credentials for instance, or it
could a set of domain login credentials such as user, administrator, application specific
credentials and others.

(] Discovery — Any technique allowing adversaries to discover, map, and learn more
information regarding the endpoint itself, but most importantly the internal network.

(] Lateral movement — Any technique enabling adversaries to access, remotely control,
or remotely execute tools on other endpoints in the internal network.

{1 Collection — Any technique allowing for identification and information gathering of
data (e.g., sensitive files) from the local compromised or any other remote endpoint,
prior exfiltration.

[Command and control (C2 or C&C) — Any technique facilitating communication
between adversaries and the victim’s endpoint. APTs usually leverage legitimate
means of communication to establish C&C e.g., HTTP/HTTPS.

[l Exfiltration — Any technique facilitating the adversary to remove or extract data and
information from the notional bank’s network.

113

To simulate and execute at least one technique of each tactic and ground this on a common
taxonomy, we opt in to use CALDERA, a cyber security platform built on MITRE’s ATT&CK
model [132]. CALDERA assists in APT emulation matching MITRE’s ATT&CK matrix tactics and
techniques on a one-to-one basis; therefore, it will aid in most accurately and easily executing
at least one technique of each tactic described above, ultimately resulting in complete and
precise evaluation. Furthermore, MITRE offers APT emulation plans [133] broken up into
three phases, as shown in Figure 53, and CALDERA provides for the same the exact techniques
and tools per phase and tactic to be simulated with ease.

Compromise

C2 Setup Host

Packing vasion ion

Credential
Access

Obfuscate Persistence

Files

Lateral Movement J

\7 |

Exfiltrate

Initial
Access

ooeag

/

Figure 53 - MITRE's Adversary Emulation Plan.

During the analysis phase (see Chapter 1) we highlighted the Achilles heel of ZTA, an
already authenticated and authorised channel of a legitimate user that can be exploited by
an APT through a compromised endpoint [134]. Additionally, we described in the begi