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Abstract 

 Monte Carlo algorithms are frequently used in atomistic simulations, including for 

computation of magnetic parameter temperature dependences in multiscale simulations. Even 

though parallelization strategies for Monte Carlo simulations of lattice spin models are known, 

its application to computation of magnetic parameter temperature dependences is lacking in 

the literature. Here we show how, not only the unconstrained algorithm, but also the 

constrained atomistic Monte Carlo algorithm, can be parallelized for any spin-lattice crystal 

structure. Compared to the serial algorithms, the parallel Monte Carlo algorithms are typically 

over 200 times faster, allowing computations in systems with over 10 million atomistic spins 

on a single graphical processing unit with relative ease. Implementation and testing of the 

algorithms was carried out in large-scale systems, where finite-size effects are reduced, by 

accurately computing temperature dependences of magnetization, uniaxial and cubic 

anisotropies, exchange stiffness, and susceptibilities. In particular for the exchange stiffness 

the Bloch domain wall method was used with a large cross-sectional area, which allows 

accurate computation of the domain wall width up to the Curie temperature. The exchange 

stiffness for a simple cubic lattice closely follows an mk scaling at low temperatures, with k < 

2 dependent on the anisotropy strength. However, close to the Curie temperature the scaling 

exponent tends to k = 2. Furthermore, the implemented algorithms are applied to the 

computation of magnetization temperature dependence in granular thin films with over 15 

million spins, as a function of average grain size and film thickness. We show the average 

Curie temperature in such systems may be obtained from a weighted Bloch series fit, which is 

useful for analysis of experimental results in granular thin films.  

 

* SLepadatu@uclan.ac.uk 
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1. Introduction 

 

Atomistic magnetic simulations are essential for understanding and modelling magnetic 

processes at the nanoscale, forming a link between ab-initio approaches and micromagnetic 

simulations. In particular computation of temperature dependences of magnetic parameters are 

used to inform micromagnetic models in a multiscale approach [1-3]. In this respect Monte 

Carlo algorithms [4,5] are particularly powerful, allowing efficient simulations of 

thermodynamic properties of spin systems, as well as hysteresis loops [6], and have been 

implemented in a number of atomistic simulation packages, including Vampire [7], Spirit [8], 

and Vegas [9]. One current shortcoming, is that the algorithms used are largely serial in nature 

and cannot be directly implemented on graphical processing units (GPU). GPUs allow 

massively parallel computations, with processing powers normally available only on 

distributed computer networks. The serial Monte Carlo algorithms may be used as multiple 

instances in parallel, or using parallel tempering [10], but this requires a significantly more 

complicated simulation setup, and the serial algorithms cannot make use of GPUs. Strategies 

for parallelizing the spin lattice Monte Carlo algorithm on GPUs have been introduced 

previously, using a red-black checkerboard scheme [11-13], or a stream processing domain 

decomposition [14]. The application of such parallelization strategies to computation of 

magnetic parameter temperature dependences is still lacking however, and there is a need for 

evaluation of their suitability for this important use case. Moreover, one useful variant of the 

atomistic Monte Carlo algorithm is the constrained Monte Carlo method [15], allowing 

computation of anisotropy temperature dependence, and a parallelization strategy for this 

method has not been previously discussed.  

Here we implement and test a general-purpose fully parallel (one thread per atomistic 

spin) adaptive Monte Carlo algorithm, which can be executed both on GPUs and multi-core 

CPUs. The algorithm was implemented for a simple cubic crystal structure with nearest-

neighbour interactions. However, the parallelization scheme can easily be extended to realistic 

crystal structures and next nearest-neighbour interactions, and we discuss how this can be 

achieved. Implementation and testing of the algorithm was achieved by computing temperature 

dependences of magnetic parameters, including magnetization, uniaxial and cubic anisotropies, 

exchange stiffness, and susceptibilities. Finally, we apply the implemented algorithm to large-

scale simulations of the magnetization temperature dependence in granular thin films. 
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2. Parallel Monte Carlo Algorithms 

 

Atomistic spin dynamics uses the Landau-Lifshitz-Gilbert equation [16], supplemented 

by a stochastic field based on Langevin dynamics [17]. The Fokker-Planck equation 

corresponding to this stochastic equation has the Boltzmann distribution as a solution [18]. One 

approach to computing magnetic parameters’ temperature dependences, for example as 

required for micromagnetic models, involves bringing the system into thermodynamic 

equilibrium, then obtaining statistical information from many stochastically generated 

atomistic ensembles. In principle it is possible to generate these ensembles using atomistic spin 

dynamics. However, this approach is very inefficient, particularly close to the phase transition 

temperature, where a large number of iterations with a very small time step are required to 

thermalize the system, and generate a large enough set of atomistic ensembles for statistically 

significant information. A much more efficient approach is to use a Monte Carlo algorithm to 

generate atomistic ensembles which follow the expected Boltzmann distribution directly. Close 

to phase transition points, which exhibit critical slowing, cluster update algorithms are 

particularly useful [19,20]. For atomistic simulations a widely used algorithm is based on the 

Metropolis Monte Carlo algorithm [4]. Here a Monte Carlo iteration, or step, consists in picking 

each atomistic spin in turn, but in a random order, and rotating it in a small cone about the 

initial position. This is called a Monte Carlo move, and it is accepted with a probability given 

by the Boltzmann distribution below.  

The energy change between the previous spin direction and candidate spin move, Ei, is 

obtained from a spin Hamiltonian, which includes a number of interactions. The energy Ei (J) 

for spin i with magnetic moment S,i and direction Ŝi, is given below.  

Here we consider the Heisenberg isotropic exchange interaction with Jij = J, where the sum in 

the first term is over the nearest neighbours of spin i. The second and third terms are the uniaxial 

and cubic anisotropy contributions respectively, with Ku,i and Kc.i being the respective 

anisotropy energies, where êi is the easy axis direction, and for cubic anisotropy the easy axes 

coincide here with the Cartesian axes. The last term is the external field contribution. We have 

implemented the serial Monte Carlo algorithm in Boris [21] using an adaptive cone angle, 
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similar to the approach used in Ref. [22]. In particular the Monte Carlo move acceptance rate 

is kept at an optimal value of 0.5 by increasing or decreasing the cone angle in increments of 1 

degree as required.  

The most straightforward and very efficient approach to parallelizing this algorithm is 

to use a standard red-black checkerboard ordering scheme [11], which separates the spins into 

two sets of non-interacting spins, and thus avoids data race conditions if only the nearest 

neighbours are included in the exchange interaction for a simple cubic structure. However, this 

scheme can easily be extended to realistic crystal structures, as well as inclusion of next-nearest 

neighbours, where we simply consider the atomistic spins on non-interacting sub-sets in turn. 

For example a body-centred cubic (bcc) structure can be considered as 2 interleaved simple 

cubic sub-lattices, face-centred cubic (fcc) as 4 simple cubic sub-lattices, and hexagonally close 

packed (hcp) as 4 simple tetragonal sub-lattices. For these realistic crystal structures the red-

black ordering scheme can be applied to each sub-lattice in turn, which allows consideration 

of exchange interactions between any number of spins on different sub-lattices without 

introducing data race conditions. Thus for fcc and hcp we obtain 8 sub-sets of non-interacting 

spins, each containing around 1/8th the total number of atomistic spins. On shared memory 

machines this results in very efficient parallelization as long as the number of spins in each 

subset is significantly larger than the number of threads, since the cost of fork-join operations 

is typically negligible. For GPUs there is an additional cost associated with latency of multiple 

kernel launches. However, this is also relatively negligible for system sizes containing over 

100k atomistic spins. Moreover, since on each red and black subsets the spins are not 

interacting in Equation (2), we do not need to pick them in a random order, which further 

reduces the computational cost. We have tested this parallel algorithm by comparison with the 

serial version, obtaining identical results, and examples are given in the next section. A pseudo-

code for this algorithm is given in Appendix A. For systems with 1 million spins and above, 

the parallel Monte Carlo algorithm is over 200 times faster compared to the serial version, and 

scales linearly with increasing problem size. The largest problem tested contained 100 million 

atomistic spins using a 6 GB memory space in single floating-point precision. At this mesh size 

one Monte Carlo iteration requires ~0.1 s computation time on a RTX 2080 Super GPU, which 

makes computations feasible on a single GPU even at this extreme system size. In addition, the 

Monte Carlo algorithm could be implemented for a multi-GPU workstation with an expected 

near-linear performance scaling, since without the dipole-dipole interaction the communication 

overhead between multiple GPUs is very small. It is worthy of note that the capability of the 
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latest RTX 3090 GPU means that 1 billion atomistic spins computations are within reach on a 

single multi-GPU workstation. 

A variant of the standard Monte Carlo algorithm is the constrained Monte Carlo 

algorithm [15], which is useful for computing energies, in particular anisotropy energies, in 

directions away from an easy axis. This works by generating atomistic ensembles which 

maintain the average magnetization direction unchanged along the constraining direction, thus 

effectively working with a sub-set of the possible atomistic ensembles at each thermodynamic 

equilibrium point. We have also parallelized this algorithm using the red-black ordering 

scheme, however there are 2 additional difficulties that need to be considered. First, in order to 

maintain the average magnetization direction unchanged, the algorithm works on pairs of spins, 

where the change in transverse components is compensated for each spin pair. With the red-

black ordering scheme, pairs of spins are picked on the same red or black subsets, which avoids 

data race conditions. Furthermore, for each Monte Carlo iteration each spin is picked exactly 

once in a random order, thus forming unique pairs of spins, but different, for each Monte Carlo 

iteration. We achieve this by shuffling the spin indexes before each iteration, then picking them 

sequentially in pairs from an array of shuffled indexes. The second difficulty consists in 

computing the new magnetization length along the constraining direction, since the acceptance 

probability is proportional to the ratio of the new and old magnetization lengths as shown in 

Ref. [15]. The difficulty is that once a trial move has been accepted the magnetization length 

changes. This information could in theory be propagated to all the other computational threads 

through an atomic operation, however this is very inefficient. Since the change in 

magnetization length ratio is negligible on average, both at low temperatures and around the 

phase transition temperature, we resort to simply computing the magnetization length along 

the constraining direction once at the start of each Monte Carlo iteration. We have tested this 

parallel algorithm against the serial version as introduced in Ref. [15] with identical results. A 

pseudo-code for this algorithm is also given in Appendix A. 

Finally, it should be noted Equation (2) does not include the long-range dipole-dipole 

interactions. In many cases this is not necessary, since the exchange energy is typically many 

orders of magnitude higher. However, in some cases it is important to include this additional 

interaction, e.g. as used in Refs. [14,23]. This topic is beyond the scope of the current work and 

will be addressed separately in an upcoming publication.  
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3. Magnetization, Anisotropy, Exchange Stiffness and 

Susceptibilities 

 

Firstly, we compute the magnetization temperature scaling using the parallel Monte 

Carlo algorithm, in a cubic mesh with periodic boundary conditions in all directions, thus 

representative of the bulk magnetization temperature scaling. For the simulations in this work, 

we use a lattice constant a = 2.5 Å, magnetic moment S = 1.3 B, exchange energy                               

J = 610-21 J, and anisotropy energy K = 510-24 J. The result for a 50 nm3 mesh (8 million 

spins) is shown in Fig. 1(a), where up to 10,000 thermalization steps were used with a 

temperature step of +1 K close to TC (increasing temperature sweeps are used), and with 

averaging over up to 30,000 ensembles for each temperature. The result closely follows the 

expected Bloch law, Equation (3), as shown and from which values of TC = 628.0  0.1 K, and 

 = 0.340  0.001 are obtained by fitting. The Curie temperature is proportional to the exchange 

energy, given by TC = JCz/3kB, where z is the number of nearest neighbours (z = 6 for a simple 

cubic lattice), and C is the reduced Curie temperature. This may be calculated using a self-

consistent Gaussian approximation [24], and for a simple cubic lattice with S =  Heisenberg 

model, is given as C = 0.723 [24]. From our computed TC value, we also obtain C = 0.723 to 

3 decimal places, thus in very good agreement. Simulating with a large-scale mesh allows 

minimization of well-known finite-size effects. Fig. 1(b) shows the computed magnetization 

scaling as a function of mesh size, from 10nm3 up to 50nm3, illustrating the finite-size effect. 

Due to the reduced simulation space, a sufficiently thermalized atomistic ensemble cannot be 

generated at small mesh sizes even with periodic boundary conditions, and the result cannot be 

improved by increasing the number of ensembles included in the average, or thermalization 

steps. It should be noted the magnetization temperature dependence in Equation (3) does not 

reproduce exactly experimentally measured temperature scaling, particularly at low 

temperatures, as discussed in Ref. [25]. One approach to accommodating this is to use a 

temperature rescaling method [26]. In a more recent work, a quantum thermostat was 

implemented [27], allowing generation of magnon Planck statistics, with results more closely 

aligned to experimental data compared to Boltzmann statistics; it remains to be investigated 

how this approach can be combined with a Monte Carlo simulation method. 

( )CTTTm /1)( −=  (3) 
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FIG. 1. (a) Normalized magnetization and anisotropy temperature dependences computed in a 

50 nm3 mesh with periodic boundary conditions, using the standard, respectively constrained, 

parallel Monte Carlo algorithms. The magnetization scaling is fitted using the Bloch law in 

Equation (3), with TC = 628.0  0.1 K, and Bloch exponent  = 0.340  0.001. The solid lines 

show the Callen-Callen scaling of m3 and m10 for uniaxial and cubic anisotropy respectively. 

The best fit scaling laws have m scaling exponents of 2.95  0.01, and 9.90  0.02 respectively. 

(b) Detail of m scaling around TC, as a function of simulation mesh size, showing the finite-

size effect. 

 

 

Results for the anisotropy temperature scaling, obtained using the constrained Monte 

Carlo algorithm, are also shown in Fig. 1(a). The ideal Callen-Callen [28] scaling laws are m3 

and m10 for uniaxial and cubic anisotropy respectively, and these are shown as solid lines in 

Fig. 1(a). By fitting the computed m scaling to the computed k scaling we obtain the scaling 

exponents 2.95  0.01, and 9.90  0.02 respectively. It is well known the computed anisotropy 

scaling deviates slightly from the ideal Callen-Callen scaling, particularly close to TC, which 

results in slightly smaller scaling exponents. These results are obtained by computing the 

average anisotropy energy from Equation (2), first along the hard axis (long cube diagonal for 
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the cubic case), then along the easy axis, and finally taking the difference and dividing by the 

simulation volume to give the un-normalized micromagnetic anisotropy energy density. 

Another possibility is to compute the torque in a direction away from the easy axis, as done in 

Ref. [15]. For the cases of uniaxial and cubic anisotropies it is also possible to use the standard 

Monte Carlo algorithm to compute just the easy axis anisotropy energy, since the hard axis 

anisotropy is related to the easy axis anisotropy by a simple geometric factor. Thus the scaling 

laws are obtained using Equation (4), ku for uniaxial anisotropy and kc for cubic anisotropy, 

where K0,hard is the zero temperature anisotropy energy density value along the hard axis. We 

have also verified these cases, obtaining identical results to the constrained Monte Carlo 

algorithm. The method based on Equation (4) is faster, since the constrained Monte Carlo 

algorithm typically requires up to twice longer simulation time due to increased complexity. 

 

 

 We next discuss the application of the Monte Carlo algorithm to computation of 

exchange stiffness temperature dependence, A(T). This is a problem of important practical 

interest, and essential for temperature-dependent micromagnetic models [29]. The problem is 

complicated by the fact the temperature scaling depends on the crystal structure, thus on the 

number of neighbours included in the interaction, as well as on the anisotropy strength. 

Experimental studies on Ni2MnIn [30] obtained an m1.715 scaling at low temperatures, and a 

much higher scaling of m3.4 close to TC. On the other hand experimental results on Fe and Ni 

[31] obtained a scaling ~m1.5. The exchange stiffness temperature scaling may be computed 

using the domain wall method discussed in Refs. [32-35]. For a Bloch domain wall with 

uniaxial anisotropy easy axis along the z-axis, the domain wall width is obtained as shown in 

Equation (5). 
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Here  is the domain wall width, where the z magnetization component varies along the domain 

wall as mtanh(- (x-x0) /). This is shown in Fig. 2 for a 40 nm3 simulation space, where the 

normalized magnetization z component is obtained for each profile point by averaging over the 

respective cross-section slice. The computed profiles closely follow the expected tanh function, 

even for T/TC = 0.99. We note that for temperatures close to TC a large cross-section area is 

required to obtain a sufficiently averaged profile. In Equation (5) C is the cross-section area 

perpendicular to the domain wall, and dF(T) is the change in free energy between the state with 

a domain wall and the uniform state, obtained from the change in internal energy – Equation 

(2) – as given in Ref. [32]. In Equation (5) K(T) may be eliminated, thus obtaining A(T) from 

the fitted values of (T) and the computed dF(T). However, we find the dF(T) values tend to 

be inaccurate, particularly at low temperatures, since they rely on taking the difference between 

large energy values, and numerically integrating with increasingly large steps as T → 0. 

Instead, we first accurately compute K(T) using a uniform state temperature sweep as detailed 

above, thus obtaining A(T) from the fitted (T) values. Above TC however, where a  value is 

not available, we compute the exchange stiffness only from the dF(T) values, using the K(T) 

values obtained separately. However, as expected above TC dF(T), K(T), and A(T) are 

approximately zero within numerical precision. 

 

FIG. 2. Domain wall profiles showing the mz component at different temperatures, together 

with a tanh fit used to obtain the domain wall width. The inset shows a Bloch domain wall in 

a 40 nm3 computational mesh, with green arrows pointing up, and purple arrows pointing down. 

 

 

Results are shown in Fig. 3(a) for a 40 nm3 mesh, with an anisotropy energy value of                        

K = 510-23 J. For these simulations periodic boundary conditions were used along y and z 

directions, and anti-periodic along x direction for the domain wall temperature sweep. The best 
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fit to the low-temperature exchange stiffness scaling (m > 0.6) is an m1.48 dependence, and as 

can be observed the computed temperature scaling closely follows the mk scaling law except 

when approaching TC. In the mean field approximation (MFA) A scales as m2. However, due 

to spin-spin correlations, in general the scaling exponent is reduced as m2-, a result which is 

reproduced by the classical spectral density method [34]. As the temperature tends to TC, the 

MFA result is recovered however, as the effect of spin-spin correlations is reduced. To see this 

clearly we plot A as a function of m in Fig. 3(b), indicating both the m2 and m1.48 scalings for 

comparison. As can be seen, as the temperature tends towards TC there is a rapid transition 

from the m1.48 low-temperature scaling to the m2 scaling. We note the exponent value of 1.48 

is in good agreement with experimental results on Fe and Ni [31]. 

 

FIG. 3. (a) Exchange stiffness temperature dependence, shown for K = 510-23 J, computed 

using a 40 nm3 mesh with the Bloch domain wall method, and with fitted domain wall width 

averaged over 50,000 Monte Carlo steps at each temperature point. The best fit low-

temperature m scaling law with exponent 1.48  0.02 is shown. However, close to the Curie 

temperature a discrepancy can be observed. (b) Un-normalized exchange stiffness plotted as a 

function of m, showing the temperature scaling tends to m2 when approaching the Curie 

temperature. 
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In general, the temperature dependence of the exchange stiffness is a complex problem, and is 

strongly material-dependent, differing depending on the crystal structure as well as anisotropy 

strength. Thus, whilst an mk scaling is observed, for high-anisotropy materials such as FePt, k 

= 1.76 was obtained, whilst for a simple cubic structure with high anisotropy k = 1.66 was 

obtained in the low-temperature range [34]. On the other hand, a smaller value of k = 1.54 was 

obtained for a cubic monolayer [36], whilst a value of k = 1.55 was obtained for Nd2Fe14B [37], 

decreasing to k = 1.2 at low temperatures. To investigate this problem further, we repeated the 

computations by varying the anisotropy strength. As the anisotropy strength increases, the low-

temperature scaling exponent also increases, as the effect of spin-spin correlations is reduced. 

The results are summarised in Table I, noting a good agreement is obtained with the value of k 

= 1.66 obtained for a simple cubic structure with large anisotropy in Ref. [34]. The results 

shown here were obtained using the Monte Carlo algorithm to thermalize the system and obtain 

an average  value. However, the same results are obtained when using the atomistic spin 

dynamics approach, although this requires significantly longer computation time particularly 

close to TC. The computations were performed in single floating-point precision on the GPU. 

However, we have also verified the same results are obtained when running in double floating-

point precision. 

  

TABLE I. Computed low-temperature mk scaling of exchange stiffness as a function of 

anisotropy strength for a simple cubic structure. 

K/J 8.3310-3 1.6710-2 2.510-2 3.3310-2 4.210-2 

k 1.48  0.02 1.55  0.02 1.75  0.02 1.75  0.02 1.79  0.02 

 

 

Finally, we test the Monte Carlo algorithm by computing the temperature dependence 

of susceptibilities. This is obtained by computing the variance of the average normalized 

magnetization in a large set of atomistic ensembles as shown in Equation (6). 

 

Here m̅ is the normalized magnetization, obtained by a spatial average in a single atomistic 

ensemble, and the operation denoted by angular brackets is averaging over many atomistic 

ensembles. N is the number of atomistic spins in the computational mesh, and  = l, x, y, z 
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denotes the magnetization component, such that ml  m is the magnetization length, and )(~ Tl  

is the relative longitudinal susceptibility (units 1/Tesla). Results for K = 510-23 J in a 30nm3 

mesh, are shown in Fig. 4. The longitudinal susceptibility follows the expected temperature 

dependence, tending to zero as T tends to 0 K, and showing a critical behaviour at TC, although 

for a system with finite number of spins N, the susceptibilities are always finite. Whilst the 

easy axis susceptibility matches the longitudinal susceptibility below TC, above TC both the 

hard-axis and easy-axis susceptibilities are the same as expected. The hard-axis (or transverse) 

susceptibility is plotted in Fig. 4 as the average of )(~ Ty  and )(~ Tz , noting the easy axis is 

along the x axis. This is compared to the temperature dependence obtained from the computed 

m and Ku(T), based on Equation (7) for T < TC, showing a good agreement. Note for the 

atomistic parameters used, we have Ku(0) = 3.2 MJ/m3, and MS(0)  = 771598 A/m. 

 

FIG. 4. Susceptibilities computed using a 30 nm3 mesh and uniaxial anisotropy along the x 

axis, with K = 510-23 J. The variance in Equation (6) is obtained from a set of 50,000 atomistic 

ensembles at each temperature. For the longitudinal susceptibility  = l, for the easy axis 

susceptibility  = x, and for the hard axis susceptibility (transverse susceptibility) we average 

the results for  = y and  = z. The latter is compared to the transverse susceptibility obtained 

from Equation (7), shown as a solid line, with m(T) and Ku(T) computed separately for the same 

mesh size. The vertical dashed line indicates the Curie temperature of 628.0 K. 
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4. Large-Scale Granular Thin Films 

 

The implemented parallel Monte Carlo algorithm is now applied to a large-scale 

problem, in particular calculation of magnetization temperature dependence in granular thin 

films, in order to illustrate the need for large-scale Monte Carlo simulations. Previous works 

studied the grain size influence on magnetic behaviour in polycrystalline thin films using both 

field cooled and zero-field cooled atomistic simulations [38,39]. Here we concentrate on 

simulating the magnetization temperature dependence using an increasing temperature sweep, 

in order to analyse the phase transition temperature in granular thin films. This is useful for 

example in heat-assisted magnetic recording [40] and magnetic nanoparticles [41]. A previous 

study has shown how a TC distribution in granular materials may be extracted using an integral 

method [42]. An alternative approach is to fit the magnetization temperature dependence using 

a weighted Bloch series, which allows definition of an average Curie temperature. 

 

FIG. 5. Illustration of simulated granular thin film with 200 nm2 in-plane area and average 20 

nm2 grains (20 nm grain size), with the grains obtained using Voronoi tessellation. The image 

shows the y components of atomistic moments at room temperature, with red indicating +y 

direction and blue indicating –y direction. 

 

 

For these simulations we used a 200 nm2 in-plane area with in-plane periodic boundary 

conditions, and thickness values ranging from 1 nm to 6 nm, without periodic boundary 
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conditions perpendicular to the film. The material parameters are the same as in the previous 

section, where the lower anisotropy value of K = 510-24 J is used. For simplicity no variation 

in exchange, anisotropy, or easy axis orientation was considered. A two-dimensional grain 

structure was generated using Voronoi tessellation, with average grain size varying from 5 nm 

to 40 nm – an example for a 20 nm average grain size is shown in Fig. 5. The grains are phase 

separated by a single atomic spacing, thus no exchange coupling is considered between the 

grains. We note in a previous work granular structures where the grains are not fully separated 

were studied [43], and the method shown here may also be applied to this case. Since the Curie 

temperature is strongly dependent on the grain size, the magnetization in such thin films does 

not follow a simple Bloch law. Results for a 2 nm thick film are shown in Fig. 6 as a function 

of average grain size. 

 

FIG. 6. Computed magnetization scaling in a 2 nm granular thin film, as a function of average 

grain size indicated in the legend. The magnetization scaling is fitted using the multi-Bloch 

scaling in Equation (8), indicated as dashed lines. 

 

 

Whilst individual grains follow a Bloch law, the entire system can be described by a weighted 

series of Bloch laws, as given in Equation (8). Here each grain contributes a different Bloch 

term in the sum, with weight wi proportional to its area, noting the sum of the weights equals 

1. Moreover, since many grains have approximately the same size, significantly fewer Bloch 

terms, NB, are required in Equation (8) than the number of grains. The computed magnetization 

temperature dependence in Fig. 6 is fitted using Equation (8), with fits shown as dashed lines. 

The fits are performed as a function of increasing number of Bloch terms NB, and the results 

converge for NB > 10, with the obtained Bloch terms TC,i values being smaller than the 
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corresponding continuous thin film values, as expected. This allows an average T̅C value to be 

obtained, given in Equation (8) as a weighted average of the individual Bloch term values. 

This analysis was performed as a function of film thickness and average grain size, with results 

shown in Fig. 7. Here the dashed horizontal lines represent the continuous thin film TC values 

at each thickness. As expected, increasing the average grain size results in increasing average 

T̅C values, tending towards the continuous thin film value in the limit of large grain size. 

Moreover, increasing the film thickness results in increasing T̅C values, tending towards the 

bulk value of 628.0 K computed in the previous section, in the limit of thick films and large 

grain size. These results show how an experimentally obtained magnetization temperature 

dependence for granular thin films may be analysed in order to obtain an average Curie 

temperature value.  

 

FIG. 7. Average TC, obtained using Equation (8), computed as a function of average grain size 

and film thickness. The horizontal dashed lines indicated the TC values for the continuous thin 

films at each respective thickness. 
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5. Conclusions 

 

 In this work we implemented and tested a general-purpose fully parallel atomistic 

Monte Carlo algorithm, based on the Metropolis Monte Carlo algorithm, as well as the 

previously introduced constrained Monte Carlo algorithm. Since our approach allows for one 

thread per atomistic spin – or spin pair in the case of the constrained variant – the algorithms 

can be implemented efficiently on GPUs, and for systems containing over 1 million spins we 

obtained speedup factors of over 200 compared to the serial versions. Whilst the algorithms 

implemented here were tested for a simple cubic crystal structure, the parallelization approach 

can easily be extended to realistic crystal structures. The algorithms were tested by computing 

temperature dependences of magnetic parameters in large-scale systems where finite-size 

effects are reduced, including magnetization, uniaxial and cubic anisotropy, exchange stiffness, 

and susceptibilities. In particular for the exchange stiffness, using a large cross-sectional area 

allows accurate computation of the domain wall width up to TC. In a simple cubic structure the 

exchange stiffness follows an mk scaling law at low temperatures, with k < 2. As the 

temperature tends to TC, the mean field approximation result of k = 2 is recovered. Moreover, 

the k exponent has a marked dependence on the anisotropy strength, increasing as the 

anisotropy strength increases. The implemented Monte Carlo algorithm was also applied to 

computation of magnetization temperature dependence in large-scale granular thin films as a 

function of average grain size and film thickness. Using a weighted Bloch series fit we 

demonstrated how a Curie temperature distribution for the individual grains may be extracted, 

allowing a simple definition of the average Curie temperature. This method may readily be 

applied to experimentally measured magnetization temperature dependences in granular thin 

films. 
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Appendix A: Parallel Monte Carlo Algorithms Pseudocode 

 

Pseudocode for the parallel Monte Carlo algorithm is shown in Table A1, and for the 

constrained parallel Monte Carlo algorithm in Table A2. 

 

TABLE A1. Parallel Monte Carlo algorithm. Here UniformRandom([0, 1]) generates a random 

number in the interval [0, 1] with uniform probability distribution, and 

UniformRandom_RotateSpin(Si, ) generates a rotated spin about spin Si, within a cone with 

angle , with uniform probability distribution. 

DATA: 

Cone angle:  

Temperature: T 

Number of spins N = Nred + Nblack 

Atomistic spins: Si := S1, …, SN 

procedure MonteCarlo_Red(Black)ParallelPass(S1, …, SN, T, ) 

for index in range 1, …, Nred(black) do parallel 

i = Get_Red(Black)SpinIndex(index) 

Snew,i = UniformRandom_RotateSpin(Si, ) 

P = UniformRandom([0, 1]) 

if P < exp[-(E(Snew,i) – E(Si)) / kBT] then 

Si = Snew,i 

reduction: acceptance_rate += 1 / N 

end if 

end for 

return acceptance_rate 

end procedure 

MONTE CARLO ALGORITHM: 

acceptance_rate = MonteCarlo_RedParallelPass(S1, …, SN, T, ) 

acceptance_rate += MonteCarlo_BlackParallelPass(S1, …, SN, T, ) 

if acceptance_rate > 0.5 then 

    if  < 180 then  += 1 end if 

else 

    if  > 1 then  -= 1 end if 

end if 

 

 

 

 

 

 

 

 



18 

 

TABLE A2. Parallel constrained Monte Carlo algorithm. Here RotateCoordinateSystem(S̃i, 

S̃i+1, eC) generates rotated spins from S̃i, S̃i+1, such that the new spin components are represented 

in a coordinate system with x-axis in the direction eC in the original coordinate system. 

InverseRotateCoordinateSystem is the inverse coordinate system rotation operation. 

ShuffleRedBlackSpins shuffles the spins in the red and black checkerboards. 

DATA: 

Cone angle:  

Constraining Direction: eC 

Number of spins: N = Nred + Nblack 

Atomistic spins: Si := S1, …, SN 

Atomistic spins on red/black checkerboard in shuffled order:  S̃r1, …, S̃rNred, S̃b1, …, S̃bNblack 

procedure ConstrainedMonteCarlo_ParallelPass(S̃1, …, S̃Ñ, T, , ML, eC) 

for i in range 1, …, Ñ step 2 do parallel 

Ŝi, Ŝi+1 = RotateCoordinateSystem(S̃i, S̃i+1, eC) 

Ŝnew,i = UniformRandom_RotateSpin(Ŝi, ) 
(y)Ŝnew,i+1= (y)Ŝi+1 + (y)Ŝi – (y)Ŝnew,i 

(z)Ŝnew,i+1= (z)Ŝi+1 + (z)Ŝi – (z)Ŝnew,i 
(x)Ŝnew,i+1= sign((x)Ŝi+1)[Ŝi+1

2 – (y)Ŝnew,i+1
2 – (z)Ŝnew,i+1

2]0.5 

M̂L = |ML| + (x)Ŝnew,i + (x)Ŝnew,i+1 – (x)Ŝi – (x)Ŝi+1 

S̃new,i, S̃new,i+1 = InverseRotateCoordinateSystem(Ŝnew,i, Ŝnew,i+1, eC) 
P = UniformRandom([0, 1]) 

if P < (M̂L / ML)2|(x)Ŝi+1 / (x)Ŝnew,i+1|exp[-(E(S̃new,i)+E(S̃new,i+1)-E(S̃i)-E(S̃i+1)/kBT] then 

S̃i, S̃i+1 = S̃new,i, S̃new,i+1 

reduction: acceptance_rate += 2 / N 

end if 

end for 

return acceptance_rate 

end procedure 

CONSTRAINED MONTE CARLO ALGORITHM: 

ML = Sumi=1, …, N(Si.eC) 
S̃r1, …, S̃rNred, S̃b1, …, S̃bNblack = ShuffleRedBlackSpins(S1, …, SNred, S1, …, SNblack) 

acceptance_rate = ConstrainedMonteCarlo_ParallelPass(S̃r1, …, S̃rNred, T, , ML, eC) 

acceptance_rate += ConstrainedMonteCarlo_ParallelPass(S̃b1, …, S̃bNblack, T, , ML, eC) 

if acceptance_rate > 0.5 then 

    if  < 180 then  += 1 end if 

else 

    if  > 1 then  -= 1 end if 

end if 
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