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Abstract
This paper invokes a new mechanism for reducing a coupled system of 
fields (including Einstein’s equations  without a cosmological constant) to 
equations  that possess solutions exhibiting characteristics of immediate 
relevance to current observational astronomy.

Our approach is formulated as a classical Einstein-vector-scalar-Maxwell-
fluid field theory on a spacetime with three-sphere spatial sections. Analytic 
cosmological solutions are found using local charts familiar from standard 
LFRW cosmological models. These solutions can be used to describe 
different types of evolution for the metric scale factor, the Hubble, jerk and 
de-acceleration functions, the scalar spacetime curvature and the Kretschmann 
invariant constructed from the Riemann–Christoffel spacetime curvature 
tensor. The cosmological sector of the theory accommodates a particular 
single big-bang scenario followed by an eternal exponential acceleration of 
the scale factor. Such a solution does not require an externally prescribed 
fluid equation of state and leads to a number of new predictions including a 
current value of the ‘jerk’ parameter, ‘Hopfian-like’ source-free Maxwell field 
configurations with magnetic helicity and distributional ‘bi-polar’ solutions 
exhibiting a new charge conjugation symmetry.

An approximate scheme for field perturbations about this particular 
cosmology is explored and its consequences for a thermalisation process 
and a thermal history are derived, leading to a prediction of the time interval 
between the big-bang and the decoupling era. Finally it is shown that field 
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couplings exist where both vector and scalar localised linearised perturbations 
exhibit dispersive wave-packet behaviours. The scalar perturbation may 
also give rise to Yukawa solutions associated with a massive Klein–Gordon 
particle. It is argued that the vector and scalar fields may offer candidates for 
‘dark-energy’ and ‘dark-matter’ respectively.

Keywords: cosmology, cosmological model, Einstein field equations, early 
universe

Introduction

The advent of modern satellite technology in observational astronomy has ushered in a new 
era for astrophysics and research into the fundamental role of gravitation on a large scale. In 
particular the venerable subject of relativistic cosmology has received a new impetus with the 
realisation that a number of standard cosmological models may need revision [1, 2]. In this 
paper we discuss an alternative paradigm that, while retaining many of the most established 
features of the current standard model, circumvents some of its weaknesses. We invoke a new 
mechanism for reducing Einstein’s field equations  (without a cosmological constant term) 
coupled to fluid matter, vector and scalar fields, to a dynamical system that possesses a class 
of simple analytic solutions for the metric scale factor exhibiting characteristics of immediate 
relevance to current observational astronomy.

Within the framework of the standard cosmological paradigm there has long been inter-
est in models containing additional vector and/or scalar fields. One that has had considerable 
impact due to its applications to astrophysics and the problem of hidden matter was pioneered 
by Milgrom [3] and developed extensively by Bekenstein [4]. Bekenstein’s model offers a rel-
ativistic post-MOND theory designed to account for a broad range of astrophysical phenom-
ena, including galactic rotation rates, without explicitly introducing cosmological dark-matter 
fields. It is constructed in terms of a constrained dynamic vector field (Π), a dynamic tensor 
field (g), a dynamic scalar field (φ), a non-dynamic field (σ), a Lagrange multiplier field (λ), 
a phenomenological real-valued function (F) and four coupling parameters K, k, l, G. Matter 
is introduced following the standard paradigm in terms of ideal multi-fluids, each with their 
individual equations of state. It is further assumed that each fluid 4-velocity is aligned with the 
time-like vector field Π and that the ‘physical metric’ in the fluid stress–energy–momentum 
tensors is non-trivially related to the tensor field g. Application of the theory to astrophysi-
cal phenomena demands wide ranging assumptions and approximations. Although it claims 
agreement with extra-galactic phenomena, including the lensing of electromagnetic radiation 
by galaxies and galaxy clusters, concordance with the solar system and binary pulsar tests, it 
leaves open the question of the need for cosmological dark matter.

Our model has more modest aims. It constructs a viable cosmology in terms of four 
dynamical fields A, F,Ψ, the physical metric tensor g and fewer coupling constants. No phe-
nomenological function is involved and the presence of the Maxwell field F  is necessary for 
developing the electromagnetic sector and essential in identifying the fluctuation solutions 

A(1),Ψ(1) as dark elements. The Bekenstein theory follows the standard paradigm of solving 
the homogeneous, isotropic Einstein equation, involving a multi-fluid with prescribed individ-
ual equations of state, for the scale factor. By contrast we propose an alternative paradigm by 
exploiting an anisotropic ansätz for the vector field A  and a constant value for the scalar field 
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Ψ leading to a dynamic equation for the scale factor. It remains for future work to ascertain all 
values of the constants in our theory and to verify whether such a minimalist field system is 
consistent with the available astrophysical data beyond that considered in this paper.

In section 1 we briefly outline some aspects of the standard approach and draw attention 
to those weaknesses that have motivated our approach, described in section 2. In section 3 we 
introduce our general model in terms of a system of field equations for a scalar and vector field 
interacting with Maxwellian electromagnetism, an anisotropic material fluid and Einsteinian 
gravitation on spacetime. To develop a particular dynamical cosmological model from this 
general model we exploit the Maurer–Cartan group structure of the 3-sphere (S3) to construct 
a preferred spacetime frame and spacetime metric that shares the homogeneity and isotropy 
characteristics possessed by those Lemaître–Friedmann–Robertson–Walker (LFRW) metrics 
with a closed spatial topology.

In section 4 we explicitly construct a class of general analytic solutions for this dynami-
cal system using local charts on spacetime familiar from the LFRW cosmological models. 
In particular charts, solutions for the LFRW scale factor involve only bounded or hyperbolic 
trigonometric functions, square roots, a single real parameter and a pair of arbitrary integra-
tion constants. We illustrate the different types of Universe evolution that may arise with 
particular reference to the cosmic time-dependence of the metric scale factor, the Hubble and 
de-acceleration parameters, the scalar spacetime curvature, the Kretschmann scalar invari-
ant (constructed from the Riemann–Christoffel spacetime curvature tensor and the spacetime 
metric) once these constants are fixed. We then exhibit the solutions to the Einstein equa-
tions for the fluid variables in terms of the scale factor and solutions for the remaining fields 
in the system. A notable feature of this paradigm is that no additional auxiliary conditions 
(such as fluid equations of state or Vlasov models) are imposed. By contrast, having fixed all 
couplings and constants of integration, all cosmological variables have a unique evolution and 
the fluid variables satisfy algebraic constraints. We interpret such constraints as dynamically 
induced fluid anisotropic equations of state. Furthermore, because the three-dimensional spa-
tial sections of spacetime with constant time are closed in this model, we show that the vector 
fields each give rise to configurations with finite total instantaneous magnetic helicity. For the 
Maxwell field this offers a possible interpretation of primordial magnetic fields [5] with closed 
knotted field lines in an expanding Universe.

In section 5 we use a recent value of the Hubble parameter to single out a particular solu-
tion compatible with the current estimate of the negative de-acceleration parameter and the 
existence of an initial singular state for the Universe. The model exhibits a non-uniform expo-
nential expansion for the LFRW scale factor into the future, predicts an age for the Universe 
and a current value for the unobserved ‘jerk’ parameter [6].

In section 6 we explore the nature of other solutions by field perturbations about the cos-
mological solution and show how they may give rise to localised electrically charged domains 
in space as a prerequisite for scattering processes leading to a thermalisation mechanism. The 
data used in the cosmological model together with the Planck spectrum is then employed in 
section 7 to discuss a predicted thermal history leading to an estimate of the time between the 
big-bang and the decoupling era. Since the scalar and vector field perturbations may provide 
observational signatures, in section  8 we analyse their first-order partial differential equa-
tions (PDEs) for spatially localised solutions in domains where the spacetime is approximately 
flat. We conclude that the scalar perturbation may give rise to the existence of a massive clas-
sical Klein–Gordon particle and both perturbations admit localised dispersive wave-packet 
solutions.

R W Tucker et alClass. Quantum Grav. 36 (2019) 245016
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The concluding section summarises the essential features discussed in the paper.

1.  Standard cosmological models

The standard cosmological paradigm is modelled on a class of spacetimes that are spatially 
homogeneous and isotropic [7, 8]. This class is labelled by an index (k = 0,±1) describing 
spatial global topology with associated symmetry properties and leads to a similarly labelled 
class of spacetime metrics {g(k)}. Each metric is supplemented by a choice of a symmetric 
second-rank tensor T(k) used in Einstein’s field equations:

κEin[g(k)] + Λ0 g(k) = T(k)� (1)

where Λ ∈ R denotes the ubiquitous cosmological constant and κ = c4/8πG in terms of 
the speed of light in vacuo c and the Newtonian gravitational constant G. The Einstein ten-
sor Ein[g(k)] is defined in terms of the Levi-Civita connection ∇ calculated from g(k) where 
Ein[g(k)] = Ric − 1

2Rg(k) in terms of the associated Ricci tensor Ric and Ricci curvature sca-
lar R associated with g(k). Each T(k) takes the form:

T(k) =

N∑
r=1

T (r)
(k) [g(k), ρ(r), p(r)(ρ(r))]� (2)

where T (r)
(k)  often takes the perfect fluid form:

T (r)
(k) =

(
ρ(r)c2 + p(r)(ρ(r))

)
V ⊗ V + p(r)(ρ(r)) g(k)

for some preferred vector field V  on spacetime and partial pressure p(r)(ρ(r)) specified in 
terms of some partial mass-energy density ρ(r)c2. Since ∇ · Ein[g(k)] = ∇ · g(k) = 0 identi-

cally in Einstein’s theory of gravitation and the N fluids are non-interacting (i.e. each T (r)
(k)  only  

depends upon ρ(r)), the necessary (Bianchi) consistency condition ∇ · T(k) = 0 for all solu-

tions of (1) to satisfy can be achieved by imposing the individual conditions:

∇ · T (r)
(k) = 0 (for r = 1, 2, . . . , N).� (3)

Many consequences of the standard cosmological paradigm follow from such impositions 
which are by no means fundamental since the only necessary condition here is

∇ · T(k) = 0.

From the assumed homogeneity and spatial isotropy for the model, g(k) can be parametrized 
by a single real positive scalar function S(k) : R → R for each k, which is a function of some 
evolution variable in a local spacetime chart. The vector field V  is then chosen to be the 
common unit time-like flow for the composite fluid described by the tensor T(k). Different 
equations of state for each r are assumed to dominate different epochs in the evolution of 
the Universe from some initial state to its current state. This evolution is governed by (1) 
which reduces to a system of independent ordinary differential equations (ODEs) involving 
{S(k), ρ(r)}, given values for the constants {Λ, N}, initial values for S(k) and its first derivative, 
and the r equations of state p(r)(ρ(r)). Equation (3) can, in principal, be integrated to yield ρ(r) 
in terms of S(k) at the expense of introducing an additional constant of integration for each r.

This program has been pursued extensively in the past in attempts to pin down the appro-
priate class index k based upon astrophysical data for ρ(r), current values for S(k) and its rate of 

R W Tucker et alClass. Quantum Grav. 36 (2019) 245016



5

change. Furthermore, the discovery of (almost) isotropic black-body thermal electromagnetic 
radiation has led some authors [9] to invoke additional fields (inflatons) to modify the dynam-
ics described by (1) and (3). Further observations of recent supernova luminosities have raised 
further concerns that the material content of the Universe, based upon current values of ρ(r), 
cannot account for the observational data for the current de-acceleration parameter calculated 
from the variation of S(k) with epoch. This has led to a number of alternative choices for the 
equations  of state p(r)(ρ(r)) and the retention of the cosmological constant Λ, sometimes 
interpreted as a ‘Casimir energy’ of space.

2.  An overview of the new paradigm

In view of these perceived shortcomings we explore an alternative paradigm that maintains the 
basic premise of homogeneity and isotropy for the spacetime metric in the model but dispenses 
with the imposition of any supplementary fluid equations of state. Instead, we invoke a general 
model involving field equations for a Maxwell field and a vector and scalar field with specific 
couplings to each other and gravity, in addition to Einstein’s equations  involving a material 
anisotropic fluid. We declare at the outset that the fully coupled system admits a class of k  =  +1 
LFRW-type cosmologies given a particular ansätz for the solutions to these field equations.

We assume throughout that the Universe is described by a triple (M, g,Φ) where M is a 
spacetime endowed with a metric g and Φ is a collection of classical fields. It is implicit in 
our paradigm that:

Spacetime M = I × S3 where I  denotes an interval of the real line coordinated by t 
and S3 is topologically a 3-sphere. The manifold M is endowed with a k  =  +1 isotropic 
LFRW covariant Lorentzian metric tensor g in terms of a scale factor S(t) with Φ com-
prised of a real scalar field Ψ, a real 1-form A  and a real Maxwell 2-form F .

Our particular cosmological model is determined by a system of field equations  of the 
form:

(I) F [S, Ṡ, S̈,Ψ,A, F] = 0

(II) κEin[S, Ṡ, S̈] = T[S,Ψ,A, F, ρ, p1, p2, p3] = T [S,Ψ,A, F] + T[S, ρ, p1, p2, p3].

Equations (I) and (II) denote a coupled system of second-order partial differential equations involv-
ing the fields and the scale factor S and equation (II) denotes Einstein’s field equations in terms 
of the Einstein tensor Ein and total stress–energy–momentum tensor T. This is decomposed into 
field and matter components: T  and T respectively, where ρc2 denotes the cosmological eigen-
mass-energy density and p1, p2, p3 the eigen-pressures of the single fluid stress-energy-momen-
tum tensor of the matter in the Universe. The paradigm is to solve (I) and (II) as follows:

	 (i)	�Construct a suitable ansätz for the fields Ψ,A, F; such that:
	(ii)	�the partial differential field equation (I) are satisfied with S(t) a solution to a second order 

ordinary differential equation, thereby determining the LFRW metric; 
	(iii)	�the Einstein field equation (II) are then solved algebraically for the eigen-mass-energy 

density and eigen-pressures {ρc2, p1, p2, p3}.

An important aspect of this paradigm is that the algebraic relations for ρc2 and p1, p2, p3, con-
sidered as an induced cosmological anisotropic mechanical equation of state, are not postulated  
a priori. A consequence of these assumptions is that Ein[S, Ṡ, S̈] contains no term of the form 
Λ0g with Λ0 ∈ R. With a bona fide solution to Einstein’s field equations, the total stress–
energy–momentum tensor T  has no term of the form Λ0g, implying our model is devoid of a 
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cosmological constant. Such terms do arise in the field stress–energy–momentum tensor T  
but are cancelled by terms in the matter stress–energy–momentum tensor T, following from 
the solutions for the eigenvalues {ρc2, p1, p2, p3}.

3. The general vector-scalar model

3.1. The master field equations

We establish our general field system on the spacetime manifold M = I × S3 where I  is an 
open subset of the real line and S3 is topologically a 3-sphere. We endow M with a covariant 
Lorentzian metric tensor g, a real scalar field Ψ, a real 1-form A  and a real 2-form F  satisfying 
the master field equations:

d � dΨ− 1
2
κ0 U ′(Ψ)A ∧ �A+

1
2
Γ1 U ′(Ψ)F ∧ F = 0� (4)

dF = 0, d � F + Γ1 U ′(Ψ) dΨ ∧ F = 0� (5)

d � dA+ κ0 U(Ψ) � A = 0� (6)

where κ0,Γ1 are non-zero real coupling constants, with κ0 having physical dimensions 
and Γ1 dimensionless. The map U : R → R is a potential function and � denotes the linear 
Hodge map on forms associated with the general metric g on M. Since, for all real fields 
Ψ and A , equations (5) are invariant under the transformation A �→ A + dλ, where F = dA 
and λ is an arbitrary 0-form, we identify them with the covariant Maxwell equations for the 
electromagnetic U(1) gauge invariant 2-form F . Their representation in the SI system will 
be described below when we discuss the electric current sources in section 6. Equation (6) 
implies the integrability condition:

d(U(Ψ) � A) = 0.

Since equations (4)–(6) arise from taking field variations of the action 4-form on M:

S[Ψ,A, A, g] =
1
2

dΨ ∧ �dΨ+
1
2

dA ∧ �dA+
1
2
κ0 U(Ψ)A ∧ �A

+
1
2

dA ∧ �dA +
1
2
Γ1A ∧ dA ∧ d(U(Ψ) )

�
(7)

it is straightforward to derive a symmetric stress–energy–momentum tensor T  associated with 
the fields {Ψ,A, A} from its metric variations:

T = U(Ψ)

(
dΨ⊗ dΨ− 1

2
g(dΨ, dΨ) g

)
−
(

iadA⊗ iadA+
1
2
� (dA ∧ �dA)g

)

+ κ0 U(Ψ)

(
A⊗ A− 1

2
g(A,A) g

)
−
(

iadA ⊗ iadA +
1
2
� (dA ∧ �dA)g

)

where ia ≡ iXa denotes the interior contraction operator on forms with respect to any local 
g-orthonormal basis of vector fields {Xa} on M and ia ≡ ηab iXb with ηab = diag(−1, 1, 1, 1). 
Note that the term in (7) containing the coupling Γ1 does not contribute to the metric variations.

In addition to T  we include the single material fluid symmetric tensor T parametrized in a 
local g  −  orthonormal eigen-cobasis {ea} on M as

R W Tucker et alClass. Quantum Grav. 36 (2019) 245016
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T = ρc2e0 ⊗ e0 +

3∑
k=1

pkek ⊗ ek

in terms of the real scalar field components {ρ, p1, p2, p3} on M. Variational methods for 
deriving fluid material stress–energy–momentum tensor tensors can be found in [10–12]. 
The system is closed by adopting T = T + T as the source tensor for Einstein’s field equa-
tions without a cosmological constant:

κEin[g] = T .� (8)

Since κ has physical dimensions of ML/T2 in the SI system of units it is convenient to assign 
SI physical dimensions consistently to all tensors in the field system above. To this end, we 
assign to the covariant rank-two spacetime metric tensor g the physical dimensions of L2 and 
write

g = −e0 ⊗ e0 +

3∑
k=1

ek ⊗ ek� (9)

in any g-orthonormal cobase {ea} with elements having physical dimension of length: 
[ea] = L. Then the dimensions of the curvature 2-forms {Rab} and the curvature scalar

R = �
(
Rab ∧ �(ea ∧ eb)

)

satisfy [Rab]  =  1 and [R] = L2. Furthermore, these imply [Ein] = 1 yielding dimension of 
the stress–energy–momentum tensor tensor [T] = [T ] + [T] = ML/T2 since [κ] = ML/T2. 
Bearing in mind that for any p -form β on an n-dimensional manifold: [β] = [dβ] and

[�β] = [β]Ln−2p,

we may then consistently assign [Ψ] = 1, [A] = [A] = L,

κ0 =
ζ0

L2
0

where [L0] = L, [ζ0] = 1, [U(Ψ)] = [U ′(Ψ)] = 1, [Γ1] = 1. Furthermore the material density 
ρ  has MKS dimensions M/L3 and the pressures p1, p2, p3 have MKS dimensions M/LT2 as 
usual. If all parameters and tensors are specified with values in the SI system of units then the 
value of the parameter L0 is unity.

3.2. The cosmological metric ansätz

To construct a particular cosmological model based upon the system of equations  (4)–(6) 
and (8), we need a suitable particular ansätz for g,Ψ,A, A and a preferred eigenbasis for T 
defining {ρ, p1, p2, p3}. To this end, we note that S3 may be identified with the group manifold 
SO(3) with an algebra generated by the canonical (2 × 2) Pauli matrices {σ1,σ2,σ3}. A group 
element U ∈ SO(3) can be coordinated by the three real numbers {α1,α2,α3} such that:

U = exp
[
i(α1σ

1 + α2σ
2 + α3σ

3)
]

.

The three pure imaginary differential 1-forms on SO(3) defined by

Θ̃k =
1
2

tr(σk U−1dU) (k = 1, 2, 3)

R W Tucker et alClass. Quantum Grav. 36 (2019) 245016
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satisfy the Maurer–Cartan relations at each point with coordinates (α1,α2,α3):

dΘ̃k = −2iεk
lm Θ̃l ∧ Θ̃m (k, l, m = 1, 2, 3)� (10)

where εk
lm is the Levi-Civita alternating symbol. The expressions for {Θ̃k} in terms of 

{α1,α2,α3} are given in the appendix. These 1-forms offer a preferred cobasis of 1-forms on 
the group manifold SO(3) ∼= S3 and will be used below to define a preferred class of metrics 
on M. We show in the appendix that a stereographic mapping (A.1) from the coordinates 
(α1,α2,α3) to a local coordinate chart on S3 with real coordinates (ξ1, ξ2, ξ3) gives simpler 
expressions for the cobasis 1-forms on S3, denoted {Θ1,Θ2,Θ3}. To define a preferred cobasis 
of 1-forms {e0, e1, e2, e3} on spacetime, we adopt a local spacetime chart with dimensionless 
coordinates {η, ξ1, ξ2, ξ3} where η ∈ I  and express the real Lorentzian cosmological metric 
on M as (9) in terms of

e0 = L0 S̃(η) dη and ek = i L0 S̃(η) Θk (k = 1, 2, 3)� (11)

constituting a real g-orthonormal cobasis. In this spacetime chart the metric ansätz thereby 
takes the form:

g = L2
0 S̃2(η)

[
−dη ⊗ dη +

4
(1 + ξ2

1 + ξ2
2 + ξ2

3)
2
(dξ1 ⊗ dξ1 + dξ2 ⊗ dξ2 + dξ3 ⊗ dξ3)

]
.

A more familiar LFRW form of the metric follows from the coordinate transformation:
{
ξ1 =

1
2

r sin(θ) cos(φ), ξ2 =
1
2

r sin(θ) sin(φ), ξ3 =
1
2

r cos(θ)
}

yielding

g = L2
0 S̃2(η)

[
−dη ⊗ dη +

1
(1 + r2

4 )
2

(
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2(θ)dφ⊗ dφ

)]
.� (12)

In this chart, the usual ranges 0 � r < ∞, 0 � θ � 2π  and 0 � φ < π  for the polar coordi-
nates cover S3 minus one point. The Maurer–Cartan relations (10) on S3 imply the following 
structure equations for the cobasis on M:

de0 = 0 and dek =
1

L0 S̃2(η)

dS̃(η)
dη

e0 ∧ ek − 2

L0 S̃(η)
εk

lm el ∧ em

for k = 1, 2, 3, which greatly facilitate many of the computations below.
One readily confirms that

X0 =
1

L0 S̃(η)

∂

∂η� (13)

is a unit timelike vector field on M and that the vector fields Kj = S̃(η)Xj  are spacelike 
Killing vectors on M:

LKj g = 0 ( j = 1, 2, 3)

where ea(Xb) = δa
b with a, b = 0, 1, 2, 3. The vector fields Kj  generate the rotation group SO(3) 

acting on M confirming that the spacetime metric is spatially isotropic. Spatial homogeneity 
of any cosmological model follows providing all scalars including components of tensors in 
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the preferred basis {Xa} or dual g-orthonormal cobasis {ea} depend only upon the dimension-
less evolution variable η or upon real-valued functions of η.

Many observable astrophysical elements are conventionally specified in terms of ‘cosmic 
time’. We denote this by the dimensionless variable t and relate it to η by the local diffeomor-
phism η̂ : t �→ η = η̂(t) where

dη̂(t)
dt

=
1

S(t)
and S(t) = ( S̃ ◦ η̂ )(t) = S̃( η̂(t) ) = S̃(η).� (14)

It is traditional to fix the map η̂  so that

η̂(t) =
∫ t

0

dt′

S(t′)
.� (15)

The chain rule is used to relate higher order derivatives of S̃(η) to derivatives of S(t). 
Henceforth we distinguish η-derivatives using Lagrange’s ‘prime’ notation and t-derivatives 
by Newton’s ‘dot’ notation. By slight abuse of notation, we now write elements in the cobasis 
in terms of the evolution variable t as

e0 = L0 dt and ek = i L0 S(t)Θk(r, θ,φ) (k = 1, 2, 3)� (16)

and

g = L2
0

[
−dt ⊗ dt +

S2(t)

(1 + r2

4 )
2

(
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2(θ)dφ⊗ dφ

)]
.

� (17)
We note that singularities of the geometry are likely to occur at any zeroes of S (where the 
cobase (16) collapses).

4. The cosmological vector-scalar model

4.1. The cosmological vector-scalar ansätz

In terms of the preferred spacetime cobasis (11) induced from the Maurer–Cartan basis {iΘk} 
on S3, we adopt the ansätz:

A = Γ e1� (18)

for the 1-form field where Γ ∈ R is dimensionless and

Ψ = Ψ̃(η)

for the scalar field. Thus in addition to a preferred time-like field X0 describing the global fluid 
flow the model contains the preferred space-like field X1 describing the vector field polarisa-
tion e1. The field equation (6) then takes the form:

S̃′′(η) = −S̃3(η) ζ0 U(Ψ̃)− 4S̃(η)� (19)

and (4) becomes

Ψ̃′′(η) = −1
2

S̃2(η) ζ0 Γ2 U ′(Ψ̃)− 2 Ψ̃′(η)
S̃′(η)

S̃(η)
.� (20)
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All elements in these equations are real and dimensionless, including the constant Γ. Once a 

potential U is adopted for Ψ̃(η) and Γ, ζ0 are assigned non-zero values, (19) and (20) con-

stitute a system of non-linear second-order ODEs for S̃(η) and Ψ̃(η) amenable to analysis 
given initial data. Clearly a full analysis of the above coupled system cannot proceed without 
a specification of the potential U. However since we are interested in particular solutions with 
interesting physical implications, one may proceed by assuming only that the potential U 

has at least one minimum as a function of Ψ̃, i.e. U ′(Ψ0) = 0 and U ′′(Ψ0) > 0 for some real 
value Ψ0. Then we observe that the constant field Ψ̃(η) = Ψ0 is a particular solution to (20) 

and (19) becomes

S̃′′(η) = −S̃3(η)W − 4S̃(η)� (21)

where

W ≡ ζ0 Ξ0 and Ξ0 ≡ U(Ψ0).

Furthermore, the terms involving Γ1 in the field equations do not contribute to the cosmo-
logical sector. The general solution to (21) can be written in terms of the Jacobi elliptic sine 
function sn as:

S̃(η) =
2
√

2K2

P1
sn

(
(
√

2λ0 η + 2K1)
√

2
P1

,
P0√
λ0

)

where

Pj ≡
√
(8 − λ0)K2

2 + jλ0 and λ0 ≡ W + 8

with arbitrary real constants K1,K2. This general solution yields a potential class of physically 
relevant spacetime cosmographies for an analysis of Einstein’s equations. Since the metric 
scale factor must be real we can simplify this analysis by first transforming to a new evolution 
variable.

We proceed by transforming our fields to depend on the cosmic time evolution variable t 
using (14) with the composition rules:

f̃ ′(η) ≡ f̃ ′( η̂(t) ) = ḟ (t) S(t)

f̃ ′′(η) ≡ f̃ ′′( η̂(t) ) = S2(t) f̈ (t) + S(t)Ṡ(t)ḟ (t)

relating the functions f , f̃  of one variable. Then (19) and (20) become for S(t) �= 0:

S̈(t) = −S(t) ζ0 U(Ψ(t) )− Ṡ2(t)
S(t)

− 4
S(t)

Ψ̈(t) = −1
2
ζ0 Γ2 U ′(Ψ(t) )− 3 Ψ̇(t)

Ṡ(t)
S(t)

.
�

(22)

By choosing Ψ0 as the particular real root of U ′(Ψ0) = 0, (22) becomes

S̈(t) = −S(t)W − Ṡ2(t)
S(t)

− 4
S(t)

.� (23)

We note that if S(t) is a real solution to this equation then so is −S(t). Furthermore, for any 
solution S(t), the expression a0S(t) is not a solution unless the constant a0 = ±1. Solutions 
to the non-linear real equation (23) can be constructed in terms of complex solutions of an 
auxiliary equation for Σ(t). This takes the form
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Σ̈(t) = −2 W Σ(t)− 8� (24)

with general solution

Σ(t) = Cs1 cos
(

t
√

2 W
)
+ Cs2 sin

(
t
√

2 W
)
− 4

W
.� (25)

The constants Cs1, Cs2 can be chosen to be real or complex but those of relevance must ensure 
that

S(t) = ±
√

Σ(t)� (26)

takes real values for t ∈ I . From the properties of the hyperbolic functions it is notable that 
for arbitrary values of Cs1, Cs2 and W  <  0:

lim
t→∞

H(t) =

√
− W

2

in terms of the dimensionless cosmic time Hubble function4

H(t) =
Ṡ(t)
S(t)

.

Furthermore it is evident from the properties of the trigonometric functions that solutions with 
W > 0 are necessary to construct spacetime metrics with a bounded periodic scale factor S(t) 
(having many real zeroes) whilst those with W < 0 may generate real solutions with either 
unbounded or bounded non-periodic scale factors (with either zero, one or two real zeroes).

Figure 1 displays the profiles of S(t) =
√

Σ(t) that have none, one, two or many real 
zeroes, obtained by assigning particular values to {Cs1, Cs2} and W . Real solutions S(t) with 
real zeroes indicate the possibility of geometric spacetime singularities. We conclude that 
solutions of (23) generate possible ‘big-bang-big-crunch’ cyclic cosmological spacetimes, 
‘symmetric non-singular’ eternal cosmological spacetimes or ‘single big-bang eternally 
expanding’ cosmological spacetimes, all with closed spatial universes having the topology of 
the 3-sphere.

Since the spacetime curvature scalar, R = trg(Ric), is given in terms of S(t) by

R(t) = − 18
S2(t) L2

0
+

6 W
L2

0
,

solutions where S(t) is constant yield spacetime geometries with a constant curvature sca-
lar. An indication of the presence of singularities in the geometry (i.e. those that cannot be 
eliminated by a change of coordinates) is given where R(t) becomes unbounded. However, 
being bounded is not a sufficient condition for the absence of geometric singularities. The 
Kretschmann scalar K = �(Rab ∧ �Rab) offers another invariant that can also locate geometric 
singularities where it becomes unbounded. In terms of the scale factor of the model under 
consideration, it is given by

L4
0 K(t) = −6 W2 − 48 W

S2(t)
− 12H2(t)W − 102

S4(t)
− 60H2(t)

S2(t)
− 12H4(t).

4 This is related to the observed cosmic time Hubble function Hobs by the relation Hobs = cH/L0.
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Recent measurements of type-1a supernova luminosities have also made possible observa-
tions of the current value of the dimensionless de-acceleration parameter [13, 14]. In terms of 
cosmic time, this is defined as

q(t) = −S(t) S̈(t)
Ṡ2(t)

.

Using (23) to eliminate the second derivative of the scale factor, this takes the form

q(t) = 1 +
4

Ṡ2(t)
+

W
H2(t)� (27)

which in our model with W < 0, is clearly not manifestly positive and therefore offers the 
possibility of finding an epoch t in I  where q(t) < 0 thereby exploring earlier epochs by 
retro-diction. For arbitrary values of Cs1, Cs2 in the solutions (24) and when W  <  0 one has 
the asymptotic behaviour

q(t) � −1 + O(e−4Wt)

as t approaches infinity. Hence

lim
t→∞

q(t) = −1

reminiscent of de Sitter-type solutions. The recent claim that an accelerating phase (i.e. 
q(t) < 0) of the cosmos is consistent with observation has recently led to a number of new 
cosmological models beyond the standard paradigm.

Figure 1.  Typical solutions for the scale factor S(t) satisfying (23).
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4.2. The cosmological Maxwell sector

We turn next to the construction of Maxwell fields in the model with Ψ constant given by 
U ′(Ψ0) = 0, U ′′(Ψ0) > 0. Since the U(1)-invariant Maxwell 2-form F = dA must then 
satisfy the linear equation δF = δ d A = 0 on M where δ ≡ �d� is the divergence opera-
tor on p -forms, a general solution could include a superposition of singular solutions and 
non-singular modes generated from scalar harmonics on S3. Typical regular modes were  
considered earlier by Schrödinger [15] and have subsequently been developed further in the 
literature [16–18].

Singular solutions would satisfy δF = δ d A = 0 on electromagnetic source-free domains 
of M free of singularities. In Minkowski spacetime certain distributional Maxwell field solu-
tions serve as models of point particles with electromagnetic multi-pole moments that can 
interact with regular Maxwell fields. For example stationary electrically charged point par-
ticles are modelled by the Coulomb solution where their charge arises as a de-Rham period 
rather than from a 3-dimensional volume integral of any regular charge density. There exist 
analogues of such solutions in the spacetime with the metric (12). One readily verifies that in 
the local chart with coordinates {η, r, θ,φ} the dimensionless Maxwell 2-form:

FI =
Q0

4π

(
1
4
+

1
r2

)
dr ∧ dη

satisfies dFI = δFI = 0 where Q0 is a dimensionless constant and r �= 0. In the preferred 
frame defined by the unit time-like vector field

V ≡ X0 =
1

L0S(η)
∂

∂η
,

this corresponds to an electromagnetic field with electric and magnetic 1-forms:

E I
V = iVFI = −Q0

4π

(
1
4
+

1
r2

)
dr

S̃(η)L
=

Q0

4π

(
r
4
+

1
r

)2 N
S̃2(η)L2

0

BI
V = iV � FI = 0

in terms of the space-like unit 1-form

N = sin(θ) cos(φ)e1 + sin(θ) sin(φ)e2 − cos(θ)e3.

At any value of η = η0 the net electric flux crossing any 2-sphere S2 surrounding the singular-
ity at r  =  0 is given by the de-Rham period:

∫

S2
�FI = Q0.

One notes that the norms of FI and E I
V  coincide and:

|FI | =
√

� (FI ∧ �FI) =
Q0

16πS̃2(η)L2
0

(
r
4
+

1
r

)2

implying that both |FI |, |E I
V | diverge as r → ∞. However the anti-podal point of S3 where 

r = ∞ is not in the local chart. But FI, g and the coframe {e1, e2, e3} are each invariant under 
the symmetry transformation {Q0 �→ −Q0, r �→ 4

r} implying that the above local representa-
tion of FI extends to a global electrically neutral distributional Maxwell solution with singu-
larities at a pair of antipodal points of S3 with equal and opposite de-Rham periods at each 
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pole (see appendix). Since this zero-total electric charge solution on S3 has a pair of spatially 
distinct singularities we shall designate it an electric bi-pole to distinguish it from electrically 
neutral singular dipole solutions that each possess a single spatially located singularity.

Similarly Hodge-duality implies the existence of distributional magnetic bi-pole solutions 
of the form:

FII =
M0

4π
sin(θ) dθ ∧ dφ

where M0 is a dimensionless constant and

E II
V = iVFII = 0

BII
V = iV � FII =

M0

4π

(
1
4
+

1
r2

)
dr

S̃(η)L0
= −M0

4π

(
r
4
+

1
r

)2 N
S̃2(η)L2

0

in the chart with coordinates {η, r, θ,φ}, with constant dimensionless magnetic charge:
∫

S2
FII = M0.

Thus FII represents a global magnetically neutral distributional Maxwell solution with singu-
larities at a pair of antipodal points of S3 with equal and opposite de-Rham periods at each pole 
and symmetric under the transformation {M0 �→ −M0, r �→ 4

r}. Despite the similarity of these 
Maxwell field LFRW bi-pole solutions to the Minkowski Coulomb and magnetic monopole 
solutions in the vicinity of their isolated singularities, neither FI nor FII is a spatially spheri-
cally symmetric solution:

LKj F
I �= 0 and LKj F

II �= 0 ( j = 1, 2, 3)

in terms of the spacelike Killing vectors {Kj } on M discussed in section 3.
In the cosmological context that follows we shall content ourselves with a particular regu-

lar source-free superposition that displays interesting distinct electromagnetic features and 
consider the particular ansätz:

F = d
(
α̃(η) e1 )+ Ẽ(η) e0 ∧ e1 + B̃(η) e2 ∧ e3

in terms of the real scalar functions α̃, Ẽ, B̃ of η and return to a discussion of local charge 
fluctuations in section 6. Now the source free Maxwell equations dF = δF = 0 lead to the 
non-distributional solutions:

Ẽ(η) =
[Ck1 cos(2η)− Ck2 sin(2η)]

S̃2(η)
, B̃(η) =

[Ck1 sin(2η) + Ck2 cos(2η)]

S̃2(η)

and the second-order ODE:

α̃′′(η)− W S̃2(η) α̃(η) + 2α̃′(η)
S̃′(η)

S̃(η)
= 0

for α̃(η). In terms of the cosmic time variable t:

F = d
(
α(t) e1 )+ E(t) e0 ∧ e1 + B(t) e2 ∧ e3� (28)
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where

E(t) =
[Ck1 cos( 2 η̂(t) )− Ck2 sin( 2 η̂(t) )]

S2(t)
, B(t) =

[Ck1 sin( 2 η̂(t) ) + Ck2 cos( 2 η̂(t) )]
S2(t)

and α(t) is a solution of

α̈(t) + 3H(t) α̇(t)− Wα(t) = 0.� (29)

This is a linear non-autonomous ordinary differential equation for α(t) which can be readily 
integrated in terms of two arbitrary real constants. Depending upon the sign of W , it resembles 
the dynamics of an oscillator or an ‘anti-oscillator’ with time-dependent damping or ‘anti-
damping’ determined by the dimensionless Hubble function H(t).

The particular solutions involving Ẽ(η) and B̃(η) above generalize the source-free Maxwell 
solutions found by Kopińksi and Natário [19] in the context of a standard LFRW model involv-
ing two non-interacting null fluids. To transform these to a cosmic time variable requires the 
computation of the integral (15). To simplify our analytic presentation in terms of the evo
lution variable t, in the following we shall therefore generate a regular Maxwell field from the 
restricted Maxwell potential 1-form ansätz A = α(t) e1 by analogy with the ansätz A = Γ e1.

When S̃(η0) �= 0 and α̃(η0) is regular one can immediately calculate the instantaneous 

Maxwell magnetic helicity 3-form H̃ |η=η0
≡ A ∧ F|Σ3 on any 3-dimensional space-like 

hypersurface Σ3 defined by η = η0 ∈ R, in terms of S̃(η0) and α̃(η0):

H̃ |η=η0
= −2

α̃2(η0)

L0 S̃(η0)
e1 ∧ e2 ∧ e3

∣∣∣∣∣
Σ3

where Σ3 is, topologically, the 3-sphere S3. This gives a finite total instantaneous Maxwell 
magnetic helicity:

∫

S3
H̃ |η=η0

= −2
α̃2(η0)

L0 S̃(η0)
Vol(S3) = −4π2 α̃2(η0) L2

0 S̃2(η0)

since Vol(S3) =

∫

S3
e1 ∧ e2 ∧ e3

∣∣
Σ3

= 2π2 L3
0 S̃3(η0).

In a similar way, we may define the instantaneous A-magnetic helicity associated with the 
vector field configuration Ã(η) in (18): H̃ |η=η0

≡ A ∧ dA|Σ3 and derive, for S̃(η0) �= 0, the 
finite total instantaneous A-magnetic helicity:

∫

S3
H̃ |η=η0

= −2
Γ2

L0 S̃(η0)
Vol(S3) = −4π2 Γ2 L2

0 S̃2(η0).

The existence of non-zero total instantaneous magnetic helicity for the particular solutions 
where A  and A are proportional to the 1-form e1 on each constant η hypersurface implies that 
the corresponding electric and magnetic field lines (i.e. the instantaneous integral curves of the 
electric and magnetic field vectors), defined by splitting the 2-form field strengths F , F = dA 
respectively into electric and magnetic type 1-form fields relative to the preferred coframe 
(13), are ‘linked’ and exhibit a ‘Hopfian’ knot configuration at each instant η = η0 [20–22].

It is worth noting that the Maxwell gauge field A = α̃(η) e1 satisfies the condition δA = 0. 
This reduces its number of independent physical degrees of freedom to two. Although in gen-
eral the 1-form A  is not a U(1) gauge field and does not satisfy δA = 0, when one restricts 
to a model where the constant scalar field satisfies U ′(Ψ0) = 0, Ψ0 ∈ R, then δA = 0 also.
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4.3. The cosmological Einstein sector

Next we turn attention to the total stress–energy–momentum tensor T in the Einstein equa-
tion  (8). Introducing the dimensionless fluid density Ω(t) = ρ(t)L2

0c2/κ and dimensionless 
fluid pressures Pk(t) = pk(t)L2

0/κ, and substituting the equations  Ψ = Ψ0, A = α(t) e1, 
A = Γ e1 into T yields the non-zero g-orthonormal T components:

T00(t) = −J−(t) +
2α2(t)
S2(t)

+
H2(t)α2(t)

2
+Ω(t)

T11(t) = J +(t)− 2α2(t)
S2(t)

− H2(t)α2(t)
2

− 2 W + P1(t)

T22(t) = −J +(t) +
2α2(t)
S2(t)

+
H2(t)α2(t)

2
− 2 W + P2(t)

T33(t) = −J +(t) +
2α2(t)
S2(t)

+
H2(t)α2(t)

2
− 2 W + P3(t)

in terms of the dimensionless Hubble function H(t) and where

J±(t) ≡

(
± W

2
− 2

S2(t)
− Ṡ2(t)

2S2(t)

)
Γ2 − α̇2(t)

2

(
1 + 2α(t)H(t)

)
.

i.e.

J±(t) ≡
(
± W

2
− 2

S2(t)
− 1

2
H2(t)

)
Γ2 − α̇2(t)

2

(
1 + 2α(t)H(t)

)
.

It remains to solve the dynamical system containing (29) and

κEint = Tt = Tt + Tt� (30)

where {Eint, Tt, Tt,Tt} is the form taken by the tensors {Ein, T , T ,T} with the ansätz (16), 
(18), (28) and Ψ = Ψ0. This system comprises six ordinary coupled equations  for the six 
variables:

{ Ω(t), P1(t), P2(t), P3(t), S(t), α(t) }.

However, any solutions will automatically satisfy the Bianchi identity ∇ · Ein = 0 which 
implies ∇ · T = 0. Hence there must be some relations between the six solutions. For any 
solutions α(t), S(t), the solutions for the fluid variables are found to be

Ω(t) = J−(t) +
(3 − 2α2(t))

S2(t)
+

H2(t)
2

(
6 − α2(t)

)

P1(t) = −J +(t) +
(7 + 2α2(t))

S2(t)
+

H2(t)
2

(
2 + α2(t)

)
+ 2 W

P2(t) = J +(t) +
(7 − 2α2(t))

S2(t)
+

H2(t)
2

(
2 − α2(t)

)
+ 2 W

P3(t) = J +(t) +
(7 − 2α2(t))

S2(t)
+

H2(t)
2

(
2 − α2(t)

)
+ 2 W.

�

(31)

Two algebraic relations amongst these fluid variables emerge:
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Ω(t) = −W Γ2 +
1
2
(P2(t)− P1(t) ) +

3
S2(t)

+ 3H(t)2

and

P2(t) = P3(t).

These relations parametrize a dynamically induced anisotropic fluid mechanical equation 
of state which is, in general, manifestly dependent on the evolution variable t through the  
dynamics of the scale factor S(t) and the vector, scalar and Maxwell fields. Note that  
although the fluid stress–energy–momentum tensor is thereby anisotropic [23], the total 
stress–energy–momentum tensor Tt is not. Spatial anisotropies in the field contributions to 
Tt cancel those in the fluid contribution Tt yielding the isotropic Einstein tensor Eint with  
non-zero g-orthonormal components Eint(Xa, Xb) = Einab(t) given by:

Ein00(t) =
3

L2
0 S2(t)

(
1 + Ṡ2(t)

)
≡ 3

L2
0

(
1

S2(t)
+H2(t)

)

Einkk(t) = − 1
L2

0 S2(t)

(
1 + 2S(t)S̈(t) + Ṡ2(t)

)
≡ 1

L2
0

(
H2(t)(2q(t)− 1)− 1

S2(t)

)

� (32)
for k = 1, 2, 3.

5. Testing the cosmological model

In the previous section we showed that the ansätz (18) together with Ψ(t) = Ψ0 at a minimum 
U0 of U was sufficient to reduce the coupled scalar-vector system (4) and (6) to the single 
condition (23) to determine the scale function S(t), the general solution depending on the 
constants of integration {Cs1, Cs2} and the parameter

W ≡ ζ0 Ξ0.

Solutions for the fluid variables Ω(t), P1(t), P2(t), P3(t) then follow from the Einstein equa-
tion (30) in terms of cosmological solutions for the Maxwell equation (5).

An immediate test of the model can be made by exploiting currently available meas-

ured values of the Hubble parameter Ĥobs(̂t0) and the de-acceleration parameter q̂obs(̂t0) 
since these are independent of the standard cosmological paradigms based on particular 
multi-fluid equations  of state. The cosmic time evolution variable t̂0 here, with dimen-
sions of time, is related to the current dimensionless time coordinate t0 by the relation 

t̂0 = t0L0/c. Furthermore, since [Ĥ] = T−1, if one uses SI units of time in seconds, then the 

parameter L0 = 1 m and our dimensionless Hubble parameter H(t0) = Ĥobs(̂t0)/c. Taking 
Ĥobs(̂t0) = 58 h km s−1/Mpc = 3.243 × 10−18 h s−1 yields H(t0) = 1.082 × 10−26 h with 
|h| = 0.58 [8] while the dimensionless value of q̂obs(̂t0) = q(t0) = −0.56 is compatible with 
current observation.

Since (27) implies the de-acceleration parameter q(t) > 0 for W  >  0, contrary to current 
observation, we will concentrate attention on solutions S(t) of (23) with W  <  0. Particular 
solutions are then fixed by specifying values for W, S(0) and Ṡ(0) since there is no loss of 
generality by labelling t0  =  0. The values of S(0) and Ṡ(0) are then in turn furnished in terms 
of values for H(0) and q(0) for some W  <  0. Evaluating (23) at t  =  0 yields the following 
value for S(0):
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S(0) =
2

H(0)
√

q(0) + ∆2 − 1
� (33)

where W = −H(0)2 ∆2 with ∆ ∈ R. Then

Ṡ(0) = H(0) S(0)

and the solution S(t) is fixed and real for any ∆2 > 1 − q(0).
Figure 2 shows cosmological characteristics based on the solution5 obtained with 

∆ = 1.257, giving S(0) = 2.25 × 1027 and retro-dicts the location of a single zero of S at 
t = −1.245 × 1026 together with a non-uniformly exponentially increasing value of S(t). The 
curves for K and R clearly show that the zero of S is a geometric singularity so one may 
conclude that the model fitting H and q with ∆ = 1.257 at the current epoch yields an age 
of the Universe to be around 13.2 × 109 years. The second figure displays the past and future 
behaviour of the de-acceleration function q(t) while the fifth figure displays the past and future 
behaviour of the dimensionless Hubble function H(t). Although there is no data for the cur
rent value of the dimensionless ‘jerk’ function:

j(t) =
S(t)2 ...

S (t)
Ṡ(t)3

,

the model predicts j(0) = 1.480 and the last plot in figure  2 displays its past and future 
behaviour.

Figure 2.  Astrophysical model predictions based on current (t = 0) values of the 
dimensionless Hubble parameter H(0) and the de-acceleration parameter q(0).

5 In terms of the complex constants in (26) this data corresponds to the values: Cs1 = 5.002 × 1054, 
Cs2 = −5.700i × 1054 and W = −6.223 × 10−53.
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In general, when W  <  0 one has:

lim
t→∞

j(t) = 1

for arbitrary values of Cs1, Cs2 in the solutions of (24).
Although all these cosmographic features are mathematically independent of the Einstein 

equations [24], they are consistent with a single ‘big-bang’ scenario undergoing eternal non-
uniform exponential accelerated expansion. The Einstein equations  in turn then predict the 
behaviour of the density and pressures in the fluid stress–energy–momentum tensor compat-
ible with the Maxwell, scalar and vector field stress–energy–momentum tensors, determined 
from their associated field equations. It is worth noting at this stage that none of the particular 
solutions that follow from the equations for α(t), S(t),Ψ(t),A, give rise to a term in T of the 
form Λ0g with Λ0 constant and g the spacetime metric tensor (i.e. to an effective cosmological 
constant).

It is also of interest to examine what the above cosmological solution implies for the 
various local ‘energy conditions’ that feature in a number of theoretical criteria for general 
relativistic stress–energy–momentum tensors. These are based on inequalities that involve 
the eigenvalues of such symmetric tensors. Thus one may express the right hand side of the 
Einstein equation (30) as

Tt =
Ω̂(t)
L2

0
e0 ⊗ e0 +

1
L2

0

3∑
k=1

P̂k(t) ek ⊗ ek.

in terms of the eigen-mass-energy density Ω̂(t) and eigen-pressures P̂k(t) and note that the 

total mass-energy of the interacting system includes the mass-energy of the fields as well 
as the material fluid. The eigenvalues of Tt following simply from the eigenvalues of Eint 
displayed in (32). Cosmological stress–energy–momentum tensors that satisfy these local 
‘energy conditions’ at cosmic time t obey the constraints on the left in figure 3 and the fig-
ures on the right illustrate the behaviour of the expressions in the Dominant, Strong, Weak and 
Null energy inequalities as a function of dimensionless cosmic time over an interval, starting 
from the big-bang and including the current epoch (t  =  0). Over this interval all inequalities 
are satisfied except the Strong Energy Condition. Opinion seems divided on the significance 
of this condition in constraining cosmological models [25].

6.  A scalar and vector field fluctuation model

With a dynamic model that yields an evolving scale factor one may construct a recursive 
framework for analysing the fluctuation and thermal history of the matter and field content of 
the Universe consistent with the solutions (31) to Einstein’s equation (8) without a cosmologi-
cal constant. This may offer some insight into the nature of ‘dark-matter’ [26].

It has been shown in section 4 that the ansätz (16), defining the metric g, and the ansätz 
(18) for A  yield analytic solutions to the equations (4) and (6) provided the constant solution 
Ψ = Ψ0 satisfies U ′(Ψ0) = 0 and the metric scale factor S(t) is a solution of the non-linear 
ODE (23), with the general solution given by (26). Any particular solution of (29) then gener-
ates a source free Maxwell field that completes a cosmological solution to the coupled field 
system (4)–(6) compatible with Einstein’s equations.

In section  5 particular solutions S(t) to (23) have been shown to describe distinct cos-
mological spacetimes including those possessing a single initial singularity in the spacetime 
geometry. However, given U(Ψ), the fully coupled general system (4)–(6) and (8) has other 
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solutions that can break the spatial homogeneity and isotropy of the particular LFRW metric 
solution. Such solutions may, given additional physical data, ultimately account for the forma-
tion of plasma states in the early Universe, needed to thermalise matter and electromagnetic 
radiation, and for the formation of the elements, stars and galaxies during later epochs of its 
evolution.

Figure 3.  Plots displaying constraints for the Dominant, Strong, Weak and Null Energy 
Conditions respectively. Some curves are indistinguishable in the plots.
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A tentative approximation scheme, adopted below, is to generate a sequence of linearised 
perturbations of the equations (4)–(6) about the exact cosmological solution described in sec-
tion 5 in terms of the scale factor (26) in the LFRW metric. This particular scheme assumes 
the evolving perturbations have a negligible back-reaction on the ambient LFRW gravitational 
field. This is reasonable for field fluctuations that are localised in small regions of space. In 
section  8 we will also describe analytically, field perturbations that are spatially localised 
during epochs were the ambient gravitational field is itself neglected, i.e. where the dominant 
physics under consideration takes place in a background Minkowski spacetime.

Working to order ε2 in the dimensionless perturbed fields, let:

Ψ = Ψ(0) + εΨ(1) + ε2Ψ(2)

A = A(0) + εA(1) + ε2A(2)

A = A(0) + εA(1) + ε2A(2)

� (34)

with norms |Ψ( j)| � 1, | � (A(j) ∧ �A(j))| � 1, | � (A(j) ∧ �A(j))| � 1 for j = 1, 2. Up to this 
maximum order it is sufficient to write the potential U in the form of a truncated Taylor series 
about the constant value Ψ0 where it has a local minimum:

U(Ψ) = Ξ0 +
1
2
Ξ1(Ψ−Ψ0)

2 +
1
6
Ξ2(Ψ−Ψ0)

3

with

Ξ0 ≡ U(Ψ0), U ′(Ψ0) = 0, Ξ1 ≡ U ′′(Ψ0) > 0 and Ξ2 ≡ U ′′′(Ψ0).

In terms of the summands in the expansion of Ψ above, it follows that to order ε2:

U(Ψ) = Ξ0 +
1
2
Ξ1(Ψ

(1))2 ε2, U ′(Ψ) = Ξ1Ψ
(1)ε+

(
Ξ1Ψ

(2) +
1
2
Ξ2(Ψ

(1))2
)
ε2.� (35)

Substituting the expansions (34) and (35) into the PDE equations (4)–(6) yields the zeroth 
ε-order PDE system:

d � dΨ(0) = 0

d � dA(0) +
W
L2

0
� A(0) = 0

dF(0) = 0, d � F(0) = 0,

� (36)

the first ε-order PDE system:

d � dΨ(1) +
Ξ1

2

(
Γ1F(0) ∧ F(0) − ζ0

L2
0
A(0) ∧ �A(0)

)
Ψ(1) = 0� (37)

d � dA(1) +
W
L2

0
� A(1) = 0� (38)

dF(1) = 0, d � F(1) = 0,� (39)

and the second ε-order PDE system:

d � dΨ(2) +
Ξ1

2

(
Γ1 F(0) ∧ F(0) − ζ0

L2
0
A(0) ∧ �A(0)

)
Ψ(2) = J� (40)
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d � dA(2) +
W
L2

0
� A(2) = J� (41)

dF(2) = 0, d � F(2) = J� (42)

where

F(j) = d A(j), ( j = 0, 1, 2)

and

J ≡ +

(
ζ0Ξ1

L2
0

A(0) ∧ �A(1) − Γ1Ξ1

2

(
F(1) ∧ F(0) + F(0) ∧ F(1)

))
Ψ(1)

+

(
ζ0Ξ2

4L2
0
A(0) ∧ �A(0) − Γ1Ξ2

4
F(0) ∧ F(0)

)
(Ψ(1))2

J ≡ −Ξ1ζ0

2L2
0
(Ψ(1))2 � A(0)

J ≡ −Γ1Ξ1 Ψ
(1) dΨ(1) ∧ F(0) = −Γ1Ξ1 d

(
1
2
(Ψ(1))2 ∧ F(0)

)
.

One sees from these equations  that, given Ψ(0),A(0) and F(0), the scheme gener-
ates a sequence of PDE systems for Ψ(j),A(j) and F(j). With Ψ(0) = Ψ0, U ′(Ψ0) = 0 and 
A(0) = Γ e1, the zeroth-ε order system is satisfied by solving the source-free Maxwell system 
(36). Thus these zeroth ε-order equations are those used in sections 1–3 to establish a viable 
cosmological model when combined with the Einstein equations. The first ε-order field modi-
fications to this exact cosmological solution (37)–(39) are given by solutions to an uncoupled, 
homogeneous, (source-free) second-order PDE system. By contrast, at the next ε-order, the 
perturbations (40)–(42) satisfy uncoupled inhomogeneous equations with sources generated 
by solutions to the lower ε-order systems.

Of particular note is the perturbed Maxwell system (42) for the perturbation F(2) contain-
ing the manifestly conserved electric current 3-form J :

dJ = 0.

Since the SI system of units accommodates quantities with the dimensions q of electric charge, 
it is convenient at this point to express (42) as

dF̂(2) = 0, d � F̂(2) = Ĵ
in terms of the dimensioned forms:

F̂(2) =
q0

L0ε0
F(2), Ĵ =

q0

L0ε0
J

where the real constant q0 carries the dimensions of charge and ε0 is the permittivity of free space 
with SI dimensions q2 T2/M L3. Then in units with charge q measured in Coulombs, Newtonian 
force (N) measured in Newtons and length (L) in metres, ε0 = 8.8542 × 10−12 q2 N−1 L−2. At 
any spacetime point, in any local frame of reference defined by a unit time-like vector field 
V  on M, the charge density ρ(V) in Coulombs per cubic metre is then given by −iV � Ĵ  and 
the associated electric current 2-form J(V) in amps per square metre is given by c iV Ĵ  at that 
point.
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Since F(0) and F(1) are source free solutions, assumed regular and singularity free, the 
net electric charge Q[Σ3] in any 3-dimensional spacelike domain Σ3 ⊂ S3 with boundary 
∂Σ3 �= 0, is:

Q[Σ3] =

∫

Σ3

Ĵ =

∫

Σ3

d � F̂(2).

This implies, by Stokes’ theorem, that

Q[Σ3] =

∫

∂Σ3

�F̂(2)

is the net electric flux emanating from the 2-surface ∂Σ3 bounding Σ3. The value of Q[Σ3] 
may be positive or negative, implying the existence of localised charge fluctuations of differ-
ent polarities in different regions. However if one integrates J over an entire closed space-like 
hypersurface, topologically S3, at any instant, then Q[S3]  =  0 since the 3-sphere has no bound-
ary across which the electric flux can cross (∂S3 = 0). Thus the total electric charge (induced 

by the scalar fields Ψ(1) and F(0) at order ε2) must be zero. In any cosmological model the pres-
ence of locally charged regions in space seems to be an essential prerequisite for providing 
scattering processes in a charged particle-field interpretation of the thermalisation mechanism 
between matter and radiation prior to any decoupling era where ionisation ceases.

7. Thermal history within the new paradigm

The existence of a high temperature state of the early Universe has achieved almost uni-
versal recognition based on the accurate measurements of an extra-galactic omni-directional 
Planck distribution of electromagnetic radiation with a maximum intensity in the microwave 
spectrum. Assuming that such a radiation distribution has evolved with the expansion of the 
Universe without change of shape since it escaped from the opaque plasma state, any cosmo-
logical model should accommodate the high precision COBE and Planck data [27]. If

E [Σ3] = V[Σ3]

∫ ∞

0
Ûω(T) dω

denotes the total thermal energy in any spatial domain Σ3 with volume V[Σ3] in an early 
plasma state then it has a Planck spectrum with temperature T if

Ûω(T) =
�ω3

π2c3

1
exp

(�ω
kT

)
− 1

where �, k  are the reduced Planck and Boltzmann constants respectively. Assuming that each 
harmonic frequency component in this distribution transports electromagnetic energy along 
a null geodesic of an isotropic background LFRW metric g, one may exploit the ray-optics 
approximation for harmonic solutions to the source-free Maxwell equations [7] to relate the 
frequencies or wavelengths of these components made by observers at different spacetime 
events p . In a cosmology with a LFRW metric a key feature is the existence of a preferred 
unit time-like vector field V  that can be used to define the angular frequency ωp = 2π νp and 
wavelength λp = 2π c/ωp of such solutions at any event p . Then

νe[Ve]

νo[Vo]
=

g(Ve, Ke)

g(Vo, Ko)
≡ 1 + zo,e,
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in terms of the redshift parameter zo,e . Here e denotes an emission event where the tangent to 
the null geodesic is the null vector Ke of a harmonic Maxwell wave with frequency νe in the 
cosmic frame Ve . A similar statement refers to the observation of the frequency νo at an obser-

vation point o in the causal-future of e. With V = 1
L0

∂
∂t  it follows from (17) that

νe

νo
=

S(t0)
S(te)

� (43)

and

zt0,t1 =
S(t0)
S(t1)

− 1 =

√∣∣∣∣
Σ(t0)
Σ(t1)

∣∣∣∣− 1� (44)

in terms of the general solution (25). Defining

Uλ(T) = Ûω(T)|ω= 2πc
λ

and the change of variable

y ≡ 2π�c
λkT

,� (45)

the distribution Uλ(T) in wavelength becomes

Uy(T) dλ =
k5T5

2�4π3c4 F(y) dλ� (46)

in terms of the dimensionless universal function

F(y) =
y5

ey − 1
.� (47)

Since the COBE and Planck data measure the variation of Uy(T) with λo with a definite 
temperature To � 2.73 K (after correcting for the detector’s motion relative to the frame Vo) 
in agreement with (46), it follows from (45) that y  remains independent of epoch after decou-
pling, i.e.

λo

λe
=

Te

To

and hence from (43):

S(te) = S(t0)
To

Te
.

If the scale factor S(t) is continuous monotonic-increasing with t and 0 < To/Te < 1 then te 
lies at a time between the initial singularity event and the current epoch t0. An estimate of the 
temperature Te  when the Universe first became transparent to thermal radiation would give 
an estimate of the ratio S(te)/S(t0) since To is measured. In the standard cosmological model 
the value of S(t0) is estimated from the current densities of matter and radiation in a solution 
of the Friedman equations. In the cosmological model discussed in this paper it is fixed by the 
solution (26) using the current values of H(t0) and q(t0) that fix the constants Cs1, Cs2 and W 
assuming ∆ = 1.257. If one assumes a value Te � 4000 K for the temperature at decoupling, 
based on a model for the physics of thermalisation in the hot plasma, together with a value 
S(t0) = 2.25 × 1027 defined by (33) one may estimate the value for the scale factor at decou-
pling to have been S(te) � 1.54 × 1024. Finally, denoting by tBB the dimensionless cosmic 
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time of the geometric singularity, then the dimensionless time interval between the big-bang 
and the decoupling era te − tBB, is determined to be 7.78 × 1019, i.e. 8.23 × 103 years.

8.  Extending the fluctuation model with perturbative scalar and vector 
Minkowski modes

In the current epoch, with t  =  t0, many physical phenomena can be described in terms of field 
theories on a background flat Minkowski spacetime. If one introduces new coordinates T̂  
and R̂ (with dimensions of time and length respectively) by the substitutions t = c T̂/L0 and 
r = R̂/S(t0)L0 then in coordinate domains where R̂ � 2S(t0)L0  the LFRW metric (17) is well 
approximated by the Minkowski metric in standard spherical polar spatial coordinates:

g ≈ −c2 dT̂ ⊗ dT̂ + dR̂ ⊗ dR̂ + R̂2 dθ ⊗ dθ + R̂2 sin2(θ) dφ⊗ dφ.

In this section  the Hodge map � will, throughout, refer to the metric of this background, 
approximately flat, spacetime domain. In the previous sections we have shown that the solu-
tions Ψ = Ψ0 and A = Γ e1 are exact solutions to the equations  (4) and (6) in a particular 
LFRW metric. However these coupled non-linear partial differential equations on M have 
other solutions that may have relevance for the generation of local spatial inhomogeneities 
during the evolution of the Universe. If we assume that such solutions are perturbations of the 
exact cosmological solutions discussed above then a linearisation of (4) and (6) will offer a per-
turbative approach for finding them. Thus we analyse the first ε-order equations (37) and (38) 

for perturbative solutions about the zeroth ε-order solutions Ψ(0) = Ψ0,A(0) = Γ e1, F(0) = 0, 
i.e. the uncoupled linear partial differential equations for Ψ(1) and A(1) :

�d � dΨ(1) +
W1

L2
0
Ψ(1) = 0� (48)

�d � dA(1) +
W
L2

0
A(1) = 0� (49)

where

W1 =
1
2
ζ0 Ξ1Γ

2, W = ζ0 Ξ0.

Since the divergence operator δ ≡ �d� is nilpotent (δ2 = 0), all solutions of (49) satisfy

δA(1) = 0.
It is instructive to compare equations (48) and (49) with the classical Klein–Gordon and Proca 
field equations in Minkowski spacetime. These were introduced historically to accommodate 
short-range Yukawa-type static field (singular) solutions associated with particles having a 
real positive rest-mass m0 and mP respectively. Expressed in terms of their respective Compton 
wavelengths such equations take the form:

�d � dΨ(1) +
m2

0c2

�2 Ψ(1) = 0� (50)

and
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�d � dA(1) +
m2

Pc2

�2 A(1) = 0

δA(1) = 0
� (51)

where

m2
0 =

W1�2

L2
0c2

and m2
P =

W�2

L2
0c2

.

One sees that when the real parameters W and W1 are strictly positive, (48) and (49) yield real 
values for m0 and mP but admit different types of solutions otherwise. Thus perturbative correc-
tions to the cosmological solution A(0) in the previous section require W = −H(0)2 ∆2 < 0 
with ∆ ∈ R so do not admit solutions with a real Proca rest-mass mP. However the sign of 
ζ0 is a-priori unconstrained and if W1 is positive then perturbative corrections to the constant 

solution Ψ(0) can describe a perturbed scalar field associated with particles of mass m0 that 
could, in the absence of further constraints, provide a dark-matter candidate since it has no 
direct coupling to the Maxwell field.

However the presence or absence of static solutions to either (48) or (49) does not imply the 
absence of dispersive propagating wave-packet (radiative) solutions constructed by superposi-
tion of separable mode solutions to these wave equations.

To illustrate this we consider an interesting class of exact solutions in local spatial cylindri-

cal polar coordinates {T̂ , r̂, φ̂, Ẑ} in which the Minkowski metric tensor takes the form:

ĝ = −c2 dT̂ ⊗ dT̂ + dr̂ ⊗ dr̂ + r̂2 dφ̂⊗ dφ̂+ dẐ ⊗ dẐ.

This choice of cylindrical polar coordinates will facilitate our discussion of particular exact 
solutions below. In these coordinates, a general integral representation of complex solutions 
for (48) may be constructed from a Fourier superposition of time harmonic and spatial cylin-
drical Helmholtz modes:

Ψ(w1)(T̂ , r̂, φ̂, Ẑ) =
∑

modes

∞∑
m=−∞

∫ ∞

s=0

∫ ∞

ω=−∞
Ψ̂(ω, s, m) Jm(̂r s) e−iωT̂+ik(w1,ω,s) Ẑ+imφ̂ dω ds

in terms of the complex scalar Fourier amplitudes Ψ̂, the parameter w1 = W1/L2
0 ∈ R and the 

complex branched dispersion relation:

k(w1,ω, s) =

√
ω2

c2 − s2 − w1 .� (52)

Similarly a Fourier representation of solutions for (49) takes the form

A(w)(T̂ , r̂, φ̂, Ẑ) =
∑

modes

∞∑
m=−∞

∫ ∞

s=0

∫ ∞

ω=−∞
Â(ω, s, m) Jm(̂r s) e−iωT̂+ik(w,ω,s)Ẑ+imφ̂ dω ds

where

Â(ω, s, m) = α̂(ω, s, m)

(
e3 − c k(w,ω, s)

ω
e0
)

in terms of w = W/L2
0 ∈ R, the complex scalar Fourier amplitudes α̂, the 1-forms e0 = c dT̂ , 

e3 = dẐ  and the complex branched dispersion relation:

k(w,ω, s) =

√
ω2

c2 − s2 − w .� (53)
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The distinct mode types in the mode summations for Ψ(w1) and A(w) above arise from the 
distinct contributions to the integrations over ω  and s for each integer m, determined by the 
sign of the argument of the square root function in the dispersion relations (52) and (53) 
respectively.

For each mode labelled by m in the summations for Ψ(w1) and A(w) above, the double int
egral over the half-plane ω ∈ [−∞,∞], s ∈ [0,∞] can be partitioned into distinct contributions 
by branches of the hyperbolae k(w1,ω, s) = 0 and k(w,ω, s) = 0 respectively. Contributions 
with k real yield progressive modes while those with k pure imaginary behave exponentially 
with respect to Ẑ . The contributing physical modes are those that are spatially ‘evanescent’ 
for all Ẑ . Figure 4 indicates how this partitioning depends on the sign of w1 for the dispersion 
relation (52). A similar partition is determined by the branch points of the dispersion relation 
(53) where w has replaced w1. In general the global behaviour of solutions generated from 
such mode summations depends critically on the structure of the scalar Fourier amplitudes 

α̂(ω, s, m) and Ψ̂(ω, s, m).

8.1.  Particular local fluctuations in Minkowski spacetime

The existence of particular examples of axially symmetric (m = 0) dispersive complex wave-
packet solutions of the equations (48) and (49) can be directly demonstrated using the methods 
of pre-potentials [28–30] and recently exploited to study the dynamic evolution of electro
magnetic single-cycle laser pulses [31]. In terms of strictly positive arbitrary real constants 
Q1, Q2 with dimensions of length, introduce the dimensionless expression

Λ(T̂ , r̂, Ẑ) ≡

√
r̂2 + [Q1 + i(Ẑ − cT̂)] [Q2 − i(Ẑ + cT̂)]

L0
.� (54)

Then one may verify directly that a particular complex axially-symmetric non-singular disper-
sive (radiative) pulse solution to (48) is given by the scalar fields:

Figure 4.  Light grey domains (ω2/c2 − s2 − w > 0) distinguish contributions to the 
Fourier integral representations yielding progressive modes from dark grey domains 
(ω2/c2 − s2 − w < 0) that contribute to evanescent modes.
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Ψ
(1)
W1

(T̂ , r̂, Ẑ) =
K1

(√
W1 Λ(T̂ , r̂, Ẑ)

)

Λ(T̂ , r̂, Ẑ)
when W1 > 0� (55)

Ψ
(1)
W1

(T̂ , r̂, Ẑ) =
C
(√

−W1 Λ(T̂ , r̂, Ẑ)
)

Λ(T̂ , r̂, Ẑ)
when W1 < 0� (56)

where K1 is a modified second kind Bessel function and C is either the Hankel function H(1)
1  

or H(2)
1 .

It has been shown in [32, 33] how solutions to certain linear scalar wave equations can 
be used to generate solutions to certain linear vector wave equations. A similar process is 
available here to generate a particular solution to (49) from the solutions (55) or (56) with 
W1 replaced by W. Thus for any real W �= 0, complex dispersive ν -chiral vector wave-packet 
solutions to (49) are given in terms of (55) or (56) by

A(1)
ν (T̂ , r̂, Ẑ) = �d

(
Ψ

(1)
W (T̂ , r̂, Ẑ) Πν

)
, ν = ±1, 0� (57)

where the closed (dΠν = 0) and co-closed (δΠν = 0) complex chiral 2-forms Πν are given by

Π±1 = d( r̂e±iφ̂ ) ∧ c d T̂ , Π0 = dẐ ∧ c dT̂ .

The detailed ‘dispersive’ behaviour of these axially-symmetric complex wave-packets, as 
functions of (T̂ , r̂, Ẑ), is determined by the ratio Q1/Q2 and the parameters W,W1. The real 
(or imaginary) parts describe real non-singular solutions to (48) and (49). By construction 
the expression (54) generates solutions with turning points at particular values when T̂ = 0. 
The location of these turning points can easily be changed by shifting the origin of the spatial 
coordinates. Similarly the direction of the Ẑ -axis of symmetry can be arbitrarily rotated to 

another direction [34]. Those solutions involving the K1 and H(2)
1  Bessel functions exhibit 

bounded axially-symmetric wave-packet profiles that spread in r̂  and Ẑ  as T̂  increases. By 

contrast those involving H(1)
1  Bessel functions exhibit growing amplitudes as T̂  increases and 

are unphysical solutions.
Given the properties of the particular scalar and vector perturbations discussed in this 

section, one can summarise the following criteria on the basic parameters for the per-
turbed cosmological model. We demand W ≡ ζ0 Ξ0 < 0 to be consistent with q(0) < 0 and 
Ξ1 ≡ U ′′(Ψ(0)) > 0 for a potential minimum at Ψ(0). However solutions that admit Klein–
Gordon and Proca positive rest-mass solutions require W1  >  0 and W  >  0 respectively where 
W1 ≡ ζ0 Ξ1 Γ

2/2 with Γ real. Furthermore solutions with arbitrary non-zero values of W1 and 
W admit scalar field and vector field physical wave-packet profiles respectively. Since ζ0 and 
Ξ0 ≡ U(Ψ(0)) remain unconstrained we exhibit these conditions as designated domains in the 
Ξ0 − ζ0 plane in figure 5. Shaded domains in these figures:

	 (i)	�admit construction of a viable cosmological model from S(t) with one real root.
	(ii)	�admit scalar perturbations Ψ(1) that satisfies the Klein–Gordon equation (50) with a real 

rest-mass m0.
	(iii)	�admit vector perturbations A(1) satisfying the Proca equation (51) with a real rest-mass 

mP.
	(iv)	�admit both (ii) and (iii).
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	(v)	�admit vector perturbations A(1) satisfying a Proca equation with a real rest-mass mP and 
spatially bounded dispersive wave packets (55).

	(vi)	�admit vector perturbations A(1) described by spatially bounded dispersive wave packet 

solutions (57) and scalar perturbations Ψ(1) described by solutions with a real rest-mass 
m0 and spatially bounded dispersive wave packet solutions (55).

	(vii)	�admit vector perturbations A(1) described by solutions with spatially bounded dispersive 

wave packets (57) and scalar perturbations Ψ(1) described by solutions with spatially 
bounded dispersive wave packets (55).

These designated domains indicate that there exist real values of the couplings ζ0 and Ξ0 per-
mitting the construction of the cosmological solution with W  <  0 discussed in this paper. Such 

couplings then permit the construction of perturbed solutions Ψ(1) and A(1) to the linear wave 
equations  (48) and (49) in a background domain that is approximately Minkowskian. The 
former has particular solutions characteristics of a Klein–Gordon solution with a real particle 
mass m0 or an axially symmetric dispersive propagating wave packet while the latter has only 
axially symmetric dispersive propagating polarised vector wave packet solutions. Assuming 
that the history of such dispersive fluctuations are currently detectable, an observational signa-
ture may reside in the influence of a primordial vector field polarisation on visible matter (or 
electromagnetic fields) or effects due to a primordial massive Klein–Gordon field.

9.  Conclusions

In this article we have discussed a new paradigm for exploring a number of puzzling aspects in 
modern cosmology and their implications for astrophysics and observable astronomy. In this 
paradigm we argue that an evolutionary description of the Universe is best formulated in terms 
of a series of successive approximations based on a viable cosmography derived from current 
observations with a minimum number of phenomenological constraints on the dynamics of 
the unobservable early Universe. Consequently assumptions about the states of matter during 
such epochs in our paradigm are replaced by a series of retro-dictions from a coupled system 
of field equations with initial conditions based on current data. We depart from many standard 

Figure 5.  {W, W1, ζ0,Ξ0} correlations for solutions for the Proca and Klein–Gordon 
wave equations.
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cosmological models, with their use of different isotropic fluid models in different epochs, 
by using a single anisotropic material fluid model in an Einstein–Maxwell-vector-scalar-fluid 
system of master equations. The Maxwell, vector and scalar fields are coupled to gravity and 
themselves in such a way that an exact analytic approach to a cosmological solution for the 
spacetime metric, vector, scalar and Maxwell fields can be found without the need to impose 
any a-priori equation of state for the material fluid. Instead, its equation of state in the cosmo-
logical sector is induced from the Einstein equation containing a stress–energy–momentum 
tensor without a cosmological constant. By establishing all solutions on a spacetime with the 
topology I × S3, I ∈ R the spacetime metric falls within the LFRW class of metrics pos-
sessing spatial sections with topology S3 and the associated scale factor describes five dis-
tinct spacetime geometries. Motivated by the recent estimates of the negative de-acceleration 
parameter we use the current value of the Hubble parameter to select a viable cosmology with 
a single singular state and an exponentially expanding scale factor. Its predicted history leads 
to the value 13.2 × 109 years for the age of the Universe and a predicted value of 1.48 for the 
(unmeasured) ‘jerk’ parameter. Based on this history we have verified that, over an interval 
from the big-bang, including the current epoch, the dominant-energy, weak-energy and null-
energy conditions are satisfied and only the strong-energy conditions are (weakly) violated.

By neglecting any back-reaction of the fields on the LFRW spacetime we have derived a 
series of coupled linear PDE’s that determine the vector, scalar and Maxwell field fluctuations 
by the method of successive approximations. In this scheme one finds that, to lowest and first 
order, the primordial vector field remains ‘dark’ (i.e. has no direct coupling to the Maxwell 
field at those orders). Furthermore we show that at second order the Maxwell field acquires an 
electric current source induced from lower order scalar fields and source-free Maxwell pertur-
bations. We argue that these currents offer a potential mechanism for initiating a thermalisa-
tion process between matter and electromagnetic radiation. Based on the COBE observation 
of a microwave dominant Planck spectrum of cosmological origin and a choice of 4000 K for 
the temperature at radiation decoupling from matter, our cosmological model history predicts 
a time interval of 8.23 × 103 years between the big-bang and the decoupling era.

By restricting to spacetime domains where the local effects of gravity may be neglected 
we use the parameters fixed by cosmography and the coupling constants that enter into the 
master field equations to explore the relation of the vector and scalar perturbations to the solu-
tions of the historic Proca and Klein–Gordon equations in Minkowski spacetime. We show 
that there exist couplings where both vector and scalar dispersive wave-packet solutions arise 
and where the scalar perturbation may give rise to Yukawa solutions associated with a massive 
Klein–Gordon particle with rest mass given by

m2
0 =

ζ0Ξ1Γ
2�2

2L2
0c2

(ζ0 > 0).

In S.I. units (L0  =  1), this has the value

m2
0 = 0.616 × 10−84ζ0Ξ1Γ

2.

Dark matter searches are then circumscribed by the values of the dimensionless parameters 
ζ0,Ξ0 and Γ which must be determined independently from other astrophysical observations. 
These include applications of the perturbation scheme in section 8 to gravitational lensing 
by galaxies, bounds on primordial magnetic fields, CMBR anisotropies and dark-energy 
constraints.

Aside from such local perturbative features the global aspects of our model give rise to 
a number of novel electromagnetic solutions that owe their existence to the three-sphere 
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topology of space. The symmetry of the electric and magnetic bi-pole solutions discussed in 
section 4 may have relevance to charge conjugation and parity inversion symmetry in the early 
Universe while primordial extragalactic magnetic fields may owe their existence to evolving 
‘Hopfion-like’ solutions with magnetic helicity.

Further investigations based on the Einstein-vector-scalar-Maxwell-fluid paradigm dis-
cussed above may have implications for other more challenging problems in cosmology and 
astrophysics and will be discussed elsewhere. However, it is important to recognise that to 
confront our model with such astrophysical phenomena, the latest experimental data [27] 
needs to be analysed beyond the standard paradigm.
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Appendix

In this appendix the stereographic mapping employed in section 3 in the construction of a 
spacetime LFRW metric tensor, in terms of Maurer–Cartan forms on S3, is described.

An SO(3) group element U can be expressed in terms of the Pauli matrices {σ1,σ2,σ3} and 
group coordinates {α1,α2,α3} as

U = exp
[
i(α1σ

1 + α2σ
2 + α3σ

3)
]

.

The three pure imaginary Maurer–Cartan 1-forms

Θ̃k =
1
2

tr(σk U−1dU) (k = 1, 2, 3)

in the real coordinate cobasis {dα1, dα2, dα2} are then:

Θ̃k =
i
α3

3∑
j=1

Θ̃k
j dαj

where

Θ̃1
1 = (α2

2 + α2
3) cos(α) sin(α) + α2

1 α

Θ̃1
2 = α1 α2 (α− cos(α) sin(α) )− α3 α sin2(α)

Θ̃1
3 = α1 α3 (α− cos(α) sin(α) )− α2 α sin2(α)

Θ̃2
1 = α1 α2 (α− cos(α) sin(α) ) + α3 α sin2(α)

Θ̃2
2 = (α2

1 + α2
3) cos(α) sin(α) + α2

2 α

Θ̃2
3 = α2 α3 (α− cos(α) sin(α) )− α1 α sin2(α)
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Θ̃3
1 = α1 α3 (α− cos(α) sin(α) )− α2 α sin2(α)

Θ̃3
2 = α2 α3 (α− cos(α) sin(α) ) + α1 α sin2(α)

Θ̃3
3 = (α2

1 + α2
2) cos(α) sin(α) + α2

3 α

and

α2 ≡ α2
1 + α2

2 + α2
3.

In these equations the coordinates are defined in the intervals −π < αj < π and 0 � α < π. 
To facilitate the construction of the LFRW metric from the Maurer–Cartan forms Θ̃k on S3 we 
introduce the stereographic coordinate transformation {α1,α2,α2} �→ {ξ1, ξ2, ξ3} :

α1 =

(
ξ2 − 1
ξ2 + 1

)
χ, α2 =

(
2ξ3

ξ2 + 1

)
χ, α3 =

(
2ξ2

ξ2 + 1

)
χ� (A.1)

where

χ ≡
arctan

(√
1 − ω2,ω

)
√

1 − ω2
,

and

ξ2 ≡ ξ2
1 + ξ2

2 + ξ2
3 , ω ≡ 2 ξ1

ξ2 + 1
.

The two-argument function arctan(y, x) computes the principal value of the argument of the 
complex number x + iy such that arctan(y, x) ∈ (−π,π]. In the {ξ1, ξ2, ξ3} chart the Maurer–
Cartan 1-forms {Θ̃1, Θ̃2, Θ̃3} become:

Θ1 =
4i

(1 + ξ2
1 + ξ2

2 + ξ2
3)

2

(
1
2
(1 + ξ2

1 − ξ2
2 − ξ2

3)dξ1 + (ξ1ξ2 + ξ3)dξ2 + (ξ1ξ3 − ξ2)dξ3

)

Θ2 =
4i

(1 + ξ2
1 + ξ2

2 + ξ2
3)

2

(
(ξ1ξ2 − ξ3)dξ1 +

1
2
(1 + ξ2

2 − ξ2
1 − ξ2

3)dξ2 + (ξ2ξ3 + ξ1)dξ3

)

Θ3 = − 4i
(1 + ξ2

1 + ξ2
2 + ξ2

3)
2

(
(ξ1ξ3 + ξ2)dξ1 + (ξ2ξ3 − ξ1)dξ2 +

1
2
(1 + ξ2

3 − ξ2
1 − ξ2

2)dξ2

)
.

In these equations  the coordinates are defined in the intervals −∞ < ξj < ∞ and cover S3 
minus the point where ξ2 → ∞ or, under the transformation:

{
ξ1 =

1
2

r sin(θ) cos(φ), ξ2 =
1
2

r sin(θ) sin(φ), ξ3 =
1
2

r cos(θ)
}

,

at the point where r2 → ∞.

ORCID iDs

R W Tucker  https://orcid.org/0000-0002-0082-5745
T J Walton  https://orcid.org/0000-0001-5103-4591
M Arrayás  https://orcid.org/0000-0003-2225-6966
J L Trueba  https://orcid.org/0000-0003-3806-2728

R W Tucker et alClass. Quantum Grav. 36 (2019) 245016

https://orcid.org/0000-0002-0082-5745
https://orcid.org/0000-0002-0082-5745
https://orcid.org/0000-0001-5103-4591
https://orcid.org/0000-0001-5103-4591
https://orcid.org/0000-0003-2225-6966
https://orcid.org/0000-0003-2225-6966
https://orcid.org/0000-0003-3806-2728
https://orcid.org/0000-0003-3806-2728


33

References

	 [1]	 Ijjas A, Steinhardt P J and Loeb A 2017 Pop goes the universe Sci. Am. 316 32–9
	 [2]	 Ijjas A, Steinhardt P J and Loeb A 2013 Inflationary paradigm in trouble after Planck2013 Phys. 

Lett. B 723 261–6
	 [3]	 Milgrom M 1983 A modification of the Newtonian dynamics as a possible alternative to the hidden 

mass hypothesis Astrophys. J. 270 365–70
	 [4]	 Bekenstein J D 2004 Relativistic gravitation theory for the modified newtonian dynamics paradigm 

Phys. Rev. D 70 083509
	 [5]	 Thorne K S 1967 Primordial element formation, primordial magnetic fields, and the isotropy of the 

Universe Astrophys. J. 148 51
	 [6]	 Visser M 2004 Jerk, snap and the cosmological equation of state Class. Quantum Grav. 21 2603
	 [7]	 Plebanski  J and Krasinski  A 2006 An Introduction to General Relativity and Cosmology 

(Cambridge: Cambridge University Press)
	 [8]	 Weinberg S 2008 Cosmology (Oxford: Oxford University Press)
	 [9]	 Guth A H 2000 Inflation and eternal inflation Phys. Rep. 333 555–74
	[10]	 Eckart C 1960 Variation principles of hydrodynamics Phys. Fluids 3 421–7
	[11]	 Seliger R and Whitham G B 1968 Variational principles in continuum mechanics Proc. R. Soc. A 

305 1–25
	[12]	 Karlovini  M and Samuelsson  L 2003 Elastic stars in general relativity: I. Foundations and 

equilibrium models Class. Quantum Grav. 20 3613
	[13]	 Velten  H, Gomes  S and Busti  V  C 2018 Gauging the cosmic acceleration with recent type ia 

supernovae data sets Phys. Rev. D 97 083516
	[14]	 Alsabti A W and Murdin P 2017 Handbook of Supernovae (Cham: Springer)
	[15]	 Bass L and Schrodinger E 1955 Must the photon mass be zero? Proc. R. Soc. A 232 1–6
	[16]	 Achour J B, Huguet E, Queva J and Renaud J 2016 Explicit vector spherical harmonics on the 

3-sphere J. Math. Phys. 57 023504
	[17]	 Lindblom L, Taylor N W and Zhang F 2017 Scalar, vector and tensor harmonics on the three-

sphere Gen. Relativ. Gravit. 49 139
	[18]	 Alertz  B 1990 Electrodynamics in Robertson–Walker spacetimes Ann. Inst. H. Poincaré Phys. 

Théor. 53 319–42
	[19]	 Kopiński J and Natário J 2017 On a remarkable electromagnetic field in the Einstein Universe Gen. 

Rel. Grav. 49 81
	[20]	 Berger A M and Field G B 1984 The topological properties of magnetic helicity J. Fluid Mech. 

147 133–48
	[21]	 Irvine W T M and Bouwmeester D 2008 Linked and knotted beams of light Nat. Phys. 4 716
	[22]	 Ranada A F 1992 On the magnetic helicity Eur. J. Phys. 13 70
	[23]	 Hazeltine R D, Mahajan S M and Morrison P  J 2013 Local thermodynamics of a magnetized, 

anisotropic plasma Phys. Plasmas 20 022506
	[24]	 Visser  M 2005 Cosmography: cosmology without the Einstein equations Gen. Relativ. Gravit. 

37 1541–8
	[25]	 Visser M and Barcelo C 2000 Energy conditions and their cosmological implications Cosmo-99 

(Singapore: World Scientific) pp 98–112
	[26]	 Daly R A and Djorgovski S G 2003 A model-independent determination of the expansion and 

acceleration rates of the Universe as a function of redshift and constraints on dark energy 
Astrophys. J. 597 9

	[27]	 Aghanim N et al 2018 Planck 2018 results. VI. Cosmological parameters (arXiv:1807.06209)
	[28]	 Brittingham  J  N 1983 Focus waves modes in homogeneous Maxwell’s equations: transverse 

electric mode J. Appl. Phys. 54 1179–89
	[29]	 Synge J L 1956 Relativity: the Special Theory (Amsterdam: North-Holland)
	[30]	 Ziolkowski R W 1985 Exact solutions of the wave equation with complex source locations J. Math. 

Phys. 26 861–3
	[31]	 Goto S, Tucker R W and Walton T J 2016 The dynamics of compact laser pulses J. Phys. A: Math. 

Theor. 49 265203
	[32]	 Ziolkowski R W 1989 Localized transmission of electromagnetic energy Phys. Rev. A 39 2005
	[33]	 Goto S, Tucker R W and Walton T J 2016 Classical dynamics of free electromagnetic laser pulses 

Nucl. Instrum. Meth. Phys. Res. B 369 40–4
	[34]	 Visser M 2003 Physical wavelets: Lorentz covariant, singularity-free, finite energy, zero action, 

localized solutions to the wave equation Phys. Lett. A 315 219–24

R W Tucker et alClass. Quantum Grav. 36 (2019) 245016

https://doi.org/10.1038/scientificamerican0217-32
https://doi.org/10.1038/scientificamerican0217-32
https://doi.org/10.1038/scientificamerican0217-32
https://doi.org/10.1016/j.physletb.2013.05.023
https://doi.org/10.1016/j.physletb.2013.05.023
https://doi.org/10.1016/j.physletb.2013.05.023
https://doi.org/10.1086/161130
https://doi.org/10.1086/161130
https://doi.org/10.1086/161130
https://doi.org/10.1103/PhysRevD.70.083509
https://doi.org/10.1103/PhysRevD.70.083509
https://doi.org/10.1086/149127
https://doi.org/10.1086/149127
https://doi.org/10.1088/0264-9381/21/11/006
https://doi.org/10.1088/0264-9381/21/11/006
https://doi.org/10.1016/S0370-1573(00)00037-5
https://doi.org/10.1016/S0370-1573(00)00037-5
https://doi.org/10.1016/S0370-1573(00)00037-5
https://doi.org/10.1063/1.1706053
https://doi.org/10.1063/1.1706053
https://doi.org/10.1063/1.1706053
https://doi.org/10.1098/rspa.1968.0103
https://doi.org/10.1098/rspa.1968.0103
https://doi.org/10.1098/rspa.1968.0103
https://doi.org/10.1088/0264-9381/20/16/307
https://doi.org/10.1088/0264-9381/20/16/307
https://doi.org/10.1103/PhysRevD.97.083516
https://doi.org/10.1103/PhysRevD.97.083516
https://doi.org/10.1098/rspa.1955.0197
https://doi.org/10.1098/rspa.1955.0197
https://doi.org/10.1098/rspa.1955.0197
https://doi.org/10.1063/1.4940134
https://doi.org/10.1063/1.4940134
https://doi.org/10.1007/s10714-017-2303-y
https://doi.org/10.1007/s10714-017-2303-y
https://doi.org/10.1007/s10714-017-2242-7
https://doi.org/10.1007/s10714-017-2242-7
https://doi.org/10.1017/S0022112084002019
https://doi.org/10.1017/S0022112084002019
https://doi.org/10.1017/S0022112084002019
https://doi.org/10.1038/nphys1056
https://doi.org/10.1038/nphys1056
https://doi.org/10.1088/0143-0807/13/2/003
https://doi.org/10.1088/0143-0807/13/2/003
https://doi.org/10.1063/1.4793735
https://doi.org/10.1063/1.4793735
https://doi.org/10.1007/s10714-005-0134-8
https://doi.org/10.1007/s10714-005-0134-8
https://doi.org/10.1007/s10714-005-0134-8
https://doi.org/10.1142/9789812792129_0014
https://doi.org/10.1142/9789812792129_0014
https://doi.org/10.1086/378230
https://doi.org/10.1086/378230
http://arxiv.org/abs/1807.06209
https://doi.org/10.1063/1.332196
https://doi.org/10.1063/1.332196
https://doi.org/10.1063/1.332196
https://doi.org/10.1063/1.526579
https://doi.org/10.1063/1.526579
https://doi.org/10.1063/1.526579
https://doi.org/10.1088/1751-8113/49/26/265203
https://doi.org/10.1088/1751-8113/49/26/265203
https://doi.org/10.1103/PhysRevA.39.2005
https://doi.org/10.1103/PhysRevA.39.2005
https://doi.org/10.1016/j.nimb.2015.10.002
https://doi.org/10.1016/j.nimb.2015.10.002
https://doi.org/10.1016/j.nimb.2015.10.002
https://doi.org/10.1016/S0375-9601(03)01051-X
https://doi.org/10.1016/S0375-9601(03)01051-X
https://doi.org/10.1016/S0375-9601(03)01051-X

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿A new paradigm for the dynamics 
of the early Universe﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿﻿Introduction
	﻿﻿1. ﻿﻿﻿Standard cosmological models
	﻿﻿2. ﻿﻿﻿An overview of the new paradigm
	﻿﻿3. ﻿﻿﻿The general vector-scalar model
	﻿﻿3.1. ﻿﻿﻿The master field equations
	﻿﻿3.2. ﻿﻿﻿The cosmological metric ans﻿ä﻿tz

	﻿﻿4. ﻿﻿﻿The cosmological vector-scalar model
	﻿﻿4.1. ﻿﻿﻿The cosmological vector-scalar ans﻿ä﻿tz
	﻿﻿4.2. ﻿﻿﻿The cosmological Maxwell sector
	﻿﻿4.3. ﻿﻿﻿The cosmological Einstein sector

	﻿﻿5. ﻿﻿﻿Testing the cosmological model
	﻿﻿6. ﻿﻿﻿A scalar and vector field fluctuation model
	﻿﻿7. ﻿﻿﻿Thermal history within the new paradigm
	﻿﻿8. ﻿﻿﻿Extending the fluctuation model with perturbative scalar and vector Minkowski modes
	﻿﻿8.1. ﻿﻿﻿Particular local fluctuations in Minkowski spacetime

	﻿﻿9. ﻿﻿﻿Conclusions
	﻿﻿﻿Acknowledgments
	﻿﻿Appendix
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿﻿


