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2 Department of Mathematics, University of Bolton, Deane Campus, Bolton, UK

May 24, 2018

Abstract

It has been suggested that single and double jets observed emanating from
certain astrophysical objects may have a purely gravitational origin. We
discuss new classes of pulsed gravitational wave solutions to the equation for
perturbations of Ricci-flat spacetimes around Minkowski metrics, as models for
the genesis of such phenomena. We discuss how these solutions are motivated
by the analytic structure of spatially compact finite energy pulse solutions
of the source-free Maxwell equations generated from complex chiral eigen-
modes of a chirality operator. Complex gravitational pulse solutions to the
linearised source-free Einstein equations are classified in terms of their chirality
and generate a family of non-stationary real spacetime metrics. Particular
members of these families are used as backgrounds in analysing time-like
solutions to the geodesic equation for test particles. They are found numerically
to exhibit both single and double jet-like features with dimensionless aspect
ratios suggesting that it may be profitable to include such backgrounds in
simulations of astrophysical jet dynamics from rotating accretion discs involving
electromagnetic fields.

∗Corresponding author: t.walton@bolton.ac.uk
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1 Introduction

Many astrophysical phenomena find an adequate explanation in the context of
Newtonian gravitation and Einstein’s description of gravitation (together with
Maxwell’s theory of electromagnetism and the use of time-like spacetime geodesics
to model the histories of massive point test particles) is routinely used to analyse a
vast range of phenomena where non-Newtonian effects are manifest. However, there
remain a number of intriguing astrophysical phenomena suggesting that our current
understanding is incomplete. These include the large scale dynamics of the observed
Universe and a detailed dynamics of certain compact stellar objects interacting with
their environment.

In this note we address the question of the dynamical origin of the extensive “cosmic
jets” that have been observed emanating from a number of compact rotating sources.
Such jets often contain radiating plasmas and are apparently the result of matter
accreting on such sources in the presence of magnetic fields. One of the earliest models
to explain these processes suggested that the gravitational fields of rotating black holes
surrounded by a magnetised “accretion disc” could provide a viable mechanism [1].
More recently, the significance of magneto-hydrodynamic processes in transferring
angular momentum and energy into collimated jet structures has been recognised
[2, 3, 4]. Many of these models implicitly assume the existence of a magnetosphere
in a stationary gravitational field and employ “force-free electrodynamics” in their
development. To our knowledge, a dynamical model that fully accounts for all the
observed aspects of astrophysical jets does not exist.

However in recent years there has been mounting evidence, both theoretical and
numerical, suggesting that non-Newtonian gravitational fields may be relevant for
their genesis. By the genesis of such phenomena we mean a mechanism that initiates
the plasma collimation process whereby electrically charged matter arises from initial
distributions of neutral matter in a background gravitational field. In [5, 6], the
authors carefully analyse the properties of a class of Ricci-flat cylindrically symmetric
spacetimes possessing time-like and null geodesics that approach attractors confining
massive particles to cylindrical spacetime structures. Additional studies [7, 8, 9] of
the asymptotic behaviour of test particles on time-like geodesics with large Newtonian
speeds relative to a class of co-moving observers have given rise to the notion of
cosmic jets associated with different types of gravitational collapse scenarios satisfying
certain Einstein-Maxwell field systems. There has also been a recent approach
based on certain approximations within a linearised gravitational framework involving
“gravito-magnetic fields” generated by non-relativistic matter currents [10]. All these
investigations auger well for the construction of models for astrophysical jets that

2



include non-Newtonian gravitational fields as well as electromagnetically induced
plasma interactions.

Although astrophysical jets involve both gravitational and electromagnetic
interactions with matter it is natural to explore the structure of electrically neutral
test particle geodesics in non-stationary, anisotropic background metric spacetimes as
a first approximation. We report here on the construction of particular exact solutions
to the linearised Einstein vacuum equations which are then used to numerically
calculate time-like geodesics in such backgrounds. The use of the linearised Einstein
vacuum equations facilitates the construction of a family of complex solutions with
definite chirality that are used to demonstrate the existence of real spacetime metrics
exhibiting families of time-like geodesics possessing particular jet-like characteristics
on space-like hyper-surfaces. Test particles on such time-like geodesics exhibit, in
general, a well defined sense of “handed-ness” in space that we argue may offer a
mechanism that initiates a uni-directional jet structure. In particular, we construct
families of new non-stationary metrics having propagating pulse-like characteristics
with bounded components in three-dimensional spatial domains. The derivation of
this class of solutions is based on a methodology used to construct single- or few-cycle
laser pulse solutions to the vacuum Maxwell solutions in Minkowski spacetime [11].
To facilitate the construction of gravitational pulse-like solutions this methodology
will be reviewed first.

2 Electromagnetic Pulses in Vacua

The derivation of finite energy solutions of the source-free Maxwell equations
has a long history. The relevance of such solutions to modern technology has
become apparent with the advent of the laser. Since a spacetime description of
the electromagnetic field employs spacetime antisymmetric tensors the language of
exterior differential forms is appropriate. Then the source-free vacuum Maxwell
system for the electromagnetic 2-form F is

dF = 0, δ F = 0 (1)

in terms of the exterior derivative linear operator d, the co-derivative linear operator
δ ≡ ? d ? and the linear Hodge star map ?. These operators satisfy d ◦ d = 0 and
δ ◦ δ = 0 since in a Lorentzian spacetime ?(?A) = −(−1)p(4−p)A for any p−form
A. A complex 2-form Π is said to be closed and co-closed if it satisfies the relations
dΠ = 0 and δΠ = 0 respectively. It follows that such a 2-form is covariantly constant:
∇Π = 0 where ∇ denotes the Levi-Civita covariant differential. Complex solutions
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of (1) can be generated in terms of such a 2-form and a complex 0-form α by writing
F = dA where

A = ? d (αΠ)

provided

δdα = 0. (2)

This follows since

d ? dA = dδdα ∧ Π.

Equation (2) has many solutions. In local coordinates {xµ} ≡ {t, x, y, z} with the
Minkowski spacetime metric

g = −c20 dt⊗ dt+ dx⊗ dx+ dy ⊗ dy + dz ⊗ dz,

a particularly simple class of finite-energy solutions that can be generated in this way
follows from the complex axi-symmetric scalar solution [12, 13, 14, 15]

α(t, r, z) =
`20

r2 + (ψ1 + i(z − c0t)) (ψ2 − i(z + c0t))
(3)

where r2 = x2 + y2 and `0, ψ1, ψ2 are real constants. One may generate a complex six
dimensional chiral eigen-basis of covariantly constant 2-forms Πs, χ satisfying

L∂θ Πs, χ = χΠs, χ

with s ∈ {CE,CM}, χ ∈ {1, 0,−1} where x = r cos(θ), y = r sin(θ) and L∂θ denotes
Lie differentiation with respect to the vector field ∂θ. Such a basis takes the form:

ΠCE,±1 = d(x± iy) ∧ dt,

ΠCE,0 = dz ∧ dt,

ΠCM,χ = ?ΠCE,χ

The index s indicates that the CE (CM) chiral family contain electric (magnetic)
fields that are orthogonal to the z−axis when χ = 0. Furthermore, the rationale for
the χ−labelling of solutions F s,χ = d (? d(αΠs,χ)) in this chiral basis follows from
an exploration of the spacetime proper-time τ parameterised curves xµ = Cµ(τ)
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of massive test particles with electric charge q and mass m0 interacting with such
electromagnetic fields according to the covariant Lorentz force equations of motion:

∇ĊĊ =
q

m0c20
ĩĊF

g(Ċ, Ċ) = −1

(4)

where ĩĊF = g−1(iĊF,−) and iĊ denotes the interior contraction operator on forms,
with respect to the tangent vector Ċ.

Figure 1: Three-dimensional space-curves for particles subject to an incident (CM, 1)
laser pulse (left), (CM, 0) laser pulse (centre) and (CM,−1) laser pulse (right) with
parameters {Λ = 600,Ψ1 = 1,Ψ2 = 1000,Φ = 0.001,Ξ = 1}. Each particle has
initial velocity {Ṙ(0) = 0, θ̇(0) = 0, Ż(0) = 1/200}. The shaded circular disc region
indicates the initial spot size (R = 10000 for (CM,±1) laser pulses and R = 20000 for
a (CM, 0) laser pulse) relative to the black markers on the space-curves that denote
the initial positions of the charged test particles.

To facilitate this numerically one introduces dimensionless variables. The Minkowski
metric tensor field g above has MKS physical dimensions [L]2. The MKS dimension
of electromagnetic quantities follows by assigning to F in any coordinate system
the dimension [Q/ε0]. Furthermore, in terms of Minkowski polar coordinates
{t, r, z, θ}, introduce the dimensionless coordinates {R = r/Φ`0, T = c0t/`0, Z =
z/Ξ`0} and dimensionless parameters Λ,Ψj = ψj/`0 (j = 1, 2) where
[Ψj] = [Φ] = [Ξ] = 1, [`0] = [L]. Then with the dimensionless complex scalar field
α̂(T,R, Z) = α(t, r, z):

A =
m0c

2
0`

3
0 Λ

q
? d
(
α̂ Π̂
)
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for a choice of dimensionless covariantly constant tensor Π̂ so that [A] = [Q/ε0].

A choice of dimensionless parameters can be used to solve (4) numerically for a
collection of trajectories for charged particles, each arranged initially around the
circumference of a circle in a plane orthogonal to the propagation axis of incident
CM type electromagnetic pulses with different chirality. The resulting space-curves in
3-dimensions, displayed in figure 1, clearly exhibit the different responses of charged
matter to CM pulses with distinct chirality values [16]. Similar space-curves arise
from charged particle interacting with chiral CE type modes .

3 Gravitational Pulses in Vacua

In any matter-free domain of spacetime U ⊂M(ĝ), an Einsteinian gravitational field is
described by a real symmetric covariant rank-two tensor ĝ with Lorentzian signature
that satisfies the vacuum Einstein equation

Ein(ĝ) = 0

where

Ein(ĝ) = Ric(ĝ) − 1

2
Tr(ĝ)(Ric(ĝ)) ĝ (5)

and Ric(ĝ) is the Levi-Civita Ricci tensor associated with the torsion-free, metric-
compatible Levi-Civita connection ∇(ĝ). A coordinate independent linearisation of
(5) about an arbitrary Lorentzian metric can be found in [17, 18]. In particular a
linearisation about a flat Minkowski spacetime metric η on U determines the linearised
metric1 g = η + h and to first order one writes ĝ = g + O(κ2). The variable κ is a
dimensionless parameter in h used to keep track of the expansion order and

η = − e0 ⊗ e0 +
3∑

k=1

ek ⊗ ek = ηab e
a ⊗ eb (6)

in any η−orthonormal coframe2 on U . Since we explore the source-free Einstein
equation (relevant to the motion of test-matter far from any sources) the scale

1Physical dimensions of length2 are assigned to the tensors g and η. The Ricci-scalar associated
with g then has the dimensions of length−2. In a g-orthonormal coframe the components of g are
{−1, 1, 1, 1} and in an η-orthonormal coframe the components of η are {−1, 1, 1, 1}. This does not
imply that components of the tensor field η are necessarily constant in an arbitrary coframe on U .

2An arbitrary coframe is a set of 1− forms {ea} satisfying e0 ∧ e1 ∧ e2 ∧ e3 6= 0. If β = βabe
a ⊗ eb

in any coframe {ea} on U , Tr(η)(β) = βabη
ab with ηabηbc = δac .
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associated with any linearised solutions must be fixed by the solutions themselves
rather than any coupling to self-gravitating matter. Furthermore since only
dimensionless relative scales have any significance we define the tensor h to be a
perturbation of η on U relative to any local η−orthonormal coframe {ea} provided

|h(Xa, Xb) | < 1 on U for all a, b = 0, 1, 2, 3 (7)

where ea ∈ T ∗U , Xb ∈ TU , ea(Xb) = δab . It should be noted that the perturbation
order of any component of the η-covariant derivative of a tensor and its η-trace relative
to such a coframe is not necessarily of the same order as that assigned to the tensor.
Thus perturbation order is not synonymous with “scale” in this context. We use the
conditions (7) to define perturbative Lorentzian spacetime to be sub-domains PU ⊂ U
where

max
a,b
|h(Xa, Xb)| < 1.

The real tensor h ≡ µ(η)(ψ′) with ψ′ ≡ Re(ψ) may be constructed from any complex
covariant symmetric rank two tensor ψ satisfying [18]:

Lap(η)(ψ)− 2µ(η)
(

Sym∇(η)( Div(η)(ψ) )
)

= 0. (8)

Here and below, ∇(η) denotes the operator of Levi-Civita covariant differentiation
associated with η, Xa ≡ ηabXb, Y ≡ ∇(η)

Xa
Xa and for all covariant symmetric rank two

tensors T on U :

Lap(η)(T ) ≡ ∇(η)
Y T −∇(η)

Xa
∇(η)
XaT

Div(η)(T ) ≡ (∇(η)
Xa
T )(Xa,−)

µ(η)(T ) ≡ T − 1

2
Tr(η)(T ) η.

Since for any g the reverse-trace map µ(g) satisfies µ(g) ◦ µ(g) = Id, if ψ′ is trace-free
with respect to η, then h = ψ′. If ψ is also divergence-free with respect to η, then
Lap(η)(ψ) = 0. Thus, divergence-free, trace-free solutions ψ satisfy:

Lap(η)(ψ) = 0 and Div(η)(ψ) = 0.

Given ψ and hence g = η + h, all proper-time parametrised time-like spacetime
geodesics C on U , with tangent vector Ċ, associated with g, must satisfy the
differential-algebraic system

∇(g)

Ċ
Ċ = 0

g(Ċ, Ċ) = −1.
(9)
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If any worldline C has components Cµ(τ) in any local chart on U with coordinates
{xµ} and Ċµ = ∂τC

µ then

∇(g)

Ċ
Ċ ≡ DĊµ

dτ
∂µ =

(
dĊµ

dτ
+ (Γµαβ ◦ C) ĊαĊβ

)
∂µ

where Γµαβ denotes a Christoffel symbol associated with ∇(g).

In the following only solutions to (9) that lie in the perturbative domains PU are
displayed. The worldline of an idealised observer in U is modelled by the integral
curve CV of a future-pointing time-like unit vector field V , (i.e. g(V, V ) = −1). At
any event in U the g−orthogonal decomposition of Ċ with respect to an observer CV :

Ċ = ν − g(Ċ, V )V,

with g(ν, V ) = 0 defines the Newtonian 3-velocity field v on C relative to the integral
curve CV that it intersects in spacetime:

v =
ν

g(Ċ, V )
≡ Ċ

g(Ċ, V )
+ V.

Relative to CV , the observed “Newtonian speed” of the proper-time parameterised
worldline C at any event is then v ≡

√
g(v,v) . If ∇(g)

V V = 0, the observer is said
to be geodesic otherwise it will be accelerating. If there exists a local coordinate
system {t, ξ1, ξ2, ξ3} on U with ∂t time-like and in which CV can be parameterised
monotonically with λ as t = λ, ξ1 = ξ1(0), ξ2 = ξ2(0), ξ3 = ξ3(0) then such an observer
is said to be at rest in this coordinate system. Although any particular time-like
worldline defines a local “rest observer” in some chart, only the existence of a family of
rest observers in a particular chart ΦU on U provides a way to interpret the Newtonian
velocity of any event on a time-like worldline that is not necessarily a rest-observer
in U . In units3 with c0 = 1, a point particle of rest-mass m0 with a worldline C,
when observed by CV , has energy and 3-momentum values at any event on C given
by EV = γVm0 and pV = γVm0v respectively, where γV ≡ 1/

√
1− g(v,v) .

3We introduce a length scale parameter L0 to relate coordinates {t, r, z} with physical dimensions
{time, length, length} respectively to the dimensionless variables {T,R,Z}:

r = L0R, z = L0Z, c0t = L0T

where c0 is a fundamental constant with the physical dimensions of speed. In SI units c0 = 3× 108

m/sec. In this scheme the parameter τ has length dimensions and its conversion to a parameter τ ′

with dimensions of a clock time is given by τ ′ = τ/c0 = τ̂L0/c0 where τ̂ is a dimensionless parameter.
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The properties of the scalar field α needed to generate chiral, wave-like and pulse-like
solutions to the linearised source-free Einstein equations have been developed in [19].
To emulate the methodology used above to uncover the electromagnetic pulse-like
solutions we note that a key role is played by the commutativity of certain exterior
operators with covariantly constant antisymmetric tensors and the Hodge de-Rham
Laplacian δd on scalar fields in Minkowski spacetime. In Einsteinian gravitation one
seeks similar properties involving the tensor Laplacian Lap(g), ∇(g) and symmetric
tensors in spacetimes with a metric tensor g. The key general identity is the relation
between Lap(g), ∇(g) and the curvature operator R

(g)
X,Y of the torsion-free, metric

compatible connection ∇(g):

Lap(g)
(
∇(g)α

)
= ∇(g)Lap(g)(α) +R

(g)

Xj ,d̃α
ej

where α is a scalar field. Therefore, on Minkowski spacetime with metric η, the
commutation relation [Lap(η),∇(η)]α = 0 on scalar fields α and if α is any complex
(four times differentiable) scalar field on U then

∇(η)∇(η) Lap(η)(α) = Lap(η)
(
∇(η)∇(η)α

)
.

Hence, since one may show that Lap(η)(α) = −δdα, then Lap(η)(ψ) = 0 provided
δdα = 0. Furthermore, since

Div(η)(∇(η)β) = Lap(η)(β) for all 1−forms β,

and ∇(η)α = dα for all 0−forms α, it follows that in Minkowski spacetime with the
Levi-Civita connection ∇(η) that [Lap(η), d]α = 0 and with4 ψ = ∇(η)dα:

Div(η)(ψ) = Div(η)(∇(η)dα) = Lap(η)(dα) = d(Lap(η)(α)) = −d(δdα),

which vanishes when δdα = 0. Hence Lap(η)(ψ) = 0 and Div(η)(ψ) = 0 are both
satisfied for any suitably differentiable complex scalar field α satisfying δdα = 0. This
should be compared with (2), the equation determining the class of electromagnetic
field solutions discussed above. Furthermore since ∇(η) is the torsion-free Levi-Civita
connection, ψ is symmetric and trace-free with respect to η. Hence, such complex α
in general give rise to real metrics:

g = η + ψ′.

In a local chart ΦU possessing dimensionless coordinates {T,R, θ, Z} with T ≥ 0,
R > 0, θ ∈ [0, 2π) and |Z| ≥ 0 on a spacetime domain U ⊂ M(ĝ), a local coframe

4For any scalar α and metric tensor g, ∇(g)α = dα is independent of g.
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C adapted to these co-ordinates is {e0 = dT, e1 = dR, e2 = Rdθ, e3 = dZ}. With
η given by (6), this coframe is η−orthonormal but not in general g−orthonormal.
Such a chart facilitates the coordination of a series of massive test particles initially
arranged in a series of concentric rings with different values of R lying in spatial planes
with different values of Z at T = 0. Furthermore, we define for any metric g = η + h
on U :

H(T,R, θ, Z) ≡ max
0≤a,b≤3

∣∣∣ h(Xa, Xb)
∣∣∣ .

The particular complex scalar α of relevance here satisfying Lap(η)(α) = 0 is given in
the (T,R, θ, Z) chart ΦU above as5

α(T,R, Z) =
κ

R2 +Q12(T, Z)

where

Q12(T, Z) ≡
(
Q1 + i(Z − T )

)(
Q2 − i(Z + T )

)
and κ, Q1, Q2 are strictly positive real dimensionless constants. The scalar α(T,R, Z)
is then singularity-free in T , R and Z and clearly axially-symmetric with respect to
rotations about the Z−axis. It also gives rise to an axially-symmetric complex tensor
ψ0 satisfying6 L∂θψ0 = 0. In U , the real axially-symmetric metric tensor g0 then has
non-zero components in the coframe C:

g00 = −1 + ∂2TT α
′

g01 = g10 = ∂2TR α
′

g03 = g30 = ∂2TZ α
′

g11 = 1 + ∂2RR α
′

g13 = g31 = ∂2RZ α
′

g22 = 1 + ∂R α
′ /R

g33 = 1 + ∂2ZZ α
′

where α′ ≡ Re(α) and satisfies L∂θg0 = 0.

5This should be compared with (3), the scalar field for the pulsed Maxwell solutions which has
the same form.

6Since ∇(η) is a flat connection, if K is an η−Killing vector then the operator ∇(η)LK = LK∇(η)

on all tensors.
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Complex symmetric tensors ψm with integer chiralitym > 0 satisfying Lap(η)(ψm) = 0,
Div(η)(ψm) = 0, Tr(η)(ψm) = 0 and 1

i
L∂θψm = mψm may be generated from ψ0 by

repeated covariant differentiation with respect to a particular η−null and η−Killing
complex vector field S:

ψm = ∇(η)
S · · · · · · ∇

(η)
S︸ ︷︷ ︸

m times

ψ0

where

η(S,−) = d(Reiθ ) or explicitly: S = eiθ
(
∂

∂R
+

i

R

∂

∂θ

)
.

Solutions with negative integer chirality can be obtained by complex conjugation of
the positive chirality complex eigen-solutions. Each ψm defines a real spacetime metric
gm = η + ψ′m on U which, for m 6= 0, is not axially symmetric: L∂θgm 6= 0.

Figure 2: An indication of the nature of the spacetime geometry determined by
g0 on M is given by the structure of the associated Ricci curvature scalar Rg0 .
Regions where Rg0(T, 1, Z) change sign are clearly visible in the right side where
a 2-dimensional density plot shows a pair of prominent loci that separately approach
the future (T ≥ 0) light-cone of the event at {R = 1, T = 0, Z = 0}. A more detailed
graphical description of Rg0(T, 1, Z) is given in the left hand 3-dimensional plot where
an initial pulse-like maximum around T ' 0 evolves into a pair of enhanced loci with
peaks at values of Z with opposite signs when T ≥ 1. This Ricci curvature scalar is
generated from a metric perturbation pulse with parameters L0 = 1, Q1 = Q2 = 1,
κ = 1/4.

An indication of the nature of the spacetime geometry determined by gm onM(gm) is
given by the structure of the associated Ricci curvature scalar Rgm(T,R, Z). Unlike
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gravitational wave spacetimes this scalar is not identically zero. For m = 0 it is
axially symmetric and in the chart ΦU its independence of θ means that for values
of fixed radius R0 its structure can be displayed for a range of T and Z values given
a choice of parameters (Q1, Q2, κ, L0). Regions where Rg0(T, 1, Z) change sign are
clearly visible in the right side of figure 2 where a 2-dimensional density plot shows a
pair of prominent loci that separately approach the future (T ≥ 0) light-cone of the
event at {R = 1, T = 0, Z = 0}. A more detailed graphical description of Rg0(T, 1, Z)
is given in the left hand 3-dimensional plot in figure 2 where an initial pulse-like
maximum around T ' 0 evolves into a pair of enhanced loci with peaks at values of Z
with opposite signs when T ≥ 1. In this presentation the maximum pulse height has
been normalised to unity. This characteristic behaviour is similar to that possessed by
Re(α(T, 1, Z) ). It suggests that “tidal forces” (responsible for the geodesic deviation
of neighbouring geodesics [20, 21, 22]) are concentrated in spacetime regions where
components of the Riemann tensor of g0 have pulse-like behaviour in domains similar
to those possessed by Rg0(T,R, Z).

Explicit formulae forRg0(T,R, Z) andH(T,R, θ, Z) are not particularly illuminating7.
However, for fixed values of the parameters (Q1, Q2, κ, L0), their values can be plotted
numerically in order to gain some insight into their relative magnitudes in any
perturbative domain PU . With Z fixed at zero, figure 3 displays such plots as functions
of R and a set of T values. It is clear that in perturbative domains the curvature scalar
may exceed unity. Since in general:

Rg0(T,R, Z) = Q(T,R, Z)κ2 +O(κ3)

where Q is a non-singular rational function of its arguments and the tensor h is, by
definition, of order κ, figure 3 demonstrates that relative tensor κ−orders are not, in
general, indicators of their corresponding relative magnitudes.

By modelling thick accretion disks by a finite number of massive point particles
occupying a number of planar rings the system (9) has been explored numerically. Sets
of space-curves in space-like sections of the perturbative spacetimes defined above are
displayed in the following figures for various choices of the dimensionless parameters
L0, Q1 = Q2, κ and evolution proper-time. The resulting jet-like structures of these
space-curves with maximal proper-time parameter τmax are quantified in terms of
aspect ratios defined by:

A(τmax) ≡

∣∣∣∣∣ Ẑ(τmax)− Ẑ(0)

R̂(τmax)− R̂(0)

∣∣∣∣∣ .
7Since g0 is axially-symmetric, the function H is independent of θ.
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Figure 3: The axially-symmetric expressions |Rg0(T,R, 0)| and H(T,R, 0, 0) are
plotted as functions of R for T = 0, 0.25, 0.5, 0.75 and parameters L0 = 1,
Q1 = Q2 = 1, κ = 1/4. Regions where the blue curves lie under the red dotted line
denote perturbative regions PU . The grey shaded regions clearly indicate curvature
scalars that are greater in magnitude than unity despite lying within PU regions.

4 Concluding Remarks

We have developed a class of electromagnetic pulse-like solutions to the source-
free vacuum Maxwell equations and shown that they may be classified in terms
of chiral eigenstates by bringing them into interaction with electrically charged
systems composed of point particles. A similar method of analytically constructing
gravitational pulse-like solutions of the source-free linearised Einstein equations with
definite chirality has also been developed. We have then explored numerically the
nature of the time-like geodesics in certain perturbative spacetime domains associated
with a family of zero chirality gravitational pulse-like solutions.

Using suitably arranged massive test particles to emulate a thick accretion disc,
together with a particular family of fiducial observers, we have displayed a number
of characteristic features of these geodesics in such background metrics. Within
the context of a non-dimensional scheme, solution parameters can be chosen that
result in characteristic spatial jet-like patterns in three-dimensions. These have
specific dimensionless aspect ratios relative to well-defined directions in a background
gravitational pulse and the corresponding orthogonal subspace.

For each zero chirality gravitational pulse incident at T = 0 on a bounded region of
matter in the vicinity of the spatial plane Z = 0 in three-dimensions, one finds that
(with Q1 = Q2) a pair of oppositely directed jet-like structures arise: i.e. a pair of
time-like geodesic families with Newtonian speeds approaching terminal values less
than the speed of light for both Z > 0 and Z < 0. For a pulse with Q1 6= Q2, we
have demonstrated the existence of a pair of uni-directional jet-like structures from
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Figure 4: On the left six geodesics are shown emanating from six locations with θ
values 0, π/3, 2π/3, π, 4π/3, 5π/3 on a ring with radius 10−4 in the plane Z = 0.735
and six from similarly arranged points on rings of the same radius at Z = 0.245,
Z = −0.245 and Z = −0.735. The initial locations are not resolved in these
figures. The 24 geodesics each evolve from τ = 0 to τ = 104 and clearly display an
axially symmetric bi-directional jet structure from the rings in conformity with the
expectations based on the spacetime structure of Rg0(T, 1, Z) in figure 2. The figure
on the right resolves the structure of this jet array for 0 ≤ τ ≤ 100. All geodesics are
generated with the additional initial conditions Ṙ(0) = 0, Ż(0) = 0, θ̇(0) = 0.4
and the background perturbation pulse has parameters L0 = 1, Q1 = Q2 = 1,
κ = 1/6. A single uni-directional jet-array arises when only one ring is populated
with matter. This figure demonstrates that the jets from the sources at Z = ±0.245
have a dimensionless aspect ratio A(104) = 64.7 much greater than those produced
from the sources at Z = ±0.735 where A(104) = 3.22.

particular initial conditions. In all these cases, the structures have well-defined aspect
ratios that can be calculated numerically. The propagation characteristics for T > 0
of the pulse responsible for these jet structures in space is discernible from features of
the non-zero Ricci scalar curvature associated with the perturbed spacetime domains.

We have also stressed that by linearising only the gravitational field equations and
analysing the exact geodesic equations of motion in perturbative spacetime domains,
one can capture the full effects of “tidal accelerations” on matter produced by the
curvature tensor (and its contractions) associated with the metric perturbations. This
opens up the possibility of a gravito-ionisation process whereby extended electrically
neutral micro-matter can be split into electrically charged components by purely
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Figure 5: On the left, six geodesics are shown emanating from six locations with θ
values 0, π/3, 2π/3, π, 4π/3, 5π/3 on a ring with radius 10−4 in the plane Z = 0.735
and six from similarly arranged points on rings of the same radius at Z = −0.735.
The initial locations are not resolved in these figures. The 12 geodesics each evolve
from τ = 0 to τ = 104 and clearly display an axially symmetric uni-directional
jet structure from the rings. All geodesics are generated with the additional initial
conditions Ṙ(0) = 0, Ż(0) = 0, θ̇(0) = 0.4 and the background perturbation pulse
has parameters L0 = 1, Q1 = 1, Q2 = 3, κ = 1/6. The figure in the centre shows
an oppositely directed jet evolving from similar initial conditions, but with initial
Z = 0.245 and Z = −0.245. The figure on the right displays the “asymmetric”
jet structure obtained by merging both pairs of sources with dominant component
belonging to the jet in the left-hand figure having aspect ratio A(104) = 178.8.

gravitational forces, leading to modifications of matter worldlines by the presence
of Lorentz forces.

We conclude that background spacetime metrics derived from complex chiral solutions
of the linearised source free Einstein equations, separately or in superposition, may
offer a non-Newtonian gravitational mechanism for the initialisation of a dynamic
process leading to astrophysical jet structures emanating from compact matter
distributions, particularly since it is unlikely that such phenomena originate from
a unique set of initial conditions.
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