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A B S T R A C T 

Correlated orientations of quasar optical and radio polarization, and of radio jets, have been reported on Gpc scales, possibly 

arising from intrinsic alignment of spin axes. Optical quasar polarization appears to be preferentially either aligned or orthogonal 
to the host large-scale structure, specifically large quasar groups (LQGs). Using a sample of 71 LQGs at redshifts 1.0 ≤ z ≤ 1.8, 
we investigate whether LQGs themselves exhibit correlated orientation. We find that LQG position angles (PAs) are unlikely to 

be drawn from a uniform distribution ( p -values 0.008 � p � 0.07). The LQG PA distribution is bimodal, with median modes 
at θ̄ ∼ 45 ± 2 

◦, 136 ± 2 

◦, remarkably close to the mean angles of quasar radio polarization reported in two regions coincident 
with our LQG sample. We quantify the degree of alignment in the PA data, and find that LQGs are aligned and orthogonal 
across very large scales. The maximum significance is � 0 . 8 per cent (2.4 σ ) at typical angular (proper) separations of ∼30 

◦

(1.6 Gpc). If the LQG orientation correlation is real, it represents large-scale structure alignment o v er scales larger than those 
predicted by cosmological simulations and at least an order of magnitude larger than any so far observed, with the exception of 
quasar-polarization/radio-jet alignment. We conclude that LQG alignment helps explain quasar-polarization/radio-jet alignment, 
but raises challenging questions about the origin of the LQG correlation and the assumptions of the concordance cosmological 
model. 

Key words: methods: statistical – surv e ys – quasars: general – large-scale structure of Universe – cosmology: observations. 
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 I N T RO D U C T I O N  

he spins of galaxies tend to align with the cosmic web of filaments,
heets, and voids. For example, Zhang et al. ( 2013 ) find the major
xes of Sloan Digital Sky Survey (SDSS; York et al. 2000 ) DR7
alaxies are preferentially aligned with the direction of filaments 
nd within the plane of sheets, and Tempel & Tamm ( 2015 ) find that
rientation of SDSS DR10 galaxy pairs is aligned with their host
laments. Recently, Welker et al. ( 2020 ) detected a mass-dependent 

ransition of galaxy spin alignments with filaments, from parallel 
t low mass to orthogonal at high mass. They found that this shift
ccurred at 10 10.4–10.9 M �, consistent with Horizon-AGN predictions 
Dubois et al. 2014 ; Codis et al. 2018 ). 

Cosmological simulations such as Horizon-AGN (Dubois et al. 
014 ) and S IMBA (Dav ́e et al. 2019 ) predict the spin of dark matter
aloes (and galaxies) are preferentially aligned with filaments and 
heets at low masses (mainly spirals) and orthogonal at high masses
mainly ellipticals) (e.g. Dubois et al. 2014 ; Codis et al. 2018 ; Kraljic,
av ́e & Pichon 2020 ). Using the Planck Millennium simulation 

Baugh et al. 2019 ), Ganeshaiah Veena et al. ( 2018 ) demonstrate
his is a result of accretion history, with low-mass haloes tending 
o accrete mass from orthogonal to their host filament and thus
rientating their spins along the filaments. In contrast, they find 
igh-mass haloes tend to accrete along their host filament and have 
pins orthogonal to them. 
 E-mail: tjsotherone@hotmail.com (TF); rgclowes@gmail.com (RGC) 

e  

m  

d

2022 The Author(s) 
ublished by Oxford University Press on behalf of Royal Astronomical Society 
The spins of quasars are also thought to align with the cosmic web.
arge-scale alignment of quasar polarization was first reported by 
utsem ́ekers ( 1998 ), who found the polarization of optical light from
uasars was coherently oriented on Gpc scales at redshifts of 1 � z 

 2. This was then confirmed at higher significance levels by further
olarization observations at optical wavelengths (Hutsem ́ekers & 

amy 2001 ; Cabanac et al. 2005 ; Hutsem ́ekers et al. 2005 ), the
ntroduction of coordinate-invariant statistics by Jain, Narain & 

arala ( 2004 ), analysis using a new and completely independent 
tatistical method proposed by Pelgrims & Cudell ( 2014 ), and
olarization measurements at radio wavelengths (Tiwari & Jain 2013 ; 
elgrims & Hutsem ́ekers 2015 ). Quasar-polarization alignment, 
lthough widely and independently reported, remains somewhat 
ontro v ersial (e.g. Joshi et al. 2007 ; Tiwari & Jain 2019 ). At least
ome of the contro v ersy, ho we ver, appears to arise from different
uthors considering different scales and using different approaches 
o test for alignments (e.g. Pelgrims & Hutsem ́ekers 2015 ). 

Potential line-of-sight mechanisms for the large-scale alignment 
f quasar polarization must be considered. From the first detec- 
ion, interstellar polarization was a concern but deemed unlikely 
Hutsem ́ekers 1998 ). More recently, Pelgrims ( 2019 ) finds the
lignments are robust against Galactic dust contamination. An- 
ther potential line-of-sight mechanism widely discussed is ex- 
tic particles, such as axion–photon mixing in external magnetic 
elds (e.g. Cabanac et al. 2005 ; Das et al. 2005 ; Hutsem ́ekers
t al. 2005 ; Payez, Cudell & Hutsem ́ekers 2008 ; Agarwal, Ka-
al & Jain 2011 ; Hutsem ́ekers et al. 2011 ), although this is

isfa v oured using constraints from circular polarization measure- 

http://orcid.org/0000-0001-8370-465X
mailto:tjsotherone@hotmail.com
mailto:rgclowes@gmail.com


4160 T. F riday , R. G. Clowes, and G. M. W illiger 

M

m  

2
 

c  

1  

r  

o  

b  

t  

p  

(  

q  

a  

l  

w
 

(  

e  

p  

e  

B  

c  

M  

r  

t  

p
 

c  

m  

(  

p  

t  

p  

C  

P  

s  

b
 

w  

A

2
A

2

O  

2  

(  

7  

1  

c
 

r  

t  

e  

t  

d  

c  

h  

(

 

c  

o  

w
 

e  

t  

2  

c  

w  

7
 

o  

m

2

T  

i  

w  

t  

L  

o  

w  

p  

m  

 

r  

T  

w  

i

w

w  

t

σ

w  

l  

o  

m
 

f  

a  

e  

s  

v  

a  

f  

d
 

s  

b  

o  

a

1 Clowes (2016), private communication. 
2 We attribute no significance to the value of 2.8; it is used as a relative 
threshold only. 
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ents (Hutsem ́ekers et al. 2010 ; Payez, Cudell & Hutsem ́ekers
011 ). 
If polarization is not induced along the line of sight, we must

onsider intrinsic alignment of the quasar spin axes (e.g. Hutsem ́ekers
998 ; Cabanac et al. 2005 ; Pelgrims 2016 ). Hutsem ́ekers et al. ( 2014 )
eport that optical quasar polarization is preferentially either aligned
r orthogonal to the host large-scale structure. They propose that this
imodality is due to the orientation of the accretion disc with respect
o the line of sight, and conclude that quasar spin axes are likely
arallel to their host large-scale structures. Pelgrims & Hutsem ́ekers
 2016 ) report a similar result using radio wavelengths and large
uasar groups (LQGs). They also conclude that the quasar spin axes
re preferentially parallel to the LQG major axis for LQGs with at
east 20 members, although they suggest this becomes orthogonal
ith fewer members (10 < m < 20). 
Several studies report that radio jets are aligned o v er large scales

Taylor & Jagannathan 2016 ; Contigiani et al. 2017 ; Mandarakas
t al. 2021 ), supporting the intrinsic alignment explanation inde-
endently of polarization measurements. [The work by Mandarakas
t al. ( 2021 ) appears to supersede earlier work by the same group,
linov et al. ( 2020 ), in which no alignment was found.] The potential
orrespondence of the QJARs (quasar jet alignment regions) from
andarakas et al. ( 2021 ) with other large-scale structures such as the

egions of correlated polarizations is a notable feature. In general,
he corroboration of very large structures by independent tracers can
rovide compelling support. 
In this paper we investigate for the first time whether LQGs exhibit

oherent orientation, and whether this can explain the reported align-
ents of quasar polarization from Hutsem ́ekers ( 1998 ) to Pelgrims

 2019 ). This examines scales larger than those so far analysed, and
otentially offers corroborating evidence for, and enhancement of,
he intrinsic alignment interpretation of the results from many quasar
olarization studies (e.g. Hutsem ́ekers & Lamy 2001 ; Jain et al. 2004 ;
abanac et al. 2005 ; Tiwari & Jain 2013 ; Pelgrims & Cudell 2014 ;
elgrims & Hutsem ́ekers 2015 ). If true, it would represent large-scale
tructure alignments o v er � Gpc scales, larger than those predicted
y cosmological simulations and larger than any so far observed. 
The concordance model is adopted for cosmological calculations,

ith �T 0 = 1, �M 0 = 0.27, �� 0 = 0.73, and H 0 = 70 km s −1 Mpc −1 .
ll sizes given are proper sizes at the present epoch. 

 DATA  A N D  M E T H O D S  TO  DETECT  L Q G S  

N D  M EASU R E  THEIR  O R I E N TAT I O N  

.1 Detecting large quasar groups 

ur LQG sample is taken from the work of Clowes et al. ( 2012 ,
013 ). The LQGs were detected using quasars from the SDSS
York et al. 2000 ), specifically Quasar Redshift Surv e y Data Release
 (DR7QSO; Schneider et al. 2010 ). The DR7QSO catalogue of
05 783 quasars co v ers a region of ∼9380 deg 2 , with its main
ontiguous area of ∼7600 deg 2 in the north Galactic cap (NGC). 

Clowes et al. ( 2012 , 2013 ) restrict their quasar sample to low-
edshift ( z ≤ 2) quasars with apparent magnitude i ≤ 19.1 in order
o achieve an approximately spatially uniform sample (Vanden Berk
t al. 2005 ; Richards et al. 2006 ). They further restrict their sample
o a redshift range of 1.0 ≤ z ≤ 1.8, within which the proper number
ensity of quasars as a function of redshift is sufficiently flat for
lustering analysis. They then detect LQGs using a 3D single-linkage
ierarchical clustering algorithm, also known as friends-of-friends
FoF, Appendix A). 
NRAS 511, 4159–4178 (2022) 
The resultant LQG sample 1 contains 398 LQGs. In order to
onfidently determine the geometric properties of the LQGs (e.g.
rientation and morphology) we restrict their original sample to those
ith membership m ≥ 20, giving a sample of 89 LQGs. 
We select the most convincing of these using the significance

stimates of Clowes et al. ( 2012 , 2013 ). While the absolute values of
hese may be contentious (Nadathur 2013 ; Pilipenko & Malino vsk y
013 ), the y pro vide a le gitimate relativ e order for ranking based on
onfidence. As a compromise between sample size and confidence,
e restrict our sample to LQGs with ‘significance’ 2 ≥2.8 σ , yielding
2 LQGs. 
We finally exclude one LQG in the south Galactic cap, giving

ur final sample of 71 LQGs, of varied and generally irregular
orphologies, as shown in Appendix B. 

.2 Determining large quasar group orientation 

he position angle (PA) of a large quasar group can be calculated
n either two or three dimensions. For our sample of 71 LQGs
e find that the two approaches are generally consistent. We use

he 2D approach, which involves tangent plane projection of the
QG quasars, followed by orthogonal distance regression (ODR)
f the projected points. Ho we ver, data from the 3D approach,
hich involves principal component analysis of the LQG quasars’
roper coordinates, are used for some preliminary analysis of the
orphology of LQGs. See Appendix C for details of both approaches.
Due to the filamentary nature of LQGs, orthogonal distance

e gression giv es a better linear fit for some LQGs than others.
herefore, we have higher confidence in some PAs than others. We
eight the PA of each LQG according to its ODR goodness of fit by

nverse residual variance per unit length as 

 = �/σ 2 , (1) 

here � is the length of the ODR line fitted to the LQG, and σ 2 is
he residual variance of the m quasars in the LQG, calculated as 

2 = 

1 

m − 1 

m ∑ 

q= 1 

e 2 q , (2) 

here e q is the orthogonal residual of the q th quasar from the ODR
ine. Note that this definition of weight (equation 1) is dimensionless
nly after normalization. Where possible we apply our statistical
ethods (Section 3) to both unweighted and weighted PAs. 
We measure large quasar group orientation as the position angle

rom celestial north. It is important to recognize that the PA data
re axial [0 ◦, 180 ◦), more specifically 2-axial; 0 ◦ and 180 ◦ are
qui v alent. In addition to analysing raw 2-axial PAs, some of our
tatistical methods (Section 3) require these to be transformed to
ector (circular) data [0 ◦, 360 ◦). Following Hutsem ́ekers et al. ( 2014 )
nd Pelgrims ( 2016 ), we also test for alignment and, simultaneously,
or orthogonality, using 4-axial data [0 ◦, 90 ◦). See Appendix D for
etails of these transformations. 
We estimate PA measurement uncertainties using bootstrap re-

ampling. For each of our sample of 71 LQGs, we create n = 10 000
ootstraps and calculate their PAs. We find that the circular mean
f the bootstraps generally agrees well with the observed PA, with
 mean (median) half-width confidence interval (HWCI) of ∼10 ◦
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 ∼8 ◦). See Appendix E for details of the bootstrap method, and
alculation of HWCIs and their circular means. 

.3 Coordinate invariance: parallel transport 

osition angles are dependent on the coordinate system in which 
hey are measured, and in particular the position of the pole used to
efine θ = 0 ◦. To o v ercome this coordinate dependence we follow
tudies of galaxy spin alignment (e.g. Pen, Lee & Seljak 2000 ), CMB
olarization (e.g. Challinor & Chon 2002 ), and quasar spin alignment 
e.g. Jain et al. 2004 ) and use parallel transport. 

For two objects at locations P 1 and P 2 on the celestial sphere, Jain
t al. ( 2004 ) proposed parallel transporting the vector at the location
f one object to the location of the other before comparing them.
he path they use is the geodesic (great circle) between the objects.
 arallel transport preserv es the angle between the PA vector and the
ector tangent to this geodesic. The correction to apply between P 1 

nd P 2 is the difference between the angles the geodesic makes with
ne of the basis vectors at each location. That is, if the tangent plane
o the sphere has local basis vectors ( ̂  θ1 , ˆ φ1 ) at location P 1 , and the
angent unit vector to the geodesic at this point is given by ˆ t 1 , then
he angle ξ 1 between ˆ t 1 and ˆ φ1 is given by (Pelgrims 2016 ) 

1 = tan −1 ( −ˆ t 1 · ˆ θ1 , ˆ t 1 · ˆ φ1 ) , (3) 

ith angle ξ 2 at location P 2 being similarly obtained. 
The parallel transport correction between locations P 1 and P 2 , i.e. 

he angle by which a vector rotates during parallel transport from P 1 

o P 2 , is given by the difference between angles ξ 1 and ξ 2 (Jain et al.
004 ). So, to parallel transport the position angle θ k of object k to
he location of object i we compute 

( i) 
k = θk + 
 k→ i , 

= θk + ξk − ξi , (4) 

here θ refers to position angle, not spherical coordinates. Applying 
hese corrections results in coordinate-invariant statistics (Jain et al. 
004 ; Hutsem ́ekers et al. 2005 ). The result of parallel transporting
 vector from P 1 to P 2 depends on the path taken between them. If
 different path was chosen the parallel transport correction ( 
 k → i )
ould differ. 

.4 Mock LQG catalogues 

o assess compatibility of the observed LQG PA distribution with 
hat expected in the � CDM cosmological model we use mock 
QG catalogues constructed by Marinello et al. ( 2016 ). They take a
napshot of the Horizon Run 2 (HR2) simulation (Kim et al. 2011 )
t redshift z = 1.4, and divide the volume into 11 sub-volumes.
hey then create quasar samples by applying a semi-empirical halo 
ccupation distribution (HOD) model 10 times to each of the 11 sub-
olumes. Finally, they use the LQG finder of Clowes et al. ( 2012 ,
013 ) (Appendix A) to construct 110 mock LQG catalogues. 
We restrict each mock catalogue to LQGs with membership m ≥

0 and significance ≥2.8 σ . The mean number of LQGs in our mocks
s n̄ = 30 ± 0 . 4; numbers in individual mocks vary 20 ≤ n ≤ 42. We
tack these to increase the statistical power. The 10 quasar mock 
atalogues created from each sub-volume are not truly independent 
Marinello 2015 ); each HOD model realization samples the same set
f dark matter haloes. Therefore, for each realization we stack the 
1 sub-volumes, which are independent. The mean number of LQGs 
n each stack is n̄ = 330 ± 3. The total number of LQGs in all 110
ocks is 3296. 
We calculate position angles for mock LQGs as for our observed
ample, including applying parallel transport corrections. 

 M E T H O D S  F O R  T H E  STATISTICAL  

NALYSI S  O F  L Q G  POSI TI ON  A N G L E S  

tatistical analysis of large quasar group position angle data re- 
uires appropriate methods. LQGs are widely and non-uniformly 
istributed, both on the celestial sphere (separation � 120 ◦) and in
edshift (1 ≤ z ≤ 1.8), and their PAs are axial data. Furthermore,
he PA distribution may be bimodal, with PAs both aligned and or-
hogonal (Hutsem ́ekers et al. 2014 ; Pelgrims 2016 ). Many statistical

ethods lack discriminatory power in multimodal cases. 
We use methods for statistical analysis of the uniformity, bimodal- 

ty, and correlation of LQG PAs, specifically to determine: 

(i) Are they likely to be drawn from a uniform distribution? 
(ii) Is their distribution bimodal, and where are the peaks? 
(iii) Are they more correlated than random simulations? 

.1 Uniformity tests 

or coordinate invariance, we perform uniformity tests on PAs 
arallel transported to the centre ( α = 193.6 ◦, δ = 24.7 ◦, J2000)
f the A1 region (Hutsem ́ekers 1998 ) of large-scale alignment of
he polarization of quasars, which is roughly at the centroid of
he LQG distribution. (Alternative centres for parallel transport are 
iscussed in Section 5.2.) We test the PA distribution for departure
rom uniformity using Kuiper’s test, the Hermans–Rasson (HR) test, 
nd the χ2 test. 

.1.1 K uiper’ s test 

uiper’s test (Kuiper 1960 ) is a rotationally invariant version of
he better-known Kolmogoro v–Smirno v (KS) test. It quantifies the 

aximum positive and negati ve dif ferences between an empirical 
umulative distribution function (EDF; our PAs) and a theoretical 
umulative distribution function (CDF; in this case uniform). 

To incorporate weighting we compute a weighted EDF, where for 
ny measurement x , F 

w 
EDF ( x) is equal to the sum of the normalized

eights of all measurements less than or equal to x . Following
onahan ( 2011 ), that is 

 

w 
EDF ( x) = 

n x ∑ 

i= 1 

w i 

/ n ∑ 

i= 1 

w i , (5) 

here n is the total sample size, n x is the number of measurements
p to and including x , and w i are their goodness-of-fit weights
equation 1). Kuiper’s test is then computed normally, using F 

w 
EDF ( x)

n place of F EDF ( x ). 
The rotational invariance of Kuiper’s test makes it independent of 

he ‘origin’ PAs are measured against (in this case celestial north).
his makes Kuiper’s test appropriate for circular and axial data that

wrap’ between one end of the distribution and the other, and also
ives it equal sensitivity at all values of x . 
The p -values are evaluated by simulation. We generate 10 000

amples of n random PAs, drawn from a uniform distribution, apply
he same weighting, and calculate the fraction of samples with 
uiper’s test statistic at least as extreme as the observations. Note

hat using alternative weights (e.g. w 

2 
i , w = 1/ γ , w = 1/ γ 2 where

is the half-width confidence interval) does not significantly affect 
he p -value. 
MNRAS 511, 4159–4178 (2022) 
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We apply Kuiper’s test to both unweighted and weighted PA
istributions of both 2-axial and 4-axial PAs. 

.1.2 Hermans–Rasson test 

andler, Ruxton & Malkemper ( 2018 ) test the performance of the
ayleigh and Kuiper’s tests (amongst others) with a variety of
ultimodal distributions. They show that these tests lack statistical

ower in most multimodal cases, and find the Hermans–Rasson
HR) test for uniformity on the circle (Hermans & Rasson 1985 )
ignificantly out-competes the alternatives. The HR method is a
amily of tests, based on decomposing a circular distribution using
ourier series (Landler, Ruxton & Malkemper 2019 ). Variants of the
R test are controlled by the parameter β, with β = 2.895 being

ecommended by both Hermans & Rasson ( 1985 ) and Landler et al.
 2018 ) 3 as of fering po wer in both unimodal and multimodal cases.
n this case, the HR statistic T of n measurements θ1 ,..., θn is defined
Landler et al. 2018 ) as 

 = 

1 

n 

n ∑ 

i= 1 

n ∑ 

j= 1 

π − | π − | θi − θj || + 2 . 895 | sin ( θi − θj ) | , (6) 

here θ i is the PA of the i th LQG and θ j is the PA of the j th LQG,
rom a sample of n LQGs. 

The p -values are evaluated by simulation. We generate 10 000
amples of n random PAs, drawn from a uniform distribution, and
alculate the fraction of samples with the HR statistic T at least
s extreme as the observations. Note smaller T statistics are more
ignificant (opposite to KS and Kuiper’s tests). 

Our implementation of the HR test does not currently incorporate
eighting. The HR test requires circular data so we apply it to 2-axial

nd 4-axial PAs after transformations � 2 ax = 2 θ and � 4 ax = 4 θ4 ax ,
espectively (see Appendix D). 

.1.3 χ2 test 

he χ2 test will have lower discriminatory power than tests applied
o continuous data, such as Kuiper’s and HR tests. Unlike those tests,
t does not account for the ‘wrap-around’ nature of circular/axial
ata. It is included predominantly due to its ease of computation and
nterpretation. 

For a histogram comprising m bins, the χ2 statistic is 

2 = 

m ∑ 

i= 1 

( O i − E i ) 2 

E i 

, (7) 

here O i is the observed frequency and E i is the expected frequency
in this case uniform) per bin i . To incorporate weighting we compute
he frequencies of a weighted histogram. Either O i and E i must
oth be normalized, or, more simply and equi v alently, the weighted
requencies O i , w must be scaled such that 

m ∑ 

i= 1 

O i,w = n, (8) 

here n is the total number of measurements in all m bins. 
We implement the χ2 test using scipy. 4 stats.chisquare ,

hich e v aluates the test statistic plus a p -v alue. 
We apply the χ2 test to both unweighted and weighted PA

istograms, of both 2-axial and 4-axial PAs. For weighted histograms
NRAS 511, 4159–4178 (2022) 
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he observed frequency O i , w is scaled (equation 8) and the expected
requency E i is uniform and unweighted. In all cases the bin width
s chosen to ensure E i > 5. 

.2 Bimodality tests 

s for uniformity tests, we perform bimodality tests on PAs after
arallel transport to the centre of the A1 region (Hutsem ́ekers 1998 ).
To examine bimodality we considered Hartigans’ dip statistic

HDS; Hartigan & Hartigan 1985 ), the bimodality coefficient (BC;
AS Institute 2004 ), and Akaike’s information criterion difference
AIC diff ; Akaike 1974 ). Freeman & Dale ( 2013 ) compare these
easures, and report that HDS has the highest sensiti vity, follo wed

y BC, and that both methods are generally conv ergent. The y found
hat AIC diff behaves quite differently, and erroneously identifies
imodality in their simulations and experimental data. 
We note the bimodality coefficient is unsuitable for hypothesis

ignificance testing and has an undesirable sensitivity to skew. We
lso found it inconsistent with different bin sizes and concluded it
as too capricious for us to draw any conclusions from its results. 
We therefore test the PA distribution for bimodality using Harti-

ans’ dip statistic. 

.2.1 Hartigans’ dip statistic 

artigans’ dip statistic (Hartigan & Hartigan 1985 ) is a non-
arametric test of the unimodality of continuous data. A distribution
s categorized as unimodal if its cumulative distribution function is
onv e x up to its maximum gradient (which corresponds to the peak in
he distribution) and concave afterwards, i.e. with a single inflection
oint. HDS quantifies how far the CDF departs from unimodality, and
ndicates the location(s) of any departure, i.e. the peak(s) in a bimodal
multimodal) distribution. This is well explained and illustrated by

aurus & Plant ( 2016 ). 
We e v aluate HDS using Benjamin Doran’s PYTHON port of
nidip.UniDip , 5 which follows Maurus & Plant ( 2016 ). The
ensitivity of this test is controlled by the parameter α; we use
= 0.03 to isolate peaks with at least 97 per cent signal-to-noise

onfidence. This implementation does not currently accommodate
eighted data. 
We e v aluate Hartigans’ dip statistic for continuous unweighted

-axial PAs. We do not apply it to 4-axial PAs, since this conversion
ields unimodal data, for which HDS is not meaningful. 

.3 Correlation tests 

niformity and bimodality tests do not quantify the degree of
lignment in the data; for this we need specific statistical methods
ppropriate to axial data on the celestial sphere. We considered two
ests, the S test and the Z test, that have been widely used to analyse
uasar-polarization alignments (e.g. Hutsem ́ekers 1998 ; Jain et al.
004 ; Pelgrims & Hutsem ́ekers 2015 ), but are appropriate to analyse
he alignment of any vectors on the celestial sphere (e.g. Contigiani
t al. 2017 ). 

Our sample of 71 LQG PAs is relatively small. Hutsem ́ekers et al.
 2014 ) report the Z test is better suited to small samples than the
 test, because the latter uses a measure of angle dispersion which
uf fers reduced po wer with small samples. Ho we ver, if PA alignment
s ‘global’ (i.e. correlations are present throughout the surv e y area),
 https://github.com/BenjaminDoran/unidip 
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Figure 1. LQG quasars (blue dots) and ODR axes (red lines) shown on the 
celestial sphere (east to the right). Also shown, the centres (black crosses) 
of A1, RN1, and RN2 regions (Hutsem ́ek ers 1998 ; Pelgrims & Hutsem ́ek ers 
2015 ). A1 is the parallel transport destination for uniformity and bimodality 
tests. Projection is centred on α = 180 ◦, δ = 35 ◦ (J2000), parallels and 
meridians are separated by 20 ◦. RA increases to the right. 
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hen PAs will not be correlated to positions and the power of the Z test
ill reduce dramatically (Pelgrims 2019 , pri v ate communication). 
We find that LQG PAs are not correlated with position, and that the

 test is more appropriate than the Z test to quantify their alignment.

.3.1 S test 

he S test was developed by Hutsem ́ekers ( 1998 ) and analyses the
ispersion of vectors with respect to their nearest n v neighbours 
identified as explained in Appendix F1). For each vector i a measure
f the dispersion d i is calculated as 

 i ( θ ) = 90 − 1 

n v 

n v ∑ 

k= 1 

| 90 − | θk − θ || , (9) 

here θ k are the 2-axial PAs [0 ◦, 180 ◦) of the neighbouring n v vectors,
ncluding central vector i . The value of θ that minimizes the function
 i ( θ ) is a measure of the average PA at the location of i . Use of
bsolute values accounts for the axial nature of the data (Fisher
993 ). 
F or v ector i the mean dispersion D i of its n v nearest neighbours

s calculated to be the minimum value of d i ( θ ), which will be small
or coherently aligned vectors. The measure of alignment within the 
hole sample of n vectors is given by the S test statistic 

 D 

= 

1 

n 

n ∑ 

i= 1 

D i , (10) 

ith one free parameter n v . If the vectors are aligned, the value of
 D will be smaller than if they are uniformly distributed. So, the
ignificance level for this version of the S test is e v aluated as the
robability that a random numerical simulation has a lower S D than 
hat observed (Cabanac et al. 2005 ). 

Jain et al. ( 2004 ) introduce a coordinate invariant version of the
 test, similar to the original except that, instead of the dispersion
easure in equation (9), they use 

 i ( θ ) = 

1 

n v 

n v ∑ 

k= 1 

cos [2 θ − 2( θk + 
 k→ i )] , (11) 

here 
 k → i is the angle by which the PA θ k changes during parallel
ransport from position k to position i . Here, the factor two accounts
or the axial nature of the data. The measure of dispersion is given by
he maximum value of equation (11) (as opposed to the minimum 

alue of equation 9). The S statistic is calculated as previously 
equation 10). Pelgrims ( 2016 ) notes that the same value of θ that
aximizes equation (11) at the same time minimizes equation (9), 

o the two versions are fully equi v alent. 
Jain et al. ( 2004 ) show the maximization of d i ( θ ) is calculated

nalytically as 

 i 

∣∣∣
max 

= 

1 

n v 

⎡ 

⎣ 

( 

n v ∑ 

k= 1 

cos θ
′ 
k 

) 2 

+ 

( 

n v ∑ 

k= 1 

sin θ
′ 
k 

) 2 
⎤ 

⎦ 

1 / 2 

, (12) 

here θ
′ 
k = 2( θk + 
 k→ i ) is the circular version of θ k after parallel

ransport to position i . We can similarly apply this to the 4-axial
ersion of θ k by using a factor of 4. This calculation is straightfor-
ard to code and a v oids the time-consuming trials of the original
ersion (Hutsem ́ekers 1998 ). A large value of d i | max indicates small
ispersion, so a large value of S D indicates strong alignment. 
The significance level of the S test for alignment (orthogonality) 

s the probability that a random numerical simulation has a higher 
lower) S D than that observed. See Section F2 for an explanation of
his interpretation, and details of how we estimate significance level 
sing numerical simulations. 
We e v aluate the S test for unweighted 2-axial and 4-axial PAs. For

-axial we analyse PAs of the form � 2 ax = 2 θ , and for 4-axial we
nalyse PAs of the form � 4 ax = 4 θ4 ax (see Appendix D). In both
ases we apply parallel transport corrections before transforming the 
ngles. 

 RESULTS:  L Q G  POSI TI ON  A N G L E S  

e identify 71 LQGs of ≥20 quasars and detection significance 
2.8 σ . The LQG positions on the celestial sphere, and their orien-

ation as determined by the 2D method, are illustrated in Fig. 1 . By
ye it appears that the orientations may be somewhat preferentially 
ligned, but we caution that the orthographic projection may be 
eceiving. LQG positions in 3D proper space, and their orientations, 
s determined by the 3D method, are illustrated in Appendix G. 

The results of both the 2D and 3D approaches are presented in
ables 1 (example LQGs) and C1 (full LQG sample, Appendix C2),
nd generally agree well. The PAs listed in these tables are measured
n situ at the location of each LQG, and will have parallel transport
orrections applied before statistical analysis (Section 5). For both 
pproaches, bootstrap re-sampling with replacement is used to 
stimate the uncertainty in the form of the half-width confidence 
nterval (HWCI, γ h ) of 10 000 bootstraps. 

Figs 2 (histograms) and 3 (rose diagrams) show LQG PAs, after
arallel transport, both unweighted and weighted by orthogonal 
istance regression goodness of fit (equation 1). For axial data [0 ◦,
80 ◦), where 0 ◦ and 180 ◦ are equi v alent, a conventional histogram
Fig. 2 ) can be misleading, since it represents data that are close
ogether (e.g. 1 ◦ and 179 ◦) at opposite extremes of the distribution.
n alternative representation is the rose diagram (Fig. 3 ), where
edge length is proportional to the count and spanning angle denotes

he bins. 
In both Figs 2 and 3 the data appear bimodal, with peaks at θ ∼

5 ◦ and θ ∼ 135 ◦ (in the absence of goodness-of-fit weighting). The 
MNRAS 511, 4159–4178 (2022) 
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Table 1. Example large quasar groups (LQGs), where m is the number of members, and ᾱ, δ̄, and ̄z are the mean right 
ascension, declination, and redshift of the member quasars. The normalized goodness-of-fit weight w (equation 1) is 
scaled by w 71 = w × 71 for clarity, and to distinguish those LQGs weighted higher ( w 71 > 1) or lower ( w 71 < 1) than 
the mean w̄ . Position angle θ and half-width confidence interval γ h are shown for both the 2D and 3D approaches. The 
ratio of LQG ellipsoid axes lengths (from the 3D approach, Appendix C) is given by a : b : c . See Appendix C2 for the 
full sample of 71 LQGs. 

J2000 ( ◦) 2D PA ( ◦) 3D PA ( ◦) 
m ᾱ δ̄ z̄ w 71 θ γ h θ γ h a : b : c 

20 121 .1 27 .9 1 .73 1 .13 119 .7 10 .4 115 .1 10 .7 0.50:0.30:0.21 
20 151 .5 48 .6 1 .46 1 .21 144 .4 9 .2 144 .3 11 .5 0.50:0.33:0.17 
20 155 .9 12 .8 1 .50 0 .32 120 .7 25 .2 117 .2 37 .0 0.44:0.43:0.14 
20 163 .6 16 .9 1 .57 1 .00 0 .9 8 .8 5 .7 9 .2 0.47:0.33:0.20 

... 
23 209 .5 34 .3 1 .65 1 .99 152 .5 2 .8 152 .3 2 .8 0.68:0.17:0.15 
23 214 .3 31 .8 1 .48 0 .27 18 .6 32 .6 87 .7 32 .5 0.47:0.35:0.18 

... 
26 160 .3 53 .5 1 .18 0 .33 110 .6 23 .2 111 .5 25 .1 0.38:0.34:0.28 
26 171 .7 24 .2 1 .10 0 .78 48 .5 8 .3 47 .3 8 .1 0.46:0.29:0.24 

... 
55 196 .5 27 .1 1 .59 0 .95 107 .5 3 .4 107 .0 3 .4 0.58:0.24:0.18 
56 167 .0 33 .8 1 .11 0 .81 110 .2 3 .5 110 .4 3 .8 0.50:0.29:0.21 
64 196 .4 39 .9 1 .14 0 .83 133 .6 3 .0 133 .9 3 .2 0.48:0.36:0.17 
73 164 .1 14 .1 1 .27 0 .76 156 .6 4 .2 156 .3 4 .5 0.55:0.28:0.16 

Figure 2. LQG position angles, all parallel transported to and measured at the centre of the A1 region (Hutsem ́ekers 1998 ). (a) is unweighted and (b) is ODR 

goodness-of-fit weighted, both with 15 ◦ bins. The bimodal distribution is robust to whether or not ODR goodness-of-fit weighting is used. 

Figure 3. As Fig. 2 but represented as a rose diagram; again (a) is unweighted and (b) is ODR goodness-of-fit weighted, both with 15 ◦ bins. As is conventional 
for undirected axial data the [0 ◦, 180 ◦) data are duplicated on the opposite side of the rose diagram [180 ◦, 360 ◦). For clarity, we reiterate that the PA data are 
axial [0 ◦, 180 ◦) and not circular [0 ◦, 360 ◦); we do not have PAs in the range [180 ◦, 360 ◦) (the lighter shade). 
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Figur e 4. Mar ginal plot of the LQG PA × redshift plane. Error bars are 
PA half-width confidence interval and redshift standard deviation. Marginal 
histograms show PA and redshift distributions with 
θ = 15 ◦ and 
z = 0.1 
bins. Contours are a Gaussian kernel density estimation of the scatter plot. 
Histograms and KDE are unweighted. 
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Figure 5. Redshift distribution of the 2076 member quasars comprising our 
sample of 71 LQGs, with 
z = 0.05 bins, unweighted. Top x-axis shows 
approximate proper radial distance. Distribution is bimodal, with modes 
(peaks) at z ∼ 1.15 and z ∼ 1.55. 

Figure 6. Position angles calculated by 2D approach, with no parallel 
transport, and 15 ◦ bins. (a) is goodness-of-fit weighted and (b) is half-width 
confidence interval weighted. The bimodal distrib ution is rob ust to which 
method of weighting is used. 
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eaks are separated by 
θ ∼ 90 ◦, indicating that some LQGs may 
ave PAs that are preferentially parallel (i.e. aligned) while others 
re preferentially orthogonal to one another [this is described as 
anti-aligned’ by Hutsem ́ekers et al. ( 2014 ) and Pelgrims ( 2016 )]. 

.1 LQG PAs as a function of redshift 

ig. 4 shows a marginal plot of the LQG PA × redshift plane; redshift
ere is LQG redshift, defined as the mean redshift of its member
uasars. From Fig. 2 (a), we expect the PA histogram (top margin)
o be bimodal, as seen. The redshift histogram (right margin) also 
xhibits some bimodality. To investigate the relationship between 
hese two variables, and whether there is any correlation between 
heir modes, we add kernel density estimation (KDE) contours to the 
catter plot. This shows hints of three or four modes, although the
orrelation is weak. We note that the apparently stronger modes at 
∼ 45 ◦× z ∼ 1.5 and θ ∼ 135 ◦ × z ∼ 1.2 result from the points
ith the greatest uncertainty . Conversely , the weaker modes at θ ∼
5 ◦ × z ∼ 1.2 and θ ∼ 150 ◦ × z ∼ 1.5 result from the points with
he smallest uncertainty. 

Due to their scale, LQGs extend considerably in the radial 
irection, and some features may be lost when we analyse only 
heir mean redshift. Our sample of 71 LQGs collectively comprise 
076 member quasars. Fig. 5 shows the redshift distribution of 
hese. The distribution appears bimodal with modes (peaks) at z 

1.15 and z ∼ 1.55, similar to that for LQG redshifts (Fig. 4 , right
argin). 

.2 LQG PA weights 

he 2D approach of determining position angles uses orthogonal 
istance regression (ODR) of tangent plane projected quasars. We 
 v aluate the ODR goodness of fit (equation 1), which may be
sed to weight the PAs used for some of the statistical analysis
Section 5). An alternative empirical weighting scheme could use 
easurement uncertainties, or half-width confidence intervals (HW- 
Is, Appendix E), estimated from 10 000 bootstraps. 
The PA distribution is robust between these alternative weighting 
chemes. Fig. 6 shows PAs, determined by the 2D approach, with no
arallel transport, and weighted by (a) goodness-of-fit weights w = 

 / σ 2 , and (b) HWCI weights w = 1/ γ h . The bimodal distribution is
obust to which method of weighting is used. We continue to use the
ormer in this work as it is more physically moti v ated and slightly
ore conserv ati ve. 

 RESULTS:  STATISTICAL  ANALYSI S  

he position angle distribution of our sample of 71 LQGs appears
imodal, with modes at θ̄ ∼ 52 ± 2 ◦, 137 ± 3 ◦ (with goodness-of-
t weighting) after parallel transport to the centre of the A1 region
Hutsem ́ekers 1998 ). The median location of the peaks after parallel
ransport to all 71 LQG locations is θ̄ ∼ 45 ± 2 ◦, 136 ± 2 ◦. The
eaks are separated by 
θ ∼ 90 ◦, indicating that some LQGs have
MNRAS 511, 4159–4178 (2022) 
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Table 2. Results ( p -values) of uniformity tests. For 2-axial (4-axial) PAs 
the χ2 test is e v aluated using 20 ◦ (10 ◦) bins. The χ2 and Kuiper’s tests are 
computed both with and without goodness-of-fit weighting. For 2-axial PAs, 
only the χ2 test sho ws e vidence for non-uniformity (of weighted PAs). For 
4-axial PAs, all tests show evidence for non-uniformity, mostly marginal, 
with Kuiper’s being the most significant. 

p -value 
2-axial 4-axial 

Test Unweighted Weighted Unweighted Weighted 

χ2 0 .16 0 .01 0 .07 0 .02 
Kuiper’s 0 .62 0 .59 0 .009 0 .008 
HR 0 .07 – 0 .04 –
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Table 3. Results ( p -values) of uniformity tests applied to mock LQGs. For 
2-axial (4-axial) PAs the χ2 test is e v aluated using 15 ◦ (7.5 ◦) bins, except 
for individual mocks where it is e v aluated using 30 ◦ (15 ◦) bins. For multiple 
samples the number of LQGs and p -values are means plus the standard error 
on the mean. All PAs are unweighted and are parallel transported to, and 
measured at, the centre of the Al region (Hutsem ́ekers 1998 ). Most samples 
and tests show no evidence for non-uniformity. 

No. of p -value 
Sample(s) LQGs test 2-axial 4-axial 

110 30 ± 0.4 χ2 0.53 ± 0.03 0.51 ± 0.03 
individual Kuiper’s 0.53 ± 0.03 0.50 ± 0.03 
mocks HR 0.48 ± 0.03 0.50 ± 0.03 

10 stacks 330 ± 3 χ2 0.47 ± 0.10 0.41 ± 0.08 
of 11 Kuiper’s 0.56 ± 0.10 0.44 ± 0.09 
sub-volumes HR 0.46 ± 0.11 0.62 ± 0.09 

1 stack 3,296 χ2 0.20 0.31 
of Kuiper’s 0.27 0.03 
110 mocks HR 0.16 0.15 
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As that are preferentially aligned with each other, while others
re preferentially orthogonal. We apply the statistical methods of
ection 3 to analyse the uniformity , bimodality , and correlation of

hese PAs. 

.1 Uniformity: LQG PAs are unlikely to be uniform 

he results from applying the uniformity tests are listed in Table 2 .
he χ2 test does not show evidence of non-uniformity for 2-axial
As without weighting (16 per cent significance level), but does
how some evidence of non-uniformity with weighting (1 per cent
ignificance lev el). F or 4-axial PAs it shows marginal evidence of
on-uniformity both with and without weighting (2 and 7 per cent ,
espectively). 

Kuiper’s test does not show evidence of non-uniformity for 2-
xial PAs, with or without weighting. Ho we ver, the PA distribution is
imodal, which dramatically reduces the test’s discriminatory power,
o the absence of a signal is unsurprising. For 4-axial PAs Kuiper’s
est indicates a rejection of the null hypothesis of uniformity at the
 . 8 and 0 . 9 per cent significance level (weighted and unweighted),
.e. ∼2.4 σ . 

Finally, the Hermans–Rasson test shows marginal evidence of non-
niformity for 2-axial and 4-axial PAs (7 and 4 per cent significance
e vels, respecti vely), both without weighting. 

Based on the results from these three uniformity tests we cannot
onfidently reject the null hypothesis that the observed PAs are drawn
rom a uniform distribution. The most appropriate test for the axial
nd bimodal nature of the 2-axial PA data is the HR test, which shows
arginal evidence of non-uniformity. 
Ho we ver, if we a priori expect f -fold symmetry (specifically 2-

old, in case of a bimodal distribution) then the conversion of PAs
o 4-axial becomes physically well moti v ated as well as statistically
egitimate. In this case, based on the 4-axial results of Kuiper’s test,
e could confidently reject the null hypothesis and conclude that the

As are non-uniform. 

.1.1 Uniformity of mock LQG catalogues 

he results from applying uniformity tests to the mock LQGs of
ection 2.4 are listed in Table 3 . The χ2 and Hermans–Rasson tests
ho w no e vidence for non-uniformity of the mock LQGs. This result
s consistent between 2 and 4-axial PAs, individual mocks, stacks of
ub-volumes, and the stack of all 3296 mock LQGs. 

Kuiper’s test also shows no evidence for non-uniformity, except
or the stack of all mock LQGs e v aluated as 4-axial data (and then
nly marginally). This could be an artefact of the realizations not
eing truly independent, but if so it is unclear why this would reveal
tself only in one of the six tests on this sample. Our concerns
NRAS 511, 4159–4178 (2022) 
bout the independence of this particular stack, the otherwise highly
onsistent results, and our caution about interpreting results manifest
nly in 4-axial data, led to this anomalous result being discredited. We
herefore conclude that all three tests indicate statistical uniformity
f the mock LQGs. 

.2 Bimodality: LQG PA distribution is bimodal 

e calculate Hartigans’ dip statistic (HDS) for continuous un-
eighted PA data and reco v er two peaks between ∼36 ◦ − 83 ◦

nd ∼114 ◦ − 156 ◦, with 97 per cent confidence. The unweighted
weighted) means of PAs in these two ranges are ∼54 ± 2 ◦

 ∼52 ± 2 ◦) and ∼136 ± 3 ◦ ( ∼137 ± 3 ◦), consistent with the peaks
e see in the distribution of categorical PA data (e.g. Fig. 2 ). The
imodality is therefore unlikely to be an artefact of binning. 
We apply HDS after all PAs are parallel transported to the centre

f the A1 region. Recalling Section 2.3 (see also Jain et al. 2004 ),
he process of parallel transport rotates PAs; the amount of rotation
epending on the path taken (direction and distance). Therefore it
s reasonable to check whether parallel transporting to a different
ocation would affect the position of the PA peaks. 

We parallel transport all 71 PAs to the location of each of the 71
QGs, and at each one fit a double Gaussian to the unweighted his-

ogram of these PAs. The height, width, and location of each Gaussian
re fitted using PYTHON’S scipy.optimize.leastsq . 

The location of the centres of the double Gaussian peaks, at each
f the 71 LQG locations, are shown in Fig. 7 . The median (mean)
ocation of the first peak is ∼45 ± 2 ◦ ( ∼47 ± 2 ◦), and of the second
s ∼136 ± 2 ◦ ( ∼138 ± 2 ◦). These are consistent (within the mean
A half-width confidence interval of ∼10 ◦) with the peaks identified
y HDS at the centre of the A1 region ( ∼54 ± 2 ◦ and ∼136 ± 3 ◦ for
nweighted PAs). 
Individual PA distributions at each of the 71 LQG locations are

hown in Fig. H1 (Appendix H). At most ( � 80 per cent ) the PAs
how a similar bimodal distribution. 

.3 Correlation: LQG PAs are aligned and orthogonal 

e compute the S statistic S D using the Jain et al. ( 2004 ) coordinate
nvariant version of the S test for samples of n v nearest neighbours,
here 10 ≤ n v ≤ 70. In Fig. 8 , we show the values of S D calculated for
bserved LQG PAs, represented as both 2-axial (green circles) and
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Figure 7. Location of the centres of the double Gaussian peaks in Fig. H1 ; 
15 ◦ bins. The locations of the two peaks are consistent, regardless of parallel 
transport destination. The mean locations are ∼47 ± 2 ◦ and ∼138 ± 2 ◦, 
consistent (within � 10 ◦) with the HDS result. 

Figure 8. The S test statistic S D calculated for 2-axial (green circles) and 4- 
axial (blue triangles) PAs as a function of nearest neighbours n v determined in 
3D. Also shown, empirical values estimated for a uniform distribution (black) 
and their approximate ±1 σ , 2 σ , 3 σ confidence intervals (grey). 4-axial PAs 
show more alignment than uniform, while 2-axial show less. 
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Figure 9. The logarithmic significance level (SL) of the S test calculated 
for 2-axial (green circles) and 4-axial (blue triangles) PAs as a function of 
nearest neighbours n v determined in 3D. The dotted, dash–dotted, and dashed 
horizontal lines indicate SL = 0.05, 0.01, and 0.005, respectively. 2-axial LQG 
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-axial (blue triangles) data, as a function of nearest neighbours n v .
earest neighbours are determined in 3D, taking into account radial 
istance. Results are entirely consistent with neighbours determined 
n 2D (i.e. by angular separation). 

Larger values of S D indicate stronger alignment. So Fig. 8 
ndicates that 4-axial LQG PAs are more aligned than expected if
hey are randomly drawn from a uniform distribution. Conversely, 
t also suggests that 2-axial LQG PAs are less aligned (or more
rthogonal) than expected. The physical interpretation of the latter 
s not straightforward, but likely to be due to the contribution from
rthogonal PAs leading to large dispersion, and hence a small value 
f S D . 
The approximate empirical standard deviation, and hence the 
1 σ , 2 σ , and 3 σ confidence intervals shown in Fig. 8 , are valid

nly for large n while n v 
 n (Jain et al. 2004 ). These are not
alid assumptions for much of our range of S D . Therefore, due
o this and the mutual dependence between groups of nearest 
eighbours, we calculate the significance level of the S test using
umerical simulations. In Fig. 9 , we show the significance level 
f the S test calculated using 10 000 numerical simulations, for
alues of S D determined using both 2-axial (green circles) and 4-
xial (blue triangles) PAs. Again, this is shown as a function of
earest neighbours n v . 
With 4-axial LQG PAs we test for alignment and orthogonality by 

ombining the modes, resulting in an alignment only signal (right- 
and S D tail). We find significance levels generally between 1 and 
 per cent for most numbers of nearest neighbours n v . For most of the
 v range (30 ≤ n v ≤ 70) the significance level is 0 . 9 per cent ≤ SL ≤
 . 2 per cent , with a mean (median) of 1.5 per cent (1.5 per cent). It
s most significant for n v ∼ 45, with SL � 0 . 8 per cent . 

For 2-axial LQG PAs the orthogonal mode appears to dominate 
left-hand S D tail). We find significance levels generally above 
 per cent until n v ≥ 54. For the remainder of the range of n v (54
n v ≤ 70) the SL is 1 . 9 per cent ≤ SL ≤ 6 . 2 per cent , with a mean

median) of 3.3 per cent (3.4 per cent). 

.3.1 Typical angular and proper separations 

he number of LQG nearest neighbours n v is a free parameter
xplored by the S test. We identify these neighbours using the 3D
roper positions of each LQG centroid. The parameter n v is related
o the scale of the nearest neighbour groups, but because LQGs
re not homogeneously distributed we cannot directly interpret it as 
orresponding to a particular scale. We e v aluate the relationship
etween the parameter n v and the typical scale of the nearest
eighbour groups, defined as the median separation between each 
QG and its n v nearest neighbours. 
Using these relationships, we e v aluate the S test significance levels

s a function of typical separation instead of nearest neighbours 
 v . The functions do not differ significantly in shape, because the
elationships are generally linear when n v � 20. We find that the
orrelation is most significant for typical angular (proper) separations 
f ∼30 ◦ (1.6 Gpc). 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

e find that LQG PAs are unlikely to be drawn from a uniform
istribution ( p -values 0.008 � p � 0.07). Ho we ver, similar non-
niformity is not found in mock LQG catalogues, indicating the LQG
orrelation is not found in cosmological simulations. Further, the 
QG PA distribution is bimodal, with modes for weighted PAs at θ̄ ∼
2 ± 2 ◦, 137 ± 3 ◦ (97 per cent confidence). This bimodality is robust
o parallel transport destination, with the median location of the peaks
t all 71 LQG locations of θ̄ ∼ 45 ± 2 ◦, 136 ± 2 ◦. These angles are
emarkably close to the mean angles of radio quasar polarization of
¯ � 42 ◦ and θ̄ � 131 ◦, reported by Pelgrims & Hutsem ́ekers ( 2015 ) 6 

n two regions coincident with our LQG sample. 
LQGs are aligned and orthogonal across very large scales, with 

 maximum significance of � 0 . 8 per cent (2.4 σ ) for groups of
45 nearest neighbours, corresponding to typical angular (proper) 
MNRAS 511, 4159–4178 (2022) 
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eparations of ∼30 ◦ (1.6 Gpc). The statistical significance of this
orrelation is marginal, therefore we cannot exclude it being a
hance statistical anomaly. Ho we v er, its coincidence with re gions of
uasar-polarization alignment (e.g. Hutsem ́ekers 1998 ; Pelgrims &
utsem ́ekers 2015 ), the link between quasar polarization and LQG

xes (Hutsem ́ekers et al. 2014 ; Pelgrims & Hutsem ́ekers 2016 ), and
he similarity between LQG position angles and the preferred angles
f quasar radio polarization alignment (Pelgrims & Hutsem ́ekers
015 ), suggest an interesting result. 
We find no indication that boundary effects or selection effects

ave influenced these results. Three of the LQGs might be truncated
y the RA, Dec. boundaries of DR7QSO: removing them from
onsideration made no significant difference. Randomly generated
QGs with related parameters (same encompassing circle, same
umber of members) to the real LQGs did not reproduce the results.
A plausible mechanism for the correlation of LQG orientations

n such large scales is not obvious. We considered the geometry
f the Uni verse. v an de Weygaert ( 2007 ) uses Voronoi tessellation
Vorono ̈ı 1908 ) to describe the observed cosmic web on � 100 Mpc
cales (see also Icke & van de Weygaert 1987 ; van de Weygaert
994 ). We speculated whether a cellular structure to the Universe,
uch as Voronoi tessellation, or a more regular crystalline structure,
ould cause such an effect. 

We also considered primordial anisotropies. Poltis & Stojkovic
 2010 ) proposed cosmic strings as an explanation for quasar-
olarization alignments. They suggest the decay of these would seed
orrelated primordial magnetic fields. Ho we ver, using the CMB,
he possible amplitude of these has been constrained to less than
 few nanoGauss (Planck Collaboration et al. 2016 ). Hutsem ́ekers
t al. ( 2005 ) suggest the apparent rotation of mean optical quasar
olarization angle with redshift may be caused by a global rotation
f the Universe, such as that invoked by Jaffe et al. ( 2005 ) to explain
arge-scale anisotropies in the CMB data. Ho we ver, from CMB
emperature and polarization analysis Saadeh et al. ( 2016 ) conclude
hat the Universe is neither rotating nor anisotropically stretched. 

For the geometric and primordial explanations we considered,
t is unclear how they could translate into our observed position
ngle distribution. Further, the primordial explanations have been
isfa v oured by observations. The origin of the LQG orientation
orrelation remains unexplained. 

We found no evidence of � CDM cosmological simulations pre-
icting correlations between objects on Gpc scales, but this had not
een specifically examined for LQGs. Using mock LQG catalogues
Marinello et al. 2016 ) we found no evidence of LQG correlation in
he Horizon Run 2 simulation (Kim et al. 2011 ). This suggests that
he cosmic web of the observed Universe differs on the largest scales
o this dark-matter-only N -body simulation. It hints that there could,
iv en the cav eats associated with the simulations, be aspects of the
arge-scale structure that are not captured by the power spectrum.
unning the LQG finder on other cosmological simulations would
e informative. If the correlation in LQG orientation is confirmed
hen perhaps it is an unexpected feature of known physics. If it is not
een then perhaps something is missing from the simulations (e.g.
rimordial anisotropies) or it is, after all, a statistical fluke which
oincidentally gives rise to the aligned quasar polarizations. 

The LQG orientation correlation we found offers a plausible
xplanation for the quasar-polarization alignments reported by many
tudies (e.g. Hutsem ́ek ers 1998 ; Hutsem ́ek ers & Lamy 2001 ; Jain
t al. 2004 ; Cabanac et al. 2005 ; Tiwari & Jain 2013 ; Pelgrims &
udell 2014 ; Pelgrims & Hutsem ́ekers 2015 ; Pelgrims 2019 ). If LQG
xes are preferentially aligned at θ̄ ∼ 45 ± 2 ◦, 136 ± 2 ◦ (this work,
edian modes), and if quasar polarization vectors are preferentially
NRAS 511, 4159–4178 (2022) 
arallel and orthogonal to LQG axes (Hutsem ́ekers et al. 2014 ;
elgrims & Hutsem ́ekers 2016 ), this could result in polarization
ectors with preferred angles of ∼42 ◦ and ∼131 ◦ (Pelgrims & Hut-
em ́ekers 2015 ). Our results therefore offer corroborating evidence
or, and enhancement of, the intrinsic alignment interpretation of
hese studies. 

Quasar-polarization alignment is also detected in the south Galac-
ic cap (SGC; e.g. Hutsem ́ekers 1998 ; Pelgrims & Hutsem ́ekers
015 ), which is not coincident with our LQG sample in the north
alactic cap (NGC). The forthcoming 4-m Multi-Object Spectro-

copic Telescope (4MOST) Active Galactic Nuclei surv e y (Merloni
t al. 2019 ) will surv e y a million z � 2.5 quasars o v er ∼10 000 deg 2 ,
ith first light expected in 2022. This could deliver an LQG sample in

he SGC for similar e v aluation to our work in the NGC. Of particular
nterest would be whether LQG orientation again corresponds to the
referred angle of quasar radio polarization alignment, which differ
etween NGC and SGC (e.g. Pelgrims 2016 ). 

Our results are based on a sample of 71 LQGs at redshifts 1.0 ≤ z

1.8, which were detected using the SDSS DR7QSO catalogue
Schneider et al. 2010 ) of ∼105k quasars across ∼7600 deg 2 .
 orthcoming spectroscopic surv e ys will deliv er a far larger sample
f quasars, e.g. the Dark Energy Spectroscopic Instrument (DESI;
ESI Collaboration 2016 ) 5-yr surv e y aims to target 1.7 million z
 2.1 quasars co v ering ∼14 000 de g 2 , be ginning in May 2021. This

as the potential to deliver a larger sample of LQGs for a better
ssessment of their correlation. 

If the LQG orientation correlation is real, it represents large-
cale structure alignment o v er � Gpc scales, larger than those
redicted by cosmological simulations and at least an order of
agnitude larger than any so far observed, with the exception of

uasar-polarization/radio-jet alignment. Careful statistical analysis
s required before making inferences about whether such a large-
cale correlation challenges the assumption of large-scale statistical
sotropy and homogeneity of the Universe. 

To conclude, we find large-scale correlation of LQG orientations,
hich we report here for the first time. This helps explain a substantial
ody of work on quasar-polarization/radio-jet alignment, but at the
xpense of raising potentially even more challenging questions about
he origin of the LQG correlation and its implications for isotropy
nd homogeneity. Forthcoming surveys and the other future work we
uggest here will illuminate LQGs and their intriguing correlation
urther. 
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PPENDI X  A :  L Q G  FI NDER  

lowes et al. ( 2012 , 2013 ) detect LQG candidates using a 3D single-
inkage hierarchical clustering algorithm, also known as friends-of- 
riends (FoF). This is equi v alent to a 3D minimal spanning tree
MST). These type of methods are widely used to detect galaxy
lusters, superclusters, voids, and filaments (e.g. Press & Davis 1982 ;
inasto et al. 1997 ; Park et al. 2012 ; Pereyra et al. 2020 ), as well as
QGs (e.g. Clowes et al. 2012 , 2013 ; Nadathur 2013 ; Einasto et al.
014 ; Park et al. 2015 ). They make no assumptions about cluster
orphology. 
Using the terminology of Barrow, Bhavsar & Sonoda ( 1985 ), MST

reats the data set as a graph made up of vertices (nodes, in this
ase quasars) which are connected by edges (straight lines). This 
s a ‘tree’ when it has no closed paths (sequence of edges) and
 ‘spanning’ tree when it contains all the v ertices. F or an y graph,
here are multiple possible spanning trees; the ‘minimal’ spanning 
ree is that of minimal length (sum of edge lengths). To identify
lusters within the MST it may be separated, where edges exceeding 
 certain length are remo v ed, leaving groups of objects with mutual
eparations less than this ‘linkage length’. 
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Figure B1. (a) Tangent plane projection of 1–24 (across then down) of the 
71 LQGs in our sample, in Cartesian coordinates. Member quasars shown 
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The choice of linkage length is crucial – too long and clusters
erge to fill the entire volume, too short they breakup into pairs and

riplets (Graham, Clowes & Campusano 1995 ). Pilipenko ( 2007 )
ategorizes the criteria for making this choice as physical or formal.
ith a priori knowledge of physical parameters (e.g. size, mem-

ership, and density) of the clusters, it is possible to choose the
cale that maximizes the fraction of clusters with those parameters.
he criterion used by Graham et al. ( 1995 ) is an example of a
hysical approach; they choose the scale that maximizes the number
f clusters of a minimum membership. An example formal approach
ould be to choose a scale based on the mean nearest-neighbour

eparation. 
Clowes et al. ( 2012 , 2013 ) use this latter approach. Their quasar

ample has a mean nearest-neighbour separation of ∼74 Mpc. They
lso account for uncertainties in their edge lengths (i.e. proper
istances) due to redshift errors and peculiar velocities (for estimates,
ee Clowes et al. 2012 ) and choose a linkage length of 100 Mpc. 

Clowes et al. ( 2012 , 2013 ) estimate the o v erdensity and statistical
ignificance of their LQGs using a conv e x hull of member spheres
CHMS) method. This is described in detail in Clowes et al. ( 2012 ),
ut briefly, for each LQG they calculate the volume of a conv e x
ull of spheres of radius half the mean edge length at each v erte x
member quasar location). The CHMS volume of an LQG of m
embers is then compared with the distribution of CHMS volumes

f clusters of m points in Monte Carlo simulations of the same size
nd density as their control area, in order to estimate o v erdensity and
tatistical significance. We note this method of estimating statistical
ignificance is not universally accepted (Nadathur 2013 ; Pilipenko &

alino vsk y 2013 ; Park et al. 2015 ). 
The Huge-LQG and Clowes-Campusano LQG, amongst others,

ave been independently detected using different FoF algorithms
Nadathur 2013 ; Einasto et al. 2014 ; Park et al. 2015 ). Indeed, and
nsurprisingly, our LQG sample has many objects in common with
he publicly available catalogue 7 of Einasto et al. ( 2014 ). Einasto
t al. ( 2014 ) appear to have followed closely the approach of Clowes
t al. ( 2012 , 2013 ) in terms of input data, selection algorithm, linkage
cale, and cosmological model and parameters, but applied to a
educed area of DR7QSO. Einasto et al. ( 2014 ) differed substantially,
o we v er, in not pro viding an y measures of statistical significance or
 v erdensity, which are important for ranking the LQG candidates. 
NRAS 511, 4159–4178 (2022) 
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ig. B1 illustrates the 71 LQGs in our sample, shown in tangent
lane projection. 
s black dots, orthogonal distance regression fit shown as dashed blue line. 
olid black lines indicate x = 0 and y = 0, and grey square illustrates scale 
1 ◦). LQGs labelled A, C (D, E, F) are discussed in Fig. C3 (Fig. E1 ). 
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Figure B1. (b) Tangent plane projection of 25–48 (across then down) of the 
71 LQGs in our sample, in Cartesian coordinates. Other plot details are as for 
Fig. B1 panel (a). 

Figure B1. (c) Tangent plane projection of 49–71 (across then down) of the 
71 LQGs in our sample, in Cartesian coordinates. Other plot details are as for 
Fig. B1 panel (a). LQG labelled B is discussed in Fig. C3 . 
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Figure C1. Tangent plane projection of an LQG, with coordinates ( α, δ) 
projected to ( x , y ). Member quasars are shown as black dots and orthogonal 
distance regression fit shown as dashed line. Axes are labelled in degrees. 
This LQG is also shown in Figs B1 and E1 , labelled D. Using the 2D PA 

approach, PA = 152.5 ◦. 
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PPENDI X  C :  L Q G  O R I E N TAT I O N  

1 LQG position angles – presentation 

he position angle (PA) of a large quasar group can be calculated
n either two or three dimensions. In two dimensions we treat the
uasars as points on the celestial sphere, whereas in three dimensions
e take into account their proper radial distances. 
For the 2D approach quasar positions (in right ascension and 

eclination) are projected on to the tangent plane as Cartesian ( x , y )
oints. This plane meets the celestial sphere at the centre of gravity
f the LQG ( x , y ) = (0, 0), calculated assuming quasars are point-
ike unit masses. To determine LQG orientation we use orthogonal 
istance regression (ODR) of these projected points (see Fig. C1 for
n example). This minimizes the sum of the squares of the orthogonal
esiduals between the points and the line (for a discussion of OLS,
DR, and other regression methods, see Isobe et al. 1990 ). 
For the 3D approach, the covariance matrix of the quasar proper

ositions is decomposed into its eigenvectors and eigenvalues. Again, 
uasars are assumed to be point-like unit masses. The axes of a con-
dence ellipsoid (e.g. Fig. C2 ) are constructed from the eigenvectors
nd eigenvalues; each axis is in the direction of its eigenvector and
ts length � is a function of its eigenvalue λ, specifically � ∝ 

√ 

λ. The
rst principal component (ellipsoid major axis) is given by the eigen-
ector with the largest eigenvalue. Finally, this is projected on to the
lane orthogonal to the line-of-sight to define the (2D projected) PA.
PAs determined by the two approaches may differ, for example 

he 2D approach may be susceptible to projection effects and the
D approach may be susceptible to redshift-space distortions. The 
rientation of the LQG with respect to the line of sight and its
orphology may also induce differences. We expect PAs determined 

y the two approaches to agree well when the LQG is linear and
rthogonal to the line of sight, but they may differ significantly when
he LQG is broad, crooked, curved or aligned along the line of sight.

For our sample of 71 LQGs we find that the two approaches are
enerally consistent. Fig. C3 shows the PAs calculated using both 
he 2D and 3D approaches. Note that the PAs have not been parallel
ransported, but these angles serve as a useful comparison between 
he two approaches. The error bars are the half-width confidence 
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M

Figure C2. Same LQG as Fig. C1 , but shown in 3D proper coordinates 
oriented with line-of-sight orthogonal to the page. Axes of enclosing ellipsoid 
(green = a -axis, yellow = b -axis, red = c -axis) constructed from eigenvectors 
and eigenvalues. Axes are labelled in Mpc. Using the 3D PA approach, 2D 

projected PA = 152.3 ◦. 

Figure C3. Position angles of 71 LQGs calculated by 2D and 3D approaches. 
The two generally agree well, with the three widest outliers (A, B, and C) due 
to the geometry of those particular LQGs (see text and Fig. B1 ). Error bars 
show half-width confidence intervals estimated using bootstrap re-sampling. 
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ntervals estimated using bootstrap re-sampling. Note that, usually,
he measurement uncertainties are slightly larger for the 3D approach.

The three widest outliers from the 1:1 diagonal line in Fig. C3
re due to the geometry of these particular LQGs (A, B, C; also
abelled in Fig. B1 ). Two of these LQGs (A and B) have their

ajor axes oriented towards the line of sight, and not significantly
NRAS 511, 4159–4178 (2022) 
onger than their first minor axes. Indeed, for both of these, the 2D
pproach fits a regression comparable to the first minor axes rather
han the major axes. One LQG (C) is very irregular so linear fits
re poor, and corresponding PAs are uncertain, in both the 2D and
D approaches. The PAs of all three of these LQGs are given little
eight by goodness-of-fit weighting (Section 2.2). 
Both the 2D and 3D approaches have been used to determine

he PAs of LQGs. Hutsem ́ekers et al. ( 2014 ) use the 2D approach
o demonstrate alignment of quasars’ optical linear polarization
ith LQG axes, while Pelgrims & Hutsem ́ekers ( 2016 ) use the 3D

pproach to evidence alignment of quasars’ radio polarization with
ore LQG axes. The latter derived eigenvectors and eigenvalues

rom the inertia tensor rather than covariance matrix; results are
qui v alent. Pelgrims & Hutsem ́ekers ( 2016 ) report that for the 2D
pproach PAs calculated using ODR are consistent (within 1 ◦) with
hose determined using the inertia tensor. 

Pelgrims & Hutsem ́ekers ( 2016 ) show that both approaches
sually agree well, and argue that the 3D approach is more physically
oti v ated. We agree, but note that any 3D analysis is susceptible to

edshift errors. The quasars in our sample are from SDSS DR7QSO,
hich typically has quoted redshift errors of 
z ∼ 0.004 (Schneider

t al. 2010 ). There is also evidence for systematic errors of 
z ∼
.003 (Hewett & Wild 2010 ). Using Monte Carlo simulations we find
hat these redshift errors introduce uncertainty in the PA, generally of
 few degrees, but up to ∼30 ◦ for LQGs particularly oriented along
he line of sight (e.g. LQGs A and B). 

Furthermore, in the 3D approach, there is also the potential for
rrors due to redshift-space distortions from the quasars’ peculiar
elocities, causing their real-space distribution to be either elongated
Jackson 1972 ) or squashed (Kaiser 1987 ) along the line of sight. We
nd that the measurement uncertainties (Appendix E) are slightly

arger for the 3D approach. We therefore base our analysis on the
D approach; tangent plane projection of the LQG and orthogonal
istance regression of the projected quasars. 

2 LQG position angles – tabulation 

able C1 presents the results of both the 2D and 3D approaches
o determining position angle. To recap, the 2D approach involves
angent plane projection of the LQG quasars, followed by orthogonal
istance regression (ODR) of the projected points. The 3D approach
equires determining the proper coordinates of the LQG quasars,
erforming principal component analysis on the covariance matrix
f these, then tangent plane projection of the resultant major axis. 
The results of both approaches generally agree well. For both

pproaches, bootstrap re-sampling with replacement is used to
stimate the uncertainty in the form of the half-width confidence
nterval (HWCI, γ h ) of 10 000 bootstraps. The PAs listed in Table C1
re measured in situ at the location of each LQG, and will have
arallel transport corrections applied before statistical analysis. 
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Table C1. The 71 large quasar groups, where m is the number of members, and ᾱ, δ̄, and z̄ are the mean right ascension, 
declination, and redshift of the member quasars. The normalized goodness-of-fit weight w (equation 1) is scaled by w 71 = 

w × 71 for clarity, and to distinguish those LQGs weighted higher ( w 71 > 1) or lower ( w 71 < 1) than the mean w̄ . Position 
angle θ and half-width confidence interval γ h are shown for both the 2D and 3D approaches. The ratio of LQG ellipsoid axes 
lengths (from the 3D approach, Appendix C) is given by a : b : c . This list was summarized in Table 1 . 

J2000 ( ◦) 2D PA ( ◦) 3D PA ( ◦) 
m ᾱ δ̄ z̄ w 71 θ γ h θ γ h a : b : c 

20 121 .1 27 .9 1 .73 1 .13 119 .7 10 .4 115 .1 10 .7 0.50:0.30:0.21 
20 151 .5 48 .6 1 .46 1 .21 144 .4 9 .2 144 .3 11 .5 0.50:0.33:0.17 
20 155 .9 12 .8 1 .50 0 .32 120 .7 25 .2 117 .2 37 .0 0.44:0.43:0.14 
20 163 .6 16 .9 1 .57 1 .00 0 .9 8 .8 5 .7 9 .2 0.47:0.33:0.20 
20 178 .0 1 .2 1 .23 0 .37 78 .9 20 .3 77 .0 14 .7 0.51:0.31:0.17 
20 216 .4 1 .4 1 .11 0 .86 21 .6 8 .1 28 .4 11 .3 0.49:0.30:0.21 
21 133 .5 41 .2 1 .40 0 .72 16 .9 12 .1 18 .5 10 .6 0.49:0.33:0.18 
21 170 .6 16 .8 1 .07 0 .90 93 .0 10 .0 94 .1 15 .4 0.47:0.37:0.17 
21 191 .8 11 .0 1 .06 4 .43 40 .9 2 .8 41 .0 2 .9 0.66:0.24:0.10 
21 209 .1 3 .2 1 .56 0 .77 55 .9 14 .8 12 .3 25 .9 0.49:0.30:0.21 
21 212 .9 12 .6 1 .55 1 .72 162 .7 3 .9 162 .8 3 .9 0.63:0.22:0.15 
21 231 .2 25 .2 1 .51 4 .57 177 .7 3 .9 178 .8 2 .4 0.57:0.29:0.14 
22 136 .8 49 .5 1 .19 1 .03 119 .4 8 .2 126 .4 13 .2 0.46:0.38:0.17 
22 182 .0 55 .5 1 .70 1 .88 126 .1 4 .6 126 .3 4 .7 0.56:0.23:0.20 
22 217 .8 − 0 .8 1 .31 0 .42 71 .0 33 .3 69 .2 27 .0 0.42:0.33:0.25 
23 155 .9 53 .5 1 .48 1 .79 115 .6 4 .8 115 .8 4 .8 0.60:0.22:0.19 
23 166 .4 37 .1 1 .31 0 .97 134 .5 10 .2 126 .3 15 .9 0.44:0.37:0.19 
23 171 .3 14 .0 1 .20 1 .57 117 .5 6 .4 101 .2 15 .7 0.48:0.37:0.15 
23 180 .5 6 .0 1 .29 1 .26 81 .2 13 .5 72 .8 11 .3 0.57:0.25:0.18 
23 209 .5 34 .3 1 .65 1 .99 152 .5 2 .8 152 .3 2 .8 0.68:0.17:0.15 
23 214 .3 31 .8 1 .48 0 .27 18 .6 32 .6 87 .7 32 .5 0.47:0.35:0.18 
24 119 .1 18 .6 1 .28 1 .06 157 .3 9 .6 162 .8 11 .1 0.46:0.32:0.23 
24 139 .6 2 .5 1 .20 0 .61 48 .9 6 .7 49 .0 6 .7 0.58:0.29:0.13 
24 171 .1 17 .6 1 .52 0 .83 78 .7 11 .2 77 .0 10 .3 0.50:0.28:0.22 
24 179 .6 65 .0 1 .08 0 .71 35 .4 3 .7 35 .2 3 .9 0.55:0.23:0.22 
24 205 .0 12 .0 1 .36 0 .61 129 .2 16 .1 129 .2 16 .6 0.46:0.33:0.20 
24 217 .1 33 .8 1 .11 0 .99 12 .8 15 .0 34 .9 21 .8 0.54:0.28:0.18 
24 217 .1 57 .5 1 .70 0 .75 9 .8 14 .3 11 .6 10 .3 0.52:0.28:0.20 
25 142 .5 31 .3 1 .33 1 .70 42 .4 6 .1 41 .1 7 .2 0.50:0.34:0.15 
25 149 .5 43 .7 1 .16 0 .81 42 .3 7 .8 38 .9 9 .9 0.45:0.35:0.20 
25 186 .0 3 .6 1 .19 0 .61 23 .6 12 .3 47 .3 15 .3 0.48:0.32:0.20 
25 196 .7 36 .5 1 .48 0 .64 103 .1 7 .7 102 .9 8 .6 0.47:0.33:0.20 
25 231 .9 43 .6 1 .20 0 .30 91 .9 15 .3 75 .1 16 .9 0.44:0.36:0.21 
26 160 .3 53 .5 1 .18 0 .33 110 .6 23 .2 111 .5 25 .1 0.38:0.34:0.28 
26 171 .7 24 .2 1 .10 0 .78 48 .5 8 .3 47 .3 8 .1 0.46:0.29:0.24 
26 206 .0 6 .5 1 .43 0 .75 38 .1 8 .7 46 .7 12 .0 0.46:0.36:0.18 
26 224 .2 61 .6 1 .57 1 .52 106 .8 3 .1 106 .8 4 .3 0.51:0.33:0.16 
26 245 .6 40 .3 1 .55 0 .58 4 .2 8 .0 3 .5 4 .7 0.49:0.26:0.25 
27 184 .1 52 .7 1 .18 0 .37 124 .4 28 .7 125 .7 28 .7 0.40:0.35:0.25 
27 204 .0 13 .7 1 .16 0 .98 19 .6 5 .8 19 .9 8 .2 0.50:0.36:0.13 
27 221 .8 52 .4 1 .55 1 .12 52 .3 7 .2 54 .5 6 .6 0.54:0.26:0.20 
27 225 .5 57 .3 1 .52 0 .54 63 .3 14 .4 45 .6 14 .6 0.45:0.37:0.18 
27 231 .2 15 .4 1 .56 1 .01 60 .8 14 .0 53 .2 18 .7 0.43:0.35:0.22 
28 138 .6 14 .8 1 .54 1 .22 135 .6 8 .1 139 .3 7 .1 0.63:0.21:0.15 
28 177 .0 43 .1 1 .54 1 .10 45 .7 6 .2 45 .2 6 .1 0.52:0.25:0.23 
28 192 .3 10 .7 1 .36 0 .51 155 .8 15 .8 137 .9 12 .9 0.49:0.32:0.19 
28 212 .0 61 .7 1 .15 1 .33 131 .7 5 .5 135 .9 7 .6 0.61:0.23:0.16 
30 138 .1 7 .9 1 .56 0 .85 39 .7 8 .4 41 .0 9 .5 0.51:0.32:0.17 
30 217 .2 10 .5 1 .67 0 .99 147 .5 6 .5 146 .9 6 .8 0.56:0.23:0.21 
30 234 .0 21 .8 1 .60 0 .61 91 .3 12 .6 107 .0 16 .9 0.46:0.33:0.21 
31 176 .5 38 .3 1 .28 0 .37 132 .6 17 .9 134 .4 16 .6 0.46:0.34:0.19 
31 202 .7 21 .3 1 .08 0 .74 64 .1 6 .0 65 .3 5 .3 0.56:0.24:0.20 
32 177 .4 32 .7 1 .18 2 .11 46 .6 4 .5 46 .1 4 .6 0.59:0.23:0.18 
33 126 .6 20 .3 1 .44 1 .15 109 .6 5 .6 112 .8 5 .7 0.52:0.29:0.20 
33 157 .8 20 .7 1 .59 1 .07 15 .6 13 .0 12 .7 11 .9 0.41:0.33:0.26 
33 183 .6 11 .0 1 .08 0 .69 111 .3 4 .1 111 .2 3 .7 0.54:0.25:0.21 
34 162 .3 5 .3 1 .28 0 .60 108 .6 11 .9 153 .9 25 .5 0.44:0.37:0.19 
34 228 .5 8 .1 1 .22 0 .71 178 .7 8 .2 156 .5 17 .2 0.45:0.34:0.21 
34 234 .5 10 .7 1 .24 0 .88 55 .9 7 .4 53 .5 8 .3 0.48:0.29:0.24 
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Table C1 – continued 

J2000 ( ◦) 2D PA ( ◦) 3D PA ( ◦) 
m ᾱ δ̄ z̄ w 71 θ γ h θ γ h a : b : c 

36 189 .0 44 .1 1 .39 1 .22 41 .3 4 .2 38 .9 4 .1 0.53:0.28:0.19 
37 189 .5 20 .3 1 .46 0 .66 46 .7 10 .5 62 .4 23 .4 0.42:0.39:0.19 
38 161 .6 3 .5 1 .11 0 .35 137 .7 17 .5 119 .2 19 .3 0.46:0.37:0.18 
38 227 .6 41 .4 1 .54 0 .50 54 .7 7 .0 51 .2 7 .7 0.50:0.34:0.16 
41 205 .3 50 .4 1 .39 1 .36 51 .3 2 .7 51 .0 2 .7 0.63:0.22:0.15 
43 231 .0 47 .8 1 .57 0 .76 30 .4 5 .5 35 .0 6 .0 0.47:0.32:0.20 
44 208 .7 25 .8 1 .28 0 .45 120 .0 8 .6 131 .2 6 .8 0.54:0.27:0.19 
46 226 .7 16 .7 1 .09 0 .63 136 .2 7 .2 133 .9 7 .5 0.47:0.30:0.23 
55 196 .5 27 .1 1 .59 0 .95 107 .5 3 .4 107 .0 3 .4 0.58:0.24:0.18 
56 167 .0 33 .8 1 .11 0 .81 110 .2 3 .5 110 .4 3 .8 0.50:0.29:0.21 
64 196 .4 39 .9 1 .14 0 .83 133 .6 3 .0 133 .9 3 .2 0.48:0.36:0.17 
73 164 .1 14 .1 1 .27 0 .76 156 .6 4 .2 156 .3 4 .5 0.55:0.28:0.16 
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PPENDIX  D :  A X I A L  DATA  

osition angle data are axial [0 ◦, 180 ◦), more specifically 2-axial; 0 ◦

nd 180 ◦ are equi v alent. When analysing alignment, the orientation
f the axis is important, but its direction (i.e. which end is the ‘head’
nd which is the ‘tail’) is arbitrary and has no physical meaning. Axial
ata are synonymous with undirected data, unlike vectors which are
irected. 
Statistical analysis of directed data typically uses vector algebra

known as Fisher statistics). However, non-directed data cannot be
reated as vectors. Fisher ( 1993 ) recommends a statistically valid
olution for axial (2-axial) or, generally, p -axial data. First transform
he angles to vector (circular) data as 

 [0 ◦, 360 ◦) = 

{ 

2 × θ for axial data [0 ◦, 180 ◦) , 

p × θ for p - axial data [0 ◦, 360 ◦/p) , 
(D1) 

hen analyse the data as required and back-transform the results. The
nal step, back-transformation, is generally required only to find
irection (Fisher 1993 ). In the case of axial data, back-transformation
s simply halving any resultant angles, e.g. to determine the direction
f a mean resultant vector. 
Hutsem ́ekers et al. ( 2014 ) and Pelgrims ( 2016 ) test for alignment

nd, simultaneously, for orthogonality (which they describe as ‘anti-
lignment’), by converting from 2-axial θ [0 ◦, 180 ◦) to 4-axial θ4 ax 

0 ◦, 90 ◦) data using 

4 ax [0 
◦, 90 ◦) = mod ( θ, 90 ◦) . (D2) 

 or v ector algebra, this is transformed to circular data � using
quation (D1), specifically 

 4 ax [0 
◦, 360 ◦) = 4 × θ4 ax , (D3) 

here back-transformation, if required, would be to quarter any
esultant angles. 

Throughout this work we specify which construct of PA data we
se, i.e. raw 2-axial ( θ ), circular 2-axial ( � 2 ax = 2 θ , equation D1),
-axial ( θ4 ax , equation D2), or circular 4-axial ( � 4 ax = 4 θ4 ax ,
quation D3). 

PPENDIX  E:  PA  UNCERTAINTIES  

o estimate the measurement uncertainties in the LQG position
ngles we use bootstrap re-sampling with replacement (Efron 1979 ).
or an LQG with m members, the data set consists of m observed
uasar positions (right ascension, declination, and redshift). We
NRAS 511, 4159–4178 (2022) 
onstruct n bootstrap LQGs, each with the same number of m
embers which are drawn at random from the original data set. Each

raw is made from the entire data set, and each member is replaced
n the data set before the next draw. Thus, each bootstrap LQG is
ikely to miss some members and have duplicates (or triplicates or
ore) of others. 
These bootstraps are used to estimate the uncertainty on parame-

ers (e.g. PAs) derived from the data set, without any assumption
bout the underlying population (Feigelson & Babu 2012 ). The
osition angle of each bootstrap LQG is calculated through the same
D and 3D approaches used for the observed LQGs (Appendix C). 
For a sample of n bootstrap LQGs we can determine the mean

A and its associated uncertainty. Using the linear mean θ̄ =
 

∑ n 

i= 1 θi ) /n is inappropriate for axial data [0 ◦, 180 ◦), where 0 ◦ and
80 ◦ are equi v alent. F or e xample, a sample of PAs centred on 0 ◦,
ith around half in the range 0 ◦ � θ � 10 ◦ and half in the range
70 ◦ � θ � 180 ◦, has a linear mean θ̄ ∼ 90 ◦ rather than the correct
nswer θ̄ ∼ 0 ◦ (or, equi v alently, θ̄ ∼ 180 ◦). 

Therefore, instead of linear mean, we calculate the ‘circular’ mean
Fisher 1993 ) of axial PAs. First, following Mardia & Jupp ( 2000 ),
et 

¯
 = 

1 

n 

n ∑ 

i= 1 

cos 2 θi , S̄ = 

1 

n 

n ∑ 

i= 1 

sin 2 θi , (E1) 

here θ i is the PA of the i th bootstrap LQG and n is the total number
f boostraps for this LQG. The factor of two accounts for the axial
rather than circular) nature of the data. The mean direction θ̄ is given
y 

¯ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
2 arctan 

(
S̄ 

C̄ 

)
if C̄ ≥ 0 , 

1 
2 arctan 

(
S̄ 

C̄ 

)
+ π if C̄ < 0 , 

(E2) 

here the factor 1 
2 converts from vector algebra back to axial data

i.e. ‘back-transformation’). 
For each LQG, to estimate the uncertainty in the mean θ̄ , we

alculate its confidence interval following Pelgrims ( 2016 ), who in
urn follows Fisher ( 1993 ), and for each individual bootstrap i out of
 total of n we define the residual as 

i = 

1 

2 
arctan 

(
sin (2( θi − θ̄ )) 

cos (2( θi − θ̄ )) 

)
, (E3) 

here θ i is the PA of the i th bootstrap LQG. For i = 1,..., n we sort
he γ i in ascending order to give an ordered list γ (1) ≤... ≤ γ ( n ) . To
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Figure E1. LQG position angles from 10 000 bootstraps for three example 
LQGs, labelled D, E, F in Fig. B1 , and visually classified as (a) narrow, 
(b) broad, and (c) intermediate morphology. All PA calculations use the 2D 

approach with no parallel transport. Dashed orange line shows the circular 
mean of the bootstraps θ̄ , dotted orange lines show the 68 per cent confidence 
interval, solid blue line shows the observed PA. 
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etermine the confidence interval at the 100(1 − α) per cent level 8 

e find the γ i list elements at lower index l which is the integer part
f ( n α + 1)/2 and upper index u = n − l . The confidence interval for

¯ is then [ ̄θ + γ( l+ 1) , θ̄ + γ( u ) ]. We calculate the confidence interval
t the 68 per cent level ( α = 0.32) and define the half-width of the
onfidence interval (HWCI) as 

h = ( γ( u ) − γ( l+ 1) ) / 2 . (E4) 

For each of our sample of 71 LQGs, we create n = 10 000
ootstraps, calculate their PAs θ i using the 2D or 3D approach 
Appendix C), and then determine the mean θ̄ and confidence 
nterv al. Fig. E1 sho ws the distribution of bootstrap PAs θ i calculated
sing the 2D approach for three example LQGs. The circular mean of
he bootstraps θ̄ (dashed orange line) generally agrees well with the 
bserved PA (solid blue line). As expected, the 68 per cent confidence
nterval (Fig. E1 , dotted orange lines) is smaller for (a) a ‘narrow’
QG than (b) a ‘broad’ sheet-like LQG. Example (c) illustrates why 

he linear mean is inappropriate, since the distribution of the bootstrap
As may ‘wrap’ from 180 ◦ back to 0 ◦. 

The HWCIs for 10 000 bootstraps of our sample of 71 LQGs, with
As θ i calculated using both the 2D and 3D approaches, are shown as
 Confidence level = 1 − α, where α is the significance level. 

p
 

o  
rror bars in Fig. C3 . The mean (median) HWCI for the 2D approach
s ∼10 ◦ ( ∼8 ◦), and for the 3D approach it is ∼11 ◦ ( ∼9 ◦). 

PPENDI X  F:  APPLYI NG  T H E  S  TEST  

1 Nearest neighbours free parameter 

he S test quantifies the coherence of PA alignment by measuring
he dispersion of groups of n v nearest neighbours, where n v is a
ree parameter. We explore a range of n v values; we do not choose
 specific value. For each LQG, its nearest neighbours can be
etermined either in two dimensions (angular separation) or three 
imensions (proper separation). 
In 2D, nearest neighbours are identified by calculating the angular 

eparation θ on the celestial sphere between LQG 1 and LQG 2 as 

= cos −1 [ sin δ1 sin δ2 + cos δ1 cos δ2 cos ( α1 − α2 )] , (F1) 

here α1 and δ1 ( α2 and δ2 ) are the right ascension and declination of
he centroids of LQG 1 (2), respectiv ely. F or each LQG, its nearest
eighbours are those n v LQGs separated from it by the smallest
ngular distances. 

In 3D, nearest neighbours are identified by calculating the 3D 

roper positions ( x , y , z) of each LQG centroid. For each LQG,
ts nearest neighbours are those n v LQGs separated from it by the
mallest proper distances. 

The 2D and 3D approaches of identifying nearest neighbours will 
eturn different groups of LQGs. When these groups are used to
ompute the S statistic S D we find that the values calculated using
he two approaches are remarkably consistent. This is probably due 
o the geometry of the 3D surv e y volume; our redshift restriction of
.0 ≤ z ≤ 1.8 yields a ‘shell’ of LQGs of finite thickness. At low n v 
he 3D approach may find neighbours in the radial direction, but at
igh n v it can only find them tangentially (on the sky), like the 2D
pproach. Since the two approaches give very similar results, and the
D approach is more physically moti v ated, we use the 3D approach
f identifying nearest neighbours in this work. 

2 Estimating significance level 

he S test yields an S D statistic for each number of nearest neighbours
 v assessed. The significance level of these values compared to 
andomness cannot be e v aluated analytically, due to: o v erlaps be-
ween groups of nearest neighbours, deviation of the S D distribution 
rom normality (particularly for small n and when n v ∼ n ), and the
ependence of parallel transport corrections on the precise location of 
he objects involved. Therefore, numerical simulations are required. 

Hutsem ́ekers ( 1998 ) and Hutsem ́ekers & Lamy ( 2001 ) generate
andom samples by shuffling the observed PAs randomly between 
bjects, while keeping their positions fixed. This has the effect of
rasing any correlation between PAs and positions. But, as Jain 
t al. ( 2004 ) note, the shuffling method is unable to test for global
lignment. 

We have no reason to expect LQG PAs to be correlated with LQG
ositions; alignment could be global. Therefore, we generate random 

amples from a uniform distribution, keeping the 3D LQG positions 
xed. We generate n = 71 PAs, randomly drawn from a uniform
istribution. These are generated in the ranges [0 ◦, 180 ◦) for 2-axial
As and [0 ◦, 90 ◦) for 4-axial PAs. Note that initially generating 4-
xial PAs in the range [0 ◦, 180 ◦), then converting to [0 ◦, 90 ◦) after
arallel transport and before e v aluating the S test is equi v alent. 
The significance level (SL) of the S test is defined as the percentage

f simulations that have an S D statistic at least as extreme as the one
MNRAS 511, 4159–4178 (2022) 
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rom our observations (Pelgrims 2016 ). It is computed by comparing
he statistic of our observations ( S D , obs ) with the statistic from a large
umber of numerical simulations ( S D , sim 

). 
For 2-axial PAs we find that S D , obs is in the low S D , sim 

(left-
and) tail of the distribution. To interpret this, consider the potential
imodality of the LQG PA distribution, with the peaks separated
y ∼90 ◦. This orthogonality leads to a large dispersion, and yields
 small value of S D . Therefore, it is legitimate to interpret a result
n the left-hand tail as a potentially orthogonal signal, with the SL
eing the probability that S D , sim 

< S D , obs . This can be tested by also
 v aluating the S test for 4-axial PAs. 

Note that two modes of a possible combined ‘alignment plus
rthogonality’ signal would tend to erase any signal, reducing the
ower of this test. However, a residual signal in the left (right) tail
ndicates the orthogonality (alignment) mode dominates. 

When we convert 2-axial PAs to 4-axial, we simultaneously test
or alignment and orthogonality by combining the modes, so an
alignment plus orthogonality’ signal will manifest as alignment only.
he SL is therefore the proportion of numerical simulations with
tatistic S D higher than that observed. Indeed, for 4-axial PAs we find
hat S D , obs is in the high S D , sim 

(right-hand) tail of the distribution,
ith the SL being the probability that S D , sim 

> S D , obs . Note that
n ‘alignment only’ signal would also be in the right-hand tail, but
ould be differentiated by its 2-axial result. 
The S D distributions of 2-axial and 4-axial numerical simulations

iffer, particularly as n v approaches n . Therefore, we generate sep-
rate numerical simulations for each, and calculate the significance
evels as 

L 2ax = P ( S D,s i m (2 ax ) < S D,obs (2 ax ) ) , (F2) 

L 4ax = P ( S D,s i m (4 ax ) > S D,obs (4 ax ) ) , (F3) 

here P indicates probability, 2 ax and 4 ax indicate 2-axial and 4-
xial PAs, and sim and obs indicate simulations and observations,
espectively. 
NRAS 511, 4159–4178 (2022) 
PPENDI X  G :  L Q G S  IN  3 D  PROPER  SPAC E  

he 71 LQG positions in 3D proper space, and their orientation
s determined by the 3D method, are illustrated in Fig. G1 , with
dditional perspectives shown in Fig. G2 . 

igure G1. LQGs in 3D proper space, showing LQG quasars (blue circles)
nd LQG major axes (red lines). Quasar markers are shaded to give the
ppearance of depth, with lighter shades representing more distant quasars.
ur location at ( x , y , z) coordinates (0, 0, 0) is indicated by a black dot. See
ig. G2 for three alternative, orthogonal perspectives. 
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Figure G2. As Fig. G1 but viewed with the (a) x -axis, (b) y -axis, and (c) 
z-axis orthogonal to the page. 

A
D

F  

e

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/3/4159/6517694 by U
niversity of C

entral Lancashire user on 24 February 2022
PPENDI X  H :  PA R A L L E L  TRANSPORT  

ESTINATION  

ig. H1 shows LQG PAs after parallel transport to the location of
ach of the 71 LQGs. Also shown, double Gaussian fit (blue). 
MNRAS 511, 4159–4178 (2022) 
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Figure H1. LQG position angles after parallel transport to the location of each LQG; 15 ◦ bins. Solid blue lines are double Gaussian fit. The bimodal distribution 
is generally robust to parallel transport destination. 
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