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Abstract

Since their discovery in disc galaxies, including the Milky Way, warps have been

the subject of extensive debate regarding their origin and role in galactic evolution.

Cosmological simulations have shown that galactic warps represent the misaligned

inflow of gas onto the disc. In this thesis, I study the consequences of misaligned

gas inflow on the vertical structure of discs in a suite of Milky Way N-body+SPH

simulations.

As the misaligned cold gas accretes onto the disc, there is ample opportunity

for star formation to occur in the warp, which has been shown previously in N-

body+SPH simulations. The relatively recent discovery of young stellar populations

(Cepheids) in the Galactic warp supports this hypothesis as it indicates ongoing

star formation. I demonstrate that star formation does occur in the misaligned

gas inflows and that the formed warp populations settle and populate the thick

disc. These warp populations have near-circular orbits and are, therefore, capable

of reaching the Solar neighbourhood via radial migration. Additionally, I am able

to show that warp stars have unique chemical and dynamical properties that make

them stand out above in-situ stars in chemical and action spaces. After defining the

regions in these spaces where the warp star purity is above 80%, I apply them to

an observational sample in the Solar annulus and produce the first sample of warp

star candidates in the Milky Way.

I demonstrate that misaligned cold gas can excite well defined prograde and

retrograde bending waves with higher amplitudes than those excited in an unwarped
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model. One of the key results of my analysis is the persistence of prograde m = 1

bending waves in the warped model, which according to the WKB approximation,

are located in the forbidden region and are expected to dissipate. The same prograde

bending waves appear to be less coherent in the unwarped model. I find that the

progradem = 1 bending waves are coupled with them = 2 density waves, most likely

brought on by the coincidence between the forbidden WKB bending and allowed

WKB density regions. The results of this analysis demonstrate that the accretion

of misaligned gas is capable of exciting and injecting significant power into both

prograde and retrograde m = 1 bending waves. The lack of such a perturbing force

in the unwarped model leads to the natural decay and weaker amplitudes of the

prograde and retrograde bending waves, respectively.

I find positive slopes in the Lz − 〈vz〉 relation of simulated Solar neighbourhood

samples in both warped and unwarped models. However, only the slope in the

warped model reaches values as large as observed in the Solar neighbourhood. The

cause of the positive slope is seen as the result of bending waves passing through

the Solar neighbourhood which can explain the difference in slopes between the two

models. I determine that warps are a vital component in the study of the disc’s

vertical structure and evolution and can provide tools to uncover the evolutionary

history of the Milky Way.
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of A1, Ȧ1, for the same mono-age warp populations. The rates of

change are calculated from the smoothed evolution curves. The solid

black line represents the median rate of change between all mono-age

populations. The dotted horizontal line indicates Ȧ1 = 0 Gyr−1. . . . 60
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Chapter 1

Introduction

1.1 Galactic structure

Galaxies were first accurately identified and catalogued in the eighteenth century

by Charles Messier. However, their origin was not well understood, and they were

assumed to be part of the Milky Way (MW). Immanuel Kant suggested that some

of the nebulae might be separate and complete island universes, similar to the MW.

The evidence to support Kant’s ideas was beyond the capabilities of the telescopes of

that time, but as the technology improved, a more coherent picture began to form.

In the 1920’s, Edwin Hubble was able to measure the distances to these ‘nebulae’

and confirmed that they were, in fact, galaxies, distant gravitationally bound stellar

structures, separate from the MW. Hubble suggested four broad classes which the

observed galaxies could be placed into based on their optical appearance (Hubble

1926). This classification is known as the Hubble sequence and is presented in Fig-

ure 1.1. The left half of the Hubble sequence contains the elliptical class of galaxies,

which are characterised by their elliptical isophotes. Ellipticals are further divided

into subgroups based on the shape of their isophotes: from circular, E0, to elliptical,

E7. Figure 1.2 shows an example of two elliptical galaxies with minimum (left) and

maximum (right) ellipticity values. Elliptical galaxies do not have well defined outer

1



CHAPTER 1

Figure 1.1: The Hubble sequence classification of galaxies (Graham 2019).

Figure 1.2: Optical images of NGC 1379 (left) and NGC 4623 (right) elliptical

galaxies (Sandage & Bedke 1994). These galaxies are examples of the minimum and

maximum ellipticity values which make up the E0 and E7 subgroups.
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edges, so their surface brightness profiles smoothly decrease with radius. The size

of ellipticals is commonly defined by the effective radius, Re, which is the isophote

radius that contains half of the galaxy’s total luminosity. Most elliptical galaxies are

deprived of recent star formation, commonly referred to as ‘red and dead’ (Faber &

Gallagher 1976). However, there are instances of ‘blue’ ellipticals, i.e. with ongoing

star formation (George 2017). The current understanding of how elliptical galaxies

form is through galaxy mergers (de Zeeuw & Franx 1991; González-Garćıa et al.

2009), though historically they were mistakenly assumed to be the early stage of

galactic evolution, hence their ‘early-type’ denomination.

Galaxies with an ellipticity greater than that of E7 galaxies but lack any spiral

features are referred to as lenticulars (S0). Lenticular galaxies are located in the

centre of the Hubble sequence and, similar to ellipticals, were referred to as ‘early-

type’ in the past. This label was attributed due to the incorrect assumption that S0

galaxies were a transition state between elliptical and spiral galaxies. Lenticulars are

usually observed in clusters (Dressler 1980) and become less frequent at increasing

redshifts (Dressler et al. 1997; Couch et al. 1998; Postman et al. 2005), implying

that the environment plays a role in the formation of S0 galaxies. A class that is

not present in the Hubble sequence are the irregular galaxies (Im), which do not

have a well-defined shape. Irregular galaxies are characterised as small and faint

systems (see Gallagher & Hunter 1984, for a review on irregular galaxies), with

notable examples being the Large and Small Magellanic Clouds.

On the right side of the Hubble sequence is the spiral class of galaxies, charac-

terised by their disc-shaped structure and the presence of spiral arms. This class is

subdivided based on the presence (SB) or absence (SA) of a central bar component;

an example of both barred (top) and unbarred (bottom) galaxies is presented in

Figure 1.3. Barred galaxies are more common in the local universe with two out of

three spiral galaxies being barred (Buta et al. 2015). The nearest examples of spiral
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Figure 1.3: Top: NGC 1300, an SB(rs)bc barred spiral galaxy. Credit: NASA,

ESA, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: P. Knezek

(WIYN). Bottom: M63, an SAbc unbarred spiral galaxy with flocculent spiral arms.

Credit: ESO.
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class galaxies are the MW and Andromeda galaxies (M31), both belonging to the

barred subclass, with the MW having a rotating bar that extends up to ∼ 5 kpc

(Wegg et al. 2015). A further subdivision of the spiral galaxy class is based on the

tightness of the spiral arms. Unbarred (bared) galaxies are broken up into three

subclasses from tightly to loosely wound, SA(B)a and SA(B)c, respectively.

Spiral galaxies are observed to have a dense central component that is thicker

than the disc, referred to as the bulge. Bulges are not unique to the spiral galaxy

class, with the bulge decreasing in size and luminosity when moving from ellipticals

to loosely wound spirals in the Hubble sequence (Wyse et al. 1997). Bulges are

divided into classical and pseudobulges. Classical bulges are spherical in structure,

dynamically hot, and speculated to have formed via hierarchical merging (Renzini

1999; Martinez-Valpuesta & Athanassoula 2008). Pseudobulges are more box-like

in shape, have disc-like kinematics, and have been theorised to form via secular

processes (e.g. see Kormendy & Kennicutt 2004, for review on the formation of

pseudobulges). A type of pseudobulge that is commonly observed in spiral galaxies,

including our own (e.g. Weiland et al. 1994; Binney et al. 1997; López-Corredoira

et al. 2005), is the boxy peanut-shaped (B/P) bulge (Erwin & Debattista 2017).

N-body simulations have demonstrated that violent vertical instabilities in newly

formed bars (buckling instability) produce B/P bulges (e.g. Raha et al. 1991a;

Merritt & Sellwood 1994; Debattista et al. 2004), which were later confirmed in two

external galaxies with ongoing buckling instabilities (Erwin & Debattista 2016).

De Vaucouleurs further extended the Hubble sequence to include barred (S0B)

and unbarred (S0A) lenticular galaxies along with weakly barred spiral galaxies

(SAB). De Vaucoulerus also added more characterisation to the spiral structure to

include diffuse spirals and further subdivisions in the tightness of the spiral arms.

Surveys of galactic structure in the local universe have found that spiral galaxies
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make up more than half of the observed galaxies while elliptical and lenticular galax-

ies make up a third of the extragalactic surveys (Loveday 1996; Cappellari et al. 2011;

Willett et al. 2013). Irregular and merging galaxies cumulatively make up around

10% of the observed extragalactic sources (Loveday 1996). Galactic structure has

been shown to be influenced by the environment (e.g. Dressler 1980), with early and

late-type galaxies being more dominant in high-density (cluster) and low-density

regions, respectively.

1.2 Spiral galaxies

The differences between spiral and elliptical galaxies are very apparent, with early-

types having a spheroidal and diffuse structure and late-types having a main disc

with diverse substructure. The formation of elliptical galaxies is assumed to be

solely via major mergers of two or more disc galaxies, but this raises the question on

how disc galaxies themselves form. In the ΛCDM cosmological paradigm, the halos

of disc galaxies like our own (e.g. see Helmi 2020, for review) and M31 (Ibata et al.

2005; Escala et al. 2020) form through hierarchical assembly, i.e. through mergers.

It is assumed that the mergers involved are primarily minor in nature.

The ΛCDM model can also describe the fundamental building blocks of galactic

formation. Initially, the hot gas in the dark matter halo can radiatively cool and

pool in the potential well. This protogalaxy is formed by a fraction of the total gas

mass in the halo, but it contains most of the available angular momentum (van den

Bosch et al. 2001). The gas cools and settles onto near-circular orbits, forming a

rapidly rotating disc. The resulting surface density of the disc will increase, which

will trigger star formation (Kennicutt 1998). With dense gas being located closer to

the centre, due to its lower angular momentum, star formation is initially centrally

concentrated. Star formation then proceeds in gas with higher angular momentum,

which leads to a larger stellar disc at later times, a process that is referred to as
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inside-out formation (Kepner 1999; Nelson et al. 2012; Patel et al. 2013). The inside-

out process can produce a radial age gradient as stars in the centre are the first to

form; such a radial decrease in the average stellar age has been observed in external

galaxies (Bell & de Jong 2000; MacArthur et al. 2004; Williams et al. 2009; Dale

et al. 2016; Frankel et al. 2019). However, other mechanisms can affect the resulting

age profiles, such as radial migration, discussed later in this section.

Most of the stellar mass in spiral galaxies is concentrated in the galactic disc.

The surface density profile, Σ(R), of the stellar disc can be described using an

exponential profile,

Σ(R) = Σ0e
−R/hR (1.1)

where Σ0 is the central surface density and hR is the scale length, defined as the

radius at which the density decreases by a factor of e. The vertical structure of

disc galaxies is usually broken into two separate components referred to as the thin

and thick discs. The thin disc is characterised by stellar populations that are on

average younger and, consequently, more metal-rich than those found in the thick

disc. These disc components are commonly referred to as geometrically thin and

thick, as the disc can also be separated into components by chemistry alone (Hayden

et al. 2017). The vertical density profile of the disc similarly follows an exponential

law,

ρ(R, z) = ρ(R, 0)e−|z|/hz(R) (1.2)

where z is the height from the midplane, ρ(R, 0) and hz(R) are the midplane density

and the vertical scale height at radius R, respectively. The scale height also depends

on the stellar population, with younger stars having smaller scale heights (Binney

& Tremaine 2008a). Studies of the MW’s radial and vertical density profiles have

produced a scale length of hR = 2.5± 0.4kpc for the thin disc (Bland-Hawthorn &
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Figure 1.4: Visualisation of trailing (left) and leading (right) spiral arms, classified

by their orientation relative to the direction of rotation of the galaxy (top middle).

Gerhard 2016) and scale heights of hz ' 300pc and hz ' 900pc for the thin and

thick discs (Bland-Hawthorn & Gerhard 2016; Jurić et al. 2008), respectively.

1.2.1 Spiral formation

Observations have shown that the majority of spiral arms are trailing, i.e. pointed

in a counterrotating direction relative to the disc (Fig 1.4, left), while leading spirals

(Fig 1.4, right) only make up a fraction of spirals (Buta et al. 2003). In galactic

dynamics, the formation of spirals remains a challenging area of research with many

outstanding questions on their evolution and transient nature.

Similar to the initial classification of galaxies, spirals are separated into different

groups based on their direct observations. The most abundant spiral type is the two-

arm spiral which is characterised by two symmetric arms. In surveys of external

galaxies, such as the Sloan Digital Sky Survey (SDSS, York et al. 2000) and the

Galaxy Zoo 2 project (Willett et al. 2013), two-arm spirals were found in ∼ 60%

and ∼ 80% of galaxies, respectively. Two-arm spirals are often present only at
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the inner radii and then split into multiple spirals on the outskirts of the disc,

but there are galaxies where the two-arm spiral spans the entire disc (Elmegreen

& Elmegreen 1982; Grosbøl et al. 2004). Early classifications were focused on the

visible spectrum, but two-arm spirals are also observed in near-infrared light, while

in the optical band, the disc presents multiple, short, and discontinuous spiral arms

(flocculent) (Block & Wainscoat 1991; Thornley & Mundy 1997). This implies that

the spiral affects the entire disc, not just the young populations (visible spectrum).

The current spiral arm classification is completed with flocculent and multi-armed

spirals, which are less frequent than two-arm spirals (Elmegreen 1990). There are

rare cases of single-armed spirals in the universe (de Vaucouleurs et al. 1991), but

any successful spiral formation theory must be able to explain and recreate the

observed spiral phenomena.

The rotation curves observed in disc galaxies have shown that stars in the inner

regions of the disc have shorter orbital periods than those in the outer regions.

Therefore, if spiral arms were material structures, they would naturally wind up

in a few galactic rotations (Wilczynski 1896). However, the abundance of spirals

in disc galaxies implies that spiral arms must be long-lived or transient in nature.

The first breakthrough came from Lin & Shu (1964, 1966) who proposed that the

observed spirals were actually density waves propagating through the galactic disc

and rigidly rotating at a set frequency, referred to as the pattern speed (Ωp). Density

waves would not be affected by differential rotation as they move through the matter

in the disc. The density wave theory also addressed the increased star formation

in the spirals as the gas would be compressed with the approach of the density

wave, thereby inducing star formation. Later work by Schweizer (1976) supported

the density wave theory as red (old) and star-forming (young) spiral arms were

observed to be at similar locations. Red spirals were observed to be more diffuse,

which Schweizer (1976) suggested was caused by the eventual smoothing of newly
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formed stars in the spiral, while the star forming edge of the spiral would be bright

and well defined.

Further advancement in the field of spiral formation came from the discovery of

the swing amplification mechanism (Toomre 1981), a process in which perturbations

in the disc are amplified and then sheared into spiral patterns via differential rota-

tion. The amplification happens when the epicyclic motion of a star matches that of

the spiral pattern. To measure how susceptible a disc is to perturbations, Toomre

(1964) defined the Q parameter, which acts as a critical threshold, beyond which

the disc is stable against axisymmetric perturbations. The Toomre Q parameter is

defined as

Q ≡ σRκ

3.36GΣ
(1.3)

where σR is the radial velocity dispersion, κ is the epicyclic frequency, and Σ is the

surface mass density. For Q > 1, the disc is stable to axisymmetric perturbations,

while for Q < 1, the disc becomes vastly unstable against gravitational collapse and

is generally not realised in galaxies. Swing amplification is significant up to Q . 2

(Binney & Tremaine 2008a). Galaxies with large radial velocity dispersions are

considered radially ‘hot’ and will not be susceptible to axisymmetric perturbations,

while the opposite is true for radially ‘cold’ galaxies. Initially, it can seem that

spiral density waves are bound to dissipate with time as they will inevitably heat

the disc and prevent any further excitation, but that is not always the case. With

the presence of any cooling mechanism in the disc, density waves have the capacity

to continuously reappear as new spirals (Sellwood & Carlberg 1984). Sellwood &

Lin (1989) observed in their N-body simulations that spiral patterns change the

particle distribution in such a way that a new dynamical instability can arise. This

change manifests as a “groove” in the phase space density distribution at a particular

angular momentum, and it, in turn, drives a new instability, referred to as a groove

mode. With all these mechanisms in play, a picture of transient spiral formation
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begins to form in which spirals can be long-lived, affect the disc structure, naturally

dissipate, and then give rise to new spiral waves.

The transient nature of spirals plays a significant role in the galactic disc; Sell-

wood & Binney (2002a) described a mechanism that can redistribute stars from

different parts of the disc, named radial migration. Transient spirals can have a

wide range of Ωp throughout the disc (Sellwood & Carlberg 1984; Roškar et al.

2012), and where Ωp matches the circular frequency of the disc is referred to as the

corotation radius. Stars trapped at the corotation radius can experience changes to

their galactocentric radius while the eccentricity of their orbit remains mostly un-

affected, i.e. a star can remain on a near-circular orbit while experiencing changes

in its angular momentum. If spirals were long-lived, then the star would experi-

ence these changes in perpetuity, but the transient nature of spirals means stars can

escape the corotation radius with a net change to their angular momentum. As a

result, radial migration can lead to a large redistribution of stars without changes

to their radial actions and, therefore, orbital eccentricity, which means the disc will

not experience any radial heating.

To explain how the scattering occurs without affecting the orbital eccentricity,

we obtain the relationship between the angular momentum changes induced by the

spiral and the associated changes in the random velocities of stars. In a rotating

frame of a steady spiral perturbation, neither the specific energy, E, or vertical

angular momentum, L, are conserved. However, the following combination, known

as Jacobi’s integral, EJ (Sellwood & Binney 2002a), is conserved:

EJ = E − ΩpL (1.4)

where Ωp is the pattern speed of the spiral perturbation. From this, we see that the

relation between the changes in angular momentum and energy is

∆E = Ωp∆L (1.5)
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A fraction of the energy increment, ∆E, represents the changes in circular motion

while the remainder represents changes in random motion. By defining JR as any

parameter that quantifies radial kinetic energy, we obtain

dE =
∂E

∂JR
dJR +

∂E

∂L
dL (1.6)

Sellwood & Binney (2002a) showed that if JR is chosen to be the “radial action”,

then the partial derivatives in Equation 1.6 become the angular frequencies of a

star’s radial and azimuthal motions, ωR and Ω, respectively. Substituting these

frequencies into Equation 1.6 and then combining the result with Equation 1.5 gives

∆JR =
Ωp − Ω

ωR
∆L (1.7)

We observe that for stars at corotation, i.e. Ω = Ωp, changes in L do not cause

changes in JR, while for stars outside this resonance they do. The classical Lindblad

diagram in Figure 1.5 illustrates the physical origin of this relation. The solid line

is indicative of circular orbits in a disk galaxy model with a flat rotation curve. The

white region in the upper left half of the diagram is occupied by eccentric orbits,

while the grey shaded region shows inaccessible orbits. The distance from the curve

of circular orbits is a measure of JR, so a higher radial action indicates a more ec-

centric orbit. Equation 1.5 shows that stars are scattered along the lines of constant

slope, Ωp, which at corotation (annotated) is also the tangent to the curve of circular

orbits. We observe that stars that are corotating with the wave do not experience

any changes in JR to first order when they are scattered. However, scattering that

occurs at near or non-circular orbits results in energy being exchanged.

Radial migration complicates our understanding of the evolutionary history of

galaxies, including the picture of inside-out formation, since every annulus is now

assumed not to be evolving in isolation. The scale of this effect was measured in

a MW-like simulation (Roškar et al. 2008a) and shown to cause an upturn in the

age profile as older stars radially migrated to the outer disc. In essence, radial
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Figure 1.5: Classical Lindblad diagram from Sellwood & Binney (2002a) that shows

the relation between L and E. The solid curve indicates circular orbits while ec-

centric orbits fill the region above it. The arrows indicate a number of possible

scatterings of stars by a steadily rotating wave which has a pattern speed (dashed

line) equal to the slope of the tangent at corotation (CR).
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migration is a random walk as stars continuously experience a push and pull at

the corotation radius, leading to older stars having more time to migrate outwards.

This age upturn was also later confirmed through observations in the MW (Frankel

et al. 2020) and external galaxies (Yoachim et al. 2010; Radburn-Smith et al. 2012;

Willett et al. 2013).

1.3 Warps

When viewing external galaxies edge on, their optically visible disc is usually re-

markably flat. However, a peculiar substructure has been long observed in their

HI distribution. This substructure is observed on the outer edges of the disc and

deviates from the midplane symmetry as it extends away from the midplane; this

is a galactic warp. Warps can also be detected in less edge-on and even face-on

galaxies through the kinematic analysis of the HI distribution (e.g. Shostak & van

der Kruit 1984). Two major types of warps have been identified through observa-

tions and subsequently named based on their geometric shape: the S-shaped and

U-shaped warps. Warps that extend in opposite directions on either side of the disc

are the aptly named S-shaped warps. These warps are commonly referred to as

integral warps due to their resemblance to the integral symbol. The edge-on galaxy

NGC 4013 (Zschaechner & Rand 2015) in Figure 1.6 is a clear example of such a

warped galaxy with the composite colour image (top) presenting a flat disc, while

the HI map (bottom) shows a distinct S-shape warp. Warps that extend in the same

direction away from the midplane are the U-shaped warps. Outside of the two main

types, Sanchez-Saavedra et al. (2003) introduced a third warp type where the disc

is only affected from one side, forming an L-shaped warp.

Garćıa-Ruiz et al. (2002b) demonstrated that 20 out of 26 external galaxies in

the WHISP survey are warped. Most of these warps are S-shaped, while only two

are U-shaped and observed in galaxies that are strongly interacting with nearby
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Figure 1.6: Top: composite colour image from SDSS (York et al. 2000, retrieved

via Aladin sky atlas, https://aladin.u-strasbg.fr) of NGC 4013 which shows a flat

optical disc. Bottom: The HI zeroth-moment map of NGC 4013 Zschaechner &

Rand (2015). The outer regions of the edge-on galaxy are clearly warped.
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companions. Additionally, Garćıa-Ruiz et al. (2002b) noted a possible environmen-

tal dependence in warps as galaxies in their sample had larger and more asymmetric

warps in rich environments than in poor environments. However, due to the overall

ubiquity of warps in their sample, Garćıa-Ruiz et al. (2002b) did not consider interac-

tions with the environment as the sole origin of warps in disc galaxies. Ann & Park

(2006) analysed the disc morphologies of 385 edge-on galaxies and demonstrated

that 73% of galaxies in their sample had warps: 51% S-shaped and 22% U-shaped.

Ann & Park (2006) observed a higher frequency of warps in poor environments

rather than in rich ones, somewhat consistent with the findings of Garćıa-Ruiz et al.

(2002b).

Warping has also been observed in the stellar discs of external galaxies, although

their amplitude is smaller than the ones found in HI (Ann & Park 2006). There

are rare cases of strong warping in stellar discs that come close to matching the HI

warp, but in those cases the galaxies are interacting, e.g. Mkn 305 and Mkn 306

(Kollatschny & Dietrich 1990). Stellar warps could be the result of tidal interactions

warping the outer stellar disc or of the gas in HI warps forming stars and, therefore,

a stellar warp. In external galaxies, star formation has only been inferred and not

directly observed: UV-bright stellar complexes were located far outside the optical

disc (e.g. Zaritsky & Christlein 2007a; Herbert-Fort et al. 2010a) where warps are

usually observed and in one case these complexes were associated with the HI warp

(Thilker et al. 2005a).

The MW was the first warped galaxy to be observed. The warp was observed

in the HI gas using 21-cm hydrogen-line observations by both Burke (1957) and

Kerr (1957a) who independently discovered a ∼ 300pc maximum deviation of the

galactic plane at R ∼ 12kpc. Warping was later observed in the outer optical (Arp

1964) and HI (Newton & Emerson 1977) discs of M31. The stellar disc of the MW

was initially discovered to be warped in the red clump (RC) stars (López-Corredoira
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et al. 2002a). López-Corredoira et al. (2002a) compared the amplitudes of the HI

(Burton 1988) and RC warps and found that they were coincident in both orientation

and maximum amplitude. Similar to the HI, the RC warp was measured for both

ends of the warp, referred to as the south and north sides for the warp below and

above the plane, respectively. The maximum displacement for the south side was

measured to be |z| ∼ 1.5kpc at a radius of R = 14kpc, while the north side only

matched the HI warp up to R = 13kpc. Chen et al. (2019b) used more updated

HI data than López-Corredoira et al. (2002a) (Levine et al. 2006a) and, in their

case, the RC warp did not match the gas warp, which they assumed was due to the

sampling incompleteness of the RC stars. The warp in the MW was also traced in

pulsars (Yusifov 2004) and dust (Drimmel & Spergel 2001), however, both samples

could not match the amplitude of the HI warp, either due to large uncertainties

(pulsars) or a different amplitude (dust).

More recently, with the release of the Wide-field Infrared Survey Explorer (WISE )

catalogue of periodic variables, Chen et al. (2019b) compiled a sample of classical

Cepheids and observed that they trace the Galactic warp. Classical Cepheids are

a type of young variable star, making the Chen et al. (2019b) result a significant

breakthrough in the study of warps as it implied the presence of recent star forma-

tion in the warp. When compared to the previous warp tracers (dust, pulsars, RC)

Cepheids are a closer match to the HI warp, further implying that there may be

ongoing star formation in the gas warp.

The structure of the warp can be modelled as a series of concentric rings with

increasing inclination, as shown in Figure 1.7. The imaginary line that marks the

intersection between the concentric rings and the midplane is called the line of nodes

(LON, red dashed line). This method is referred to as the “tilted ring model”, and

it is a vital tool in the study of galactic warps. The tilted-ring model can uncover

warps in more face-on galaxies when applied to the HI velocity field (e.g. Rogstad
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Figure 1.7: The tilted ring model for the warp. The red dashed line is the line of

nodes (LON), which indicates the intersection between the rings and the midplane.

et al. 1974; Bosma 1981a,b).

By deconstructing the HI data of 12 external galaxies into tilted rings and

analysing their properties, Briggs (1990a) was able to establish three rules for warp

behaviour:

1. The warp is detected between the isophotal radii at which the B-band sur-

face brightness is 25 and 26.5 mag/arcsecond2, referred to as R25 and RHo,

respectively.

2. The LON is straight within RHo

3. Outside of RHo, the LON lies along a loosely wound, leading spiral

The first rule was a key discovery in the study of warp formation as it determined

that gas warps are located beyond the optical region of a galaxy. The second Briggs

rule could only be confirmed recently in the Milky Way with the exquisite data

from Chen et al. (2019b) and the Gaia Collaboration et al. (2018a), as previous

18



CHAPTER 1

studies were not able to test it due to large uncertainties in the data (Burton 1988;

Drimmel & Spergel 2001; López-Corredoira et al. 2002a). By assuming that the

LON does not vary with R, Chen et al. (2019b) were able to determine the mean

galactocentric azimuth of the LON with relatively low uncertainties and a final value

of φ = 17.5◦ ± 1.0◦ (formal errors) ±3.0◦ (systematic errors).

1.3.1 Cause of the warp

The cause of galactic warps is still a highly contested question, with extensive work

being done in numerical simulations. Many mechanisms of warp formation have been

proposed (see the reviews of Binney 1992; Sellwood 2013), but it is uncertain which

of them is more prevalent or what combination of them is more likely to form warps,

but two of the mechanisms we touch upon have an environmental dependency.

Tidal interactions

One of the leading hypotheses on how warps form, especially in the MW, is via

satellite interaction. There are many possible culprits that could have had a tidal

interaction strong enough to induce the Galactic warp we observe today. The two

key perturbers in the MW are the currently infalling Large Magellanic Cloud (LMC,

Weinberg & Blitz 2006; Kalberla et al. 2007a; Laporte et al. 2018a,d; Petersen &

Peñarrubia 2021) and the Sagittarius dwarf galaxy (Bailin 2003; Purcell et al. 2011a;

Gómez et al. 2013a) which is in the process of being accreted.

The recent detection of the MW reflex motion due to LMC’s infall (Petersen

& Peñarrubia 2021) indicated that the gravitational perturbations induced by the

LMC are paramount in the dynamical models of the MW. However, the scenario

in which the LMC-induced perturbation forms the Galactic warp has gone through

many changes. The LMC was initially considered to be too far (∼ 50kpc) and not

massive enough (∼ 2% of the MW mass) to induce the observed warp (e.g. Hunter
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& Toomre 1969a). Further studies showed that both Magellanic clouds could cause

a wake in the dark matter halo (Weinberg 1995). Garćıa-Ruiz et al. (2002a) used

N-body+ring models to account for the wake in the dark matter halo, however,

they could not produce satisfactory results even when their satellite had a bound

mass larger than the highest LMC estimate (∼ 1.5 × 1010M�, Schommer et al.

1992). In addition to the inflated mass, the resulting LON in Garćıa-Ruiz et al.

(2002a) was also tightly wound, with the growing warp pattern being smeared and

losing coherence. Using the perturbative method developed in Weiland et al. (1994),

Weinberg & Blitz (2006) demonstrated that the resulting tidal field of an LMC-like

satellite with a bound mass ∼ 2 × 1010M� could induce a warp matching the one

observed in the MW.

More recently, with the improved measurements of the LMC’s proper motion

(Kallivayalil et al. 2006, 2013) and the use of N-body simulations with hydrody-

namics, Laporte et al. (2018d) were able to match the phase and the antisymmetrical

shape of the MW warp. However, Laporte et al. (2018d) still had quantitative dis-

crepancies with the MW warp, including much higher bound mass estimates for the

LMC (0.3 – 2.5× 1011M�), and height deficits of ∆Z = 0.7 kpc at both R = 16 kpc

and R = 22 kpc. A significant limitation of the LMC warp formation scenario is

the uncertainty in the mass estimate of its key perturber. However, using the dy-

namical timing argument (method of estimating the total mass in the Local Group),

Peñarrubia et al. (2016) have indicated that the total mass of the LMC may have

been greatly underestimated (∼ 0.25× 1012M�).

The relatively recent (∼ 0.4 – 1 Gyr) and close (R ∼ 20 kpc) passage of the

Sagittarius dwarf galaxy (Sgr) through the MW disc makes it a suitable candidate

for the perturbing source that could give rise to the Galactic warp. Unlike the

LMC, Sgr has passed through the Galactic disc numerous times, is closer than the

LMC, and has a mass range between ∼ 108 – 109 M� (Ibata et al. 1997; Ibata &
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Razoumov 1998a), making it a more likely candidate as the key perturber. Laporte

et al. (2018d) performed similar experiments in their simulations but with a Sgr-like

satellite mass of 1011M� and observed that the warp amplitudes were similar to those

produced with the heavy LMC model. However, Laporte et al. (2018d) also observed

that the warp in the Sgr scenario was generally out of phase with the observed HI

warp. Additionally, Laporte et al. (2018d) demonstrated that the Fourier decom-

position of the 〈z〉 distribution in the disc produced higher-order Fourier modes.

These higher-order modes are most likely due to the numerous approaches of the

Sgr-like satellite. As a result, both satellites provide a significant perturbing force

that induces warps in the simulated discs, though they do not successfully match

the profile of the Galactic warp.

Disc-halo interaction

Self-consistent N-body simulations (e.g. Debattista & Sellwood 1999) have shown

that galactic discs embedded in a rotating halo develop a warp via dynamical friction

when the angular momentum of the disc and halo are misaligned. The simulations

in Debattista & Sellwood (1999) are purely N-body with the gas substituted by

an HI component modelled as a sheet of test particles. The resulting warps mimic

Briggs’ rules of warp behaviour as the LON traces out a leading spiral relative to the

inner disc and lasts longest in the HI component. Ideta et al. (2000) and Jeon et al.

(2009) were able to recreate these results by producing S-type warps in a variety of

misaligned halos. The misalignments described in this mechanism are expected in

hierarchical models of galaxy formation (Quinn & Binney 1992) and therefore can

account for the high fraction of warps in the universe. Evidence of this mechanism

is harder to confirm through observations. However, the tilted ring analysis of the

HI velocity field in NGC 5055 (Battaglia et al. 2006) provided some support as the

inner flat and outer warped HI discs have different kinematic centres and systemic
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velocities. Battaglia et al. (2006) suggested that these differences could have been

brought on by a halo with a different orientation and offset with respect to the disc.

Gas accretion

The formation of spiral galaxies occurs with the pooling of cold gas in the potential

well of the dark matter halo, but, as noted previously, the resulting disc only contains

a fraction of the total gas. Inside the virial radius of the dark matter halo, there is

gas that comprises the circumgalactic medium (CGM). The CGM of the MW has

been extensively studied, and a hot gas (T ∼ 106K) component has been discovered

through the stellar spectra of distant stars (Spitzer 1956). This component was

named the hot gas corona, and since then, it had been observed in external galaxies

ranging from ellipticals to spirals (e.g. Bregman & Lloyd-Davies 2007; Putman et al.

2012; Tumlinson et al. 2017). The hot gas corona is a key component of the CGM,

however, there are also colder components within the halo’s virial radius. The

total mass of the cool gas (T . 105) contained in the CGM of the MW has been

estimated to be Mg,cool ∼ 9× 1010M� (Tumlinson et al. 2011, 2017; Prochaska et al.

2017), while the mass of the hot gas corona (T & 106K), has been estimated to be

Mg,hot ∼ 1.5× 1010M� (Anderson & Bregman 2010).

The gas in the hot gas corona is ionised and, therefore, capable of cooling via

Bremsstrahlung radiation (“braking radiation”), and as the gas cools, it sinks to

lower radii. In a scenario where the angular momentum of the hot gas corona

is misaligned with the galactic disc, the gas can reach the disc misaligned and,

therefore, form a galactic warp. This has been proposed to be one of the many

possible causes of galactic warps (e.g. Roškar et al. 2010a). Cold gas accretion has

been inferred in external galaxies through observation of large HI complexes on the

outskirts of the disc (Sancisi et al. 2008a) and partially inferred in the MW (Richter

2017; Fox et al. 2019; Qu et al. 2020). The gas accretion scenario can address some
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of the issues in contemporary theories of warp formation. Firstly, misaligned gas

accretion can address the persistence of warps in disc galaxies as it is continuous

rather than episodic. Secondly, gas accretion can also address the near-constant star

formation rate in the Solar Neighbourhood (Binney et al. 2000a; Twarog 1980a) as

the Galactic gas reserve is continuously refilled.

Roškar et al. (2010a) studied warps that formed via gas accretion in a fully

cosmological simulation of a MW-like galaxy with a hot gas corona that has its

angular momentum misaligned with that of the disc. One of the more striking

results from Roškar et al. (2010a) are the stellar populations forming in the warp

throughout the simulation’s evolution, referred to as warp stars. The warp stars in

their simulation form in the misaligned accreting gas and settle into the geometric

thick disc of the galaxy. If such tracer populations were detected in the MW disc,

they could indirectly confirm that the Galactic warp formed via accreting misaligned

gas.

1.4 Chemical evolution

The study of galactic chemical evolution takes into account the formation of chemical

elements and their redistribution. Early stellar populations form in the primordial

gas of galactic discs, and through their evolution they fuse hydrogen and helium into

heavier elements (Burbidge et al. 1957). The fusion products are then redistributed

back into the interstellar medium (ISM). Redistribution occurs in the form of stellar

winds throughout a star’s lifetime and as a supernova at the end of their evolution.

Both processes change the ISM by injecting it with energy and enriching it with

metals, the latter being incorporated in future stellar populations. This metal en-

richment proceeds with each new stellar population, increasing the metal content of

the ISM and of future stars. Metal enrichment does not occur in isolation as different

factors affect the enrichment rate, including the frequency of supernovae explosions
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(Adams et al. 2013), the galactic inflow and outflow rates (Lu et al. 2015), and the

initial mass distribution (Fontanot et al. 2017). Stars fuse heavier elements in their

cores, while their surface metallicity, which is observable, is indicative of the ISM

at the time of formation. By observing the metallicity of stellar populations and

the state of the ISM in the MW, a chemical evolution model can be constructed,

putting further constraints on the evolutionary history of our Galaxy.

One of the earliest chemical evolution models is the Simple Model (van den Bergh

1962; Schmidt 1963; Tinsley 1980) where the key assumptions are that the system

is isolated (no gas outflows or inflows) and the gas is well mixed (instantaneous

recycling) at all times. These assumptions are inconsistent with the formation and

evolution of galactic systems, and the resulting stellar populations show discrepan-

cies with observations. The Simple Model has a strong shortage of metal-poor stars,

known as the G-dwarf problem (Searle & Sargent 1972; Pagel & Patchett 1975; Hay-

wood 2001), and it does not produce enough K-dwarfs (Casuso & Beckman 2004)

and M-dwarfs (Woolf & West 2012). These inconsistencies are resolved by allowing

gas infall into the system (Tinsley 1975; Hartwick 1976; Tinsley 1977). The simu-

lations used in this thesis avoid the issues of the Simple Model by approximating

the cosmological context in which real galaxies form (see Section 1.6.2). As a result,

the galaxies analysed within this thesis produce metallicity distributions similar to

those observed in the MW (e.g. APOGEE, Abolfathi et al. 2018; GALAH, Buder

et al. 2020)

1.4.1 Chemical space

One of the more important diagnostics in the chemical evolution of galaxies is the

relative production of chemical elements. Elemental abundances can help infer differ-

ent properties of stellar populations, including their evolutionary history and origin.

An abundance relationship that is used throughout this thesis is between the iron
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abundance ([Fe/H]) and the enhancement of α-elements (O, Mg, Si, S, Ca, and Ti),

referred to as chemical space. Enhancement is defined as the fractional abundance

of α-elements versus iron, [α/Fe]. The presence of α-elements plays an important

role in the study of chemical evolution. Most α-elements are produced in massive

short-lived stars which collapse as Type II supernovae (SNII), while a substantial

source of Fe in galaxies is from Type Ia supernovae (SNIa) which are longer-lived

sources.

Another important diagnostic is the age-metallicity relation (AMR). AMRs show

the relationship between the age and metallicity of stellar populations and, in a

closed model, it is expected to exhibit a negative trend with older populations being

metal-poor and younger populations being more metal-rich. In the MW, the AMR is

surprisingly flat and broad in shape, even when accounting for the large uncertainties

in the estimation of stellar ages (Casagrande et al. 2016). The current explanation

for the flatness of the Galactic AMR is the contamination of annuli by stars of

different metallicities radially migrating into the region.

Trends in chemical space

Different stellar populations can be identified in chemical space. The distribution of

stars in chemical space ([Fe/H]-[α/Fe] plane), shows two distinct stellar populations

in the Solar Neighbourhood (e.g., Reddy et al. 2006; Adibekyan et al. 2012; Nidever

et al. 2014; Snaith et al. 2015). The first track has near-solar [α/Fe] values across

a large range of metallicities. The second track has high-[α/Fe] (α-rich) values at

low metallicity until [Fe/H] ∼ −0.5, after which [α/Fe] experiences a downturn as

a function of the metallicity until it reaches and merges with the solar-[α/Fe] track

at [Fe/H] ∼ 0.2 (Hayden et al. 2015). The delayed onset of SNIa is the likely cause

of the downturn in the α-rich track as, prior to the downturn, SNII are the primary

source of metals in the ISM. After the downturn, SNIa begin to contribute metals,
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Figure 1.8: The observed [Fe/H] versus [α/Fe] distribution for stars in the solar

neighbourhood (1/$ < 3 kpc) from the combined GALAH-APOGEE catalogue

(Nandakumar et al. 2020). The left panel is down-sampled and shows only 20% of

the observed data points. The right panel shows the number density distribution

of the entire sample in the Solar neighbourhood, with contours denoting 1, 2, 3 σ

of the overall densities. There are two sequences in the distribution of stars in the

[Fe/H]-[α/Fe] plane, one at Solar-[α/Fe] abundances, and the other at high-[α/Fe]

abundances.

26



CHAPTER 1

enriching the ISM primarily in iron peak elements and, consequently, lowering the

[α/Fe] ratio. Figure 1.8 shows the chemical space in the Solar Neighbourhood, which

demonstrates the two populations.

The vertical scale-height of the α-rich population has been measured to be much

larger than that of the Solar-[α/Fe] stars (e.g., Bovy et al. 2012a,b,c; Hayden et al.

2015), indicating that they belong to thick disc. The α-rich (thick disc) sequence

was found to be similar over a radial range of 5 < R/kpc < 11 (Nidever et al.

2014). The general properties that are observed in these thick disc populations are

their shorter radial scale-lengths, larger vertical scale-heights, and hotter kinematics

than most stars in the Solar neighbourhood (Cheng et al. 2012; Anders et al. 2014).

However, some thick-disc stars have been observed to have Solar-[α/Fe] abundances

and very high metallicities (e.g., Adibekyan et al. 2012; Nidever et al. 2014; Snaith

et al. 2015). Additionally, a separate metal-poor and α-rich population was recently

observed in the chemical space of the Solar neighbourhood, hypothesised to be the

result of past merger events (Helmi et al. 2018; Grand et al. 2020).

Warp contamination

The various mechanisms of warp formation described in Section 1.3.1 can have

different potential effects on the chemical space of the galactic disc. In the context

of chemical evolution, one mechanism of particular interest is the accretion of gas

from the CGM. The gas in the CGM is not pristine due to stellar feedback blowing

contaminated gas into the corona, however, the CGM is overall metal-poor. Thus,

one can assume that the warp populations described in Roškar et al. (2010a) form

in the metal-poor accreting gas and, as a result, are expected to occupy the low

metallicity and low-α region of chemical space.
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1.5 Gaia

The launch of the Gaia space observatory in late 2013 has impacted the study of

the MW with high-resolution astrometric measurements of over 1.8 billion sources.

Prior to the launch of the Gaia mission (Gaia Collaboration et al. 2016c), reliable

stellar kinematics were limited to the Solar neighbourhood (Holmberg et al. 2009)

and large scale catalogues had limited resolution (e.g. Hipparcos, Robin et al.

2012). In this section, we will describe the current and upcoming data releases of

the Gaia mission.

The first data release (DR1, Gaia Collaboration et al. 2016a) delivered astro-

metric data for 1.1 billion sources. However, the data in DR1 had systematic errors

(Lindegren et al. 2016) and did not have full 6D coordinates due to the absence of

radial velocity measurements. The second Gaia data release (DR2, Gaia Collabora-

tion et al. 2018a), provided data for 1.3 billion sources with a more reliable method

of verifying the accuracy of the astrometric solution (Lindegren et al. 2018) and ra-

dial velocity measurements for 7 million sources (RV sample, Soubiran et al. 2018).

The radial velocities were computed from the spectra of a stellar subset with mag-

nitudes brighter than G = 12 using the narrow Gaia Radial Velocity Spectrometer

(RVS, Cropper et al. 2018; Sartoretti et al. 2018).

The early instalment of the third Gaia data release (eDR3, Gaia Collaboration

et al. 2020; Fabricius et al. 2020), increased the total number of observed sources

to an unprecedented ∼ 1.8 billion. The parallaxes, proper motions, and the (GBP−
GRP) colour were measured for 1.5 billion of those sources. Gaia eDR3 shows a

significant improvement over DR2, with the systematic errors in the astrometry

being suppressed by 30% − 40% for the parallaxes and by a factor ∼ 2.5 for the

proper motions (Gaia Collaboration et al. 2020). The full third data release, Gaia

DR3, will add radial velocities, spectra, light curves, and other parameters for a

large subset of the sources (Fabricius et al. 2020).
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One of the main challenges in astrometric catalogues are the distance estimates,

a challenge also present in Gaia. The distance to a source can be estimated by

measuring the parallax, $, and taking its inverse, known as the parallax distance,

dp ≡ 1/$. The majority of stars in the Gaia releases are distant and faint, which

results in large $ uncertainties, making parallax distances unreliable. Bailer-Jones

et al. (2018) demonstrated that the precision of the Gaia parallax distances is greatly

reduced and becomes increasingly biased beyond a few kpc. Ting & Rix (2019) later

confirmed this drop in precision by cross-matching Gaia DR2 with a red clump sam-

ple from APOGEE (Ting et al. 2018) which are standard candles that can provide

accurate photometric distances across the MW. Ting & Rix (2019) showed a strong

divergence between the photometric and parallax distances at larger heliocentric

distances, d, with a median difference of ∼ 0.6 kpc at d = 4 kpc between them.

By estimating the stellar distances using a probabilistic approach, it is possi-

ble to reduce these uncertainties. Bailer-Jones et al. (2020) estimated the stellar

distances using a prior constructed from a three-dimensional model of our Galaxy,

which included interstellar extinction and Gaia’s variable magnitude limit. They

provided two distance estimates: the first estimate is based purely on the parallax,

and the other accounts for the parallax, colour, and magnitude of a star (photogeo-

metric distance). Bailer-Jones et al. (2020) found that the photogeometric estimate

had higher accuracy and precision for stars with poor parallaxes (faint). Lastly,

Schönrich et al. (2019) derived Bayesian distances for all the stars in the RV sam-

ple of Gaia DR2 and used the method from Schönrich et al. (2012) to validate the

resulting distances. As a result of their work, Schönrich et al. (2019) produced a

sample of ∼ 7× 106 stars with unbiased distances and, therefore, more reliable 6D

coordinates in the Galactocentric frame.

The utility of the Gaia data is enhanced when cross-matched with ground-based

spectroscopic surveys. The combination of astrometric and spectroscopic (e.g. radial
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velocities and chemical abundances) data creates a robust framework to study the

evolutionary history of the MW. The unprecedented scale of the Gaia project is

reflected in the planning of contemporary ground-based spectroscopic surveys, as one

of their aims is complementing the available and upcoming astrometric data. Cross-

matches have and are being performed with surveys such as APOGEE (Majewski

et al. 2017), GALAH (Buder et al. 2020; De Silva et al. 2015), GAIA-ESO (Gilmore

et al. 2012), and RAVE (Steinmetz et al. 2006; Casey et al. 2017; Kunder et al.

2017) which have been publishing datasets alongside the Gaia releases. As the Gaia

mission operates and accumulates data, with the full DR3 release planned for 2022,

future spectroscopic surveys such as the Milky Way Mapper (Kollmeier et al. 2017)

and MOONS (Cirasuolo et al. 2012) will continue to complement the Gaia data.

1.5.1 Selected results from Gaia

Results from the Gaia DR1 and DR2 releases have been extensive and revolutionary

in the field of Galactic astronomy (see the reviews of Helmi 2020; Brown 2021). In

this section, we will describe selected results from Gaia in the Solar neighbourhood

that relate to the work done in this thesis, particularly the vertical disc structure

and chemodynamics.

Using the Gaia DR1 catalogue, Schönrich & Dehnen (2018b) were able to de-

rive the azimuthal, vϕ, and vertical, vz, velocities for ∼ 1.8 × 105 stars that were

situated along narrow cones in the centre and anti-centre directions. As a result of

their kinematic analysis, Schönrich & Dehnen (2018b) found a linear increase in the

mean vz, 〈vz〉, distribution versus the vertical angular momentum, Lz and vϕ. This

increase was later confirmed in Huang et al. (2018b) who used a cross-match of DR1

with a spectroscopic survey which provided 6D coordinates for ∼ 1.2 × 105 stars.

This increase is considered to be the imprint of the MW warp on the local stellar

kinematics. A more peculiar result was the presence of a wave-like pattern in the
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〈vz〉 distribution in both the centre and anti-centre directions, possibly caused by a

winding warp or a bending wave.

Using the Gaia DR2 catalogue, Antoja et al. (2018) selected ∼ 106 stars in

the Solar annulus with full 6D coordinates, and discovered a spiral in the vertical

phase-space (z-vz plane). The presence of this phase-space spiral is indicative of

ongoing vertical phase mixing in the Solar Neighbourhood in response to vertical

perturbations. The source of the perturbations is a subject of debate, however,

a widely accepted scenario is that the perturbation was caused by bending waves

propagating through the MW disc. A popular hypothesis is that bending waves

were excited by the recent passage of the Sgr (Ibata & Razoumov 1998a; Dehnen

1998a; Laporte et al. 2019a) which was brought up in Section 1.3.1 as a possible

cause of the MW warp. The accretion of misaligned cooling gas is another potential

cause of warps (Section 1.3.1) and a potential source of bending waves in galactic

discs (Gómez et al. 2017). With an irregular accretion rate, the gas can continuously

perturb the disc, giving rise to bending waves.

In observational astronomy, stellar age is a parameter primarily estimated via

stellar models (Soderblom 2010) and it is vital in the study of Galactic archaeology.

Stellar ages are prone to large uncertainties when estimated with most models, but

there are exceptions such as age estimates from asteroseismology that, in the best

case scenario, are accurate to ∼ 10% (Soderblom 2010). Asteroseismology further

constrains the widely used stellar models using the oscillation modes detected in

stellar photometry. However, the requirement of high-quality photometry over a

long time baseline and the inherent limitations in the stellar models make it unsuit-

able for Gaia. A method that is widely used in modern astrophysics and has been

successfully applied to the Gaia cross-matches is isochrone fitting. Isochrones are

curves of constant age in the Hertzsprung-Russell diagram (HRD) that are calcu-

lated by fitting evolutionary models of main-sequence stars to the observed HRD.
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The uncertainties from isochrone age estimates are, on average, very large ranging

from 20% to 50% (Jørgensen & Lindegren 2005), but by constraining the stellar

models with more observable parameters, the accuracy can be improved. Sanders &

Das (2018a) calculated the distance, age, and mass estimates for ∼ 3 million stars

from the cross-match of Gaia DR2 and six spectroscopic surveys; we refer to this

dataset as SD18. The estimates were produced using a Bayesian framework that

characterised the probability density function of the three parameters using photo-

metric, spectroscopic and astrometric data. The ages in SD18 are estimated to be

accurate to 15%− 20% for giant stars and 20%− 30% for turn-off stars. A dataset

of this scale, though relatively small when compared to the entire Gaia dataset,

becomes a valuable tool in studying stellar populations based on their kinematics,

chemistry, and age.

1.6 Simulations

Numerical simulations are essential in the study of secular and chemical processes

in galaxies and can be broadly characterised by the phenomena that they account

for in their models. A widely used type of simulation, due to its relatively low

computational cost, is one that only accounts for the gravitational interactions be-

tween particles, referred to as N-body. The other broad group of simulations are

hydrodynamical, which, in addition to gravitation, account for the hydrodynamical

processes that take place in gas (e.g. star formation, feedback, chemical enrichment).

The inclusion of hydrodynamics significantly increases the computational costs of

simulations, however, it provides further insight into many evolutionary processes

that occur in galaxies.
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1.6.1 N-body simulations

The first N-body simulation was carried out by Holmberg (1941) using a set-up

of 37 lightbulbs to model the tidal deformations of two merging spiral galaxies.

The computational limitations of the time prevented any significant progress in

the use of N-body simulations, but with the development of faster computers, N-

body simulations would become more commonplace. Using variable time-steps, von

Hoerner (1960) was able to limit the number of force computations and successfully

ran the first fully computational N-body simulation with N = 16 particles. In the

span of a decade, the particle counts in such simulations would increase by factors of

∼ 5 (Aarseth 1963) and ∼ 20 (Peebles 1970) and with further advances in computer

technology and calculation methods, current N-body simulations can reach particle

counts of N ∼ 1012 (Potter et al. 2017).

Variable timesteps significantly reduced the computation times in simulations,

however, older simulations (e.g. von Hoerner 1960) with N particles were performed

using direct integration between individual particle pairs, increasing the computa-

tions as N2. To reach the particle counts and running times of modern simulations,

the methods of approximating gravitational calculations had to improve. The tree

algorithm, first implemented in Appel (1985) and further developed by Barnes &

Hut (1986), is a popular method used in modern simulations. The main principle

of the tree algorithm is the construction of an octree, a recursive sub-division of

space into eight equal octants until each spatial cube, referred to as a leaf, contains

a single particle. Upon construction, the code will begin traversing the octree and

evaluating at each stage if the following criterion is satisfied

l/D < θ (1.8)

where l is the size of the cell, D is the distance between the particle and cell’s centre

of mass (COM), and θ is a dimensionless parameter that controls the accuracy,

referred to as the opening angle. The opening angle is commonly set to be θ ∼ 1,
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and when the condition in Eq. 1.8 is satisfied, the particles are merged into a pseudo-

particle that inherits the cell’s COM. When the condition is not satisfied, the cell is

further opened up into sub-cells, and the process is repeated. The traversing method

accounts for both densely and loosely distributed particles, thereby significantly

reducing the number of calculations needed to integrate the system. Compared to

the direct integration methods, the number of calculations in tree code simulations

with N particles scales as N log(N), a significant improvement.

The advances in computing power and tree code methods improved the scale

of N-body simulations, but their resolution, when compared to real astrophysical

systems, is significantly limited. As a result, particles are usually modelled with

larger masses, e.g. the particles found in the models used in this thesis have a

mass range of ∼ 105− 106M�, but these high masses lead to unphysical interactions

between particles. Close encounters between massive particles require shorter time-

steps, thereby making time integration more expensive. Massive particles can also

experience large-angle scatterings and the formation of bound particle pairs. These

issues can be circumvented by representing the particles as extended masses, i.e.

smoothing their potentials instead of having them interact as point sources. This

potential smoothing will soften the interactions between massive particles when

close encounters occur. A common smoothing potential that is used in modern

simulations is the Plummer sphere:

Φ(r) =
1√

r2 + ε2
(1.9)

where r is the separation between the particles and ε is a constant generally referred

to as the smoothing length. White (1979) derived the minimum smoothing length

required to avoid unrealistic scattering between particles:

ε ∼ Gµ

σ2
(1.10)
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where µ and σ are the mean mass and velocity dispersion. There is no clear upper

limit for the smoothing length, but as ε increases, there will be further loss of

spatial resolution in the simulations. A typical value set for the smoothing length

in cosmological simulations is 2− 4% of the mean inter-particle distance.

1.6.2 Smoothed particle hydrodynamics

N-body simulations only model the gravitational interactions between particles and

are a useful tool in the study of large-scale structures (DM halos), the dynamics of

stellar discs, and dense stellar systems (clusters). The inclusion of gas hydrodynam-

ics will more accurately simulate the structural and chemical evolution of galaxies.

Smoothed particle hydrodynamics (SPH) account for the hydrodynamical processes

by partitioning the gas into particles and following the motions of the particles with

a Lagrangian approach. The use of a Lagrangian approach makes the SPH method

especially useful in the study of galactic discs as it conserves angular momentum.

This method was originally introduced by Lucy (1977), and Gingold & Monaghan

(1977) and has been widely used in galactic simulations since then (e.g Monaghan

1992, 1997, 2005; Springel 2005; Rosswog 2009; Roškar et al. 2010a). Every gas par-

ticle in SPH is assigned a smoothing length, h, such that a set number of particles

(neighbours), Nsmooth, is contained within 2h. The simulations used throughout this

thesis use the SPH method with the recommended value of Nsmooth = 32 (Stinson

et al. 2006a).

Hydrodynamical processes that occur in the gas can be accounted for in N-

body+SPH simulations, including the formation of stars and their effect on the ISM.

Stellar particles form when gas particles have their number density exceed a set value

(star formation threshold), their temperature is below a certain threshold, and the

gas is part of a converging flow. A formed star inherits the chemical composition and

set mass fraction of the parent gas particle. The resulting star particles experience
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evolutionary processes such as stellar winds, Type Ia, and Type II supernovae, all

resulting in the redistribution of gas and injection of energy into the ISM. These

processes provide a feedback mechanism in galactic simulations.

Leftover gas is blown into the ISM via stellar winds, while the supernovae redis-

tribute the now enriched gas and inject their energy into the ISM. The supernovae

energy is of the order ∼ 1050erg and is powerful enough to heat the surrounding gas

to temperatures of T & 106K, i.e. hot enough to be ejected from the galactic disc

(Dekel & Silk 1986). Supernovae regulate star formation by heating the surround-

ing gas and preventing it from collapsing into new stars (Silk 2003). As the star

particles represent entire stellar populations and the supernovae are very short-lived

processes, supernovae cannot be modelled directly in simulations without the use

of sub-grid methods. One of the currently accepted methods is the one prescribed

by Stinson et al. (2006a) which uses the blastwave approximation (Chevalier 1974;

McKee & Ostriker 1977) to calculate the maximum blast radius within which gas

cooling is temporarily suppressed. The supernova phase sets the timescale of the

cooling and, realistically, should be of the same order as the Sedov phase, during

which gas cannot cool efficiently. This phase is estimated to last for ∼ 10−6Gyr

(Padmanabhan 2001), which is far below the temporal resolution of our simulations.

We, therefore, use a cooling time equivalent to the snowplough phase of the super-

nova during which the excess thermal energy is radiated away, and the momentum

of the blastwave is conserved (McKee & Ostriker 1977; Cioffi et al. 1988).

1.7 Context for this thesis

The origin of galactic warps continues to be a subject of debate with numerous

hypotheses being investigated both theoretically and in simulations (Sellwood 2013).

A topic that has not been studied as extensively is the role a warp has on galactic

structure, more specifically a warp formed via gas accretion (e.g. Roškar et al. 2010a;
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Gómez et al. 2017). The recent discovery of the Gaia phase-space spiral (Antoja

et al. 2018) indicates that the MW disc is being perturbed. Some sources that

are hypothesised to be the source of this perturbation are also potential causes of

the Galactic warp (Ibata & Razoumov 1998a; Dehnen 1998a; Laporte et al. 2018d,

2019a). Gómez et al. (2017) used fully cosmological simulations to show that all

prevalent warp forming mechanisms can create complex vertical substructures, but

the gas accretion scenario produced bending waves in the youngest populations and

cold gas only. These results could imply that the perturbing force of accreting gas

is only strong enough to affect younger midplane stars. In this thesis, we look at

isolated N-body+SPH simulations and quantify the impact misaligned accreting gas

has on the disc.

Using N-body+SPH simulations, Roškar et al. (2010a) were able to show that

stars born in the warp populate the geometric thick disc, which is indicative of a

vertically hot population. Additionally, the medium in which warp stars form, i.e.

metal-poor accreting gas, implies that warp stars could occupy a unique region of

chemical space. With the discovery of young stellar populations in the Galactic warp

(Chen et al. 2019b), an important question is raised regarding warp stars settling into

the disc and how distinct they are given the current observations. By studying the

chemical space of N-body+SPH simulations, we will investigate how warp stars in

the Solar Neighbourhood differ from other stellar populations in chemical, dynamical

and kinematic properties. After defining these properties, we will test how likely

warp stars are to be observed in the Gaia catalogue and produce a sample of warp

star candidates. With available ages for the warp star candidates (Sanders & Das

2018a) this thesis will attempt to give an age estimate for the Galactic warp and

determine if it is a long-lived structure.
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Simulations considered

In this chapter, we describe the simulations used throughout this thesis which are

grouped into two categories: warped and unwarped. As described in Chapter 1.6,

our simulations use the SPH method. This thesis considers one unwarped model,

UM, and four warped models, WM1 through WM4. The following sections will

describe the general setup and initial conditions for the models, following with their

differentiating parameters, and ending on our pre-processing procedures.

2.1 Warped models

The warped models were produced via the method of Debattista et al. (2015), which

constructs triaxial dark matter models with gas angular momentum misaligned with

the principal axes of the halo. The resulting misalignment mirrors that found in

cosmological simulations (van den Bosch et al. 2002a; Roškar et al. 2010a; Gómez

et al. 2017; Earp et al. 2019). Aumer & White (2013) have shown that inserting a

rotating gas corona into a non-spherical dark matter halo leads to a substantial loss

of gas angular momentum. Therefore, this approach already includes adiabatic gas

while merging haloes to produce a non-spherical system. We merge two identical

spherical Navarro–Frenk–White (NFW) (Navarro et al. 1996) dark matter haloes,
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each of which has a co-spatial gas corona comprising 10 per cent of the total mass.

Each dark matter halo has a mass M200 = 8.7 × 1011 M� and virial radius

r200 ' 200 kpc. The gas is in pressure equilibrium within the global potential. Gas

velocities are initialised to give a spin parameter of λ = 0.16 (Bullock et al. 2001),

with specific angular momentum j ∝ R, where R is the cylindrical radius. Both the

dark matter halo and the gas corona are comprised of 106 particles. Gas particles

initially have masses 1.4 × 105 M� with the softening dependant on the warped

model, with ε = 20 pc in WM1-2, and ε = 50 pc in WM3-4. The dark matter for

all models comes in two mass flavours (106 M� and 3.6× 106 M� inside and outside

200 kpc, respectively) and ε = 100 pc.

The two halos are placed 500 kpc apart and approach each other head-on at

100 km s−1. If the direction of the separation vector (and the relative velocity) is

the x-axis, we tilt one of the halos about the y-axis so that the final system will

be prolate with long axis along the x-axis and a gas angular momentum tilted with

respect to the axes of the halo. The setup of the merging haloes is part of the initial

conditions, so it does not count towards the time elapsed in the models, which starts

with the initiation of star formation.

Each model is evolved using the N-body+SPH code GASOLINE (Wadsley et al.

2004) with a base time-step dependant on the model with δt = 10 Myr for WM1 and

δt = 100 Myr for WM2-4. For individual particles, the base time-step is refined

such that each particle satisfies the condition δt = δt/2n < η
√
ε/ag, where ag is

the acceleration at the particle’s current position, with η = 0.175, and the opening

angle of the tree code calculation set to θ = 0.7. The WM1-2 models are evolved

for 12 Gyr while WM3-4 are only evolved for 10 Gyr.

The result of this setup is a dark matter halo that has r200 = 238 kpc and

M200 = 1.6× 1012 M�, and gas with λ = 0.11. At this point (t = 0 Gyr) we turn on

gas cooling, star formation, and stellar feedback using the blastwave prescriptions
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of Stinson et al. (2006b). Gas particles form stars with a 10% efficiency if a gas

particle has temperature T < 15, 000 K, is part of a converging flow, and its number

density exceeds a model-dependant value. The density thresholds are n >1 cm−3

(medium threshold) in the WM1-2 models, n >0.1 cm−3 (low threshold) in WM3,

and n >100 cm−3 (high threshold) in WM4.

Star particles form with an initial mass of 1/3 that of the initial gas particle

masses, which at our resolution corresponds to 4.6 × 104 M�. The softening of the

star particles is also dependant on the warped model, with ε = 20 pc in WM1-2,

and ε = 50 pc in WM3-4. Once the mass of a gas particle drops below 1/5 of its

initial mass, the remaining mass is distributed amongst the nearest neighbouring

gas particles, leading to a decreasing number of gas particles. Each star particle

represents an entire stellar population with a Miller–Scalo (Miller & Scalo 1979)

initial mass function. The evolution of star particles includes asymptotic giant

branch stellar winds and feedback from Type II and Type Ia supernovae, with their

energy injected into the interstellar medium (ISM). Each supernova releases 1050

erg into the ISM. The time-step of gas particles also satisfies the condition δtgas =

hηcourant/[(1 + α)c + βµmax], where h is the SPH smoothing length, ηcourant = 0.4,

α = 1 is the shear coefficient, β = 2 is the viscosity coefficient and µmax is described

in Wadsley et al. (2004). The SPH kernel uses the 32 nearest neighbours. In models

WM1-2 gas cooling takes into account the gas metallicity using the prescriptions

of Shen et al. (2010); in order to prevent the cooling from dropping below our

resolution, we set a pressure floor on gas particles of pfloor = 3Gε2ρ2, where G is

Newton’s gravitational constant, and ρ is the gas particle’s density (Agertz et al.

2009).
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Model name WM1 WM2 WM3 WM4 UM

Final timestep [Gyr] 12 12 10 10 12

δt [Myr] 10 100 100 100 5

M200 [1011 M�] 8.7 8.7 8.7 8.7 10

εstar/εgas/εdm [pc] 20/20/100 20/20/100 50/50/100 50/50/100 50/50/100

Metal line cooling on on off off off

Star formation efficiency [%] 10 10 10 10 5

Star formation threshold [cm−3] 1 1 0.1 100 0.1

Supernova feedback [1050 erg] 1 1 1 1 8

Table 2.1: Varying parameters of the considered models.

2.2 Unwarped model

The UM model is the M1 simulation described in Fiteni et al. (2021). The model is

similar to the spherical models we start with in the warped models, except it has a

single NFW dark matter halo with a virial radius of r200 ' 200 kpc, a virial mass of

M200 = 1012 M� and a gas angular spin of λ = 0.065 (Bullock et al. 2001). Feedback

via supernova explosions again employs the blastwave prescription (Stinson et al.

2006b). The feedback from supernovae is set to 8× 1050 erg per supernova, which is

higher than in the warped models. Similar to models WM3-4, the cooling does not

account for the gas metallicity and the softening parameters are ε = 50pc for gas and

star particles and ε = 100 pc for dark matter. Star formation efficiency in the UM

model is set to 5% with a density threshold of n >0.1 cm−3 (low threshold). The

UM model is also evolved using the N-body+SPH code GASOLINE for 12 Gyr

and with the same tree code setup as in the WM1-4 models, however, we use a base

time-step of δt = 5 Myr. Finally, Table 2.2 shows the parameters that vary between

all of the models used throughout this thesis.
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2.3 Simulation pre-processing

The simulation snapshots of each model are processed through our custom Python

library suite that utilises functions from the pynbody library. The suite centres the

galactic disc and then rotates it into the (x, y) plane based on the angular momentum

of the inner stellar disc, defined by r ≤ 5 kpc. For the warped models we compute

the angular momentum of the misaligned cold gas (Tgas < 50, 000K) at the outer

edge of the galactic disc (15 ≤ R/ kpc ≤ 20) to determine the orientation of the

gas warp. Each snapshot is rotated by the cylindrical angle of the warp’s angular

momentum, ϕ
L
, so that the warp’s major axis is on the x-axis and, consequently,

the line of nodes is on the y-axis. The UM model has no warp therefore we do

not preform any reorientation based on the gas. The disc of each model is finally

rotated 180◦ about the y-axis to match the sense of rotation and warp orientation

of the Milky Way (Chen et al. 2019a). As a result of these rotations, the south side

of the gas warp (below the mid-plane) is along the positive x-axis. This orientation

is implied throughout this thesis.

The rotation curves of all five models at their respective final timesteps (see Ta-

ble 2.2) are presented in Figure 2.1. The potentials in each model were interpolated

using the agama software library (Vasiliev 2019) with a single multipole approx-

imation for the stellar, gas, and dark particles combined. Rotation curves of the

approximated potentials are presented in Figure 2.1 as dashed red lines. Similar

to the Milky Way, the rotation curves of all five models are relatively flat, though

some models (WM1, WM2, and UM) have a higher stellar density in the centre

and therefore a spike in the rotation curve at ∼ 1 kpc.
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Figure 2.1: Rotation curves of all five models at their respective final timesteps (see

Table 2.2), with each model indicated in the upper right corner. Solid lines represent

the rotation curves of each galactic component along with a total rotation curve,

while the interpolated total potential (computed with AGAMA, Vasiliev 2019) is

represented by the dashed red lines.
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Warp star settling

This chapter is based on a paper submitted to MNRAS as Tigran Khachaturyants,

Leandro Beraldo e Silva, Victor P. Debattista. The warped simulation used through-

out this chapter is the WM2 model.

3.1 Abstract

In recent years star formation has been discovered in the Milky Way’s warp. These

stars formed in the warp (warp stars) must eventually settle into the plane of the

disc. We use an N -body+smooth particle hydrodynamics model of a warped galaxy

to study how warp stars settle into the disc. By following warp stars in angular

momentum space, we show that they first tilt to partially align with the main disc

in a time scale of ∼ 1 Gyr. Then, once differential precession halts this process,

they phase mix into an axisymmetric distribution on a time scale of ∼ 6 Gyr. The

warp stars end up populating the geometric thick disc. Because the warp in our

simulation is growing, the warp stars settle to a distribution with a negative vertical

age gradient as younger stars settle further from the mid-plane. While vertically

extended, warp star orbits are still nearly circular and they are therefore subject

to radial migration. As a result warp stars can be found throughout the disc. The
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density distribution of a given population of warp stars evolves from a torus to an

increasingly centrally filled-in density distribution.

3.2 Introduction

Warps are common features in most disc galaxies, as observed in their HI gas (Sancisi

1976; Bosma 1991; Garćıa-Ruiz et al. 2002c) and, to a lesser extent, in their stars

(Reshetnikov et al. 2002). In the Milky Way (MW), a warp in the HI has long been

known (Kerr 1957b; Weaver & Williams 1974; Levine et al. 2006b; Kalberla et al.

2007b), while a stellar warp, traced by red clump (RC) stars, has been observed

more recently (López-Corredoira et al. 2002b). The maximum amplitude of the

RC and Hi warps in the MW are not only coincident in their orientation but also

in their amplitude, reaching vertical displacements |z| ∼ 1.5 kpc at R = 14 kpc

and galactocentric azimuth φ ≈ 85◦ on the south side (below the mid-plane), while

on the north side (above the mid-plane) the coincidence holds up to R ≤ 13 kpc

(López-Corredoira et al. 2002b).

The cause of warping in galactic discs is still not definitively established, with

several mechanisms proposed (see the reviews of Binney 1992; Kuijken & Garcia-

Ruiz 2001; Sellwood 2013). These include tidal interactions, direct gas accretion, and

disc-halo interactions. In the MW, tidal interaction with the Large Magellanic Cloud

(LMC) and the Sagittarius dwarf galaxy (Sgr) have been considered possible sources

of the warping (Weinberg 1998; Jiang & Binney 1999; Bailin 2003; Purcell et al.

2011b; Gómez et al. 2013b; Laporte et al. 2018b). Alternatively, misaligned cold gas

accretion has been proposed (Ostriker & Binney 1989a) and found in simulations,

particularly in MW-like models (Roškar et al. 2010a; Gómez et al. 2017). This

scenario could explain the persistence of warps as gas is continuously accreted on to

the outskirts of discs. Evidence of cold gas accretion has been inferred in external

galaxies via large complexes of Hi at the outskirts of spiral galaxies (Fraternali &
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Binney 2008; Sancisi et al. 2008b; Westmeier et al. 2011; Zschaechner et al. 2015).

In the case of the MW, the gas accretion scenario not only provides an explanation

for the origin of the warp but also for the near-constant star formation rate in

the Solar neighbourhood (Twarog 1980b; Binney et al. 2000b). Nonetheless, direct

observational evidence for continuous accretion of gas is still lacking.

Using data from Gaia-DR2 (Gaia Collaboration et al. 2018b) and from the Wide-

field Infrared Survey Explorer (WISE) catalogue of periodic variables (Chen et al.

2018a), Chen et al. (2019a) compiled a sample of classical Cepheids, finding that

the Galactic warp is also traced by these stars. This implies that stars are forming

in-situ in the warp. Understanding where these stars end up can shed light on the

formation and evolution of the warp, and consequently on the evolution of the MW

as a whole. Of all the warp tracers Chen et al. (2019a) considered (including dust,

pulsars, RC stars), they found that the Hi gas and Cepheids are the most similar

in their distributions, implying that the Cepheids have to form in-situ in the warp.

Evidence of star formation on the outskirts of galactic discs has also been inferred

in external galaxies via UV-bright stellar complexes (Thilker et al. 2005b; Zaritsky

& Christlein 2007b; Herbert-Fort et al. 2010b; Mondal et al. 2019). The UV-bright

stellar complexes were observed far outside the optical discs where warps are usually

observed, and in one case (Thilker et al. 2005b) these complexes were associated with

the warped Hi disc.

Roškar et al. (2010a) presented a fully cosmological simulation of a Milky Way-

like galaxy in which its hot gaseous corona has angular momentum misaligned with

that of the disc. The gas cools and sinks toward the stellar disc, forming a warp.

Stars formed in this warp settle into the disc and populate the geometric thick disc

(see Figure 13 in Roškar et al. 2010a). In this paper, we use a warped N -body+SPH

(Smooth Particle Hydrodynamics) simulation to investigate, in further detail, the

settling of stars formed in the gas accreting along a warp.
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The paper is organised as follows: In Section 3.3 we describe the evolution and

extent of the gas warp and in Section 3.4 describe how stars formed in the warp

(hereafter, ‘warp stars’) are defined in the simulation. In Section 3.5 we analyse dif-

ferent warp populations separated by their time of formation and track the changes

of their angular momenta throughout the simulation’s evolution. In Section 3.6 we

turn our attention to the resulting density distribution of warp stars in the disc. In

Section 3.7 we present our conclusions, before ending with a summary of our results.

3.3 Warp evolution

The extent of the simulation’s gas warp is shown in the top row of Figure 3.1 where

we present the edge-on column density of cold gas at 2 Gyr (left) and 12 Gyr (right).

In the span of 10 Gyr the warp grows significantly in radial extent, and becomes

more inclined relative to the disc. To quantify the inclination and orientation of

the warp, for each component (stars and cold gas), we measure the spherical angles

θL (polar) and φL (azimuthal) between their angular momenta, measured within

spherical annuli, and the inner stellar disc. As the angular momentum vector of the

stellar disc has been realigned along the z-axis for all times, θL and φL are simply:

φL = arctan(Ly/Lx), (3.1)

and

θL = arccos(Lz/|L|), (3.2)

where Lx, Ly, Lz, and |L| are the three Cartesian components and magnitude of

the angular momentum, respectively. In the bottom row of Figure 3.1 we present

Briggs figures (Briggs 1990a) for the stellar (black) and cold gas (red) discs at

2 Gyr (left) and 12 Gyr (right), where the triangle (square) marker represents R =

10 kpc (R = 20 kpc). Briggs figures are cylindrical polar plots where θL and φL are

represented by the polar r and φ coordinates, respectively. The θL and φL angles are
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Figure 3.1: The structure of the gas warp at 2 Gyr (left column) and 12 Gyr (right

column). Top row: The edge-on column density distribution of cold gas (T≤ 50, 000

K) in the simulation. In the span of 10 Gyr, the gas warp can be traced to larger

R (from R ∼ 13 kpc to R ∼ 20 kpc) and |z| (from |z| ∼ 5 kpc up to |z| ∼ 20 kpc).

Middle row: the face-on mean height, 〈z〉, distribution of cold gas (T≤ 50, 000 K)

in the simulation. Bottom row: The Briggs figures for the cold gas (red) and stellar

(black) discs. There are two distinct markers that show values at R = 10 kpc (star

marker) and at R = 20 kpc (square marker). The Briggs figures show that the gas

disc becomes significantly more warped between the two times, while the stellar disc

is initially slightly warped (θL ∼ 2◦ at R = 10 kpc) and becomes even less so by the

end (θL ∼ 0.3◦ at R = 10 kpc).
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Figure 3.2: Profiles of the surface density, Σ, (top) and θL, gas (bottom) in the cold

gas at different times (colour), where R′ is defined as the cylindrical radius in the

cold gas plane at each annulus. The gas warp grows horizontally and becomes more

inclined with time.
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calculated for the mean angular momentum vector in each bin of a cylindrical grid

with 0 ≤ R/ kpc ≤ 20 kpc and ∆R = 1 kpc. The cold gas warp grows significantly

over the 10 Gyr interval, while the stellar warp decreases in extent, and then flattens

over the same time interval. In Figure 3.2 we show the profiles of the surface density,

Σ, (top) and of θL, gas (bottom) for the cold gas disc at different times (colour), where

R′ is defined as the cylindrical radius in the cold gas plane at each annulus. Over the

model’s evolution, the inclination of the cold gas warp beyond 10 kpc increases by a

factor ∼ 4, reaching θL ∼ 40◦. The warp also grows in mass and size as the Σ profile

increases beyond 15 kpc and reaches R′ ∼ 25 kpc by the end of the simulation.

3.4 Defining warp stars

We record the phase-space coordinates and time at formation, tform, for every star

in the simulation. The phase-space coordinates need to be centred and reoriented

relative to the disc at their respective tform. Using our Python library suite, we

create an interpolating function that takes into account the centre of mass and

angular momentum vector of the galactic disc at each 100 Myr saved snapshot. We

calculate the location of the centre of mass and orientation of the galactic disc

for each star by interpolating to their individual tform. This procedure gives the

formation location in galaxy centred coordinates, and the inclination of the star’s

angular momentum at formation relative to that of the galactic disc (θform).

To identify warp stars (i.e. stars born in the warp), we use θform and the cylindri-

cal formation radius, Rform. We plot the distribution of all stars in this space, which

we will refer to as the formation space. In Figure 3.3 we present the distribution of

the mean time of formation, 〈tform〉, (top) and the mean absolute height of formation,

〈|zform|〉, (bottom) in the formation space. The ”tail-like” region at Rform > 10 kpc

(outlined by a red square) is comprised of stars that formed at relatively high |zform|,
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Figure 3.3: The distribution of stars in the Rform-θform space (formation space),

coloured by the mean time of formation (top) and by the mean absolute formation

height, 〈|zform|〉, (bottom). The black lines show the number counts in the formation

space for both panels. We define stars formed in the warp as those with θform ≥ 10◦

and Rform ≥ 10 kpc, the ”tail-like” region outlined by the red square. A population

of stars that was formed in an early, transient warp at low radii (Rform ≤ 7 kpc) and

high inclinations relative to the disc (θform ≥ 10◦) is not included in our warp star

population.
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which increases with tform. These stars are formed throughout the model’s evolu-

tion starting from 2 Gyr and lasting till the end of the simulation, at 12 Gyr. This

population is highly inclined (θform > 10◦) and is formed on the outskirts of the

disc; thus we define the primary warp population as stars with Rform ≥ 10 kpc and

θform ≥ 10◦. There are ∼ 6 × 105 warp stars in the simulation and they comprise

13% of all stars. The other significant populations that we observe are the in-situ

main disc population (Rform ≤ 10 kpc and θform ≤ 10◦), and a ”hump-like” region

containing an old warp population (2 ≤ Rform/ kpc ≤ 5 and θform ≥ 15◦). This

early warp population derives from a short-lived warp epoch when the model is still

settling, and we therefore do not include it in our analysis of the warp. Neglecting

this population does not change any of the following results.

3.5 Dynamical evolution of warp populations

We study how warp stars settle into the disc by considering mono-age populations.

Our goal is to unravel the mechanisms by which they settle and reach equilibrium

within the main disc, the timescale for settling, and the (evolving) density distribu-

tion they settle to.

3.5.1 Overall evolution

Figure 3.4 presents the mass distribution in Briggs figures for 4 representative mono-

age warp populations (columns) at various times after their formation, denoted by

δt. The Briggs figures provide a clear picture of how warp stars start out heavily

inclined relative to the disc (outer regions in the diagrams) and end up phase mixing

into a homogeneous distribution. All populations form along the gas warp, indicated

by the solid red lines in the first row. The gas warp traces a leading spiral shape (the

sense of disc rotation in these figures is clockwise), which is one of the characteristics
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Figure 3.4: Mass distribution in Briggs figures for 4 mono-age warp populations.

The populations are formed over 50 Myr intervals (top of each column) with each

row representing later times, δt The bottom row shows the populations at the end

of the simulation, at t = 12 Gyr. At δt = 0 Myr (first row), the red line represents

the Briggs figure of the gas warp at the formation of each population. Some stars

appear to start out with θL < 10◦, but this is due to them drifting already during

the first 50 Myr. In the two left columns, the initial m = 1 LON spiral distributions

phase mix into uniform distributions by the end of the simulation, whereas in the

right two columns phase mixing is incomplete at t = 12 Gyr.
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of gas warps (Briggs 1990a)1. Warp stars formed at different times have different

ranges of θL, with the earlier-forming population (tform = 3 Gyr) centred on θL = 20◦

and the later (tform = 9 Gyr) centred on θL = 35◦. The phase mixing of warp stars

in φL is already visible 300 Myr after formation for all 4 mono-age populations, as

the spiral structure winds up. This winding represents the differential precession of

different annuli within the warp. The higher the initial θL of the population (θform),

the slower is precession of the population and the longer is the time required for

the LON spiral to wind up. For instance, considering δt = 1.5 Gyr, the population

formed at t ' 3 Gyr is well on its way to being uniform in φL, but there is less

of a wrap for increasingly later-forming populations. By the end of the simulation,

the later-forming populations have still not fully phase-mixed in φL, as evident by

the horseshoe distribution for the population formed at ∼ 9 Gyr. The phase mixing

indicates that the warp populations settle into nearly-axisymmetric discs or tori –

see Sec. 3.5.3. They remain relatively thick, as can be seen by the large θL values of

most of the stars, corresponding to stars which avoid having an angular momentum

directed along the z-axis.

A weaker evolution that can be discerned from the Briggs figures is a rapid early

decline in the values of θL. This is easiest to see directly for the population formed at

3 Gyr, but is present to different extents in all 4 populations. This process represents

a tilting of each warp population.

Lastly, the Briggs figures show that there is a tendency for some stars to move

to larger θL. In Sec. 3.5.4 we demonstrate that this is caused by stars migrating to

smaller radii, while preserving their vertical motions so that the net orbital plane of

each star becomes more tilted.

1We remind the reader that this is a spiral in the orientation of the angular momentum vector

of different shells. In coordinate space this represents a winding of the intersection of each annulus

with the main plane of the galaxy, i.e. the spiral can be thought of as the radial locus of the

line-of-nodes (LON). For this reason, we will refer to this spiral as the LON spiral.
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Figure 3.5: Distribution of θform versus θL at the end of the simulation, θend, for

individual warp stars formed before 10 Gyr coloured by the number (left) and the

mean time of formation (right). The diagonal dashed line indicates θform = θend.

In the following subsections we study in greater detail the tilting of warp popu-

lations, their phase mixing and finally their radial migration.

3.5.2 Orbital tilting

Figure 3.4 suggested that warp populations reach lower θL as they realign with the

galactic disc, which we refer to as tilting. We now study the tilting of mono-age

warp populations in more detail. We start by showing that tilting is indeed taking

place by comparing θL of all warp particles at formation (θform) and at the end

of the simulation (θend). Figure 3.5 presents the distribution of warp stars in the

(θend, θform) space. The diagonal lines in both panels indicate θform = θend. Warp

stars experience some degree of tilting, with ∼ 72% of warp stars located above the

θform = θend line. The right panel of Figure 3.5 shows the distribution of average

time of formation, 〈tform〉 in the (θend, θform) space. All warp stars, regardless of tform,

undergo some tilting, with the median tilt being med(θend − θform) = −3.5◦.
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Figure 3.6: Top: evolution of the population-averaged θL, θL, of all mono-age warp

populations formed in the simulation before tform ≤ 10 Gyr, where δt is defined

as the time since a population’s formation. Each curve is coloured by tform. A

1D Gaussian filter with a mask size of w = 0.5 Gyr and standard deviation of

σ = 0.1 Gyr is applied to the evolution at each δt. Bottom: evolution of the rate of

change of θL, θ̇L, for the same mono-age warp populations. The rates of change are

calculated from the smoothed evolution curves. The solid black line represents the

median rate of change between all mono-age populations which has a tilting time of

τtilt ∼ 0.9 Gyr. The dotted horizontal line indicates θ̇L = 0◦ Gyr−1.
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The top panel of Figure 3.6 presents the evolution of the average θL, θL, for all

mono-age warp populations formed during 2 ≤ tform/Gyr ≤ 10, in bins of ∆tform =

50 Myr. The average is taken over all star particles of a given population. All warp

populations experience a rapid drop in θL by δt ∼ 1 Gyr, followed by a smaller and

gentler rise. The decrease in θL varies from ∼ 5◦ for the oldest population to about

half that for younger populations. The bottom panel shows the rate of change of θL,

θ̇L, for the same populations. The horizontal dotted line represents θ̇L = 0◦ Gyr−1.

We observe that θ̇L starts out negative for all populations and quickly plateaus at

a nearly constant value of θ̇L ∼ 0.5 deg Gyr−1. The initial negative tilt rate is due

to the bulk tilting warp populations experience as they settle into the disc. This

is produced by the torquing from the main disc and persists so long as the warp

populations remain more or less coherent before differential precession destroys a

relatively coherent plane for each population. The Briggs figures of Figure 3.4 show

that, for a wide range of tform, by δt = 300 Myr the warp populations have precessed

differentially enough that the innermost populations are then tilted in the opposite

sense as the outermost ones (δφ ∼ 180◦). At this point the global tilting of a

population becomes less efficient and their evolution is dominated by precession,

which we study in Section 3.5.3.

Figure 3.7 shows the evolution and rate of change of the average |z|, |z|, for

the same mono-age populations, likewise averaged over all particles in a stellar

population. The evolution of |z| is shown in the top panel; all of the warp populations

plateau after just 1 Gyr. The rate of change of |z|, ˙|z|, shown in the bottom panel,

starts out mostly negative and quickly decreases to 0 kpc Gyr−1 in less than 1 Gyr, a

timescale similar to that in the first part of the θ̇L evolution. As with the evolution

of θL, we note a correlation between the age of the population and |z|, with younger

populations being formed further away from the mid-plane, and also settling to a

thicker distribution.

57



CHAPTER 3

Figure 3.7: Top: evolution of the population-averaged absolute z, |z| of different

mono-age warp populations before tform ≤ 10 Gyr, where δt is defined as the time

since a population’s formation. Each curve is coloured by tform. A 1D Gaussian

filter with a mask size of w = 0.5 Gyr and standard deviation of σ = 0.1 Gyr is

applied to the evolution at each δt. For each population the value of |z| starts to

flatten after δt ∼ 1 Gyr, reaching a stable configuration. The value of |z| for each

population increases with tform as older populations form at higher |z|, similar to

how older populations form at higher θform (Figure 3.3). Bottom: evolution of the

|z| rate of change,
˙|z|, for the same mono-age warp populations. The rates of change

are calculated from the smoothed evolution curves. A rapid decrease in
˙|z| happens

during the first 1 Gyr and then settles about
˙|z| = 0 kpc Gyr−1 (dashed horizontal

line). The solid black line represents the median rate of change between all mono-age

populations; this has a tilting time of τtilt ∼ 1 Gyr.
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Given the similarity in the evolution of θ̇L and
˙|z|, we measure a timescale for

the bulk tilting of warp populations. In order to measure the tilting times, τtilt,

for both θL and |z| we set as a criterion the first time the rate of change reaches

values of θ̇L ≥ 0◦ Gyr−1 and
˙|z| ≥ 0 kpc Gyr−1, respectively. We find that ∼ 50% of

mono-age warp populations experience bulk tilting by δt = 1 Gyr when the criterion

is applied to both θ̇L and
˙|z|. In both cases the longest tilting time is τtilt ∼ 1.8 Gyr.

3.5.3 Phase mixing

The Briggs figures of mono-age warp populations in Figure 3.4 show that their LON

spirals wind up. This winding drives a phase mixing so that eventually no trace

of a warp remains and a warp population becomes axisymmetric. In this Section

we study the phase mixing using the m = 1 Fourier amplitude, the total angular

momentum, and the entropy of each mono-age population.

Winding of the LON spiral

The distributions of angular momenta in Figure 3.4 for each mono-age warp popu-

lation traces an m = 1 Fourier spiral in angular momentum space at formation. By

measuring the amplitude of the Fourier m = 1, A1, in the angular momentum space

as in the Briggs figures we can follow the phase mixing of each population. In the

top panel of Figure 3.8 we plot the evolution of A1 for all mono-age warp popula-

tions. The peak A1 for each warp population is at formation, and rapidly declines

during the first 1 Gyr. The decline in most warp populations is not monotonic, with

the oldest warp populations having multiple peaks of decreasing amplitude lasting

up to δt = 5 Gyr after which the decrease is smoother. For younger populations

A1 declines more smoothly, though still not monotonically. However, populations

with tform ≥ 9.5 Gyr exhibit a similar second peak as in the older populations. The

bottom panel shows the rate of change of A1, Ȧ1, for the same populations, with
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Figure 3.8: Top: Evolution of the A1 amplitude for all mono-age warp populations

formed in the simulation before tform ≤ 10 Gyr, where δt is defined as the times

since a population’s formation. Each curve is coloured by tform. A 1D Gaussian

filter with a mask size of w = 0.5 Gyr and standard deviation of σ = 0.1 Gyr is

applied to the evolution at each δt. The black solid line is the median value of A1

between all mono-age populations. Bottom: evolution of the rate of change of A1,

Ȧ1, for the same mono-age warp populations. The rates of change are calculated

from the smoothed evolution curves. The solid black line represents the median rate

of change between all mono-age populations. The dotted horizontal line indicates

Ȧ1 = 0 Gyr−1.
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Ȧ1 = 0 Gyr−1 indicated by a dashed horizontal line. For all mono-age populations a

significant oscillation in Ȧ1 is observed. The median curves of A1 and Ȧ1 across all

mono-age populations are shown as solid black lines in the top and bottom panels

of Figure 3.8, respectively.

Fitting an exponential decay to A1 as a function of time leads to exponential

times 0.9 < τ/Gyr < 2.3. The phase mixing timescales, τpm, can be estimated by

taking the median of the time derivatives between all mono-age populations and

measuring when it reaches 0 Gyr−1. In the bottom panel of Figure 3.8 the median

of the time derivative reaches the zero-line around τpm ∼ 6 Gyr, a timescale that is

longer than the tilting times computed in Section 3.5.2.

Phase mixing from the average angular momentum vector

The uniform distribution φL in the Briggs figures (Figure 3.4) of settled populations

implies that if the angular momentum of each warp population were vector-averaged

over all stars then the resulting mean angular momentum would be along the z

axis, with inclination θ = 0◦. Thus by analysing the evolution of the inclination

of the average angular momentum vector, we can further gauge the phase mixing

timescale. In the top panel of Figure 3.9 we present the evolution of the inclination of

the average angular momentum, θL̄, for mono-age populations. The evolution of θL̄

shows that warp populations with tform ≥ 6 Gyr do not reach ∼ 0◦, indicating that

they are still phase mixing, in agreement with Figure 3.4. Older populations with

tform < 6 Gyr settle to θL̄ = 0◦ on different timescales, with the oldest population

presenting the similar multiple peaks as in Figure 3.8. In the bottom panel, the

evolution of the rate of change, θ̇L̄, shows that the phase mixing process is much

more rapid for the older populations but then θL̄ rises again at ∼ 2 Gyr and then

oscillates about θ̇L̄ = 0◦ Gyr−1. Younger populations show a slower and smoother

increase towards θ̇L̄ = 0◦ Gyr−1 in their rate of change. The median curves for θL̄
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Figure 3.9: Top: evolution of the population-averaged angular momentum incli-

nation, θL̄, for all mono-age warp populations formed in the simulation before

tform ≤ 10 Gyr, where δt is defined as the time since a population’s formation. Each

curve is coloured by tform. A 1D Gaussian filter with a mask size of w = 0.5 Gyr

and standard deviation of σ = 0.1 Gyr is applied to the evolution at each δt. The

black solid line is the median value of θL̄ between all mono-age populations. Bottom:

evolution of the rate of change of θL̄, θ̇L̄, for the same mono-age warp populations.

The rates of change are calculated from the smoothed evolution curves. The solid

black line represents the median rate of change between all mono-age populations.

The dotted horizontal line indicates θ̇L̄ = 0◦ Gyr−1.
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and θ̇L̄ between all mono-age populations are shown as solid black lines in the top

and bottom panels of Figure 3.9, respectively.

Based on the θL̄ evolution we estimate the phase mixing time, τpm, using the

method described in Section 3.5.3, i.e. when the median of the time derivatives

reaches 0◦ Gyr−1. In the bottom panel of Figure 3.9 the median of the time deriva-

tives reaches the zero-line around τpm ∼ 6 Gyr. This timescale is again longer than

the tilting times computed in Section 3.5.2.

Entropy-based phase mixing timescale

Lastly, we also characterise the phase mixing process using a non-parametric entropy

estimator. The entropy definition we adopt is:

S = −
∫
f(φL) ln f(φL) dφL, (3.3)

where f(φL) is the probability density function. This functional form is chosen

primarily because of its desirable mathematical properties, including that it can be

estimated as

Ŝ = − 1

N

N∑
i=1

ln f̂i, (3.4)

where the sum runs over the warp stars of a given population and f̂i is the estimate

of f(φL) for each star particle. Eq. 3.4 converges to Eq. 3.3 if f̂i is calculated with

specific recipes (see Beraldo e Silva et al. 2019b,a, and references therein). Here we

adopt the Nearest Neighbour method, where in one dimension the distribution is

estimated as:

f̂i =
1

2(N − 1)eγDin

, (3.5)

where γ ' 0.577 is the Euler-Mascheroni constant and Din is the distance of particle

i to its nearest neighbour (see Biau & Devroye 2015; Beraldo e Silva et al. 2019b,a,

for more general expressions). Since −π ≤ φL ≤ π, for a fully-mixed population
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Figure 3.10: Top: evolution of the entropy estimate, Ŝ(t), normalised by Spm for all

mono-age warp populations formed in the simulation before tform ≤ 10 Gyr, where

δt is defined as the time since a population’s formation. Each curve is coloured

by tform. A 1D Gaussian filter with a mask size of w = 0.5 Gyr and standard

deviation of σ = 0.1 Gyr is applied to each population. The black solid line is

the median value of Ŝ(t) between all mono-age populations. The dotted horizontal

line indicates Ŝ(t)/Spm = 1. The inset shows an expanded version of the region

indicated by the rectangle at top left. Bottom: evolution of the rate of change of

Ŝ(t),
˙̂
S(t), normalised by Spm for the same mono-age warp populations. The rates

of change are calculated from the smoothed evolution curves. The black solid line is

the median rate of change between all mono-age populations. The dotted horizontal

line indicates
˙̂
S(t) = 0. The inset shows an expanded version of the region around

the zero-line.
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the phase-mixed distribution is fpm = 1/(2π), and from Eq. 3.3, the phase-mixed

entropy is Spm = ln(2π).

We use Eqs. 3.4-3.5 to estimate the entropy of the same mono-age warp popu-

lations defined before at different times. The entropy evolution, normalised by the

phase-mixed value Spm, is shown in the top panel of Figure 3.10, colour-coded by the

formation times. All mono-age warp populations show a rapid increase in entropy,

on a time-scale of δt ∼ 1 Gyr, after which the system asymptotically evolves to the

phase-mixed state, on a longer time-scale. Populations born after tform & 6 Gyr do

not have time to completely phase-mix, in good agreement with the Briggs figures in

Figure 3.4. Young populations are born with smaller entropies, which is a result of

the larger radius at which they are forming, resulting in a narrower range of φL val-

ues. The median curves for Ŝ/Spm and
˙̂
S/Spm across all mono-age populations are

shown as solid black lines in the top and bottom panels of Figure 3.10, respectively.

We estimate the phase mixing timescale using the same method described in

Section 3.5.3, i.e. when the median of the time derivatives reaches 0 Gyr−1. Though

the median of the time derivatives fluctuates as it approaches the zero-line (see

bottom inset), we estimate that τpm ∼ 5 − 6 Gyr. This phase mixing timescale is

in agreement with the results from Sections 3.5.3 & 3.5.3, reaffirming that phase

mixing continues long after the tilting has concluded.

3.5.4 Inward migration of warp populations

In our definition, a warp population must have formed at r > 10 kpc. Figure 3.6

showed that θ̇L at δt & 2 Gyr for many warp populations is positive, at ∼ 0.5◦.

A naive interpretation of this result is that the warp populations continue to heat

vertically after they settle. Aside from the fact that thick populations do not heat

vertically easily since they spend most of their time away from the thin disc, where
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most of the perturbers that can heat them reside, Figure 3.7 contradicts this inter-

pretation, because it shows that |z| is not increasing at the same time. A different

interpretation is therefore needed. Here we show that warp populations migrate

inwards; with |z| constant, the inward migration must result in an increasing θL and

a positive θ̇L.

Figure 3.11 considers the evolution and rate of change of the population-averaged

vertical angular momentum, Lz. The evolution of Lz (top panel) shows an increase in

the first 1 Gyr for all populations with tform > 4.5 Gyr, while older populations show

a decrease. These changes subsequently slow down significantly as all populations

plateau with only a weak negative gradient. The rate of change, L̇z, (bottom panel)

shows that after δt ∼ 1 Gyr all populations have a negative L̇z, though there is an

initial spike for populations with tform ≥ 4.5 Gyr. The solid black line indicates the

median between all rates of change. The vertical angular momentum correlates with

tform of the warp populations, because of the growing radius of the warp. The initial

spike in younger populations is related to the growing warp as younger populations

have larger θform and due to the projection of Lz, even small tilts translate to larger

changes in Lz. Older populations form in a younger, shallower warp and do not

experience the same initial spike. In spite of this difference, all warp populations

have comparable values of L̇z for δt > 1 Gyr. The net decrease in vertical angular

momentum of warp populations well after they formed represents either a radial

heating of each population, or an inward migration.

We therefore analyse how the radial positions of the warp populations change

with time. We use the spherical radius, rather than the cylindrical one, since the disc

is warped. Figure 3.12 presents the evolution of the population-averaged spherical

radius, r, for the mono-age warp populations. The top panel shows the evolution

of r, which clearly decreases at all times for all populations. This change implies

that the decrease of the angular momentum of warp stars is accompanied by a net
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Figure 3.11: Top: evolution of the population-averaged vertical angular momentum,

Lz, for different mono-age warp populations in the simulation, where δt is defined

as the time since a population’s formation. Each curve is coloured by tform. A

1D Gaussian filter with a mask size of w = 0.5 Gyr and standard deviation of

σ = 0.1 Gyr is applied to the evolution at each δt. Most of the change in the

vertical angular momentum happens during the first 1 Gyr after which they decline

slowly or remain flat. Bottom: evolution of the Lz rate of change, L̇z, for the same

mono-age warp populations. The rates of change are calculated from the smoothed

evolution curves. The solid black line represents the median rate of change between

all mono-age populations. We observe that Lz is continuously decreasing as the rate

of change remains mostly below L̇z = 0 kpc km s−1 Gyr−1 (dashed horizontal line).
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Figure 3.12: Top: evolution of the population-averaged spherical radius, r, of differ-

ent mono-age warp populations, where δt is defined as the time since a population’s

formation. Each curve is coloured by tform. A 1D Gaussian filter with a mask size

of w = 0.5 Gyr and standard deviation of σ = 0.1 Gyr is applied to the evolution

at each δt. The decrease of r is different for all populations and is strongest for

tform ∼ 3 Gyr at 15% with the weakest decrease for tform > 6 Gyr at 5%. Bottom:

evolution of the r rate of change, ṙ, for the same mono-age warp populations. The

rates of change are calculated from the smoothed evolution curves. The solid black

line represents the median rate of change between all mono-age populations. A

consistently negative ṙ < 0 kpc Gyr−1 is observed (dashed horizontal line), with the

exception of a few transient positive values for the oldest population. This is in-

dicative of continuous inward migration for all warp populations, regardless of their

tform.
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Figure 3.13: Distribution of spherical formation radius, rform, versus the spherical

radius at the end of the simulation, rend, for warp stars coloured by the number (left)

and by the mean time of formation, tform (right). The diagonal solid line indicates

rform = rend. Stars that are below the rform = rend line comprise 1/3 of the total warp

star sample. The vertical dotted line indicates the location of the Solar annulus.

Warp stars born after tform & 6 Gyr do not have enough time to migrate into the

Solar annulus.

radial movement inwards, and continues well after the population tilting has ended.

The decrease of r is continuous for all populations which we confirm by plotting

the rate of change for r, ṙ, (bottom panel) which is predominantly negative after

δt = 1 Gyr. The net inward movement of warp populations is a result of the fact

that, by definition, they form only at large radii (≥ 10 kpc).

In Figure 3.13 we consider the relation between the formation radius, rform, and

the final radial position, rend, for all warp stars. The left panel shows that 66%

of warp stars move inwards. This movement inwards happens regardless of tform

(right panel), with older populations experiencing the strongest inward movement

(extending to rform − rend ∼ 15 kpc). This could indicate migration by spiral churn-

ing where the migration is characterised by a random walk (Sellwood & Binney

2002b). A radial gradient of decreasing age is established in the inner disc, with

warp stars at the smallest radius being the oldest ones. This is the mirror image of
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the usual outwardly increasing age gradient for stars formed within the main disc

and migrating outwards (Roškar et al. 2008b; Beraldo e Silva et al. 2020a). We note

that the oldest populations also move outwards, which also hints at migration via

spiral churning.

Finally, we explore whether the warp populations are on highly eccentric orbits,

or nearly circular ones. We integrate the orbits of settled warp stars in the inter-

polated potential derived using AGAMA (see Chapter 2.3). The initial conditions

of the warp stars are set to their 6D coordinates at the end of the simulation at

12 Gyr. Because the youngest warp stars may not have had enough time to tilt into

the disc, we limit our analysis to warp stars with tform ≤ 10 Gyr. After integrating

each warp star for 10 orbital periods, we use the maximum and minimum cylindrical

radii along the orbit to calculate the orbital eccentricities:

e =
Rmax −Rmin

Rmax +Rmin

(3.6)

Figure 3.14 presents the 2D histogram of orbital eccentricities plotted versus tform.

This distribution shows that a large fraction of warp stars have 0.1 ≤ e ≤ 0.4.

The lines indicate the median (red solid), mean (red dashed), and the 16th and 84th

percentiles (black annotated) of the eccentricity in each tform bin; a weak decline

of the mean eccentricity from 0.3 for the oldest population to 0.2 for the youngest

is evident. These nearly circular orbits indicate that the radial migration is driven

by spiral churning (Sellwood & Binney 2002b; Roškar et al. 2012) rather than by

heating. The decreasing mean angular momentum amplitude is purely a result of

the unbalanced distribution of formation radii of warp stars.

3.6 Resulting disc structure

The dynamical evolution of warp populations explored in Section 3.5 showed that

as soon as warp stars form they begin rapidly tilting and then phase mixing in the
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Figure 3.14: Eccentricities of warp stars versus tform. The lines indicate the median

(red solid), mean (red dashed), and the 16th and 84th percentiles (black annotated)

of the eccentricity for each tform bin. The younger warp stars having slightly more

circular orbits. In general most orbits are fairly close to circular.
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Figure 3.15: Edge-on views of the simulation at 12 Gyr. Left column: number

density contour plots of the warp (red contours) and main disc (black contours)

populations. Warp stars occupy higher |z| than stars formed in the disc and out-

number disc stars by a factor of 10 starting from at |z| ∼ 4 kpc. Right column:

distribution of the mean formation time, 〈tform〉 for all stars formed throughout the

simulation. There is a vertical gradient in 〈tform〉 and a young warp population that

traces the gas warp starting from |z| ≥ 5 kpc.

galactic disc. These processes are accompanied by the slow but continuous inward

(and outward) migration of the warp populations. We now explore the resulting

disc structure of settled warp populations.

Figure 3.15 presents the edge-on distributions of warp and in-situ stars at t =

12 Gyr. In the left panel, the contours show the number density distribution of

warp (red) and in-situ (black) stars. Warp stars occupy the geometric thick disc

with visible flaring at |x| ≥ 15 kpc and a maximum vertical extent of |z| ≤ 10 kpc.

In the right column is the edge-on distribution of 〈tform〉 for all the stars formed

throughout the simulation. Starting from |z| ≥ 5 kpc, newly formed warp stars

can be observed tracing the gas warp, the major axis of which is along the x-axis

(Chapter 2.3).

We now analyse in detail the resulting density distributions of stars formed in the
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warp, selecting the ones currently located at 2 < R/ kpc < 25 and 0 < |z|/ kpc <

15. We define 30 broad mono-age populations (bin width ∆tform = 250 Myr) in

the interval 2 < tform/Gyr < 9.5, where the lower limit is chosen to avoid the

stars formed in the early chaotic transient warp, and the upper limit chosen such

that the youngest population considered has had enough time to settle. For each of

these mono-age populations, we simultaneously fit the radial surface number density

profile, Σ(R), and the vertical number density profile, ξ(z|R).

The radial profile Σ(R) is modelled with a skew-normal distribution (Azzalini

1985), which we found to be the best functional form after comparison with different

models (see e.g. Bovy et al. 2016; Beraldo e Silva et al. 2020a). In this model, the

profile is given by

Σ(R|µR, hR, α) =
1

A
φ(R|µR, hR)Φ(αR|µR, hR), (3.7)

where φ(x|µ, h) is the normal (Gaussian) distribution with location µ and scale h,

Φ(x) is its cumulative distribution function and A is determined by the normalization

condition ∫ Rmax

Rmin

Σ(R)2πR dR = 1. (3.8)

The parameter α controls the skewness: the Gaussian distribution is recovered as a

particular case when α = 0. Note that −∞ < α <∞, while the real skewness can

be obtained from α and ranges from -1 to 1. Note also that µR and hR are close to,

but not exactly, the position of the peak, Rpeak, and the dispersion σR, respectively,

which are also obtained by simple formulae from the parameters α, µR and hR (see

Azzalini 1985).

The vertical density profiles ξ(z|R) are modelled with the so-called generalised

normal distribution (Nadarajah 2005):

ξ(z|R, µz, hz, β) =
1

B
exp

[
−
∣∣∣∣ |z| − µzhz

∣∣∣∣β
]
, (3.9)
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where β controls the kurtosis (β = 2 for the Gaussian) and B is obtained by imposing

the condition ∫ zmax

zmin

ξ(z|R) dz = 1. (3.10)

In the above expressions, all three parameters β, µz and hz depend on R in a

non-trivial way. After some experimentation we determined that each of these pa-

rameters needs to be modelled as a third-order polynomial in radius R. The position

of the peak in |z| is directly given by zpeak = µz. Finally, the total number density

profile is written as

ν(R, z|θ) = Σ(R|θ)ξ(z|R, θ), (3.11)

where θ is the set of parameters. For each mono-age population, we first fit this

model maximizing the log-likelihood

lnL(θ) =
∑
i

ln [ν(Ri, zi|θ)] (3.12)

with a variant of Powell’s method, which is a conjugate direction method (Powell

1964; Press et al. 1992). Then, we use this first fitting result as input to MCMC-

sample the posterior distribution function with the emcee package (Foreman-Mackey

et al. 2013), assuming flat priors for all parameters. Best fit parameters and un-

certainties are estimated with the median and the 16 and 84 percentiles of the

parameter samples, respectively.

For illustrative purposes, in Figures 3.16 and 3.17 we slice some of these popu-

lations into cylindrical shells, determining the surface number density profile Σ(R)

(left panels) and, for each shell, the vertical number density profiles ξ(z|R) (right

panels). In Figures 3.16 and 3.17, each row represents a different mono-age popu-

lation, with the formation times indicated. The best fit models are represented by

dashed lines.
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Figure 3.16: Left: radial density profiles for old (tform < 5 Gyr) mono-age popu-

lations (rows), with formation times indicated. Black (blue) curves show the pro-

files at t = 12 Gyr (t = 8 Gyr), which are well described by skew-normal distribu-

tions (dashed lines). Due to inward migration, older populations are progressively

negatively-skewed, peaking at smaller radii, and all populations evolve significantly

over the last 4 Gyr (compare black and blue curves within each panel). Right:

vertical profiles for different radii (colours) at t = 12 Gyr. The profiles are well

described by generalized normal distributions (dashed lines), and get more flattened

and thicker for larger R and larger tform (Figure 3.17)
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Figure 3.17: Same as Figure 3.16 younger populations (tform > 5 Gyr). Younger

populations have approximately Gaussian profiles peaking at Rpeak ≈ 15 kpc.
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3.6.1 Radial density profiles

The black shaded curves in the left column of Figures 3.16 and 3.17 show Σ(R),

with Poisson uncertainties, at the final snapshot (t = 12 Gyr). For young popula-

tions (Figure 3.17), Σ(R) is peaked at Rpeak ≈ 14 kpc and is approximately sym-

metric around this peak. Older populations (Figure 3.16) get increasingly centrally

concentrated, with Rpeak moving to lower values and Σ(R) becoming increasingly

skewed. In order to confirm that this is the consequence of a continuous evolution

(as opposed to rather different initial conditions of different mono-age populations),

we also show the profiles of the same populations, calculated at t = 8 Gyr (blue

shaded curves). The apparent time evolution from the bottom to the top panels

is confirmed within each panel, with each mono-age population (including the old-

est one at the top of Figure 3.16) becoming more centrally concentrated over the

4 Gyr between t = 8 Gyr and t = 12 Gyr, indicating the effect of continuous inward

migration.

The best fit models (dashed lines) in the left column of Figures 3.16 and 3.17,

show a good agreement with the empirical profiles. In Figure 3.18, we show the best

fit parameters as a function of the formation time (black shaded curves, evaluated at

t = 12 Gyr). Instead of α, µR and hR, we show the derived quantities representing

the skewness, the peak position, Rpeak, and the dispersion of the radial coordinate,

σR. The skewness (left panel) shows a clear trend, decreasing from ≈ 0 for the

youngest populations (large tform) to∼ −1 for the oldest ones (small tform), consistent

with the strong change of slope of the inner part of Σ(R) observed in Figures 3.16 and

3.17. The position of the density peak is shown in the central panel. It decreases

mildly from Rpeak ≈ 14 kpc for the youngest populations to Rpeak ≈ 12 kpc for

tform ≈ 4 Gyr, after which it strongly decreases (from right to left) to Rpeak ≈ 4 kpc

for the oldest populations. This strong decrease seems to be associated with the

inner slope of Σ(R) becoming close to zero for small tform (see Figures 3.16 and
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Figure 3.18: Derived quantities from the best fit models of the radial density profiles

for different mono-age populations, evaluated at t = 12 Gyr (black) and t = 8 Gyr

(blue). The skewness (left panel) is approximately zero for young populations (large

tform) and gets progressively more negatively-skewed for older populations (small

tform). The central panel shows that the profiles peak at Rpeak ≈ 14 Gyr for tform &

5 kpc, and drops quickly to Rpeak ≈ 4 kpc at tform ≈ 2 Gyr. The dispersion (right

panel) is σR ≈ 5 kpc for tform & 5 Gyr and increases rapidly for tform . 5 Gyr.

3.17), in which case a small change in this slope can imply large changes in the

peak position. Finally, the radial dispersion (right-hand panel) is σR ≈ 5 kpc for

tform & 5 Gyr, and increases rapidly for older populations, which is correlated with

the behaviour of Rpeak just mentioned (a strictly horizontal inner Σ(R) would imply

an infinite dispersion).

As in Figures 3.16 and 3.17, blue shaded curves represent the best fit models

of the same mono-age populations, evaluated at t = 8 Gyr. All parameters follow

similar trends with tform. Comparison of the black and blue curves shows that the

profiles become more negatively skewed, more centrally concentrated and with larger

dispersion over the last 4 Gyr of evolution. Interestingly, for both t = 8 Gyr and

t = 12 Gyr, the skewness is ∼ 0 for those populations with tform ∼ t, i.e. for the

youngest populations at each snapshot. This suggests that all mono-age populations

are formed with (or quickly evolve to) a Gaussian radial density profile, subsequently
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evolving towards negatively skewed distributions associated with inward migration.

It is also interesting to note that, at t = 8 Gyr, Rpeak and σR do not show the strong

gradients near tform ≈ 2 Gyr observed at t = 12 Gyr. Comparison with the top-left

panel of Figure 3.16 suggests that this is associated with the fact that, at t = 8 Gyr,

the oldest populations did not have enough time to achieve a nearly-uniform inner

radial density profile.

3.6.2 Vertical density profiles

The right panels in Figures 3.16 and 3.17 show the vertical number density profiles

ξ(z|R), with Poisson uncertainties, within cylindrical shells of width 2 kpc at differ-

ent radii (colours), for each mono-age population (tform indicated in the left panels),

evaluated at t = 12 Gyr. As a general trend, the vertical profiles get flatter and

thicker, both as a function of R (for a fixed tform) and as a function of tform (for

a fixed R). The dashed lines represent the best fit models and we observe a good

agreement with the empirical profiles for all radii and formation times.

Figure 3.19 shows the best fit values and uncertainties of parameters β, zpeak

and hz (see Eq. 3.9) as functions of radius, for the same formation times shown in

Figures 3.16 and 3.17. As mentioned above, the radial variation of each of these

parameters is modelled as a third-order polynomial, resulting in a total of 12 param-

eters. The left panel shows the parameter β. The horizontal line at β = 2 represents

a Gaussian distribution and we see that no mono-age population has ξ(z|R) com-

patible with a Gaussian for all radii. The oldest population (tform ≈ 2.1 Gyr) is the

only one for which β increases monotonically as a function of radius, being compat-

ible with a Gaussian for R & 16 kpc, while ξ(z|R) is more spiky than the Gaussian

for R . 16 kpc. For all the other populations, β depends non-trivially on radius.

However, despite this complexity, broadly speaking in the range 8 . R/ kpc . 20,

the parameter β increases as a function of R (for a fixed tform) and as a function
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Figure 3.19: Best fit parameters of the vertical density profiles using Eq. 3.9 for

different mono-age populations, colour-coded by the formation time. All quantities

have complex radial dependencies, but are simpler if we consider the restricted inter-

val 8 . R/ kpc . 20, where, broadly speaking, all quantities increase monotonically

with radius for most populations. The β parameter (left panel) of no population is

compatible with a Gaussian (horizontal dashed line) for all radii, while young popu-

lations (yellow) are highly non-Gaussian. The central panel shows the peak location,

which seems to split into two groups: old populations (tform . 5 Gyr) peak near the

plane (0 . zpeak . 1), while for younger populations zpeak increases rapidly with

radius, achieving zpeak ≈ 4 kpc. The right panel shows that, broadly speaking, the

scale parameter hz increases with radius (flaring profiles), with younger populations

flaring more than the older ones.
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of tform (for a fixed R). The location of the peak, shown in the central panel, also

has non-trivial dependencies on R, if we take into account all the radial interval. In

the restricted interval 8 . R/ kpc . 20, we note two main groups, with the three

oldest populations peaking at small |z|, with 0 . zpeak/ kpc . 1, while for the three

youngest populations zpeak increases fast with radius, achieving zpeak ≈ 4 kpc. This

suggests some abrupt change in the final 〈|z|〉 for stars formed at tform ≈ 5 Gyr.

Finally, the scale parameter hz is shown in the right panel. Once more, despite

the complex radial dependence, if we restrict to the interval 8 . R/ kpc . 20, we

note an approximately monotonic increase with R, i.e. flaring vertical profiles, with

younger populations flaring more than the old ones.

In summary, stars formed in the warp make their way into the disc and settle

into radial density profiles which can be described as skew-normal distributions

(Azzalini 1985), with young stars approximately described by Gaussians peaking at

a radius close to where the warp reaches its peak tilt, and which evolve to increasingly

negatively skewed distributions and smaller Rpeak for older populations. The vertical

density profiles are well described by the generalized normal distribution (Nadarajah

2005), and become flatter and thicker, both as a function of R and of tform.

3.7 Discussion

We have studied the dynamical evolution of stars formed in the warp of an N -

body+SPH simulation. We showed that the warp populations experience a rapid

tilting, becoming more aligned with the disc (Figures 3.5 & 3.6). The extent by which

warp stars can tilt into the main plane is limited by the speed with which differential

precession disrupts a coherent warped plane. Warp populations in the simulation

tilt by . 5◦. Once they have tilted, warp stars continue to experience differential

precession, which drives phase mixing, a slower process that continues much longer.

After settling the warp stars populate the geometric thick disc (Figure 3.15), in good
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agreement with the results of Roškar et al. (2010a), who showed that the warp stars

in their cosmological simulation end up populating a geometric thick disc.

In Figures 3.12 and 3.13 we found that the average radial positions of the warp

stars are constantly decreasing even after settling. This decrease in the average

radius is partly due to the fact that no warp stars, by our definition, are formed

inside 10 kpc, which means that there is a net inward migration of warp stars. This

decrease by itself is not evidence of radial migration, since the stars might be reaching

smaller radii via heating. Stars need to be on near-circular orbits to migrate radially

via spiral churning (Sellwood & Binney 2002b; Roškar et al. 2012). We found that

all warp populations have low eccentricities after they settle into the disc, making

them susceptible to spiral churning which drives radial migration. Though warp

stars populate the geometric thick disc and have higher |z|, that does not exclude

them from radial migration since thick disc stars can migrate (Solway et al. 2012;

Mikkola et al. 2020; Beraldo e Silva et al. 2020b).

The fiducial simulation presented here was run with a low gas density threshold

for star formation in order that stars could form in the warp. To confirm that the

settling process is not unique to this simulation we performed the same analysis as

in Section 3.5 on five other simulations. Some of the key differences between the

simulations are their star formation thresholds (low and high) and the longevity of

the gas warp (short or long-lasting). In these supplemental simulations settling of

warp stars is still observed in all mono-age populations, but the resulting thick disc in

each simulation varies in thickness and tform gradients for warp stars. The vertical age

gradient shown in Section 3.6.2 is present in some of the supplemental simulations

with a trend where a growing warp leads to a stronger age positive gradient. In cases

where star formation in the warp is less favourable (high threshold) or the warp is

short-lived, we generally find a near-zero or negative age gradient. The difference in

the vertical gradients therefore comes as a result of how the warp in each simulation
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evolved. Growing warps form newer stars at increasingly higher θL and |z| which

settle into the thick disc at higher |z|, forming a positive vertical gradient. Lastly,

there are differences in the tilting and phase mixing timescales along with the extent

of the subsequent radial migration depending on the warp extent, but in all cases

we find that warp stars settle onto near-circular orbits. The settling, phase mixing,

and migration of stars that we have focused on here therefore can be considered to

be generic of stars formed in a warp, while the details of the density distributions

on which the warp stars settle (thickness, age gradients, etc) are specific to the

evolution of the specific warp in which they form.

3.7.1 Consequences for the Milky Way

With the discovery of young stars (e.g. Cepheids) tracing the HI Galactic warp

(Chen et al. 2019a) in the Milky Way, an important question to consider is whether

these warp populations can eventually be found in the Solar Neighbourhood. The

warp stars in our simulation form at increasingly large radii, and in any case are

all formed outside R = 10 kpc, and therefore, in order to observe them in the

Solar Neighbourhood, these stars must migrate radially. In Section 3.5.4 we have

shown that warp stars migrate inwards to quite small radii via spiral churning. We

conclude that stars forming in the Milky Way’s warp can indeed be found in the

Solar Neighbourhood, and populating the thick disc. The age range of warp stars at

the Solar annulus of our fiducial simulation shows that due to the diffusive nature

of migration, the only young warp stars that can be observed are those born closest

to the Solar annulus (see right panel of Figure 3.13). Young warp stars born further

in the warp experience rapid tilting, but do not have enough time to migrate to the

Solar Neighbourhood, unlike older populations which are observed throughout the

disc.

Since the detailed history of the warp in our model is unlikely to match that of
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the Milky Way’s warp, we refrain from more direct comparisons of our model to the

Milky Way.

3.7.2 Summary

We have selected populations of stars formed in the warp of an N -body+SPH simu-

lation. We identified warp populations, by measuring the inclination of the angular

momentum of each star, θL, and analysed their dynamical evolution. In summary,

we have shown that:

• Most warp stars tilt to become more aligned with the galactic disc by ∼ 5◦.

Orbital tilting is evident from the mean tilt of the angular momenta, θL,

and the mean absolute height above the mid-plane, |z|, of mono-age warp

populations, which experience rapid declines during the first ∼ 1 Gyr before

becoming roughly constant. Using the θL and |z| rates of change, we found

tilting times ranging from 0.25 Gyr to 1.75 Gyr.

• Mono-age warp populations phase-mix in angular momentum space via differ-

ential precession at different rates. Stars are completely homogeneous in the

distribution of the angular momentum azimuthal angle φL after 6 Gyr.

• The time derivative of the vertical angular momentum, Lz, along with that of

the radial positions is negative after 1 Gyr for all warp populations and both

decrease until the end of the simulation. This is suggestive of inward radial

migration of warp populations.

• We found that almost all warp stars that have settled are on close to circular

orbits, with mean eccentricities ranging from 0.2 to 0.3 for all settled warp

populations. These low eccentricities indicate that warp stars are able to

migrate to the inner disc via spiral churning.
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• A detailed modelling of the density distribution of settled warp stars finds that

their initial torus-shaped density distribution is slowly filled in as warp stars

migrate to smaller radii. Because the warp in the model grows with time, the

warp populations settle to increasingly thicker tori/discs.

• A settled mono-age warp population is radially flaring. In our model the

flaring increases with the formation time of the population, an indication of

the growing warp.
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Bending waves caused by galactic

warps

This chapter is based on a paper in preparation as Tigran Khachaturyants, Leandro

Beraldo e Silva, Victor P. Debattista1, Kathryne J. Daniel. The simulations used

throughout this chapter are the WM1 (warped) and UM (unwarped) models.

4.1 Abstract

Gaia has shown clear evidence of bending waves in the vertical kinematics of stars

in the Solar Neighbourhood. We use a simulation of a warped galaxy to show that

if the Milky Way warp was formed and is supported via gas accretion then the

irregular infall of gas could give rise to bending waves. The propagation of these

bending waves seems to result in a correlation between the mean vertical velocity

and the angular momentum, similar to that observed in the Solar neighbourhood.

The bending waves propagate across the entire disc in the span of ∼ 400 Myr and

stellar populations of all ages are affected by them, though the effect is more dis-

tinct in younger stars. In an unwarped simulation, the effect of bending waves is

significantly weaker than those excited by the accreting gas and they appear to be
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a superposition of other weaker sources. We observe positive slopes in the Lz vs

vz relation for simulated Solar neighbourhoods in both simulations, possibly as a

result of the bending waves. However, only the warped simulation has slopes of

similar or higher values than measured in the Milky Way. A spectral analysis of the

density and vertical displacement in both warped and unwarped simulations shows

good agreement with the WKB approximation with both models containing slow

and long-lasting retrograde bending waves in their discs. The fast prograde bending

waves are present in the warped simulation throughout its evolution while in the

unwarped case they decay in the span of ∼ 1 Gyr. This difference is likely due to

the continuous re-excitement by the accretion of cold gas in the warped simulation.

The presence of a long-lasting warp gives rise to more prograde bending waves as

the disc is being continuously perturbed which counteracts the natural dissipation

via differential rotation. Warps are, therefore, a vital component in the study of the

disc’s vertical structure and evolution. In conclusion, warps produced by accretion

of misaligned gas provide a natural rejuvenation mechanism for prograde bending

waves that may be currently observed in the Milky Way.

4.2 Introduction

Using the Tycho-Gaia DR1 Astrometric Solution (TGAS) dataset (Gaia Collabo-

ration et al. 2016d,b), Schönrich & Dehnen (2018a) found a linear increase in the

mean vertical velocity, 〈vz〉, with the azimuthal velocity, vφ, angular momentum,

Lz, and guiding radius, Rg, of stars in the Solar Neighbourhood. Since the line of

nodes of the Galactic warp is only ∼ 17.5◦ ahead of the Sun (Chen et al. 2019a), this

linear increase is potentially the warp’s direct imprint on the local stellar kinematics.

Because the TGAS dataset lacks radial velocity measurements, Schönrich & Dehnen

(2018a) used only stars along narrow cones in the centre and anti-centre directions,

for which the radial velocity is not required to obtain vz and vφ. Schönrich & Dehnen
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(2018a) also noted the presence of a wave-like pattern imprinted on the overall 〈vz〉
distribution, towards both the centre and anti-centre directions. A smooth, mono-

tonic warp would not present such a signal; instead Schönrich & Dehnen (2018a)

obtained a good fit with a simple sinusoidal wave, as might be produced by a wind-

ing warp or by a bending wave. Subsequently, this pattern in 〈vz〉 was replicated

by Huang et al. (2018a) using a ∼ 105-star sample from the LAMOST-TGAS data.

Unlike the TGAS sample, LAMOST-TGAS has full 6D phase space measurements,

which allowed Huang et al. (2018a) to replicate the wavelike pattern in 〈vz〉 versus

Lz and versus vφ in the entire Solar Neighbourhood (SN). With the release of Gaia

DR2 the linear increase and wave-like pattern in 〈vz〉 were again confirmed by Friske

& Schönrich (2019).

Subsequently, Gaia DR2 discovered a phase-space spiral in the (z, vz) plane

(Antoja et al. 2018). Antoja et al. (2018) selected ∼ 9×105 stars in the Solar annulus

of Gaia DR2 RVS, a sample containing the full 6D phase-space coordinates (Gaia

Collaboration et al. 2018c), and projected them onto the (z, vz) plane. The result

was a spiral with one complete wrap, with a trailing tail reaching up to ∼ 700 pc

and ∼ 40 km s−1 in |z| and |vz|, respectively. The presence of this phase-space spiral

indicates that the SN is undergoing vertical phase mixing as a result of vertical

perturbations (Antoja et al. 2018). The Gaia phase-space spiral was dissected by

Li & Shen (2020), who showed it is weaker for stars on radially hotter orbits.

The cause of these vertical perturbations in the SN remains uncertain. In gen-

eral, vertical perturbations in galactic discs propagate as bending waves (Hunter

& Toomre 1969b; Merritt & Sellwood 1994; Sellwood 1996; Sellwood et al. 1998;

Kazantzidis et al. 2009; Chequers et al. 2018; Khoperskov et al. 2019; Darling &

Widrow 2019; Bland-Hawthorn et al. 2019) with many possible causes. Widrow

et al. (2012) presented evidence for a wave-like perturbation in the Galactic disc in

the form of the Galactic North-South asymmetry, speculating it could have come
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about via satellite interaction. Feldmann & Spolyar (2014) used a high-resolution

numerical simulation to study the interactions of dark matter substructure with the

disc and observed that subhalo interactions resulted in distinct and coherent varia-

tions in the vertical velocities of disc stars. Gómez et al. (2017) presented multiple

high-resolution cosmological simulations of individual Milky Way-sized galaxies that

develop significant vertical bending waves via satellite interactions.

The Sagittarius dwarf galaxy (Sgr) is the most frequently invoked external cause

of vertical excitation of the Milky Way’s disc (Ibata & Razoumov 1998b; Dehnen

1998b; Laporte et al. 2019b), due to its relatively recent (∼ 0.4 − 1 Gyr) passage

through the disc and an orbit that is perpendicular to the Galactic plane (Ibata

& Razoumov 1998b; Laporte et al. 2019b). Sgr has also been suggested to be the

cause of the bending wave observed by Schönrich & Dehnen (2018a) and Huang

et al. (2018a). The analysis of the phase-space spiral lead Antoja et al. (2018) to

infer that the Galactic disc was perturbed in the past 300−900 Myr, which matches

current estimates of a pericentric passage by Sgr. Li & Shen (2020) presented further

support for the Sgr scenario with a vertically perturbed test particle simulation.

They estimated that the perturbation should have happened at least 500 Myr ago to

observe the Gaia phase-space spiral in its current form. However, other simulations

have shown inconsistencies in the Sgr scenario. Binney & Schönrich (2018) produced

a phase-space spiral in a SN population extracted from a distribution function fitted

to Gaia DR2 RVS and estimated that the spiral formed 400± 150 Myr ago. While

their time scale estimate is in some agreement with Antoja et al. (2018)’s results,

the mass and duration of the interaction required to produce similar phase-space

spirals were significantly higher and faster, respectively. In a pureN -body simulation

Bland-Hawthorn & Tepper-Garćıa (2021) have shown that the current mass estimate

of the Sgr dwarf is too low to excite the phase spiral. Instead Bland-Hawthorn &

Tepper-Garćıa (2021) suggested that the interaction had to have happened 1−2 Gyr
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ago with the Sgr dwarf losing mass at a high rate. Additionally, Bennett & Bovy

(2021) used one-dimensional (vertical) models of satellite-disc interaction and were

unable to reproduce the observed asymmetry in the vertical number counts for any

plausible combination of Sgr and Milky-Way properties.

On the other hand, Chequers et al. (2018) showed that isolated galaxies can also

self-excite bending waves. Their N -body simulations of isolated galaxies naturally

develop bending waves not just when the halo is clumpy but also when it is smooth.

The bending waves in both kinds of simulations have a similar morphology and

frequencies, but differ in amplitude, with the clumpy halo exciting waves of higher

amplitudes. In the smooth halo models, the bending waves were likely seeded by the

random noise of the halo and bulge particle distributions (Chequers & Widrow 2017).

In the clumpy halo models, instead, the subhalos imprint local perturbations on the

disc which then shear into bending waves. Buckling of a galactic bar also induces

bending waves in the disc. Khoperskov et al. (2019) presented a high resolution

N -body simulation that developed a bar which then buckled, i.e. it suffered a

vertical bending instability of the bar (Raha et al. 1991b; Sellwood & Merritt 1994).

The resulting bending waves propagate outward in the disc and remain coherent

for a long time, with the phase-space spirals still being distinguishable 3 Gyr after

the bar buckles. However, it is unclear whether the Milky Way’s bar could have

buckled this recently without scattering too many relatively young stars into the

bulge (Debattista et al. 2019a).

An alternative mechanism for generating vertical bending waves comes from

the observation that, in galaxy formation simulations, gas reaches the disc with a

misaligned angular momentum (Binney & May 1986; Ostriker & Binney 1989b; van

den Bosch et al. 2002b; Roškar et al. 2010b; Velliscig et al. 2015; Stevens et al.

2017; Earp et al. 2019), regardless of whether it settles to the disc via hot or cold

modes. Such angular momentum misalignments cause long-lived warps, as opposed
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to the transient warps excited by interactions (Ostriker & Binney 1989c; Roškar

et al. 2010b; Aumer et al. 2013). These warps provide another mechanism by which

the disc may be vertically excited, as shown by Gómez et al. (2017), who found that

some of their cosmological simulations had prominent vertical bends in discs which

have not recently interacted with a satellite. They argued that these bends are most

prominent in the youngest stellar populations (< 2 Gyr) and cold gas, and almost

absent in the oldest stars.

The Milky Way’s Hi disc has long been known to be warped (Kerr 1957b; Weaver

& Williams 1974; Levine et al. 2006c), with the warp reaching ≥ 4 kpc above the

midplane at R = 25 kpc. A warp has also been observed in the stellar component

of the Galactic disc (Efremov et al. 1981; Reed 1996; López-Corredoira et al. 2014).

Recently, with the help of the WISE catalogue of periodic variable stars (Chen et al.

2018b), the stellar warp has also been mapped in greater detail in the young stellar

populations (Chen et al. 2019a).

This paper uses N -body+SPH (Smooth Particle Hydrodynamics) simulations

to explore a scenario in which bending waves are induced by gas accreting along a

warp. The paper is organised as follows: the evolution of the warp is described in

Section 4.3. In Section 4.4 we analyse the bending waves that develop in both the

warped and unwarped simulations, comparing and contrasting them. In Section 4.5

we discuss the results of this paper. Lastly we summarise our results in Section 4.6.

4.3 Warp evolution

The top row of Fig. 4.1 presents edge-on views of stars (colour) and the cool (Tg ≤
5 × 104 K) gas (red contours) between t = 3 Gyr and 12 Gyr. Throughout the

evolution of the warped model, gas is accreted onto the disc along an integral-

shaped warp. By 12 Gyr the gas warp extends up to 15 kpc above the plane at

R ∼ 20 kpc. Because of our re-orientation of the disc, the major axis of the warp is
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Figure 4.1: Top row: edge-on views of the stellar and cold gas (T≤ 50, 000 K) dis-

tributions at four times in the evolution of the warped model. The colour represents

the stellar surface density, while the red contours represent the cold gas column

density. The times are labelled at the top-right in each panel. A warp is present

throughout the evolution of the warped model. The simulation is rotated so that the

major axis of the warp is along the x-axis. The warp reaches heights |z| ∼ 15 kpc

over this evolution. Bottom row: Briggs figures for the warped model showing the

evolution of the stellar (black) and cool gas (red) warps at the same times. Mark-

ers represent annuli with ∆R = 1 kpc, equally spaced from 5 to 20 kpc, with the

square and triangle markers indicating annuli at 10 kpc and 20 kpc, respectively.

The stellar disc is somewhat warped at t = 3 Gyr but becomes flatter throughout

its evolution.

.
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Figure 4.2: Similar to Fig. 4.1 but for the unwarped model. In contrast to the

warped model, there are no warps in either the gaseous or stellar components in the

edge-on distributions. The Briggs figures have a reduced scale with max θ = 2.5◦

set as the upper limit, so even though we see some changes at different radii, both

gas and stellar discs are quite flat throughout the model’s evolution.

.
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along the x-axis and reaches a peak negative value along the x > 0 side; in reality

viewed from an inertial frame the disc is tilting slowly and continuously during this

time (Binney & May 1986; Ostriker & Binney 1989b; Debattista et al. 2015; Earp

et al. 2017, 2019) but we subtract this tilting.

In order to study the evolution of the warp, we construct Briggs figures (Briggs

1990b) for the warped and unwarped models. A Briggs figure represents warping

by means of the spherical angles, φJ and θJ , between the total angular momenta of

concentric annuli and the z-axis. These are then plotted as the radial, ρ (for θJ),

and angular, ψ, (for φJ) variables of a 2D polar plot. Because we reorient the discs

into the (x, y) plane based on the angular momentum of the inner disc stars before

we perform any analysis, the inner disc is at the centre of the Briggs figures, i.e. it

has angular momentum along the z-axis. The bottom row of Fig. 4.1 shows Briggs

figures for the warped model at the same time intervals. The figure presents the

stars (in black) and the cool gas (in red) separately. The stellar and gaseous discs

are divided into annuli of width ∆R = 2 kpc, and then we calculate the total angular

momentum of particles in each annulus. A warp is present in the gas component

throughout the evolution of the warped model. The warp grows slowly with time;

by 12 Gyr it extends to almost 40◦. The warp traces a leading spiral relative to the

sense of rotation of the disc, in agreement with Briggs’s third rule of warp behaviour

(Briggs 1990b). On the other hand, the stellar component loses its large-scale warp

after 6 Gyr, and only a small warp remains.

In contrast, a similar analysis on the unwarped model does not reveal any disc

warping. In the top row of Fig. 4.2 the edge-on views of the unwarped model present

no stellar (colour) or gaseous (red contours) warps at any point in time. The bottom

row of Fig. 4.2 shows similar Briggs figures as in Fig. 4.1 but with significantly

smaller θL upper limits to underline the lack of warping in the unwarped model. We

observe no warping in the stellar component at all times and only minor tilting at
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R = 10 kpc at 6 and 9 Gyr for the gaseous component.‘

Fig. 4.3 presents cold gas and stellar profiles for both models at t = 10 Gyr in

the surface density (top panel) and their inclination (bottom panel). The unwarped

model experiences drops in surface density and inclination at the edge (10 kpc). In

the warped model we observe a slower decline in the surface density with a weak

increase in inclination (∼ 15◦), caused by newly (≤ 2 Gyr) formed warp stars

4.4 Bending waves

4.4.1 The presence of vertical bends

Fig. 4.4 shows the stellar face-on distributions of the average height, 〈z〉 (top),

and the average vertical velocity, 〈vz〉 (bottom), in the warped (left) and unwarped

(right) models. The distributions highlight the presence of large-scale bends (co-

herent blue and red structures) in the disc. The warped model exhibits bends with

amplitudes of ∼ 100 pc and ∼ 3 km s−1 〈z〉 and 〈vz〉, respectively, that reach far in-

side the disc down to R ' 2 kpc. In agreement with Chequers et al. (2018), bends are

also observed in the unwarped model, but are noticeably weaker, with amplitudes of

∼ 25 pc and ∼ 1 km s−1, respectively. The bends in the unwarped model also reach

far inside the disc reaching the very centre. At first impression, the structure of the

bends in both models do not appear to have any distinct shape and wavelength,

requiring a more in-depth spectral analysis of the surface 〈z〉 distributions to probe

for bending waves.

4.4.2 Spectral analysis of bending waves

In a cold, initially unperturbed axisymmetric, razor-thin disc rotating with an an-

gular rotation curve Ω(R), bending waves with wavelengths smaller than the disc
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Figure 4.3: Profiles of the surface density, Σ, (top) and θL, gas (bottom) in the warped

(solid lines) and unwarped (dashed lines) models at t = 12 Gyr. The profiles are

shown for both the cold gas (red) and stellar (black) discs, where R′ is defined as

the cylindrical radius in the cold gas and stellar planes at each annulus. Only bins

with Σ ≥ 7× 106 M� are shown.
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Figure 4.4: Face-on distributions of the stellar mean height, 〈z〉 (top), and mean

vertical velocity, 〈vz〉 (bottom), for the warped (left) and unwarped (right) simula-

tions at t = 11.7 Gyr. A Gaussian filter has been applied to the colour distribution

in each panel with a standard deviation of the Gaussian kernel set to σ = 1 pixel

= 450 × 450 pc. The solid black and cyan circles represent the Solar annulus,

R = 8.18 kpc, and R = 10 kpc, respectively.
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scale length (i.e. in the WKB approximation) satisfy the dispersion relation

m2 [Ωp − Ω(R)]2 − 2πGΣ(R)|k| − ν2
h = 0, (4.1)

where ω = mΩp is the wave frequency, Ωp is the associated pattern speed, Σ(R) is

the disc surface density, k is the wave number and νh is the frequency of vertical

oscillation due to the halo potential (Hunter & Toomre 1969b; Sparke & Casertano

1988; Binney & Tremaine 2008b; Sellwood 2013). For a given rotation curve Ω(R),

these waves can only propagate in regions provided they satisfy the condition

m2 [Ωp − Ω(R)]2 ≥ ν2
h, (4.2)

which defines, for m = 1, a “forbidden” region, Ω− νh < Ωp < Ω + νh, where WKB

bending waves cannot propagate (e.g. Nelson & Tremaine 1995). This is analogous

to the allowed region for the propagation of density waves in cold discs, defined by

m2 [Ωp − Ω(R)]2 ≤ κ2, (4.3)

where κ is the epyciclic frequency of radial oscillation – see Binney & Tremaine

(2008b).

The dispersion relation of Eq. 4.1 implies that bending waves can manifest as

either a “fast” prograde wave, with Ωp = Ω +
√

2πGΣ|k|+ ν2
h/m, or a “slow”

retrogade wave, with Ωp = Ω −
√

2πGΣ|k|+ ν2
h/m. Due to differential precession,

the “fast” component is expected to phase-mix rapidly and hence decay, while the

“slow” retrograde wave is expected to be long-lived.

In order to investigate in detail the propagation of bending waves in our models,

in this section, we employ the spectral analysis technique of Sellwood & Athanas-

soula (1986), using a code based on that of Roškar et al. (2012). This allows us to

recover the spatial distribution and temporal evolution of pattern speeds. The code

is applied to both the unwarped and the warped simulations, first for the density

distribution and then for the vertical distribution.
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At each snapshot, we start by selecting star particles in concentric annular bins.

In each annulus, we first expand the azimuthal angular dependence of the normalised

mass distribution in a Fourier series

µ(R, φ) = 1 +
∞∑
m=1

cm(R)e−imφ, (4.4)

with

cm(R) =
1

M(R)

N∑
p=1

mpe
imφp , (4.5)

where the sum runs over particles inside the annulus, mp and φp are the mass

and azimuth of particle p, respectively, and M(R) is the total mass within the

annulus. We calculate the coefficients cm(R) for every snapshot in a given time

interval (hereafter baseline) and then perform a discrete Fourier transform of this

time series as

Cm,k(R) =
S−1∑
j=0

cm(R, tj)wje
2πijk/S, (4.6)

with k = −S/2, ..., S/2, where S is the number of snapshots in the baseline. The

associated frequencies are given by

Ωk =
2π

m

k

S∆t
, (4.7)

where ∆t is the time between snapshots, and we adopt the Gaussian window function

w(j) = e−(j−S/2)2/(S/4)2 . (4.8)

Finally, the power spectrum is computed as

P (R,Ωk) =
1

W
|Cm,k(R)|2, (4.9)

where

W = S
S−1∑
j=0

w2
j . (4.10)

We perform this calculation for a time baseline S∆t = 1 Gyr, resulting in a resolu-

tion ∆Ω = 2π/m km s−1 kpc−1 – see Eq. 4.7. We repeat this calculation for several

time baselines.
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In order to analyse the bending signal, similarly to Eq. 4.5 we define

γm(R) =
1

M(R)

N∑
p=1

zpmpe
imφp , (4.11)

where zp is the vertical height of particle p, and use Eqs. 4.6-4.9 mutatis mutandis.

Note that now γm(R) is given in kpc and the associated power spectrum is given in

kpc2.

For the analysis in this section, in order to compare results with the analytic

expressions of the WKB approximation, we also compute the frequencies of circular

motion Ω(R) and radial oscillation κ(R) produced by the total potential and the

frequency of vertical oscillation produced by the halo νh(R), using agama (Vasiliev

2019). These frequencies are computed in the middle of each 1 Gyr baseline.

Unwarped simulation

The two left-hand columns of Fig. 4.5 show, for the unwarped simulation, the power

spectra obtained for m = 1 and m = 2 density perturbations (as indicated in the

titles) in the (Ω, R) plane at different times (rows), from 5 Gyr to 12 Gyr. The

m = 2 density signal shows multiple pattern speeds at all times, covering a large

radial extent and revealing the presence of multiple spiral density waves. The thick

dashed white lines show the rotation curves, Ω(R), at the different times, while the

thin dashed white lines show the inner and outer Lindblad resonances Ω±κ/m. The

white shaded regions above and below these lines represent the forbidden regions

for propagation of density waves, as predicted by the WKB approximation – see

Eq. 4.3. Most clearly for m = 2, the power tends to lie in the allowed region, in

good agreement with the WKB approximation.

The panels at the right of each of these spectrograms show the total power, i.e.

the radially-integrated power spectra (in log scale); prominent peaks for m = 2

can be immediately distinguished. These peaks are used to estimate the pattern

speed values, and are identified via an iterative scheme similar to that of Roškar
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et al. (2012): we first identify the most prominent peak, fit a Gaussian function to

it and subtract this Gaussian contribution from the total power. Then, we iden-

tify the next most prominent peak and repeat the process, identifying the pat-

tern speed value and power for a maximum of four peaks in total in the interval

−100 . Ω/ km s−1 kpc−1 . 100 (horizontal lines, with length representing the power

after the Gaussian subtraction of peaks previously identified). The m = 1 density

signal shows some significant power, but the pattern speed peaks are not as promi-

nent as those for m = 2, which is expected since spirals are normally two-armed. It

is interesting to note an apparent correlation between an m = 1 peak at Ωp ≈ 25

km s−1 kpc−1 with an m = 2 peak at the same pattern speed, which suggests im-

perfectly bisymmetric spiral arms.

Fig. 4.6 (left panels) shows the identified m = 1 (top) and m = 2 (bottom)

density pattern speeds for several 1 Gyr-baselines, with colours representing the

ratio Rpeak/RCR, where Rpeak is the radius where the power spectrum peaks for a

given pattern speed and RCR is the co-rotation radius. Density signals with pattern

speeds peaking inside (outside) co-rotation are blue (red). The area of each point is

proportional to the total power in Fig. 4.5, and the prominent peaks for the m = 2

signal translate into larger markers for m = 2, in comparison to m = 1. Focusing

on m = 2, this figure clearly shows the simultaneous presence of multiple pattern

speeds. The neutral colours (Rpeak/RCR ≈ 1) show that these pattern speeds tend

to peak along the rotation curve Ω(R), i.e. in the region allowed by the dispersion

relation of Eq. 4.1, as anticipated in Fig. 4.5. The higher pattern speeds, at 60 −
75 km s−1 kpc−1, located inside co-rotation (blue points) and decreasing in time are

due to the presence of a slowing bar (see Fiteni et al. 2021). The other two prominent

pattern speeds can be attributed to the propagation of spiral density waves. It is

interesting to note that in this simulation, and for the time interval analysed, the

pattern speeds show some evolution, changing values, power amplitude and peaking
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both inside and outside co-rotation, but not very vigorously transient behaviour.

The strongest pattern is at Ω ≈ 20 − 25 km s−1 kpc−1. As shown in Roškar et al.

(2012), what is transient about these spirals is not necessarily their frequency, with

some modes seemingly preferred, but their amplitude, which continuously varies. We

cannot exclude the possibility that certain modes are continuously being re-excited,

most likely with random relative phases.

The power spectra for the m = 1 and m = 2 bending signal in the unwarped

simulation are shown in the two right-hand columns of Fig. 4.5 (as indicated in

the titles). The panels to the right of these spectrograms again show the radially-

integrated power spectra (strong and pale blue) with the peaks identified in the

same way as before. The white thick dashed lines again show the rotation curve

Ω(R), while the shaded white areas between Ω ± νh/m represent the forbidden

regions for bending waves – see Eq. 4.2. Focusing on m = 1, the most noticeable

feature in these spectra is the ubiquitous presence of a slow retrograde pattern at

−15 . Ω/ km s−1 kpc−1 . −10 and extending from R = 5 kpc to 15 kpc. For some

snapshots, we also detect a fast prograde motion at Ω ≈ 50 km s−1 kpc−1, which

generally has much lower power than the slow retrograde pattern.

The right-hand panels of Fig. 4.6 show the time evolution of the pattern speeds

identified for the bending signals m = 1 (top) and m = 2 (bottom) - note that

the scale for area of the points is 8× that of the density waves. Focusing again on

m = 1, we confirm the ubiquitous presence of the slow retrograde mode, while a fast

prograde pattern at Ω ≈ 50 km s−1 kpc−1 is barely noticeable and only detected in a

few snapshots. This seems in accordance with the theoretical expectation that, no

matter how the bending perturbation is produced, the associated slow retrograde

wave is long-lived, while the fast prograde wave decays quickly.

Interestingly, a “slow” bendingm = 1 prograde pattern, at Ω ≈ 20−25 km s−1 kpc−1

is detected at virtually all snapshots, located inside the forbidden region for bending
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Figure 4.5: Power spectra for perturbations in the unwarped simulation at several

time-intervals (rows). The first two columns show the power spectra for m = 1

and m = 2 density (bar+spiral) perturbations, with the radius-integrated power

shown to the right of the spectrograms. The thick and thin white dashed lines show

Ω(R) and Ω ± κ/m, respectively, and the lightly shaded white areas represent the

“forbidden” regions for WKB density waves. The power concentrates along Ω(R),

avoiding the forbidden region. The two right-hand columns show the power spectra

for m = 1 and m = 2 bending perturbations. The thick and thin white dashed

lines show Ω(R) and Ω± νh/m, and the white shaded areas represent the forbidden

regions for WKB bending waves. For m = 1, the expected long-lived slow retrograde

motion is clearly visible, while the fast prograde pattern is weak.

103



CHAPTER 4

waves – see Fig. 4.5. Over-plot in the two right-hand total power panels of Fig. 4.5

are the total power curves for the m = 1 and m = 2 density signals (pale and strong

orange, respectively), as shown in the two left-hand columns. This slow m = 1

pattern speed lies close to the aforementioned correlated m = 1 and m = 2 density

peaks seemingly associated with an asymmetric two-armed spiral density wave. This

may suggest a possible coupling of density and bending waves. We discuss this issue

further in Sec. 4.5.

Warped simulation

Fig. 4.7 shows the power spectra for the warped simulation (in this simulation we

stored outputs at high cadence already from 2 Gyr, which permits us to perform

spectral analysis from this point), with the same scheme of density and bending

m = 1 andm = 2 signals as in Fig. 4.5. As in the unwarped model, them = 2 density

signal exhibits multiple pattern speeds present simultaneously, covering a large radial

extent. The pattern speeds are not as sharply defined as in the unwarped simulation,

which might be due to the perturbation from the warp. Alternatively, this could be

because the warped model is thicker: at 12 Gyr and between 0 ≥ R/ kpc ≥ 10 the

discs of the warped and unwarped models have root-mean-square z, of 0.8 kpc and

0.5 kpc, respectively. Once more, we note that the pattern speeds tend to occupy

the allowed region of WKB density waves.

The left-hand panels of Fig. 4.8 show the time evolution of the pattern speeds

identified in Fig. 4.7 for the m = 1 (top) and m = 2 (bottom) density signal. In

this simulation, there is no hint of a bar, and essentially all identified m = 2 pattern

speeds peak inside co-rotation (blue points). The longer time interval explored

in this simulation provides a better appreciation of the transient character of the

spirals.

The right hand panels of Fig. 4.7 show the spectrograms for the bending signals.
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Figure 4.6: Pattern speeds identified in Fig. 4.5, for the m = 1 (top) and m = 2

(bottom) density (left) and bending signals (right). Point areas are proportional

to the radially-integrated power, with scale in the right-hand plots 8× larger than

in the left-hand panels. Colours indicate the ratio of the radius where the pattern

speed peaks to the co-rotation radius. For the m = 2 density signal, the high

pattern speeds (upper points) generally lie inside co-rotation and decrease with

time, suggestive of a slowing bar. The other two discernible patterns are associated

with spiral density waves, with the strongest one at Ω ≈ 20− 25 km s−1 kpc−1. The

m = 1 bending plot shows the ubiquitous presence of a slow retrograde pattern (at

−15 ≤ Ω/ km s−1 kpc−1 ≤ −10) and (at some times) a very weak fast prograde

signal at Ω ≈ 50 km s−1 kpc−1.
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Figure 4.7: Similar to Fig. 4.5, showing the power spectra at different times (rows)

for the m = 1 and m = 2 density (left) and bending (right) perturbations in the

warped simulation. The m = 2 density panels show the simultaneous presence of

various pattern speeds in the region allowed for WKB density waves. In the m = 1

bending panels, the most noticeable difference with respect to Fig. 4.5 is the strong

peak at Ω ≈ 0 km s−1 kpc−1, which is a trivial manifestation of the warp. As in the

unwarped simulation, a slow retrograde motion is detected in the m = 1 bending

plot. Significant m = 1 bending power is present for large Ω at large radii, i.e. a

fast prograde motion avoiding the forbidden region for WKB bending waves, and

peaking at 25 ≤ Ω/ km s−1 kpc−1 ≤ 50.
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The bending m = 1 waves exhibit a prominent peak at Ω = 0 km s−1 kpc−1 for

almost all snapshots, which is the trivial signal of the warp itself. This peak is so

prominent that it can visually hide nearby peaks, which our iterative peak finding

and Gaussian subtraction scheme allows us to detect (solid blue horizontal lines).

The m = 1 peak due to the slow retrograde motion (Ω ≈ −15 km s−1 kpc−1) is

detected at almost all time-intervals. Additionally, significant power in fast prograde

waves is now observed, at large radii, and peaking at 25 ≤ Ω/ km s−1 kpc−1 ≤ 50.

The right-hand panels of Fig. 4.8 show the time evolution of the pattern speeds

identified in Fig. 4.7 for the m = 1 (top) and m = 2 (bottom) bending signals.

For better viewing, we suppress the m = 1 points with power > 10−1 kpc2, which

are all located at Ω ≈ 0 km s−1 kpc−1 and represent the warp (the large blue point

near Ω ≈ 0 km s−1 kpc−1 has a slightly lower power so avoids the cut). As in the

unwarped simulation (see Fig. 4.6), we can see the ubiquitous presence of a slow

retrograde m = 1 motion in the warped simulation, with substantially more power

than in that model.

The main difference between the warped and the unwarped models is the pres-

ence of a strong, fast prograde motion in the m = 1 bending signal, at 25 .

Ω/ km s−1 kpc−1 . 50 in the warped system. The strong red colours show that

this pattern peaks at large radii, thus avoiding the forbidden region of WKB bend-

ing waves. Although these points decrease in size over time, they are present at all

times. This is due to the long-lived nature of the warp in this simulation. While

fast prograde bending waves are expected to decay quickly, the warp continuously

perturbs the disc, re-exciting these waves.

As we did in the unwarped simulation, in the right columns of Fig. 4.7, we

also over-plot the total power curves of the m = 1 (pale orange) and m = 2 (strong

orange) seen in the left-hand columns. Neglecting the warp’s stationary signature, an

apparent correlation of the bending waves with the density signals is again present,
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Figure 4.8: Time evolution of the pattern speeds identified in Fig. 4.7, for the warped

simulation. The m = 2 density panel reveals a more transient evolution of the pat-

tern speeds, in comparison to the unwarped simulation. In the m = 1 bending panel,

we suppress points with power > 10−1 kpc2, which all lie at Ω ≈ 0 km s−1 kpc−1 and

represent a trivial manifestation of the warp (the large blue point has slightly less

power and evaded the cut). As in the unwarped simulation (Fig. 4.6), a persistent

slow retrograde m = 1 bending signal is detected. Unlike the unwarped simulation,

a fast m = 1 bending prograde motion (25 ≤ Ω/ km s−1 kpc−1 ≤ 50) is detected at

large radii (red) with substantial power.

108



CHAPTER 4

especially for the peak at Ωp ≈ 25 km s−1 kpc−1, which often penetrates into the

forbidden region. We discuss this pattern speed overlap in Sec. 4.5.

The main conclusion from the analysis in this section is that slow retrograde

bending waves are present in both the unwarped and the warped models, throughout

their evolution. On the other hand, only in the warped model are significant fast

prograde bending waves detected, which must be persistently re-excited by the warp.

4.4.3 The source of the vertical perturbations

In the previous section we demonstrated the presence of bending waves in both

the warped and unwarped simulations, although with different properties. Bending

waves in simulations of unwarped isolated galaxies were already reported by Che-

quers & Widrow (2017), who suggested shot noise in the dark matter halo as a source

mechanism. The origin of bending waves in our unwarped simulation is discussed in

Sec. 4.5; Here we focus on the main source of vertical perturbation in the warped

simulation. In the WKB approximation prograde bending waves are expected to

dissipate rapidly and therefore be weak, as indeed we find in the unwarped simula-

tion. However, in the warped model the consistent power in the prograde bending

waves indicates that the disc in the warped model is continuously being vertically

excited.

The top panel of Fig. 4.9 shows the evolution of the mass flux of cool gas

(T < 50, 000K) through a spherical shell with radius and thickness of R = 15 kpc

and ∆R = 0.2 kpc, respectively. The flux of cool gas varies substantially, with long

term inflow modulated by rapid variations. Similar to the analysis in Section 4.4.2,

we apply a discrete Fourier transform to the evolution of the mass flux over 1 Gyr

baselines to derive the characteristic timescales of the variations. The bottom panel

of Fig. 4.9 shows the resulting frequencies of the mass flux. Most of the frequen-

cies cluster between 0 and 20 kpc km s−1, and reaching to 40 kpc km s−1. These
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Figure 4.9: Top: evolution of the mass flux of cold gas (T < 50, 000K) through a

spherical shell with R = 15 kpc and ∆R = 0.2 kpc. Bottom: frequencies derived

from a discrete Fourier transform of the mass flux on 1 Gyr baselines. The marker

size indicates the frequency amplitude with the value of the maximum amplitude

and respective marker size shown in the legend.
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results show that the disc is continuously perturbed by the irregularly accreting

gas with a maximum amplitude of 4.4 × 106 M� kpc−2 Gyr−1. These frequencies

substantially overlap the frequencies of the bending waves, indicating a favourable

spectrum of perturbations for exciting the bending waves. We propose, therefore,

that the irregular inflow of gas from the warp onto the disc is the source of the

vertical perturbations which are responsible for exciting the bending waves in the

warped model.

4.4.4 Vertical kinematics in the Solar Neighbourhood

In Fig. 4.4 the vertical bends are accompanied by non-zero 〈vz〉. Schönrich & Dehnen

(2018a) and Huang et al. (2018a) observed an increase in 〈vz〉 with angular momen-

tum |Lz|, which they speculated was due to either an extension of the warp, or to a

bending wave. We test whether such a signal can arise in our models.

Fig. 4.10 examines a simulated SN sample in the warped model at 11.4 Gyr, with

plots similar to those of Schönrich & Dehnen (2018a) and Huang et al. (2018a).

Three panels plot 〈vz〉 versus Lz (top right), versus azimuthal velocity, vφ (bottom

right), and versus cylindrical and guiding radii, R and Rg (bottom left, the latter

computed using agama, Vasiliev 2019). With the improved mapping of the Milky

Way’s warp, the Sun’s position relative to it is now clearer: the Sun is ∼ 17.5◦ behind

the ascending node of the warp (Chen et al. 2019a). Our sample is contained within

a sphere of radius 2 kpc at R = 8.18 kpc and azimuth of φw = 72.5◦, where φw is the

azimuthal angle along the direction of rotation measured from the negative major

axis of the warp. The location of our sample is indicated in the top left panel of

Fig. 4.10, on top of a face-on map of 〈vz〉. Although all of the binned 〈vz〉 variations

have relatively larger errors (despite our bins being large compared with Schönrich

& Dehnen (2018a) and Huang et al. (2018a)), we observe a general increase of 〈vz〉
with −Lz along with underlying wiggles, as in the Milky Way. Following Schönrich
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Figure 4.10: Top left: face-on 〈vz〉 distribution of stars in the warped model at

11.4 Gyr. The green circle indicates the SN sample with its φw displayed above the

colour bar. The solid black and cyan circles represent R = 8.18 kpc and R = 10 kpc,

respectively. A Gaussian filter is applied to the colour distribution with a standard

deviation σ = 1 pixel = 260× 260 pc. Right: binned distributions in the SN sample

of 〈vz〉 as functions of Lz (top) and vφ (bottom). The solid lines indicate different

model fits: linear (black), sinusoidal (red), and wrapping (green) (see Eqn. 4.12 -

4.14). Bottom left: binned distributions of 〈vz〉 as functions of cylindrical radius,

R (blue) and guiding radius, Rg, (red) in the SN sample. Each distribution has a

linear fit (dashed lines). The slopes of all linear fits are shown in the top left corners

of the respective panels. The shaded regions show the standard deviation of vz in

each bin.
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& Dehnen (2018a), we fit a variety of functions to the 〈vz〉 versus Lz distribution:

〈vz〉 = b+ aL′z, (4.12)

〈vz〉 = b+ aL′z + A sin(2πL′z/c+ d), (4.13)

and

〈vz〉 = b+ aL′z + A sin(2πc/Lz + d), (4.14)

where L′z = Lz − 1600 kpc km s−1 in the Milky Way, and a, b, c, d, A are fitting

parameters. For the warped model we set L′z = Lz − 2000 kpc km s−1 based on the

mean value of Lz at R = 8.18 kpc, but note that in the fit of Eqn. 4.12 the slope

is independent of this pivot point. The best fit parameters for Eqns. 4.12 - 4.14

are listed in Table 4.1 where we see that our linear fit is of the same scale as the

one measured in the Milky Way, which has a = 3.11± 0.70× 103 kpc (Huang et al.

2018a). The fits to Eqns. 4.13 - 4.14 present larger uncertainties and deviations from

the values of Schönrich & Dehnen (2018a), however, the larger bins make it difficult

to detect any higher frequency variations in 〈vz〉. Thus we only fit simple linear

functions to the other 〈vz〉 distributions (vφ, R, and Rg), the slopes of which are

presented in the top left corner of the respective panels, and we note that they are

also of the same order as those measured in the SN (Schönrich & Dehnen 2018a).

Schönrich & Dehnen (2018a) argued that one possible interpretation of the non-

vanishing slope of the 〈vz〉-Lz relation is that the stellar disc is warped at the Solar

cylinder. The slope of the relation in this scenario would vary smoothly with azimuth

as cos(φw + φc) (where φc is some constant), which we can check in our model. In

Fig. 4.11 we plot the slope, a, of the linear fit of Eqn. 4.12 as a function of φw, the

azimuthal angle at which the sample is selected. This relation is plotted for a number

of snapshots, with a time interval δt = 20 Myr to show the short-term changes in

the slope. For this measurement we use 12 samples that consist of 2 kpc spheres.

The spheres are equally spaced in azimuth to avoid overlapping the samples. The
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Figure 4.11: Variation of the slope of the 〈vz〉-Lz relation with azimuth for samples

at R = 8.18 kpc in the warped model. The value φw = 0 is defined as the azimuth

on the warp’s major axis with z < 0. Therefore the LON, indicated by the vertical

dashed lines, is at −90◦ and 90◦. The sense of rotation is indicated above the

figure. In the Milky Way, the Sun is located 17.5◦ before the ascending node (Chen

et al. 2019a), i.e. at φw = −72.5◦. The black and green dots represent the slope as

measured by Schönrich & Dehnen (2018a) (S18) and Huang et al. (2018a) (H18),

respectively (horizontally offset by ±2◦ for clarity). The panel shows 5 snapshots

separated by 20 Myr. A wave appears to propagate in the direction of rotation as a

trough moves from 50◦ to −50◦ in the span of ∼ 80 Myr.
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Fit
a ×103

(kpc)

b

(km s−1)

c

(kpc km s−1)

d A

(km s−1)

linear (Eq. 4.12) 3.11+0.59
−0.58 2.72+0.24

−0.24 - - -

sinusoidal (Eq. 4.13) 2.96+0.89
−1.4 2.41+0.51

−5.6 3443.59+33459.11
−3073.73 0.73+1.10

−1.72 1.24+6.89
−0.80

wrapping (Eq. 4.14) 2.72+0.66
−0.66 2.56+0.25

−0.25 3601.17+151.99
−323.90 −2.59+1.05

−0.42 1.10+0.39
−0.42

Table 4.1: Best fit parameters for the fitting models of Eqns. 4.12 - 4.14 applied to

the sample in Fig. 4.10.

slope varies in the range [−5, 5]× 103 kpc; Schönrich & Dehnen (2018a) and Huang

et al. (2018a) measure a slope of ∼ 3.11 × 103 kpc, which is within the range we

find. The results of these snapshots happen to be instances when the slope at the

Solar azimuth is very similar to that observed in the Milky Way. Note that a varies

in a wave-like manner as the peaks and valleys shift with time. As the warp is fixed

at each snapshot (see Chapter 2) the positive slope in the 〈vz〉-Lz relation is not

produced by the warp itself, but by a propagating bending wave, which suggests

that the same may be happening in the MW. The phase of the wave moves in the

direction of increasing φw, i.e. in the sense of rotation.

Fig. 4.12 plots the variation of 〈vz〉 with Lz (top right), vφ (bottom right), and

R and Rg (bottom left) in the unwarped model. As the simulation is unwarped the

simulated SN is arbitrary, so we perform our analysis at R = 8.18 kpc in 30 differ-

ent azimuths and present the sample with the largest recent slope. The relation is

significantly shallower than in the warped simulation. Fig. 4.13 shows the variation

of the slope with azimuthal angle at different times (top panel), similar to Fig. 4.11.

The variation of the slope with azimuth is less pronounced when compared to the

warped model and barely reaches the Milky Way values throughout the 2 Gyr in-

terval, with |a| . 2× 103 kpc. The bottom panel shows the effect of small artificial
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Figure 4.12: Same as Fig. 4.10 but for the unwarped model at 12 Gyr.
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Figure 4.13: Variation of the slope of the 〈vz〉-Lz relation with azimuth for SN

samples in the unwarped model. Top panel: 5 times separated by 20 Myr (colours).

Bottom panel: slope variation, for the unwarped model at different artificial tilts

about the x-axis (red lines), about the y-axis (blue lines), and without any artificial

tilt (black line). Note that the range of the y-axis for both panels is almost a third

of that in Fig. 4.11. This shows that small unaccounted tilts do not produce the

large slopes measured in the Milky Way or in the warped model.
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tilts of the disc about the x (red) and y (blue) axes. These small (0.5◦) tilts barely

change the slope, indicating that the large slope observed in the Milky Way is not

due to a mis-identified disc mid-plane.

Since the unwarped simulation lacks a line of nodes to simulate a SN sample, as in

the analysis of Fig. 4.11, we measure the slope in 12 equally spaced in azimuth 2 kpc

spheres. Fig. 4.14 plots the slope values for these 12 samples (white points) over a

2 Gyr interval starting from t = 10 Gyr with δt = 10 Myr. The slope values oscillate

about a = 0 kpc without approaching the SN values. In contrast, the evolution of

the slope in the warped model’s SN sample (red solid line) shows strong oscillations

about a ∼ 0.6× 103 kpc with more than half of the values being positive. There are

multiple time intervals (∼ 15% of time steps) where the slope reaches and surpasses

the Schönrich & Dehnen (2018a) value.

The Sun is located behind the ascending node of the warp (Chen et al. 2019a),

which could have an impact on the Lz vs vz relation. In order to explore how the

Sun’s location relative to the line of nodes affect the measured slope, we measure

the slope and its evolution in an “anti” Solar Neighbourhood (anti-SN) sample. The

sample is located behind the descending node of the warp, i.e. φw = 252.5 deg (blue

solid line in Fig. 4.14). We observe that the slope at the anti-SN location oscillates

about a ∼ −0.5 × 103 kpc. More than half of the slope values are now negative

and the Schönrich & Dehnen (2018a) and Huang et al. (2018a) values are reached

(or surpassed) in only a third of the time as the SN sample (≤ 6% of time steps).

However, when considering the inverse of the slope in Huang et al. (2018a), the

anti-SN sample reaches that value at the same rate as the SN sample reaches the

real value.

We conclude that the bending waves produced by misaligned gas accretion along

the warp in the simulation are able to produce similar trends observed by Schönrich

& Dehnen (2018a) and Huang et al. (2018a) in the MW. The large positive values
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Figure 4.14: Evolution of the slope of the 〈vz〉-Lz relation for all Solar Neighbour-

hoods (SN) samples in the unwarped model (open circles) and SN samples in the

warped model at φw = 72.5◦ (red) and φw = 252.5◦ (blue). The samples are spheres

centred on R = 8.18 kpc and with r = 2 kpc. The green dotted line shows the SN

slope value (Schönrich & Dehnen 2018a), while the orange dotted line is the neg-

ative of that value. In the unwarped model the mean and overall slope values do

not generally exceed 2× 103 kpc in the span of 2 Gyr and at any SN sample. In the

warped model the slope regularly matches, or exceeds, the MW value.
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of the slope found by Schönrich & Dehnen (2018a) and Huang et al. (2018a) are not

unusual given the Sun’s position relative to the line-of-nodes of the warp.

4.4.5 Propagation of the bending waves

In Sections 4.4.2 & 4.4.4 we established the presence of bending waves, their pattern

speeds throughout the disc, and their consequences on vertical kinematics in a simu-

lated SN. We now explore the time evolution of 〈z〉 and the surface density contrast,

Σ̃, distributions of stars in cylindrical sectors. We define the density contrast as:

Σ̃(R, φ) =
Σ(R, φ)− Σ(R)

Σ(R)
, (4.15)

where Σ(R) is the mean surface density within a radial bin, and Σ(R, φ) is the surface

density in an annular sector of the same radial bin. We use sectoral bins which are

non-overlapping with ∆φw = 12◦ in each ring. This analysis is a counterpart of the

frequency analysis but in real space which aids in interpreting the consequences of

the observed waves in Sec. 4.4.2.

For the warped simulation, Fig. 4.15 shows the evolution of Σ̃ (left) and 〈z〉
(right) in 1 kpc wide rings from 5.5 kpc to 10.5 kpc (rows), starting at t = 10 Gyr

with time steps δt = 10 Myr. The horizontal solid black lines show the location

of the SN in the Milky Way (Chen et al. 2019a). The diagonal black lines are

the most prominent frequencies of the prograde density m = 2 and bending m = 1

waves (dotted) and the retrograde m = 1 bending wave (dashed) taken from Fig. 4.8

(bottom-left and top-right, respectively) for this time interval. The values of the

frequencies are indicated in the legend at the top of Fig. 4.15. The Σ̃ distribution is

dominated by an m = 2 angular dependence, i.e. at each annulus and time interval,

Σ̃ has two peaks (red) and troughs (blue). This m = 2 signal is prograde as the

peaks and troughs propagate in the direction of increasing φw. We observe that the

strongest density wave frequency matches the slope of the m = 2 signal in the Σ̃
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Figure 4.15: Evolution of the stellar surface density contrast, Σ̃ (left) and mean

height above the mid-plane, 〈z〉 (right) in the warped simulation. The horizon-

tal solid black line represents the Solar azimuth relative to the warp’s major axis

(Chen et al. 2019a). The diagonal black lines correspond to the most prominent

prograde density and bending (dotted) and retrograde bending (dashed) pattern

speeds present in the 10− 12 Gyr interval (see Fig. 4.8).
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distribution at R ≥ 8.5 kpc. The coincidence of slopes is in some agreement with

Fig. 4.7 as the Ωp = 25 km s−1 kpc−1 peak is at R ∼ 9 kpc.

The distributions of 〈z〉 at any time are dominated by an m = 1 angular de-

pendence, i.e. at each annulus and time interval 〈z〉 has a single peak (red) and

trough (blue). Over time the bend propagates in a retrograde direction, i.e. in the

direction of decreasing φw. The bend amplitude increases with radius and is largely

decoupled from the peak of the m = 2 spiral density wave (dotted lines, copied from

the left panel). The bending wave pattern speed (dashed line) matches the slope of

the m = 1 signal in the 〈z〉 distribution at all radii. This coincidence of slopes is

in agreement with Fig. 4.7, which shows that the Ωp ≈ −15 km s−1 kpc−1 bending

wave is spread across those radii.

Superposed on the overall m = 1 bending wave we can also see individual bending

wave packets (which we loosely refer to as “ripples” to distinguish their particular

behaviour) which propagate to increasing φw, i.e. in the direction of rotation, and

have an angular frequency similar to that of the spirals. To confirm this apparent

match in pattern speeds, we note that the slopes are similar to those of the spirals

at R ≥ 7.5 kpc. This suggests that even though ripples are emanating from the

bending wave, they are modulated by the spirals, again hinting that there may be

a coupling between the bending waves and the spirals.

We perform the same analysis on the unwarped model in Fig. 4.16 with an

identical setup of cylindrical bins and time interval. The diagonal black lines are

the most prominent frequencies of the m = 2 density (dotted) and m = 1 bending

(dashed) waves taken from Fig. 4.6 (bottom-left and top-right, respectively) for the

10− 12 Gyr time interval. The values of the frequencies are indicated in the legend

at the top of Fig. 4.16. As in the warped model, the Σ̃ distribution (left column)

is dominated by a prograde m = 2 signal as the Σ̃ distribution has two peaks (red)

and troughs (blue) that propagate in the direction of increasing φ. Likewise, the
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Figure 4.16: Similar to Fig 4.15 but for the unwarped model. The diagonal black

lines correspond to the most prominent density (dotted) and bending (dashed) pat-

tern speeds present in the 10− 12 Gyr interval (see Fig. 4.6).
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most prominent density wave frequency also matches the slope of the m = 2 signal

in the Σ̃ distribution at R ≥ 8.5 kpc and we observe a superposition with a higher

frequency density wave at R ∼ 7.5 kpc.

The distributions of 〈z〉 in the right column of Fig. 4.16 show no dominant signal

but a superposition of multiplicities with amplitudes that are weaker by a factor of

5 compared with the warped model. The most recognisable signals are a prograde

m = 2 (t = 10.5 Gyr), a retrograde m = 1 (11.0 ≤ t/Gyr ≤ 11.5 Gyr), and an m = 0

(t = 10.25 Gyr) signal. The retrograde bending (dashed) and prograde density and

bending (dotted) wave pattern speeds seemingly match the slopes of the m = 1 and

m = 2 signals in the 〈z〉 distribution at all radii. Some of the underlying signals in

the 〈z〉 distributions can be interpreted as ripples though they are less coherent and

of a lower amplitude than the distinct ripples emanating from the main bend in the

warped model (see Fig 4.16). We also observe that some ripples (e.g. read peak at

t = 11 Gyr and φw = 200◦) have different shearing rates as they become decoupled

from the prominent prograde bending wave (dotted) at R ≤ 8.5 kpc.

4.4.6 The effect of stellar ages

The dispersion relation of Eq. 4.1 applies to cold discs, i.e. in the absence of in-plane

velocity dispersion. In real discs, scattering at inner and outer Lindblad resonances

and with giant molecular clouds increase the orbital eccentricity of stars, making

populations kinematically hotter over time. This velocity dispersion at the galactic

centre is the source of the buckling instability (Julian & Toomre 1966; Kulsrud et al.

1971). In the presence of an in-plane velocity dispersion σR, Eq. 4.1 is replaced by

m2 [Ωp − Ω(R)]2 = ν2
h + 2πGΣ(R)|k| − σ2

Rk
2. (4.16)

Accordingly, for a given σR, small scale structures (large k) are more prone to

instabilities. As σR rises with stellar age, it acts to damp the bending waves on
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Figure 4.17: Face-on distributions of 〈z〉 (top), and of 〈vz〉 (bottom) for different

age populations (annotation at top right of each panel) in the warped model at

12 Gyr. A bending wave is visible in all populations but is strongest, and most

clearly defined, in the youngest population. The solid black and cyan lines represent

the Solar annulus, R = 8.18 kpc, and R = 10 kpc, respectively. A Gaussian filter

has been applied to the colour distribution in each panel with a standard deviation

of the Gaussian kernel set to σ = 1 pixel = 570× 570 pc.
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small scales (large k, note the minus sign in the right-hand term). Therefore we now

consider the effect of age on the bending waves in the warped model.

Fig. 4.17 presents the distributions of 〈z〉 (top row) and 〈vz〉 (bottom row) sepa-

rated by stellar age, in bins of 2 Gyr. The distributions are presented for stars formed

in the main disc only, in order to avoid warp stars that can take up to ∼ 6 Gyr to

fully settle and phase mix into the disc (Khachaturyants et al. submitted). Besides

the overall m = 1 bend, we observe strong bending waves, in the 〈z〉 and 〈vz〉 distri-

butions (coherent red and blue structures). These bending waves reach as far inside

the disc as R = 4 kpc in the youngest population, with amplitudes of ∼ 100 pc and

∼ 5 km s−1 in the 〈z〉 and 〈vz〉, respectively. More importantly, the bending waves,

while strongest in the young populations, can be recognised in all populations. The

bending waves in the youngest population are also the sharpest ones, whereas the

waves in the older populations become increasingly dispersed at short wavelengths.

This agrees with the idea that older populations are kinematically hotter, with this

in-plane velocity dispersion damping the bending waves – see Eq. 4.16. Thus, in

the old populations, Fig. 4.17 reveals a coherent large-scale signal but not so much

the small scale patterns present in the young populations. According to the disper-

sion relation, for a given σR the large k become unstable earlier, so we see the fine

structures (small scales, large k) disappear first.

In order to aid in comparing with observational data, for which stellar ages have

high uncertainties (Sanders & Das 2018b), we split the stars formed in the main

disc by their radial actions, JR. The radial action of a star characterises the extent

of radial oscillations of a star’s orbit and is thus a proxy for the in-plane velocity

dispersion. Fig. 4.18 presents the distributions of 〈z〉 (top row) and 〈vz〉 (bottom

row) separated by JR in bins containing an equal number of stars. Bending waves

become increasingly dispersed with increasing values of JR, similar to the age cuts

in Fig. 4.17.
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Figure 4.18: Face-on distributions of 〈z〉 (top), and of 〈vz〉 (bottom) for populations

with different radial action, JR, ranges (annotation at top right of each panel) in

warped model at 12 Gyr. A bending wave is visible in all populations. The solid

black and cyan lines represent the Solar annulus, R = 8.18 kpc, and R = 10 kpc,

respectively. A Gaussian filter has been applied to the colour distribution in each

panel with a standard deviation of the Gaussian kernel set to σ = 1 pixel = 570 ×
570 pc.
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4.5 Discussion

Vertical perturbations in the SN are generally attributed to satellite interactions

(Ibata & Razoumov 1998b; Dehnen 1998b; Laporte et al. 2019b, 2018c,e). While

the buckling of the bar can excite significant bending waves in the SN (Khoperskov

et al. 2019), the likelihood that the bar buckled in the last few Gyr is very low

given the observed distribution of stellar ages in the bulge (Debattista et al. 2019b).

Unlike these scenarios, gas accretion along warps is ongoing throughout a galaxy’s

evolution. Because the gas flow along the warp is not perfectly smooth, it provides

ample opportunity to excite bending waves in the stellar disc.

4.5.1 Spectral analysis

Our comparison of a warped and an unwarped N -body+SPH models highlights the

role warped gas accretion has on vertically perturbing the disc. By means of a

spectral analysis on the vertical distributions we observed bending waves in both

simulations that were mostly in agreement with the WKB approximation. The

spectral analysis also uncovered the presence of high-frequency prograde bending

waves in the warped simulation that persist throughout the model’s evolution. The

frequencies of these bending waves are transient and change with time but preserve

their relatively large amplitudes, indicating that the source of the waves is irregular

but continuous. In the unwarped model the same prograde bending waves have less

power than in the warped model, and dissipate in a span of ∼ 1 Gyr (Fig. 4.5).

The continuous accretion of cold gas in the warped model injects power into the

retrograde and, most significantly, prograde bending waves by continuously exciting

the disc. The absence of such a perturbing force in the unwarped model leads to the

prograde waves naturally decaying via differential rotation (winding). Of course,

the slow retrograde bending waves observed in the unwarped simulation still require

a source of vertical perturbation. In the pure N -body simulations of Chequers &
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Widrow (2017), shot noise from an embedding dark matter halo was suggested as

a probable excitation mechanism, and the same should happen in our simulations.

Another possible source of vertical perturbation which, as far as we are aware has

never been discussed, is supernovae feedback, which repeatedly expels gas from the

disc. Investigating this mechanism is beyond the scope of this paper.

4.5.2 Bending wave propagation

An apparent coupling of m = 2 density and m = 1 bending waves, with a common

“slow” prograde pattern speed at Ωp ≈ 25 km/s/kpc, is suggested in Sec. 4.4.2 –

see Figs. 4.5 and 4.7. While a perfectly symmetric two-armed spiral would produce

a pure m = 2 density signal, and hence no correlation with an m = 1 bending

wave, any asymmetry between the spiral arms will produce an m = 1 density signal,

which might couple with an m = 1 bending wave. However, since the allowed regions

for WKB density and bending waves are approximately complementary, a pattern

speed in the allowed region for a WKB density wave generally lies in the forbidden

region for a WKB bending wave – as seen in Figs. 4.5 and 4.7 – which would be

expected to be short-lived. In the 〈z〉 distributions of the warped simulation, Fig.

4.15, the “slow” prograde bending waves seem to manifest as small wave packets

that we refer to as ripples. We observe that the ripples are apparently coupled to

the spiral density waves in that they closely follow the spiral propagation (dotted

lines). The similar pattern speed Ωp ≈ 25 km s−1 kpc−1 of the prograde bending and

density wave frequencies in the spectral analysis reinforces the idea of a coupling

between these waves, producing the observed ripples. In the unwarped model the

ripples are less coherent, however, we still observe them on top of the superposed

m = 0, retrograde m = 1, and prograde m = 2 signals. The distinguishable bending

signals we do observe barely reach amplitudes 20% of those in the warped model.

We interpret this as the effect of an irregular accretion of gas exciting the “slow”
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waves to a larger extent than the weaker sources in an isolated disc, i.e. the halo

noise and, possibly, supernovae feedback.

4.5.3 Bending waves in the SN

Bending waves can be detected in the slope of the 〈vz〉 − Lz relation in the SN

(Schönrich & Dehnen 2018a; Huang et al. 2018a). An analysis similar to that of

Huang et al. (2018a) was performed on simulated SN in the warped and unwarped

models. In the span of 2 Gyr the warped model was capable of reaching and surpass-

ing the values of Huang et al. (2018a) roughly 15% of the time, while the unwarped

model remained consistently below those values. We verified that the smaller val-

ues in the unwarped model are also unaffected by a mis-identified disc mid-plane

as artificial tilts do not increase the measured slopes by a significant amount. The

difference in bending wave amplitudes between the warped and unwarped mod-

els therefore must play a leading role in the difference between their slopes of the

〈vz〉−Lz relation. Additionally, the slope varies in a wave-like manner in the warped

model as the peaks and troughs in the slope distribution shift in a prograde direc-

tion. Because we reorient to the warp frame, the wave-like pattern is a result of

bending waves induced by the warp, rather than the warp’s direct imprint on the

SN.

The location of the SN sample in the warped model appears to also play a role

in the Lz-〈vz〉 slope as the simulated anti-SN sample (at φw = 252.5◦) has more

negative slope values and reaches the Schönrich & Dehnen (2018a) values only a

third as often as the SN sample. However, the negative of the Schönrich & Dehnen

(2018a) slope is reached at a similar rate as the regular slope in the SN sample. The

location of the SN in the MW is currently estimated to be behind the ascending

node of the Galactic warp (Chen et al. 2019a), which places the anti-SN sample

behind the descending node. This could indicate that the bending waves depend on
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the direction of infalling gas as the emerging waves produce different slopes in Lz

vs 〈vz〉. Further work is necessary to understand in which direction the waves we

have identified propagate and whether this is related to the changing slope in the

SN and anti-SN slopes.

4.6 Summary & Conclusions

1. In the warped model we are able to produce both retrograde and prograde

bending waves; the latter would normally decay rapidly, but are re-excited

throughout the model’s evolution. The gas flux in the warped simulation varies

strongly over time, and on a wide range of frequencies, which we interpret as

the driving mechanism for these bending waves.

2. Bending waves are present in the unwarped model but are significantly weaker

in amplitude when compared to the warped model. The prograde waves be-

come more dispersed with time while the retrograde waves persist throughout;

both results are in agreement with the WKB approximation.

3. A similar positive slope in the SN’s Lz-〈vz〉 relation (Schönrich & Dehnen

2018a; Huang et al. 2018a) is observed in the simulated SN sample of the

warped model. The slope shows a wave-like dependency in azimuth with

the wave propagating in a prograde direction. Since the warp is fixed in

our analysis, this indicates that the slope is a result of propagating bending

waves and not a direct imprint of the warp. The location of the SN sample

with respect to the line-of-nodes plays a role in the Lz vs 〈vz〉 slope. A SN

sample behind the descending node produces more negative slopes and reaches

the Schönrich & Dehnen (2018a) and Huang et al. (2018a) slope values less

frequently than in the SN sample, i.e. behind the ascending node. We also
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observed positive slopes in the SN samples of the unwarped model, however,

they do not reach the Schönrich & Dehnen (2018a) and Huang et al. (2018a)

slope values.

4. In the warped simulation we detect bending waves with a similar morphology

for stars younger than 8 Gyr. The strongest and sharpest bending waves in

〈z〉 and 〈vz〉 are in the youngest populations, while older populations are more

dispersed. We also separated the stellar populations by the radial action, JR,

finding very similar trends in the strengths of the bending waves for all JR

populations.

5. By studying the evolution of the azimuthal Σ̃ and 〈z〉 distributions in the

warped model we have shown that the m = 1 bend has an amplitude which

increases radially; it extends inwards to at least R = 5 kpc. This bend is

retrograde with respect to the disc rotation and is decoupled from the spiral

density waves. The m = 1 bending wave spawns localised bending waves,

which we term ripples, which propagate with the spirals (and therefore are

prograde) and may be coupled to them. The overlaid frequencies from the

spectral analysis showed good agreement between the m = 2 spirals and the

m = 1 prograde bending waves. The same analysis in the unwarped model

has shown a superposition of m = 0, m = 1, and m = 2 bending waves. The

amplitudes of these waves are significantly weaker than in the warped model.

As a result of our analysis we have further shown the importance of gas accre-

tion and the resulting warp formation for galactoseismologic studies. With more

advanced methods the uncovered bending waves can be further analysed on their

direction of propagation and affect of the disc structure.
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Chemodynamics of warp stars

In Chapter 3 we examined mono-age warp star populations in the WM2 model and

determined that warp stars can reach the Solar Neighbourhood after settling into

the disc. The warp stars in our model populated the geometric thick disc, indicative

of a vertically hot population. However, as the warp in our model formed via low

metallicity accreting gas, warp stars can have a unique chemistry compared to in-situ

stars. In this chapter we examine the chemical and dynamical properties of warp

populations in three warped models to determine if warp stars can be distinguished

as a separate population in the Solar annulus when applying cuts in chemical and

action spaces. The models used in this chapter are the WM2-4 models.

5.1 Evolution of the warp

The top rows of Figures 5.1 - 5.3 present edge-on densities of stars (colour) and the

cool (Tg ≤ 50, 000 K) gas (red contours) in the WM2-4 models at different time

intervals. The time intervals are equally spaced and are based on the final timestep

of each model with t = 12 Gyr and t = 10 Gyr for the WM2 and WM3-4 models,

respectively. Due to our disc re-orientation procedure (see Chapter 2.3), the major

axis of the warp is along the x-axis and reaches a peak negative value along the x > 0
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Figure 5.1: Top row: edge-on densities of the stellar and cold gas (T ≤ 50, 000K)

distributions at four times in the evolution of the WM2 model. The colour repre-

sents the stellar surface density, while the red contours represent the cold gas column

density. Time is labelled in the top right of each panel. A warp is present through-

out the evolution of the warped model. Bottom row: Briggs figures for the warped

model showing the evolution of the stellar (black) and cool gas (red) warps at the

time referenced above. Markers represent annuli with ∆R = 1 kpc, equally spaced

from 5 to 20 kpc, with the square and triangle markers indicating annuli centred at

10 kpc and 20 kpc, respectively.
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Figure 5.2: Same as Figure 5.1 but in the WM3 model.

Figure 5.3: Same as Figure 5.1 but in the WM4 model.
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side; when viewed from an inertial frame, the disc is tilting slowly and continuously

during this time (Binney & May 1986; Ostriker & Binney 1989b; Debattista et al.

2015; Earp et al. 2017, 2019) but we subtract this tilting. Throughout the evolution

of each warped model, gas is accreted onto the disc along an integral-shaped warp,

however, the extent varies between models. Initially, the edge-on gas distribution

presents clear and significant warping in each model with the vertical extent being

∼ 5 kpc, ∼ 10 kpc, and∼ 2.5 kpc from the midplane in the WM2, WM3, and WM4

models, respectively. However, the gas warp decreases in amplitude in all models,

except in WM2 where the warp continues to grow and reaches |z| ∼ 15 kpc by

t = 12 Gyr. The stellar disc in all the models starts off relatively thin and warped

beyond R ≥ 10 kpc but eventually becomes flatter and thicker. As discussed in

Chapter 3, models with longer-lasting and higher warp amplitudes resulted in thicker

discs which we observe in the three models.

The bottom row of Figures 5.1 - 5.3 show Briggs figures for the WM2-4 models

at the same time intervals. The stellar (black) and gaseous (red) discs are divided

into annuli of width ∆R = 1 kpc where the total angular momentum of particles is

calculated. The stellar disc shows distinct warping (θL ≥ 10◦) at the early evolution-

ary stages in each model, however, in the span of 2 − 4 Gyr the warping decreases

significantly, and the disc appears flat up to R ≤ 12 kpc. The gaseous disc remains

warped throughout the evolution of each model, but we observe a strong decrease of

the warp amplitude in the WM4 model as its inclination does not surpass θL > 5◦

at R ≤ 12 kpc.

The evolution and magnitude of the galactic warp vary between the three models,

which requires further analysis into the causes of the growth and dissipation of

warps. Figure 5.4 shows the time evolution of the stellar disc (square markers) and

surrounding gas (triangle markers) Briggs figures in the three models. The Briggs

figures are computed in the inertial frame of each model. The stellar disc is defined
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Figure 5.4: Time evolution of the stellar disc (squares) and surrounding gas (tri-

angles) Briggs figures in the three models. The tilt of each component’s angular

momentum is computed within the inertial frame of each model. The stellar disc is

defined as stars within r ≤ 10 kpc, while the surrounding gas is defined by gas of all

temperatures within r ≤ 20 kpc.
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as stars within r ≤ 10 kpc, while the gaseous component is defined as gas of all

temperatures located within r ≤ 20 kpc. In the WM2 model we observe that the

stellar disc is tilting throughout its evolution with a net tilt (changes in |θL| summed

over time) of ∼ 20◦ at t = 10 Gyr. We also observe a growing misalignment between

the stellar disc and surrounding gas as their angular momenta are seemingly aligned

at t ≤ 3 Gyr but become significantly more misaligned, with a ∼ 20◦ separation

between them at t = 10 Gyr.

Similarly to the WM2 model, the stellar discs in WM3 and WM4 tilt through-

out their evolution with their net tilts both measuring at ∼ 25◦ at t = 10 Gyr.

However, unlike in WM2, the stellar and gaseous components experience similar

changes in θL and φL and appear to converge at t = 10 Gyr. The Briggs figures

demonstrate a significant difference between the three models as WM2 is the only

model where we observe a growing warp and an increasing misalignment between

the stellar disc and surrounding gas.

A factor that could affect the structure and longevity of the warp in our models

is the cooling of the coronal gas. Figure 5.5 shows the time evolution of the gas

mass flux (black, left y-axis) and of the angle between the angular momenta of

the stellar disc and surrounding gas, referred to as ∆θL (blue, right y-axis). We

compute the flux using inward moving (vr < 0 kpc Gyr−1) gas of all temperatures

located between 15 ≤ R/ kpc ≤ 15.2. We observe that the mass flux in WM2

(top) is overall decreasing with both its mean and total fluxes being ∼ 70% of those

in WM3 (middle) and WM4 (bottom). This difference in flux implies that the

inflows are not a direct cause of the waning or growing warps in the three models.

However, the increased gas inflows in WM3 and WM4 could instead be responsible

for the increased tilting and resulting alignment between the disc and surrounding

gas shown in Figure 5.4.

The time evolution of ∆θL presents a gradual increase in the WM2 model from
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Figure 5.5: Time evolution of the mass flux of inflowing gas (black, left y-axis)

and the angle between the angular momenta of the stellar disc and surrounding gas

(blue, right y-axis) in the three models, indicated in the top left corner. The stellar

disc and surrounding gas are defined in Figure 5.4. The inflowing gas is defined

as the inward moving (vr < 0 kpc Gyr−1) gas of all temperatures located within

15.0 ≤ r/ kpc ≤ 15.2.
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5◦ to 20◦ over the 9 Gyr interval. This increase is accompanied by the gradual drop

of the mass flux, which by t = 10 Gyr is only 40% of its initial flux. In WM3 we

observe that ∆θL is increasing up to t ∼ 5 Gyr, which coincides with the lower flux.

However, as the flux increases, ∆θL drops to almost full alignment, after which it

plateaus at ∼ 8◦. Lastly, in WM4 we observe relatively minor changes in ∆θL as it

first plateaus at 10◦ for 3 Gyr and then oscillates around 5◦ for the remaining 4 Gyr.

The increased gas inflows appear to drive the tilting of the stellar disc, which is

in agreement with the results of Earp et al. (2019). We observe that the result of

the stellar disc tilting is its increased alignment with the gas inflow, which results in

the accreting gas reaching the disc more aligned. With a weaker misalignment be-

tween the disc and inflowing gas, the amplitude and longevity of the warp naturally

decrease. In the WM2 model, both the tilting of the stellar disc and the magnitude

of the gas inflow are relatively weak, which results in a stronger misalignment and,

consequently, a growing and longer-lasting warp. However, in WM3 and WM4 the

gas inflows are significant enough to continuously tilt and align the stellar discs with

the surrounding gas, resulting in weaker and waning warps.

5.2 Warp populations

The continuous presence of a warp in the three models provides ample opportunity

for star formation to take place in the warp and for the resulting warp populations to

settle into the disc (Chapter 3). However, with the numerous differences between the

three models, e.g. their star formation thresholds (Chapter 2) and warp amplitudes,

the chemical and dynamical properties of the resulting warp populations can vary

significantly. In the following sections, we study the warp populations of the three

models to establish common trends in the chemical and action spaces.
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Figure 5.6: The number density distribution of all stars in the Rform–θform space

(formation space) of three models, indicated in the top right corner. Stars that

formed in the “tail-like” regions outlined by the red rectangles are defined as the main

warp population. The populations of stars that formed in an early, transient warp

at low radii (Rform ≤ 5 kpc) and high inclinations relative to the disc (θform ≥ 10◦)

are not included in our warp star populations.

5.2.1 Formation space

In Chapter 3 we recorded the phase-space coordinates and time of formation, tform,

for every star in the WM2 model in order to calculate their formation values. The

main formation values of interest were the cylindrical radius of formation, Rform, and

the inclination of a star’s angular momentum relative to the disc at formation, θform.

These formation values were then used to construct a formation space (Rform− θform

plane) where warp stars were identified as a distinct population based on their Rform

and θform. We now perform the same analysis on the stars in the WM3-4 models.

In Figure 5.6 we present the number density distribution of all stars in the for-

mation space of models WM2-4. The “tail-like” regions at Rform > 10 kpc (outlined

by red rectangles) are comprised of stars that were highly inclined (θform > 10◦) and

on the outskirts of the disc (R > 10 kpc) at formation; we define the warp popu-

lations in the three models as stars with Rform ≥ 10 kpc and θform ≥ 10◦. These
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warp populations consist of ∼ 6× 105, ∼ 5× 105, and ∼ 2.5× 105 warp stars in the

WM2, WM3, and WM4 models, respectively. The warp populations make up a

noticeable fraction of all stars formed throughout the models (11−18%), with model

WM4 having the lowest fraction, which is in part due to its high star formation

threshold. Other significant populations that we observe in the three models are the

in-situ main disc population (Rform ≤ 10 kpc and θform ≤ 10◦), and a “hump-like”

region containing an old warp population (2 ≤ Rform/ kpc ≤ 5 and θform ≥ 15◦).

This early warp population derives from a short-lived warp epoch when the models

are still settling and does not relate to the warp described in Section 5.1, therefore

we do not include it in the warp population. Similar to the analysis in Chapter 3,

neglecting this population does not change any of the following results.

5.2.2 Chemical space

To determine if the chemical properties of the warp populations stand out from

the in-situ populations, we analyse the chemical space in the three models. In

Chapter 1, chemical space is defined as the relationship between the [Fe/H] and

[α/Fe] abundances. In our models, the α-element is represented by oxygen, [O/Fe].

However, this analysis aims to define general trends in chemical space that can be

later applied to observational data so we will refer to the oxygen abundance as

[α/Fe].

Figure 5.7 presents chemical space distributions for all the stars in the three

models. The top row of Figure 5.7 shows the number density distribution where

we observe distinct branches that we identify as the thin and thick discs, however,

they are difficult to discern in model WM4. The overall shapes of the chemical

spaces show significant differences with models WM2-3 having a noticeable low-α

population ([α/Fe] ≤ −0.4). The bottom row of Figure 5.7 shows the distribution of

fractions between the number of warp stars and the overall number of stars in each
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Figure 5.7: Distributions in [Fe/H]-[α/Fe] space (chemical space) for all the stars

in the three models. The model is indicated in the top right corner of each col-

umn. Top: Number density distribution. Bottom: Distribution of the warp star

purity, Nwarp/Nall. The red dashed polygon outlines the area of chemical space

where Nwarp/Nall ≥ 0.8 and [Fe/H] ≥ −1.
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bin, Nwarp/Nall, which we refer to as the warp star purity. In each model, we observe

distinct regions where the warp star purity is ≥ 0.8 (yellow) and that the regions

are located in very similar areas of chemical space. This area can be described as

below the main distribution of the high-α region and at lower metallicities than

the metal-poor end of the low-α region. We outline these regions of high warp star

purity with dashed red polygons and define the resulting abundance limits as the

chemical cut. We do not set any limits on the [α/Fe] abundances when outlining

the high-purity regions, however, we limit the lower range of the [Fe/H] values. The

limit is applied to account for the absence of halo populations in our models as the

[Fe/H] < −1 region in the MW is considered to be dominated by halo stars (Das

et al. 2020).

In our models, the chemistry of stellar particles is known with absolute certainty,

which poses problems if the defined chemical cuts were applied to observational

spectroscopic data which have varying degrees of uncertainty. In order to better

represent real data, we first derive the mean abundance errors from the GALAHA

DR2 (Buder et al. 2018) and APOGEE DR14 (Holtzman et al. 2018) spectroscopic

surveys which are 〈δ[Fe/H]〉 ≈ 0.05 dex and 〈δ[Mg/Fe]〉 ≈ 0.06 dex. and apply them

to the stars in our models. We convolve the [Fe/H] and [α/Fe] abundances in the

three models with a Gaussian, with the respective mean observational uncertain-

ties set as the standard deviation. The resulting chemical space distributions are

presented in Figure 5.8 where we observe a strong blurring in the number density

(top) and warp star purity (bottom) distributions. With artificial errors the sep-

aration between the thin and thick discs becomes harder to detect though we still

observe different slopes in the low and high-α populations. The chemical cuts from

Figure 5.8 (dashed red polygons) are overlaid on top of the warp star purity. We

observe that the high purity regions have shifted towards lower [α/Fe] values and the

original chemical cuts are now contaminated by lower-purity regions, thus requiring
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Figure 5.8: Same as Figure 5.7, but with artificial errors applied to the [Fe/H] and

[α/Fe] values of each stellar particle. The dashed polygon indicates the chemical

cut defined in Figure 5.7 (red) and the updated chemical cut that accounts for the

abundance errors (black).
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updated chemical cuts (dashed black polygons).

One of the key limitations in observational astronomy is the distance uncertain-

ties. To more accurately apply the trends in the chemical space of our models onto

current and upcoming observational data, we analyse the chemistry of stars located

in a simulated Solar annulus. Similar to the analysis in Chapter 4, we simulate

a Solar annulus sample using contemporary estimates of the Solar location rela-

tive to the MW warp. We define the Solar annulus as a cylindrical sector centred

on R = 8.2 kpc (Bland-Hawthorn & Gerhard 2016) and φw = −72.5◦ (Chen et al.

2019a), where φw is the angle between the peak of the warp’s south side in the clock-

wise direction (see Chapter 2). The cylindrical sector has a width of ∆R = 4 kpc,

maximum height of |zmax| = 7 kpc, and azimuthal diameter of ∆φ = 75◦.

In Figure 5.9 we present the chemical space for stars in the Solar annulus sample

of the three models. Similarly to Figure 5.7, the top and bottom rows of Figure 5.9

show the number density and warp star purity distributions, respectively. We ob-

serve that the chemical thick disc becomes less recognisable in the WM3-4 models

as the upper branch either becomes more diffuse or disappears altogether, while

in WM2 model, the thick disc is still apparent. We also observe a change in the

overall shape of the chemical space as the low-α and low-metallicity region in mod-

els WM2-3 becomes scarcely populated. The warp star purity distribution shows

similar high-purity regions (yellow) as observed in Figure 5.7, however, there is a

clear decrease of warp star purity in the low-metallicity regions ([Fe/H] < −1). An

outline similar to the one in Figure 5.7 is applied to the regions of high warp star

purity (dashed red polygons) while accounting for potential halo star contamination

that will be present in the MW data.

Finally, Figure 5.10 shows the same chemical space distribution in the Solar an-

nulus but with applied artificial errors in the elemental abundances (see Figure 5.8).
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Figure 5.9: Chemical space distributions for stars in the Solar annulus of the three

models. The model is indicated in the top right corner of each column. Top: Number

density distribution. Bottom: Distribution of the warp star purity, Nwarp/Nall. The

dashed red polygon outlines the area of chemical space where Nwarp/Nall ≥ 0.8 and

[Fe/H] ≥ −1.
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Figure 5.10: Same as Figure 5.9, but with artificial errors applied to the [Fe/H] and

[α/Fe] values of each stellar particle. The dashed polygon indicates the chemical

cut defined in Figure 5.9 (red) and the updated chemical cut that accounts for the

abundance errors (black).
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We now cannot differentiate between the thin and thick discs in any of the mod-

els. Similar to Figure 5.8 we observe the high-purity regions shifting towards lower

[α/Fe] and [Fe/H] values out of the original chemical cut from (red polygons) de-

fined in Figure 5.9. We, therefore, improve upon the chemical cut to only include

the high-purity regions while accounting for potential halo star contamination (black

polygons). The resulting abundance limits within the black polygons are defined as

the definitive chemical cuts and are used throughout the rest of this and the following

chapters.

Warp stars in the AMR

In a closed model, a galaxy is expected to have a negative age-metallicity relation

(AMR) as younger stellar populations form in gas contaminated by the remnants

of the older metal-poor populations (Spitoni et al. 2021; Chiappini et al. 1997).

Observations in the MW present a flat and broad AMR even when accounting for

errors in ages and metallicities (Casagrande et al. 2016). The flattening is likely due

to radial migration as stars of different metallicities are brought into a region and

pollute the inherent AMR. Observations in the warped outskirts of M31 have shown

a clear negative trend in the AMR (Bernard et al. 2015), which can be interpreted

as migration into the warp being inefficient. The results in Chapter 3 showed that

migration occurs out of the warp as warp stars settle into the disc, which could

similarly affect the resulting AMR. Other factors that can affect the AMR in our

models include the strict definition of warp stars (formation space) and the potential

contamination of the accreting gas by galactic outflows, however, this is beyond the

scope of this thesis.

Figure 5.11 shows the number density (top) and warp star purity (bottom) dis-

tributions in the AMR for all the stars in the three models. In all three models,

we observe an overall decreasing AMR as well as several branches of concentrated
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Figure 5.11: Distributions in the the age-metallicity relation (AMR) of the three

models. The model is indicated in the top right corner of each column. Top: Number

density distribution. Bottom: distributions of the warp star purity, Nwarp/Nall.
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Figure 5.12: Same as Figure 5.11 but for stars in the Solar annulus of the three

models. The dashed lines represents linear fits to the overall stellar distribution

(orange) and to the warp population (cyan).

density with decreasing AMRs. The upper age limit in the high-purity region can

indicate when the galactic warp starts to efficiently form stars, which appears to be

∼ 2 Gyr from the beginning of each model. The warp star purity distribution shows

that up to this age limit and below [Fe/H] ≤ 0 the purity is above 80% with the warp

population occupying the lower part of the AMR. In Figure 5.12 we present the same

distributions in the AMR for stars in the Solar annulus of the three models. The

number density distribution (top) shows a loss of the lower-metallicity population in

the range 0 ≤ age/Gyr ≤ 7.5, however, the warp star purity (bottom) still remains

high below the main AMR. The dashed lines represent linear fits to the AMRs of

the overall distribution (orange) and warp stars (cyan). We observe that the AMR

is stronger in the warp stars when compared to the overall AMR in all models.
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Figure 5.13: Same as Figure 5.12, but with artificial errors applied to the stellar

ages and [Fe/H] values of each stellar particle.

152



CHAPTER 5

Figure 5.14: The age distribution for in-situ (disc, black) and warp (red) stars in

the three models. The model is indicated in the top left corner. The line styles

represent different cuts on the stellar populations that are: entire sample (solid),

Solar annulus (dashed), and a chemical cut in the Solar annulus (dotted), the latter

being defined for each model in Figure 5.14 with the red polygon.

The abundance uncertainties are estimated with the mean abundance errors

from spectroscopic surveys, however, applying artificial errors to stellar ages is more

challenging due to the naturally high uncertainties in age estimates. We settle on an

optimistic 20% error in ages and apply them to the stars in our models by assuming

that the age values are Gaussian. Figure 5.13 shows the AMR with artificial errors

for stars in the Solar annulus of the three models. We observe similar differences

between the linear fits to the overall and warp samples in the Solar annulus, with

the warp population having a stronger AMR.

To interpret the sharp cutoff in warp star purity in Figures 5.11-5.13 we analyse

the star formation history (SFH) in the three models. Figure 5.14 presents the

distribution of ages, with applied artificial errors, for in-situ (black) and warp (red)

stars in the WM2-4 models. The solid lines represent the unfiltered stellar sample
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in each model, while the dashed and dotted lines indicate the Solar annulus sample

and its definitive chemical cut for each model (Figure 5.10), respectively. The overall

sample shows an expected dominance of in-situ stars over the warp population. The

SFH of the in-situ stars remains relatively flat throughout, while the warp stars

experience a decrease of different magnitudes depending on the model.

In WM2, the decline in the warp SFH is relatively slow and seemingly matches

the slope of the in-situ SFH, indicating that misaligned gas is still being funnelled

into the warp (Figure 5.1), fuelling further star formation. In WM3, the decline in

the warp SFH occurs at age ∼ 5 Gyr after which it plateaus. This step-like change

in the SFH is likely due to the increasing alignment between the angular momenta of

the stellar disc and the surrounding gas, demonstrated in Figures 5.4-5.5. With the

increased alignment, more stars forming within the inflowing gas will have smaller

θform values and avoid our defined warp region in formation space (Figure 3.3),

therefore decreasing the warp SFH. We observe a more significant and continuous

decline in the warp SFH of WM4 at age ≤ 5 Gyr, however, the cause of the decline

is similar to the one described in WM3. With the alignment between the angular

momenta being even stronger in WM4 (Figures 5.4-5.5), a larger population of stars

will be outside of our defined warp region in formation space (Figure 3.3).

The Solar annulus sample does not change the shape of the in-situ SFH, however,

in the warp population, the decline at age ≤ 5 Gyr becomes more pronounced. In

Chapter 3 we demonstrated that the younger warp populations in WM2 settle to

increasingly thicker discs and are less likely to be observed in the Solar neighbour-

hood; this explains the more pronounced decline in the SFH. Lastly, applying the

definitive chemical cut to the Solar annulus sample causes the warp SFH to overtake

that of the in-situ population at different age intervals depending on the model. This

is expected as, by definition, the chemical cut contains the highest warp star purity.
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5.2.3 Action space

The distinct chemical footprint of the warp population in the three models can

aid in the detection of warp star candidates in the MW. However, the aim of our

analysis is not to make a direct comparison between our models and observations as

there are inherent limitations in simulated galaxies. An example of such limitations

is the dissimilarity between the chemical spaces in our models and in the Solar

neighbourhood. Therefore, the aim is to assess the overall trends in warp stars in

relation to the in-situ population to create a blueprint for further analysis.

Roškar et al. (2010a) demonstrated that warp stars settling into the disc populate

the geometric thick disc, indicating that they are on vertically “hot” orbits. We were

able to recreate this result in Chapter 3 with model WM2 where, after settling,

warp stars were found to be on near-circular orbits and populating the thick disc.

A deeper analysis into the dynamical properties of warp stars can be achieved by

studying their actions, which are constants of motion in an unperturbed potential

field. Actions are defined as:

Ji ≡
1

2π

∮
dqi pi (5.1)

where qi and pi are the generalised coordinates and momenta along a star’s orbit,

respectively. Assuming that the potential in our models is approximately axisym-

metric and slowly varying, the actions of a star are conserved (Binney & Tremaine

2008b). In order to further constrain the unique properties of warp stars, we com-

pute the actions of all stars in the three models using the software library AGAMA

(Vasiliev 2019).

To compute the stellar actions, we first interpolate the potential of each model

using AGAMA. Spherical symmetry and a flattened axisymmetric distribution are

assumed for the halo and disc, respectively. The rotation curve produced by the

approximated total potential is presented in Chapter 2 for each model (red dashed
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lines in Figure 2.1). Finally, we compute the radial, vertical, and azimuthal actions

(JR, Jz, and Jϕ, respectively) using the Stäckel fudge method (Binney 2012; Sanders

& Binney 2016). In order to determine common trends across the action spaces of

all three models, we normalise the computed actions:

Ji =
Ji
Jtot

(5.2)

where Jtot is the total action and defined as:

Jtot =
√
J2
R + J2

z + J2
ϕ (5.3)

We examine the relationships between the normalised stellar actions, referred to

as action space, in the three models. Similar to our analysis in chemical space,

we apply artificial errors using the mean action uncertainties in the Sanders &

Das (2018a) dataset which are 〈δJR〉 = 45 kpc km s−1, 〈δJz〉 = 6 kpc km s−1, and

〈δJϕ〉 = 25 kpc km s−1.

In Figures 5.15 - 5.17 we present distributions in the Jϕ−JR, Jϕ−Jz, and Jz−JR
action spaces for stars in the Solar annulus (left) and in the definitive chemical cut

of the Solar annulus (right) of the WM2 model. The top rows show the distribution

of the warp star purity in the action spaces, while the middle and bottom rows

show the distributions of the mean value and dispersion of stellar ages, 〈age〉 and

σage, respectively. In the Solar annulus, the purity distribution shows no distinct

regions where warp stars are dominant, with low purity (≤ 80%) values coloured in

black. However, when applying the chemical cut, the warp star dominated regions

become very distinct and provide the first cuts on the normalised actions. The

〈age〉 distribution shows that the high-purity regions are composed of warp stars

with 0 ≤ age/Gyr ≤ 8 which is in some agreement with Figure 5.14. The σage

distributions show higher dispersions in the high-purity area than in the rest of the

action space.
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Figure 5.15: Distributions in Jϕ − JR action space for stars in the Solar annulus

(left) and in the chemical cut of the Solar annulus (right) of the WM2 model. The

chemical cut is defined in Figure 5.9 with the red polygon. The distributions are of

the warp star purity (top), the mean stellar age (middle), and the standard deviation

of the age (bottom).
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Figure 5.16: Same as Figure 5.15 but in the Jϕ−Jz action space of the WM2 model.
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Figure 5.17: Same as Figure 5.15 but in the Jz−JR action space of the WM2 model.
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Figure 5.18: Same as Figure 5.15 but in the Jϕ − JR action space of the WM3

model.
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Figure 5.19: Same as Figure 5.15 but in the Jϕ − JR action space of the WM3

model.
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Figure 5.20: Same as Figure 5.15 but in the Jz−JR action space of the WM3 model.
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Figure 5.21: Same as Figure 5.15 but in the Jϕ − JR action space of the WM4

model.
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Figure 5.22: Same as Figure 5.15 but in the Jϕ−Jz action space of the WM4 model.
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Figure 5.23: Same as Figure 5.15 but in the Jz−JR action space of the WM4 model.
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Similar to Figures 5.15 - 5.17, we present the same action space distributions

for the WM3 and WM4 models in Figures 5.18 - 5.20 and Figures 5.21 - 5.23,

respectively. We observe the same trends in the warp star purity distributions as

the definitive chemical cuts highlight the high-purity regions in similar areas of

action space as in the WM2 model. The age distributions show that the high-

purity regions are comprised of warp stars with 4 ≤ age/Gyr ≤ 6 which is in some

agreement with Figure 5.14 for both WM3 and WM4. The σage distributions show

a different result to WM2 as both high-purity regions in the WM3 and WM4

models have the lowest age dispersions in action space.

As a result of our action space analysis, we determined the action cuts that, in

combination with the definitive chemical cut, produce warp star samples with the

highest purity in each model. These actions cuts also account for potential halo star

contamination (Posti et al. 2018) and thus can be applied to observational data. We

use the following actions cuts in all three models : JR ≤ 0.2, Jz ≥ 0.9, and Jϕ ≥ 0.9.

We refer to the combined action and chemical cuts in each model as the warp filter.

5.3 Warp stars at the Solar annulus

In this section, we apply the warp filters produced in the previous section to the

simulated Solar annulus samples of the three models. We will demonstrate the

effectiveness of the warp filter in each model by producing a sample of warp star

candidates and comparing them to actual warp stars.

In Figure 5.24 we present the chemical (top), AMR (middle), and spatial (bot-

tom) distributions of warp star candidates in the WM2-4 models. The warp star

candidates were determined using the warp filters of each model. In the chemical

space, we present the warp star candidates (green triangles) overlaid on top of the

number density distribution (colour) of the Solar annulus sample in each model.

The solid coloured polygons represent the definitive chemical cuts in each model.
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Figure 5.24: Distributions of warp star candidates in the WM2-4 models. Top:

number density distribution of stars in the Solar annulus with overlaid warp star

candidates (green triangles) in chemical space. The solid polygons represent the

region of chemical space where the warp star purity is greater than 80% (Figure 5.10).

Middle: number density distribution of stars in the Solar annulus with overlaid warp

star candidates (green triangles) in the AMR. The solid lines represent the linear

fits to the AMR of the warp star candidates (red) and the de facto warp stars

identified in the models (yellow). Bottom: locations of the warp star candidates in

the galactocentric R− z plane.
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The AMR similarly shows the warp star candidates (green triangles) overlaid on

top of the number density distribution of the Solar annulus sample (colour). We

observe a distinct negative AMR in the warp star candidates, which we confirm with

a linear fit (solid red line). To assess the effectiveness of the warp filters, we examine

the warp stars that were defined with Rform and θform in Section 5.2.1, referred to

as de facto warp stars. We compute a linear fit to the AMR of the de facto warp

stars located in the chemical cut of the Solar annulus (solid yellow line). Table 5.1

shows the parameters of the linear fits in each model. We observe a coincidence

between the de facto and candidate warp stars in models WM2 and WM3, with a

difference in slopes of ∼ 16% and ∼ 35%, respectively. The WM4 model presents

a much flatter AMR in the warp star candidates, which is most likely explained by

the statistically smaller sample.

The spatial distribution of the warp star candidates is shown in the galacto-

centric R − z plane. We observe radial flaring in each of the three models as the

|zmax| appears to symmetrically increase with R, which agrees with the results in

Chapter 3. The relative accuracy of the warp filters can be estimated by determin-

ing the percentage of de facto warp stars that are contained within the sample of

candidates. The resulting number (accuracy) of warp star candidates is 2500 (85%)

in WM2, 1300 (93%) in WM3, and 250 (90%) in WM4.

5.4 Conclusions

Using three N-body+SPH models that experience continuous misaligned gas accre-

tion, we have demonstrated that warp stars are unique in their elemental abundances

and stand out in chemical space above other populations. The warp populations

appear to occupy the α-poor and metal-poor regions immediately below the main

chemical space distributions of the stellar disc. Further analysis of the chemical

space regions of high warp star purity demonstrated that warp stars are equally
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Model name
De facto warp stars Warp star candidates

a×10 [Gyr−1] b×10 a×10 [Gyr−1] b×10

WM2 −0.59+0.01
−0.01 −0.82+0.05

−0.05 −0.51+0.01
−0.01 −1.52+0.07

−0.07

WM3 −1.06+0.02
−0.02 0.42+0.10

−0.11 −0.79+0.05
−0.05 −1.05+0.27

−0.28

WM4 −0.43+0.02
−0.02 −4.33+0.10

−0.10 −0.22+0.07
−0.07 −5.98+0.38

−0.37

Table 5.1: The slopes, a, and y-intercepts, b, of the linear fits to the AMRs of the

de facto warp stars and warp star candidates in the Figure 5.13.

unique in action space. As a result, the combined constraints on the chemical and

action spaces produced a warp sample of high purity (∼ 90%).

The unique chemical and dynamical footprint that warp stars have is readily ex-

plained by the conditions under which warp stars form. The gas accreting onto the

disc of our models is metal-poor, addressing the low-α and metal-poor properties of

warp stars. The relatively low radial actions in the warp populations are in agree-

ment with the results in Chapter 3 where settled warp stars are on near-circular

orbits. We also speculate that the larger vertical actions in the warp populations re-

sult from them forming away from the midplane in the accreting gas. This coincides

with warp stars populating the thick disc in WM2 (Chapter 3).

Finally, we can apply our warp filters to the Solar neighbourhood in search of

warp star candidates. If the warp star candidates in the MW are identified with

a degree of confidence and have relatively accurate age estimates, we can infer the

SFH of the Galactic warp.
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Warp star candidates in the Milky

Way

In this chapter, we apply the warp filters produced in Chapter 5 on an observational

sample located in the Solar annulus with full 6D coordinates, elemental abundances,

and age estimates. We analyse the action space distributions of the sample and ob-

serve trends similar to those in the WM2-4 models. Finally, after applying the warp

filters, we produce a sample of warp star candidates and analyse their distributions

in chemical space, the AMR, and the R− z plane.

6.1 The Gaia sample

To apply the warp filters from the WM2-4 models, we require an observational sam-

ple with full 6D coordinates, elemental abundances, and age estimates. Sanders &

Das (2018a) (hereafter SD18) constructed a value-add catalogue by cross-matching

the Gaia DR2 with six spectroscopic ground-based surveys (APOGEE, Gaia-

ESO, GALAH, LAMOST, RAVE, and SEGUE). The catalogue provides the

distance, mass, and age estimates for ∼ 3× 106 stars in Gaia DR2. The estimates
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were calculated by SD18 using a Bayesian framework that characterised the proba-

bility density function of the three parameters using photometric, spectroscopic and

astrometric data. The catalogue also provides the full 6D coordinates and actions

which SD18 computed using the Stäckel fudge method (Binney 2012; Sanders &

Binney 2016) and the McMillan (2017) potential. Although the catalogue contains

cross-matches with multiple spectroscopic surveys, to reduce uncertainties when se-

lecting our sample, only cross-matches with the GALAH DR2 (Buder et al. 2018)

and APOGEE DR14 (Holtzman et al. 2018) high-resolution surveys are considered.

The resulting catalogue contains ∼ 4.6 × 105 stars and is referred to as the SD18

dataset.

We prepare the Solar annulus sample by applying the necessary spatial and

error cuts on the SD18 dataset. The SD18 dataset contains flags for each star

to indicate if the data can be used with confidence. To simplify this process, we

only select stars with one specific flag that encompasses all possible issues and

uncertainties in SD18, which is the best flag. A flag value of best=1 implies

that a star does not have duplicate entries in other spectroscopic surveys, has no

issues in its observational values (astrometry, photometry, and spectroscopy), and

that the output of the Bayesian framework in SD18 (mass and age) encountered no

issues. In Table 6.1 we show the stellar counts and North-South asymmetries, i.e.

Nz>0/Nz<0, in each catalogue and respective samples. Stars with best=1 comprise

the primary sample referred to as “cross-match”. In addition to the flags, we only

select stars with action and distance uncertainties that are below 20%, referred

to as the “+error” sample in Table 6.1, where “+” indicates that the sample is

compounding on all previous samples.

Similar to the Solar annuli in Chapter 5, we select stars in a cylindrical sector

centred on the Solar radius and azimuth, R = 8.2 kpc and φ = 0◦ respectively. The

sector has a radial range of 6.2 ≤ R/ kpc ≤ 10.2, a maximum absolute height of
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Figure 6.1: Spatial distributions of stars in our cross-match between the SD18 sample

and spectroscopic surveys in Galactocentric coordinates in the x−y (left) and R−z
(right) planes. The rows indicate different cuts applied to the considered sample.

Top: stars in the “+Solar annulus” sample, referred to as the base sample. Middle:

the base sample with a cut on the age percent errors, i.e. stars with σage ≤ 20%.

Bottom: the base cut with a cut on the age errors, i.e. stars with σage ≤ 2 Gyr.
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|zmax| ≤ 7 kpc, and an azimuthal diameter of ∆φ = 100◦. This sample is referred

to as “+Solar annulus” in Table 6.1. In Figure 6.1 we present the number density

distributions in Galactocentric coordinates in the x−y (left) and R−z (right) planes.

The different rows indicate the cuts applied to the “+Solar annulus” sample, referred

to as the base sample. The top row is for the base sample, while the middle and

bottom rows are the compounding age cuts for stars with age errors σage ≤ 20%

and σage ≤ 2 Gyr, respectively. The black star marker shows the Solar location. We

observe north-south asymmetries in all versions of the “+Solar-annulus” sample,

which is a consequence of the different observational footprints of each survey.

6.2 Chemical and action spaces

In this section we focus on the chemical space in the SD18 dataset samples. In SD18,

the chemical abundances in GALAH are rescaled to match those in APOGEE.

However, as our warp filters are based solely on the WM2-4 models we consider

their application on the SD18 samples to be independent and not requiring of rescal-

ing between the two surveys. Figure 6.2 shows the number density distribution

of the “cross-match” sample in [Fe/H]-[α/Fe] chemical space, where we have cho-

sen the magnesium abundance, [Mg/Fe], to represent the α-element. The spec-

troscopic surveys used in the SD18 dataset have multiple α-element abundances

available, e.g. [O/Fe], however, [Mg/Fe] has overall smaller uncertainties. The

mean uncertainties of the above-mentioned abundances in APOGEE (GALAH)

are 〈δ[Fe/H]〉 ≈ 0.01 (0.08), 〈δ[Mg/Fe]〉 ≈ 0.02 (0.08), and 〈δ[O/Fe]〉 ≈ 0.05 (0.1).

We observe faint signs of the chemical thin and thick discs in the chemical space

of the SD18 sample. The definitive chemical cuts from the WM2-4 models (solid

polygons in Figure 5.24) are overlaid and appear to be situated immediately below

the main chemical space distributions of the stellar disc, mirroring the high-purity

locations in the models.
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Figure 6.2: Number density distribution in chemical space of stars in the base sample

(Figure 6.1). The solid polygons represent the chemical cuts from the WM2 (red),

WM3 (blue), and WM4 (orange) models.
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Figure 6.3: Distributions in Jϕ − JR action space for stars in the “+Solar annulus”

sample (left) and in the chemical cut of the “+Solar annulus” sample (right). The

chemical cut is based on the WM2 model which we define in Figure 6.2 (solid red

polygon). The distributions are of the stellar number density (top), the mean stellar

age (middle), and the standard deviation of the age (bottom).
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Figure 6.4: Same as Figure 6.3 but in the Jϕ − Jz action space.
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Figure 6.5: Same as Figure 6.3 but in the Jz − JR action space.
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Figure 6.6: Distributions in Jϕ − JR action space for stars in the “+Solar annulus”

sample (left) and in the chemical cut of the “+Solar annulus” sample (right). The

chemical cut is based on the WM3 model which we define in Figure 6.2 (solid blue

polygon). The distributions are of the stellar number density (top), the mean stellar

age (middle), and the standard deviation of the age (bottom).
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Figure 6.7: Same as Figure 6.6 but in the Jϕ − Jz action space.
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Figure 6.8: Same as Figure 6.6 but in the Jz − JR action space.
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Figure 6.9: Distributions in Jϕ − JR action space for stars in the “+Solar annulus”

sample (left) and in the chemical cut of the “+Solar annulus” sample (right). The

chemical cut is based on the WM4 model which we define in Figure 6.2 (solid orange

polygon). The distributions are of the stellar number density (top), the mean stellar

age (middle), and the standard deviation of the age (bottom).
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Figure 6.10: Same as Figure 6.9 but in the Jϕ − Jz action space.
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Figure 6.11: Same as Figure 6.9 but in the Jz − JR action space.
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The WM2-4 chemical cuts are applied to the “+Solar annulus” sample and

we examine the different action spaces in the SD18 dataset. Figures 6.3 - 6.11

are similar to the action space figures in Chapter 5 with the “+Solar annulus”

and compounding chemical cuts in the left and right columns, respectively. The

first rows in the figures show the number density distributions, and we observe

similar structures in all action spaces, as seen in the WM2-4 models. However, the

〈age〉 distributions in the middle row show that our sample is mostly of old stars,

i.e. age ≥ 7 Gyr. Finally, the σage distributions agree with the results shown in

Chapter 5: the regions where we expect higher warp star purity have in general

lower age dispersions compared to the rest of the distribution. We observed similar

structures in the action spaces of the SD18 sample and will, therefore, apply the full

warp filters in the following section.

6.3 Warp star candidates

In Figures 6.12 - 6.14 we present the warp star candidates in the SD18 dataset

obtained via the warp filters of the WM2-4 models, respectively. Each column

represents a different sample of the SD18 dataset onto which we apply the warp

filters. The left column represents the “+Solar annulus” base sample, while the

middle and right columns represent the base sample with cuts on the age uncertain-

ties of σage ≤ 20% and σage ≤ 2 Gyr, respectively. The first rows show the number

density distributions of the samples with the overlaid warp star candidates (green

triangles) in chemical space. The solid coloured polygons represent the definitive

chemical cuts of the respective models. Prograde halo stars could be a significant

contaminating factor in our warp filters as they are vertically hot and metal-poor

(Posti et al. 2018). To account for this possible contamination we select retrograde

(Jϕ < 0) stars, calculate their orbital eccentricities, e, in the McMillan (2017) MW

potential using AGAMA, and select those on near-circular (e ≤ 0.4) orbits. One

184



CHAPTER 6

Figure 6.12: Distributions of warp star candidates in the base sample and subse-

quent quality cuts indicated in the top left corner (see Figure 6.1). Top: chemical

space number density distribution (colour) with overlaid warp star candidates (green

triangles). The cyan circles represent retrograde stars on near-circular orbits to ac-

count for possible contamination by halo stars. The solid polygon (red) represents

the region of chemical space in the WM2 model where the warp star purity is greater

than 80% (see Figures 5.10 and 6.2). Middle: number density distribution of stars

in the Solar annulus in the age-metallicity distribution (AMR) with overlaid warp

star candidates (green triangles). Bottom: locations of the warp star candidates in

Galactocentric coordinates in the R− z plane.
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Figure 6.13: Same as Figure 6.12 but using the chemical cut from the WM3 model

(blue solid polygon in Figure 6.2).
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Figure 6.14: Same as Figure 6.12 but using the chemical cut from the WM4 model

(orange solid polygon in Figure 6.2).
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can assume that a similar amount of halo stars could be on prograde near-circular

orbits. We overlay these contaminants in the chemical space (cyan points) and ob-

serve that they are outside of our chemical cuts, therefore they are unlikely to affect

the purity of our sample.

The middle rows show the number density distribution of the samples in the

AMR with the warp star candidates overlaid on top of them (green triangles). We

observe a weak but negative AMR in the warp star candidates as they seemingly

trace the metal-poor tail of the AMR. Finally, the bottom rows show the location

of the warp star candidates in Galactocentric coordinates in the R − z plane. We

observe that our warp star candidates appear to be, on average, away from the

midplane. In Table 6.1 we provide the full breakdown of the stellar counts and

North-South asymmetries in our samples, including the applied warp filters. We

consider the warp filters from the WM3 and WM4 models to be the least and most

conservative in the detection of warp star candidates, respectively. When accounting

for stars with σage ≤ 2 Gyr we find 7, 8, and 4 warp star candidates in the WM2,

WM3, and WM4 filters, respectively.

Within their dataset, SD18 defined two subsamples of stars with precise age esti-

mates, turn-off and giant stars, which they estimate have uncertainties of 20%−30%

and 15%−20%, respectively. For turn-off stars, the precision comes from the combi-

nation of the parallaxes and spectroscopic metallicities breaking the metallicity-age

degeneracy (Howes et al. 2019). In the giant stars, the precision is due to SD18’s

employed spectroscopic mass estimates combined with Gaia parallaxes which fur-

ther constrained the luminosity and, therefore, the age estimates. Both of these

subsamples compose 80− 100% of our warp star candidates, with giant stars being

the majority. Turn-off stars only become prevalent when the WM3 warp filter is

applied to the SD18 dataset and make up 20− 50% of the candidates.

188



CHAPTER 6

Catalogue count North/South asymmetry

Samples APOGEE GALAH Total APOGEE GALAH Total

Crossmatch 202904 258004 460908 2.2 0.8 1.2

+ Error cuts 153808 237478 391286 2.6 0.8 1.2

+ Solar annulus (base sample) 115490 224376 339866 3.3 0.8 1.2

+ Action filter 3162 3513 6675 6.7 0.5 1.5

+ Chemical filter (WM2) 3 28 31 - 0.7 1.9

σt ≤ 20%/ 0 4 4 - 0.0 0.0

σt ≤ 2 Gyr 1 6 7 - 0.2 0.4

+ Chemical filter (WM3) 3 30 33 - 1.0 1.2

σt ≤ 20%/ 0 6 6 - 0.5 0.5

σt ≤ 2 Gyr 1 7 8 - 0.4 0.6

+ Chemical filter (WM4) 1 11 12 - 0.6 0.7

σt ≤ 20%/ 0 1 1 - 0.0 0.0

σt ≤ 2 Gyr 1 3 4 - 0.5 1

Table 6.1: The stellar counts and North-South asymmetry values, i.e. Nz>0/Nz<0,

in the spectroscopic surveys and their compounding cuts. Each warp filter from

Chapter 5 is represented in a separate row with compounding cuts based on the age

uncertainties.
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6.4 Conclusions

We examined the SD18 dataset and observed trends in the chemical and action

spaces that hint at possible warp star contamination in the Solar annulus. In the

chemical space of the SD18 dataset, we observe that the chemical cuts of the WM2-

4 models appear to outline the region immediately below the main distribution. In

action space, we observe lower than average σage distributions in the regions where

a high warp star purity is expected.

We apply the warped filters of the WM2-4 models (Chapter 5) to the SD18

dataset and produce samples of warp star candidates. Depending on the warped

filter, the samples that do not account for age uncertainties (raw samples) produce

12–33 warp star candidates, while those that do only produce 4–8 candidates. The

smallest samples of candidates are produced when using the warp filter of WM4, a

model which has a dissipating low-amplitude warp and the highest star formation

threshold in our warped models. When the warp star candidates in the raw samples

are overlaid on the AMR of the SD18 dataset, we observe a negative trend that

is in partial agreement with the simulations. In the R − z plane, the warp star

candidates are concentrated away from the midplane, similarly to the warp stars in

Chapters 3 and 5. However, the warp star candidates in the SD18 dataset are more

concentrated in the 6 ≤ R/ kpc ≤ 8 range due to the observational footprints of the

spectroscopic surveys.

With the upcoming release of Gaia DR3 and larger-scale ground-based spec-

troscopic surveys, the detection of larger samples of warp star candidates could be

possible. The larger samples of candidates could, in turn, provide further insight

into the SFH of the Galactic warp. At the current state of our analysis, we can only

detect what appears to be the earliest warp population that had enough time to

settle into the disc and migrate into the Solar annulus 3.
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Conclusions and future prospects

Research concerning changes in the vertical structure of galactic discs, including the

Milky Way (MW), is often focused on satellite mergers (Bailin 2003; Weinberg &

Blitz 2006; Kalberla et al. 2007a; Purcell et al. 2011a; Gómez et al. 2013a; Laporte

et al. 2018a,d; Petersen & Peñarrubia 2021). A mechanism that has not been re-

searched as extensively is the warp formation via the accretion of cold misaligned

gas. With the continuous accretion of cold gas, the warp is long-lasting, not episodic.

Additionally, if star formation were taking place in the accreting gas, the dynamical

properties and low-metallicity of the gas would be imprinted on the resulting stellar

populations. Roškar et al. (2010a) studied warps in a cosmological simulation of a

MW-like galaxy and observed stellar populations not only forming in the warp but

also settling and populating the thick disc. These warp stars can serve as a tracer

population from which we can infer the star formation history of the warp. This the-

sis has considered the impact galactic warps have on the vertical structure of discs

via the accreting gas directly perturbing the disc and the settling and migration of

stars born in the warp. The work in this thesis provides insight into the warp’s

role in the evolution of galaxies and a framework to study the Galactic warp’s star

formation history (SFH) and influence on the vertical structure of the disc.
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7.1 Bending waves

In Chapter 4 we investigated the bending waves that manifest in warped (WM1)

and unwarped (UM) models and the differences between them. By performing

spectral analysis on the density and vertical displacement, we extracted the domi-

nant frequencies of the m = 2 density and m = 1 bending waves. We observe an

overall agreement with the WKB approximation as both models have retrograde

low-frequency bending waves throughout their evolution. The difference between

the models manifests in the persistence of prograde bending waves in the warped

model. In the WKB approximation, these waves are expected to weaken and dis-

appear as a result of differential rotation. However, the presence of a continuous

perturbing force in the form of accreting gas excites and injects significant power

into both prograde and retrograde m = 1 waves. In WM1 the prograd e m = 1

bending waves appear to be modulated by the spiral density waves as we observe

ripples emanating from the main retrograde m = 1 signal in the azimuthal 〈z〉 dis-

tributions. The prograde bending waves in the UM model are short-lived (∼ 1 Gyr)

and have smaller amplitudes, however, we still observe a coupling with the m = 2

spiral. The azimuthal 〈z〉 distributions in the UM present a superposition of differ-

ent signals shifting from one to another, with the ripples being more dispersed and

harder to distinguish. These discrepancies imply that the driving force behind the

bending waves in isolated galaxies is not strong enough to support and amplify the

prograde m = 1 bending waves, unlike the continuous inflow of misaligned gas.

The effect bending waves have on a disc’s vertical structure was further investi-

gated in simulated Solar neighbourhoods. In the warped model, we demonstrated

that the positive slopes in the Lz vs vz relation are not due to a direct imprint of

the warp but are instead a consequence of bending waves. We confirmed this by

orientating the disc in the warps inertial frame and observing a wave-like shift in the

azimuthal distribution of the Lz vs vz slope. If the warp were the direct cause of the
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positive slopes, we would expect the change in the azimuthal slope distribution to

occur similarly to a standing wave. The unwarped model presents noticeably flatter

slopes with no distinct wave-like properties, however, a weak azimuthal variation

is observed. The disparity in slope amplitudes is most likely due to the significant

(factor of 4) difference in bending wave amplitudes between the warped and un-

warped models. Lastly, when comparing the resulting slopes in the simulated Solar

neighbourhood samples, we observed a strong similarity with the slope observed in

the MW (Schönrich & Dehnen 2018a; Huang et al. 2018b).

7.2 Warp stars

7.2.1 Simulated warp stars

In Chapter 3 we considered the formation and settling of stellar populations that

formed in the warp (warp stars) of WM2. We demonstrated that settling proceeds

in two stages: reorientation (tilting) and phase mixing in angular momentum space.

The reorientation stage is rapid and occurs within the first ∼ 1 Gyr after a warp star

forms. We performed this analysis on mono-age warp populations and discovered

that the tilting time ranges from 0.25 to 1.75 Gyr. The phase mixing stage com-

mences alongside the reorientation but is significantly slower. As warp stars form,

they begin phase mixing in angular momentum space via differential precession and

become fully phase-mixed after ∼ 6 Gyr. The settling process is also accompanied

by inward migration. We demonstrate that almost all settled warp stars are on near-

circular orbits, therefore warp stars can reach the Solar annulus via radial migration.

We find that warp stars are a possible tracer population that can be observed in the

MW.

In Chapter 5, we investigated the dynamical and chemical properties of warp

stars in three warped models (WM2-4). By comparing the distributions of warp
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populations in chemical and normalised action spaces, we showed that warp stars

stand out above all other stars. In chemical space, warp populations are distinctly

lower in both α-element abundances and metallicity, occupying a chemical space

region below the main thin and thick disc distributions in all models. This chemical

distribution agrees with our initial hypothesis as warp stars form in low metallicity

accreting gas, which experiences lower contamination via galactic outflows. The

warp star purity distribution, i.e. ratio between the warp star and total star counts,

in chemical space is mostly unchanged even with artificial abundance uncertainties.

We based the uncertainties on the mean abundance errors in the GALAH and

APOGEE spectroscopic surveys to simulate observations in the MW. As a result,

we produced cuts in the chemical spaces of each model that maintain a warp star

purity ≥ 80%.

The action space distributions did not produce any significant results, however,

the application of the aforementioned chemical cuts uncovered regions of high warp

star purity. We similarly produce cuts in action space based on the regions with

high warp star purity. The actions cuts reflect the results from Chapter 3 as most

warp stars are observed with high vertical action (thick disc) and relatively small

radial action (near-circular orbits) values.

By examining the warp star distributions in the chemical and action spaces of

WM2-4, we developed cuts in the respective spaces that can be applied to the

Solar annulus in the MW. The different properties of each model provide a range

of chemical space cuts that can account for different star formation thresholds and

warp evolutionary histories (growing and waning warps).

7.2.2 Warp star candidates in the MW

In Chapter 6 we applied the warp filters produced in Chapter 5 to an observational

sample in the Solar annulus. The sample consists of the Sanders & Das (2018a)
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dataset cross-matched with the GALAH and APOGEE spectroscopic surveys,

referred to as the SD18 dataset. The dataset contains 6D coordinates, elemental

abundances, actions, and age estimates for∼ 4.6×105 sources. By applying the warp

filters from each warped model on the SD18 dataset, we produced samples of warp

star candidates in the MW. The stellar counts in the these samples range from 33

(WM3) to 12 (WM4) without accounting for age uncertainties and from 8 (WM3)

to 4 (WM4) for σage ≤ 2 Gyr. We observe that all warp star candidate samples are

skewed towards older populations (age≥ 5 Gyr), with the natural explanation being

the large relative uncertainties in younger ages. However, the skew towards older

ages could also result from a waning warp, demonstrated in our warped models. As

a result, we produced the first samples of warp star candidates in the Solar annulus,

which, while statistically small, could imply that the warp of the MW has been

present throughout our Galaxy’s evolution.

7.3 Future prospects

7.3.1 Phase-space spiral

One of the key limitations in contemporary N-body+SPH models, such as the ones

used throughout this thesis, is resolution. Chapter 4 showed that bending waves

of significant amplitude are generated by accreting cold gas. A logical continuation

of our work, with the relatively recent discovery of the Gaia phase-space spiral,

is determining if the bending waves produced by the warp can give rise to similar

phase-space structures. At present resolution, the detection of such structures in

our models is unlikely, so future work will aim to improve the mass resolution of

N-body+SPH models.

More work must be carried out to understand the bending waves that emerge

as a result of misaligned gas accretion, which includes isolating these waves in the
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disc and determining their direction of propagation. By further investigating these

bending waves, the role warps have in galactic evolution can be understood in greater

detail.

7.3.2 Gaia DR3 and future surveys

In Chapters 3 and 5 we described the settling process and unique properties of

warp stars, respectively. By determining the cuts in chemical and normalised ac-

tion spaces, in Chapter 6 we were able to produce a small sample of warp star

candidates in the Solar annulus of the MW. Our sample’s limited size comes from

multiple compounding issues that could be addressed in the future and produce a

more statistically significant sample of warp star candidates. Firstly, current large-

scale catalogues such as Gaia are limited to astrometric data within a small volume

(1/π ≤ 3 kpc) to avoid significant uncertainties (Ting & Rix 2019). Secondly, the

latest data release of the Gaia mission (DR2) produced only ∼ 7 × 106 stars with

radial velocities, which along with a lack of elemental abundance data significantly

limited our chemodynamical analysis. The Sanders & Das (2018a) dataset partially

alleviated these issues by providing age estimates for stars in a cross-match be-

tween Gaia DR2 and multiple spectroscopic surveys, however, the resulting sample

produced a limited sample of ∼ 5× 105 stars.

Further advances in the detection of warp star candidates can be achieved with

the upcoming release of Gaia DR3, which is expected in early 2022. DR3 is expected

to have a significantly larger sample of stars with full 6D coordinates. Furthermore,

with the addition of cross-matches with current and upcoming ground-based spec-

troscopic surveys, we can obtain further insight into the star formation history of the

Galactic warp. Lastly, the inclusion of machine learning algorithms in our analysis

of warped simulations can improve the detection of warp star candidates by better

defining their unique chemodynamical properties.
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Garćıa-Ruiz, I., Kuijken, K., & Dubinski, J. 2002a, Mon. Not. Roy. Astron. Soc.,

337, 459
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Roy. Astron. Soc., 485, 3134

Laporte, C. F. P., Minchev, I., Johnston, K. V., & Gómez, F. A. 2019b, Mon. Not.
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Peñarrubia, J., Gómez, F. A., Besla, G., Erkal, D., & Ma, Y.-Z. 2016, Mon. Not.

Roy. Astron. Soc., 456, L54

Peebles, P. J. E. 1970, Astron. J., 75, 13
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