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Objectives: Metallic element release during implant placement can lead to mucositis and 

peri-implantitis. Here, using ex vivo porcine mandibles, the release of metallic elements 
into the surrounding bone with different material and geometrical designs was quantified. 

Methods: Implants from BioHorizons® and Straumann® (Bone level, tapered/cylindrical, 3/ 

4 mm body diameter, Ti-CP4/Ti-6Al-4V/Ti-15Zr) systems were used. Micro computed to-
mography and inductively coupled plasma optical emission spectroscopy was used to vi-
sualise and quantify metallic elements in bone, following acid digestion. Implant surfaces 
were examined with scanning electron microscopy and internalization of implant particles 
by human gingival fibroblasts (HGFs) and RAW 264.7 macrophages were demonstrated in 
vitro. 

Results: Implants with wider body diameters resulted in higher metallic element release. 

Ti-6Al-4V implants released significantly more metallic elements in comparison to both Ti- 
CP4 and Ti-15Zr devices with similar design and dimensions. Tapered Ti-CP4 implants 
released less compared to those with cylindrical design. Al three types of particles were 
internalized by HGFs and RAW 264.7. 

Significance: Ti-CP4 and Ti-15Zr appear to be more suitable materials, however, further 

studies are required to elucidate the biological effects of the fine particles and/or metallic 
species from dental implants. Authors would like to raise the awareness in the dental 
profession community that careful evaluation of the materials used in dental implants and 
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the potential risks of the individual constituents of any alloy are needed. The potential 
cytotoxicity of Ti-6Al-4V implant particles should be highlighted. Further investigations on 
the biological effect of the fine particles or metallic species released from dental implants 
are also needed. 

© 2022 The Authors. Published by Elsevier Inc. on behalf of The Academy of Dental 

Materials. 

CC_BY_4.0   

1. Introduction 

Titanium and titanium based alloys are the most widely used 
metallic materials for orthopaedic and dental implants [1]. 
Orthopaedic loosening and oral peri-implantitis remain a 
major post-operative concern [2]. In Dentistry, peri-im-
plantitis, which is classified as inflammation of the soft gum 
tissue and loss of alveolar bone, is the main cause of implant 
failures. Peri-implantitis has long been believed to have a 
microbial etiology, but more recently has been associated 
with aseptic inflammation around an implant due to the re-
lease of metallic particles and ions from the implants [3–5]. 
Particle production is likely as implants, especially those with 
finely roughened surface, are screwed into bones. Surface 
degradation of the implant body can be accelerated by a 
number of factors such as wear and corrosion [4–6]. Once 
onset of peri-implantitis occurs, it is difficult to control, due 
to the lack of well-established treatment protocols, resulting 
in bone resorption and implant loss [7]. 

Although titanium-based prostheses are considered bio-
compatible (non-toxic), particles and ions released from 
them may not be. The implants are considered biocompatible 
because cell death (necrosis) around implants over short 
time scales is negligible and they pass in vitro cytotoxicity 
tests, such as ISO-10993, as they do not release “leachants” on 
immersion in cell culture studies. Fibrous encapsulation oc-
curs when nearly inert implants are too large for phagocy-
tosis. If particles are produced, they may be small enough for 
internalization by macrophages, causing frustrated phago-
cytosis and local chronic inflammation, which can lead to 
osteolysis in the surrounding bone [8]. 

Previous studies observed the size of particles produced 
from titanium-based dental implants to range from nano-
metre to micrometre scales [5,9,10]. Biopsies of soft tissue 
around failing dental implants (titanium and titanium alloys) 
revealed inflammatory reactions around aggregates of parti-
cles, which have been traditionally classed as ‘wear particles’  
[11,12]. Several studies have reported potential sources of 
metallic particles and ions in Implantology, e.g., from the 
implant surfaces during placement and from the implant- 
abutment interface during functional loading. Particularly, at 
the moment of implant placement, the shear force originated 
from the frictional movements at implant-bone interface can 
incur both chemical and topographical changes on the im-
plant surface, which result in the release of particles [13,14]. 

Particles from orthodontic mini-implants (and ortho-
paedic implants) have also been recorded in lungs, liver, 
spleen and bone marrow [15,16]. Titanium dioxide particles 
and particles released from ultrasonic scaling of Grade 5 ti-
tanium alloy (an alloy consists of titanium, aluminum and 

vanadium, Ti-6Al-4 V) implants have been reported both in 
vitro and in animal models to induce marked upregulation of 
pro-inflammatory markers including interleukin 1 beta (IL- 
1β), IL-6 and tumour necrosis factor alpha (TNF-ɑ) in macro-
phages, leading to inflammation-induced osteoclastogenesis 
and bone resorption (osteolysis) [17]. The activation of the 
innate immune system leads to periprosthetic osteolysis and 
subsequent implant failure, resulting in the need of an ad-
ditional surgery for patients [18,19]. As particle size de-
creases, specific surface area increases, which can increase 
the rate of ion release. We recently found that vanadium ion 
dissolution from Ti-6Al-4V can cause toxicity [10]. 

The aim of this study was to systematically evaluate the 
impact of implant material composition and geometrical 
design of the implant on the quantity of metallic products 
released from dental implants immediately after placement 
in an ex vivo pig mandible bone model. Internalization of such 
particles by peri-implant cell populations in vitro was also 
investigated. All implant materials were bone level implant 
designs. Metals were: Ti-CP4 (commercially pure titanium); 
Ti-15Zr (titanium-zirconium alloy); and Ti-6Al-4V (Titanium- 
6%Aluminum-4%Vanadium alloy). Geometries were cylind-
rical or tapered. 

2. Materials and methods 

Reagents and solvents were purchased from Sigma-Aldrich 
(Dorset, UK) and Thermo Fisher Scientific (Paisley, UK). 
Implants were purchased from Straumann (Crawley, UK) and 
BioHorizons (Bracknell, UK). Pig mandibles were purchased 
from Medical Meat Supplies (Oldham, UK). No ethical clear-
ance was required. Ti-15Zr particles were created from 
Roxolid® disks provided by Straumann (Basel, Switzerland). 
Ti-CP4 and Ti-6Al-4V particles (produced from Ti-CP4 and Ti- 
6Al-4V implant material blocks) were gifted from Dr Jonathan 
Jeffers (Imperial College London). Particle sizes were de-
termined using Malvern Mastersizer and dynamic light scat-
tering (DLS). 

2.1. Implants and surgical instruments 

The specifications of the implant systems used in this study 
are presented in Table 1. Straumann implants with parallel/ 
cylindrical and tapered walls, consisting of grade 4 and Rox-
olid at diameters of 3.3 and 4.8 were used. Nearest compar-
able systems from BioHorizons were used. Drills and surgical 
handpiece protocols were set in accordance to manufacturer 
instructions for each implant system. A diamond disc was 
used to cut and prepare bones for analyses following implant 
placement. 
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2.2. Implant placement 

Pig mandible was used for implant insertion. Each mandible 
sample was divided into 3 regions (Fig. 1): (1) untreated bone 
control (n = 5); (2) drill only control (n = 5); and (3) implant 
placement (n = 5). In the area of drill only controls, the bone 
was prepared with implant drills without implant placement 
to ensure the drilling was not contributing metallic particles. 
The preparation was done in accordance with each implant 
system’s surgical protocol as provided by the manufacturer. 
Physiological saline solution (Hygitech, London, UK) was 
used to provide cooling during the drilling and implant pla-
cement procedure. Following drilling and implant placement, 
mandible bones were cut into 3 parts based on the above 
description using a micro bone saw (diamond disc). Each 
bone section was then sectioned vertically, in half, to allow 
the removal of implant. Bone samples were collected and 
stored at − 20 °C until used for further analyses. Samples for 
micro computed tomography (μCT) scanning and scanning 
electron microscopy analyses were fixed in 4% paraf-
ormaldehyde and stored at 4 °C. 

2.3. Bone and particle digestion 

Collected bone samples were acid digested using protocols 
described previously [20]: each sample was submerged 
overnight in 5 mL of digestion acid (4 parts 65% nitric acid to 1 
part 96% sulfuric acid) in screw-capped polypropylene tubes 
at 40 °C over a water bath in a safety fume hood. The caps 
were pierced to allow acid fumes to escape. The temperature 
was then increased to 70 °C for 2 h and again to 95 °C for 
further 1 h. The resulting solutions were allowed to cool to 
room temperature before carefully mixed and centrifuged to 
sediment any residuals. The clear supernatants were col-
lected for further analyses. Implant particles (Ti-CP4, Ti-6Al- 
4V and Ti-15Zr) with known quantity (0.75 mg, 1.5 mg and 
3 mg) were also digested using the same method for the 
generation of Ti release standard curve, which was subse-
quently used for the approximation of the wear particle 
quantities. 

2.4. Inductively coupled plasma optical emission 
spectrometer (ICP-OES) 

The elemental concentration of titanium, aluminum, iron 
and vanadium in the digested solution was determined using 
ICP-OES. 1 mL of each sample was diluted to 10 mL with de- 
ionized water and filtered through a 0.2 µm membrane. 
Mixed standards of titanium (Ti), aluminum (Al), iron (Fe) 
and vanadium (V) ions were prepared at 0, 2, 5, 20 and 40 ppm 
for calibration. All samples were run in triplicates. Final ele-
mental concentration was normalised against untreated 
bone controls. 

2.5. Scanning electron microscopy (SEM) 

Collected implants were dried in a 60 °C oven and secured to 
an aluminum sample holder with carbon tape and coated 
with 10 nm gold. Secondary electron images were acquired 
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Fig. 1 – Representative photographs of implant placement in the ex vivo pig mandible model. (a) Each mandible sample was 
divided into three regions: bone control, drill only and implant placement. Following implant placement, mandible bones 
were cut into the three parts: untreated bone control (b), drill only (c) and implant placement (d) and sectioned vertically in 
half to allow removal of implant. Representative image of implants following placement and removal: (e) Straumann Ti-CP4 
cylindrical (BL); (f) Straumann Ti-CP4 tapered (BLT-S); (g) Straumann Ti-15Zr tapered (BLT-R) and (h) BioHorizon Ti-6Al-4 V 
tapered (BH). In the drill only area, bone was prepared with implant drills without implant placement. Scale bars are 1 cm. 
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using Zeiss Sigma-300 scanning electron microscope with 
accelerating voltage of 5 kV. 

2.6. Three-dimensional micro-computed tomography 
(μ-CT) 

A Zeiss Versa 520 X-Ray scanner (Zeiss, Germany) was used 
to detect metal particles in bone samples (as shown in Fig. 1, 
dimensions of ~1.5 × 1.5 × 1.5 cm) following placement and 
removal of implants. The following settings were used: 
140 kV voltage, 71 µA current (with high efficiency filter), 
12.3 µm voxel size, 0.4✕ optical magnification, 5 s exposure 
time, 2.5 MHz camera readout, 1 recon binning and 1601 
projections. μ-CT projections were reconstructed within the 
Zeiss Scout-and-Scan Control System. Reconstructed 3-D vo-
lumes were visualised and analyzed using Fiji ImageJ soft-
ware (version 1.52p, NIH, USA). No further image adjustment, 
enhancement or filtering was applied. 

2.7. Cell culture experiments 

2.7.1. Cellular uptake of implant particles 
To demonstrate cellular uptake of implant particles, human 
gingival fibroblasts (HGFs) (ATCC, Middlesex, UK) and murine 
RAW 264.7 macrophage cell line (Sigma-Aldrich, Dorset, UK) 
were cultured in presence of fluorescently labeled Ti-CP4, Ti- 
6Al-4V and Ti-15Zr particles. Particles were functionalised 
and fluorescently labeled as described previously [21]: parti-
cles were dispersed in absolute ethanol (5 mg mL−1) followed 
by careful addition of 28% ammonium hydroxide (5% v/v). (3- 
aminopropyl)triethoxysilane was then added into the solu-
tion (1:5) and left on an orbital shaker overnight at 200 rpm to 
complete the reactions. Amine functionalised particles were 
washed with absolute ethanol before labelling with fluor-
escein 5(6)-isothiocyanate (FITC). 1 mg mL−1 FITC (dissolved 
in absolute ethanol) was mixed with amine functionalised 
particles and left on an orbital shaker for 16 h at 200 rpm. The 
weight ratio between particle and FITC was kept at 1:1. FITC 
labeled particles were washed in absolute ethanol and deio-
nized water followed by sterilisation in 70% (v/v) ethanol. 

HGFs and RAW 264.7 cells were seeded in tissue culture μ- 
dishes (35 mm diameter, ibidi®, Thistle Scientific Ltd, 
Glasgow, UK) at a density of 300 cells cm−2. Cells were 

allowed to grow in Dulbecco's modified Eagle's medium 
(DMEM) supplemented with 100 unit mL−1 penicillin, 
100 µg mL−1 streptomycin and 10% (v/v) foetal bovine serum 
(FBS) for 24 h in an humidified atmosphere containing 5% 
CO2. Cells were then cultured overnight (16 h) in the presence 
of 250 µg mL−1 FITC labeled particles before fixation in 4% 
paraformaldehyde in PBS. 

2.7.2. F-actin staining 
F-actin was labeled using CytoPainter F-actin staining kit 
(Abcam, Cambridge, UK) following the manufacture’s in-
struction. Briefly, fixed cells were washed with PBS and in-
cubated with Alexa Fluor® 568-conjugated phalloidin (1:1000 
dilution in labelling buffer) for 1 h at room temperature. All 
samples were counter-stained with DAPI (0.1 μg mL−1 in PBS). 

2.7.3. Confocal microscopy 
Stained samples were imaged under confocal microscopy 
(Leica SP5 MP laser scanning confocal microscope and soft-
ware, Leica Microsystems, Wetzlar, Germany). Fiji ImageJ 
software (version 1.52p, NIH, USA) was used for the proces-
sing and generation of orthogonal view interpolations. No 
further image adjustment, enhancement or filtering was ap-
plied. 

2.8. Statistical analyses 

Results were presented as mean ±  standard deviation (S.D.). 
Statistical analyses including non-parametric t-test (2 groups) 
and Kruskal-Wallis test with Dunn's post test (3 or more 
groups) using Prism 8 (GraphPad Software, US). Results were 
deemed significant if the probability of occurrence by random 
chance alone was less than 5% (i.e. p  <  0.05). 

3. Results 

3.1. Metallic element release following placement of 
implants in pig mandible ex vivo model 

Ti, V and Zr were not detected in bone and drilled bone 
controls. Ti was detected in bone samples following the pla-
cement of all types of implants, while V and Zr were detected 
only in the bone that had implants made of alloys containing 

Fig. 2 – Elemental concentrations of Ti (a), Zr (b) and V (c) in bone sections as a result of implant placement and removal, 
measured by ICP-OES of digested bone.Results presented as mean ±  standard deviation (n = 5). Non-parametric t-test and 
Kruskal-Wallis test with Dunn's post test were used for comparisons between implant body design and materials 
respectively. p values are labeled on each graph. BL, BLT-S, BLT-R and BH are defined in Table 1. 
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those elements (Fig. 2). The amount of metallic species de-
tected by ICP was dependent on implant diameter, implant 
body design as well as the material composition. For Ti-CP4 
implants, larger implant diameter resulted in an increase in 
Ti detected in the bone by ICP (4 mm BL and BLT-S implants 
released 8.6  ±  0.2 and 5.6  ±  0.2 ppm Ti respectively in com-
parison to 6.0  ±  0.2 and 1.5  ±  0.1 ppm released by their 3 mm 
counter parts). Cylindrical body design (BL) released sig-
nificantly more Ti (8.6  ±  0.2 and 6.0  ±  0.2 ppm respectively 
for 4 mm and 3 mm implants) in comparison to their tapered 
counterparts (BLT-S, 5.6  ±  0.2 and 1.5  ±  0.1 ppm respectively 
for 4 mm and 3 mm implants) with the same material and 
diameter. 

For BLT-R (Ti-15Zr) implants, Ti release was not sig-
nificantly affected by implant diameter (2.9  ±  0.2 and 
3.5  ±  0.2 ppm for 3 and 4 mm diameter implants respec-
tively). Zr release appeared to increase (0.05  < p  <  0.1) with 
implant diameter, where 4 mm diameter implants resulted in 
0.7  ±  0.1 ppm of Zr compared to 0.5  ±  0.1 ppm from 3 mm 
diameter implants. There was no significant difference in Ti 
ion release between BLT-S (Ti-CP4) and BLT-R (Ti-15Zr) im-
plants, both of which have apically tapered body design. BH 
(Ti-6Al-4V) implants released significantly more Ti than the 
Ti-CP4 and Ti-15Zr implants, but Ti and V release were not 
significantly affected by implant diameter (10.8  ±  0.9 and 
11.7  ±  0.3 ppm Ti and 1.2  ±  0.2 and 1.6  ±  0.3 for 3 and 4 mm 
diameter implants respectively). 

A standard curve of Ti release against known quantity of 
implant particles were generated (Supplementary Fig. S2). 
The Ti contents (in ppm) obtained in Fig. 2 were input into 
the standard curve for the approximation of the quantities of 
materials lost (in µg) following implantation (Table 1). The 
observations were reminiscent of those from ICP results, 
where Ti-6Al-4V implants had most material loss following 
the mock ex-vivo placement and removal procedures. The 
estimated weight of material loss is listed in Table 1. 

3.2. SEM and μ-CT imaging 

SEM images were obtained in order to examine implant sur-
face topography following placement and removal (Fig. 3). 
The apex, center and neck regions of each implant were im-
aged. Irregular grooves and metal fragments were observed 
on all implant surfaces, including those of as received im-
plants (without implant placement and removal). Noticeable 
cracks were observed on alloyed implants including both BH 
and BLT-R implants following implant placement. Biological 
materials such as bone fragments were present on implants 
that had been inserted. μ-CT was used to visualise particles 
embedded in bone samples following placement and removal 
(Fig. 4). The maximum resolution of the scanner was 12 µm 
per voxel, hence only larger particles could be visualised. 
Particles were observed in bone samples placed with BH3, 
BH4, BL3 and BLT-S3 implants, however few particles were 
observed in each volume of interest (field of view). 

3.3. Internalization of implant particles by cell 

To demonstrate that particles released from dental implants 
can be internalized by peri-implant cell populations, human 

gingival fibroblasts (HGFs) and RAW 264.7 murine macro-
phages were cultured in the presence of particles of Ti-CP4, 
Ti-6Al-4V or Ti-15Zr at 250 μg mL−1 for 16 h. The diameters of 
Ti-CP4, Ti-6Al-4V and Ti-15Zr were 34.1  ±  3.8 (D50 = 32.2), 
33.3  ±  4.4 (D50 = 30.3) and 97.8  ±  8.2 (D50 = 85.2) µm respec-
tively. DLS (dynamic light scattering) analysis showed nano- 
sized particles were also present, diameters of Ti-CP4, Ti-6Al- 
4V and Ti-15Zr were 95.4  ±  9.1 nm (modal number 79.3 nm), 
77.74  ±  10.4 nm (modal number 70.1 nm) and 
135.1  ±  11.3 nm (modal number 86.8 nm) respectively. 
Orthogonal view created using z-stacks obtained from con-
focal microscopy revealed that all 3 types of particles can be 
seen internalized by both HGFs and RAW 264.7 cells and were 
located mostly in cytoplasm (Fig. 5). 

4. Discussion 

The aim was to investigate the impact of dental implant 
composition, geometry and dimension on the release of 
particulates and metallic elements following implant place-
ment. Dental implants used in this study include: BH (Ti-6Al- 
4V, tapered), BL (Ti-CP4, cylindrical), BLT-S (Ti-CP4, tapered) 
and BLT-R (Ti-15Zr, tapered). Both 3 and 4 mm variation of 
each implant were also included. Although debris can be 
generated from bone-cutting instruments during implant bed 
preparation, this can be mitigated by practices such as suf-
ficient irrigation and suction as well as frequent use and re-
placement of harder single-use drills [22]. Hence the current 
study focused on the wear during implant placement. During 
implant placement, an initial interlocking was formed be-
tween the implant walls/threads and the peri-implant bone, 
in which microfractures and compression can occur at the 
bone side and at the same time, implant surface experience a 
combination of torsional and frictional forces [22]. The re-
lease of metallic species into the bone is believed to originate 
from two sources: firstly, the physical/mechanical damage to 
the implant surface (e.g. oxidation layer) during insertion, 
causing loss of fine particulates; and secondly, the dissolu-
tion of the subjacent material into the peri-implant tissues; 
resulting in detection of the both implant particles and ions 
in the bone [22,23]. As shown in Fig. 2, out of the three im-
plant materials (Ti-CP4, Ti-6Al-4V and Ti-15Zr), Ti-6AL-4 V 
implants released the highest amount (p  <  0.01) of Ti fol-
lowing placement regardless of implant geometry and di-
mension. Poor tribological performance with low surface 
hardness has been reported for titanium alloys without sur-
face modifications [24,25]. Grade 5 Ti-6AL-4V alloy is a dual 
alpha/beta phase alloy, in which vanadium is added to sta-
bilise the larger beta phase, thus improving the mechanical 
properties, however, it has been shown that Ti-6AL-4V alloy 
inherently is more susceptible to corrosion [26,27]. When 
exposed to oxidative environment, Ti alloys, particularly Ti- 
6AL-4V, rapidly form an oxide layer on the surface due to 
their high reactivity [28]. The disruption and/or removal of 
this protective oxidative layer, typically during the mechan-
ical contact between titanium alloys (or a titanium alloy and 
another material such as bone), may lead to increased wear 
damage in comparison to Ti-CP4 [28,29]. 
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For metallic implants, increased wear rates have pre-
viously been shown in “wet” conditions, e.g. simulated body 
fluid environments, in comparison to atmospheric condi-
tions, owing to the corrosive nature of the body fluid en-
vironments [29,30]. Sivakumar et al. compared the fretting 
corrosion behavior between Ti-6Al-4V alloy and Ti-Cp (un-
known grade) in Ringer’s solution [29]. Although both Ti-6Al- 
4V alloy and Ti-Cp had similar wear morphology and change 
in free corrosion potential following a “ball-on-flat” wear 
configuration, Ti-6Al-4V demonstrated an increase in corro-
sion susceptibility, decrease in tendency for repassivation 
(growth of passive oxide layer in the fretted zone) and higher 
amount of wear volume in comparison to Ti-Cp. While fret-
ting does not accurately represent implant placement or in 
vivo settings, the body of evidence from literature, in com-
bination with the results presented here (Fig. 2 and Table 2), 

can however be used to infer that the significantly increased 
Ti release from BH (Ti-6Al-4V) implants, in comparison to all 
other tested samples, was at least due in part to its corrosion 
susceptibility. 

Roxolid titanium zirconium alloy (Ti-15Zr) is a proprietary 
alloy, developed by Straumann, containing up to 15% Zr. It 
has been reported that dental implants manufactured using 
Ti-15Zr alloy have elastic characteristics (Young’s modulus 
between 102 and 104.7 GPa and Poisson coefficient of 0.33) 
very similar to grade 5 Ti-6Al-4V alloy [31]. The tensile 
strength of Ti-15Zr alloy (953 MPa) is higher than both Ti-6Al- 
4V (680 MPa) and Ti-Cp (310 MPa, unspecified grade) [31]. Ti-
tanium zirconium alloys have a binary alpha structure due to 
the near identical transformation behavior and very similar 
phase transition temperature between zirconium and tita-
nium [32]. Due to this improved mechanical properties, Ti- 

Fig. 3 – Representative SEM images of implants following placement and removal. The apex, center and neck regions of each 
implant were imaged. Fresh Ti-Cp4 and Ti-6Al-4V implants (controls) were also imaged (shown in Supplementary Fig. S1). 
Irregular grooves and metal fragments can be observed on all implant surfaces. Arrows indicate peelings and cracks can also 
be observed on alloy implants including both BH and BLT-R implants. Biological materials such as bone fragments are 
visible. Scale bars for 125 and 1500 ✕ magnification are 500 and 50 µm respectively.   
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15Zr was proposed for the manufacturing of narrow implants 
while reducing the risk of fracture. The fundamental ad-
vantages of a narrower implant include the possibility of 
maintaining a higher peri-implant bone volume and there-
fore the potential of long-term stability of peri-implant tis-
sues [31]. Studies have also reported improved corrosion 
resistance of Ti-15Zr over Ti-6Al-4V alloy [32,33]. These phe-
nomena could partially explain that the least amount of 

metallic wear and ionic products were released from BLT-R 
(Ti-15Zr) implants in the current study. 

As shown by the SEM images in Fig. 3, peelings and cracks 
can be observed on both BH (Ti-6AL-4V) and BLT-R (Ti-15Zr) 
alloyed implants following implant placement. As mentioned 
above, this could partially depend on the formation of oxide 
layer. This surface structural destruction could also be the 
result of surface modification. Although surface 

Fig. 4 – Representative sectional representation of micro-computed tomography images of bone samples following implant 
placement and removal. As indicated by yellow circles, pixel(s) attenuating at a much higher value (white or near white) 
suggest a possible metallic composition in contrast to bone tissue. Scale bars for bone and drill only controls are 5 mm. Scale 
bars are 2 mm.   

Fig. 5 – Representative confocal images of particles internalized by peri-implant cell populations. Yellow: Actin 
microfilaments, blue: cell nuclei and green: FITC functionalised particles. Orthogonal views were generated in Fiji ImageJ 
software (version 1.52p, NIH, USA). The diameters of Ti-CP4, Ti-6Al-4 V and Ti-15Zr, as measured by Malvern Mastersizer, 
were 34.1  ±  3.8 (D50 = 32.2), 33.3  ±  4.4 (D50 = 30.3) and 97.8  ±  8.2 (D50 = 85.2) µm respectively. DLS analysis showed nano- 
sized particles were also present, diameters of Ti-CP4, Ti-6Al-4 V and Ti-15Zr were 95.4  ±  9.1 nm (D50 = 79.3 nm), 
77.74  ±  10.4 nm (D50 = 70.1 nm) and 135.1  ±  11.3 nm (modal number 86.8 nm) respectively. Scale bars are 100 µm.   
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modifications such as surface texturing and coating are be-
coming increasingly used by manufacturers in a bid to im-
prove mechanical, tribological and biological properties, wear 
is still inevitable and further improvements to surface mod-
ification techniques are required [34]. We cannot comment 
on the effect of surface treatment on wear and ionic product 
release observed here without knowing the exact surface 
treatment applied to each tested implant samples here. It has 
been reported that surfaces with subtractive modification 
such as SLA (sand blasting and acid etching) suffer less wear 
and particle loosening [35,36]. In addition, there are other 
causes of wear following implant placement, such as abut-
ment and implant body mechanical property mismatch [37], 
micro-gaps and movements [38], fluoride corrosion [39], bio-
film formation [40], and interventions such as scaling and 
implantoplasty during maintenance[10,41], which were not 
investigated in the current study. 

As shown in Fig. 2 and Table 1, regardless of implant 
material, there was a positive correlation between implant 
diameter and wear products release. Implants with cylind-
rical body design also appeared generated more material loss 
and metallic element release in comparison to their coun-
terparts with apically tapered body design. One possible 
reason was due to the increase in implant-bone contact area 
in larger diameter and cylindrical implants. Authors did not 
tap the bone as per protocol for cylindrical implants in order 
to keep the same surgical procedure for all test implant 
samples, therefore that this could also lead to more shear 
force experienced by cylindrical implants than they are de-
signed for. Nevertheless, similar observation has been pre-
viously reported and, in Orthopaedics, increased wear has 
been reported in metal-on-metal hip prostheses with larger 
dimensions [42,43]. It can also be observed from the SEM 
images in Fig. 3 that the damage varied along the implant 
with the tops at apex regions and some neck regions appear 
to be more damaged in comparison to those located at the 
implant body. This could be because apex is the region which 
first cut through the host bone. Previous studies also reported 
concentrations of metallic elements in the gingival cuff, 
surrounding the implant neck, as well as increased damage 
on some of the valleys of threads on implant body, owing to 
increased shear force and contact area at implant-bone in-
terface [44,45]. 

In this study, the presence of implant particles in peri- 
implant bone tissues were detected using μCT imaging 
(Fig. 4). Here, due to the limited resolution of the Zeiss Versa 
520 X-Ray scanner (12.3 µm per voxel) only particles with 
larger dimensions could be visualised. Previous studies have 
reported both nano- and micro- sized particles can be re-
leased from titanium based implants [5,10,46]. We did not 
use irrigation at the time of mock implant placement, so 
particle migration was not due to irrigation. Metallic particles 
and ions have been reported in intraoperative fluids, an evi-
dence of release at the time of implant placement [47]. Me-
tallic wear particle-induced aseptic implant loosening is a 
major concern after Orthopaedic surgery [48,49]. Different 
cell types, including monocytes, osteoblasts, and osteoclasts, 
are involved in this process. It has been reported that aseptic 
osteolysis can be induced by 0.2–3 mg of loose titanium par-
ticles (Ti-CP, unspecified grade) with extensive and non- 

uniform osteoclast activity with increased bone resorption 
after 7 days [35,50,51]. As shown in Table 1, all tested implant 
systems resulted in material loss within or close to this 
range, hence further investigation with regards to the biolo-
gical effects are needed. Metallic particles do not only present 
in peri-implant tissue but can also be internalized by cells. 
Cells cannot spread on small particles, but instead, the in-
creased cell-titanium interaction tends to lead to membrane 
invagination around particles (nanoparticles in particular), 
resulting in their internalization and in turn interact with 
internal organelles and structures and subsequently cause 
functional modifications and intracellular lesions [16]. Here, 
all three types of particles were internalized by (Fig. 5) human 
gingival fibroblasts and RAW 264.7 macrophages, which were 
used as examples of typical cell populations that present in 
the dental peri-implant tissues. Previous study has demon-
strated that particles from titanium and titanium based al-
loys can form bio-complexes (mixture of proteins and ions 
such as calcium and phosphorous) and enter cells via a 
“Trojan Horse”-like model [52]. Nano-sized particles released 
from metal implants are thought to enter cells via passive 
diffusion and in turn potentially result in biological responses 
at molecular level such as DNA methylation, histone post- 
translational modifications and noncoding RNAs in mam-
malian cells [10,46,53]. The exact mechanism and adverse 
effects that can be caused by the release of metallic particles 
and/or ionic products from a dental implant remain to be 
concluded: inflammatory tissue response, cytotoxicity, in-
creased reactive oxygen species production, osteolysis and 
carcinogenesis are a few examples that have been recorded  
[17,46,54]. For Ti-6Al-4 V alloys in particular, vanadium can 
elicit local as well as systemic mitochondrial- and cyto- 
toxicity while aluminum has been reported to be associated 
with osteomalacia pulmonary granulomatosis and neuro-
toxicity [55,56]. While many in vitro, animal and clinical 
studies that focused on the biological effects of zirconium 
mainly showed a lack of adverse consequences, there are 
studies that reported changes in microRNAs (miRNAs) in re-
sponse to exogenous elements including zirconium, sug-
gesting possible epigenetic alterations (mitotically and 
meiotically heritable changes in gene expression that do not 
involve DNA sequence mutation) [57,58]. Some Zr-affected 
miRNAs such as miR-494 is involved in the regulation of tu-
morigenesis [59]. The exact biological/health effects of these 
miRNAs changes remain unclear. Without further systematic 
investigation, one cannot accurately recommend one mate-
rial as the ideal implant material over the others, however, 
certain elements such as vanadium should be used with 
caution due to their well-documented adverse effects. 

5. Conclusions 

Metallic dental implants released particles and ions as a re-
sult of the procedure for insertion in an ex vivo pig mandible 
model. Implant composition and shape affected the amount 
of metal detected in the bone. Implants with wider body 
diameters and a cylindrical body design released more com-
pared to their narrower and tapered body design counter-
parts. Ti-6Al-4V alloy released significantly more metallic 
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species in comparison to both Ti-CP4 and Ti-15Zr alloy 
counterparts with comparable design and dimensions. We 
have also demonstrated the internalization of metal particles 
by peri-implant cell populations including macrophages and 
human gingival fibroblasts. Future systematic investigation 
on the health effects from each available implant material 
are required. 
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