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Abstract: It has been shown experimentally that boundary friction is proportional to load (commonly
known as Amontons’ law) for more than 500 years, and the fact that it holds true over many scales
(from microns to kilometres, and from nano-Newtons to Mega-Newtons) and for materials which
deform both elastically and plastically has been the subject of much research, in order to more fully
understand its wide applicability (and also to find any deviations from the law). Attempts to explain
and understand Amontons’ law recognise that real surfaces are rough; as such, many researchers
have studied the contact of rough surfaces under both elastic and plastic deformation conditions. As
the focus on energy efficiency is ever increasing, machines are now being used with lower-viscosity
lubricants, operating at higher loads and temperatures, such that the oil films separating the moving
surfaces are becoming thinner, and there is a greater chance of mixed/boundary lubrication occur-
ring. Because mixed/boundary lubrication occurs when the two moving rough surfaces come into
contact, it is thought timely to review this topic and the current state of the theoretical and experi-
mental understanding of rough-surface contact for the prediction of friction in the mixed/boundary
lubrication regime.

Keywords: tribology; friction; wear; surface roughness; lubrication

1. Introduction

Leonardo da Vinci’s work on tribology was discussed by Dowson [1], and more re-
cently, Hutchings [2] and Betancourt-Parra [3] have reviewed the many friction experiments
carried out by him between 1493 and 1515. In addition, Sawyer [4] reported on da Vinci’s
work on wear. According to Hutchings [2], da Vinci first stated the “laws” of sliding friction
in 1493 (based on his experiments), and these were: (1) the force of friction between two
sliding surfaces is proportional to the load pressing the surfaces together, and (2) the force
of friction is independent of the apparent area of contact between the two surfaces. The
first law suggests that the force of friction, F, can be written as F = µW, where W is the
applied load, and µ is a constant of proportionality which is known as the friction coeffi-
cient. Leonardo da Vinci found that for unlubricated sliding bodies, µ was approximately
1/4. Leonardo da Vinci’s work was written up in his personal notebooks, but it is not
clear how widely known his work was (at the time) in the broader scientific community.
Amontons [5] was the first to publish the “laws” of friction in a scientific journal, in 1699,
and these became known to a much wider audience. Amontons [5] found a value for µ
of 1/3. Following on from Amontons, Coulomb [6] also worked extensively on friction in
machines. A useful recent historical discussion of the work of Amontons and Coulomb can
be found in reference [7].

There has been much discussion as to the origin of Amontons’ empirical law and
why it applies so widely over many length scales, and to systems in which there is plastic
deformation, and also in systems where the deformation is elastic [8–12].

It is, of course, important to realize that real surfaces are rough. Asperities are ran-
domly distributed (up and down) relative to the “centre-line average” (CLA) position.
When two such surfaces touch, it will be the highest asperities on each surface that will be
in contact, and so the actual area of contact is very much less than the apparent (geometric)
area, and for a given load, the contact pressure at the highest asperities will be the largest.
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Initial attempts to explain Amontons’ first law [13] suggested that the force needed to
“push” the surface over an asperity with angle θ would be equal to the normal load (W)
multiplied by tan (θ), so that if F is the friction force, then F/W = µ = tan(θ). However, it
was later realized that the energy expended on dragging an asperity to the top of another
is recovered when it falls down the other side [14], so no energy is lost, and the two
surfaces should continue to move (once they are set in motion) without the need for any
other driving force. Therefore, some other “energy dissipating mechanism” is needed to
explain friction.

Bowden and Tabor [15], in their 1930s work on metal–metal contact, assumed that
the contacting asperities would deform and flow plastically such that the real contact
area would increase until the contact pressure drops below the material yield stress. In
this model, the highest asperities are “wiped away”, the real contact area is proportional
to load, and the contact pressure is constant and equal to the material yield stress. This
type of model assumes that material hardness is proportional to the material yield stress.
The friction force was calculated by multiplying the real contact area by the shear stress,
and so Amontons’ law of friction was explained by the fact that the real contact area was
proportional to the applied load. Although this explanation seems reasonable for plastic
deformation, many machines are known to operate successfully for thousands of hours,
and it is difficult to see how these lifetimes can be maintained if the rough surface asperity
contact is always plastic.

At first sight, if rough surfaces deform elastically, this seems to disagree with Amon-
tons’ first law of friction, as Hertz [16] has shown that for a single elastic contact of radius R
contacting an infinitely hard flat surface, the area of contact would be proportional to W2/3,
where W is the applied load. However, in practice, a rough surface has a distribution of
asperity heights, and a more detailed analysis by Greenwood and Williamson [17] of rough,
non-adhering surfaces as a collection of asperities of varying height, with spherical tips,
deforming elastically, found a linear relationship between the real contact area and load.
This initial analysis by Greenwood and Williamson has since been refined and extended
by many other researchers [18–27]. The analysis of Greenwood and Williamson [17] was
substantially aided by earlier useful insights from Archard and others [28–33]. In particular,
in reference [30], Archard showed that if there is one level of “protuberances”, of radius
R2, superimposed on a spherical tip of radius R1 (with R2 << R1), then elastic deformation
leads to the real area of contact being proportional to W8/9 (and that if a further level of
“protuberances” are added, of radius R3, with R3 << R2, then the real contact area is propor-
tional to W26/27). Archard’s work [30] showed that the real area of contact can be almost
proportional to the load even when there is elastic contact only, for multi-asperity contact.
It should also be mentioned that Archard’s concept of protuberances on protuberances
on protuberances clearly has a link to fractals, where multiple length scales are important,
but at the time of Archard’s work, fractals were not yet known about, as they were only
introduced in the 1970s [34]. The consensus of these various studies is that, in the elastic
contact case, the real contact area is approximately proportional to the applied load, and
therefore Amontons’ first law of friction follows. Persson [8] has reported that the real
contact area is also approximately proportional to the applied load even when there is
adhesive interaction between surfaces.

The current picture then seems to be as follows: the rough surfaces initially deform
plastically on contact, and the highest asperities are “wiped away”. This then leads to
a “run-in” surface, which has a different asperity height distribution compared to the
original surfaces, which leads to lower contact pressures, and which can sustain elastic
deformation for many cycles (which explains the longevity of many machine elements).
A useful reference on “running-in” may be found in [35]. For both plastic and elastic
deformation, then, the real area of contact is approximately proportional to the load, and
so Amontons’ first law of friction is obeyed (although the coefficient of friction could be
different in the plastic and elastic stages).
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Despite the simplistic picture above, in a useful review of Amontons’ law, Gao et al. [9]
commented that because of the various assumptions made in the Bowden Tabor (BT) [15]
and Greenwood Williamson (GW) [17] theories, they doubted that both theories could
account for all of the situations where Amontons’ law has been found to hold, and funda-
mental insights into why the law holds, which are less model specific, are still needed, in
the opinions of those authors. In that paper, Gao et al. [9] also found, using surface force
apparatus, atomic force microscopy, and molecular dynamics simulations, that there is
not a linear relationship between the friction force and the normal load at the local level
(i.e., at the scale of individual asperities), but that there is a linear relationship between
these quantities for their time- and space-averaged values (i.e., when averaged over many
asperities). Gao et al. [9] also stated that although mechanical energy is converted to heat at
a steady rate, when averaged over the whole macroscopic junction, locally, at any instant,
the properties are far from their mean steady-state values. Thus, even in the steady state,
the local tribological parameters fluctuate widely, are largely uncorrelated, and may not
even average out to the system average.

This review is organised as follows. In the next section, an overview will be given of
how the friction coefficient of lubricated contact is determined for a rough surface, followed
by a section considering the statistics of rough surfaces, and then a section on a more
detailed discussion of rough-surface contact models. The importance of lubricant additives
is discussed, and then there is a summary of recent experimental data on rough-surface
contact friction, followed by a section on how the models can be used by engineers and
tribologists to estimate mixed/boundary friction. The review will finish with discussion
and conclusions sections.

It should be mentioned that this topic has been the subject of previous reviews, for ex-
ample by McCool [36] in 1986, Bhushan [37] in 1998, Liu et al. [38] in 1999, Adams et al. [39]
in 2000, and more recently by Vakis et al. [40] in 2018, although the latter is a more general
review of simulation in tribology. This review differs from earlier ones in that it reports
more recent work on rough-surface contact modelling (up to 2021), includes recent experi-
mental data on rough-surface contact friction, and is more focussed on how engineers and
tribologists can apply such models in order to calculate mixed/boundary friction forces
and power losses.

2. The Friction and Load Carrying Capacity of Lubricated Rough-Surface Contact

Assume that a rough surface is separated by a fluid film. If the centre-line averages
of the rough surfaces are separated by a film thickness, h, and if the combined root mean
square (RMS) roughness of the surfaces is σ, then a useful dimensionless tribological
parameter is the lambda ratio, λ, which is defined to be h/σ. In tribology textbooks (see
for example [41–43], it is generally considered that the surfaces are completely separated
if λ > 3 (hydrodynamic lubrication), whereas if λ < 1, the contact is in the boundary
lubrication regime. If 1 < λ < 3, then the contact is often assumed to be in the mixed
lubrication regime.

If the total load carried by the contact is WTOTAL, this can be split between the load
carried by the asperities Wasp and the load carried by the fluid film Wfluid as:

WTOTAL = Wasp + W f luid (1)

The friction force, FTOTAL, of the contact can be written as

FTOTAL = µaspWasp + µ f luidW f luid (2)

where µasp is the friction coefficient of the asperities (i.e., when λ = 0) and µfluid is the
friction coefficient of the fluid (i.e., when λ > 3). The friction coefficient, f, of the contact can
then be written as f = FTOTAL/WTOTAL, which is equal to

f =
FTOTAL
WTOTAL

= µaspX + µ f luid(1− X) (3)
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where X = Wasp/WTOTAL, which can be regarded as the proportion of mixed/boundary
lubrication. Clearly, it is expected that X = 1 when λ = 0 and X is approximately zero when
λ > 3. It is of great interest, for the modelling of mixed/boundary friction, to know how X
varies with λ, and it is also of experimental interest to measure this variation.

Equation (3), above, has previously been reported by Spikes and Olver [44], and in
that work they proposed that X was simply equal to (1 + λ)−2.

3. The Statistics of Rough Surfaces

The fact that real surfaces are rough has been known for many years. However, it
is only since the 1960s that digital methods have been used to quantitatively measure
the roughness and other statistical properties of surfaces. Useful textbooks on surface
roughness include those by Halling [43], Thomas [45] and Whitehouse [46].

Nayak published three impactful papers [47–49] on the statistics of surface roughness
which were described by Greenwood [50] as being “widely recognized as the foundations
of the theoretical study of surface roughness”. Greenwood himself later published further
papers on surface roughness (including “A Unified Theory of Surface Roughness” [51], and
“Problems with Surface Roughness”, [52], and also made useful comments [50] on Nayak’s
third paper [49]).

Nayak [47] focussed on random, isotropic, Gaussian surfaces, and treated the height of
a rough surface as a two-dimensional random variable. Nayak’s work built on the previous
work of Longuet-Higgins [53,54], who studied random ocean surfaces. Nayak [47] found
that there were three important parameters that fully characterized a random, isotropic,
Gaussian surface, and these were mo, m2, and m4, where mo is related to the RMS roughness
of the surface (σ), m2 is related to the RMS surface gradient, and m4 is related to the RMS
radius of the curvature of the rough peaks.

Nayak’s second paper [48] detailed the difference between profile and surface prop-
erties, and gave useful advice on how to reliably extract surface properties from surface
profile measurements.

Nayak’s third paper [49] considered how the number of contacts varies as the surfaces
approach each other. Simple approaches to this problem assume that a contact is formed
whenever a summit meets the opposing surface, and that the contact then grows indepen-
dently of others. What is thought to happen, in practice, as rough surfaces approach is that
contacts can grow and also merge with other nearby contacts, such that although the real
contact area increases, the actual number of contacts can decrease (when the merging of
neighbouring contacts occurs). In the third paper, Nayak looks at the number of closed
contours on a rough surface at a given height. If the number of contact patches at a given
height is significantly less than the number of summits above that height, then clearly
some of the initial contacts have merged into composite contacts, such the assumption that
contacts behave independently is likely to be wrong. Greenwood [50] later commented that
any asperity contact model applied to the realistic range of separations (z < 3σ), where z is
the separation of the surfaces and σ is the RMS surface roughness, must take into account
the merging of asperities, the consequent reduction in the number of contacts, and the
corresponding distortion of the contact shapes.

A useful summary of the statistics of rough surfaces was given by Greenwood in
2013 [55], in which he commented that measurements of surface roughness show that
a nominally flat surface will always have a distribution of height variations, possibly
superimposed on a longer wavelength “form” or regular waviness (often related to the
way in which the surface was manufactured). Clearly, the height distribution could take
many mathematical forms, but often a Gaussian distribution is followed:

ϕ(h) =
1

σ
√

2π
· exp

(
− h2

σ2

)
(4)

where h is the height above (or below) the nominal zero level, σ is the RMS surface
roughness, and ϕ(h) is the probability density function. Greenwood also notes that although
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the surface roughness as a whole may not follow a Gaussian distribution function, the
heights of the summits on a surface usually do (and it is, of course, the summits on a
surface where the first contacts form). However, it is possible that the standard deviation
of the Gaussian distribution of the summit heights could be different that of the surface as
a whole.

In addition to the surface roughness summit heights, the asperity radius of the curva-
ture is also of major importance. Numerous researchers have studied typical asperity radii
of curvature and how these are statistically distributed [43,56–58], and Greenwood [52]
commented that the distribution of the asperity radius of the curvature follows a Rayleigh
distribution, such that P(r) = r· exp

(
− r2

2

)
.

One of the issues with the measurement of surface roughness is that the surface
properties depend on the size of the measuring probe (or stylus). As mentioned previously,
Nayak found there were three key parameters, mo (the RMS roughness), m2 (the RMS
surface slope) and m4 (the RMS of the radius of the curvature of the asperities). As the size
of the measuring stylus decreases, the curvature of the asperities, and their slope, increase
(i.e., the asperity radius of the curvature decreases) although the RMS roughness stays
relatively constant [57].

An alternative approach to the study of surface roughness is to focus on autocorrelation
functions and power spectral densities. The autocorrelation function is defined by

C(β) = lim
L→∞

L/2∫
−L/2

z(x)·z(x + β)·dx (5)

where z(x) is the height of the surface at point x and β is the shift in position at which the
autocorrelation function is to be evaluated. This kind of analysis can also be extended to
surfaces, where the height would be z(x,y), and Equation (5) would be extended to also
include an integration in the y direction.

It is often assumed that the autocorrelation function takes the form below:

C(β) = σ2· exp
(
−|β|

βo

)
(6)

where, in the above equation, βo is a constant. If β = 0, then C(β) = σ2 as required.
The Power Spectral Density (PSD), as defined in Halling’s textbook [43], is

G(k) =
2
π

∞∫
0

C(β)· cos(kβ)·dβ (7)

Using the autocorrelation function above (Equation (6)), it is found that

G(k) =
2σ2

π

βo

β2
o + k2 (8)

For large values of k

G(k) ∼ σ2βo

πk2 (9)

In an important contribution published in Nature in 1955, Sayles [58] found that G(k)
was proportional to 1/k2 for a wide range of surfaces spanning length scales differing
by eight orders of magnitude. The factor βo that appears in the equations above can be
regarded as the length scale of the measurement stylus, and so the values of mo, m2 and
m4 will vary depending on the value of βo. It could be argued that in calculating the
moments of the spectral density, rather than integrating between 0 and ∞, one should
instead integrate between 2π/L1 and 2π/L2, where L1 is the size of the sample (typically a
few mm) and L2 is the size of the stylus (typically a few µm). It should be pointed out that
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the higher moments of the spectral density function do not exist for the spectral density
function of Equation (9) (if the integral limits are 0 and ∞). The relationships between mo,
m2, m4 and the spectral density function are

mo =

∞∫
0

G(k)·dk (10)

m2 =

∞∫
0

k2G(k)·dk (11)

m4 =

∞∫
0

k4G(k)·dk (12)

Additional useful details on the measurement of rough surface properties can be
found in references [59–61]. It should be mentioned that research in this area is ongoing,
and recently additional measurements were reported on surface roughness spanning eight
orders of magnitude, with the lowest scale being a few Ångströms [62].

The main summary of this section is that a lot of information is known, or can be
measured, on the properties of rough surfaces. Much of the published work has assumed
that rough surfaces are generally isotropic, random, and described by a Gaussian probability
distribution, although these assumptions can be relaxed if needed.

4. Rough-Surface contact Models
4.1. Bowden and Tabor’s Model

Bowden and Tabor predominantly worked on metal–metal contacts [15]. The adhesion
concept of friction for dry metal surfaces, put forward in 1734 by Desaguliers [63], was
used successfully by Bowden and Tabor for metal–metal interfaces. However, at first sight,
the idea that adhesion is involved in the friction process seemed to contradict experiments
which found that friction was independent of the contact area. This contradiction disap-
peared when it was realized that it was the real contact area that was important in friction,
not the apparent (geometric) area. Bowden and Tabor’s experiments [15] showed that the
friction between two metal surfaces was strongly dependent on the real contact area.

Bowden and Tabor [15] also distinguished between the abrasive wear of surfaces
(which involves a harder surface sliding against a softer one) and adhesive wear, in which
individual asperities adhere to each other, and will only plastically deform if a critical shear
stress is applied.

Bowden and Tabor [15] assumed that the points at which contact occurred were like
hardness indentations, and so the total area of actual contact would be W/H, where W is
the normal load, and H is the hardness of the softer material (note that hardness has units
of N/m2). If a critical shear stress, τs, was needed to shear the asperity junctions, then the
frictional force would be (τsW/H), and so friction is proportional to normal load. A useful
retrospective look-back at this work was published by Tabor in 1996 [64].

Barber, in 2013 [26], commented that there were criticisms of this model, as although
plastic deformation would be expected on first loading, the effects of work-hardening and
residual stresses would reduce the likelihood of plastic deformation during subsequent
loading, as for example, during sliding. Barber also commented that this argument was
supported by wear measurements on sliding surfaces that suggested that the detachment
of wear particles was a rare consequence of asperity–asperity interaction. Criticisms of
the plastic deformation approach of Bowden and Tabor [15] motivated the research, by
Archard [30], Greenwood and Williamson [17], and others, that attempted to derive an ex-
planation of Amontons’ law that did not depend on the assumption of plastic deformation.
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4.2. Archard’s Work

Archard published a number of influential papers on rough-surface contact in the
period from the 1950s to the 1980s [28,30,31,65–68]. The most influential of these papers,
regarding the realization that the elastic deformation of rough surfaces could lead to a
real contact area that was approximately proportional to load, was his 1957 paper [30]
“Elastic Deformation and the Laws of Friction”. This paper considered what happened
when asperities at multiple length scales contacted flat surfaces. Archard explained that for
a single asperity of radius R1, contacting a smooth surface under a load W, there will be a
single circular area, A1, of radius b, where

A1 = πb2 = K1W2/3 (13)

Archard then said that the load δW supported by an annulus or radius r with width δr
is given by

δW =
2
3

W1/3

K1

(
1− r2

b2

)1/2

2πrδr (14)

Archard then considered that the initial asperity (of radius R1) was covered in smaller
asperities, the radii of which were R2 (where R2 << R1), which were evenly distributed over
the larger asperity with a number m per unit area. The annulus load above was assumed to
be unchanged, with the load δW supported by q “protuberances” (with q = 2πrmδr) and
that the load w2 on each one being given by

w2 =
δW
q

=
2W1/3

3mK1

(
1− r2

b2

)1/2

(15)

The area a2 of each of these contacts is

a2 = k2w2
2/3 = k2

(
2

3mK1

)2/3
W2/9

(
1− r2

b2

)1/3

(16)

where k2 is the constant of proportionality appropriate to a sphere of radius R2, and the
area of contact within the annulus is qa2, such that the total contact area, A2, is

A2 =

b∫
0

qa2 = k2

(
2

3mK1

)2/3
W2/9

b∫
0

(
1− r2

b2

)1/3

2πrm·dr ∝ W2/9πb2 ∝ W8/9 (17)

The addition of this second layer of asperities results in a total contact area proportional
to W8/9, whilst the area of a single asperity is proportional to W2/3. Archard [30] showed
in the same paper, using a similar analysis to that above, that the addition of a third level
of asperities (with radius R3, where R3 << R2 << R1) results in a total contact area that is
proportional to W26/27.

The essence of Archard’s argument [30] is that once it is accepted that there are
asperities on multiple different length scales, then the real area of contact is approximately
proportional to area, even if the contact is elastic.

4.3. The Greenwood–Williamson and Greenwood–Tripp Models

Greenwood and Williamson’s highly cited 1966 [17] paper titled “Contact of Nominally
Flat Surfaces” built upon Archard’s insights [30], but instead of assuming a distribution
of asperity radii, they considered asperities with the same radius of the curvature but a
differing height distribution. A flat surface was assumed to be covered with asperities of
which the density was η per unit area, all the same size, except that their heights followed
a statistical distribution function ϕ(z) for which the standard deviation was σ (with the
asperities assumed to have the same radius of the curvature, R). When the surface asperities
contacted a flat surface, the nominal surface area of which is A, and when the distance
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between the flat surface and the mean plane of the asperity laden surface is h, contact will
only occur at those asperities of which the height z exceeds h. The number of such asperities
is given by

N = ηA
∞∫

h

ϕ(z)dz (18)

where such contact does occur, the compression of the asperity, δ, will be equal to (z − h),
and so according to Hertzian elastic contact theory, the Hertzian radius, a, is given by
a = (Rδ)1/2, and the Hertzian load, P, is P = 4E*R1/2δ3/2/3 (where E* is the effective com-
bined elastic modulus of the surfaces). Therefore, the total (real) contact area, Ar, is given by:

Ar = Nπa2 = πηAR
∞∫

h

(z− h)·ϕ(z)·dz (19)

The total load P will be:

P =
4
3

ηAE∗R1/2
∞∫

h

(z− h)
3
2 ·ϕ(z)·dz (20)

If σ is the RMS surface roughness, then the above relationships can be written as:

Ar = πηRσA
∞∫

h/σ

(
s− h

σ

)
·ϕ∗(s)·ds (21)

P =
4
3

ηAE∗R1/2σ3/2
∞∫

h/σ

(
s− h

σ

) 3
2
·ϕ∗(s)·ds (22)

where in the equations above, ϕ*(s) is the standardized height distribution. Two cases
were considered by Greenwood and Williamson [17]. In the first case, they assumed an
exponential probability distribution, such that ϕ*(s) = exp(-s). It was possible to solve the
above integrals exactly with this assumption, with the results below:

N = ηA· exp
(
− h

σ

)
(23)

Ar = πηRσA· exp
(
− h

σ

)
(24)

P =
√

πηAE∗R1/2σ3/2· exp
(
− h

σ

)
(25)

In this particular example, the real contact area (Ar) is directly proportional to the
load (P), and in addition, the number of contact points (N) is also directly proportional to
the load. Greenwood and Williamson [17] pointed out that an exponential distribution of
summit heights is a good approximation to a Gaussian distribution for the important range
from z = σ to z = 3σ.

The second example considered was when the standardized height distribution was
Gaussian, with ϕ∗(s) = 1

σ
√

2π
exp

(
− z2

σ2

)
. In this case, the integrals in Equations (21) and (22)

were not solved in a closed form, but were reported as

N = ηAFo

(
h
σ

)
(26)
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Ar = πηARσF1

(
h
σ

)
(27)

P =
√

πηAE∗R1/2σ3/2F3/2

(
h
σ

)
(28)

where

Fn(u) =
1√
2π

∞∫
u

(s− u)n· exp
(
− s2

2

)
·ds (29)

Table 1 lists the values of these functions for various values of n, taken from refer-
ence [21]. Clearly, these functions drop off very rapidly with λ (where λ = h/σ) and for
λ > 4 the functions are essentially zero, as expected, as for λ > 3 it is generally assumed that
surfaces are completely separated.

Table 1. Values of the function Fn(λ) for various values of n and λ, where λ = h/σ [21].

λ F0(λ) F1/2(λ) F1(λ) F3/2(λ) F2(λ) F5/2(λ)

0.0 0.50000 0.41109 0.39894 0.43002 0.50000 0.61664

0.5 0.30854 0.22534 0.19780 0.19520 0.20964 0.24024

1.0 0.15865 0.10415 0.08332 0.07567 0.07534 0.08056

1.5 0.06681 0.03988 0.02931 0.02464 0.02285 0.02286

2.0 0.02275 0.01248 0.00849 0.00665 0.00577 0.00542

2.5 0.00621 0.00316 0.00200 0.00147 0.00120 0.00106

3.0 0.00135 0.00064 0.00038 0.00026 0.00020 0.00017

3.5 0.00023 0.00010 0.00006 0.00004 0.00003 0.00002

4.0 0.00003 0.00001 0.00001 0.00000 0.00000 0.00000

Recently, Jedynak [69] published the exact solution below for Fn(λ) for the case where
2n is an integer (which applies to the interesting cases of n = 3/2 and n = 5/2):

Fn(λ) =
Γ(n + 1)√

2π
· exp

(
−λ2

4

)
·U
(

n +
1
2

, λ

)
(30)

where Г(x) is the Gamma function, and U(m,x) is the parabolic cylinder function [70].
A subsequent paper by Greenwood and Tripp, in 1970 [21], extended the analysis to

allow for the contact of two rough surfaces (the Greenwood and Williamson paper [17]
only considered the contact of one rough surface against a flat surface). Greenwood and
Tripp [21] found that the load P carried by the asperities was

P =
16
√

2
15

π(ηβσ)2E∗A
√

σ

β
F5/2

(
d
σ

)
(31)

where, in the above equation, β is the asperity radius of the curvature, d is the separation
between the mean level of the surfaces, and A is the geometrical area of the contact.

This equation is still widely used today to estimate the load carried by asperities when
a contact is in mixed or boundary lubrication. An exact solution to the Greenwood and
Williamson model, assuming a Gaussian surface roughness distribution, was published in
2011 by Jackson and Green [71].

It should be noted that in the Greenwood and Williamson [17] and Greenwood and
Tripp [21] type models, the fluid between the moving surfaces is effectively just a “spacer
layer”. However, it is known that in elastohydrodynamically lubricated contacts, the high
pressures elastically distort the surfaces, and significantly increase the viscosity of the fluid.
In addition, the high pressures can reduce the amplitude of the roughness peaks (see for
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example references [72,73]). As far as the author of this review is aware, this effect is not
accounted for in the majority of rough-surface contact models published to date.

Greenwood and Tripp [21] concluded that if the asperity peak height distribution is
Gaussian, then the mode of deformation, the asperity shape, and whether the asperities are
on one or both surfaces are all relatively unimportant, as in all cases the real area of contact
is proportional to the load.

In a useful paper published in 2001, Greenwood and Wu [25] took a critical look back
at some of the assumptions used in the Greenwood and Williamson model [17]. It was
concluded that the theory contained the essential feature needed—asperities have a height
distribution that approximates to a simple exponential in the relevant range of heights.
They did not believe that the assumption of a single radius of the curvature was a major
issue for the theory. One aspect of the original model that was, with the benefit of hindsight,
considered wrong was the assumption that “peaks” on a measured surface profile (points
higher than their immediate neighbours at the sampling interval used) correspond to
asperities. This assumption gives a false impression of both the number and radius of the
curvature of the asperities.

Another couple of comments are worth highlighting. It was later pointed out, by
Whitehouse and Archard [18], that the asperity parameters used in the Greenwood and
Williamson [17] and Greenwood and Tripp [21] papers are not independent, and that the
quantity (ηβσ) that appears in the models should be treated as a constant, with typical
values in the range 0.03 to 0.05.

Greenwood and Williamson [17] also introduced a plasticity index, Ψ, defined as

Ψ =
E∗

H

√
σ

R
(32)

where E* is the combined plane stress modulus for the two surfaces (Pa), H is the hardness
(Pa), σ is the combined RMS surface roughness (m), and R is the mean asperity radius
of the curvature. Greenwood and Williamson [17] studied numerous different surface
topographies, and found that Ψ could vary from around 0.25 up to 30, and for Ψ > 1, the
surfaces would primarily deform plastically, whilst for Ψ < 0.6, the surfaces would deform
elastically, such that it is only in the region 0.6 < Ψ < 1 where the contact type (elastic or
plastic) is uncertain.

Greenwood and Wu [25] later commented that the condition for elastic contact is
lκ < 2H/E*, where l is the asperity length, κ is its curvature, H is the hardness, and E* is
the plane-stress modulus. Small asperities have much smaller radii of curvature, such that
their curvature κ will be greater, and so it seems much more likely that small asperities will
be deformed plastically, whereas the larger contacts will be deformed elastically (as was
essentially pointed out by Whitehouse and Archard [18] in 1970).

4.4. Bush, Gibson, Thomas Model

Bush, Gibson and Thomas [19] extended the Greenwood and Williamson analysis [17]
by allowing not only for a statistical distribution of asperity heights, but also a statistical
distribution of asperity radii. In addition, they assumed that the asperity radius could be
different (in the x- and y-directions), and so their 2D surface was effectively covered with
ellipsoids. They used the Nayak surface roughness parameters mo, m2 and m4 in their work,
and found a linear relationship between the load and the real contact area. They also found
that the real contact area, Ar, was related to λ by

Ar ∝ er f c
(

λ√
2

)
(33)

4.5. Models Due to Persson

From 2001 onwards, Persson published models [22,23] that approached the problem
from a different direction. The works of Archard [30], Greenwood and Williamson [17],
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Greenwood and Tripp [21], and Bush, Gibson and Thomas [19] all assumed that loads
were relatively low, asperity contacts were elastic, and the real area of contact was a
relatively small fraction of the apparent (geometric) area. Persson considered the problem
of rough-surface contact from the opposite limit, in which he assumed the real area of
contact was large (his work was motivated by contact between rubber surfaces). In fact,
Persson commented that his theory [22,23] is exact in the limit of full-contact conditions,
although this has been debated [74]. A parabolic partial differential equation was used
to describe the interfacial pressure, and the diffusivity term in the differential equation
was approximated by assuming that the Power Spectral Density (PSD) of the elastically
deformed surface was equal to that of the undeformed rough surface. However, the stored
elastic energy is calculated on the assumption that the PSD of the deformed surface is equal
to the product of the PSD of the undeformed surface times the fraction of contact area. It
was found that there was a linear relationship between the real contact area and load, and
this finding is more robust than earlier results from Greenwood and Williamson [17] etc.,
as those earlier findings were only valid for a relatively small real area of contact (5–10% or
less). Persson [75] also reported that the pressure p(u), as a function of surface separation u,
took the form

p(u) ∼ exp
(

u
uo

)
(34)

where uo is a constant. Persson [75] commented that earlier theories, based on elastic
contact, predicted that p(u)~u−a exp(−bu2), where a = 1 for the Bush, Gibson and Thomas
model [19], and a = 5/2 for the Greenwood and Williamson model [17]. Persson [75] also
stated that the functional variation of pressure with the separation of Equation (34) was in
better agreement with experimental data than the variation of pressure with separation
from the Greenwood and Williamson [17] or Bush, Gibson and Thomas [19] models. It
should be mentioned that Persson’s models [22,23,75] are not thought to be widely used by
the average tribologist for the calculation of mixed/boundary friction, as they are generally
seen as being difficult to apply, and no simple equations are available for the prediction of
the variation of the real contact area and load carried as a function of surface separation
(such a relationship is most likely the reason why the Greenwood and Williamson [17] and
Greenwood and Tripp [21] models are still so widely used).

4.6. Recent Work on Rough-Surface Contact Models

Since the early work of Archard [30], Greenwood and Williamson [17], Greenwood
and Tripp [21], and Bush, Gibson and Thomas [19], numerous researchers have extended
the models, or developed new ones, in order to allow for coated (layered) surfaces [76–79]
to include the presence of lubricant tribo-films [80–85], and to consider non-Gaussian rough
surfaces [86–91].

In addition, rough-surface contact models were proposed by Majumdar and Bhushan [92,93]
that assumed the rough surfaces were fractal. Further work in this area was reported in
references [94–104]. It should also be mentioned that Persson’s work [22,23,75] allowed for
roughness on multiple length scales, and therefore also assumes fractal behaviour.

An alternative approach, which is now more attractive due to the availability of
cheap and rapid computational facilities, is the numerical computation of rough-surface
contact [105–114].

A useful challenge was proposed by the editors of Tribology Letters to researchers
to use a variety of models/numerical analyses to analyse a specific rough contact [115].
The challenge was proposed in 2015, and the results were published in Tribology Letters
in a special issue in 2017 [116–123]. In total, 12 groups of researchers submitted 13 dif-
ferent approaches to the challenge, including one experimental approach (in which the
researchers 3D printed a larger version of the specific contact and carried out experimental
measurements on it). In a paper summarising the results of the challenge, Müser et al. [120]
concluded that many of the methods used in the challenge identified the correct trends
(such as how the real contact area depended on the load, for example, and how the mean
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gap between surfaces depended on the pressure), although it was pointed out that asperity-
based models were expected to become less reliable when the roughness extends to more
than 2.5 decades, and in addition, the predicted contact-patch-size distribution was not
correct for such models (as bearing-area approaches neglect the effect of long-range elastic
deformation). Some of the numerical approaches used would only take a few minutes to
run for a 1000 × 1000 grid on a modern laptop.

5. The Impact of Lubricant Additives

Many of the papers referred to above simply refer to the fluid that separates the rough
surface as having a viscosity, which is used to calculate the oil film thickness between the
surfaces, and hence the λ ratio. This approach would suggest that all fluids should have
friction curves of the same shape, when plotted against λ. In reality, commercially available
lubricants contain numerous lubricant additives [124], some of which have a major effect
on friction. The two major classes of lubricant additives that significantly affect friction are
(i) anti-wear additives, of which zinc dialkyl dithiosphosphate (commonly abbreviated as
ZDDP) is the best-known example, and (ii) friction modifiers, of which MoS2, graphite,
glycerol mono-oleate, and oleyl amide are well-known examples.

Anti-wear additives, such as ZDDP, are thought to operate by forming a thick, high-
shear tribo-film. In the case of ZDDP, typical tribo-film thicknesses are of the order of
100–200 nm. A thorough review of ZDDP can be found in reference [125]. Recently, the
research group at Imperial College reported [126] that the surface roughnesses of ZDDP
films were significantly higher than those of the metal surfaces they were formed on (the
work was performed using a Mini Traction Machine in which the ball and disk had very
low surface roughnesses).

On the other hand, friction modifier additives are thought to form molecularly thin
films (only a few molecular layers) which are easily shearable (i.e., they have a low shear
stress). The reason for such behaviour is that friction modifiers tend to form surface layers
in which there is only weak bonding between each layer. If such films form on the top of
asperities, when sliding occurs, the layers of the friction modifiers will shear much more
easily than the metal surfaces would if such tribo-films were not present. A review of
friction modifiers can be found in reference [127].

Some research has been carried out to adapt rough-contact models to allow for such
additives [80–85]. Most often, the tribo-film is modelled as a layer with different mechanical
and roughness properties from that of the underlying substrate. Data on the mechani-
cal properties of ZDDP tribo-films are available (for example, see reference [128]). If a
Greenwood–Williamson-type model [17] is applied to a thick tribo-layer, then the shape
of the friction versus λ curve would be influenced entirely by the roughness of the tribo-
layer (as the pre-factor in these models, which depends on the roughness and mechanical
properties of the layer, will not affect the shape of the curve). When the correct tribo-layer
roughness is used in the calculation of λ, Dawczyk et al. [126] recently reported that the
friction versus λ curve is essentially the same as that for lubricants without additives
(although the value of friction at λ = 0 may be higher, with a typical friction coefficient for
ZDDP containing lubricants being 0.12 when λ = 0).

The explanation by Dawczyk et al. [126] cannot account for the change in shape of
the friction versus λ curve when friction modifiers are used, as these do not form thick
tribo-films and so cannot affect the value of λ. As mentioned above, the molecular structure
of friction modifiers is such that they are sheared very easily. Measurements of the shear
stress of friction modifier films have been reported by numerous researchers [129–131], both
for organic films and for those formed from molybdenum, and the typical values reported
are of the order of 25 MPa, which should be compared with typical shear stresses on ZDDP
anti-wear films, which are thought to be in the range 200–300 MPa [132]. Understanding
how friction modifiers influence the shape of the friction versus λ curve is still an active
area of research.
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It should also be mentioned that there is an increasing amount of published research
on the topic of nanoparticles as alternative lubricant additives [133–135]. It would certainly
be of interest to understand how such nanoparticles form tribo-layers, and whether or
not their friction is affected in the same way as that of conventional anti-wear or friction
modifier additives. However, the author is not aware of any commercially available
lubricants in current large-scale production that contain such additives, and a review of
the behaviour of nanoparticle tribo-films would be more timely once such additives are in
more widespread use.

6. Experimental Data on Rough-Surface Friction

As discussed in Section 2, the proportion of mixed/boundary friction, X, can be
considered to be the load carried by the asperities divided by the total load. In recent
published work from Imperial College [126], the fraction of mixed/boundary lubrication,
X, versus the lambda ratio, λ, was reported. In that work, the friction coefficient of a
range of lubricants was measured using a Mini-Traction Machine (MTM). If fo was the
friction coefficient measured at λ = 0, and fEHD was the friction coefficient measured at large
values of λ, then the value of X was defined to be (f − fEHD)/(fo − fEHD), where f was the
measured friction coefficient at a particular value of λ. Figure 1 shows measured data from
reference [126]. It was pointed out that if the correct value of surface roughness was used to
calculate λ, then all of the lubricants would be found to fit onto a universal curve. It should
be pointed out that although the RMS roughness of the MTM ball and disk were only about
4 nm each, when lubricants containing ZDDP anti-wear additives were used, relatively
thick tribo-films were formed (between 100–200 nm), and the RMS surface roughness at
the top of the tribo-films was significantly higher, at around 40 nm. λ was estimated by
calculating the elastohydrodynamic oil film thickness in the contact (the radius of the
curvature of the ball, the elastic moduli, the loads, speeds, temperatures were known, and
the viscosity and pressure–viscosity coefficient of the lubricant were calculated).
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The authors of this paper checked lubricant friction data from other published MTM
experiments [124,136], and found that base oils (lubricants that do not contain any additives)
also fit well on the above curve (although in the case of base oils, the value of λ would be
calculated using the original MTM ball and disk roughness values).

Separately, other experimental work that can be used to calculate X versus λ has been
reported by He et al. [137] and Cui et al. [138] on experimental test rigs that are significantly
different from the MTM (in both the operating conditions and surface roughnesses of the
test specimens). Figure 2 shows a fit through the data of Figure 1, with experimental data
from references [137,138] overlaid. The fit through the data used the equation below [139]:

X =
1(

1 + λk
)a (35)

where the values of the adjustable parameters k and a were determined using Excel’s Solver
function, and were found to be approximately k ≈ 3/2 and a ≈ 4/3 [139].
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There are, of course, many other publications [140–154] that have reported experimen-
tal data on how friction, or the friction coefficient, varies with load, speed, and/or oil film
thickness. Unfortunately, it is not always straightforward to calculate the λ ratio directly
from these references, and in addition, asperity friction is not always separated out (from
the total friction) in those papers.

7. Application of Rough-Surface Models to the Prediction of Mixed/Boundary Friction

In Section 2, it was reported that if the proportion of mixed/boundary lubrication, X,
is defined to be the load carried by the asperities divided by the total load; as such, it is
of great practical interest, for the calculation of mixed/boundary friction, to know how X
varies with λ.
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Olver and Spikes [44] proposed the relationship below:

X =
1

(1 + λ)2 (36)

In the previous section, a good fit to experimental data was found with the expression
below:

X =
1(

1 + λk
)a (37)

with k ≈ 3/2 and a ≈ 4/3 [139].
Coy [155] proposed a linear relationship for the calculation of mixed/boundary friction:

X =

(
1− λ

3

)
(38)

It was assumed by Coy [155] that X was zero for λ > 3.
The various asperity models reviewed in Section 4 can be used to find the variation of X

with λ. For example, in the Greenwood and Williamson [17] and Greenwood and Tripp [21]
models, the load carried by the asperities, W(λ), was calculated. If it is assumed that if X is
equal to W(λ)/W(0), then the variation of X with λ can be found straightforwardly.

For the Greenwood and Williamson model [17], with an exponential probability
distribution of asperity peaks, it is found that

X = exp(−cλ) (39)

In the above equation, a factor of c was introduced, as it is possible that the RMS
roughness of surface peaks may not be the same as the RMS roughness of the overall
surface. However, in the absence of any further information, most tribologists would
assume that c = 1.

For the Greenwood and Tripp model [21], it is found that

X =
F5/2(cλ)

F5/2(0)
(40)

Similarly, for the Bush, Gibson and Thomas model [19], we find that

X = er f c
(

λ√
2

)
(41)

Table 2 compares these various expressions for X for different values of λ.
The Persson models [22,23] were not included in the comparison, as it was not clear to

the author how to calculate X versus λ from those models.

Table 2. Values of X versus λ for different rough-surface asperity models.

X

λ
X = 1

(1+λk)
a

k = 3/2, a ≈ 4/3
exp(−λ) Linear fit

(Equation (38))

Olver and
Spikes [44]

(Equation (36))

Greenwood-
Tripp [21]

Bush, Gibson,
Thomas [19]

3 0.0879 0.0498 0 0.0625 0.00028 0.0027

2 0.167 0.135 0.333 0.111 0.0088 0.0455

1 0.397 0.368 0.667 0.25 0.131 0.317

0.5 0.668 0.607 0.833 0.444 0.390 0.617

0.2 0.892 0.819 0.933 0.694 0.698 0.895

0.1 0.959 0.905 0.967 0.826 0.838 0.920
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Given that Equation (37) was derived from a good fit to experimental data, it is
clear that the contact asperity models which give the closest agreement with experimental
data are (1) the Greenwood and Williamson model [17] when the probability distribution
function is assumed to be an exponential, and (2) the Bush, Gibson and Thomas model [19].
Simply looking at the amount of mixed/boundary friction at λ = 1, it can be seen that the
fit to experimental data gives X ≈ 40%, whilst the Greenwood–Tripp model [21], although
it is still widely used today, only gives an estimate for X of around 13%. Although X has
been defined in this paper to be equal to the load carried by the asperities divided by the
total load on the contact, the majority of rough-surface contact models also calculate the
real area of contact. Numerical calculations (by the author of this review) have found that
X can also be equated to the real contact area (divided by the real contact area when λ = 0).

It should be mentioned that many researchers, in the calculation of the value of λ,
estimate the oil film thickness in the contact by assuming that the surfaces are smooth, and
then calculating the oil film thickness using standard hydrodynamic or elastohydrodynamic
equations. However, it is known that, for rough surfaces, the standard Reynolds’ equation
should be modified using flow factors [156,157] to account for surface roughness. Therefore,
ideally, oil film thicknesses should be calculated using a modified Reynolds’ equation that
includes flow factors, but this does not normally take place.

8. Discussion

Early models developed to explain Amontons’ law tended to be analytical, based on
plastic [15] or (more usually after 1966) elastic asperity deformation [17,19,21,30]. There
has been a trend in the last 10–20 years to move to complete numerical solutions based on
a variety of solution techniques [120] (Fast Fourier Transform (FFT), finite elements, the
biconjugate gradient stabilized method, boundary element methods, and various types
of molecular dynamics simulation). These methods can also be used on realistically sized
grids. Most surface roughness profilometers will supply measured data on grids of size
1000 × 1000, and numerical solvers can solve such rough-surface contact problems in
just a few minutes on a modern laptop. Despite the impressive progress reported in
numerical solutions, assumptions still need to be made in the numerical models as to
how the asperities deform. Many numerical models of rough-surface contact assume
the elastic deformation of asperities (see for example references [105,107]) whereas other
models allow for the elastic and plastic deformation of asperities (which will clearly
change the surface shape and roughness parameters as contact progresses) [109,110]. A
useful review of elastic–plastic contact mechanics may be found in reference [111]. Some
numerical models also allow for adhesive effects [117,123]. It should be mentioned, in
this context, that a consensus view seems to be that, for typical machine elements, most
plastic deformation occurs during the “running-in stage”, and in an insightful paper,
researchers from Heriot-Watt University [158] combined numerical simulations of rough-
surface contacts during “running-in” that used an elastic–plastic model, with experimental
data, and found evidence for plastic deformation during “running-in”, but that the volume
of plastically deformed materially reduced as the “running-in” progressed. It was also
found that the plasticity index (defined in Equation (32)) decreased as the “running-in”
progressed, from an initial “plastic” value to one in the “elastic” regime once “running-in”
had finished. Therefore, the assumption that asperities deform elastically may be quite
reasonable for fully “run-in” surfaces, as originally suggested by Archard [30], Greenwood
and Williamson [17] and Whitehouse et al. [18].

The inclusion of plastic contact in numerical rough-surface contact simulations is
clearly important. However, the authors are not aware of many rough-surface contact
simulations that allow for wear particles to be produced from such contact which can then
act as hard contaminants (a process that clearly takes place in realistic contacts). Two papers
by Zhang, Moslehy and Rice [159,160] did attempt such an analysis, as reported in 1991,
but this work does not seem to have been followed up.
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It is known that repeated plastic contacts can result in changes in hardness and material
composition, and ideally these effects also need to be included [161–163]. The ambition
of many current leading tribologists is the development of a “tribology digital twin” in
which all of the various effects are accounted for, such that a realistic tribology experiment
could essentially be reproduced on a computer. At present, the development of a “digital
twin” in which all of these effects are accounted for is still likely many years away, although
recently there has been increasing use of artificial intelligence (AI) and machine learning
(ML) methods within the tribology community (two recent useful reviews can be found
in [164,165]). It should be mentioned that physics-based insights into the transition from
mild to severe wear have recently been published by Aghababaei et al. [166], based on
atomistic simulations, which could help in the development of tribological digital twins.
Another study of a similar type was reported by Han and Zou [167], who studied the
evolution of contact characteristics during a scuffing process, using contact mechanics and
plasto-elastohydrodynamic lubrication models. In parallel with these simulation studies,
there are also experimental studies that provide evidence of surfaces “roughening up” just
prior to failure, with examples of such studies being those reported Roper and Bell [168]
and by Bell and Willemse [169].

Despite the impressive advances in numerical and analytical rough-surface contact
models over the last 50–70 years, there is still a need for “quick and simple” methods
by which tribologists and engineers can make reasonable estimates for the proportion of
mixed/boundary friction, and the friction losses that arise in this regime. Therefore, simple
models, in which the proportion of mixed/boundary friction can be estimated as a function
of a simple parameter, such as the lambda ratio, as described in the previous section, are
still important. If such simple models can be validated, and/or improved by comparison
with detailed analytical/numerical or experimental data, this would be even better.

9. Conclusions

The study of rough-surface contact has a long history, with the modern understanding
of such contacts beginning around the 1950s, when it was generally assumed that contacts
behaved plastically, with a realization in the late 1950s and 1960s that—once surfaces had
“run-in”—many contacts behaved elastically. In both plastic and elastic contact conditions,
Amontons’ law of friction (that friction was proportional to load) could be derived ap-
proximately, although in the case of elastic contact conditions, this only became apparent
when a distribution of asperity heights and shapes was included in the models. Many
relatively simple models were developed, and are still widely used today by tribologists
and engineers. Perhaps the best known of these models are those of Greenwood and
Williamson [17], Greenwood and Tripp [21], and Bush, Gibson and Thomas [19], all of
which assume relatively low loads and low real contact areas (such that the assumption of
elastic contact is valid). Later, Persson [22,23] developed models which were more accurate
for high real areas of contacts (such as those that occur in rubber contacts). However, Pers-
son’s models are not thought to be that widely used within the tribology community due
to their relative complexity and the lack of simple equations that can be easily used in engi-
neering calculations. Recently, there has been a trend to treat rough-surface contacts with
full numerical simulations, using measured surface profilometer data (usually generated
on a 1000 × 1000 sized grid); alternatively, typical surface profiles can be generated artifi-
cially [170]. Such models are not generally available to typical tribologists and engineers,
such that there is still a need for simple methods that give “rough and ready” answers to
how much friction occurs in mixed/boundary lubricated contacts. Experimental data are
becoming available [126,137,138] in which the proportion of mixed/boundary friction has
been measured as a function of the lambda ratio. The availability of such data enables a
comparison to be made of the various rough-surface contact models. Experimental data
from [126] found that the proportion of mixed/boundary friction, X, was between 30 and
50% when λ = 1. The Bush, Gibson and Thomas model [19] predicts a value for X of about
32% when λ = 1, whilst the Greenwood and Williamson model [17], with an exponential
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distribution of asperity heights, predicts that X ≈ 37% when λ = 1. On the other hand, the
Greenwood and Tripp model [21], which is still widely used today for the prediction of
mixed/boundary friction, predicts a value of X of only around 13% at λ = 1, suggesting
that mixed/boundary friction is significantly underestimated with that model, which is a
conclusion in agreement with the recent work of Leighton et al. [171].

Looking to the future, as energy efficiency becomes a matter of greater and greater
importance, there is likely to be more mixed and boundary lubrication in machines, as lubri-
cant viscosities are tending to become lower, operating loads and temperatures are tending
to become higher, and machines and the amount of lubricant within them are tending to
become smaller. The validation of rough-surface contact models with experimental data
will then become a matter of greater importance. The recent use of numerical simulations
for the prediction of the rough-surface real area of contact and friction would then be useful
in the generation of data to which simpler equations could be fitted, which could be used
by the wider tribological community to better predict mixed/boundary friction and wear.

It is anticipated that research in rough-surface contacts will continue for many years
to come.
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