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Abstract 

Hepatocellular carcinoma (HCC) is the primary liver cancer that has shown a high incidence and 

mortality rate worldwide among several types of cancers. A large variety of chemotherapeutic agents 

employed for the treatment has a limited success rate owing to their limited site-specific drug 

targeting ability. Thus, there is a demand to develop novel approaches for the treatment of HCC. With 

advancements in nanotechnology-based drug delivery approaches, the challenges of conventional 

chemotherapy have been continuously decreasing. Nanomedicines constituted of lipidic and 

polymeric composites provide a better platform for delivering and open new pathways for HCC 

treatment. A score of nanocarriers such as surface-engineered liposomes, nanoparticles, nanotubes, 

micelles, quantum dots, etc. has been investigated in the treatment of HCC. These nanocarriers are 

considered to be highly effective clinically for delivering chemotherapeutic drugs with high site-

specificity ability and therapeutic efficiency. The present review highlights the current focus on the 

application of nanocarrier systems using various ligand-based receptor-specific targeting strategies for 

the treatment and management of HCC. Moreover, the article has also included information on the 

current clinically approved drug therapy for hepatocellular carcinoma treatment and updates of 

regulatory requirements for approval of such nanomedicines. 

Keywords: Hepatocellular carcinoma, chemotherapy, nanocarriers, ligands; tumor targeting. 
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1. Introduction 

Liver diseases are one of the leading causes of illness and death worldwide. Each year, 2 million 

deaths occur due to liver diseases [1] including liver fibrosis, hepatitis (A, B, and C), fatty liver, 

autoimmune hepatitis, and hepatocellular carcinoma (HCC) [2–4].  Liver tumors are frequent in 

occurrence and third in the most leading cause of cancer-related death worldwide [5]. Amongst 

various types of liver cancers, hepatic carcinoma is the most common, which is originated from the 

hepatocytes [6]. In other cases, secondary liver cancers are not originated from the liver but are 

formed due to metastasis from other parts of the body. Moreover, intrahepatic cholangiocarcinoma [7] 

and hepatoblastoma are other less common types of hepatic cancers reported in the literature [8,9].  

HCC is a very common form of malignant liver cancer, it is the sixth most common cancer in the 

world, and accounting for more than 8,40,000 case deaths annually [10–12].  About 90% of HCC 

developed in patients with major risk factors are primarily infected with chronic hepatitis (type B and 

C viruses), liver cirrhosis, heavy alcohol consumption, smoking, non-alcoholic fatty liver, obesity, 

tobacco consumption, and diabetes [13–15]. There are several conventional therapies available for 

HCC [16], surgical resection [17], ablation [18], transarterial chemoembolization [19], liver 

transplantation [20], radiation therapy [16], chemotherapy and combinatorial approaches [21].  

Surgical interventions facilitating tumor recurrence by local metastasis [22], heat sink effect of 

ablation [23], complications of transarterial chemoembolization [24], immunosuppressive therapy side 

effect due to transplantation [25], hepatic toxicity of radiotherapy [26], and chemoresistance in HCC 

toward chemotherapy [27], are just a few examples of the current conventional strategies used for the 

treatment of HCC. Besides, these conventional therapies are also associated with many drawbacks 

like high treatment cost, lack of safety, poor patient compliance, and chances of tumor recurrence. 

Conventional chemotherapy treatment, in particular, has several disadvantages such as the inability to 

provide a sufficient concentration of therapeutic agents for liver disease, low targeting efficiency, 

poor tumor penetration, and/or the contribution to undesirable effects with systemic toxicity [28].  In 

order to avoid the serious and intolerable side-effects of the chemotherapy on normal tissues, the idea 

of exploration of novel tumor-targeting systems have typically taken momentum and greatly 

encourage the development of nanocarriers with targeting ability to achieve better efficacy with 

negligible undesirable effects [9]. The administration of a liver-specific drug delivery system helps in 

reducing the side effects by reducing the distribution of the drugs to the non-target organs and 

increases the therapeutic efficacy by simultaneously increasing the drug levels in the target cells 

[29,30].  

Recently, with the rapid progress in nanotechnology development, it has been confirmed that drug 

delivery systems based on nanocarriers such as liposomes, polymeric micelle, quantum dote, 

dendrimers, carbon nanotube, nanoshells, and nanoparticles (Figure 1). These systems have 

demonstrated great potential in the treatment of cancer by increasing the effectiveness of the drugs, 
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reducing systemic toxicity, improving dissolution of the drugs, increasing stability and release 

behavior in order to achieve the best therapeutic efficiency [31–33]. 

The present review highlights various pathways used for targeting drug-loaded nanocarriers to liver 

carcinoma with some of the receptors specifically overexpressed on the surface of hepatocytes. 

Besides, the review focuses on the recent developments in the domain of nanocarriers with various 

functional modifications for drug targeting to HCC. 

 

2. Various approaches used for liver targeting 

The effective delivery of therapeutics to the liver can be obtained by passive targeting and active 

targeting approaches that increase the accumulation of the drugs at the targeted site, consequently, it 

may limit the adverse effects and improves the therapeutic efficacy of drug therapy [35] (Figure 2). 

Passive targeting only increases the local concentration of the drugs within the tumor tissues by the 

enhanced permeability and retention effect (EPR) [36,37].  Active targeting can be achieved by 

surface modification of the nanocarriers with specific targeting ligands such as proteins, antibodies, 

peptides, and carbohydrates, which has the affinity to bind a specific-site on the liver cells and 

facilitates endocytotic uptake into the liver cells [4]. 

 

2.1 Passive drug targeting 

Accumulation of nanocarriers at specific body sites is possible due to certain key features of the tumor 

microenvironment. Hence, such targeting is also known as passive drug targeting. The tumor 

microenvironment differs from normal tissue by features like the presence of highly vascular 

structure, oxygenation, pH, perfusion, and metabolic activity which facilitate the accumulation of the 

drugs and nanocarrier in it [39].  These characteristic features facilitate the passive accumulation of 

nanocarrier therapeutics. The presence of fenestration in the endothelial wall of sinusoids capillaries 

of the liver and the absence of basal lamina favor the passive accumulation of nanocarriers 

therapeutics [40]. Nanocarriers with size less than 200 nm can release through the sinusoidal 

fenestrations and facilitate passive liver targeting. Tumor-specific accumulation or also called the 

EPR effect which plays a significant role in the passive accumulation of the drugs and nanocarriers 

due to their extravasation through the leaky vasculature of the tumor (Figure 3) [41]. The 

permeability and extravasation of macromolecules through the leaky tumor vasculature is enhanced 

by the EPR effect [42], and drainage of tumor tissues through an impaired lymphatic system is 

favored by retention of the nanostructured therapeutic carriers [43].  

 

 

2.2 Active drug targeting  
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Drug delivery to the liver by an active targeting approach is a promising strategy for localizing the 

drugs to the tumor site. Active drug targeting is achieved by surface engineering of the nanocarriers 

with receptor-specific ligands such as peptides [45], carbohydrates [46], proteins [47], and antibodies 

[48], which are specifically bound with the overexpressed receptors on the tumor cells [49]. Various 

surface receptors expressed on hepatocytes include asialoglycoprotein, glycyrrhizic acid, transferrin, 

folate, and integrin receptors [40,50].  The targeting ligands facilitate the endocytotic uptake of drugs 

by receptors into the liver tumor cells, therefore increases selective targeting of the chemotherapeutics 

to the tumor by avoiding undesirable side-effects [51].  

 

3. Ligand-receptor based active targeting for HCC treatment 

Ligand-receptor active targeting plays a critical role in the internalization of the drugs to the 

hepatocyte cells and subsequent endocytosis of anticancer drugs. It is one of the most common 

strategies used for targeting HCC which  helps  improve the targeting ability. Some receptors that are 

overexpressed on HCC cells include asialoglycoprotein receptor, folate receptor, transferrin receptor, 

glycyrrhetinic acid receptor and, integrin receptor, thus various ligands that can be attached to such 

receptors on the surface of hepatoma cells were used to design nanocarrier systems for effective 

targeting [52]. In this part of the review, a summary of the latest investigations carried out by the 

researchers for utilizing ligand-receptor mediated active targeting of chemotherapies for targeting of 

HCC.  

3.1 Asialoglycoprotein receptors (ASGPR)  

Since asialoglycoprotein receptors are present on hepatocytes and other non-hepatic cells, it is 

strongly expressed by the hepatocytes [4]. Various ligands such as asialofeutin, glycoproteins, 

carbohydrates, pullulan and, galactoside have been used to achieve the specific liver ASGPR targeting 

[53]. Yousef et al. [54] reported the ability of galactosamine-anchored polyamidoamine dendrimers 

(PAMAMs) loaded with a potent anticancer agent, curcumin to achieve highly selective cellular 

uptake through the ASGPR-mediated endocytosis process, which improved the delivery of curcumin 

into the HCC cells. In another report, Xu et al. [55] prepared the solid lipid nanoparticles (SLN) of 

docetaxel-loaded with galactosylated dioleoylphosphatidylethanolamine, which showed higher 

cytotoxicity of SLN on the BEL7402 cell line over plain docetaxel (Taxotere®) and enhanced cellular 

uptake and accumulation of the drug in the hepatoma cells.  Similarly, Liang et al. [56] developed the 

paclitaxel-loaded self-assembled nanoparticles conjugated with galactosamine (Gal-P/NPs). In vitro 

cell culture studies of Gal-P/NP on the HepG2 cells revealed comparative inhibition (p<0.05) in cell 

growth as compared to the plain paclitaxel (Phyxols). 

 

 

3.2 Folate receptors  
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These receptors are highly overexpressed on the surface of liver carcinoma cells, and its natural ligand 

is folic acid that has been used to target these receptors. Folate-conjugated drugs bind specifically to 

folate receptors and promote internalization of the drugs that bind with the folate receptors and uptake 

by receptor-mediated endocytosis mechanism [57]. The attached drug molecules can be released into 

the target tumor cells, where they can induce their cytotoxic activity [58]. Li et al. [59] developed the 

folate-PEGylated PLGA nanoparticles co-encapsulated with sorafenib (SRF/FA–PEG–PLGA NP) for 

targeting to HCC. The nanoparticles showed sustained release and improved cellular uptake of the 

drug during the in vitro study on Bel-7420 cancer cells. Besides, these nanoparticles effectively 

suppressed the proliferation of tumor cells and improved anti-cancer activity as compared to the free 

drug. Another study by Niu et al. [60] developed the doxorubicin-loaded polymeric micelles 

functionalized with folate ligand. In vitro cellular uptake study showed a controlled release profile of 

doxorubicin release and enhanced cytotoxicity of micelles on the Bel-7402 cells. Similarly, Zhang et 

al. [61] developed folic acid functionalized polymeric micelles-loaded with superparamagnetic iron 

oxide nanoparticles and sorafenib for enhanced anticancer activity against HCC. The developed 

nanoparticles exhibited superior inhibitory activity and in vitro apoptosis rate on HepG2 cells than 

nontargeted micelles. 

 

3.3 Transferrin receptor (TfR) 

These receptors are the cell surface receptors overexpressed on many types of cancers including HCC 

[62]. Therefore, this carrier protein can be utilized as a component of several carrier systems for 

chemotherapeutic agents [63].  TfR receptor expression on HCC is 100-times higher than the normal 

cells [64]. Hepatoma cells overexpressed with transferrin receptors have become promising targets for 

effective chemotherapy against HCC. In a study, Zhang et al. [65] prepared transferrin (Tf) modified 

polymeric nanoparticles for co-administration of cisplatin (DDP) and doxorubicin (DOX) for the 

treatment of hepatic carcinoma. The nanoparticles cytotoxicity was assessed on HepG2 cell line 

showed a better antitumor effect. Tf-DDP/DOX-NPs showed exceptional antitumor activity due to the 

combined action of two drugs and the ability to actively target the tumor cells through Tf ligand. 

Similarly, Szwed et al. [66] demonstrated that doxorubicin-transferrin conjugated nanoparticles 

showed higher cytotoxicity on HepG2 cells as compared to the free doxorubicin and induced greater 

oxidative stress.  

 

3.4 Glycyrrhetinic acid receptor (GaR) 

These receptors are overexpressed on the surface of hepatocytes and its ligand glycyrrhetinic acid has 

been widely used to target drugs by different nanocarrier delivery systems, including micelles, 

nanoparticles, and liposomes [47,67,68] Tian et al. [69] reviewed the role of GA and nanocarriers 

modified with GA as an efficient tool for hepatocyte targeted delivery for the treatment of HCC. 
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Anirudhan and Binusreejayan [70] developed a dextran-based nanoscale drug carrier (GHDx) for 

curcumin delivery. Liver-directed curcumin is loaded in GHDx. In vitro cytotoxicity study on HepG2 

and L929 cells demonstrated that GHDx-loaded with curcumin exhibited high toxicity with sustained 

drug release profile to liver cells. Chen et al. [71] formulated a glycyrrhetinic acid-modified curcumin 

supramolecular gel which exhibited good water solubility and sustained release delivery of curcumin 

in buffer solution under in vitro studies. In vivo studies showed enhanced cellular uptake and better 

inhibition ability on HepG2 cells.  Zhang et al. [72] prepared doxorubicin-loaded glycyrrhetinic acid-

modified alginate nanoparticles, which revealed significantly higher concentration in the liver tumor 

induced in mice than nonglycyrrhetinic acid-modified doxorubicin nanoparticles and plain 

doxorubicin. Similarly, in another study, Tain et al. [73] prepared doxorubicin-loaded glycyrrhetinic 

acid-modified sulfated chitosan micelles which demonstrated excellent in vivo inhibitory effect 

against HepG2 cells. The antitumor effect was extremely high with doxorubicin-loaded with the 

micelles than surface unmodified micelles.  

 

3.5 Integrin receptor (IgR) 

These receptors are found on most types of human cancer, including HCC. Various types of integrins, 

in particular, α1β1, α5β1, and α9β1 are expressed on the surface of normal hepatocyte to maintain a 

normal cell-matrix connection [74,75].  In hepatocyte tumor cells, integrins α3β1 and α6β4 are 

overexpressed [76].  The RGD peptide (Arg-Gly-Asp) acts as a targeting ligand on the surface of 

nanocarrier systems to deliver an antitumor drug to hepatocytes [77].  Chen et al. [78] developed 

integrin receptor-targeted RGD-modified liposomal paclitaxel formulation by conjugating a specific 

Arg-Gly-Asp (RGD) ligand with 1,2-distearoyl-phosphatidylethanol-aminepolyethyleneglycol-2000. 

The study demonstrated the high efficacy of RGD-LP-PTX being easily uptaken by HepG2 cells than 

plain liposomes without RGD. In vitro evaluation of the formulation indicated inhibition of tumor 

growth in HepG2-bearing mice by RGD-LP-PTX formulation than LP-PTX or free PTX. 

 

4. Different nanotechnology-based carriers for HCC targeting 

Recently, innovation in the field of nanotechnology has been exploited different novel 

nanotechnologies approaches for the diagnosis and management of the HCC [79]. Novel 

nanocarriers are highly helpful to overcome the unwanted side-effects of chemotherapeutic agents by 

improving the pharmacokinetic profile of the drug by specific accumulation in the tumor site for 

enhancing the treatment effectiveness [80,81],  In this part of the review, we provide a brief 

overview of the most recent examples of novel targeted delivery systems using various types of 

nanocarriers for delivering chemotherapeutic agents for HCC treatment [82]. Some of the 

extensively investigated nanocarriers for cancer treatment include nanoparticles, polymeric micelles, 

liposomes carbon nanotubes, dendrimers, quantum dots, nanofibers, and lipid nanoparticulate 
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carriers. Such nanosystems have shown great potential in liver cancer chemotherapy by enhancing 

the performance of the existing drugs, reducing their systemic side-effects, and increasing 

therapeutic efficacy [83–85]. Select instances of the nanocarriers used for drug targeting to the HCC 

in literature have been reported in this section of the manuscript (Table 2). 

 

4.1 Nanoparticle-based nanocarriers  

Nanoparticles are small colloidal particles with a size range of 1 to 100 nm [86]. A wide range of NPs 

have been developed to target of drugs, especially polymeric nanoparticles, ceramic nanoparticles, 

metal nanoparticles, lipid nanoparticles, carbon-based nanoparticles [87,88]. Antitumor agents are 

either captured in or and adsorbed on the surface of NPs in order to efficiently transport the anticancer 

agent to hepatocytoma cells [89].  Modifying the surface of NPs can provide specific targeting ligands 

that allow NPs to control drug delivery to HCC with better therapeutic efficacy. Nanoparticles based 

delivery of anticancer drugs can improve solubility, reduce the dose and frequency of therapy and, 

above all, reduce the undesirable toxicities accompanied with antitumor drugs [90]. In addition, the 

delivery of nanoparticles, a combination of different anti-cancer drugs, can be loaded, making it a 

promising tool for the treatment of HCC. 

Toma et al. [91] prepared superparamagnetic iron oxide nanoparticles (SPIONs) coated with 

polyvinyl alcohol (PVP) for delivery of sorafenib, which exhibited a higher loading capacity for 

sorafenib and long-term drug effect. The cytotoxicity of sorafenib with PVA/SPIONs has shown 

greater efficacy against cancer than that of free sorafenib alone. Karimia et al. [92] developed κ-

carrageenan-crosslinked magnetic chitosan nanoparticles of sunitinib with high drug loading 

efficiency and a controlled release profile for effective management of HCC.  Gao et al. [93] have 

evaluated hollow alumina nanoparticles functionalized with hyaluronic acid loaded with paclitaxel 

(PAC) (HMHA-NP). In vitro cellular uptake of PAC-HMHA-NP was significantly high and in vivo 

studies have shown better anti-tumor activity by PAC-HMHA-NP than nonfunctionalized PAC-

MHA-NP and pure PAC.   

Zhao R et al. [94] prepared a pH-sensitive mesoporous silica nanoparticle for co-administration of 

sorafenib and ursolic acid. The prepared nanoparticles were decorated with chitosan and lactobionic 

acid (MSN-CS-LA nanocarriers) to target of ASGPR in hepatocellular carcinoma cells.  The study 

showed better bioavailability of the drug and effective targeting and synergistic cytotoxicity. In vivo, 

compared with UA or SO alone, the nanocomplex significantly reduced the tumor burden in 

hepatocellular carcinoma (HCC). Mathilde et al. [95] developed nanoparticles of human serum 

albumin loaded with doxorubicin with high loading capacity (88%) to inhibit the in vivo growth of 

human hepatocarcinoma cells, the study showed significant growth inhibition. W. Ni et al. [96] 

prepared nanoparticle of biotin-/lactobionic acid modified poly (ethylene glycol)-poly (lactic-co-

glycolic acid)-poly (ethylene glycol) (BLPP) copolymer for co-delivery of curcumin and 5- 
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fluorouracil to enhance the treatment of hepatocellular carcinoma. The cytotoxicity study in animals 

and hepatoma Hep G2 cell line showed higher cellular uptake and a synergistic anticancer effect. W. 

Gao et al. [97] prepared human serum albumin (HAS) nanoparticle surface modified with grafted 

folic acid for loading sorafenib (FA-HAS-SRF-NPs). In vitro study in the hepatocellular BEL-7402 

showed enhanced cytotoxicity and increased safety in the normal liver LO2 cells. In vivo, the prepared 

nanoparticles showed effective antitumor activity toward nude mice bearing xenograft tumors without 

systemic toxicity. 

 

4.2 Liposome based nanocarriers  

Liposomes are a colloidal nanovesicle with phospholipid bilayer membrane, which have the ability to 

encapsulate various hydrophilic anticancer agents in their aqueous core and hydrophobic cytotoxic 

agents in their hydrophobic outer membrane [98]. Liposomes are effective nanocarriers for delivering 

many therapeutic drugs, they are biocompatible, biodegradable, and, because of their non-

immunogenic properties, have a safe and effective therapeutic potential for clinical applications [99]. 

Many liposomal formulations of antineoplastic chemotherapy drugs have been approved for clinical 

use and are commercially available in the market, such as, Doxil® doxorubicin encapsulated in PEG-

liposome, which is the first nano-drug product approved by FDA for clinical use [100].  PEGylated 

liposome has been widely used as a nanocarrier to improve the effectiveness of chemotherapy and is 

clinically effective with reduced toxicity [89]. Recently, research works focus on surface engineering 

by modifying the surface with ligands with different functional groups to achieve ligand binding. 

Targeted ligands enable specific targeting of tumor sites by targeting the liposome towards specific 

receptors that overexpressed in hepatoma cell, like folate receptor [101], CD-44 receptor [102], and 

transferrin receptor [103,104]. 

Shah et al. [105] prepared doxorubicin-loaded palmitoylated arabinogalactan (PAG) liposomes. In 

vitro cytotoxicity study in HepG2 cell lines showed higher antitumor activity by PAG liposomes as 

compared to the non-PAG liposomes. A better pharmacokinetic profile was observed by PAG 

liposomes as compared to the non-PAG liposomes. T. Wang et al. [106] prepared liposome for co-

delivery of doxorubicin and lovastatin, the in vivo study in H22 mice model mice hepatoma 

demonstrated that the co-loaded Doxorubicin-Lovastatin liposomes effectively inhibit the growth of 

the tumor with reducing toxicity. 

 

4.3 Carbon nanotube-based nanocarriers  

Carbon nanotubes are cylindrical hydrophobic tubes made of carbon atoms with a diameter of 

approximately 1-4 nm and length 1-100 nm. depending on the number of graphene layers nanotube 

can be single-walled nanotube or multiwalled carbon nanotubes [107]. Carbon nanotubes are widely 

applied for cancer diagnosis and therapy due to its unique features [108]. Moreover, carbon nanotubes 
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have a unique physicochemical architecture that can be functionalized chemically on its surface by 

modifications or bounding with different targeting ligands to make them a promising platform for 

active targeting of tumor cells [109].  

Z. Ji et al. [110] prepared chitosan modified single-walled carbon nanotubes loaded with doxorubicin, 

chitosan layer was bounded with folic acid for targeting folate receptor highly expressed in cancer 

liver cells. The in vitro and in vivo studies in HCC cell line SMMC-7721 showed that the 

DOX/FA/CHI/ SWNTs are much more effective in inhibition cancer cells than free DOX. X. Qi et al.  

[111] developed galactosylated chitosan-grafted oxidized carbon nanotubes loaded doxorubicin, the in 

vitro studies in HepG2 cells showed that the prepared doxorubicin carbon nanotubes were more 

efficient tumor targeting and higher cellular uptake. 

4.4 Lipid nanoparticulate carrier 

Particulate carriers (solid lipid nanoparticles, and nanostructured lipid carriers) have received much 

attention for the loading of antitumor drugs for the treatment of various types of cancers [112]. 

Nanoparticulate are desirable as carriers of active drugs because they have a high carrying capacity, 

longer circulation time and, facilitate the selective accumulation of tumors due to the effect of 

increased permeability and retention (EPR) or active targeting [113]. Lipid nanoparticulate can 

improve oral bioavailability, control the release and, target the anticancer with better physical stability 

[114]. Lipid nanoparticulate carriers are a promising candidate for anticancer targeting of the liver by 

lymphatic delivery [115]. NLCs show superior stability and loading capacity profile to overcome 

possible drawbacks and limitations of SLNs [116].  Various anti-cancer drugs have been encapsulated 

either in SLN or in NLC.  

L. Tunki, et al. [117] prepared sorafenib loaded solid lipid nanoparticle conjugated with polyethylene 

glycol (PEGylated) galactose as a delivery carrier for HCC.  Sorafenib loaded ligand conjugated 

nanoparticles show superior cytotoxicity, intracellular uptake and, apoptotic activities on HepG2 cells 

when compared with the free drug or non-ligand nanoparticle. In vivo studies in BALB/c mice show 

ligand conjugated SLN resulted in superior pharmacokinetic profile and better targeting of the liver by 

nanoparticles. 

Harshita et al. [118] prepared paclitaxel-loaded nanostructured lipid carrier (PTX-NLC). PTX-NLCs 

showed higher antitumor activity than commercial formulation (Intaxel®) on the HepG2 cell line. 

The bioavailability of paclitaxel from PTX-NLCs was better than from PTX suspension.  In another 

study, M.L. Bondì et al. [119] prepared nanostructured lipid carriers for delivery of sorafenib, the in 

vitro studies showed that sorafenib loaded into NLC had more growth inhibition than that of free 

drug.  

4.5 Polymeric micelles based nanocarriers   
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Polymeric micelles are colloidal structures that contain amphiphilic copolymers. They have a 

hydrophobic core responsible for the uptake of water-insoluble drugs and a hydrophilic shell that 

ensures good stability drugs from the physiological environment [120]. The diameter of the polymeric 

micelles is less than 100 nm.  Due to their range of nanometer sizes, their ability to self-assemble, 

stability, their ability to dissolve and transport hydrophobic drugs, polymeric micelles offer an 

attractive option for delivery of cytotoxic drugs to HCC [121]. High stability, low toxicity, and 

sustained release of the incorporated drug are the major advantages of polymeric micelles over 

surfactant-based micelles [122]. 

Fan et al. [123] prepared polymeric micelles-based gelatin functionalized with glycyrrhetinic acid for 

delivery of doxorubicin (DOX-GA-GEL) polymeric micelles. The in vivo studies with HepG2 cell 

lines have shown higher cellular uptake and cytotoxicity than DOX-HCl. In vivo study in mice with 

orthotopic H22 tumor have demonstrated the targeted ability and stronger tumor inhibition of GA-

GEL-2 micelles to liver tissue compared with the free DOX.  Su et al. [124] formulated micelles 

loaded with sorafenib for improved water solubility and enhanced anticancer activity, as observed 

through inhibition of tumor growth in the HepG2 tumor cells in vivo.  

 

4.6 Dendrimer based nanocarriers  

 

Dendrimers are highly branched three-dimensional synthetic macromolecules of various size (10-100 

nm) [125].  The typical architectural structure of dendrimers includes a core, monomer branches, and 

functional surface groups, in which branching units are arranged around the central core, so, 

dendrimers are candidates for different ligands and allow transport of a wide variety of drugs. [126] 

The modification of the chemical synthesis of the dendrimers improves the pharmacokinetics and the 

biocompatibility of the carrier and gives it promising properties for its use as a new carrier in the 

treatment of cancer [89,127].  Maria et al. [128] prepared poliamidoamine dendrimer (PAMAM) 

loaded with sorafenib to target asialoglycoprotein receptor (ASGP-R). The prepared dendrimer 

functionalized with lactobionic acid as a ligand. In vitro studies conducted in HepG2 and HLE cell 

lines have shown a higher uptake ability of dendrimer in ASGPR expressing hepatoma cell line 

HepG2 than in non-expressing HEL cells. In vivo cytotoxicity studies have shown that sorafenib 

loaded with dendrimer exhibits superior and long-lasting antitumor activity due to the kinetic release 

with delayed-release.  Yousef et al. [129] prepared dendrimers anchored to galactosamine and loaded 

with curcumin. In vivo cellular uptake of curcumin from dendrimer-galactosamine on the HePG2 cell 

line was significantly enhanced.  

 

5. Recent updates on the drugs approved for HCC treatment 
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US Food and Drug Administration (FDA) has approved several drugs for use in patients with liver 

cancer [130]. In this clinical-stage, the systemic treatment for HCC with the multikinase inhibitor 

sorafenib is the most common treatment option [131]. Also, several Immune checkpoint drugs are 

under development in phase 1, phase 2, and phase 3 trials, such as durvalumab, tremelimumab, 

atezolizumab, bevacizumab and, tivantinib have shown significant positive results in clinical phase 1 

and 2. However, clinical studies in phase 3 trials are required to confirm their efficacy for use in HCC 

[132–134].  

 

6. Challenges with HCC treatment and future opportunities 

Morbidity and mortality rates of HCC are significantly higher due to complexity that demands the 

development of an effective targeting therapeutic approach for treatment and prevention of HCC 

[150].  Despite of this, the design of an effective nanocarrier system for HCC targeting faces 

challenges and only a few nanotherapeutic formulations have entered clinical trials [151,152]. Despite 

advances in nanotechnologies for targeting of nanocarrier containing chemotherapeutic agents, yet 

many challenges and limitations are remaining. Toxicity is a major safety concern for applications of 

nanocarriers in clinical trials [153,154].  In addition, the accumulation of nanocarriers in the liver and 

their poor clearance rate causes high toxicity. The discovery of new ligands or targeting molecules 

needed to deliver nanocarriers to hepatoma cells is a major challenge [155,156].  For active targeting, 

the selection of the most suitable targeting agents “ligands” which are capable of binding the specific 

receptors expressed on the tumor cell surface is the prerequisite for the successful transport of 

nanocarriers to tumorous liver tissues for avoiding systemic toxicity [153,157,158]. 

 

7. Authors Insight on the Topic  

Currently, the growing interest in the field of HCC diagnosis and nanocarrier based chemotherapy 

demonstrate a potential future scope for human application. Nanocarriers such as surface-engineered 

liposomes, nanoparticles, nanotubes, micelles, quantum dots, etc. are some of the nanocarriers that are 

considered potentially useful as drug delivery agents in the treatment of HCC. The incidence of HCC 

is related to many sophisticated factors and molecular mechanisms, so we should comprehensively 

consider when to fabricate and investigate novel nanocarriers loaded therapy for HCC targeting. The 

design of an ideal drug carrier still needs more research and continuous efforts to understand the exact 

molecular mechanism of various nanocarrier materials, their long-term possible hazards, so provide a 

safe and reliable treatment for HCC. The perfect HCC targeted nanocarrier based drug delivery 

system should be able to maintain the drug in the liver tissue and specifically identifying the 

hepatocarcinoma cells. Thus, ligand-based hepatic receptor targeted drug delivery systems are 

expected to play a significant role in HCC diagnosis and treatment.  In the present, nanocarrier-based 

cancer-targeting therapy will face many challenges, such as surface engineered modification, 
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multireceptor targeting, and drug loading efficacy, toxicology, immunotoxicology, biocompatibility 

testing, and, stability testing. The emerging nanocarriers chemotherapy targeting techniques will be 

theranostic, with a multifunctional capability of simultaneous diagnosis and therapy. 

 

8. Conclusions 

Most traditional strategies for treating hepatocellular carcinoma experience poor targeting ability. 

Thus, it has taken increasing attention by the researchers for the exploration of new targeting 

receptors, ligands, and nanostructured systems to ensure efficient delivery of chemotherapeutic agents 

for the HCC treatment. Several studies in the literature reports mainly on animal or cell line models 

have shown the HCC-selective targeting ability of the nanocarriers based on their binding affinity to 

the target ligands-receptors, which further require exploration of their safety and efficacy through 

clinical studies in patients with HCC. 
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