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Abstract: Cellular senescence is an irreversible state of cell cycle arrest occurring in response to
stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic
proteins. Although beneficial and protective in several physiological processes, an excessive senescent
cell burden has been involved in various pathological conditions including aging, tissue dysfunction
and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between
pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization
of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of
major interest. However, despite the considerable number of studies, a comprehensive overview
of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking.
Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we
review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids,
organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids
as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative
lifespan-extending approaches.

Keywords: senescence; aging; antioxidants; oxidative stress; reactive oxygen species; minerals;
flavonoids; vitamins

1. Introduction

It was 1961 when Hayflick and Moorhead introduced for the first time the concept
of senescence [1]. Since then, a plethora of studies have been performed on this process,
identifying highly complex and multi-step mechanisms leading to an irreversible cell cycle
arrest, which can be initiated by various intrinsic and extrinsic stimuli, and developmental
signals [2,3].
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Distinct biological functions can be performed by senescent cells: from those beneficial
falling under acute senescence to those dangerous falling under chronic senescence [4].
Concerning the beneficial functions, senescent cells guide tissue regeneration and em-
bryonic development, limit tissue damage by reducing excessive cell proliferation and
promote wound healing. Moreover, they encourage tumour suppression via upregulation
of p53, p16 and p21 cell cycle inhibitors, or through production of interleukin-6 (IL-6)
and IL-8. Finally, they play an important homeostatic role that is extremely dependent
on their elimination by the immune system [5,6]. The senescence-associated secretory
phenotype (SASP), the primary mediator of acute senescence, has the main role to signal
the presence of senescent cells to the immune system and encourage their elimination.
However, when senescent cells persist, their SASP profile becomes damaging, and this can
transform senescent fibroblasts into pro-inflammatory cells, thereby promoting tumour
progression [2,3].

Different molecular mechanisms are known to induce senescence [7]. Nuclear DNA
damage is one crucial senescence mechanism, whose signals converge in p53 activation,
which in turn induces cell cycle arrest. When the DNA damage response (DDR) is pro-
longed, it promotes senescence [4]. Further known mechanisms underlying senescence are:
(1) persistent DDR activation at telomeres, the ends of chromosomes, which is sufficient to
activate replicative cell senescence [8]; (2) oncogene activation partly via reactive oxygen
species (ROS) production, determining hyperproliferation and altered DNA replication
profiles [4,8]; (3) cell cycle arrest by upregulation of p21 and p16 [9]; (4) mitochondrial
abnormalities with an increase in ROS synthesis and impairment in biogenesis and mi-
tophagy [10]; (5) induction to resistance to apoptosis by upregulation of the antiapoptotic
proteins [10]; (6) metabolic changes determined by senescence-associated-β-galactosidase
(SA-β gal) accumulation along with the increase in cellular lysosomal content [10]; (7) large-
scale chromatin reorganization occurring with the generation of senescence-associated
heterochromatin foci, which suppress transcription of pro-proliferation genes [10]; (8) se-
cretion of pro-inflammatory cytokines, chemokines, proteases, and growth factors that
influence the neighbouring cells (SASP profile); (9) morphological alterations including
cellular flattening and enlargement [10]; (10) post-transcriptional regulatory pathways
taking place at different levels: through the action of mRNA-binding proteins (RBPs) and
noncoding RNAs [11–14]; through a dysregulated splicing factor expression [12,15]; and
through N6-methyladenosine (m6A) processes with specific m6A-binding proteins [14].

Increased oxidative stress (OS) is a further major driver of senescence [16–21]. The
OS occurs when ROS/reactive nitrogen species (RNS) overproduction overwhelms the
elimination ability of antioxidants. In a very recent exhaustive review [13], the authors
summarized the major pathways inducing senescence through ROS/RNS deregulation.
Specifically, a SASP profile can be promoted both by the failure of the antioxidant cas-
cade due to defects in the well-known transcriptional factor Nrf2 (nuclear factor erythroid
2–related factor 2) [22], and by the activation of the redox-sensitive pathway influenced
by another well-known transcriptional factor NF-κB [23]. A SASP profile can be further
determined by the activation of molecular cascades linked to p53/p21 (due to persistent
double strands breaks/telomere shortening), but also to p16/Rb (due to epigenetic modifi-
cations) [3,22,24–26]. Furthermore, an increase in ROS/RNS levels can be determined by
mitochondrial dysfunctions, and this can contribute to telomere damage and epigenetic
modifications [27]. Finally, alteration in the NAD+/sirtuin pathway can provoke senescence
by the p53/p21 pathway, but it can also impact negatively on the specific functions of
forkhead box O (FOXO) and peroxisome proliferator activated receptor γ coactivator 1α
(PGC-1α), with consequent ROS increasing and mitochondrial dysfunctions (Figure 1).
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Figure 1. The interplay between oxidative stress (OS) and senescence. Excessive reactive oxygen
species (ROS) and reactive nitrogen species (RNS) trigger senescence through different mecha-
nisms: (i) via NF-kB stimulation, which induces the transcription of the main factors composing the
senescence-associated secretory phenotype (SASP); (ii) through DNA double strand brakes, which
trigger a sustained DDR response; (iii) via telomere shortening, which is directly linked to cellular
senescence; (iv) through a double cross-talk between mitochondria dysfunction and ROS/RNS pro-
duction and (v) via the inhibition of Nrf2, a crucial antioxidant transcription factor. Antioxidant
molecules and antioxidant enzymes (i.e., superoxide dismutase, catalase and glutathione perox-
idase) can counteract senescence through the inhibition of OS. Abbreviations: ARE: antioxidant
responsive element; CAT: catalase; DDR: DNA damage response; GCL: glutamate cysteine ligase;
GPx: glutathione peroxidase; GST: glutathione transferase; H2O2: hydrogen peroxide; HO-1: heme
oxygenase-1; HO•: hydroxyl radical; HOO•: hydroperoxyl radical; IL-1β: interleukin 1β; NF-kB:
nuclear factor kappa-light-chain-enhancer of activated B cells; NO•: nitric oxide radical; NO2

•:
nitrogen dioxide radical; NQO1: NAD(P)H quinone dehydrogenase 1; Nrf2: nuclear factor ery-
throid 2-related factor 2; O2

•−: superoxide anion radical; ONOO−: peroxynitrite anion radical; PST:
phenolsulfotransferase enzyme; SOD: superoxide dismutase; TNF-α: tumour necrosis factor α.
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In this context, OS molecules could represent potential therapeutic targets to boost
or delay cell senescence. Antioxidants compounds can be defined as senolytics, if they
are able to selectively kill senescent cells, or as senomorphics, if they act by modulating
the senescence phenotype [7,28]. Different mechanisms of action of senolytics have been
reported in the literature: inhibition of the BCL-2 antiapoptotic family, negative modulation
of the PI3K/Akt pathway and FOXO regulation [28]. On the other hand, senomorphics
revert or slow down senescence by regulating the SASP [29].

Despite the considerable number of studies, a comprehensive overview of the main
antioxidant molecules capable of counteracting OS-induced senescence is still lacking.

In this work, we describe the role of enzymes, mitochondria-targeting compounds,
vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals,
flavonoids, and phenolic acids as antioxidant compounds with an anti-aging potential
(Figure 2).
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Figure 2. Antioxidants: classification. The figure illustrates the main classes of antioxidants capable
of counteracting oxidative stress-induced senescence: enzymes, mitochondria-targeted antioxidants,
vitamins, carotenoids, organosulfur compounds, nitrogen non protein compounds, flavonoids, min-
erals, non-flavonoids, and others.



Antioxidants 2022, 11, 1224 5 of 42

2. Results
2.1. Enzymatic Antioxidants

The term antioxidant refers to a wide class of molecules (bioactive substances and
enzymatic complexes) that, present in small quantities (micronutrients) in the organism,
can protect organic substrates, both natural (phospholipids, proteins, DNA) and synthetic
(plastics, oils), from the attack of free radicals. All antioxidants inhibiting or reducing
radical formation are acknowledged as preventive substances, as they work by prevent-
ing the formation of the so-called initiator radicals. In this group of molecules we can
include: (a) chemical chelators, which are able, for example, to inhibit the Fenton reaction
(Fe2+ + H2O2 → Fe3+ + OH– + •OH); (b) sulphur and sulphide groups, which are able to
decompose hydroperoxides in a non-radical way (i.e., ROOH + RSR → ROH + RSOR);
(c) the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT,
EC 1.11.1.6), which break down superoxide anion and hydrogen peroxide, respectively.

Aging is a complex process where most antioxidant enzymes, including peroxidases,
undergo a marked change [30]. The main endogenous antioxidants are enzymes that
reduce the danger of free radicals, i.e., SOD, glutathione peroxidase (GPx) and CAT. In
order to carry out their functions, these enzymes need trace elements such as selenium,
copper, manganese and zinc and, for this reason, a daily intake of them is necessary. Raw
foods, or nutritional supplementation, provide exogenous antioxidants such as ascorbate,
tocopherol, vitamin C, β-carotenoids, bioflavonoids, lipoic acid, coenzyme Q10, selenium
and zinc. These micronutrients should enable our cells to face ROS excess by promoting
the antioxidant cellular endowment.

The superoxide dismutases (SODs) represent a wide group of antioxidant enzymes
with complex activities [31,32]. Their activity has a dynamic nature, as they can change
metal specificity to fit the different requests from cells in different microenvironments and
functional conditions [32]. The role of SODs in aging has been recently addressed [33].
Particularly for skin aging, an event characterized by impaired wound healing, atrophy,
reduced tensile strength and wrinkle formation, a marked loss in skin structural integrity
and in collagen and elastic fibres, with weakening in the fibre network, has been reported,
due to dysfunctional fibroblasts [34,35]. These senescent fibroblasts rapidly develop a
growth arrest, changes in morphology and function, increased ROS production with a
marked up-regulation of SOD2 in terms of both transcripts and proteomics [36–38]. The
upregulation of SOD2 is induced in the senescent phenotype also in a paracrine way by
physical insults such as UV irradiation [39] or by the immune release of chemokines, soluble
factors, and cytokines from keratinocytes [40]. Upregulation of SODs might, therefore,
mirror an impaired regulation of the cell survival machinery, to the point of even increase
mortality in elderly patients [41]. The recent contribution by Mao et al. reported that, in
858 deaths investigated throughout a period of 6 years, a strong effect of sex (female) in
the association between SOD activity and mortality was observed [41]. Furthermore, a
decrease in SOD plasma concentration, particularly the isozyme SOD3, which is highly
expressed in the arterial walls, can be detected along with further biomarkers of OS, such
as AOPP (advanced oxidation protein products) and 8-iso prostane. Interestingly, the
T-allele of rs2284659 in the promoter region of SOD3 has been related to a safer plasma
redox balance, leading to an improvement in the cardiovascular outcome in patients
with type 2 diabetes [42]. The same complex relationship between SODs and senescence,
usually characterized by a SASP, namely an irreversible process of cell cycle involution
alongside with a pro-inflammatory phenotype, deals with another complex actor of aging,
the mitochondria biology [43]. It is well known that a deficiency in SOD2 in connective
tissue leads to a senescent phenotype in bones, muscles and skin [44], whereas deletion in
the gene expression of SOD1 leads to the appearance of a SASP marker in the kidney [45],
yet many of these results should be associated with the biology of activated mitochondria.

As cells and organisms increase their age, the respiratory chain tends to decrease, thus
augmenting the release of electrons and reducing the generation of ATP. The theory of mito-
chondrial free radicals in senescence proposes that progressive mitochondrial dysfunction,
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which occurs with aging, results in an increased production of ROS, which in turn causes
further mitochondrial and global cellular damage. This theory has been indeed reappraised
in recent years [46].

When a switch from manganese (Mn2+) to iron (Fe2+) in SOD2 occurs, usually when
due to a depletion Mn2+ is replaced by Fe2+, the new FeSOD2, which turns its function
towards a pro-oxidant peroxidase, is a powerful causative factor of OS, mitochondria
functional impairment and senescence [47]. A molecular cross-talk exists between Mn
and Fe in mitochondria, able to switch SOD2 functionality [48,49]. This cross-talk may
be impaired during aging, as, for instance, when fibroblasts accumulate iron during the
development of a senescent phenotype [50], they may increase the Mn-Fe shift in SOD2,
given that aging is also characterized by Mn and further micronutrients deficiency [51].

Catalase (CAT) is, most probably, a strong biomarker of senescence, due to the crucial
role of H2O2 in modulating the OS response [52]. Further, peroxisomal OS is particularly
crucial in the cell lifespan and survival ability and CAT plays an utmost role in this sense,
so that CAT inactivation may lead, due to an impaired mitochondria-peroxisome cross-
talk, to a condition of premature aging, also known as progeria phenotype [53]. Actually,
hypocatalasemic fibroblasts show senescent-derived disorders [54,55].

2.2. Mitochondria-Targeted Antioxidants

The role of mitochondria in OS has long been established [56]. Due to the content
of multiple electron carriers and an extensive antioxidant defence, they represent a key
centre for ROS/antioxidant balance regulation [56]. Coenzyme Q10 (CoQ10), SkQ1 (a.k.a.
visomitin), mitoquinone (MitoQ) and methylene blue are among the mitochondria targeted
antioxidants exerting a role in counteracting OS-induced senescence, with CoQ10 being the
most studied (Tables 1 and 2) [57–82].

CoQ10 is a lipid-soluble molecule involved in oxidative phosphorylation, metabolism,
mitochondria permeability and antioxidant defence, either directly or indirectly [83]. A
lack of CoQ10 has been related to several conditions, including aging and neurological
disorders [83–89] (Table 1). A representative example is the increase in mitochondrial
dysfunction, OS, apoptosis, and aging found in human dermal fibroblasts when CoQ10
production is pharmacologically inhibited [90]. Regarding senescence, CoQ10 deficiency
has also been linked to increased p21 expression (a regulator of cell cycle progression),
enhanced SASP production and downregulation of some extracellular matrix components
(collagen type I and elastin) [66]. In vitro studies conducted on human skin fibroblasts
exposed to H2O2 have shown that cell treatment with CoQ10 significantly reduced OS,
decreased the amount of SA-β gal positive cells and restored collagen type I protein and
the senescence-associated matrix metalloproteinase (MMP) production, therefore delaying
skin aging [63]. Chronic treatment with nucleoside reverse transcriptase inhibitors (NRTI),
which are clinically prescribed for the treatment of HIV, has been demonstrated to trigger
oxidative damage, senescence, and endothelial toxicity. Recently, Chen et al. demonstrated
that this phenotype could be reverted in vitro when human aortic endothelial cells are
supplemented with CoQ10 [59], and similar findings were also reported concerning neural
progenitor cells [65]. Stem cells are particularly sensitive to senescence induced by OS, as
this condition may impact their self-renewal and repopulation capacity. In this respect,
some in vitro studies indicate that CoQ10 can protect stem cells from OS-induced aging
by influencing the Akt/mTOR signalling pathway, therefore preserving their proliferative
balance [64].
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Table 1. CoenzymeQ10 and ubiquinol in the prevention of OS-induced senescence.

Ref. Study Design Treatment Form Results Conclusion

Chen et al.,
2019 [59]

HAEC chronically
treated with NRTI

5 µM CoQ10
continuously applied

across passages
CoQ10

↓ NRTI-induced senescence
↓ ROS

↑Mitochondrial respiration rate

CoQ10 reduces
cardiovascular side effects of

NRTI treatment

Tarry-Adkins
et al., 2013 [58]

Mouse model of low
birth-weight and
catch-up growth

Post-weaning dietary
supplement CoQ10

↓ Nitrosative and OS
↓ DNA damage

↓ Cellular senescence
↓Telomere shortening

↓ Apoptosis

CoQ10 prevents cardiac
aging and cardiovascular

risk

Ma et al.,
2014 [60]

PS-1-mutated AD
fibroblasts

Medium with
50 µg/mL WS-CoQ10

WS-CoQ10

↓ ROS
↑ Cell doubling
↓ SIPS

↑ PCNA expression
↓MnSOD, p21, p16Ink4A, and Rb

↑ Autophagy

WS-CoQ10
inhibits SIPS and improves

autophagy

Xue et al.,
2017 [61] Mouse PSCs

Cell treatment with
1/10/100 µM CoQ10 for

24/48/72 h
CoQ10

↓ Apoptosis
↓ SA-β-Gal

↓ ROS and malondialdehyde after
72 h treatment

CoQ10 may act as a target in
PSC-related pathologies

Wu et al.,
2020 [62] ORX mice CoQ10 50 mg/kg/day CoQ10

↓ OS
↓ Cell senescence

↑ Osteoblastic bone formation

CoQ10 is anti-osteoporosis
and -senescence

Mine et al.,
2021 [63]

H2O2-induced SIPS in
human skin fibroblasts 1 µM and 10 µM CoQ10 CoQ10

↑ Cell viability
↓ OS

↓ SA-β-Gal
↓ SASP

CoQ10 can contribute to
increase lifespan

Zhang et al.,
2015 [64]

D-galactose -induced
aging in MSC

1/10/100 mmol/L
CoQ10 for 48 h CoQ10

↓ p-AKT and p-mTOR
↓MSC senescence

CoQ10 inhibits MSC
senescence and aging

Velichokovska
et al., 2019 [65] NPCs exposed to ART NP-based delivery of

CoQ10 to mitochondria CoQ10

↓ ROS
↑ SIRT3

↑ Cell proliferation
↓ SA-β-Gal

↑ Telomere length

ART-induced senescence can
be reversed by NP-CoQ10

Marcheggiani
et al., 2021 [66] CoQ10-deprived HDF

5, 10 or 15 µg/mL of
either CoQ10 or

CoQ10H2
for 24 h

CoQ10 or
CoQ10H2

↓ SA-β-Gal
↓ OS
↓ p21

↑ Elastin, collagen type I

CoQ10 or CoQ10H2 prevent
skin aging and support skin

vitality

Huo et al.,
2018 [67]

HUVEC treated with
H2O2

24 h in medium with
10 µM CoQ10H2

CoQ10H2

↓ SA-β-Gal positive cells
↓ SASP
↓ ROS

↓ Apoptosis
↑ NO and eNOS

↑Mitochondrial function

CoQ10H2
delays vascular aging

Yan et al.,
2006 [68] SAMP1 mice 250 mg/kg/day lifelong

supplement CoQ10H2

↓ Senescence grading scores
↑ Female body weight

= Lifespan
= Urinary 8-OHdG and
acrolein-lysine adduct

CoQ10H2 decreases cellular
senescence in middle-aged

SAMP1 mice

Olivieri et al.,
2013 [69]

Senescent HUVECs in
presence or absence of

LPS

10 µM CoQ10H2 for
24 h or 60 days CoQ10H2

↓ LPS-induced NF-kB activation
↓ SASP

CoQ10H2 may
prevent aged-induced

endothelial dysfunction

Maruoka et al.,
2014 [70] SAMP1 mice

300 mg/kg (Group A)
or 30 mg/kg CoQ10H2

(Group B)
CoQ10H2

↓ Senescence score at 10 months in
Group A compared to B

↓ OS
↑ Antioxidant potential

CoQ10H2
reduces senescence and OS

in a dose-dependent manner

Schmelzer
et al., 2010 [71]

Middle aged SAMP1
mice

500 mg/kg/day of
CoQ10H2 for 6 or

14 months
CoQ10H2

↓ Senescence grading score
↑ PPAR-alpha

CoQ10H2 decelerates
degeneration in SAMP1 mice

Cirilli et al.,
2020 [72]

HUVEC treated with
CSE for 24 h 10 µM CoQ10H2

CoQ10H2 and
menaquinone 7

↓ OS
↓ Inflammation
↓ Apoptosis
↓ SA-β-Gal

CoQ10H2 and
menaquinone-7 counteract

CSE-induced damage

Tian et al.,
2014 [73] SAMP1 mice Dietary CoQ10H2 (0.3%

w/w) CoQ10H2

↑ PGC-1α, SOD2, IDH2, SIRT1,
SIRT3

↑Mitochondrial complex I activity
↓ OS

↑ GSH/GSSG ratio

CoQ10H2 protects against
aging progression

Abbreviations: AD: Alzheimer’s Disease; ART: antiretroviral therapy; CoQ10: coenzyme Q10; CoQ10H2: ubiquinol;
CSE: cigarette smoke extract; eNOS: endothelial nitric oxide synthase; GSH: reduced glutathione; GSSG: oxidized
glutathione; HAEC: human aortic endothelial cells; HDF: human dermal fibroblasts; HUVEC: human umbilical
vein endothelial cells; IDH2: isocitrate dehydrogenase 2; LPS: lipopolysaccharide; MSC: mesenchymal stem
cell; NF-kB: nuclear factor kappa-light-chain-enhancer of activated B cells; NO: nitric oxide; NP: nanoparticle;
NPCs: neural progenitor cells; NRTI: nucleoside reverse transcriptase inhibitors; ORX: orchiectomized; OS:
oxidative stress; PCNA: proliferating cell nuclear antigen; PGC-1α: peroxisome proliferator-activated receptor γ
coactivator 1α; PPAR: peroxisome proliferator-activated receptor; PS-1: presenilin-1; PSCs: pancreatic stellate cells;
ROS: reactive oxygen species; SA-β-Gal: senescence-associated β-galactosidase; SAMP1: one of the senescence
accelerated mice (SAM) strains, which shows shortened life span and early signs of senescence; SASP: senescence-
associated secretory phenotype; SIPS: stress induced premature senescence; SIRT: sirtuin; SOD2: superoxide
dismutase 2; WS-CoQ10: water-soluble CoQ10; 8-OHdG: 8-hydroxy-2′-deoxyguanosine; ↑: increase; ↓: decrease.
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Table 2. SkQ1 and MB in the prevention of OS-induced senescence.

Compound Sample Treatment Results Ref.

SkQ1 Podospora anserina, Ceriodaphnia affinis,
Drosophila melanogaster, and mouse

Nano- and subnanomolar
concentrations of SkQ1

-Prolonged lifespan
-Reduced senescence [74,75]

SkQ1 Wistar and senescence-accelerated rats 250 nmol per kg/day SkQ1 (starting
from 19 months of age) -Reduced and reversed age-related decline [76]

SkQ1 BALB/c and C57BL/6 mice Lifelong administration of SkQ1 -Decreased cardiomyopathy, fibrosis and
cardiac hypertrophy [77]

SkQ1 Senescence-accelerated rats 250 nmol/kg body weight, daily
(from 1.5 to 23 months of age) -Reduced Alzheimer’s disease pathology [78]

MB Human IMR90 fibroblasts 10, 100 or 1000 nM of MB for 4 days -Delayed senescence
-Improved mitochondrial function [79]

MB Human skin fibroblasts derived from
progeria patients 100 nM MB

-Effective ROS scavenging
-Improved skin fibroblast proliferation

-Delayed senescence
[80]

MB Human bone marrow-derived MSCs 200 nM MB -Improved expansion in vigorous MSCs
-Improved differentiation in vigorous MSCs [81]

MB Primary rat RGCs 1 µM and 10 µM MB -Stimulated mitochondrial function
-Enhanced neuroprotection [82]

Abbreviations: MB: methylene blue; MSCs: mesenchymal stem cells; RGCs: retinal ganglion cells.

In vivo administration of CoQ10 has long been known to improve immune functions
by reducing immunological senescence that characterizes elderly mice [91]. More recently,
studies conducted on mouse models of osteoporosis have demonstrated that CoQ10 supple-
mentation (50 mg/kg/day) is sufficient to prevent osteoporosis by limiting ROS production
and diminishing cellular senescence, both factors known to contribute to the disease de-
velopment [62]. Moreover, CoQ10 may prevent cardiac aging, metabolic syndrome, and
cardiovascular disorders when administered post-weaning to a rat model that mimics
these conditions, and this improvement is mediated by the reduction of ROS and RNS,
senescence, and apoptosis [58]. Similar beneficial effects have been obtained in cancer and
Alzheimer’s disease (AD), in whose pathogenesis OS plays a predominant role [60,61].
Although beneficial, lifelong supplementation with CoQ10 may also be deleterious [92–94].
In this respect, results from a study designed to address CoQ10 administration only later
in life showed that old mice subjected to a high CoQ10 diet displayed reduced OS in vari-
ous tissues and were more efficient in performing the Morris water maze test compared
to the untreated counterpart [95]. However, no improvements in other psychomotor or
cognitive tests suggest that more research is needed to clarify the optimal timing of CoQ10
intake [95]. Nevertheless, the introduction of innovative delivery approaches to improve
CoQ10 efficiency, such as the use of mitochondria-targeted nanoparticles, may represent a
promising strategy to enhance CoQ10 antioxidant activity while limiting the possible side
effects caused by high-doses administration [65].

CoQ10H2 (or ubiquinol), the reduced form of CoQ10, is even more efficient than CoQ10
itself in reverting senescence markers expression, both in vitro and in vivo [66,71]. The
reason for this outperformance could be at least in part explained by a higher CoQ10H2
bioavailability at the same concentrations, therefore allowing a more efficient subcellular
delivery [66,71]. For example, a study conducted by Huo et al. has shown that treatment
with CoQ10H2 of H2O2-induced senescent human umbilical vein endothelial cells (HU-
VEC) is effective in reducing SA-β gal, SASP release and ROS production, but enhanced
nitric oxide (NO) and endothelial NO synthase (eNOS) levels [67]. Diminished inflam-
mation, OS-induced senescence and apoptosis have also been observed in the same cell
line in other studies [69,72]. In vivo, experiments conducted on SAMP1 mice reported
that ubiquinol administration at relatively high doses (250–300 mg/kg/day) for at least
10 months can reduce senescence grading scores and ROS production, while enhancing
antioxidant defences [68,70]. However, no lifespan improvement was detected [68]. Up-
regulation of sirtuins 1 and 3 (SIRT1 and SIRT3), SOD2 and isocitrate dehydrogenase 2
(IDH2) enzymes, together with a higher reduced to oxidized glutathione (GSH/GSSG)
ratio are also described upon dietary CoQ10H2 supplementation in an independent study,
thus confirming the role of ubiquinol in protecting against cellular senescence progression
and aging [73]. Finally, these improvements can be further enhanced by the combination of
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physical exercise and ubiquinol supplementation, as recently reported in in vivo studies
carried out on SAMP8 mouse models [96].

The SkQs are a class of compounds made up by an antioxidant molecule (plasto-
quinone), a lipophilic cation and a linker moiety (decane or pentane). The family comprises
SkQ1, SkQR1 and SkQ3, which belong to the mitochondria-targeted plastoquinone deriva-
tives with antioxidant activity [97] (Table 2). In particular, SkQ1 and SkQR1 have been
reported to reduce H2O2-induced senescence and apoptosis in vitro and to prevent senes-
cence and tissue damage during aging [75]. Moreover, these benefits were achieved also
in vivo in a wide range of age-related diseases and across species, even in the case of low
doses administration later in life [74,76,97]. As for CoQ10, SkQ1 given to senescence prone
rats at the concentration of 250 µmol/kg/day may be sufficient to prevent the physiological
age-related deterioration of immunological defences [98]. Finally, AD-related cognitive
decline, behavioural test scores and senescence-associated myocardial disease may improve
in murine models upon long-term (lifelong) or limited (between 12 and 18 months of age)
intake of SkQ1 [77,78,99–101]. Mechanistically, SkQ1 exerts its antioxidant properties by
fatty acid co-mediated uncoupling, through interference with lipoperoxyl radicals and via
regulating the electron flow at the level of mitochondria [102].

Methylene blue (MB) is a well-known mitochondria-targeted antioxidant that has
shown promise in contrasting aging, especially skin aging [103] (Table 2). Methylene blue
is reported to be particularly effective in delaying skin cellular senescence and extend-
ing fibroblasts lifespan in vitro, as well as in improving mitochondrial functions [79,80].
Although not yet fully understood, multiple mechanisms are thought to underlie its antiox-
idant function, including Keap/Nrf2 pathway upregulation, MB to MBH2 (the reduced
form of MB) cycling in mitochondria, complex IV induction and increased production of
collagen 2A1 and elastin, two components of the extracellular matrix fundamental for skin
preservation [79,80,104]. Besides skin aging, MB may also prevent senescence and OS in
other cell types, such as primary retinal ganglion cells and mesenchymal stem cells (MSCs),
but its efficacy on stem cells remains limited to the cellular fraction characterized by a lower
baseline level of OS [81,82].

Overall, despite promising evidence, results remain unclear. An important limitation
is that studies are often performed on a specific cell line or murine model under certain
conditions, which often prevent the results from being generalized and/or to be reproduced.
In this respect, for example, data on extended fibroblast lifespan are debated, with some
evidence showing that they can successfully decelerate aging and prevent senescence while
other studies are inconclusive [105].

2.3. Vitamins

Vitamin A. Preformed vitamin A (all-trans-retinol and its esters) and pro-vitamin A (β-
carotene) are essential dietary nutrients that provide a source of retinol, which regulate basic
physiological processes [106,107]. Vitamin A and retinoic acid (a metabolite of all-trans-
retinol) administration have been demonstrated to improve AD and age-related attenuation
of memory/learning in mouse models, and this is probably due to their immunomodulatory
effect and the reduction of pro-inflammatory cytokines and chemokines production by
astrocytes and microglia, as well as to the promotion of differentiation of neural stem
cells and regeneration of neural cells [108–110]. The role of vitamin A in the treatment of
neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and schizophrenia,
is currently under investigation [108,111]. Vitamin A has also been studied in association
with quercetin, a well-known flavonol (see Section 2.7 Flavonoids) [112]. This combination
has proven capable of reducing rapid senescence-like response induced by acute liver
injury [113].

Vitamin C or ascorbic acid (AA) is a powerful antioxidant that can have beneficial
effects on delaying the aging process and age-related diseases thorough its action on re-
dox oxidative and mitochondrial pathways, on the immune system, on inflamm-aging,
on endothelial integrity, and on lipoprotein metabolism [114–121]. Supplementation of
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AA also appears to prevent OS, immunosenescence, telomere attrition, disorganization
of chromatin, and excessive secretion of inflammatory factors, and to prolong life [122].
For example, AA has been reported to extend replicative lifespan of human embryonic
fibroblasts by restoring age-related decline of mitochondrial function and lowering cellu-
lar ROS, therefore reducing mitochondrial and DNA damages with decelerated telomere
shortening [123,124]. Moreover, AA was found to have a protective effect also on human
chondrocytes against OS by attenuating the increase of apoptosis, the loss of viability and
the increase of senescence, and therefore hindering the development of osteoarthritis and
aging of cartilage [125,126]. In the brain, AA has been increasingly found to promote
several beneficial effects on neurodegeneration by direct neuroprotection against OS [116].
This vitamin has also been demonstrated to foster anti-senescence and anti-atherosclerotic
effects via an improvement of lipoprotein parameters and microRNA expression through
anti-oxidation and anti-glycation, especially in smokers [127–129]. Finally, a stable AA
derivative, 2-O-α-glucopyranosyl-L-ascorbic acid (AA-2G), was also evaluated and com-
pared with AA itself for its protective effect against cellular damage and senescence induced
by hydrogen peroxide. The results suggest that the effect of AA-2G is longer-lasting com-
pared to that of AA and this derivative might therefore be considered as a more stable form
of vitamin C [130].

Vitamin E is a family of fat-soluble vitamins, which comprehends eight organic
compounds with different degrees of antioxidant activity [131]. The impact of vitamin E on
the prevention of chronic diseases is believed to be associated with OS and it has often been
the subject of several studies. It has been recently observed that a higher consumption of
antioxidants such as vitamin E is able to reduce ROS levels, leading to decreased telomere
shortening, decelerating the cellular senescence, and potentially decreasing the risk of
disease development [132,133].

Vitamin K compounds are a family of fat-soluble vitamins comprising structurally
similar molecules including two main natural forms: phylloquinone (vitamin K1) and
menaquinones (collectively known as vitamin K2). Besides being responsible for the activa-
tion of vitamin K-dependent proteins (VKDPs), which are involved in multiple functions
such as bone and cardiovascular mineralization, vascular haemostasis, energy metabolism,
immune response, brain metabolism, cellular growth, survival, and signalling [134–137],
vitamin K appears to suppress the pro-inflammatory cytokines production through a
non-carboxylative pathway, by modulating the gene expression of pro-inflammatory mark-
ers [138]. Accordingly, warfarin, a vitamin K antagonist, has been found to induce chronic
low-grade inflammation in non-senescent vascular smooth muscle cells and enhance vascu-
lar aging and calcification, especially in young patients (<65 years old) [139,140].

2.4. Carotenoids

Carotenoids are naturally occurring lipophilic pigmented molecules found in fruits
and vegetables with important antioxidant properties [141]. Chemically, their polyene
structure, characterized by conjugated double carbon bonds, is at the basis of their ability
to scavenge ROS and free radicals, therefore protecting from OS [141]. Although more than
750 carotenoids have been described [142], β-carotene, lycopene, lutein, and zeaxanthin
remain the most examined for their implication in human health, with indications of their
involvement in several age-related diseases [143–150]. There is evidence that carotenoids
participate in the regulation of OS-induced senescence [151,152], and the same is true for
parrodienes, which are structurally related to retinoids and carotenoids [153].

β-carotene is the precursor of retinoic acid [154,155]. Although it is generally consid-
ered an antioxidant, it can also function as a pro-oxidant compound depending on the
circumstances, which are still not fully understood [156]. In vitro, keratinocytes treatment
with β-carotene, prior to UVA exposure, prevents the upregulation of MMP-1, MMP-3
and MMP-10, therefore suggesting a protective role of β-carotene against OS-induced
senescence [154].
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Lutein and zeaxanthin are two macular pigment stereoisomers belonging to the xan-
thophyll group of dietary carotenoids [157]. Because of their unique ability to cross the
blood-retina barrier, they accumulate in the macula and by virtue of their antioxidant,
photoprotective and anti-inflammatory features are involved in the proper eye function-
ing [158–160]. A lack of lutein and zeaxanthin is generally associated to a poor cognitive
performance in elderly [157,161]. Accordingly, improved cognitive functions were observed
in elderly patients supplemented for one year with a mixture of lutein and zeaxanthin
(12 mg/day), albeit not significant compared to the placebo group [162,163].

There is evidence that OS-induced senescence is involved in the pathogenesis of age-
related macular degeneration (AMD), which represents the leading cause of blindness
in aged individuals [158,164,165]. In this respect, Chae et al. documented that lutein
treatment protects cells from H2O2-induced senescence by promoting the expression of
antioxidant effectors such as nicotinamide adenine dinucleotide phosphate (NADPH)
quinone dehydrogenase 1, heme oxygenase-1 (HO-1) and sirtuins (SIRT1 and SIRT3) [164].
Moreover, lutein and zeaxanthin intake, either as supplement or through xanthophyll-
enriched foods, might delay AMD thanks to increased antioxidant protection [166]. Finally,
data from Sen et al. show that a positive correlation exists between telomere length and
xanthophyll carotenoids plasma levels, thus confirming the important role of lutein and
zeaxanthin in the context of cellular senescence.

Lycopene is a lipophilic carotenoid naturally found in tomatoes and other red veg-
etables and fruits with potent cytoprotective and antioxidant properties [167,168]. During
aging, lycopene protects from cognitive impairment, insulin resistance and cancer, among
the others [169–171]. In a study involving 1973 participants, Weber et al. showed that
plasma lycopene levels are significantly different between young and old women, thus sug-
gesting that its antioxidant activity is crucial to prevent age-related diseases [161]. Similarly,
studies conducted on MSCs demonstrated that cellular pretreatment with lycopene protects
against H2O2-induced senescence, enhances antioxidant defences (i.e., improved MnSOD
activity and reduced ROS production) and prevents apoptosis through the modulation of
Bax and Bak proteins [172]. When used alone, lycopene is known to foster the increase in
HO-1, which is detected in dermal fibroblasts after exposure to UVA, thus representing a
cytoprotective mechanism [173,174]. Moreover, the combination of lycopene with the anti-
aging compound nicotinamide mononucleotide (NMN) has proven effective in reducing
OS both in vitro and in vivo by enhancing the activity of SOD, CAT, GPx enzymes [175].
This effect, combined with the activation of the Kaep1-Nrf2 antioxidant pathway, efficiently
prevents cells to become senescent, therefore confirming the promising role of lycopene
in improving the anti-aging effect of already established compounds [175]. These results
indicate that multiple carotenoids might be responsible for the antioxidant effects reported
in the literature, but more research is needed to clarify the optimal combination of these
supplements.

2.5. Organosulphur Compounds

Glutathione is a natural tripeptide, that is γ-l-glutamyl-l-cysteinylglycine, harbouring
a fundamental role in the regulation of redox homeostasis [176]. Glutathione can exist
in two forms: reduced glutathione (GSH) and oxidized glutathione (GSSG), which are
converted into each other by the enzymatic activity of GPx (that links two GSH in one GSSG
through the formation of a disulphide bond) and glutathione reductase (that catalyses the
reduction of one GSSG into two GSH to the expenses of NADPH) [177]. Being the main
intracellular antioxidant buffer, both the levels of GSH and GSH/GSSH ratio are tightly
controlled through a fine regulation of their synthesis, metabolism, transport, and degrada-
tion [176,177]. A GSH deficiency has been related to the onset and progression of several
diseases, including cancer, immunodeficiencies, seizures, neurodegeneration, cardiovascu-
lar dysfunctions, and diabetes [178–180]. As GSH levels can be used as a biomarker for the
oxidative status of the cell [176,181–183], a reduction in GSH and the GSH/GSSG ratio are
often reported during normal aging and in cellular senescence, both conditions influenced
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by OS [183–186]. For example, inhibiting or reducing GSH synthesis is sufficient to induce
premature senescence and OS-mediated telomere shortening in HUVEC, and this condition
is not restored by telomerase activity [187]. Similarly, a decreased activity of the enzyme
glutamate-cysteine ligase, which is involved in the synthesis of GSH, has been linked to
senescence, ROS production and DNA damage in primary mouse fibroblasts [188]. Of
note, these detrimental effects are reversed by N-acetylcysteine supplementation, which is
known to increase intracellular GSH levels [188]. Further evidence demonstrates that GSH
deficiency can also trigger senescence through a pathway involving ROS production and
Erk/p38 regulation, in a mechanism independent from the canonical p53 activation [189].
Therapeutically, small extracellular vesicles enriched in the glutathione S-transferase Mu 2
(GSTM2) enzyme, which works in conjunction with GSH to reduce OS and detoxify the
cell from harmful compounds, can relieve senescence in various tissues when injected
intraperitoneally in old mice [190]. Although reproducible, these results are not always
consistent. Contrary to expectations, Tong et al. reported no reduction in brain GSH levels
when analysing human postmortem brain samples in elderly subjects compared to younger
ones, albeit the lack of data in living tissues represents an important limit of this study [191].
Moreover, Barilani et al. recently showed that increased GSH levels accompany MSCs
aging [192]. Nevertheless, this mechanism might be a protective strategy to counterbalance
the age-related increase in ROS observed during cellular senescence [191,192].

At brain level, elderly people (>74 years old) are generally characterized by reduced
glutathione-S-transferase activity accompanied by slightly lower cerebrospinal fluid (CSF)
antioxidant defences compared to younger individuals [193]. These data are consistent
with previous evidence reporting an age-related decline in GSH levels both in the brain
and the liver of SAM mice, along with other antioxidant molecules [194]. In humans, this
impaired glutathione homeostasis might be involved in the pathogenesis of brain disorders,
including age-related neurodegeneration [195].

Because GSH is a crucial regulator of oxidative status, it might also represent a promis-
ing therapeutic target. Indeed, enrichment analysis research performed on the DrugAge
database, a repository of compounds known to extend life, showed that GSH is among
the most common targets of lifespan prolonging drugs [196]. In this respect, Rebrin et al.
demonstrated that the benefits of diets enriched in vitamins and micronutrients should be
ascribed to increased plasma levels of GSH and improved mitochondria redox homeostasis
in a sex and tissue dependent manner [197]. Direct GSH delivery is another therapeutic
option. However, the insufficient bioavailability of GSH remains a limit, and the use of
prodrugs and precursors of GSH have been proposed as an alternative route [198]. Recent
data from Kumar et al. showed that supplementation with glycine and N-acetylcysteine
ensures the correct GSH balance and extends mice lifespan by 24% [199]. Similarly, the ad-
ministration of glutathione precursors (i.e., glycine and cysteine) is sufficient to significantly
increase GSH levels and reduce OS in aged individuals [200,201].

Overall, these data point to GSH as a key antioxidant regulator involved in OS-induced
senescence. However, although promising, more research is needed to carefully address
its potential role as biomarker and therapeutic compound in the context of aging and
senescence.

Alliin, allicin, allyl sulphides, allylcysteines and other sulphur-containing com-
pounds have long been known for their antioxidant properties [202]. Mainly contained in
onion and garlic, they have shown to exert beneficial effects against cardiovascular diseases,
cancer, aging, inflammation, OS, and infection, among the others [202,203]. Concerning
aging, SAMP8 mice fed for 2 months with a diet containing 2% of aged garlic extract
(AGE), which has been reported to have a higher antioxidant activity compared to fresh
garlic extract [204], show improved lifespan and learning scores compared to the untreated
counterpart [205–207]. The improvement in memory functions was then confirmed in vitro
by a study conducted on primary hippocampal neurons derived from SAMP10 mice, whose
dendrites are increased in length and number upon treatment with S-allylcysteine, the
most abundant organosulphur compounds present in AGE [208]. In vivo, 12-week dietary
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supplementation with S-allylcysteine (0.05% or 0.2%) to 60-week-old wild type mice re-
duces senescence, improves mitochondrial functions, and ameliorates both aging and OS
biomarkers [209]. At the molecular level, AGE reduces the production of ROS, increases
glutathione levels, enhances the activity of the main antioxidant enzymes SOD, CAT and
GPx, prevents lipid peroxidation and inhibits NF-kB (nuclear factor kappa-light-chain-
enhancer of activated B cells) activity [203,210]. Despite encouraging results, discordant
evidence emerged from some studies when the molecules contained in the AGE were
tested individually. For example, while allicin shows senolytic activity when administered
to breast cancer cells, alliin instead behaves as a pro-senolytic compound in the same
conditions [211]. Still, when used as a whole, garlic extract exerts a strong NO scavenging
function, reduces MMP-1 expression and ROS levels, inhibits SASP and improves SIRT1
activity, thus alleviating UVB-induced senescence in keratinocytes [212]. The combina-
tion of the beneficial effects exerted by the different AGE components may explain this
discrepancy. For instance, recent evidence has shown that S-1-propenylcysteine, one of
the AGE components, acts as an anti-inflammatory via stimulation of IL-10 expression
and promotion of macrophage polarization towards an M2c status, which regulates the
phagocytosis process of apoptotic cells [213]. According to these results, synergistic effects
might be achieved by combining anti-inflammatory properties of S-1-propenylcysteine
together with anti-aging and antioxidant activities reported for the other organosulfur
compounds. Moreover, the administration dosage should be carefully evaluated because
high concentrations of antioxidants may instead exacerbate OS. Overall, in line with the
well-known beneficial effects of onion and garlic consumption, it is emerging that var-
ious organosulfur compounds commonly found in their extracts can prevent OS, thus
supporting their usefulness in counteracting the aging process.

2.6. Nitrogen Non-Protein Compounds

Uric acid (UA) is a by-product of purine metabolism normally found in blood and
urine. In the context of OS, although UA is classified as an important antioxidant molecule
when circulating in the plasma, it exerts a potent pro-oxidant activity once inside the cell
or in the form of extracellular crystals, probably due to different environmental interac-
tions [214,215]. However, the molecular switch behind this dual role of UA, also defined as
the “uric acid paradox”, remains largely unknown and controversial [216]. Accordingly,
chronic serum hyperuricemia positively correlates with inflammation, DNA damage and
OS, and has been implicated in the pathogenesis of several disorders, including renal,
metabolic, and cardiovascular diseases [214,217,218]. Concerning senescence, several stud-
ies have demonstrated a link between UA levels, OS, and cell cycle arrest, both in vitro and
in vivo, and improved aging-related functions have been observed following the admin-
istration of UA lowering agents [219]. For example, keratinocyte exposure to exogenous
UA triggers cellular senescence and OS through a mechanism that is at the basis of the
UV-induced damage [220], and a similar pattern has been reported for other cell lines [221].
Moreover, xanthine oxidoreductase, an enzyme involved in the production of UA, ROS
and RNS, has been shown to promote aging and cellular senescence in vitro as well as in
animal and clinical investigations [222]. Further, in vitro studies have reported an increased
cellular senescence and enhanced ROS production in endothelial progenitor cells cultured
in a medium containing UA at high concentrations (10 mg/dL) [223]. Of note, the same
detrimental effects were shown in mice characterized by chronic hyperuricemia [223]. At
the molecular level, there is evidence that UA triggers OS-induced senescence through
the inhibition of the enzyme eNOS, which is essential to produce the scavenging molecule
NO [215,223]. This condition triggers an OS imbalance, which promotes cellular senes-
cence [215,223]. However, higher plasma UA levels in d-galactose rat models of accelerated
aging were linked to decreased senescence and an increased SOD/(GPx + CAT) enzymatic
ratio, which is indicative of antioxidant activity, thus confirming the beneficial role of UA
when considered in the plasma [224].
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In humans, results from a comparative study conducted on 26 elderly participants and
18 controls reported a 2-fold reduction in serum UA levels in aged individuals compared to
controls, and this pattern was in line with diminished antioxidant defences [225].

Overall, these data show the existence of a correlation between UA and senescence.
However, the dual role that UA may play in the context of OS should encourage further
research to better clarify the befits and harms of UA-lowering agents.

2.7. Flavonoids

Flavonoids are a class of polyphenolic secondary metabolites found in plants and are
routinely consumed by humans. Chemically, they are polyphenols with the structure of a
15-carbon skeleton (C6–C3–C6) formed by two aromatic rings and one pyran ring [226].
Tea, wine, and Chinese herbal plants are the primary sources of flavonoids, as well as
leaf vegetables, onion, apples, cherries, berries, soybeans, and citrus fruit [227]. Flavonoid
compounds are divided into six subclasses, flavones, flavonols, flavanones, isoflavones,
flavanols, and anthocyanins [228]. Beside the antioxidant activity, flavonoids have anti-
inflammatory, vasodilator, anticoagulant, cardioprotective, anti-diabetic, neuroprotective,
and anti-obesity activities, which make them of great interest as anti-aging compounds
(Table 3) [228–257].

Table 3. Preclinical studies on flavonoids in aging.

Type of Flavonoid Effect Reference

4,4′-dimethoxychalcone - Increases lifespan (yeast, worms, and flies)
- Reduces human cell senescence - [229]

Naringenin - Antioxidant effects
- Reduces cardiovascular damage
- Prolongs lifespan in flies

- [230]

Nobiletin: Rutaceae family
- Antioxidant effects - [231]

Quercetin

- Blocks senescence of endothelial cells
- Reduces expression of senescence-associated secretion phenotype (SASP)
- Enhances health span and lifespan in old mice.
- Improves cardiovascular diseases
- In combination with dasatinib improves 6-min walking distance, speed, and ability to stand up

- [232]
- [233]
- [234]
- [228]

Fisetin - Blocks cultured senescent fibroblasts in human and animal
- Increases lifespan

- [235]
- [236]

Apigenin
- Reduces SASP - [237]

Theaflavin - Decreases cell senescence
- Increases lifespan

- [238]
- [239]

Myrecitin - Increases mitochondria metabolism
- Reduces neurotoxicity

- [240]
- [241]

Rutin
- Reduces oxidative stress
- Reduces cell senescence
- Reduces production of proinflammatory cytokines
- Reduces metabolic disorders

- [242]
- [243]
- [244]

Luteonil - Reduces human senescence cells
- Reduces expression of SASP - [245]

Kaempferol - Reduces SASP
- Reduces oxidative stress - [229]

Hesperidin - Reduces oxidative stress
- Increases antioxidant enzymes

- [246]
- [247]

Dyhydromericetin
- Reduces oxidative stress
- Reduces inflammation
- Increases cognitive function
- Reduces gut dysfunction

- [248]
- [249]
- [250]

Epicatechin - Reduces cell senescence
- Increases brain function
- Reduces skeletal muscle dysfunction

- [251]
- [252]
- [253]

Genistein
- Decreases pro-inflammatory genes expression
- Decreases cell senescence
- Increases brain cognitive function

- [254]
- [255]
- [256]

Flavonols. Quercetin is a flavonol known for its antioxidant, anti-inflammatory,
antitumor, and senolytic properties [258]. Results obtained on different cell lines show
that treatment with quercetin significantly lowers the levels of ROS and inflammatory
cytokines, reduces the expression of SA-β gal, p16 and p53 and markedly increases that of
the antioxidant enzymes SOD and CAT, regardless of the type of oxidative trigger used
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to induce senescence [258–262]. In addition to promoting the expression of Nrf2 [263], the
beneficial action of quercetin appears to be mediated by the microRNA-155-5p, which is
involved in the regulation of SIRT1 and NF-kB [262,264]. Moreover, as aging is associated
with an inefficient protein-degradation (which is required to protect against OS), the effect
of quercetin and its derivatives on the restoration of proteasomal functioning is of interest
as rejuvenating strategy [265]. In trials in patients with diabetic kidney disease [266] and
idiopathic lung diseases, quercetin induced a reduction in the expression of the aging
markers p16 and SA-β gal, suggesting an anti-aging effect on kidney cells [267]. When
combined with dasatinib (a tyrosine kinase inhibitor used as an antitumoral drug), quercetin
showed senolytic activity, improvement of physical function and increased lifespan in
mice [268]. Interestingly, as quercetin plus dasatinib treatment reduces intestinal senescence
and inflammation while altering specific microbiota signatures, this optimized senolytic
regimen might improve health via reducing intestinal senescence, inflammation, and
microbial dysbiosis in older subjects [269].

Another promising bioactive flavonol with antioxidant properties is fisetin [270].
In vitro cell treatment with fisetin has shown a reduction in senescence, ROS, and apopto-
sis [270,271]. In vivo, 6-week oral administration of fisetin drastically reduced senescence,
ROS, lipid peroxidation and protein oxidation in a rat model of induced aging, and lifespan
extension has been reported in mice [235,272]. This positive outcome is due both to a
senolytic activity of fisetin but also to its function as caloric restriction mimetic, which is
reported to prolong lifespan [273,274]. However, the timing of fisetin administration seems
to be crucial for obtaining a biological benefit. If on the one hand fisetin is protective when
administered in the presence of OS, if it is given chronically in physiological conditions, it
may even cause telomere shortening, therefore promoting senescence [275]. For this reason,
more studies are needed to better assess the optimal conditions of fisetin intake and its
mechanism of action.

Isoflavonoids. Genistein is a phytoestrogen extracted by soya that is known for its
antioxidant and anti-aging properties, although less potent than other flavonoids such as
quercetin and kaempferol [264]. As for other antioxidants, the role of genistein is multiple:
it can induce apoptosis acting as a cancer protective compound, but it can also reduce
inflammation and OS acting as anti-aging and neurodegenerative protective agent [276].
Concerning senescence, genistein alleviates the genotoxicity and the cytotoxicity triggered
by UVB exposure in human dermal fibroblasts [277]. Mechanistically, genistein reduces
OS-induced senescence by mitigating the levels of mitochondrial ROS and of the DNA
oxidation marker 8-OHdG, as well as by upregulating the SIRT1-FOXO3 axis, which is
known to prevent aging [278].

Flavanols. There is consistency in the literature about the beneficial role of green tea on
senescence-related mechanisms, thanks to its scavenging properties against ROS and RNS
and its ability to stimulate autophagy [279–282]. These desirable effects derive from certain
molecules known for their antioxidant role, mainly catechins [281,283]. Even if there are no
conclusive results demonstrating the impact of green tea on the human diet, some studies
investigated its effects on mice [284]. Catechins supplementation from green tea has been
associated with a better memory performance and a protective role against DNA oxidative
damage in SAM, independently from the age when the administration of green tea was
started [285,286]. These antioxidants have a positive impact also on the brain structure,
as murine models fed with green tea show an attenuated brain atrophy compared with
SAM drinking pure water, thus suggesting an anti-aging property of these molecules [287].
(-)-Epigallocatechin-3-gallate (EGCG) is the most representative flavanol in green tea and
its role in contrasting senescence is due to an activation of enzymatic and non-enzymatic
antioxidative mechanisms (such as GPx and tocopherol), which are typically reduced in
old age [288–292]. Interestingly, EGCG anti-senescence effects can also be observed at
a macroscopic level as its supplementation reduces age-related sarcopenia in mice [293].
Nonetheless, an excessive amount of green tea has been associated with oxidative damage,
underlying the need of further research to set the beneficial dose range [279,294].
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Flavanones and flavones. Among flavanones, hesperidin is an antioxidant that can be
typically found in citrus fruits [295]. Its properties impact positively on cardiomyocytes as
it attenuates senescence-related oxidative damage, both independently and in combination
with other molecules, through the induction of Nrf2 and of GST expression [247,296,297].
Citrus juice, which is rich in hesperidin and other flavanones as well as in flavones, an-
thocyanins, and other molecules, was reported to reduce ROS levels and reduce SA-β gal
positive HUVEC [298]. Citrus fruit also contains another flavanone useful to counteract the
effects of aging on myocardium, which is naringenin [299,300]. A recent study conducted in
aging murine models suggests that the antioxidant properties of naringenin deriving from
the activation of PI3K/Akt/Nrf2 pathway could greatly ameliorate both behavioural and
neurological dysfunctions. The authors reported that naringenin administration markedly
stimulated the activity of Nrf2 and improved the expression of the antioxidant enzymes
HO-1 and NADPH-quinone oxidoreductase 1 [301].

Besides containing flavonones, citrus peels are also rich in flavones. One of these, no-
biletin, was demonstrated to attenuate senescence-related cognitive deficits in SAMP8 mice
by counteracting amyloid ß accumulation in the brain [302,303]. Flavones and flavonones
are also significant components of bergamot juice and they confer anti-aging properties
through the upregulation of SIRT1, Nrf2 and FOXO3 (that are involved in homeostasis,
resistance to oxidative damage and overall health respectively), as it was demonstrated in
models of senescent myocardiocytes and in vivo in mice [304].

Apigenin, also known as 5,7,4′-trihydroxyflavone, is a flavone typically found in
parsley, oranges, and chamomile. Its ability to act as a metal chelator, free radical scavenger,
and regulator of the main pathways involved in redox homeostasis [i.e., Nrf2, NF-kB,
MAPK (mitogen-activated protein kinase) and Akt (a.k.a. protein kinase B] has increased its
interest as an antioxidant molecule [305]. For example, creams rich in apigenin are used for
their beneficial effects on skin aging prevention [306,307]. In vitro, human embryonic lung
fibroblasts exposed to the pro-senescence stimuli H2O2 or doxorubicin, and subsequently
treated with apigenin, show reduced SA-β gal activity, cell cycle promotion, increased
levels of SIRT1, CAT and SOD and reduced expression of the senescence associated p21, p53
and p16 proteins compared to the untreated counterpart [308]. Similar results have been
obtained in vivo following administration of apigenin daily for 8 weeks to a d-galactose-
induced aging mouse model [309]. Moreover, thanks to its ability to inhibit the SASP
and to interfere with the anti-apoptotic pathways, which are generally upregulated in
senescent cancer cells, apigenin has been proposed as an adjuvant therapy for tumours,
with promising results [237,310,311].

Anthocyanins. Bilberry and mulberry are considered promising nutrients for healthy
aging because of their antioxidant properties related to anthocyanins that consist, among
others, in the increase of SOD activity and AMPK (AMP-activated protein kinase)-mTOR
autophagy pathway [312]. It has been reported that anthocyanins contrast senescence
as they promote neural stem cells proliferation and diminish aging-related markers and
cognitive impairment in mice [313]. The ability of anthocyanins to inhibit β amyloid
aggregation is also of interest in therapeutic approaches aimed at slowing down cognitive
decline [314]. In rats, the effect of mulberry extract was observed on the cardiovascular
system, as it reduced the signs of senescence in endothelial cells [315,316].

Overall, a diet rich in these natural antioxidants may have a significant anti-aging effect.
An indirect confirmation of this concept could be deduced by the fact that the Mediterranean
Diet, which widely includes both flavanols, flavanones, flavons and anthocyanins, is
characterized by well-known beneficial effects on health, including a healthy aging as it
hinders the pathogenesis of many chronic diseases and extends life expectancy [317,318].

2.8. Non-Flavonoids

Non-flavonoid antioxidant substances, namely stilbenes (resveratrol), phenolic acids,
curcuminoids (curcumin), and lignans [319] could be employed as anti-aging agents, acting
against OS, inflammation, and cellular senescence (Table 4) [320–332].
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Table 4. Effects of non-flavonoids treatment in different experimental studies.

Non-Flavonoid Model Effects Reference

Resveratrol

HUVEC cells - Prevention of cells apoptosis, by reducing oxidative damage (↑SOD,
↓ROS, and ↓MDA) and inhibiting mitochondrial pathway

[320]

Senescence-accelerated mice - Reduction of oxidative damage in the brain (↑SOD, ↑GSH-Px, and ↓MDA) [321]

Old male mice - Decreasing of inflammation in the liver (↓IL-1β, ↓TNFα, and ↓COX2) [322]

Gallic acid

Rat embryonic fibroblast cells
- Reduction of inflammation (↓NF-kB, ↓TNFα, ↓IL-1β, and ↓IL-6)
- Reduction of beta-galactosidase activity
- Decreasing of ROS production and lipid peroxidation

[323]

UVB-irradiated human
fibroblast cells

- Inhibition of MMP-1 and IL-6 expression, and increasing of procollagen
type I

[324]
UVB-irradiated hairless mice - Prevention of wrinkle formation, by upregulating procollagen type I and

elastin levels

Ellagic acid D-galactose-treated rats
- Attenuation of OS in liver and brain (↑SOD, ↑CAT, ↑GSH-Px)
- Amelioration of histopathological changes
- Inhibition of inflammation (↓IL-6, ↓IL-1β, ↓TNFα)

[325]

Ferulic acid UVA-irradiated nHDF
- Increasing of proliferation and cell cycle
- Reduction of OS (↑SOD1, and ↑CAT)
- Inhibition of cellular senescence (↓p16)

[326]

p-coumaric acid

Rat chondrocytes - Amelioration of inflammation and cellular senescence, by inhibiting
MAPK and NF-kB pathways

[327]

Mice fed with high-fat
diet (HFD)

- Inhibition of ROS production, lipid peroxidation and upregulation of
antioxidants enzymes (↑SOD, ↑CAT, ↑GSH-Px, ↑HO-1)

[328]

Curcumin

Senescence-accelerated mice - Improvement of cognitive deficits, by decreasing OS (↑SOD) and
increasing p-CaMKII and p-NMDAR1 expression

[329]

Mice fed with HFD
- Decreasing of OS (↑HO-1)
- Reduction of inflammation and vascular aging, by lowering the

accumulation of senescent cells in the aorta and MCP-1 levels in the blood
[330]

Lignans

nPC12 cells - Reduction of lipid peroxidation (↓COX-2), and ROS production [331]
D-galactose aging mice - Attenuation of OS (↑SOD, ↑GPx)

Old HDFs - Decreasing of senescence markers expression (cyclin D1, p16, p27, p21,
caveolin-1), by activating AMPK pathway, and ROS levels

[332]

Abbreviations: AMPK: (AMP-activated protein kinase); CAT: (catalase); GPx: (glutathione peroxidase); GSH-Px:
(plasma glutathione peroxidase); HO-1: (heme oxygenase 1); HUVEC: (Human umbilical vein endothelial cell);
IL-1β: (interleukin 1 β); IL-6: (interleukin 6); MAPK: (mitogen-activated protein kinase); MCP-1: (monocyte
chemoattractant protein-1); MDA: (malondialdehyde), COX-2 (cyclooxygenase 2); MMP-1: (matrix metallopro-
teinase 1); NF-kB: (nuclear factor kappa B); nHDF: (normal human dermal fibroblasts); nPC12: (neuronally
differentiated phenchromocytoma cells); p-CaMKII: (p-calcium/calmodulin-dependent kinase II); p-NMDARI:
(p-N-methyl-D-aspartate receptor subunit 1); p16: (cyclin-dependent kinase inhibitor 2A); p21: (cyclin-dependent
kinase inhibitor 1); p27: (cyclin-dependent kinase inhibitor 1B); SOD: (superoxide dismutase), ROS (reactive
oxygen species); SOD1: (superoxide dismutase 1); TNFα: (tumour necrosis factor); ↑: increase; ↓: decrease.

Stilbenes are a family of natural phenolic compounds found in many plant species ca-
pable of acting as antioxidants, anti-inflammatory, antibacterial, and anticancer
agents [333,334]. The most important and well-known stilbene is resveratrol (RSV), a
phytoalexin found in black grapes, peanuts, blackberries, red wine, and various herbal
remedies [335–337]. It has many biological properties, including antioxidant, and anti-
inflammatory effects [320,338]. As an antioxidant agent, RSV can scavenge free radicals
and reduce ROS formation, by inhibiting the expression of NADPH and glycogen synthase
kinase 3 beta proteins, and upregulating the expression of some antioxidant enzymes, such
as SOD2, CAT, GPx, and thioredoxin [320,339,340]. It can also stimulate the production
of HO-1 by activating Nrf2 [341]. Resveratrol treatment has also been shown to prevent
or slow down the progression of cardiovascular, neurological, and metabolic disorders,
as well as to be promising in the prevention of cancer, viral infection, and pathological
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inflammation [342]. The activation of the anti-aging protein SIRT1 by RSV is thought to be
responsible for its antioxidant and anti-inflammatory properties, as well as for some of its
protective effects [343–345]. Interestingly, this compound possesses anti-aging properties,
modulating OS, inflammation, and cellular senescence [346]. It has been demonstrated that
RSV can reduce oxidative damage in the brain of aged mice by increasing the levels of SOD
and plasma GPx, decreasing malondialdehyde, and lowering the expression of several
pro-inflammatory proteins (IL1β and tumour necrosis factor α) in old mice, as well as in
patients with coronary artery disease [321,322]. Overall, these studies suggest that RSV can
be a tool useful in preventing diseases and damages associated with aging. Furthermore, it
can also be a valid strategy for counteracting bone fragility and skin aging [347,348].

Although RSV’s antioxidant properties have been widely demonstrated, some stud-
ies [349,350] have highlighted its ability to also act as a pro-oxidant molecule. This dual
role depends upon cell type, used dosage, and exposure time [336]. Interestingly, RSV,
which acts as a pro-oxidant agent at high doses, can be a cancer chemopreventive agent by
promoting tumour cell senescence [351].

Phenolic acids are organic compounds commonly found in a variety of plant-based
foods and beverages. They have numerous health properties (anti-inflammatory, anticar-
cinogenic, antibacterial), and their ability to act as antioxidants makes them an effective
weapon against chronic diseases [352]. They are divided into two classes: hydroxyben-
zoic (including gallic and ellagic acids) and hydroxycinnamic acids (including ferulic and
p-coumaric acids) [319].

Gallic acid (GA) is a natural substance found in berries, gallnuts, grapes, fruits, and
wine [353]. Many studies have suggested the beneficial properties of this molecule [354–357].
Furthermore, thanks to its antioxidant activity, GA has numerous applications, especially
in cosmetic and medical areas where it can be used as a UVB protective agent [358], by
decreasing the production of MMP-1 and IL-6 and increasing the expression of elastin, type
I procollagen and transforming growth factor β1 [324], and as a nutritional supplement
to protect cells from oxidative damage [359]. Interestingly, in addition to these positive
qualities, GA could be a protective anti-aging agent, able to counteract cellular senescence.
Indeed, it has been shown that GA can reduce senescence markers in rat embryonic fibrob-
last cells, delay thymus involution in old mice, and protect cardiac cells from oxidative
damage and senescence, enhancing GST expression [296,323,353]. Furthermore, as men-
tioned above, this acid is widely employed as a component of skincare products in the
cosmetic branch. For example, the synergistic action of gallic, ellagic, and chebulinic acids
confers to some cosmetic constituents, such as triphala (an ayurvedic herbal rasayana
formula), antioxidant, anti-inflammatory, and anti-aging properties on human skin cells,
increasing the mRNA expression of collagen-I, elastin, filaggrin, involucrin, as well as
SOD2 and aquaporin-3, and decreasing the levels of tyrosinase [360].

Ellagic acid (EA), in addition to acting in combination with other phenolic acids,
can perform numerous functions on its own. It is found in a variety of fruits and veg-
etables, including strawberries, walnuts, and grapes, and it has important antioxidant,
anti-inflammatory, antiviral and anticarcinogenic properties [361,362]. Its beneficial antioxi-
dant activity has been reported in numerous studies [363,364]. As an antioxidant agent, EA
can activate cellular antioxidant enzymes, like SOD, CAT and GPx, protect DNA from ROS
and chelate metal ions [365]. Additionally, EA could also act as an anti-aging agent [365].
Treatment with EA can reduce liver and brain damage in aged rats [325] and may display an
anti-photoaging effect on the skin by restoring SOD and total GSH activity and increasing
Nrf2 expression [361]. Interestingly, the consumption of walnuts, which contain EA and
other neuroprotective compounds, has been shown to improve memory impairment and
protect against AD [366].

Ferulic acid (FA) is an anti-inflammatory [367], anti-cancer [368], antithrombotic [369],
antibacterial [370], and radioprotective agent [371] found in fruits (grapes), vegetables
(spinach, rhubarb, carrots, eggplants), grain, and cereal seeds (rye, barley, and oats) [372].
Thanks to its antioxidants, anti-diabetic, and neuroprotective properties [373,374], it has
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been shown to prevent type 2 diabetes and AD [375,376] by regulating antioxidant enzymes
and caspase activities [326]. Acting as an antioxidant, FA can inhibit the enzymes that
lead to ROS formation, scavenge free radicals, and promote the antioxidant enzymes
activity [372]. This makes FA a compound widely used in cosmetics and in food industry,
especially as an anti-aging agent [377]. It has been demonstrated to protect skin from UV
radiation through its capacity to reduce the activity of the stress-inducible protein Gadd45
α, the expression of MMP-1 and MMP-3 mRNAs, as well as enhancing the levels of the
antioxidant enzymes SOD1 and CAT [326,378]. As a result of its anti-aging properties, it
could be an excellent cosmetic component for face masks and antioxidant and protective
creams. Moreover, it is used in skin-lightening lotions, inhibiting tyrosinase activity and
melanocytic proliferation [372]. Peanuts also contain FA, which may partly explain their
ability to prevent aging and cognitive decline [379].

p-coumaric acid (p-CA) is a dietary compound widely found in oranges, apples,
grapes, kiwis, onions, potatoes, eggplant, beans, and grains [380,381], which is endowed
with antibacterial [382], anti-diabetic [383], anti-cancer [384], and radioprotective proper-
ties [385]. Furthermore, p-CA has analgesic, antipyretic, and anxiolytic effects, as well as the
ability to inhibit platelet aggregation [381]. Being an antioxidant agent, the treatment with
this acid promotes the expression of Nrf2, with the consequent increased levels of some
antioxidant enzymes, including HO-1, SOD, NAD(P)H quinone dehydrogenase 1, CAT, and
GPx [328]. Coumaric acid can also slow down the aging processes, due to its antioxidant
and anti-inflammatory effects. It has been shown that p-CA can have beneficial effects
on skin aging by decreasing collagenase, elastase, and hyaluronidase activity [386], and
by reducing the inflammatory response and chondrocytes senescence, inhibiting MAPK
and NF-kB signalling pathways [327]. However, although some works have demonstrated
the antioxidant property of p-CA, Pieńkowska et al. highlighted that this acid is unable
to counteract the premature senescence of human fibroblasts [387]. Consequently, the
presence of contradictory evidence in literature requires further research.

Curcuminoids are natural polyphenolic compounds used as spices and food addi-
tives thanks to their aromatic and colouring properties [388]. The numerous beneficial
activities make them potential supportive therapeutics for cancer and inflammatory bowel
diseases [389]. Curcumin (CUR), a yellow phenolic pigment, commonly used as a food
spice and herbal remedy, is the most well-known curcuminoid [390]. This compound is
known to have anti-cancer [391], anti-bacterial [392], anti-diabetic [393], and cytoprotec-
tive activities [394]. Further, CUR possesses antioxidant properties, through which it can
prevent lipid peroxidation, stabilize Nrf2, with the consequent expression of HO-1, and
increase the levels of antioxidant enzymes, such as SOD, GST, GSH and GPx [395]. It has
been suggested that this natural compound possesses therapeutic features in several mal-
functions, including neurological, cardiological, and metabolic disorders, as well as ulcers,
arthritis, acne, and dyspepsia [396]. Curcumin is also thought to be a useful anti-aging
agent [395]. Indeed, it has been shown to improve cognitive deficits, suppress vascular
aging and inflammation in elderly mice, and attenuate neuronal aging both in vitro and
in vivo by downregulating the expression of p16 and p21 and upregulating antioxidant en-
zymes, including SOD1, CAT and GPx [329,330,397]. Furthermore, CUR supplementation
has positive benefits on age-related disorders [398–400]. Although an antioxidant action in
aging has been widely demonstrated, conflicting studies are present in literature regarding
its inability to counteract OS [401], therefore more research is needed to better understand
its antioxidant role.

Lignans are found in many plant families and foods, including fruits, vegetables,
nuts (sesame), grains, and seeds [402]. In addition to their numerous biological activities
(antioxidant, anti-inflammatory, and antitumoral), as well as their ability to protect against
the onset of chronic and metabolic diseases, lignans and their derivatives are also known to
act as anti-aging agents [403]. In fact, they can suppress aging phenotypes in Drosophila
adults, inhibit NADPH oxidase activity and upregulate antioxidant genes, such as SOD1,
SOD2, catalase, and DNA repairing genes [221,404]. Further, they can reduce the levels of
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senescence in old human diploid fibroblasts, activating AMPK pathway [332]. Moreover,
lignans molecules can protect tissues and organs against OS, inflammation, and senescence
by acting as neuroprotective and radioprotective agents [405,406].

2.9. Minerals

Despite their tiny amount, micronutrients, i.e., vitamins and minerals, are essential
for human health, exerting numerous functions, including antioxidant defence ranging
from genome-related processes, such as DNA replication and repair, to metabolic processes
and antioxidant defence [407,408]. Concerning the latter, the structural and functional
roles of a few minerals such as zinc (Zn), selenium (Se), magnesium (Mg) copper (Cu) and
manganese (Mn) is crucial (Table 5) [409–420].

Table 5. Minerals as modulators of OS-induced senescence.

Mineral Sample Treatment/Condition Result Ref.

Zinc Colon cancer lines SW480
and SW620 ↓ Zinc

↑ Oxidative stress, cellular proliferation,
stress signalling morphological changes,

cell death
[409]

Zinc Dermal fibroblast ↑ Zinc ↑ Oxidative stress and DNA damage [410]
Zinc HCAECs ↑ Zinc ↑ Senescence [411]

Selenium Bone marrow stromal cells ↑ Selenium ↓ Senescence [412]
Selenium Keratinocytes ↑ Selenium ↓ Senescence [413]
Selenium Human fibroblasts ↑ Selenium ↓ Senescence [414]
Selenium Mice ↓ Selenium ↑ Senescence [415]

Magnesium Endothelial cells ↓Magnesium ↑ Oxidative stress and cell death [416]
Magnesium Endothelial cells ↓Magnesium ↑ Pro-inflammatory molecules [417]
Magnesium Embryo-hepatocytes ↓Magnesium ↑ Oxidative stress [418]
Magnesium Human fibroblasts ↓Magnesium ↑ Telomere shortening [419]
Magnesium Rats ↓Magnesium ↑ Age-related diseases [420]

Abbreviations: HCAECs: Human coronary artery endothelial cells; ↑: increase; ↓: decrease.

Zinc, the second most abundant trace mineral in the body after iron, is involved in
a wide range of key biological functions exerted through its catalytic role in enzymes,
structural function in proteins and other cellular components [421–423]. Importantly, Zn
exerts antioxidant functions through its catalytic action in Zn- SOD, via the formation and
stabilization of sulfhydryl groups in proteins, thus maintaining membrane integrity and
protecting it from oxidation, and through regulation of Zn-binding protein metallothionein
expression. In this respect, evidence showed that Zn deficiency causes destabilization
of membrane structure and augments OS [424–428]. In addition, Zn suppresses anti-
inflammatory responses that would otherwise promote OS [425]. In vitro studies have
shown that Zn deficiency is associated with an increased production of ROS, oxidative
damage to DNA, proteins and lipids, destabilization of membrane structure, dysregula-
tion of Zn-binding protein metallothionein [426,429]. For instance, in a colon cancer cell
line [409] and dermal fibroblasts [410], Zn dysregulation promoted cellular senescence
activating stress response and pro-apoptosis pathways. Some Zn-finger proteins and
Zn-dependent enzymes, such as PATZ1 [430], ZKSCAN3 [431], ZHX3 [432], KLF4 [433]
or Zfp637 [434] might be responsible for this Zn-mediated cellular senescence inhibition,
reducing ROS production, DNA damage and telomere shortening (Table 6) [430–437]. In
support of this concept, there is evidence that the downregulation of the Zn-finger protein
ZEB2 significantly promotes cell senescence in hepatic stellate cells and dermal fibroblasts,
limiting the development of fibrosis [435,436]. Again, the Zn-finger protein 768 has been
found to be overexpressed in cancer cells, contributing to cell proliferation and repressing
senescence [437]. On the other hand, Zn overload can contribute to augment cellular OS
and senescence through different mechanisms not yet well-defined, but possibly related to
organelles dysfunction [411,427,438].



Antioxidants 2022, 11, 1224 21 of 42

Table 6. Interplay between zinc-finger proteins and senescence.

Mineral Sample Zinc-Finger Proteins Ref.

Zinc Endothelial cells PATZ1 is downregulated in senescence [430]
Zinc Mesenchymal stem cells ZKSCAN3 upregulation contrast senescence [431]
Zinc Human diploid fibroblast ZHX3 is downregulated in senescence [432]
Zinc Mouse embryonic fibroblasts KLF4 reduces cellular senescence and DNA damage [433]
Zinc NIH3T3 and C2C12 cells ZFP637 protects from oxidative stress [434]
Zinc Hepatic stellate cells ZEB2 protects from oxidative stress and senescence [435]
Zinc Dermal fibroblasts ZEB1 protects from oxidative stress and senescence [436]
Zinc Cell lines (A549, NCI-H441 and NCI-H460, 293T) ZNF768 depletion induces senescence [437]

Abbreviations: KLF4: Kruppel-like factor 4; PATZ1: POZ/BTB and AT-hook-containing zinc finger protein 1;
ZEB1: zinc finger E-box-binding homeobox 2; ZEB2: zinc finger E-box-binding homeobox 2; ZFP637: zinc finger
protein 637; ZHX3: zinc fingers and homeoboxes 3; ZKSCAN3: zinc finger with KRAB and SCAN domains 3;
ZNF768: zinc finger protein 768.

Selenium relevance in human body is primarily due to its structural and catalytic
roles in selenoproteins involved in redox signalling and homeostasis. Most of the human
selenoproteins are oxidoreductases containing the amino acid selenocysteine (SeCys) at
their catalytic site [439]. In the antioxidant enzymes GPXs, SeCys residues catalyse the
reduction of hydrogen peroxide and peroxide radicals using glutathione as a substrate, thus
lowering free radicals and consequent DNA damage [440,441]. A second crucial family of
proteins containing SeCys and involved in redox biology is thioredoxin reductases (TRs),
which contribute to the regulation of gene expression of multiple transcription factors
implicated in inflammatory and cell cycle pathways (e.g., NF-kB and p53) [442], as well as
in the recycling of antioxidant molecules [441].

Several in vitro studies have shown that Se supplementation counteracts senescence
processes. For instance, in bone marrow stromal cells [443], cultured human fibrob-
lasts [412], and keratinocytes [413], Se supplementation reduces ROS levels, DNA damage,
telomere shortening and senescence biomarkers. In support of this concept, cells deficient
in Selenoprotein H (a nuclear protein) displayed high levels of OS, persistent DNA damage
and a decreased content in antioxidant molecules (glutathione) [414]. Furthermore, Se de-
privation in mice has been found to accelerate DNA damage, senescence, and aging-related
processes [415].

Magnesium has structural roles in DNA, proteins and enzymes including telomerases.
It promotes DNA replication and transcription, protein synthesis and mitochondrial func-
tions [444,445]. Low Mg can favour cellular senescence, accelerate telomerase shortening
and disturb DNA stability, protein synthesis and mitochondrial function. Cell culture stud-
ies have demonstrated that Mg shortage negatively impact antioxidant defence, cell cycle
progression and cellular viability; in particular, its deficiency in endothelial cell cultures
enhances free radicals production and cell apoptosis [416], and increases the release of pro-
inflammatory molecules [417]. Further, an enhanced production of hydrogenase peroxide
and oxidative damage were measured in Mg-deficient embryo-hepatocytes [418]. Addi-
tionally, human fibroblasts cultured in Mg-deficient conditions showed a rapid telomere
shortening and a decreased replicative lifespan [419]. Accordingly, animal studies have con-
firmed that a long-term Mg-deficient diet disrupts the redox balance and homeostasis and
increases inflammation, consequently exacerbating the development and progression of
aging-related diseases such as cardiovascular diseases, hypertension, or diabetes [420,446].

Manganese and copper are further trace elements involved in antioxidant mechanisms
through their structural role within SOD and other crucial enzymes useful for protecting
cells from OS [447–449]. Despite some controversial data arise, other findings point out
that Mn supplementation might improve antioxidant functions in the lungs and ameliorate
asthma conditions, as reported in a recent review [449].

Taken together, evidence from human studies is still lacking, but it is undeniable that
proper mineral levels are crucial for the maintenance of the redox balance. However, it
should be emphasized that a narrow range exists between the therapeutic and the pro-
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oxidative effects of some metals, including Se, Mn, Mg, Cu and Zn; therefore, a cautious
and rational supplement choice must be assessed by the experts in the field.

2.10. Others—Melatonin

Melatonin is a hormone produced and released by the pineal gland with immunomod-
ulatory, oncostatic, anti-aging, and endocrine modulator functions [450,451]. Its antioxidant
and anti-inflammatory activities are exerted through the suppression of cyclooxygenase
2, NLRP3 inflammasome, gasdermin D, TLR-4, NF-kB, and NO release, as well as the
concomitant activation of SIRT1 and Nrf2 free radical scavenging network [452]. For exam-
ple, inhibition of sodium nitroprusside-mediated NO release and increased production of
transcripts coding for antioxidant enzymes (i.e., SOD1, GPx1 and CAT) have been reported
upon melatonin treatment in neuroblastoma cells and HUVEC, respectively [451,453]. How-
ever, melatonin can also stimulate the release of pro-inflammatory factors depending on
the concurrent conditions, although this response seems to be limited to early treatment
stages and needs to be better investigated [454].

As a reduction in melatonin secretion has been observed during aging [452], several
studies have explored the role of this hormone in counteracting cellular senescence [451]. In
this respect, melatonin has been proven capable of reducing oxidative stress and replicative
senescence by enhancing autophagy, activating AMPK/FOXO3 pathways and increasing
mitochondrial membrane potential, both in vitro and in vivo [455–457]. Melatonin-induced
decrease in p53, p21 and p16 proteins, together with enhanced SIRT1 activity, have also
been reported in the context of H2O2-induced senescence [458,459]. Regarding MSCs, it
is known that long term culture stimulates ROS generation, thus promoting oxidative
stress-induced senescence [460]. In this context, decreased cellular senescence, preserved
self-renewal and activation of antioxidant defence pathways have all been observed af-
ter melatonin supplementation [460,461]. In vivo, melatonin intake has been reported to
diminish age-derived inflammation and apoptosis and to decrease lipid peroxidation, thio-
barbituric acid reactive substances and protein carbonyls, thus counteracting hippocampal
senescence and exerting an anti-aging and antioxidant effect on mice brains [462–465].
However, contrasting evidence remains about the effect of melatonin on the regulation
of antioxidant enzymes [457,463–465]. Finally, brain oxidative stress amelioration and
increased osteopontin and senescence marker protein-30 have been shown following mela-
tonin treatment in the context of vascular demented rats [466]. Altogether, these findings
suggest that, despite encouraging evidence, more research is needed to address the role of
melatonin in vivo and identify possible side effects.

3. Discussion

The elderly population is growing exponentially in parallel with basic and clinical
research discoveries and improvement of the quality of care for those who are sick. Aging is
one of the risk factors for chronic diseases, atherosclerosis, cardiovascular diseases, stroke,
kidney failure, chronic lung disease, cancers, diabetes, osteoporosis, arthritis, blindness,
dementia, and neurodegenerative diseases [467,468]. Lifespans have increased dramatically
over the last century in large part due to advances in medicine that have nearly eliminated
certain deadly infectious diseases.

Nutrition is one of the factors that can influence aging. Interviews of older persons
reveal that most of them have continuous physical activities, positive thinking, and eat
healthy foods such as vegetables, fruits, fishes, and less meat. It was shown that less
calories [469], good sleep [470], less stress [471], good relationships [472], no smoke and low
alcohol drinking are environmental factors capable of delaying aging, while genetic factors
play a role for in 25% to 30% of life expectancy [473]. In this context, finding anti-aging
drugs that meet the safety and effectiveness of long-term use has always been an important
strategy for intervention in the aging field.

Although cellular senescence is crucial for the proper functioning of several physio-
logical processes, much scientific evidence has demonstrated that it also plays a leading
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role in the pathophysiology of aging and age-related diseases [3,474]. Because OS is an
important senescence-triggering stimulus [13], the thorough investigation of existing an-
tioxidants and the search for new ones are of major interest. In this narrative review, we
have summarized the potential of the major classes of antioxidants in extending life and
preventing senescence. However, most antioxidants are known to exert a dual effect (both
pro-oxidant and antioxidant), especially based on the doses administered. Accordingly, it
has been reported that high doses of antioxidants promote cellular senescence [156,475,476].
In this respect, more research is needed to define the optimal dosage of antioxidants, also
considering the interaction of multiple compounds coming either from the diet or from
supplements. Currently this remains a limit, as most of the studies investigated a single
compound on a particular cell line or on a specific animal model, which often prevents
generalizing the results in a broader context. Besides the dosage, a careful evaluation
of the optimal administration window can be also crucial to achieve a clinical benefit as
antioxidants efficacy might depend upon OS levels [81]. From a human perspective, not
only dose assessment but also the time of initiation (childhood, adolescence, adulthood,
old age) and the duration of the treatment (lifelong, at alternating intervals or for a defined
period) might affect the clinical outcomes. There are still few studies on the synergy and
interference of multiple antioxidants taken in combination—increasingly fashionable in the
modern society—and the benefits and risks of this approach should be carefully evaluated.
Similarly, when integrated as supplements, antioxidants may give rise to different effects
depending upon the time of the day they are taken and individual differences such as
physical activity and lifestyle, which may also greatly vary among subjects. Given these
considerations, studies conducted in vitro under limited variable conditions should be
reproduced and validated on large-cohorts clinical trials.

Current reports distinguish the existence of senolytic (able to remove senescent cells)
or senomorphic (able to modulate senescent cells) substances, which can include some
plant-derived antioxidants (e.g., quercein, fisetin) but usually are functional concepts, the
description of which is outside our review remit, and which should encourage clinical
research and nutraceutical application, more than in vitro investigations [266,477–479]. It
is difficult, to date, to indicate if an anti-oxidant vitamin is senolytic or senomorphic, due
to the huge complexity of biological phenomena.

4. Conclusions

Antioxidants are formidable substances, mostly derived from plants, which have been
considered so far to be beneficial agents able to address many redox-mediated injuries.
Aging is usually considered as a major playground of oxidative stress, but it should
be highlighted that ROS are fundamentally signalling molecules and that most of the
stress responding mechanisms are tuned by fine modulation of ROS as signalling agents.
Therefore, a correct action to address senescence is to find approaches and methods to
improve and promote this modulation. Wise people used to state that equilibria stand on
the fine regulation of pro- and con- hallmarks of xenobiotics. This is also our wish and
recommendation for the future.
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Sőti, C.; Sanfeliu, C.; et al. The Pleiotropic Neuroprotective Effects of Resveratrol in Cognitive Decline and Alzheimer’s Disease
Pathology: From Antioxidant to Epigenetic Therapy. Ageing Res. Rev. 2021, 67, 101271. [CrossRef]

336. Li, B.; Hou, D.; Guo, H.; Zhou, H.; Zhang, S.; Xu, X.; Liu, Q.; Zhang, X.; Zou, Y.; Gong, Y.; et al. Resveratrol Sequentially Induces
Replication and Oxidative Stresses to Drive P53-CXCR2 Mediated Cellular Senescence in Cancer Cells. Sci. Rep. 2017, 7, 208.
[CrossRef]

337. Baur, J.A.; Sinclair, D.A. Therapeutic Potential of Resveratrol: The in Vivo Evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506.
[CrossRef]

338. Lu, X.; Ma, L.; Ruan, L.; Kong, Y.; Mou, H.; Zhang, Z.; Wang, Z.; Wang, J.M.; Le, Y. Resveratrol Differentially Modulates
Inflammatory Responses of Microglia and Astrocytes. J. Neuroinflamm. 2010, 7, 46. [CrossRef]

339. Carrizzo, A.; Forte, M.; Damato, A.; Trimarco, V.; Salzano, F.; Bartolo, M.; Maciag, A.; Puca, A.A.; Vecchione, C. Antioxidant
Effects of Resveratrol in Cardiovascular, Cerebral and Metabolic Diseases. Food Chem. Toxicol. 2013, 61, 215–226. [CrossRef]

340. Simão, F.; Matté, A.; Pagnussat, A.S.; Netto, C.A.; Salbego, C.G. Resveratrol Prevents CA1 Neurons against Ischemic Injury by
Parallel Modulation of Both GSK-3β and CREB through PI3-K/Akt Pathways. Eur. J. Neurosci. 2012, 36, 2899–2905. [CrossRef]

341. Chen, C.-Y.; Jang, J.-H.; Li, M.-H.; Surh, Y.-J. Resveratrol Upregulates Heme Oxygenase-1 Expression via Activation of NF-E2-
Related Factor 2 in PC12 Cells. Biochem. Biophys. Res. Commun. 2005, 331, 993–1000. [CrossRef]

342. Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health Benefits of Resveratrol: Evidence from
Clinical Studies. Med. Res. Rev. 2019, 39, 1851–1891. [CrossRef] [PubMed]

343. Cao, W.; Dou, Y.; Li, A. Resveratrol Boosts Cognitive Function by Targeting SIRT1. Neurochem. Res. 2018, 43, 1705–1713. [CrossRef]
344. Ohtsu, A.; Shibutani, Y.; Seno, K.; Iwata, H.; Kuwayama, T.; Shirasuna, K. Advanced Glycation End Products and Lipopolysaccha-

rides Stimulate Interleukin-6 Secretion via the RAGE/TLR4-NF-κB-ROS Pathways and Resveratrol Attenuates These Inflamma-
tory Responses in Mouse Macrophages. Exp. Ther. Med. 2017, 14, 4363–4370. [CrossRef]

345. Zhang, N.; Li, Z.; Xu, K.; Wang, Y.; Wang, Z. Resveratrol Protects against High-Fat Diet Induced Renal Pathological Damage and
Cell Senescence by Activating SIRT1. Biol. Pharm. Bull. 2016, 39, 1448–1454. [CrossRef] [PubMed]

346. Li, Y.-R.; Li, S.; Lin, C.-C. Effect of Resveratrol and Pterostilbene on Aging and Longevity. BioFactors 2018, 44, 69–82. [CrossRef]
[PubMed]

347. Ali, D.; Chen, L.; Kowal, J.M.; Okla, M.; Manikandan, M.; AlShehri, M.; AlMana, Y.; AlObaidan, R.; AlOtaibi, N.; Hamam, R.; et al.
Resveratrol Inhibits Adipocyte Differentiation and Cellular Senescence of Human Bone Marrow Stromal Stem Cells. Bone 2020,
133, 115252. [CrossRef] [PubMed]

348. Subedi, L.; Lee, T.H.; Wahedi, H.M.; Baek, S.-H.; Kim, S.Y. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging
via Downregulation of Inflammatory Cascades. Oxidative Med. Cell. Longev. 2017, 2017, 8379539. [CrossRef] [PubMed]

349. Kilic Eren, M.; Kilincli, A.; Eren, Ö. Resveratrol Induced Premature Senescence Is Associated with DNA Damage Mediated SIRT1
and SIRT2 Down-Regulation. PLoS ONE 2015, 10, e0124837. [CrossRef] [PubMed]

350. Martins, L.A.M.; Coelho, B.P.; Behr, G.; Pettenuzzo, L.F.; Souza, I.C.C.; Moreira, J.C.F.; Borojevic, R.; Gottfried, C.; Guma, F.C.R.
Resveratrol Induces Pro-Oxidant Effects and Time-Dependent Resistance to Cytotoxicity in Activated Hepatic Stellate Cells. Cell
Biochem. Biophys. 2014, 68, 247–257. [CrossRef]

351. Heiss, E.H.; Schilder, Y.D.C.; Dirsch, V.M. Chronic Treatment with Resveratrol Induces Redox Stress- and Ataxia Telangiectasia-
Mutated (ATM)-Dependent Senescence in P53-Positive Cancer Cells. J. Biol. Chem. 2007, 282, 26759–26766. [CrossRef]

352. Chandrasekara, A. Phenolic Acids. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 535–545.
353. Guo, L.; Cao, J.; Wei, T.; Li, J.; Feng, Y.; Wang, L.; Sun, Y.; Chai, Y. Gallic Acid Attenuates Thymic Involution in the D-Galactose

Induced Accelerated Aging Mice. Immunobiology 2020, 225, 151870. [CrossRef] [PubMed]
354. Liao, C.-C.; Chen, S.-C.; Huang, H.-P.; Wang, C.-J. Gallic Acid Inhibits Bladder Cancer Cell Proliferation and Migration via

Regulating Fatty Acid Synthase (FAS). J. Food Drug Anal. 2018, 26, 620–627. [CrossRef] [PubMed]
355. Punithavathi, V.R.; Stanely Mainzen Prince, P.; Kumar, M.R.; Selvakumari, C.J. Protective Effects of Gallic Acid on Hepatic Lipid

Peroxide Metabolism, Glycoprotein Components and Lipids in Streptozotocin-Induced Type II Diabetic Wistar Rats. J. Biochem.
Mol. Toxicol. 2011, 25, 68–76. [CrossRef] [PubMed]

356. Szwajgier, D.; Borowiec, K.; Pustelniak, K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action.
Nutrients 2017, 9, 477. [CrossRef]

357. Moghtaderi, H.; Sepehri, H.; Delphi, L.; Attari, F. Gallic Acid and Curcumin Induce Cytotoxicity and Apoptosis in Human Breast
Cancer Cell MDA-MB-231. BioImpacts 2018, 8, 185–194. [CrossRef]

358. Gao, J.; Hu, J.; Hu, D.; Yang, X. A Role of Gallic Acid in Oxidative Damage Diseases: A Comprehensive Review. Nat. Prod.
Commun. 2019, 14, 1934578X1987417. [CrossRef]

359. Dludla, P.; Nkambule, B.; Jack, B.; Mkandla, Z.; Mutize, T.; Silvestri, S.; Orlando, P.; Tiano, L.; Louw, J.; Mazibuko-Mbeje, S.
Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2018, 11, 23. [CrossRef]

360. Varma, S.R.; Sivaprakasam, T.O.; Mishra, A.; Kumar, L.M.S.; Prakash, N.S.; Prabhu, S.; Ramakrishnan, S. Protective Effects of
Triphala on Dermal Fibroblasts and Human Keratinocytes. PLoS ONE 2016, 11, e0145921. [CrossRef]

361. Baek, B.; Lee, S.H.; Kim, K.; Lim, H.-W.; Lim, C.-J. Ellagic Acid Plays a Protective Role against UV-B-Induced Oxidative Stress by
up-Regulating Antioxidant Components in Human Dermal Fibroblasts. Korean J. Physiol. Pharmacol. 2016, 20, 269. [CrossRef]

362. Vattem, D.A.; Shetty, K. Biological Functionality of Ellagic Acid: A Review. J. Food Biochem. 2005, 29, 234–266. [CrossRef]

http://doi.org/10.1016/j.arr.2021.101271
http://doi.org/10.1038/s41598-017-00315-4
http://doi.org/10.1038/nrd2060
http://doi.org/10.1186/1742-2094-7-46
http://doi.org/10.1016/j.fct.2013.07.021
http://doi.org/10.1111/j.1460-9568.2012.08229.x
http://doi.org/10.1016/j.bbrc.2005.03.237
http://doi.org/10.1002/med.21565
http://www.ncbi.nlm.nih.gov/pubmed/30741437
http://doi.org/10.1007/s11064-018-2586-8
http://doi.org/10.3892/etm.2017.5045
http://doi.org/10.1248/bpb.b16-00085
http://www.ncbi.nlm.nih.gov/pubmed/27582325
http://doi.org/10.1002/biof.1400
http://www.ncbi.nlm.nih.gov/pubmed/29210129
http://doi.org/10.1016/j.bone.2020.115252
http://www.ncbi.nlm.nih.gov/pubmed/31978617
http://doi.org/10.1155/2017/8379539
http://www.ncbi.nlm.nih.gov/pubmed/28900534
http://doi.org/10.1371/journal.pone.0124837
http://www.ncbi.nlm.nih.gov/pubmed/25924011
http://doi.org/10.1007/s12013-013-9703-8
http://doi.org/10.1074/jbc.M703229200
http://doi.org/10.1016/j.imbio.2019.11.005
http://www.ncbi.nlm.nih.gov/pubmed/31822433
http://doi.org/10.1016/j.jfda.2017.06.006
http://www.ncbi.nlm.nih.gov/pubmed/29567231
http://doi.org/10.1002/jbt.20360
http://www.ncbi.nlm.nih.gov/pubmed/21472896
http://doi.org/10.3390/nu9050477
http://doi.org/10.15171/bi.2018.21
http://doi.org/10.1177/1934578X19874174
http://doi.org/10.3390/nu11010023
http://doi.org/10.1371/journal.pone.0145921
http://doi.org/10.4196/kjpp.2016.20.3.269
http://doi.org/10.1111/j.1745-4514.2005.00031.x


Antioxidants 2022, 11, 1224 38 of 42

363. Hwang, J.M.; Cho, J.S.; Kim, T.H.; Lee, Y.I. Ellagic Acid Protects Hepatocytes from Damage by Inhibiting Mitochondrial Production
of Reactive Oxygen Species. Biomed. Pharmacother. 2010, 64, 264–270. [CrossRef] [PubMed]

364. Uzar, E.; Alp, H.; Cevik, M.U.; Fırat, U.; Evliyaoglu, O.; Tufek, A.; Altun, Y. Ellagic Acid Attenuates Oxidative Stress on Brain
and Sciatic Nerve and Improves Histopathology of Brain in Streptozotocin-Induced Diabetic Rats. Neurol. Sci. 2012, 33, 567–574.
[CrossRef] [PubMed]

365. Baeeri, M.; Momtaz, S.; Navaei-Nigjeh, M.; Niaz, K.; Rahimifard, M.; Ghasemi-Niri, S.F.; Sanadgol, N.; Hodjat, M.; Sharifzadeh,
M.; Abdollahi, M. Molecular Evidence on the Protective Effect of Ellagic Acid on Phosalone-Induced Senescence in Rat Embryonic
Fibroblast Cells. Food Chem. Toxicol. 2017, 100, 8–23. [CrossRef] [PubMed]

366. Muthaiyah, B.; Essa, M.M.; Lee, M.; Chauhan, V.; Kaur, K.; Chauhan, A. Dietary Supplementation of Walnuts Improves Memory
Deficits and Learning Skills in Transgenic Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2014, 42, 1397–1405. [CrossRef]

367. Ou, L.; Kong, L.-Y.; Zhang, X.-M.; Niwa, M. Oxidation of Ferulic Acid by Momordica Charantia Peroxidase and Related
Anti-Inflammation Activity Changes. Biol. Pharm. Bull. 2003, 26, 1511–1516. [CrossRef]

368. Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic Acid Exerts Antitumor Activity and Inhibits Metastasis in Breast Cancer
Cells by Regulating Epithelial to Mesenchymal Transition. Oncol. Rep. 2016, 36, 271–278. [CrossRef] [PubMed]

369. Hong, Q.; Ma, Z.-C.; Huang, H.; Wang, Y.-G.; Tan, H.-L.; Xiao, C.-R.; Liang, Q.-D.; Zhang, H.-T.; Gao, Y. Antithrombotic Activities
of Ferulic Acid via Intracellular Cyclic Nucleotide Signaling. Eur. J. Pharmacol. 2016, 777, 1–8. [CrossRef]

370. Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against
Pathogenic Bacteria. Microb. Drug Resist. 2013, 19, 256–265. [CrossRef]

371. Wagle, S.; Sim, H.-J.; Bhattarai, G.; Choi, K.-C.; Kook, S.-H.; Lee, J.-C.; Jeon, Y.-M. Supplemental Ferulic Acid Inhibits Total
Body Irradiation-Mediated Bone Marrow Damage, Bone Mass Loss, Stem Cell Senescence, and Hematopoietic Defect in Mice by
Enhancing Antioxidant Defense Systems. Antioxidants 2021, 10, 1209. [CrossRef]
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