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ABSTRACT
Three-dimensional distributions of demagnetization factors Nd within assemblies of magnetic nanoparticles have been investigated along the
axes of cuboid containing vessels. From the results of a numerical polar-based model, a significant skew toward high values in the number
distribution is observed and often overlooked by the assumed uniformity of the conventional analytical approach. To enable comparison with
experiment, new transverse susceptibility techniques have been developed, which are also applicable to superparamagnetic assemblies that
do not have the magnetization features normally required using conventional methods. Applying the two techniques to a system of ∼13 nm
magnetite (Fe3O4) particles resulted in the difference between the in-plane and out-of-plane Nd factors of (0.21 ± 0.03) and (0.201 ± 0.009),
respectively, which shows closest agreement with the simulation value for the mode of (0.19± 0.02). The median and mean results of the model
move further away from the experimental result, yielding values of (0.17 ± 0.02) and (0.16 ± 0.02), respectively, which is consistent with the
skewed distributions observed here. In all cases, the sum of the Nd factors from each orthogonal axis was equal to 1, giving further confidence
in the model. The new methods allow measurements on the superparamagnetic systems often found at this scale, and the agreement with the
model means that the spatial distribution of Nd factors may now be taken into account in studies on any nanoscale material that considers
the whole structure as a distribution of magnetic elements.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0095899

I. INTRODUCTION

The study of magnetic nanostructures, including discrete
and fixed nano-islands and assemblies of magnetic nanoparticles
(MNPs), continues to be an expanding and fundamentally impor-
tant field of interest. Potential and real applications cover a wide
range, which includes such examples as magnetic data storage,1,2

collections of skyrmions,3 biomedical treatments utilizing magnetic
hyperthermia [heating of superparamagnetic iron oxide nanopar-
ticles (SPIONs) under an ac field],4,5 or for the targeted release
of drugs,6 and the importance of particle dipolar interactions in

forming chains in such systems,7–9 through to room-temperature
magnetic refrigeration.10

Measuring the magnetic characterization of a sample in an
open magnetic circuit requires an understanding of the sample’s
demagnetization factors enabling the magnitude of the effective
magnetic field to be found.11 The demagnetizing field Hd is pro-
portional to the magnetization M that produces it with the constant
of proportionality being the demagnetizing factor Nd. The negative
sign indicates that Hd is in the opposite direction to M,

Hd = −NdM. (1)
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The demagnetization factors of a sample depend on the
sample’s shape. For an ellipsoid in a uniform applied field, the geom-
etry is such that the demagnetization field is constant throughout
the sample. The three orthogonal axes’ demagnetization factors are
constant, and their sum is equal to 1:12 for a spherical sample, the
demagnetization factor in each of the three axes is 1/3. For other
shapes, the demagnetization fields are not constant throughout the
sample and average values are typically quoted. For a homogeneous
solid cuboid sample, the demagnetization factors are estimated with
a dimension-dependent analytical expression.13

If the sample is in the form of a powder packed into tubes, for
example, additional factors need to be considered and are the sub-
ject of this study. For spherical particles packed into a containing
vessel, the mean demagnetization factor in each direction Nz can be
estimated using the following formula:14,15

Nz = 1/3 + f (Dz − 1/3), (2)

with f defined as the volume packing fraction of the powder and
Dz the shape demagnetization factor of the sample-containing ves-
sel in the given direction. At full packing fraction, this equation
reduces to the shape factor, and at very low packing, it tends to 1/3,
and the value of the constituent spherical particles as the interac-
tions between them tends to zero. However, in the case of interest
in assemblies of nanoparticles at intermediate packing fractions
(as found in a typical sample vessel), there is little work in the lit-
erature to test the validity and/or accuracy of the estimate given
in Eq. (2).

Earlier modeling work16 predicted that Nz would reduce as a
function of decreasing thickness in thin-film assemblies of MNPs
and hence the conventional approximation to an infinite sheet
would no longer be valid and would need to be considered as tech-
nologies advance ever-more into the nanoscale. More recently, the
effect of the packing fraction and size distribution was numerically
modeled for multi-domain macro-sized particles17 and predicted
close agreement with Eq. (2). A subsequent experimental study18

on ferrimagnetic MNPs showed just how important it is to ensure
Nz is taken into account. Their study of susceptibility curves as
a function of temperature showed that features described by pre-
vious researchers were, in fact, artifacts. By calculating Nz using
known f and Dz factors in their cylindrical samples, the artifacts
were removed and the curves converged for in-plane and out-of-
plane measurements. For further insight into particulate systems,
measurement of Nz in itself is first required for comparison with
the predicted results of Eq. (2) along each axis of the containing
vessel.

In the work reported here, we develop two new experimen-
tal methods that allow the measurement of demagnetization factors
in randomly oriented MNPs to be determined from AC trans-
verse susceptibility curves as a function of an applied DC field.
As these do not contain the anisotropy peaks of an oriented
(textured) sample, the conventional method cannot be used. Fur-
thermore, if the MNPs are also superparamagnetic, and hence with
no hysteresis in their M(H) magnetization curves, the alterna-
tive and less accurate “loop-closure” point method19 is also not
applicable.

The results on randomly oriented magnetite (Fe3O4) nanopar-
ticles that we pack into rectangular prisms, with the appropriate

cuboid shape demagnetization factor and measured packing fraction
applied, are then compared with Eq. (2) and those of a polar-based
computational model we develop based on a lattice of single domain
particles. From the subsequent number and spatial distributions of
the demagnetization factors, we show that the experimental results
are closest to those of the mode, being consistent with the significant
skew observed, and so provide insight into the structure of the mag-
netic interactions within the assembly at this increasingly relevant
scale.

II. METHOD
A. The model

The dipolar model is based on the work by Bissell and Cookson
et al., who were examining demagnetization factors in particulate
recording media.16,20 Further details are given in the Appendix.

Our model consists of spherical particles that are set in regu-
lar rows and columns (simple cubic packing) to form the cuboid
shape of the containing vessel. The size of the cuboid is defined by
the number of particles in each of the orthogonal axes. For each par-
ticle in turn, the model calculates the particle’s self-demagnetization
field, caused by free poles at the particle’s surface, and the com-
bined field created by all the other constituent particles (interparticle
interactions). Initial testing of the model was carried out with three
axes of equal length containing 101 particles each: a perfect cube
containing just over a million particles. Adjusting the size of each
“length” of the cuboid allowed the aspect ratio of the cuboid to
be changed as required. By treating the cuboid as the containing
vessel of the powder, the container shape demagnetization factor
Dz can then be found using the analytical expression derived by
Aharoni.13

The packing fraction of the powder f is set by altering the
distance that the particles are apart within the sample. The same
separation distance is used in all three orthogonal axes. Since the
particles are in a regular aligned lattice, there is an upper limit on
the packing fraction: this occurs when the particles are just touch-
ing, giving a maximum packing fraction of ∼0.52. The maximum
possible packing fraction for spheres of the same dimension in any
arrangement is ∼0.74,21 cubic close packing.

The model uses an assumption that each particle is fully mag-
netized in the direction of a saturating applied external magnetic
field. Equation (2) states that the average demagnetization factor
for a given sample consisting of packed spherical magnetic spheres
is constant: it is independent of the magnetized state of the
sample. By measuring or modeling the demagnetization factor at
any level of magnetization, it should yield the same value. For the
modeling work, the easiest state to work with is one in which the
particles’ moments are fully aligned in the direction of the applied
field.

The demagnetizing field that any given particle is exposed to is
caused by the free poles on its own surface and on the surfaces of
all the other particles within the cuboid. The model calculates this
demagnetization field in the direction of the applied field at the cen-
ter of each particle in two steps. First, using numerical integration, it
calculates the demagnetization field that a given particle itself would
generate at its own center. It then, by repeating the numerical inte-
gration, calculates the contributions that the surfaces of all the other
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particles will have at the center of the given particle. Further details
are given in the Appendix.

B. Transverse susceptibility curves
Transverse susceptibility, the initial susceptibility of a material

measured in a transverse direction to an applied magnetic field, was
originally conceived by Gans in 1909.22 In 1957, Aharoni et al.23 cal-
culated the transverse susceptibility as a function of applied field
for a system of identical Stonar–Wohlfarth particles24 with a ran-
dom distribution of easy axis orientations; this function contained
distinct features at the particle’s coercivity and anisotropy field val-
ues. These features were confirmed experimentally in 1987 by Pareti
and Turilli25 but with the restriction that it was only valid for par-
ticles whose volume was below that for multiple domain formation.
Samples of magnetite spherical particles, typical diameter of 13 nm,
packed into a rectangular glass tube of internal dimensions: thick-
ness (0.40 ± 0.04), width (4.0 ± 0.4), and length (10.3 ± 0.1) mm,
were used in this study. The particles were synthesized using an
established method. Briefly, a solution of ferric chloride and fer-
rous chloride (2:1 ratio) was mixed with an ammonia solution, and
the reaction mixture was stirred for 1 h. The magnetite (Fe3O4)
nanoparticles produced were washed three times with deionized
water and then oven-dried for 24 h at 70○ C before use. Further
details of the methodology used to produce the nanoparticles can
be found elsewhere.26 Having control of the process ensured a pre-
dominantly superparamagnetic assembly was obtained, but with the
small hysteresis required to test the validity of the new transverse
susceptibility method developed in Sec. II C.

The established method for determination of a sample’s demag-
netization factors requires two transverse susceptibility measure-
ments across the width and thickness, respectively, as a function of
an applied DC field.19,27 In both cases, a small AC field is applied
transverse to the DC field direction along the sample length as shown
in Fig. 1. This perturbation of the sample’s magnetization by the AC
field, the linear transverse susceptibility, χt , is then measured in the
AC field direction using pickup coils.

In an ideal system with no demagnetization factors, a peak is
observed in each DC field sweep at the point equal to the anisotropy

field Hk. The sample is immersed in an effective field due to the
opposing demagnetization field of Eq. (1) in any given direction,
and so the peaks will be shifted along the DC field axis accordingly.
Hence, using Eq. (1), the difference in the position of the anisotropy
peaks between the two measurements is used as a measure of the
difference in the demagnetization fields between the two orienta-
tions by

Hz −Hx =M(Nz −Nx), (3)

with the subscripts z and x representing the directions across
the thickness and width, respectively. The common magnetization
point, M, is found by cross-referencing the field strengths with stan-
dard magnetization curves in the two orientations, and then, the
difference in the demagnetization factors may be determined. In
summary, Hz and Hx are the anisotropy fields (applied field by the
susceptometer) for the same sample measured twice at two different
orientations on the susceptometer. The magnetization, M, is mea-
sured using a vibrating sample magnetometer, duplicating one of
the sample orientations and respective applied field settings from the
susceptometer.

C. Development of the transverse susceptibility
method

The presence of an anisotropy peak in the susceptometer out-
put is dependent on the orientation of the sample’s particles, with
randomly packed powders commonly suppressing this peak.28 This
means that another feature needs to be identified that can then be
used as a “marker” between the two measurements.

Aharoni et al.23 derived an equation that describes how the
transverse susceptibility χt of a Stoner–Wohlfarth particle is depen-
dent on the reduced field h, defined as the ratio of the applied
magnetic field and the particle’s anisotropy field,24

χt =
M2

s

2K
(cos2ϕK

cos2θM

h cos θM + cos 2(θM − θK)

+ sin2ϕK
sin(θK − θM)

h sin θK
), (4)

FIG. 1. Configuration of magnetic fields
and sample for transverse susceptibility
measurements. A small perturbation field
and subsequent susceptibility response
is applied transverse to either (i) an in-
plane or (ii) out-of-plane DC field as
shown.
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with Ms defined as the particle’s saturation magnetization and K
being the anisotropy constant; taking the z axis as the direction of the
applied DC field, ϕK and θK are the spherical polar angles between
the applied DC field and the easy axis, illustrated in Fig. 2, and θM is
the angle between the applied field and the magnetization.

For a sample consisting of Stoner–Wohlfarth particles that are
randomly oriented in the x–y plane, the transverse susceptibility is
found by integrating Eq. (4) over ϕk (0 to 2π) with θk equal to π/2 to
give

χt =
M2

s π
2K
( cos2θm

h cos θm − 2 cos2θm + 1
+ cos θm

h
). (5)

If the sample is saturated in the field direction (θM equals zero)
and h≫ 1, Eq. (5) simplifies to

χt =
M2

s π
Kh

. (6)

Hence, when saturated, the transverse susceptibility will be inversely
proportional to the reduced field. By examining the output of the
susceptometer, it should, therefore, be possible to identify a field
value at which the output tends to linear behavior as it approaches
the horizontal asymptote: this provides a feature that would shift
due to the differences in the demagnetization fields for the two
orientations.

It should be noted that this methodology is still based on the
shift in H of a single common feature as used in the established tex-
tured measurement. With no anisotropy features expected in these
randomly packed powders, the only difference anticipated between
the curves in the two orientations will be a widening of the overall
peak centered on zero applied field when the demagnetization factor
is higher: in this case across the thickness. This provides a difference
of ΔH between the two curves at any given χt that is also investigated
here as an alternative method of determining the demagnetization
factors.

FIG. 2. Spherical coordinates relating the easy axis of a Stoner–Wohlfarth particle
to an applied DC magnetic field.

D. Comparison with loop closure points
Samples of iron oxide MNPs sometimes show a small hysteresis

(very narrow but distinct near-closed loops) despite direct size mea-
surements indicating they are expected to be within the superpara-
magnetic regime. This is often attributed to magnetic interaction
effects, due to agglomeration, in the dry powdered state.29 Selection
of such a sample was done in this study as a means of comparing the
new χt method with that of another accepted technique, as described
by Bissell et al.,19 that is independent of particle orientation effects.
Here, the hysteresis curve of the sample is measured using a standard
Vibrating Sample Magnetometer (VSM), once with the applied mag-
netic field through the thickness and once with it through the width
of the sample. The difference in the applied magnetic field needed to
bring the hysteresis loop to closure between the two orientations is
equal to the difference in the demagnetization fields. Hence, taking
the common magnetization level that the closure point occurs at,
the difference in the demagnetization factors can be calculated using
Eq. (3). In this manner, a good comparison with the new χt method
gives confidence in its applicability, in general, to that of randomly
oriented nanoparticles, including extension to closed loops with no
measurable hysteresis.

III. RESULTS AND DISCUSSION
A. Testing the model

The initial test of the model was to simulate a cubic sample
(shape factor Dz value of 1/313), with the volume packing fraction
held constant at 0.2, a typical packing fraction of the physical sam-
ples used in the experiments. The model was executed several times,
each time using different side lengths so that the impact of the total
number of particles involved in the simulation could be assessed.
Using Eq. (2), this cubic system should give a sample demagneti-
zation factor Nz of 1/3. The results for the mean average from the
complete assemblies with cubic sides of 41, 51, 81, 101, and 151
particles, respectively, all produced the expected value as did the
median and mode. Figure 3 shows slices taken through the model’s
output for a cuboid of side length 101 particles, illustrating the spa-
tial distribution of the constituent particles’ demagnetization factors.
With the applied field in the z direction as shown, the largest Nz
values are on the top and bottom surfaces, while the lowest values
are observed on the side surfaces as expected. For clarity, only two
“slices” through the 3D structure are shown and illustrate the ten-
dency to converge on Nz values of 1/3 to the center particle. This is
consistent with the dominance of the cuboid shape at the surfaces
(and their associated free poles) reducing to that of a single isolated
particle.

As the model was executed on a standard desktop computer, it
was important to maximize its efficiency to obtain an acceptable run
time. The details of this are given in the Appendix.

1. Impact of packing fraction
A further test of the model’s consistency with the average value

of the analytical model of Eq. (2) can be obtained by holding the
shape factor constant while varying the packing fraction. This was
executed for packing fractions between 0.1 and 0.5 in steps of 0.1
with a typical response for the average values shown in Fig. 4: in this
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FIG. 3. Spatial distribution of demagne-
tization factors in the direction of the
applied field (z axis) of particles con-
tained in a cubic sample, length 101
particles, with a packing fraction of 0.2.
For size considerations and clarity, the z
axis is not to scale and only two “slices”
through the 3D structure are shown.

case, a cuboid of length 201 particles along both the x and y axes and
of 41 particles in the z axis was used, giving a shape demagnetization
factor, Dz, of 0.6942.13 The mean of the particles’ demagnetization
factors in the applied direction compares well with the solid line
of Eq. (2) with the close fit and high degree of linearity shown.
From a linear regression on the model data points, the extrapola-
tion to a packing fraction of zero resulted in an Nz value of (0.3334
± 0.0001) compared to the theoretical value of 1/3. These relation-
ships were observed when other shape demagnetization factors were
tested, including a perfect cube of factor 1/3.

Deviations from Eq. (2) for the median and modal points both
show an increase above the mean that remains linear as illustrated
by the regression curve fits and with the modal points showing the
largest increase. This indicates a skew toward high Nz values in the
number distribution consistent with greater interactions between
the particles’ free surface poles as a function of the particles being
packed closer together.

2. Impact of shape demagnetization factor
By fixing the packing fraction while changing the aspect ratio

of the model’s cuboid containing vessel, the impact of its shape

FIG. 4. Relationship between the average particle demagnetization factor and
packing fraction for a cuboid sample with a shape demagnetization, Dz, of 0.6942,
showing good agreement with Eq. (2) for the mean values. The linearity, steeper
gradient, and greater values for the median and mode are indicative of a skew
toward high Nz factors and the increase in interactions between the poles as they
are packed closer together.

demagnetization factor, Dz, on the average particle’s demagnetiza-
tion factor may be investigated and compared with the output of
Eq. (2). Figure 5 shows this relationship for a packing fraction of 0.2.
Again, the mean from the computational model agrees with Eq. (2),
being linear and with a regression fit yielding a gradient of (0.1992
± 0.0005) compared to the expected value of 0.20 from the packing
fraction f , and crosses the ordinate at (0.2667 ± 0.0003) compared
to the value of 0.267 expected from (1 − f )/3. Similar relationships
occurred for other tested packing fractions. Again, this gives confi-
dence in the validity of the computational model, especially in terms
of the numerical and spatial distribution of each N ijk throughout
a 3D nanostructure representing that of a real system. Deviations
from Eq. (2) for the median and model outputs are non-linear
as a function of vessel shape factor Dz. The values converge on a
Dz of 1/3 as is expected by definition and consistency with Eq. (2),
with values above the mean at Dz > 1/3 and below the mean at
Dz < 1/3.

Insight into the reason for the median and modal curves being
above or below the mean around the pivot point of Dz at 1/3 is given
by consideration of the number distribution within the assembly.
While the mean average is always in close agreement with Eq. (2),

FIG. 5. Relationship between the average particle’s demagnetization factor and
the containing vessel’s shape demagnetization factor with a packing fraction of
0.2. Deviations from Eq. (2) are non-linear for the median and mode and “pivot”
above and below the mean around the convergence point of Dz = 1/3, respectively.
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as illustrated in both Figs. 4 and 5, examination of the distribution
of N also raises a question about if this is the best single measure?
This is depicted by the example of Fig. 6 for a sample with packing
fraction 0.2, cuboid lengths of 41 particles in the thickness and 401
particles in the width and length. The two distributions show the
particles’ demagnetization factors when the saturating applied field
is through the thickness and then through the length/width. In addi-
tion, the mean, median, and mode averages for the demagnetizing
factors through the thickness are 0.4273, 0.4413, and 0.4480, respec-
tively. Conversely, for the length/width, they are 0.2863, 0.2794, and
0.2762. Adding up the values in the three orthogonal axes gives a
sum of ∼1 as expected.11 Looking at the skewness of the distributions
qualitatively, there are a greater number of particles with higher val-
ues in the distribution above the pivot point of 1/3 in Fig. 6 than
there is below for the out-of-plane and in-plane results: this is con-
sistent with the corresponding Nz values above and below the mean
of Fig. 5. This was investigated quantitatively by comparison with
the results from the three experimental methodologies and included
testing the validity of the proposed new transverse susceptibility
techniques.

3. Mean, median, and mode output
The model’s mean average demagnetization factor is the same

as that given by Eq. (2). The median and mode values, unlike the
mean, are not linear as shown in Fig. 5. They can be modeled using
an equation of the form

Nz = p + f (qD4
z + rD3

z + sD2
z + tDz + u), (7)

with p, q, r, s, t, and u being coefficients unique to either the median
or mode. A non-linear regression fit30–32 on the model data, over
a range of packing fractions and shape demagnetization factors, i.e.,
fitted over the 3D surface, gave the coefficients and respective uncer-
tainties: these are listed in Table I. The mean, median, and mode
demagnetization values can then be calculated using Eqs. (2) and (7)
for any powdered sample in a cuboid containing vessel and com-
pared to experiment. The model data were extrapolated to extend
beyond a packing faction of 0.52. A packing fraction of 0.52 was

TABLE I. Coefficients for the median and mode averages of the constituent particles’
demagnetization factors for Eq. (7).

Coeff. Median Mode

p 0.333 51 ± 0.000 05 0.333 26 ± 0.000 03
q 0.664 7 ± 0.000 8 2.436 ± 0.004
r −2.215 ± 0.015 −6.576 ± 0.008
s 2.001 ± 0.010 5.246 ± 0.005
t 0.549 4 ± 0.002 3 −0.108 3 ± 0.001 2
u −0.333 59 ± 0.000 17 −0.333 23 ± 0.000 09

the uppermost value for this model, since at this point, the parti-
cles would be “physically” touching. This would be a physical limit,
not a mathematical one.

It should be noted in Table I that the values for p and u agree
within error and tend to their expected values of +1/3 and −1/3,
respectively, thereby providing a consistency check with the calcu-
lations of the other coefficients over the whole range of packing
fraction and shape demagnetization factors.

As expected for skewed distributions, the largest difference,
ΔNz, was between the mode and mean values (as compared to the
median and mean), and this is shown in the 3D surface plot of
Fig. 7. The pivot axis about ΔNz = 0 along the packing fraction
axis at a container demagnetization factor of 1/3 is clearly visible
in the surface projection onto the 2D contour map. Significant dif-
ferences typically occur at high packing fractions with a container
shape demagnetization factor of about 0.70 for the positive peak
and 0.15 for the negative trough. The good fit and associated small
errors given in Table I mean that Nd can now be interpolated at
any point in the structure without the need to run the model at
a higher resolution and so becomes a powerful tool for further
investigations.

B. Magnetic characterization
1. Transverse susceptibility measurements

Figure 8 shows the signal voltage output from the susceptome-
ter when measuring the magnetite sample with its applied DC field

FIG. 6. Number distribution of the
demagnetization factors Nz of the con-
stituent particles contained in a cuboid,
packing fraction 0.2, with edge lengths
of 41 (cuboid thickness) by 401 (cuboid
width) by 401 (cuboid length). The out-of-
plane and in-plane factors are consistent
with theory, being predominantly above
and below the perfect cube value of
1/3, respectively. Furthermore, a greater
number of particles with field out-of-
plane are at higher values compared
to those in-plane and thereby result in
the corresponding Nz values above and
below the mean of Fig. 5.
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FIG. 7. Difference between the mode and mean demagnetization factors taken
from Eqs. (7) and (2), respectively. The pivot axis (about ΔNz = 0) along the pack-
ing fraction axis f at the container shape demagnetization factor Dz of 1/3 is clearly
visible in the 2D contour map.

across both the width and then the thickness of the sample. The
signal voltage is proportional to the susceptibility of the sample.25

The feature of interest in these measurements is the point at which
the curve descends with increasing magnetic field and becomes near
linear. From Eq. (6), it was expected that at high applied fields, as the
sample approaches saturation, the output should show an inverse
relationship and would be expected to tend to linear behavior as
it approaches the horizontal asymptote. The onset of linearity is
shown in the inset of Fig. 8 to give field strengths of (492 ± 5) and
(552 ± 5) kAm−1 across the width and thickness, respectively. Since
this is occurring near to saturation magnetization, Nz − Nx has a
value of (0.21 ± 0.03), determined using Eq. (3).

FIG. 8. Transverse susceptibility measurements of the magnetic sample with the
applied DC field across the width w and across the thickness t of the sample. The
increase in Nz across t is clearly visible in the form of the wider peak.

FIG. 9. Difference in the magnetic field for the two orientations against magnetiza-
tion as measured on the susceptometer. There is an initially distinct linear region,
shown by the points used in the regression fit, that breaks down at the increasingly
difficult to measure values at high fields.

The other feature of interest in the curves is the clear widening
of the peak width when the HDC orientation is switched to be across
the thickness instead of the width. This is expected due to Nz > Nx
requiring a greater HDC to be applied for the sample to be in the same
effective field Heff = HDC −NzM, where NzM is the demagnetizing
field of Eq. (1) at the common magnetization point M. As these two
field points are at the same Heff , the χt values are also common. At
first sight, the variation of ΔH between the two curves as a function
of χt does not seem to offer any further information. However, when
compared to Eq. (3), it is apparent that a simple linear relationship
with a gradient of Nz − Nx should be expected. This is shown in
Fig. 9, where ΔH points from the χt curve are plotted as a function
of magnetization values. In this case, normalized magnetization has
been used and so Nz − Nx is found by multiplying the gradient by
the saturation value. Figure 9 does show a linear relationship, but it
is starting to break down at high magnetization levels. This is con-
sistent with the difficultly in measuring the difference between the
applied fields for the two orientations as the two curves start to con-
verge at high HDC, with only small changes in the χt signal as each
curve approaches the horizontal. From the regression fit over the
linear region, Nz −Nx was found to be (0.201 ± 0.009) with a signifi-
cantly lower experimental error of 4% compared to the error of 14%
found from the linear onset point.

2. Magnetization curves
For comparison of the new transverse susceptibility results with

those of an accepted method, magnetization curves measured in the
same two orientations as the susceptometer are shown in Fig. 10.
From TEM images (not shown), the particle size distribution was
predominantly at 13 nm in a range (10 > d > 16) nm from a sample
set of 100 measurements. At this small size, the behavior of these
particles tends to superparamagnetic33 with near-closed loops. From
the internal dimensions of the sample holder and the measured
moment, the saturation magnetization of the magnetite powder was
determined to be (286 ± 8) kAm−1. From the measured mass of
the sample and assuming all of it was magnetite with a density of
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FIG. 10. Hysteresis curves for the magnetite powder sample with the VSM’s
applied field across the width and then the thickness of the sample. The inset
around the closure points highlights the difficulty in estimating the occurrence of
this feature, while the inset around the coercivities reveals the expected agreement
in these crossing points.

5.18 gcm−3 (5180 kgm−3), the volume packing fraction was deter-
mined to be (0.21 ± 0.03).

The closure point occurs for the two orientations at (110 ± 10)
and (160 ± 10) kAm−1 at an approximate magnetization of (0.80
± 0.05) of the saturation magnetization, resulting in an Nz − Nx
value of (0.22 ± 0.06). As can be seen in the inset of Fig. 10,
it is difficult assessing the closure point: an issue raised in the
original investigation19 and made more difficult here with the near-
closed loops and hence the large error. However, comparison of
this accepted method and its result with the value from our new
and significantly lower error susceptibility technique is reasonable
and, thus, gives confidence in using transverse susceptibility to char-
acterize demagnetization factors in powders of randomly oriented
nanoparticles. The inset around the coercivity points of Fig. 10
shows they are independent of the sample orientation, crossing the
abscissa at the same values, as is expected due to Nd being zero at this
juncture.

As fully closed loops do not allow the standard VSM method
to be used, these results provide a method of extending character-
ization to the fully closed loops often found in measurements on
superparamagnetic nanoparticles.

3. Comparison of the model with experiment
VSM and susceptometer experimental techniques used to mea-

sure demagnetization factors examine the difference in the demag-
netizing fields between two orientations; in our example, the sample
was tested across its thickness and width. The difference in the
applied field needed to drive the sample to a “feature” point in its
characterization would be equal to the difference in the demag-
netization fields between the two orientations. A direct compari-
son can then be drawn between the empirically determined value
of Nz − Nx (the difference between the demagnetization fac-
tors for the two tested orientations) and that calculated using the
model.

TABLE II. Difference between the demagnetization factors for the thickness and width
of the sample obtained from the model and empirical sources.

Origin Nz − Nx value

Mean: Model [Eq. (2)] 0.16 ± 0.02
Median: Model [Eq. (7)] 0.17 ± 0.02
Mode: Model [Eq. (7)] 0.19 ± 0.02
Hysteresis closure (VSM) 0.22 ± 0.06
Linear onset (susceptometer) 0.21 ± 0.03
Field difference (susceptometer) 0.201 ± 0.009

Comparisons of the model with experimental results are given
in Table II. From the previously determined packing faction, f , of
(0.21 ± 0.03) and sample vessel dimensions, it has a containing shape
demagnetization factor13 along its thickness, Dz , of (0.86 ± 0.02) and
along its width, Dx, of (0.11 ± 0.02). Equation (3) from the analytical
model gives a value of Nz −Nx (0.16 ± 0.02). Evaluating Eq. (7) from
the computational model for both median and mode gives values for
Nz −Nx of (0.17± 0.02) and (0.19± 0.02), respectively. All the exper-
imental results are larger than the theoretical values, the closest being
the mode value, which was expected to be the largest theoretical
value due to the skewed distribution evident in Fig. 6. Consequently,
this value agrees with all three experimental values within error,
although this must be viewed with caution when comparing to the
VSM result with its large uncertainty. The two transverse suscepti-
bility results are closer to the theoretical values, have smaller errors,
and agree within their uncertainty.

A better assessment of how these results compare is by refer-
ence to zeta scores. Zeta scores, ζ,34,35 give an indication on whether
two results x1 and x2 with respective uncertainties u1 and u2 are in
agreement and are determined by

ζ = x1 − x2√
u2

1 + u2
2

. (8)

Absolute zeta scores in the range less than or equal to 2 are an indica-
tion that the values agree. Absolute scores greater than 2 but less than
or equal to 3 are questionable but it does not rule out disagreement
between the two values. Values greater than 3 indicate disagreement.
Comparison between experiment and model is given in Table III. In
all cases, the zeta score is less than 2 with the mode results <median
< mean and value ζ ≤ 0.55 being significantly lower than those of
their median and mean counterparts in the range (0.79 ≥ ζ ≥ 1.87).
This is consistent with the single value of the experimental results

TABLE III. Absolute zeta scores showing the comparison of the model with empirical
data.

Experimental technique Zeta scores

Mean Median Mode

Hysteresis closure (VSM) 0.95 0.79 0.47
Linear onset (suscept.) 1.39 1.11 0.55
Field difference (suscept.) 1.87 1.41 0.50
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being closer to the mode value of the model. Furthermore, it is con-
sistent with the skewed number distributions, such as that of Fig. 6,
as the Nz − Nx values for the mode will be greater than those of the
median and mean, bringing them closer to the empirical measure-
ment as would be expected for a majority of particles in the assembly
being grouped around this value.

IV. CONCLUSIONS
A computational demagnetization factor model has been devel-

oped based on particle surface poles in an assembly of nanoparti-
cles and their interactions. By reducing the calculations to that of
geometry-only, this model may be run on a standard personal com-
puter (PC) and thus provide an effective and efficient technique to
aid in the interpretation of experimental data.

Comparison with experiment using two new transverse sus-
ceptibility techniques showed the best agreement was with the
Mode value of the model, resulting in zeta scores of ≤0.55. This is
consistent with the skewed numerical distribution of factors in
the model weighting a significant proportion of the experimental
factors around the Mode and a better understanding of the single
value measured.

With interest in superparamagnetic nanoparticles of contin-
uing and growing interest, the susceptibility technique had to be
extended to include such measurements. Particles with near-closed
magnetization curves were used to test the validity of the two new
susceptometer methods against an accepted measurement that uti-
lizes loop closure points. All results agreed within error, giving
confidence in the two new techniques. Of these, the multiple fea-
ture result was closest to the Mode value of the model and with the
smallest experimental uncertainties.

Mapping the model demagnetization factors as a function of
their position within the array allows the spatial distribution to be
determined and provides insight into how the particles interact in
either a global or local field. As this is essentially the same as con-
sidering magnetic islands or elements in other nanostructures, this
will be increasingly important to understand in terms of the poten-
tial applications of 3D nanomagnetic materials that are currently
being studied and developed. Preliminary modeling on changing the
shape of particles within a given sample-containing vessel has illus-
trated the limitations of the spherical assumption inherent in Eq. (2)
and along with the effects of agglomeration is the subject of future
work.
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APPENDIX: FURTHER MODEL DETAIL AND
IMPLEMENTATION

The model used in this report is based on the work by
Cookson20 in which he was studying the average demagnetiza-
tion factor for tape recording media consisting of prolate spheroid
particles, as shown in Fig. 11.

The model starts with calculating the self-demagnetization field
that an individual particle produces at its center due to the free
poles on its surface. Taking the origin to be at the particle’s cen-
ter, any point on the particle’s surface is given by the coordinate
(o, p, q). The particle has a semi-minor axis length of a in both the
x(o) and z(q) directions and a semi-major axis length of b in the
y(p) direction. The particle is fully magnetized in the +q(z) direc-
tion. By integrating the magnetic field contributions generated at the
particle’s center by isolated poles on infinitesimally small sections of
the surface, and dividing through by the particle’s magnetization, the
demagnetization factor, Nd, of the particle can then be calculated as
follows:

Nd =
a

∫
−a

lim p(o)

∫
− lim p(o)

( −q(o, p)
[o2 + p2 + −q(o, p)2]3/2

− q(o, p)
[o2 + p2 + q(o, p)2]3/2

)dpdo,

(A1)

with q given by

q(o, p) =
√

a2(1 − p2

b2 ) − o2, (A2)

and the lim p by

lim p(0) =
√

b2(1 − o2

a2 ). (A3)

FIG. 11. A representation of the prolate spheroid used in the Cookson model.20

The particle has a semi-minor axis length, a, in both the o and q directions and a
semi-major axis length, b, in the p direction.
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For the contributions of the surface free poles of a neighboring
particle, Eq. (A1) can be modified by simply adding the coordinates
(x, y, z) of the center of the neighboring particle to (o, p, q). To sim-
plify the coordinate system, Cookson used a scaling factor, m (with
m = 1 representing touching particles). Neighboring particles in the
simple lattice that he used were separated by a distance 2ma in the x
and z directions and by a distance 2mb in the y direction. Therefore,
he was able to calculate the contribution to the demagnetization field
at a particle centered at the origin generated by any particle, centered
at (x, y, z) for any given packing fraction.

For a sample consisting of a 3D lattice of evenly spread par-
ticles in a simple cubic packed arrangement, the model calculates
the self-demagnetization field and the contributions of all the other
particles for a particle positioned at the vertex (0, 0, 0). To illus-
trate this, Fig. 12 shows an example for a cubic sample consisting
of spherical particles in a 33 assembly. Spheres have been chosen
to match that of the experimental study reported here and are sim-
ply implemented in Cookson’s model by setting a and b of equal
length.

The demagnetizing factor of the particle at the (0, 0, 0) vertex
can be found by summing all the contributions from the 27 particles
(itself included). This surface integration process would then need
to be repeated for all 27 particles in the system to be able to calculate
the average demagnetization factor of the sample. As this does not
take advantage of symmetries within the system, it was found to be
computationally inefficient and was subject to further development
in this study.

To reduce the number of times the surface integration must be
performed, a new matrix is generated, created by making reflections

FIG. 12. For an example 33 sample, the model will initially calculate a matrix con-
taining the self-demagnetizing field of the particle at (0, 0, 0) and the contributions
to this field by the other 26 particles. The calculation for each particle’s contribution
is based on an integration over the particle’s surface, relating it to the origin.

of the matrix in Fig. 12 about the xy, xz, and yz planes: this new
matrix has size 53 (2n − 1)3, where n is the length of the side of the
cube. A representation is shown in Fig. 13. For simplicity, it only
shows the xz plane at y equals 2. The particle at the origin of the orig-
inal matrix, Fig. 12, is now at the center of the new, in our example,
at position (2, 2, 2).

This new matrix is a demagnetization contribution map for our
sample with the particle that we want to find its demagnetization fac-
tor at the center. If we think about stepping through each particle in
turn in our sample, starting with the particle at (0, 0, 0), the demag-
netization of each particle can be found by stepping a sub-matrix
through the 53 matrix, which is equal in size to the sample (33 in this
example), starting with highlighting elements (2, 2, 2) to (4, 4, 4). By
summing the contents of this sub-matrix, this will yield the particle’s
demagnetization field. So, for the particle at position (1, 0, 0) in the
sample, the sub-matrix will be shifted to highlight elements (1, 2, 2)
to (3, 4, 4), again summing up its contents to yield the demagneti-
zation factor. This stepping process is repeated until all the particles’
demagnetization factors have been found.

In both stages, applying the surface integration and in the sum-
mation of demagnetization contributions, the actual numbers of
integrations and summations are reduced due to several symmetries
in the sample, further reducing the computational time.

Even with the above technique, there is still a limitation due
to the computational speed: the model being executed on a stan-
dard desktop computer. The initial setup of the model required

FIG. 13. From a series of reflections of the example 33 matrix, a new 53 (2n − 1)3

is created. Here, the xz plane is shown for y equals 2. The center value (2, 2, 2)
is the self-demagnetization field taken from the original matrix [particle (0, 0, 0)] of
Fig. 12. The highlighted area represents the sub-matrix that is used to encompass
all the required contributions that would yield the demagnetization factor for the
particle in the sample at position (0, 0, 0). By transposing this sub-matrix, the
demagnetization factors of the other constituent particles can be found.
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FIG. 14. Comparison of the distribution
of the constituent particles’ demagneti-
zation factor between a cubic sample
with edge length 151 and 41 particles:
packing fraction of 0.2.

one numerical integration to be carried out per particle and addi-
tions equal to the square of the total number of particles. Ideally,
since demagnetizing fields are dominated by the sample shape, the
requirement for the model is that it contains the minimum num-
ber of particles without degradation of its output. This was tested by
examining a cubic sample repeatedly with different edge lengths per
repeat: Fig. 3 shows an example of such a setup. The mean, median,
and mode average for all the edge lengths was 1/3. Figure 14 shows
a comparison of the distribution of the constituent particle’s demag-
netization factors for the largest (151 particle edge length) and the
smallest (41 particle edge length) of the cubic simulations. The com-
parison shows that the distributions are similar in shape. The effect
of decreasing the edge length in the simulation seems to be reduction
in the “smoothness” of the distribution and with a noticeable shift
of high valued demagnetization factor particles to clump and form
a secondary high-end peak. A two-sample Kolmogorov–Smirnov
test was performed with null hypothesis that the two datasets are
drawn from the same distribution.36–38 The test indicated that the
null hypothesis was not rejected at the 5% significance level, with a
p-value of 0.8938.

To produce high Dz values requires a high aspect ratio between
the lengths of the cuboid edges. The smallest length used in the
model was 41 particles to keep distortion of the distributions of
particle demagnetization factors to a minimum, but still allowing a
model execution time that was acceptable.
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