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Abstract: This work aimed to develop dual drug-loaded nanostructured lipid carriers of raloxifene
and naringin (RLX/NRG NLCs) for breast cancer. RLX/NRG NLCs were prepared using Compritol
888 ATO and oleic acid using a hot homogenization–sonication method and optimized using central
composite design (CCD). The optimized RLX/NRG NLCs were characterized and evaluated using
multiple technological means. The optimized RLX/NRG NLCs exhibited a particle size of 137.12 nm,
polydispersity index (PDI) of 0.266, zeta potential (ZP) of 25.9 mV, and entrapment efficiency (EE) of
91.05% (raloxifene) and 85.07% (naringin), respectively. In vitro release (81 ± 2.2% from RLX/NRG
NLCs and 31 ± 1.9% from the RLX/NRG suspension for RLX and 93 ± 1.5% from RLX/NRG NLCs
and 38 ± 2.01% from the RLX/NRG suspension for NRG within 24 h). Concurrently, an ex vivo
permeation study exhibited nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX
and NRG from RLX/NRG NLCs vis-à-vis the RLX/NRG suspension. The depth of permeation was
proved with CLSM images which revealed significant permeation of the drug from the RLX/NRG
NLCs formulation, 3.5-fold across the intestine, as compared with the RLX/NRG suspension. An
in vitro DPPH antioxidant study displayed a better antioxidant potential of RLX/NRG in compar-
ison to RLX and NRG alone due to the synergistic antioxidant effect of RLX and NRG. An acute
toxicity study in Wistar rats showed the safety profile of the prepared nanoformulations and their
excipients. Our findings shed new light on how poorly soluble and poorly permeable medicines can
be codelivered using NLCs in an oral nanoformulation to improve their medicinal performance.

Keywords: raloxifene; naringin; acute toxicity study; combination; nanostructured lipid carriers;
central composite design; breast cancer

1. Introduction

Breast cancer has long been established as one of the deadliest diseases and represents
a major threat to women’s life expectancy worldwide [1]. Estrogen receptor-positive (ER+)
breast cancer is the most common type of progressive breast cancer in women, and its
progression is facilitated by the estrogen hormone which regulates the levels of cyclin D1,
Bcl-2, Myc, and VEGF, all of which are required for cell cycle, cell survival, and angiogene-
sis stimulation [2,3]. Recently, various strategies for treating breast cancer have emerged,
including antiestrogenic therapy with estrogen receptor modulators such as raloxifene
hydrochloride (RLX) (Figure 1A), which is specifically used for (ER+) breast cancer. Since
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1997, RLX has been used to treat postmenopausal osteoporosis [4]. It later received FDA
approval recommendation to lower the risk of invasive breast cancer in postmenopausal
women with osteoporosis and as a breast cancer chemopreventive therapy [5]. Mechanisti-
cally, RLX acts by binding to estrogen receptors, causing a conformational change in the
receptors and, as a result, a change in the expression of estrogen-dependent genes [6].
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Naringin (NRG) (Figure 1B) is a potent natural antioxidant flavonoid that has shown
a broad important in vitro anticancer activity against various cancers of the stomach,
pancreas, intestines, liver, cervix and leukemia through regulation of multiple inhibition
pathways [7,8]. In an in vitro cell line study of MCF-7 breast cancer, it exhibited inhibitory
effects on the phosphorylation of extracellular signal-controlled protein kinase 1 and 2
(ERK1/2) and protein kinase B (AKT) [9,10]. NRG treatment of the MCF-7 cell line boosted
caspase-3 and -8 activation and promoted apoptosis via upregulation of proapoptotic genes
and downregulation of antiapoptotic genes [11]. In addition, NRG and its active metabolite
naringenin have been identified as xenoestrogens; they have a structure that mimics the
natural steroid hormone estrogen which may enable them to bind with ERs as agonists or
antagonists [12–14]. Thus, it can prevent estrogen-dependent breast cancers through its
antiestrogenic activities [15]. NRG therapy also inhibited the growth of breast tumors and
reduced tumor weight in rats induced with 7,12-dimethylbenz[a]anthracene (DMBA) [16].

To date, various studies have proven that combination therapy is emerging as an
important approach to boost the therapeutic impact and minimize the adverse effects of
chemotherapeutics. Recently, most researchers focus on the combination of phytochemicals
with chemotherapeutic drugs to synergize the therapeutic effects, enhance the pharmacoki-
netic profiles, overcome MDR, and sensitize cancer cells to chemotherapy agents [17,18]. A
study by Jabri et al. discovered that coencapsulating chemotherapeutic agent paclitaxel
with NRG in mixed polymeric micelles increased their internalization and in vitro cytotoxi-
city against MCF-7 breast cancer cells [19]. Furthermore, NRG acts as a chemosensitizer,
enhancing the lethal impact of paclitaxel in prostate cancer cells synergistically [20].

Nevertheless, a combination of RLX and NRG has never been administered before.
Despite the possible benefits of RLX and NRG in coadministration, some problems may
arise. Firstly, RLX and NRG are both extremely hydrophobic drugs that are difficult to
deliver in sufficient quantities via the oral route [21,22]. Secondly, both RLX and NRG have
a strong first pass effect in the liver through glucuronidation, which means that they have
low bioavailability of 2% and 9%, respectively [23,24]. Moreover, NRG has low solubility
in water (MW, 598.5 g/mol; log P, −0.44; TPSA, 226 Å2), which is slightly higher than that
of RLX (MW, 510 g/mol; log P, 5.69; TPSA, 98.2 Å2). Both RLX and NRG belong to the class
II category in the BCS classification [25,26].

Therefore, novel nanocarriers are needed to overcome such problems to improve
the bioavailability and the capacity to load the two drugs in a sufficient amount. In this
context, several nanocarriers have been designed for combination delivery and suggested
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as a novel and promising strategy in cancer treatment [27,28]. Recently, nanostructured
lipid carriers (NLCs), which are lipid-based nanoparticles that include solid and liquid
lipids, have been explored as a potential carrier vehicle to solve the shortcomings of
previous nanoformulation platforms, such as solid lipid nanoparticles, nanoemulsions,
and liposomes, in terms of improved shelf life, high bioavailability, sustained drug release,
and large-scale production [29]. Moreover, to overcome the disadvantages of SLNs such
as expulsion of the drug during storage and poor drug-loading capacity, NLCs were
introduced as a more advanced carrier system [30]. The inclusion of liquid lipids with
solid lipids in NLCs (not included in SLNs) results in imperfections in the lipid matrix.
These imperfections in the lipid matrix prevent the leakage of the drug during long-term
storage and result in a higher drug payload, which is the main reason behind the selection
of NLCs over SLNs [31]. Importantly, solid and liquid lipids of NLCs are more likely
to accommodate drugs than solid lipids or liquid lipids alone [31]. Drug bioavailability
could be enhanced by lipid-based delivery, which enhances transport through the intestinal
epithelium and protects the drugs from the extreme environment of the GI tract [32]. In
addition, NLCs allow drugs to be targeted via the lymphatic system, resulting in several
benefits such as protection from hepatic first pass metabolism, reduced hepatotoxicity, and
enhanced drug bioavailability [33,34].

In this work, we aimed at developing stable NLCs to coload RLX and NRG simul-
taneously using a homogenization–ultrasonication method. To our knowledge, no prior
study has detailed the usage of coloaded nanocarriers in this manner. Herein, RLX/NRG
NLCs were successfully fabricated and optimized through the use of central composite
design (CCD) with systemic characterizations for particle size, zeta potential, entrapment
efficiency (EE%), SEM, TEM, XRD, FTIR, in vitro drug release, in vitro antioxidant, and
stability studies. Moreover, ex vivo permeation and acute toxicity studies were performed
in healthy rats. The combination of anticancer drugs such as RLX with naturally bioactive
molecules such as NRG would be a unique way to improve the therapeutic efficacy of
breast cancer management and treatment.

2. Materials and Methods
2.1. Materials

Raloxifene hydrochloride (RLX) was provided by Aarti Drugs Ltd. (New Delhi, India)
while naringin hydrate (NRG) and KBr were obtained from Tokyo Chemical Industry Co.,
Ltd. (Tokyo, Japan). Labrasol®, Labrafac®, Precirol ATO5®, Transutol®, Labrafil®, Caproyl
90®, Capmul MCM®, Gelucire 50/13®, Gelucire 48/16®, and Compritol 888 ATO® were
generously provided by Gattefosse (Saint-Priest, France). Soyabean oil, peanut oil, sesame
oil, corn oil, glyceryl monostearate, and sunflower oil were purchased from Loba Chemie
(Chennai, India). Methanol, acetonitrile, ethyl oleate, PEG 400, Tween 80®, D-mannitol,
methylene chloride, and hydrochloric acid were received from Central Drug House Pvt.
Ltd. (Chennai, India). Almond oil, olive oil, castor oil, and 2,2-diphenyl-1-picrylhydrazyl
(DPPH) were obtained from SRL Pvt. Ltd. (Chennai, India). Oleic acid, rhodamine B, and
stearic acid were received from Sigma-Aldrich (New Delhi, India). The other materials
utilized in this work were of standard analytical quality and used as received from their
commercial source.

2.2. Methods
2.2.1. Excipients Screening

An essential preformulation step in the fabrication of successful NLCs is selection of
appropriate excipients [35]. We consider the solubility of RLX and NRG in different liquid
oils while choosing a liquid lipid for the RLX/NRG NLCs formulation. In this context,
an extra quantity of RLX and NRG was added to 2 mL of a chosen oil (viz., oleic acid,
sesame oil, ethyl oleate, sunflower oil, rose oil, Capryol 90, corn oil, olive oil, almond
oil, castor oil, Labrafac, Capmul MCM) in small glass vials and then mixed briefly on a
vortex mixer (Sphinix Pvt. Ltd., Mumbai, India), followed by 72 h of stirring at 25 ◦C
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in a mechanical shaker (Grower Enterprises, Chennai, India). Following that, the tested
samples were spun at 12,000 rpm for half an hour using a high-speed centrifuge (Remi
Pvt. Ltd., Mumbai, India) before being analyzed. Thereafter, 200 µL from the supernatant
layer were collected and diluted in 5 mL methanol and estimated for RLX and NRG
quantity using a spectrophotometric apparatus (1700-UV, Shimadzu Corporation, Kyoto,
Japan) at 289 nm and 284 nm, respectively. Vierordt’s method, or simultaneous equation
method, was developed and validated for the simultaneous estimation of RLX and NRG.
The linearity of the calibration plots was confirmed by the high value of the correlation
coefficients (R2 = 0.9994 for RLX and 0.995 for NRG). The limit of detection and the limit of
quantification were theoretically calculated and found to be 0.57 µg/mL and 0.613 µg/mL
and 4.25 µg/mL and 4.55 µg/mL for RLX and NRG, respectively.

Likewise, RLX and NRG solubility tests were conducted in various solid lipids (Com-
pritol ATO 888, GMS, stearic acid, Gelucire 50/13, Gelucire 48/16, and Precirol ATO 5) to
find the best solid lipid suitable to load the maximum quantity of RLX and NRG in the
NLC formulation. Briefly, we took a known quantity of both drugs (5 mg) and placed
it separately in glass vials, to which 50 mg of each solid lipid were added individually.
The blender with the lipid and RLX or NRG was heated in a reciprocally agitated water
bath to a temperature that was 10 ◦C above the melting temperature of the solid lipid.
Following that, 50 mg of the solid lipid at a time were added until 5 mg of the drugs were
entirely dissolved and the molten lipid formed a transparent dispersion [36]. Through
the use of various solid-to-liquid lipid ratios, we were able to determine if the optimized
binary lipid combination was physically compatible. The binary mixtures were melted
with mixing for 1 h and then cooled down to room temperature before being visually
examined in front of a white sheet to observe the physical integrity of the lipid mixture.
The binary mixture of the selected lipids that did not disclose any phase separation was
selected for the fabrication of NLCs for loading RLX and NRG. The surfactants were chosen
based on their ability to emulsify the optimal binary mixture of solid lipids and liquid
lipids. Surfactants (Tween 60, Tween 80, Transcutol, Labrasol, and Span 20) were used for
the screening. A weighted quantity of 300 mg of the optimized binary lipid mixture in a
test tube was dispersed by addition of 20 mL of methylene chloride and stirring at room
temperature. Thereafter, we added 10 mL of an aqueous surfactant solution (5% w/v) to
the dispersion with shaking. Following that, the solution was heated to 50 ◦C for 20 min
or till all the methylene chloride was evaporated. Thereafter, 2 mL of this solution was
blended with 10 mL of double-distilled water, and the % transmittance (% T) at 517 nm was
estimated utilizing a UV spectrophotometer [37]. Furthermore, it was essential to consider
the solubility profiles of the drugs in the surfactants and the HLB values of the surfactants
while choosing surfactants.

2.2.2. Experimentation Design

In this research, the design and optimization of RLX/NRG NLCs were carried out
using central composite design (CCD) (Design Expert® software, version 13, Stat-Ease,
Minneapolis, MN, USA). The interest response can be investigated using CCD evaluation
that measures how much influence it has on process variables. As an outcome, the num-
ber of research experiments that are necessary to identify a mathematical pattern in the
experimental design is greatly decreased, allowing for evaluating the variable elements
and their optimal level required for a specific response [38]. Here, several preliminary
tests in the process formulation were conducted to identify the processing factors that
displayed a statistically significant influence on the outcomes. The amount of lipids (solid
lipids and liquid lipids) (mg) (A), the amount of surfactants (mg) (B), and sonication time
(min) (C) were the process variables (independent variables) that were determined from
the preliminary experiments, while the RLX and NRG quantities and ratios of solid lipids
to liquid lipids, as well as the ratio of Tween 80 to Labrasol were all deemed fixed values.
In this study, as shown in Table 1, three-level and three-factor CCD was used for screen-
ing and optimization of the process variables for preparation of RLX/NRG NLCs and to
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test the effects of variation of process variables on the dependent variables (responses),
which include the particle size (Y1), PDI (Y2), entrapment efficiency of RLX (EE%) (Y3),
and entrapment efficiency of NRG (EE%) (Y4). Twenty different designs of the runs were
performed to choose the appropriate model and limit the experimental error. Using a
correlation and optimization technique, three-dimensional (3D) surface response plots were
evaluated for statistical correlation and optimization of various factors and their interaction
with relation to the responses obtained. Moreover, variance analysis (ANOVA) was used in
this study to evaluate the statistical relevance of each model coefficient.

Table 1. Independent variables with their actual levels and dependent variables with their desired
outcomes in the CCD.

Independent Variables High Level (+1) Medium Level
(0)

Low Level
(−1)

A = lipid weight (mg) 400 300 200

B = surfactant weight (mg) 200 150 100

C = sonication time (min) 3 2 1

Dependent variables Desired outcomes

Y1 = particle size (nm) Minimize

Y2 = polydisperisbility index (PDI) Minimize

Y3 = entrapment efficiency of RLX (%) Maximize

Y4 = entrapment efficiency of NRG (%) Maximize

2.2.3. Formulation of RLX/NRG NLCs

NLCs loaded with both RLX and NRG (RLX/NRG NLCs) and blank NLCs (without
RLX and NRG) were made by hot homogenization with probe sonication as reported
previously [39] with some alterations. Briefly, solid lipid Compritol 888 ATO and liquid
lipid oleic acid (total of 200–400 mg) at a 3:1 ratio were mixed and heated with stirring
till melting at 75–80 ◦C, and NRG and/or RLX (20 mg and/or 10 mg, respectively) were
incorporated into the lipid phase. To create the aqueous phase, Tween 80 and Labrasol
(100–200 mg at a fixed weight ratio of 1:1) were mixed in double-distilled water (20 mL),
which was preheated to 75–80 ◦C. Subsequently, the surfactant aqueous phase was gently
added dropwise to the lipid phase and homogenized at 1200 rpm with continuous heating
for 20 min. Using a probe sonicator, the pre-emulsion was further sonicated (work time,
20 s; rest time, 5 s) for 1–3 min, allowing it to settle down to room temperature while being
gently agitated. A similar procedure was used to produce blank NLCs, RLX NLCs, and
NRG NLCs.

2.2.4. Lyophilization of RLX/NRG NLCs Formulations

To lyophilize the RLX/NRG NLCs, a cryoprotectant comprising 2% (w/v) pure D-
mannitol was incorporated. Briefly, RLX/NRG NLCs were frozen in a Petri dish for 24 h at
−20 ◦C and the frozen samples were dried under vacuum in a freeze-dryer (Lyodel, Delvac
Pumps Pvt. Ltd., Mumbai, India) for dryness up to 30 h.

2.2.5. In Vitro Characterization of RLX/NRG NLCs
X-ray Diffraction (XRD)

The X-ray diffractometer (6000-XRD, Shimadzu, Tokyo, Japan) was used to charac-
terize the crystalline structure of RLX, NRG, Compritol 888 ATO, the physical mixture,
lyophilized blank NLCs, and lyophilized RLX/NRG NLCs. Cu Kα radiation (40 kV;
40 mA) was applied to the powder samples at a scan rate of 0.02◦/s over a 2 min range of
10–80◦ [40].
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Fourier-Transform Infrared Spectroscopy (FTIR)

FTIR spectrum of pure (RLX, NRG, Compritol 888 ATO, and D-mannitol) and lyophilized
materials (blank NLCs and RLX/NRG NLCs) was generated using the KBr press method
and conducted on an IR spectrophotometer (Shimadzu Corp, Kyoto, Japan). The tested
powder samples were triturated with 50 times their weight in potassium bromide and
pressed into small pellets using a mini-press under extremely high pressure (3000 psi). The
spectra were obtained in the 400–4000 cm−1 wave range [41].

Microscopic Evaluation

RLX/NRG NLCs’ morphological surface of the optimized formulations evaluated by
transmission electron microscopy (TEM) (Tecnai G20 HR-TEM, Thermo Scientific, Waltham,
MA, USA) and scanning electron microscopy (SEM) (Zeiss EVO 18, Oberkochen, Germany,
Gemini 5, and Germany). The RLX/NRG NLCs were previously diluted at 1:100 with
distilled water before use. For TEM analysis, three drops of the diluted sample were
dispersed on the surface of carbon-coated copper grids (300 mesh); the sample was stained
with a few drops of 2% (w/v) phosphotungstic acid and then kept to dry overnight at room
temperature. The dried residue of the sample was displayed under TEM. For SEM analysis,
three drops of RLX/NRG NLCs were placed on a double-sided carbon tape mounted on
an aluminum stud, then vacuum-coated with gold for 5 min. The dried sample of the
optimized RLX/NRG NLCs was displayed under SEM [42].

Particle Size, Polydispersity Index, and Zeta Potential Measurement

The intensity average of particle size, PDI, and zeta potential of the optimized RLX/NRG
NLCs were analyzed using the dynamic light scattering principle with a zeta-sizer device
(Malvern Zeta-Sizer, Worcestershire, UK) [43]. Before the measurements, all of the tested
samples had been dispersed with 50 folds of Milli-Q water to create a 2% uniform dispersion.
All the obtained values are the means of three measurements.

Entrapment Efficiency (EE)

The EE of RLX/NRG NLCs was estimated by separation of un-entrapped RLX and
NRG from RLX/NRG NLCs using the centrifugation process as described in [44]: 2 mL of
the NLCs loaded with drugs were centrifuged for 40 min at 15,000 rpm using a high-speed
centrifuge (Beckman Coulter India Pvt. Ltd., Mumbai, India). Subsequently, separation of
the supernatant layer was carefully followed by proper methanol dilution and filtration
through a syringe membrane filter (0.45 µm). Then, the filtrated solution was subjected to
drug estimation for free RLX and NRG spectrophotometrically (Shimadzu, Japan). The EE
was computed using the following equation:

Entrapment efficiency (EE%) =
[D] [Total] − [D][Free]

[D][Total]
× 100 (1)

where [D]Total is the initial weight of the RLX and NRG added to the formulation and
[D]Free is the weight of free unloaded RLX and NRG detected in the supernatant layer.
Therefore, we consider that all the RLX and NRG not present in the supernatant layer were
successfully loaded in the lipid matrix of the NLCs [45].

In Vitro Drug Release and Kinetics Modeling

To conduct in vitro drug release studies, the activated dialysis tube membrane system
(12 KDa, Himedia Ltd., New Delhi, India) was employed [46]. In short, a weighted quantity
of drug-containing RLX/NRG NLCs and the RLX/NRG suspension was inserted in the
dialysis tube and dipped into 80 mL dissolution media (0.1 N HCl, pH 1.2, for 2 h) and
phosphate buffer (6.8 g of KH2PO4 and 0.94 g of NaOH dissolved in 1 L distilled water to
give pH 6.8, for the remaining 22 h). An amount of 0.2% v/v Tween 80 was also added to
the dissolution medium to ensure the sink condition. After a specified period, the samples
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(5 mL) were extracted and immediately replaced with an equal amount of fresh dissolution
medium to maintain the sink condition. The samples filtered were later tested using
a validated UV spectrophotometric technique (Vierordt’s method) (UV-1700, Shimadzu,
Tokyo, Japan). The data were shown as a cumulative percentage of RLX and NRG release
with respect to time.

Released (D) (%) = FR/IDC × 100 (2)

where FR = fraction release of RLX or NRG to the external medium and IDC = initial drug
concentration of RLX or NRG inside the dialysis tube. Using the cumulative release data,
release kinetics modeling was carried out, and the kinetic model with a higher value of the
correlation coefficient (R2) was selected as the best-fitting model [47].

In Vitro Antioxidant Activity

The radical scavenging potential of the ethanolic solution of RLX, NRG, RLX/NRG,
and RLX/NRG NLCs were evaluated by radical DPPH and compared to that of a standard
ascorbic acid solution. The evaluation was based on the DPPH’s potential activity in
scavenging free radicals. Briefly, the activity of DPPH as a radical scavenger was determined
using a modified technique developed by Kumar et al. [48]. A 2 mL solution of 0.04% w/v
solution of DPPH in ethanol was added to 2 mL of various concentrations of RLX, NRG,
RLX/NRG, and RLX/NRG NLCs, and the reaction mixture was kept for 45 min in a dark
area at 25 ◦C. UV spectrophotometric measurements were taken at 517 nm to determine the
absorbance of the tested samples and the DPPH solution. The DPPH scavenging capacity
percentage was determined using Equation (3) and taking absorbance of DPPH as a control.

Inhibition of DPPH radical % =
Absorbance (A)− Absorbance (B)

Absorbance (A)
(3)

where (A) refers to the blank absorbance (control) and (B) refers to the sample absorbance.
The graph of the inhibition of DPPH percentage versus sample concentration was plot-
ted, followed by the determination of the inhibitory concentration percentage (IC50) by
interpolation of data and then comparison with the IC50 of the standard ascorbic acid [49].

2.3. Animal Studies

Albino female Wistar rats (200–250 g) used in this project were preapproved by the
Institutional Animal Ethics Committee, Jamia Hamdard, India (approval No. IAEC-70-JH-
1784/CPCSEA, dated 8 April 2021). All the animals were housed in the animal house facility
of Jamia Hamdard in polypropylene cages under recommended laboratory conditions with
proper and timely cleaning and with a standard diet.

2.3.1. Ex Vivo Permeability Study

The intestinal non-everted rat sac model was utilized for the ex vivo intestinal uptake
analysis [50]. Shortly, female Wistar rats (200–250 g) fasted overnight got anesthetized with
a combination of ketamine and xylazine, were sacrificed, and thereafter, the intestine was
excised and the ileum segment was removed and thoroughly rinsed with Ringer’s solution
to eliminate all waste elements. Subsequently, weighted amounts of the tested samples
containing RLX/NRG NLCs and the RLX/NRG suspension were inserted separately into
the intestinal sac. The sac was then tightened from both ends and dipped into a jacket glass
containing dissolution media (Tyrode’s buffer (40 mL)), pH = 6.8, prewarmed to 37 ± 0.5 ◦C
and supplied by an aerator with 95% oxygen for 2 h. At specified time intervals, an aliquot
(2 mL) was taken, and the sink condition was maintained. The sample was diluted and
filtered and then analyzed using a validated UV spectrophotometry method [51]. The
quantity of the drugs that permeated out of the sac within 120 min was estimated. The
apparent permeability (Papp) was estimated as a quantitative indication of the rate at which
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the drugs were transported across the intestinal membrane per unit of time (cm/min) and
calculated using the equation below:

Papp = (dQ/ dt)/A × Ci (4)

where dQ/dt is the rate of drug penetration or permeation flux (F) (µg/min) determined
from the slope of the linear curve by plotting the cumulative quantity of the drugs internal-
ized in the intestinal sac over time, Ci is the starting amount of a drug within the mucosal
sac (µg/mL), and A is the total sac’s surface area (7.46 cm2) [52].

2.3.2. Confocal Laser Scanning Microscopy (CLSM)

Rhodamine B-labeled RLX/NRG NLCs and RLX/NRG suspension were prepared
by incorporating rhodamine B (0.02% w/v) during the formulation process and used for
intestinal uptake assessment. Female Wistar rats fasted for 24 h and were sacrificed to obtain
a 2.36-inch-long part of the ileum, which was cleaned with Tyrode’s buffer to remove fecal
material. The samples were inserted into a separate sac and tightly closed from both ends
and mounted in Tyrode’s buffer for 3 h (at 37 ± 2 ◦C, 45 rpm, and 95% O2 supply). The sacs
were then washed with Tyrode’s buffer to remove excess free rhodamine B, cut into small
species longitudinally, and placed into slits [53]. The depth penetration of the rhodamine
B-labeled drug from the formulation and the suspension across the intestinal wall was
detected and analyzed for the z-axis by CLSM (Leica Microsystems SP8, Mumbai, India).

2.3.3. In Vivo Acute Oral Toxicity

To evaluate the pharmacological safety of the prepared NLC nanoformulations, acute
repeated toxicity studies were carried out by administering the tested drug-loaded nanofor-
mulations at their therapeutic dose [54]. This study was carried out on female Wistar rats
following the guidelines of the Organization for Economic Co-operation and Development
(OECD). The rats were randomly selected and assigned to the following five test groups
(six animals per group) and treated with normal saline, blank NLCs (2 mL), RLX NLCs,
NRG NLCs, and RLX/NRG NLCs at their therapeutic doses of RLX (30 mg/kg) and NRG
(40 mg/kg) via the oral gavage route daily for 14 days. Throughout the study, all the
animals were monitored daily for clinical indicators of toxicity, mortality, and behavioral
abnormalities, as well as changes in physical appearance, injury, pain, and signs of sickness.
Bodyweight was recorded during pretreatment and during the post-treatment period. On
the 15th day, the rats were anesthetized with ketamine–xylazine (75–10 mg/kg body weight
i.p.), and blood samples were collected via a heart puncture into EDTA tubes, as previously
described [55]. The collected blood was used for hematological analysis. Then, the rats
were euthanized and the vital organs (liver, heart, and kidneys) were collected, cleaned
in normal saline, and placed in 10% formalin; then, the samples were dehydrated with
ethanol and embedded in paraffin blocks; thereafter, the tissues were mounted on glass
slides and cut into thin sections of around 6 µm using a rotary microtome (Leica Multicut
2045, Reichert-Jung Products, Wetzlar, Germany). After histological staining with hema-
toxylin and eosin (HE), the slides were studied using a light microscope (ZEISS Primostar,
Oberkochen, Germany) to monitor for any significant morphological changes. Photomicro-
graphs of tissue sections from the test and control groups were recorded by a consultant
histopathologist who documented the pathological differences in histological sections.

2.4. Storage Stability

To determine the storage stability of the final RLX/NRG NLCs, the optimized lyophilized
RLX/NRG NLCs were subjected to accelerated storage conditions for three months. The
lyophilized samples were stored at 4 ◦C, 25 ◦C, 2 ◦C/60% RH, and 40 ◦C, 2 ◦C/75% RH in
amber-colored containers in a stability chamber (Macro Scientific, Mumbai, India). Samples
were obtained and analyzed for particle size, EE%, and redispersibility at predefined
intervals (0, 1, 3, 6, 9, and 12 weeks) [56].
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2.5. Statistical Analysis

All the data are presented as the means ± standard deviation (SD) of three repli-
cates. Graph Pad Prism Software was utilized for the statistical analysis (Instat 3.06, San
Diego, CA, USA). For the statistical analysis of various parameters in the optimization
part, Design Expert® (Version 13, State-Ease Inc., Minneapolis, MN, USA) was employed.
p-values < 0.05 were regarded to be significant.

3. Results and Discussion
3.1. Excipients Selection

Encapsulation efficiency (EE) of RLX/NRG NLCs is highly dependent on the RLX and
NRG solubility profiles in a lipid matrix. It was revealed that RLX and NRG have different
solubility profiles depending on whether they are dissolved in liquid or solid lipids. The
decreasing order of solubility of RLX and NRG in various tested liquid lipids and solid
lipids is displayed in Figure 2A,B. Oleic acid was chosen as a liquid lipid because of the high
solubility of both RLX and NRG in it, which was found to be 21.43 ± 1.58 mg/mL for RLX
and 12.597 ± 0.95 mg/mL for NRG. The high solubility of RLX and NRG in oleic acid might
be due to its natural self-emulsifying property; thus, oleic acid was selected as the liquid
lipid. The solubility of RLX was as follows: GMS > Compritol 888 ATO > Gelucire 48/16 >
Gelucire 50/13 > Precirol > stearic acid (11, 10, 9.5, 8.5, 4.69, and 4.39 mg/gm, respectively),
while the solubility of NRG was as follows: Compritol 888 ATO > Gelucire 50/13 > stearic
acid > GMS > Gelucire 48/16 > and Precirol (6.5, 4.8075, 4.725, 4.643, 4.52, and 4.37 mg/gm,
respectively). Primarily, solid lipid GMS was selected as the maximum solubility of RLX
in it was found to be 11 ± 0.35 w/w, while in the case of NRG, the maximum solubility
was in GMS (4.643 ± 0.51 w/w), but it was not selected as we took into consideration NRG
solubility was not maximum. Compritol 888 ATO exhibited a higher solubilizing capability
for RLX and NRG, which can be associated with the existence of long-chain fatty acids, and
was thus chosen as the solid lipid for the formulation of RLX/NRG NLCs.
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In accordance with the findings of the miscibility test performed on the binary combi-
nation, it was revealed that the mixture of Compritol 888 ATO and oleic acid demonstrated
acceptable miscibility without phase separation at various ratios (Supplementary Table S1).
The binary blend of Compritol 888 ATO and oleic acid in a 3:1 ratio was adopted as a
midpoint for the formulation of RLX/NRG NLCs to realize the largest anticipated solu-
bility of RLX and NRG. Moreover, it was critical to examine the capacity of surfactants to
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emulsify the dispersion of binary lipids while choosing them. The capacity of surfactants to
emulsify was determined using transmittance percentage: Labrasol (95.1 ± 0.73), Tween 80
(79.43 ± 0.6), Transcutol (64.40 ± 0.40), Tween 60 (49.3 ± 0.50), and Span 20 (32.20 ± 0.57).
As a result, the Labrasol and Tween 80 solutions showed the greatest transmittance %
and emulsification capacity and were chosen as the optimum combination in a one-to-one
ratio for enhancing emulsification outcomes. Furthermore, previous studies showed that
Labrasol and Tween 80 block the function of P-gp, causing intestinal absorption of P-gp
substrates to increase [57,58].

3.2. Experimentation Design

The formulation of nanostructured lipid carriers for codelivery of drugs is a compli-
cated procedure that involves many processing factors. These factors exhibit a significant
impact on their individual form or in their interaction among themselves which is finally
reflected in the quality of the final formulations. The process parameters and their level
used in the experiments are mentioned in Table 2. An experimental design of 20 runs
containing five centerpoints was made according to the CCD mathematical design for
these chosen parameters to define the optimal amounts of the process parameters affecting
different responses. Through performing the procedure at varying levels of all variables,
the individual and interactive effects of process variables were observed. All the responses
found in all the runs were concurrently adapted to various models using the Design Expert
13 software. The quadratic model was shown to be the best-fitting model for determining
the association between significant factors and response. Experimental data results and
simulation values are listed in Table 2. Based on the coefficient of correlation (R2) values
for analyzing the impacts of independent variables on responses, it was concluded that
the quadratic model was the best-fitting model among the several models studied. The
summary statistics for regression analysis of the responses Y1, Y2, Y3, and Y4 for data
fitting into several models, including the linear, 2FI, quadratic, and cubic models, are
provided in Table 3. This quadratic model resulted in several surface response plots. A
few representative significant surface reaction plots of the measured model for the average
particle size, PDI, and drug entrapment efficiency are shown in Figure 3. Moreover, for
the particle size, PDI, and entrapment efficiency, an actual experimental values of the
responses vs. the matching anticipated values plot and a perturbation plot were made
using the Design Expert software to generate a scatter graph as displayed in Supplementary
Figures S1 and S2.

Table 2. ANOVA report for the obtained results in CCD for different experimental runs of RLX/NRG NLCs.

Factor 1 Factor 2 Factor 3 Response 1 Response 2 Response 3 Response 4

Run
Lipid
(mg)

Surfactant
(mg)

Sonication
Time (mn)

Particle Size (nm) PDI EE%, RLX EE%, NRG

Actual Predicted Actual Predicted Actual Predicted Actual Predicted

1 −1 0 0 131.6 131.56 0.238 0.2341 86.45 85.95 76.87 78.03

2 1 1 −1 159.38 159.82 0.291 0.2892 85.72 86.09 79.69 80.25

3 0 0 1 137.12 137.04 0.266 0.2691 91.05 90.77 85.07 85.05

4 0 0 0 143.2 140.73 0.261 0.2620 90.05 90.43 84.21 83.91

5 −1 1 −1 115.6 114.40 0.225 0.2297 84.22 83.88 78.03 77.22

6 0 0 0 141.05 140.73 0.261 0.2620 90.32 90.43 84.08 83.91

7 0 0 0 139.04 140.73 0.262 0.2620 90.16 90.43 84.42 83.91

8 1 0 0 166.03 167.64 0.282 0.2831 91.53 91.71 85.66 85.23

9 −1 1 1 121.7 122.98 0.224 0.2212 86.82 87.42 77.55 77.90

10 −1 −1 1 138.4 137.57 0.244 0.2466 84.72 84.43 78.81 78.07

11 0 0 2 142.15 140.73 0.261 0.2620 89.92 90.43 85.05 83.91

12 0 1 2 135.6 136.26 0.238 0.2369 88.63 88.45 81.01 81.13
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Table 2. Cont.

Factor 1 Factor 2 Factor 3 Response 1 Response 2 Response 3 Response 4

Run
Lipid
(mg)

Surfactant
(mg)

Sonication
Time (mn)

Particle Size (nm) PDI EE%, RLX EE%, NRG

Actual Predicted Actual Predicted Actual Predicted Actual Predicted

13 1 −1 −1 169.02 167.34 0.317 0.3206 91.82 91.31 85.64 85.11

14 1 1 1 164.2 163.02 0.265 0.2662 85.83 85.38 79.73 79.51

15 0 −1 0 146.4 147.32 0.267 0.2653 89.72 89.57 83.03 83.64

16 0 0 0 142.15 140.73 0.259 0.2620 91.05 90.43 83.02 83.91

17 −1 −1 −1 134.44 135.22 0.268 0.2676 77.23 77.76 72.29 72.33

18 1 −1 1 163.5 164.31 0.289 0.2851 93.32 93.74 88.81 89.44

19 0 0 −1 132.6 134.26 0.297 0.2911 87.83 87.79 81.79 82.54

20 0 0 0 139.94 140.73 0.262 0.2620 90.45 90.43 84.15 83.91

Table 3. Statistical regression analysis of all the responses for data fitting into different models.

Model Adjusted R2 Predicted R2 R2 SD CV% Adeq.
Precision

Response 1

Linear 0.8715 0.8069 0.8918 5.21

2FI 0.8864 0.7053 0.9223 4.90

Quadratic 0.9859 0.9342 0.9926 1.73 1.21 43.6130

Cubic 0.9860 −0.7498 0.9956 1.72

Response 2

Linear 0.8524 0.8023 0.8757 0.0090

2FI 0.8467 0.7585 0.8951 0.0092

Quadratic 0.9735 0.8204 0.9861 0.0038 1.45 36.6952

Cubic 0.9924 −1.2337 0.9976 0.0020

Response 3

Linear 0.3190 −0.2172 0.4266 3.02

2FI 0.6125 −1.1119 0.7349 2.27

Quadratic 0.9783 0.8410 0.9886 0.5387 0.6098 41.9474

Cubic 0.9869 −0.1771 0.9959 0.4184

Response 4

Linear 0.4686 0.1005 0.5525 2.85

2FI 0.6540 −0.5362 0.7633 2.30

Quadratic 0.9520 0.7665 0.9747 0.8581 1.05 28.2023

Cubic 0.9633 −4.1038 0.9884 0.7501
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3.2.1. The Impact of Independent Variables on Particle Size

Table 2 shows the particle size distribution collected from a variety of experimental
runs. It is estimated that the average particle size ranges between 115.6 and 169.02 nm.
After being fitted to a range of model systems, the results revealed that the quadratic
model provided the ultimate fit. The results demonstrate the model’s significance since
they explain the relationship between the process variables and the obtained responses.
A p-value of < 0.05 indicates that the model terms are significantly based on statistical
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evaluation of model validity (Supplementary Table S2). The statistical correlation between
the input parameters and the particle size for RLX/NRG NLCs was illustrated in terms of
the coded factors in the final quadratic formula and was shown to be statistically significant.

Particle size (Y1) = 140.729 + 18.039 × A + −5.528 × B + 1.388 × C + 3.325 × AB +
−1.345 × AC + 1.56 × BC + 8.8745 × A2 + 1.0595 × B2 + −5.0804 × C2 (5)

Figure 3A depicting the 3D response surface plots for the particle size of the RLX/NRG
NLCs showed that as the concentration of lipids (A) increased, the size of the RLX/NRG
NLCs particles increased significantly. Likewise, the surfactant had a negative impact on
particle size as stated by the coded equation, high particle size was obtained at a low level
of surfactant and a low level of lipid; then, the particle size gradually decreased with an
increase in the surfactant level and an increase in the lipid level to result in intermediate
size at the middle point. At low lipid concentrations and intermediate levels of surfactant,
smaller particle sizes were observed. One explanation for this could be the surfactant’s
effect on the surface tension between the lipid phase and the aqueous phase, which leads to
the production of smaller particles. Sonication time shows a positive nonsignificant impact
on particle size as stated by the coded equation.

3.2.2. The Impact of Independent Variables on the PDI

The PDI is responsible for the homogeneity of nanoformulations. Smaller values of the
PDI were desired. According to the fit summary of the models, the quadratic model was
found to be the most effective in explaining the relationship between independent variables
and the PDI. As shown in Supplementary Table S3, the model’s F-value of 78.68 means
that the model was statistically significant, while p < 0.0001 demonstrated that the model
terms were statistically significant. Furthermore, the correlation coefficient (R2 = 0.9861)
indicated a strong relationship between the process factors and the responses received. The
mathematical relation between the input variables and the PDI of the RLX/NRG NLCs
was demonstrated in the final quadratic formula in terms of coded factors and was proven
to be statistically significant:

PDI (Y2) = 0.2619 + 0.0245 × A + −0.0142 × B + −0.011 × C + 0.001625 × AB +
−0.0036 × AC + 0.0031 × BC + −0.0034 × A2 + −0.0109 × B2 + 0.0180 × C2 (6)

The equation expressed in terms of coded factors enables the prediction of the response
for specified levels of each factor. Figure 3B displayed that the PDI of the NLCs was
considerably affected by lipid content (A) with a linear increase in the PDI as the lipid level
increased. Surfactant (B) and sonication time (C) had a negative impact on the PDI.

3.2.3. The Impact of Independent Variables on EE% of RLX and NRG

Entrapment efficiency is an essential characteristic that plays a key part in the for-
mulation of NLCs since the delivery of the necessary dose of the drug for therapeutic
effectiveness which is integrated into NLCs is reliant on it. Several models were tested, and
the quadratic model provided the best fit for the response data. The model’s F-value, lack
of fit, and p-value all indicate that the model was statistically significant (Supplementary
Tables S3 and S4).

Equations (7) and (8) represent the effect of lipid and surfactant content on the en-
trapment efficiency of RLX/NRG NLCs for RLX and NRG. The linear terms of lipid
concentration and sonication time had a positive effect on entrapment efficiency for RLX
and NRG with a coefficient value, 0.985 vs. 3.598 and 1.492 vs. 1.253, respectively, while
surfactant concentration showed a negative impact on entrapment efficiency for RLX and
NRG with coefficient values of −0.559 and −1.257, respectively. Interaction effects AB, AC,
and BC showed a negative effect on the EE% of both drugs. As shown by the equations
below, the concentration of lipids has the greatest effect on the entrapment efficiency for
both drugs. As the lipid concentration increases, more drugs are entrapped, which results
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in a higher entrapment efficiency. In Figure 3C,D, the impact of independent factors on the
entrapment efficiency of RLX and NRG in NLCs is depicted.

EE%, RLX (Y3) = 90.4334 + 2.878 × A + −0.559 × B + 1.492 × C + −2.835 × AB +
−1.06 × AC + −0.785 × BC + −1.60591 × A2 + −1.42091 × B2 + −1.15591 × C2 (7)

EE%, NRG (Y4) = 83.913 + 3.598 × A + −1.257 × B + 1.253 × C + −2.43875 × AB +
−0.35375 × AC + −1.26625 × BC + −2.285 × A2 + −1.53 × B2 + −0.12 × C2 (8)

The R2 values were 0.9886 and 0.9749 for RLX and NRG EE%, respectively, indicating a
good correlation between the process variables and the responses obtained. The percentage
of the entrapped drugs is generally influenced by the carrier lipid’s concentration. Compri-
tol 888 ATO is a long-chain fatty acid (mono-, di-, and triglycerides) with an HLB value of
approximately 2, which is responsible for encapsulating both lipophilic drugs, RLX and
NRG. Additionally, incorporation of a liquid lipid (oleic acid) enhances drug loading by
the formation of imperfect lattices in the lipid matrix [59]. On the contrary, increasing the
surfactant concentration resulted in a reduction in the NLCs’ EE%. A high concentration of
surfactants in the aqueous phase may cause an increase in the distribution of drugs from
the lipid matrix to the aqueous medium. The entrapment efficiency values of RLX and NRG
from the NLCs ranged from 77.23% to 93.32% and from 72.29% to 88.81%, respectively, and
this can be explained by the higher lipophilic nature of RLX in compassion to NRG.

3.2.4. Checkpoint Selection of an Optimum Formulation

The best composition of the NLCs formulation is to be determined by a thorough
optimization technique. According to the chosen quadratic model, the numerical and
graphical optimization methodology was used with the goal of optimization of all the
output parameters such as the minimum particle size for better RLX/NRG NLCs’ absorp-
tion, low values of the PDI for maintaining RLX/NRG NLCs’ homogeneity and stability,
and high drug entrapment efficiency for better therapeutic activity of the RLX and NRG
loaded in NLCs. Figure 4A,B shows the overlay diagram obtained throughout the graphical
optimization, which displays the anticipated values of the input variables for the optimized
RLX/NRG NLCs composed of a total lipid weight of 300.43 mg, a surfactant weight of
132.95 mg, and sonication time (3 min) with statistically predicted value responses, viz.,
particle size of 138.579 nm, PDI of 0.271 mV, RLX entrapment efficiency of 91.07%, and
NRG entrapment efficiency of 85.74% with an overall desirability function value of 0.729. It
was found that the prediction error was less than 5% when the anticipated and reported
values were compared, proving the model’s appropriateness and accuracy.
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3.3. Characterization of Optimized RLX/NRG NLCs
3.3.1. XRD Analysis

The XRD patterns of RLX, NRG, Compritol 888 ATO, D-mannitol, the physical mixture
(Compritol 888 ATO, RLX, and NRG), and the lyophilized RLX/NRG NLCs are shown
in Figure 5I. In Figure 5I(A,B), the diffractograms of RLX and NRG show multiple close-
packed sharp peaks in the 10–30◦ range (2θ of 13.07, 13.49, 14.6, 15.14, 15.65, 17.38, 19.5,
21.86, 24.66, and 25.94; and 2θ of 13.07,13.49, 14.6, 15.14, 15.65, 17.38, 19.5, 21.86, 24.66, and
25.94, respectively), indicating that both drugs are highly crystalline, explaining their poor
solubilities. In Figure 5I(C), Compritol’s diffractogram displays a very high and noticeable
sharp peak at 2θ values 19.35, 21.51, 23.76, and 71.03, showing that lipid materials are
perfectly crystalline. In Figure 5I(E), the physical mixture demonstrates all the major peaks
of the drugs and the lipid in nearly the same position on the diffractogram with reduced
intensities. In Figure 5I(F), the diffractogram of the lyophilized RLX/NRG NLCs is com-
posed mostly of broad peaks, contributing to the relatively high amount of cryoprotectant
mannitol and the peaks of lipid Compritol 888 ATO with a significant reduction in intensity
and the absence of the numerous closely peaked sharp peaks of crystalline RLX and NRG
in the diffractogram pattern of lyophilized RLX/NRG NLCs powder, which is explained
by the inclusion of RLX and NRG within the lipid matrix.
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3.3.2. FTIR Analysis

The FTIR spectra of RLX, NRG, Compritol 888 ATO, D-mannitol, blank NLCs, and the
lyophilized RLX/NRG NLCs are shown in Figure 5II. The infrared absorption spectra of
pure RLX revealed characteristic absorption peaks at 3138 cm−1 (OH stretching), 1641 cm−1

(C=O stretching), 1641 cm−1 (C=O stretching), 1595 cm−1 (conjugated ketone –C–O–C
stretching), 1463 cm−1 (S-benzothiofuran), 904 cm−1 (benzene ring), 806 cm−1 (thiophene
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C–H bond), 833 cm−1 (C–C stretching), 1122 cm−1 (aliphatic –C–O– stretching), and 698
cm−1 (–C–S– stretching), which are consistent with the previously reported values from
the literature [60]. For free NRG, its characteristic peaks were shown at 3339 cm−1 (–OH
stretching), 1642 cm−1 (>C=O), 1519 cm−1 (C=C bond of the aromatic ring), 1478 cm−1

(aromatic >C=C stretching), 1360 cm−1 (phenol C–O stretching), 1297 cm−1 (vibration of
the −OH group), 1071 cm−1 (–C–O–C bonds of the ether), and 1038 cm−1 (cyclic –C–O
stretching) as reported [61,62]. The Compritol 888 ATO spectra exhibited typical strong
peaks at 2914 cm−1 and 2848 cm−1 (C–H stretching), as well as a band at 1738 cm−1 (C=O
stretching) [63]. FTIR spectra for the RLX/NRG NLCs revealed characteristic peaks at 3274,
2937, 1458, 1431, 1371, 1316, 1261, 1193, 1067, 1018, 951, 716, and 628 cm−1. It can also be
seen that most of the characteristic peaks of RLX and NRG disappeared when they were
encapsulated into the matrix of the NLCs as revealed in Figure 5II. These observations
suggest that noncovalent interactions were mainly present between the combination of the
drugs and the carrier during the formation of lipid nanocarriers.

3.3.3. Particle Size, PDI, Zeta Potential

The assessment of particle size revealed that all of the prepared formulations had
particle sizes ranging between 115.6 and 169.02 nm in size. The particle size distribution of
the optimized RLX/NRG NLCs with a size of 137.12 nm and a particle size distribution
index (PDI) of 0.266 are depicted in Figure 6A. The results demonstrated the monodisperse
nature of the prepared RLX/NRG NLCs formulations. Moreover, it was discovered that
the prepared NLCs formulations had positive electrical charges on their surfaces, which
can be displayed as ZP (ζ), with values of +25.9 mV. The values of ZP in Figure 6B indicate
that the prepared RLX/NRG NLCs have a relatively long duration of stability.
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3.3.4. Surface Morphology Study

Representative microscopic images, as shown in Figure 6C,D, indicate that the RLX/NRG
NLC particles were almost spherical, with a homogenous size distribution. The sizes of
the RLX/NRG NLCs assessed by TEM and SEM image analysis were identical to the
DLS data. According to the results of the TEM and SEM examinations, the nanoparticles
were well-segregated one from another, indicating that no aggregation was taking place.
Additionally, the TEM and SEM images confirmed the nanosize (<200 nm) of the prepared
RLX/NRG NLCs, confirming the result obtained using the zeta sizer.

3.3.5. Determination of RLX and NRG Entrapment Efficiency

The entrapment efficiencies of the RLX/NRG NLCs were estimated to be between
93.32% and 77.23% for RLX and between 88.81% and 72.29% for NRG. Different lipid
and surfactant concentrations, as well as the drugs’ lipophilicity, were responsible for the
observed variances in these properties.

3.3.6. In Vitro Drug Release Study

In vitro release of RLX and NRG from the RLX/NRG suspension and RLX/NRG
NLCs in HCl (0.1 N, pH 1.2) and the phosphate buffer (pH 6.8) is shown in Figure 7. In
the acidic media, RLX and NRG release from the RLX/NRG NLCs was 41% and 43%
within 2 h, respectively. In comparison, the RLX and NRG release from the RLX/NRG
suspension was just 21% and 14% within 2 h, respectively. The in vitro cumulative release
at pH 6.8 revealed that the release of RLX and NRG from the RLX/NRG NLCs was 81%
and 93% after 24 h, respectively, whereas the cumulative release of RLX and NRG from
their combined suspensions after 24 h was about 31.4% and 38.6%, respectively. The NLCs
formulation had an imperfect solid–liquid lipid mixture arrangement, resulting in a 4 h
initial drug release followed by a 20 h sustained release. The drugs incorporated in a solid
lipid matrix may exhibit a long and delayed release time, whereas the drug in a liquid
lipid or free drugs unloaded to the lipid matrix of an NLC may have an immediate release.
Moreover, to investigate the drug release mechanism from RLX/NRG NLCs, the release
profile was fitted into a variety of release kinetic models to study the mechanism of drug
release (Supplementary Figures S2 and S3). The first-order model was found to be the
most suitable model for RLX and NRG, with the highest R2 values of 0.8708 and 0.8602,
respectively (Supplementary Table S6). The kinetics of the first-order release revealed that
the release of a drug from the lipid matrix is represented by drug dissolution and diffusion
through the porous medium that depends on the drug concentration. The Korsmeyer
equation was used to develop the mechanism of RLX and NRG release from the optimized
RLX/NRG NLCs by computing the n-value from the linear part of the plotted curve. The
n-values were 0.5822 and 0.6938, showing that the developed RLX/NRG NLCs displayed
non-Fickian behavior with erosion and diffusion release, respectively.

3.3.7. Antioxidant Activity

The free radical scavenging activity of RLX, NRG, RLX/NRG solution, and RLX/NRG
NLCs at different concentrations was determined. Ascorbic acid was included as a standard
for radical scavenging ability. Scavenging of the DPPH radical was estimated and is shown
in Figure 8. The scavenging activity of DPPH was found to be maximum (84.56%, 80.82%,
62.17%, and 33.39%) at 2 mg of RLX/NRG NLCs, RLX/NRG solution, RLX, and NRG,
respectively. The ethanolic solution of the combination of RLX and NRG showed more
antioxidant activity than its respective non-combined solution. The slight nonsignificant
increase in the antioxidant activity of RLX/NRG NLCs compared to the RLX/NRG so-
lution was attributed to the inclusion of excipients. The IC50 of RLX, NRG, RLX/NRG
solution, and RLX/NRG NLCs was calculated to be 4.34 mg, 1.14 mg, 0.45 mg, and 0.19 mg,
respectively, while the IC50 of ascorbic acid was 16.22 µg.
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3.3.8. Ex Vivo Intestinal Permeation Study

The ex vivo intestinal permeation investigation was used to assess the intestinal per-
meation and transport of RLX and NRG from RLX/NRG NLCs, which were then compared
to the intestinal permeation and transport of the respective suspensions [64]. The cumu-
lative amount of RLX and NRG permeating the intestinal wall to Tyrode’s buffer from
RLX/NRG NLCs after 120 min was found to be 89.18 ± 1.89% and 72.45 ± 2.51%, respec-
tively, while in the case of the RLX/NRG suspension, it was found to be 42.16 ± 2.21%,
and 31.2 ± 1.28% for RLX and NRG (Figure 9A). Hence, RLX/NRG NLCs exhibited
nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX and NRG vis-
à-vis RLX/NRG suspension. The permeation flux (F) was obtained from the linear part
of the curve constructed by plotting the cumulative amount of the drug transported
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(µg/cm2) with respect to time (min) (Figure 9B); this revealed that a greater amount of
RLX and NRG was delivered from RLX/NRG NLCs through the intestinal mucosal sac
than from the RLX/NRG suspension. The apparent permeability coefficients (Papp) cal-
culated for RLX and NRG from the RLX/NRG NLCs were found (1.61 × 10−4 cm min−1

and 1.326 × 10−4 cm min−1), which were significantly higher (p < 0.05) than those cal-
culated for RLX and NRG from the RLX/NRG suspension, which were found to be
0.816 × 10−5 cm min−1 and 0.689 × 10−4 cm min−1, respectively. There was about a 1.973
and 1.924-fold increment in the Papp value of RLX and NRG from the RLX/NRG NLCs
as compared to the RLX/NRG suspension (Figure 9C). This considerable enhancement
in intestinal absorption could be due to increased dissolution of both RLX and NRG after
incorporation into the lipid matrix of NLCs, as well as the nanosize of the lipid nanocarriers,
contributing to enhanced permeation through the intestinal wall. Aside from that, the pres-
ence of various digestible lipid components of Compritol 888 ATO (esters of behenic acid
and glycerides) and a fatty acid (oleic acid) in the form of lipid-based nanocarriers further
increases the permeability of the drug when it crosses the intestinal wall. Additionally,
the use of surfactants such as Tween 80 and Labrasol may improve drug solubility and
penetration into the intestinal wall [65,66]. Furthermore, suppression of the P-gp pump
by such surfactants increases drug absorption, which in turn increases the absorption and
bioavailability of the drug [67–69].
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(B) the cumulative amount of drug transported (µg/cm2) versus time, (C) the Papp for RLX and NRG
from the plain RLX/NRG suspension and the RLX/NRG NLCs formulation.

3.3.9. Intestinal Uptake by CLSM

The internalization depth of rhodamine B-labeled RLX/NRG NLCs and RLX/NRG
suspension across the intestinal epithelium of rats was detected using CLSM. Figure 10
depicts the depth penetration of fluorescence across the intestinal lumen of a rat. Intense
fluorescence was observed up to 35.0 µm (z-axis) with rhodamine B-labeled RLX/NRG
NLCs (Figure 10A), while the fluorescence of rhodamine B from the RLX/NRG suspension
was detected at 10 µm (z-axis) (Figure 10B). The depth of permeation revealed significant
permeation of the drugs from the RLX/NRG NLCs formulation, 3.5-fold higher across
the intestine as compared with the RLX/NRG suspension. Internalization of rhodamine
B into intestinal cells as depicted by fluorescence intensity demonstrates the significant
permeability of the developed RLX/NRG NLCs vis-à-vis RLX/NRG suspension. This result
confirms the permeation and transport data from the ex vivo release permeation study
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discussed in the previous section. The reasons behind this improvement could be explained
by the presence of surfactants with high HLB values (15 for Tween 80, 14 for Labrasol) in
the RLX/NRG NLCs formulation, which enhances the penetration of RLX/NRG NLCs [70].
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(A) rhodamine B-labeled RLX/NRG NLCs and (B) the rhodamine B-labeled RLX/NRG suspension.

3.3.10. In Vivo Acute Toxicity Study

Female Wistar rats were subjected to acute toxicity testing to investigate the potential
impact of blank NLCs, RLX/NRG NLCs, RLX NLCs, and NRG NLCs on hematological
parameters, visual examination, and histology of critical organs. There were no behav-
ioral abnormalities, acute toxicological effects, or significant weight loss in any of the
therapy groups. Furthermore, all the treatment groups showed normal hemoglobin counts,
platelet counts, total red blood cell counts, differential white blood cell counts, etc., with no
statistically significant (p > 0.05) differences in any of these measures (Table 4).

As shown in Figure 11A, the histological cross-section of the heart from all the treat-
ment groups studied revealed normally ordered and conserved polarity of myocytes
grouped in muscular bundles, as seen in normal control rats, with no indication of heart
necrosis or bleeding. Multiple interspersed dilated blood vessels are seen, and a single
largely dilated vessel filled with plasma and a focal inflammatory cell infiltrate are also
seen in the case of the rats treated with RLX NLCs. A mild focal inflammatory cell infiltrate
is also seen in the case of the RLX/NRG NLCs group, but it is slightly smaller as compared
with the group treated with RLX NLCs. The intercalated disc is also seen in all the treatment
groups, similar to the control rats.
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Table 4. Hematological indicators in the female Wistar rats treated for 14 days with saline, blank
NLCs, NRG NLCs, RLX NLCs, and RLX/NRG NLCs (mean ± SD, n = 6).

Parameters (Unit) Control Blank NLCs NRG NLCs RLX NLCs RLX/NRG NLCs

Hemoglobin (gm/dl) 14.3 ± 1.02 15.8 ± 0.68 12.7 ± 0.5 13.9 ± 0.62 12.2 ± 0.8

TLC (total leucocyte
count) (th/cumm) 8.5 ± 0.2 8.4 ± 0.3 7.8 ± 0.2 4.4 ± 1.2 7.6 ± 1.01

Polymorphs (%) 50 ± 3.2 60 ± 2.2 39 ± 1.5 40 ± 1.7 32 ± 2.4

Lymphocytes (%) 45 ± 4.3 35 ± 3.2 52 ± 1.8 52 ± 0.5 61 ± 1.2

Eosinophil (%) 02 ± 0.3 02 ± 0.1 06 ± 0.2 05 ± 0.1 03 ± 0.3

Monocytes (%) 03 ± 0.2 03 ± 0.2 03 ± 0.02 03 ± 0.01 04 ± 0.1

RBC (millions/cumm) 7.3 ± 0.87 6.58 ± 2.3 6.7 ± 1.8 7.9 ± 1.5 6.8 ± 0.6

HCT (%) 50.3 ± 5.3 39.5 ± 2.5 45.6 ± 1.7 47.8 ± 2.1 43.2 ± 1.1

MCV (fl) 68.6 ± 3.3 80.6 ± 3.1 68.1 ± 1.5 60.6 ± 1.1 63.4 ± 0.8

MCH (pg) 19.5 ± 1.2 26.5 ± 2.2 18.9 ± 1.2 17.6 ± 1.4 17.8 ± 0.56

MCHC (g/dl) 28.5 ± 2.1 30.5 ± 1.1 27.7 ± 2.01 29 ± 0.5 28.1 ± 1.05

Platelet count (th/µL) 874 ± 5.3 652 ± 4.3 745 ± 3.2 847 ± 5.3 840 ± 6.31

MPV (fl) 7.1 ± 0.4 8.5 ± 1.1 7.2 ± 0.5 7.6 ± 1.2 8.9 ± 0.5

RDW-CV (%) 15.9 ± 1.2 14.5 ± 1.3 14.8 ± 0.5 16 ± 1.02 13.8 ± 0.7

RDW-SD (fl) 55.8 ± 2.5 45.6 ± 1.2 47.8 ± 2.1 41.5 ± 1.3 47.8 ± 2.2

PCT (%) 0.7 ± 0.2 0.6 ± 0.3 0.7 ± 0.1 0.6 ± 0.2 0.8 ± 0.2

PDW-SD (fl) 15.4 ± 0.3 15.6 ± 0.5 15.4 ± 0.2 15.2 ± 0.1 15.9 ± 0.3

As illustrated in Figure 11B, the histological portion of the liver from all the treatment
groups investigated demonstrated that the lobular architecture and polarity of the hepatic
parenchyma were preserved. Hepatocytes are polygonal in shape and have round to
oval nuclei with coarse chromatin and pronounced nucleoli. All the groups showed mild
dilatation of sinusoids. Extravasation of RBCs, few dilated blood vessels, and periportal
inflammation were also seen in the liver of the rats treated with RLX NLCs and RLX/NRG
NLCs. No necrosis was observed in any of the treatment groups.

As illustrated in Figure 11C, the cortex and the medulla of the kidney were visible in
histological sections of all the treatment groups studied. The cortex contained multiple
intact glomeruli with typical capillary loops, a normal basement membrane, mesangial cells
that did not increase in number, and normal mesangial matrices deposition. Many dilated
and congested blood vessels along with an inflammatory cell infiltrate were also seen in
the RLX NLCs-treated rats, while few were seen in the case of the RLX/NRG NLCs-treated
rats and none were seen in the case of the NRG NLCs-, blank NLCs-, and control-treated
rats. All of the treated groups had typical proximal convoluted tubules, distal convoluted
tubules, the loop of Henle, and the interstitium. There was no evidence of ischemia or
necrosis in any of the groups. The results indicated that there was no notable difference
between the various treatment groups in the heart, liver, and kidney histological sections.
This study reveals the safety of oral NLCs as they did not exhibit toxicity over repetitive
use. Moreover, we noticed that incorporation of NRG with RLX into NLCs reduced the
toxicity associated with RLX when used alone; this could be attributed to the protective
effect of antioxidant activity of NRG.
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3.3.11. Storage Stability

Visual analysis showed no identifiable change in the physical features of the RLX/NRG
NLCs, such as color and odor, after six months of storage. Additionally, there was no
evidence of dewatering or gas formation in the NLCs. Furthermore, the lyophilized NLCs
exhibited a pale yellow free-flowing powder appearance and were easily redispersed. After
reconstituting the lyophilized sample to its original volume with double-distilled water, we
conducted stability studies to determine its size and entrapment efficacy at various time
intervals. Table 5 and Figure 12 show the findings of the storage stability study. However,
entrapment efficiency at the accelerated condition was drastically reduced, even though
particle size did not vary significantly during testing. The accelerated condition may imply
that the drug degrades slowly at this temperature, verifying that the accelerated condition
is not an ideal storage environment for lipid-based preparations. As a result, it can be
inferred that refrigeration and room conditions (25 ± 2 ◦C/60 ± 5% RH) are better storage
conditions for NLC preparations for a longer period.

During storage at room temperature (25 ± 2 ◦C/60 ± 5% RH), the particle size
increased slightly from 137.04 ± 1.33 to 195.05 ± 2.68 nm, which could be attributed to
some particles accumulating during lyophilization. After six months of storage, the average
entrapment efficacy of the formulation was 76.32%, showing that some drugs were lost
during storage (Figure 12A). This might be due to drug leakage during lyophilization or it
could be owing to the loss of some drugs that had adhered to the interface of the NLCs
after lyophilization. However, after six months, the entrapment efficacy in the NLCs for
RLX/NRG was within reasonable ranges and the size was less than 200 nm. Tween 80 and
Labrasol, two stabilizers, work together to make good NLCs that make up for the need for
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HLB in lipids. Thus, the average particle size was uniformly controlled, and it was easy to
redisperse and not form clumps or precipitate while it was in storage.

Table 5. Stability study data for the optimized RLX/NRG NLCs.

Storage Condition 25 ± 2 ◦C/60 ± 5% RH 40 ± 2 ◦C/75 ± 5% RH

Time (Weeks) Physical Appearance
and Separation

Average Particle
Size (nm)

Mean EE% of
RLX/NRG ± SD

Physical Appearance
and Separation

Average Particle
Size (nm)

Mean EE% of
RLX/NRG ± SD

0

Pale yellow free-flowing
powder/easily
re-dispersible powder

137.04 88.06 ± 1.63

Pale yellow free-flowing
powder/easily
re-dispersible powder

137.04 88.06 ± 1.63

3 155.03 85.32 ± 0.9 167.52 80.25 ± 0.74

6 165.90 82.23 ± 1.25 236.49 74.76 ± 1.82

9 171.22 80.05 ± 1.45 271.42 68.54 ± 1.92

12 195.05 76.32 ± 1.22 325.05 55.34 ± 1.47
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the optimized lyophilized RLX/NRG-loaded NLCs at 3 months at (A) 25 ± 2 ◦C/60 ± 5% RH and
(B) 40 ± 2 ◦C/75 ± 5% RH.

4. Conclusions

The novel RLX/NRG NLCs were successfully prepared using a hot homogenization–
ultrasonication technique and systemically optimized using a central composite design
approach using three factors at three levels. The optimized RLX/NRG NLCs exhibited
a mean particle size of 137.04 nm, the zeta potential of 25.9 mV, entrapment efficiency of
91.77% for RLX and 85.07% for NRG, in vitro release of 81 ± 2.2% from the RLX/NRG NLCs
and 31 ± 1.9% from the RLX/NRG suspension for RLX and 93 ± 1.5% from the RLX/NRG
NLCs and 38 ± 2.01% from the RLX/NRG suspension for NRG within 24 h. RLX/NRG
NLCs exhibited a nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX
and NRG vis-à-vis RLX/NRG suspension. Moreover, the depth of permeation measured by
CLSM revealed significant permeation of the drugs from the RLX/NRG NLCs formulation,
3.5-fold higher across the intestine as compared with the RLX/NRG suspension. The
in vitro antioxidant activity of the RLX/NRG combination showed a higher antioxidant
potential as compared to either drug alone. Moreover, an acute toxicity study confirmed
the safety of RLX/NRG NLCs for further use. The lyophilized RLX/NRG NLCs showed
satisfactory stability and integrity over three months. Ultimately, our findings suggest that
codelivery of raloxifene and naringin using nanostructured lipid carriers could effectively
improve therapeutic efficiency and decrease the side effects of the treatment, and further
in vivo studies will be conducted.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14091771/s1, Table S1: Miscibility-based screening
of solid lipid and liquid lipid ratios; Table S2: Statistical ANOVA analysis for particle size response
by quadratic model; Table S3: Statistical ANOVA analysis for PDI response by quadratic model;
Table S4: Statistical ANOVA analysis for EE% RLX response by quadratic model; Table S5: Statistical
ANOVA analysis for EE% NRG response by quadratic model; Table S6: Kinetics of release of RLX
and NRG from RLX/NRG-NLCs; Figure S1: Predicted vs actual values linear correlation plots for (A)
Particle size, (B) PDI and (C,D) % Entrapment Efficiency of RLX/NRG-NLCs; Figure S2: Perturbation
correlation plots for (A) Particle size, (B) PDI and (C,D) % Entrapment Efficiency of RLX/NRG-NLCs;
Figure S3: Release kinetic study for RLX in the RLX/NRG-NLCs; Figure S4: Release kinetic study of
NRG in RLX/NRG-NLCs.
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