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Interest in developing robust, quicker and easier diagnostic tests for cancer has lead to an increased use

of Fourier transform infrared (FTIR) spectroscopy to meet that need. In this study we present the use

of different experimental modes of infrared spectroscopy to investigate the RWPE human prostate

epithelial cell line family which are derived from the same source but differ in their mode of

transformation and their mode of invasive phenotype. Importantly, analysis of the infrared spectra

obtained using different experimental modes of infrared spectroscopy produces similar results. The

RWPE family of cell lines can be separated into groups based upon the method of cell transformation

rather than the resulting invasiveness/aggressiveness of the cell line. The study also demonstrates the

possibility of using a genetic algorithm as a possible standardised pre-processing step and raises the

important question of the usefulness of cell lines to create a biochemical model of prostate cancer

progression.
Introduction

Cell lines are powerful models for Fourier transform infrared

(FTIR) spectroscopic studies due to the relatively greater

phenotypic homogeneity than their corresponding heteroge-

neous tissue and primary cell specimens.1 Prostate cancer (CaP)

cell lines have been successfully discriminated based on their

infrared (IR) spectra2 as well as their Raman spectra.3–5

However, these studies have utilised cell lines from different

anatomical positions so it is arguable as to whether the spec-

troscopic discrimination was due to the malignancy or to the

different origin of the cell lines. As the cell lines have been

exposed to different environments with different levels of

biomolecular compositions, the environmental effect on the

cellular biochemistry cannot be controlled.

Such environmental factors can be reduced by using cell

models comprising of a family of cell lines derived from a single

source but with differing phenotypes/characteristics. Here we

present data utilising the RWPE prostate epithelial cell line

family.
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Epithelial cells derived from the peripheral zone of a histolog-

ically normal adult prostate were transformed with a single copy

of the human papillomavirus 18 (HPV-18) to establish the non-

tumourigenic RWPE-1 cell line.6 RWPE-1 cells were further

transformed by Ki-ras using the Kirsten murine sarcoma virus

(Ki-MuSV) to establish the tumourigenic RWPE-2 cell line.6

Exposing RWPE-1 cells to N-methyl-N-nitrosourea (MNU)

created a family of tumourigenic cell lines (WPE1-NA22, WPE1-

NB14, WPE1-NB11 and WPE1-NB26) that show increasing

invasiveness. This family of cell lines (represented schematically

in Fig. 1) with a common lineage represents a unique and rele-

vant model which mimics stages in progression from localised

malignancy to invasive cancer, and can be used to study carci-

nogenesis, progression, intervention and chemoprevention.7

Spectroscopy is being increasingly used in biomedical appli-

cations with high degrees of success. IR spectroscopy is a non-

destructive method for the analysis of cells, tissues and fluids.8 IR

spectroscopy coupled with advanced computational methods has

been used to detect/differentiate between different diseases and

stages/grades of malignancy from tissue biopsies. These include

benign and malignant prostate,2,9–11 colon12,13 and cervical14

tissues, all of which have been evaluated using IR and have

resulted in high classification accuracies. However, most labo-

ratories or projects use or require different pre-processing
Fig. 1 A schematic showing the RWPE family cell line lineage.
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Fig. 2 RWPE-1 cultured cells on a MirrIR slide with the aperture area

150 � 150 mm2 shown by the red square.
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methods. The imagined end user of these methods is quite often

not a spectroscopist, statistician or chemometrician, etc. but

a clinical pathologist. For this reason, for the successful trans-

lation of biomedical spectroscopy to the clinical environment

a move towards standardisation of pre-processing methods is

needed.

In this study we present the use of FTIR spectroscopy, labo-

ratory and synchrotron based, combined with multivariate

analysis for the investigation of a family of cell lines derived from

the same anatomical position. We also discuss the use of

a machine learning genetic algorithm (GA) as a potential source

of pre-processing standardisation to allow end users maximum

flexibility in using spectroscopy in the clinical environment.

Materials and methods

Cell culture and sample preparation

The RWPE-1, RWPE-2, WPE1-NA22, WPE1-NB14, WPE1-

NB11 and WPE1-NB26 cell lines were all obtained from the

American Type Culture Collection (ATCC) and were cultured

according to identical ATCC protocols. Cells were cultured onto

2 cm � 2.5 cm MirrIR slides (Kevley Technologies, OH, USA)

until 80% confluent, fixed in 4% formalin in phosphate buffered

saline and air-dried before use.15 Thirty slides per cell line rep-

resenting thirty different cultures per cell line were prepared.

Invasion assay

Invasion assays were conducted according to Hart et al.16 Basi-

cally 1 � 105 cells in 0.25 ml RPMI 1640–0.1% fatty acid free

BSA were seeded into cell culture inserts (8 mm pore size) coated

with phenol red free Matrigel� diluted 1 : 25 with phenol red free

RPMI 1640 medium. The inserts were placed in a 24 well plate

containing 1 ml of RPMI 1640 (w/o phenol red)–0.1% fatty acid

free BSA–10 mM HEPES over tissue culture plastic (TCP) or

human bone marrow stroma (BMS). 18 h post-incubation at

37 �C 5% CO2 in humidified air, the inserts were washed in PBS

and non-invading cells removed by wiping with a cotton bud.

Inserts were stained with 2% crystal violet–20% methanol for

10 minutes prior to washing and allowed to air dry. Invading cells

were counted using a graticule according to manufacturer’s

instructions.

Data acquisition

Synchrotron microspectroscopy. Single-cell spectra were

collected using synchrotron radiation at beamline station 11.1 of

Daresbury Laboratory Synchrotron Radiation Source (SRS) on

a Nicolet Continumm XL FTIR microscope equipped with

a liquid nitrogen cooled MCT detector. The aperture used was

set to fit the size of the interrogated cell, typically around 20 mm

� 20 mm. The spectra represent 150 co-added scans with a reso-

lution of 4 cm�1 and a spectral range of 700 cm�1 to 6000 cm�1.

Background spectra were taken from a cell free area as close as

possible to the analysed cell.

Laboratory microspectroscopy. Spectra were collected using

a Perkin Elmer Spectrum Spotlight 300 FTIR microscope

coupled to a Perkin Elmer Spectrum One Spectrometer. The
888 | Analyst, 2010, 135, 887–894
microscope is equipped with a liquid nitrogen cooled MCT

detector and a CCD camera to provide an optical image of the

area under interrogation. An aperture size of 150 mm � 150 mm

was used to obtain spectra from confluent monolayers. Typically

100 co-added scans were used for the RWPE-1 cell line and 150

co-added scans for RWPE-2, WPE1-NA22, WPE1-NB11 and

WPE1-NB26. An example of an RWPE-1 culture on a MirrIR

slide with aperture area labelled is shown in Fig. 2. A resolution

of 4 cm�1 and the spectral range 700 cm�1 to 6000 cm�1 was used.

Background spectra were collected from a separate piece of

blank MirrIR slide. At least 5 spectra were acquired from each

sample. Spectra tainted by water vapour were discarded.

Laboratory broadbeam spectroscopy. FTIR spectra were

collected using a Varian 3100 Excalibur Series FTIR spectrom-

eter equipped with a liquid nitrogen cooled MCT detector.

Samples were placed upon a Pike Technologies 30 Spec 30 degree

spectral reflectance accessory to allow spectral acquisition. Each

spectrum represents 256 co-added scans collected at 4 cm�1

resolution. Spectra were acquired from a large population of

cells, which act to average the signal and hence allow single-cell

specific characteristics (e.g. cell cycle stage) to be disregarded. 10

spectra were collected from each culture resulting in 300 spectra

per cell line. A background spectrum was collected before

starting analysis and after every 5 spectra.
Data analysis

Two different analyses were performed. The datasets acquired

using synchrotron and laboratory based microspectroscopy were

analysed in a typical fashion i.e. with the analyst choosing the

pre-processing procedures and multivariate model to use,

whereas the laboratory based broadbeam spectroscopic study

was analysed using genetic algorithm fed support vector

machines and principal component analysis. For the micro-

spectroscopic study the cell lines used were RWPE-1, RWPE-2,

WPE1-NA22, WPE1-NB26 and WPE1-NB11. The broadbeam

spectroscopic study used these cell lines as well as WPE1-NB14.

Laboratory based and synchrotron based microspectroscopic

study. Matlab coupled with in house written software was used

for data processing. The spectra were vector normalised,
This journal is ª The Royal Society of Chemistry 2010
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Table 2 Range of pre-processing techniques used by the genetic algo-
rithm

Processing Type Range

Derivatisation None NA
1st Order NA
2nd Order NA

Smoothing Savitzky–Golay 5th order 5 7 9 11 13 15 17 19 21
Moving average 3 5 7 9 11 13 15 17 19

Scaling Auto-scaling NA
Range-scaling NA

EMSC NA NA
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corrected using the extended multiplicative signal correction

(EMSC) model,17 using the average spectrum as the reference for

correction and finally the Savitzky–Golay smoothed first deriv-

ative was taken using a 5-point smoothing window. (Note that

the latest version of the resonant Mie scattering correction

(RMieS-EMSC) was not available for this study.18,19)

The spectral range 900–1800 cm�1 was used, resulting in 467

spectral data points for principal component analysis (PCA) and

principal component–discriminant function analysis (PC–DFA).

PCA is a common unsupervised multivariate method for finding

patterns/structures within high dimensionality datasets. PCA

was computed using the Non-linear Iterative Partial Least

Squares (NIPALS) algorithm. PC–DFA utilises PCA to reduce

the dimensionality of the data prior to discriminant function

analysis (DFA). DFA then discriminates between groups on the

basis of the resultant PCs and the a priori knowledge of the group

membership that are fed into the DFA algorithm. Maximising

the inter-group variance and minimising the intra-group variance

achieve this. The maximum number of discriminant functions

available is the number of groups minus one.20 The optimum

number of PCs was determined iteratively. Prior to DFA, the

dataset was split into a training set and an independent test set.

The spectra were randomly assigned to either set, with the

constraint that 20% of the spectra collected on each cell line

should belong to the independent test set. As PC–DFA is

a supervised technique and the model is supplied with informa-

tion about group membership, any result produced by the model

needs to be tested. This testing was carried out by supplying the

model with the independent test set and observing where the

model places the spectra on a graphical output. Confidence

ellipses or ellipsoids are added to the discriminant function plots.

These are, respectively, 2D and 3D visualisation of the 95%

confidence interval. This was achieved using error_ellipse.m

written by A. J. Johnson and obtained from Matlab central file

exchange.21 Covariance matrices were calculated from the

discriminant function analysis score matrix for each grouping,

where the centroid was defined as the mean of each discriminant

function analysis score matrix for each grouping.

Laboratory based broadbeam spectroscopic study. The spectra

were subjected to a quality test whose main criteria were: (1) the

difference between the highest and the lowest point of the amide I

peak had to be between 0.3 and 1.3 absorbance units and (2) an

absence of peaks attributable to water vapour. As a result of the

quality test approximately 10% of the spectra were discarded, the

spectral numbers per cell line and split between training set,

validation set and blind test set are shown in Table 1.
Table 1 Number of spectra per cell line and per spectral seta

Cell line Training set Validation set Test set Total

RWPE-1 150 (15) 30 (3) 120 (12) 300 (30)
RWPE-2 150 (15) 30 (3) 100 (10) 280 (28)
WPE1-NA22 150 (15) 30 (3) 70 (7) 250 (25)
WPE1-NB11 150 (15) 30 (3) 110 (11) 290 (29)
WPE1-NB14 150 (15) 30 (3) 70 (7) 250 (25)
WPE1-NB26 150 (15) 30 (3) 60 (6) 240 (24)

a Number of cultures shown in brackets.

This journal is ª The Royal Society of Chemistry 2010
The blind test set was used as a double blind set as the analysis

was performed at the Focas Research Institute, Dublin, Ireland

and the identity of the spectra in the blind test set was kept by

MJB.

The genetic algorithm (GA), principal component analysis

(PCA), support vector machine (SVM) and implementation of

pre-processing functions were carried out using Matlab�. All

analyses were performed using a dual quad core (Zenon) with

16 GB RAM.

Genetic algorithm (GA) implementation. A GA was used to

discover the optimum pre-processing technique from a range of

pre-processing techniques (Table 2). Optimisation was imple-

mented using a modified version of the Genetic Algorithm

Optimisation Toolbox for Matlab�.22

50 independent genetic algorithm runs were conducted

retaining the highest cross-validation score, which depends upon

the number of correctly classified spectra in the validation set.

Using the optimum solution from each independent run,

a support vector machine (SVM) was trained using the selected

pre-processing regimes and selected SVM meta-parameters.

Jarvis and Goodacre have successfully demonstrated the genetic

algorithm optimisation approach for the selection of pre-pro-

cessing methods and discriminatory spectral regions.23

Support vector machine (SVM) implementation. Support

vector machines were constructed using the LibSVM package.24

Binary versions of LibSVM’s svmtrain and svmpredict programs

were controlled from Matlab�.
Results and discussion

Invasion assay

The results of the invasion assay towards tissue culture plastic

(TCP, blue) or bone marrow stroma (BMS, red) are shown in

Fig. 3.

The invasion towards TCP is very low as expected, whereas

when a strong chemoattractant such as BMS is introduced the

invasive abilities of the cells are revealed. Bone is the most

common metastatic site for prostate cancer and as such bone

marrow stromal cells have been shown to enhance prostate

cancer cell invasions.25 The invasiveness of the cell line is

compared to the invasiveness of PC-3, a cell line established from

a bone metastatic site.26 Previous studies have shown a range of

invasiveness for these cell lines; RWPE-1 was found to be
Analyst, 2010, 135, 887–894 | 889
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Fig. 3 Graph showing the propensity of the different cell lines for

invasion towards tissue culture plastic (TCP, blue) and bone marrow

stroma (BMS, red).

Fig. 4 PCA score plot of the whole dataset (PC1 vs. PC2). A different

coloured circle as per the legend of the figure represents each spectrum of

the cell lines.
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non-tumourigenic/invasive whilst WPE1-NA22, WPE1-NB14,

RWPE-2, WPE1-NB11 and WPE1-NB26 displayed increasing

tumourigenic and invasive characteristics. The results of our

invasion assay (Fig. 3), importantly, show RWPE-1 and the slow

growing/tumour forming RWPE-2 to have about equal inva-

siveness capacity towards BMS and the WPE1 cell lines follow

the general increase as reported in the literature, however, the

error bars of the WPE1-NB11 and WPE1-NB26 cell lines do

overlap significantly.

Laboratory based and synchrotron based microspectroscopic

study

Laboratory based microspectroscopic study. The laboratory

based microspectrometer was used to acquire spectra from fields

of views containing tens of cells, and thus the spectra represent an

average of those cells. The multiple cell diagnostic model was

constructed using 672 spectra. The number of spectra per cell line

for the training and independent test set is shown in Table 3.

The PCA score plot is shown in Fig. 4. Utilising the first two

principal components (PCs) yielded the best separation of the cell

lines, PC1 accounted for 56% and PC2 21% of the variance.

Explaining 8% of the variance, PC3 did not provide any better

separation.

Spectra from the RWPE-1 cell line (yellow circles) formed the

most discernible cluster. PC1 generally separates the non-

tumourigenic RWPE-1 and low invasiveness cell line WPE1-

NA22 from the slow tumour forming RWPE-2 and the more
Table 3 Distribution of acquired multiple cell spectra per cell line for the
laboratory based microspectroscopic study

Cell line
Number
of samples

Total number
of spectra

Spectra in
training set

Spectra in
test set

RWPE-1 27 133 106 27
RWPE-2 29 148 118 30
WPE1-NA22 25 125 100 25
WPE1-MB11 29 145 116 29
WPE1-NB26 24 121 97 24
Total 134 672 537 135

890 | Analyst, 2010, 135, 887–894
invasive cell lines (WPE1-NB11 and WPE1-NB26), whereas

PC2 generally separates RWPE from WPE cell lines. Observing

both PC1 and PC2 together, three distinct groupings can be

seen: (1) RWPE-1, (2) RWPE-2 and WPE1-NA22 and (3)

WPE1-NA11 and WPE1-NB26. However, as the clusters are

not wholly clear, a supervised method of multivariate analysis,

such as PC–DFA, will be used to illuminate difference between

the cell lines.

Fig. 5(A) shows the discriminant function plot of DF1 vs.

DF2 for the multiple cell spectral model based upon the training

set (coloured filled circles) and independent test set (coloured

empty squares), as per the figure legend, with a 95% confidence

limit drawn and Fig. 5(B) shows the discriminant function plot

of DF1 vs. DF3 with the 95% confidence limit drawn. The

discrimination in the plots shows different separations based

upon different characteristics with Fig. 5(A) showing discrimi-

nation along DF1 based upon genetic (RWPE) versus genetic

plus chemical (WPE1) transformation and DF2 has separated

two different types of genetic transformation, HPV-18 for

RWPE-1 compared with HPV-18 plus Ki-Ras for RWPE-2.

Fig. 5(B) shows the same separation along DF1 however DF3 is

separating WPE1-NA22 from WPE1-NB11 and WPE1-NB26.

However, it is not clear if this separation is based upon inva-

siveness or the difference in amount of MNU used to achieve

the chemical transformation.

As 3 discriminant functions have been used it was relevant to

use a pseudo-3D discriminant function plot. Fig. 6(A) shows

a 3D discriminant function plot of DF1 vs. DF2 vs. DF3 based

upon the training set data (coloured filled circles) and inde-

pendent test set (coloured empty squares), as per the figure

legend.

To assess the quality of discrimination the measures of

sensitivity and specificity are used. Sensitivity measures the

ability of the model to correctly classify whereas specificity

measures the ability of the model to not misdiagnose. The

sensitivities and specificities for the multiple cell spectral model

based upon the pseudo-3D discriminant function plot are

shown in Table 4.

The sensitivities and specificities (Table 4) and the pseudo-3D

discriminant function plot (Fig. 6) reveal that all the false positives

for WPE1-NB11 were from WPE1-NB26 spectra and all the false
This journal is ª The Royal Society of Chemistry 2010
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Fig. 5 Discriminant function plots showing (A) DF1 vs. DF2 and (B) DF1 vs. DF3 for the multiple cell spectral model based upon the training set

(coloured filled circles) and independent test set (coloured empty squares), as per the figure legend, with a 95% confidence ellipse drawn.

Fig. 6 (A) Pseudo-3D discriminant function plot of DF1 vs. DF2 vs.

DF3 based upon the training set (coloured filled circles) and independent

test set (coloured empty squares) and (B) pseudo-3D discriminant func-

tion plot with 95% confidence ellipsoids.
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positives for WPE1-NB26 were from the WPE1-NB11 spectra.

Due to this, a new group comprising of cells from both cell lines

was tested for sensitivity and specificity. Invasion assay results

(Fig. 3) show that WPE1-NB26 and WPE-NB11 are very close in

their invasiveness. The pseudo-3D model is able to discriminate
Table 4 Sensitivities and specificities for the multiple cell spectral model bas

Cell line True positives False negatives Sensitiv

RWPE-1 23 4 85.2
RWPE-2 29 1 96.7
WPE1-NA22 25 0 100.0
WPE1-NB11 27 2 93.1
WPE1-NB26 22 2 91.7
WPE1(NB11 + 26) 50 3 94.3

This journal is ª The Royal Society of Chemistry 2010
4 groups of cell lines RWPE-1, RWPE-2, WPE1-NA22 and

WPE1-NB(11 and 26), to a high degree of accuracy, with the

average sensitivity and specificity of 94% and 99.8% respectively.

The specificity was exceptional in illuminating the robustness of

the discrimination. Test spectra which did not fall within the

confidence ellipsoid did not fall into the wrong ellipsoid.

Discriminant function 1 separated the RWPE cell lines from

the WPE1 cell lines whilst discriminant functions 2 and 3 provide

separation within these two groups (Fig. 5 and 6). The model is

able to adequately differentiate cell lines from the RWPE and

WPE families. Clusters corresponding to the chemically modified

cell lines lay close to each other and the more aggressive clusters

(WPE1-NB11 and WPE1-NB26) clustered together. WPE1-

NA22 cells were derived from cells exposed to MNU at

a concentration of 50 mg l�1 whereas WPE1-NB11 and WPE1-

NB26 originated from the same batch of cells exposed to MNU

at 100 mg l�1 and were separated from each other only after

successive steps of growth in culture and injection into immu-

nodeficient mice.7 Although, cell lines are separated, there is no

systematic order of separation according to level of invasiveness

and thus it appears to be primarily dependent on the method of

transformation rather than the difference in invasiveness which

raises questions on the usefulness of cell lines in modelling

cancer. Erukhimovitch et al.27 have previously questioned the use

of cell lines to model non-malignant cells in their study on human

and mouse cell lines, cancer cells and primary cells. This study

suggests that cell lines should all be considered as premalignant

cells due to the immortal character achieved by the trans-

formation. Our study takes this further by suggesting that

biochemical changes induced by different transformation

methods are primarily responsible for the discrimination of the

RWPE family of cell lines and it is not possible, as was the

research aim, to model biochemical changes associated with
ed upon the pseudo-3D discriminant function plot

ity (%) True negatives False positives Specificity (%)

108 0 100.0
105 0 100.0
109 1 99.1
87 19 82.1
86 25 77.5
82 0 100.0

Analyst, 2010, 135, 887–894 | 891
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Fig. 8 (A) Pseudo-3D discriminant function plot of DF1 vs. DF2 vs.

DF3 based upon the training set (coloured filled circles) and independent

test set (coloured empty squares) and (B) pseudo-3D discriminant func-

tion plot with 95% confidence ellipsoids.
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invasiveness using FTIR spectroscopy in prostate cancer using

these cell lines.

A study by Romeo et al.1 on human oral mucosa cells and

canine cervical cells resulted in the different cell types grouping

together. This was thought to be due to the nucleus to cytoplasm

ratio of the cells being more discriminatory than biochemical

changes. However, a recent study28 has shown that the major

reason for discrimination of prostate cancer cell lines, albeit ones

from different anatomical positions, by FTIR is the biochemical

differences between the cell lines. Thus we can be confident that

we are observing discriminatory biochemical differences between

the RWPE family of cell lines but it should be stressed that these

differences appear to derive from the method of transformation

rather than the degree of invasiveness.

Synchrotron based microspectroscopic study. A preliminary

study utilising synchrotron based FTIR microspectroscopy was

performed resulting in a total of 135 spectra. Each spectrum

represents the interrogation of a single cell. The breakdown for

each cell line is as follows: RWPE-1 19 spectra, RWPE-2

20 spectra, WPE1-NA22 29 spectra, WPE1-NB11 33 spectra and

WPE1-NB26 34 spectra. The aspect of the averaged IR spec-

trum, for the spectral range 900–1800 cm�1, from the whole

single-cell spectral dataset was very similar to that calculated

from the multiple cells (Fig. 7).

To assess the preliminary data collected on single cells a PC–

DFA analysis was performed. However, in this analysis instead

of splitting the data into a training set and independent test set

10 separate analyses were performed with 7 randomly chosen

spectra from each cell line in the training set and the remaining

spectra in the independent test set each time. Fig. 8(A) shows

a pseudo-3D discriminant function plot of DF1 vs. DF2 vs. DF3

based upon one of the ten analyses performed with the training

set data (coloured filled circles) and independent test set (col-

oured empty squares). Fig. 8(B) shows the discriminant function

plot with 95% ellipsoids drawn.

Spectra from the preliminary single-cell model did not cluster

as well as the multiple cell spectra. Spectra from RWPE-1 and
Fig. 7 The average spectrum (black) � standard deviation (grey) of the

whole single-cell spectral dataset after vector normalisation and EMSC

correction and of the spectral range 900–1800 cm�1 used for analysis.
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RWPE-2 are clearly distinguishable from each other along

discriminant function 2 and from the WPE1 cell lines along

discriminant function 1, whereas the WPE1 cell lines are less

distinguishable. Due to the increased variability in the spectra

and the small size of the dataset, 95% confidence ellipsoids were

large and overlapped. The average sensitivities and specificities

for the single-cell model are shown in Table 5.

The overall average sensitivity and specificity are 67.3% and

79.8%, respectively, for this preliminary single-cell dataset. The

model was able to adequately separate RWPE-1 from RWPE-2

and the RWPE cell lines from WPE1 cell lines.

The results from the preliminary single-cell spectral model are

consistent with those from the multiple cell spectral model in that

the same 3 main clusters consisting of HPV-18 transformed

RWPE-1, HPV-18 and Ki-ras transformed RWPE-2 and HPV-

18 and chemically transformed WPE1 cells are isolated.

However, discrimination between the WPE1 cells could not be

achieved. The standard deviation observed among the single-cell

spectra was larger than that observed for the multiple spectra,

attesting the large variability between single cells. A study by

German et al. utilising synchrotron and laboratory based
Table 5 Sensitivities and specificities for the single-cell spectral model

Cell line Sensitivity (%) Specificity (%)

RWPE-1 27.1 87.1
RWPE-2 60.0 93.7
WPE1-NA22 70.6 78.6
WPE1-NB11 88.6 66.6
WPE1-NB26 90.0 73.1
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Table 6 (A) Optimum GA selected data pre-processing and SVM design parameters, and (B) confusion matrix from blind set testing of the optimum
pre-processing and SVM design. The sensitivities (R) and specificities (S) are shown for each class

A

Derivatisation EMSC Filter type Window Normalisation Scaling SVM penalty (C) RBF gamma

1st order None MA 9 None Auto 9.6017 9.6626

B

IR assignment RWPE-1 RWPE-2 WPE-NA22 WPE-NB11 WPE-NB14 WPE-NB26 Sensitivity (R)

Actual Cell Line RWPE-1 108 1 10 0 1 0 90.00
RWPE-2 0 100 0 0 0 0 100.00
WPE-NA22 0 0 69 0 0 1 98.57
WPE-NB11 0 0 0 110 0 0 100.00
WPE-NB14 0 0 0 0 67 3 95.71
WPE-NB26 0 0 0 0 0 60 100.00
Specificity (S) 100.00 99.70 97.83 100.00 99.78 99.15
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infrared radiation has shown that both techniques highlight

similar spectral characteristic despite the increased intra-vari-

ability observed with synchrotron FTIR microspectroscopy.29

Importantly this preliminary study on single cells has concurred

with the multiple cell spectral study, which was performed on

a different instrument with a different experimental protocol and

on a different scale.
Laboratory based broadbeam spectroscopic study

Genetic algorithm fed support vector machine (SVM). The

genetic algorithm identified the pre-processing conditions in

Table 6(A) from the available conditions supplied (Table 2), as

the optimum pre-processing conditions and SVM parameters for

discriminating the RWPE cell lines from the laboratory based

broadbeam spectroscopic study. SVM penalty is a measure of the

misclassification of the training data and RBF gamma is the use

of a radial basis function to determine the area of influence the

support vector has over the data space. The output from the
Fig. 9 PCA score plot of the dataset processed using the optimum GA chosen

the legend of the figure represents each spectrum of the cell lines (ellipses dra
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SVM prediction of blind set classification is assessed via

a confusion matrix (Table 6(B)).

The genetic algorithm fed SVM is able to discriminate the

RWPE family of cell lines to an average overall sensitivity and

specificity of 97.37% and 99.41% respectively. The main errors in

the model arise from RWPE-1 cells misclassified as WPE1-NA22

and WPE1-NB14 misclassified as WPE1-NB26. Although these

misclassifications are small in number they are important since

they are to cell lines with very different degrees of invasiveness.

As the imagined end user of these technologies will not be

a spectroscopist or chemometrician and the ultimate aim is to

translate this research into the clinical environment it is necessary

to generate a robust set of pre-processing functions into which

the pathologist can easily input spectral data and acquire a clin-

ically relevant output. The use of genetic algorithms (GAs) to

select pre-processing conditions and/or discriminatory regions of

the spectrum can allow this research community to provide

a standard list of options which are acceptable to be supplied to

the GA and hence allow optimum separation.
pre-processing methods (PC1 vs. PC2). A different coloured circle as per

wn as a guide to the eye).
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Principal component analysis. The PCA score plot for the GA

chosen pre-processing method is shown in Fig. 9. PC1 accounted

for 83.62% and PC2 4.53%. Using PC3 did not improve the

separation.

Observing the score plot (Fig. 9) for the GA fed SVM, it can

again be seen that the groups are not differentiating on inva-

siveness of the cell line but appear similar to the PC–DFA results

obtained on the laboratory based microspectrometer study with

a differentiation being made between the RWPE cell lines

(genetically transformed) and the WPE1 cell lines (genetically

and chemically transformed) along PC1. General clustering can

be seen for all cell lines apart from WPE1-NA22.
Conclusions

Laboratory based and synchrotron based microspectroscopic

study

FTIR microspectroscopy has been used to distinguish between

cells derived from the same origin, same anatomical position,

having a close genetic background but differing on tumourigenic

behaviour and as such we have further demonstrated the use of

FTIR as a sensitive tool for evaluating biological samples and

processes. The discrimination has been achieved to a high degree

of classification accuracy and repeated with a preliminary study

on single cells. The differentiation classification accuracy is better

within the laboratory based study compared to the synchrotron

based study, primarily due to significantly higher variance in

single-cell data and the smaller datasets available. It should be

remembered, however, that the single-cell data provide infor-

mation concerning cell populations and not just the average

which can be a significant advantage. The model presented here,

however, discriminates based upon differences between the way

these closely related cell lines have been transformed and not

their invasiveness, showing their unsuitability to model prostate

cancer using FTIR and raising important questions on the use of

cell lines as cancer models.
Laboratory based broadbeam spectroscopic study

This study has shown the use of a genetic algorithm to select

optimum pre-processing methods. This allows us to determine

the pre-processing methods which can be used whilst allowing

the determined end user maximum flexibility in the application

of the technologies and methods concerned with this research.

Importantly it has also validated discrimination results observed

in the other studies presented in this paper.

Overall, the study demonstrates the potential of FTIR coupled

with multivariate analysis technique for pathological screening

applications although further studies involving primary cells and

tissue are clearly required. The use of genetic algorithms (GAs) to

selecting pre-processing conditions and/or discriminatory

regions of the spectrum can allow the research community to

provide a standard list of options which are acceptable to be

supplied to the GA and hence allow optimum separation. Once

all the issues regarding spectral correction and pre-processing

have been resolved there is no reason why this technology cannot

be used routinely in a clinical environment to augment current

practice.
894 | Analyst, 2010, 135, 887–894
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