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ABSTRACT
Accurate phase-space coordinates (three components of position and velocity) of individual
stars are rapidly becoming available with current and future resolved star surveys. These data
will enable the computation of the full three-dimensional orbits of tens of thousands of stars
in the Milky Way’s stellar halo. We demonstrate that the analysis of stellar halo orbits in
frequency space can be used to construct a ‘frequency map’ which provides a highly compact,
yet intuitively informative way to represent the six-dimensional halo phase-space distribution
function. This representation readily reveals the most important major orbit families in the
halo, and the relative abundances of the different orbit families, which in turn reflect the
shape and orientation of the dark matter halo relative to the disc. We demonstrate the value of
frequency space orbit analysis by applying the method to halo orbits in a series of controlled
simulations of disc galaxies. We show that the disc influences the shape of the inner halo
making it nearly oblate, but the outer halo remains largely unaffected. Since the shape of the
halo varies with radius, the frequency map provides a more versatile way to identify major and
minor orbit families than traditional orbit classification schemes. Although the shape of the
halo varies with radius, frequency maps of local samples of halo orbits confined to the inner
halo contain most of the information about the global shape of the halo and its major orbit
families. Frequency maps show that adiabatic growth of a disc traps halo orbits in numerous
resonant orbit families (i.e. having commensurable frequencies). The locations and strengths
of these resonant families are determined by both the global shape of the halo and its stellar
distribution function. If a good estimate of the Galactic potential in the inner halo (within
∼50 kpc) is available, the appearance of strong, stable resonances in frequency maps of halo
orbits will allow us to determine the degree of resonant trapping induced by the disc potential.
We show that if the Galactic potential is not known exactly, a measure of the diffusion rate
of a large sample of ∼104 halo orbits can help distinguish between the true potential and an
incorrect potential. The orbital spectral analysis methods described in this paper provide a
strong complementarity to existing methods for constraining the potential of the Milky Way
halo and its stellar distribution function.

Key words: methods: numerical – Galaxy: evolution – Galaxy: halo – Galaxy: kinematics
and dynamics – Galaxy: structure – dark matter.
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1 IN T RO D U C T I O N

Over the last decade a coherent picture of the formation of the stel-
lar halo of the Milky Way (MW) has begun to emerge from both
observational surveys of the Galaxy and cosmologically motivated
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simulations. In this ‘concordance cosmological model’ galaxies are
embedded in dark matter haloes and form via the merger of proto-
galactic fragments. The fragments consist of dark matter, gas and
the first generations of stars which formed in high-density peaks
in the early Universe. An extended period of ‘late infall’ includ-
ing the accretion and tidal shredding of numerous dwarf satellite
galaxies (Bullock & Johnston 2005; De Lucia & Helmi 2008; Font
et al. 2008; Johnston et al. 2008; Cooper et al. 2010) has contin-
ued to build up the halo even at the present time. In contributing
to the growth of disc galaxies, gas accretion competes with accre-
tions and mergers of satellites which tend to thicken and disrupt
the disc. Recent resolved-star all-sky surveys such as Sloan Dig-
ital Sky Survey-Sloan Extension for Galactic Understanding and
Exploration (SDSS-SEGUE; Yanny et al. 2009) and RAdial Veloc-
ity Experiment (RAVE; Steinmetz et al. 2006) have revealed that
current observations of the stellar halo are broadly consistent with
the �cold dark matter (�CDM) galaxy formation paradigm. For
example the detection in SDSS data of numerous substructures in
the MW halo in the form of tidal streams (Newberg et al. 2002;
Yanny et al. 2003; Belokurov et al. 2006), the measurement of the
degree of clumpiness in the distribution of stars in the stellar halo
(Bell, Zucker & co authors 2008) and the discovery of numerous
ultra-faint dwarf spheroidal galaxies (Willman et al. 2005; Zucker
et al. 2006; Belokurov et al. 2007) have all bolstered evidence that
the MW’s stellar halo was produced in the manner consistent with
�CDM.

Although this picture of galaxy formation has been very suc-
cessful, the availability of phase-space coordinates for tens of thou-
sands of halo stars from resolved star surveys have revealed the
inadequacies, and inherent degeneracies, of current analysis tools.
For instance, phase-space data are currently compared with simula-
tions using simple measures such as orbital eccentricity (Sales et al.
2009), and not only yield degenerate results (Dierickx et al. 2010;
Wilson et al. 2011), but also depend on assumptions regarding the
potential of the Galaxy. Although gas accretion probably dominates
in disc galaxies it is unclear from the current data whether the MW’s
inner stellar halo, and thick disc formed purely in situ (Schönrich &
Binney 2009; Loebman et al. 2010) or whether a pre-existing thin
disc was heated (Villalobos & Helmi 2008; Kazantzidis et al. 2008)
or if they were entirely created by satellite accretion (Abadi et al.
2003; Yoachim & Dalcanton 2008). There is also evidence that the
inner stellar halo may be smoother (less rms density variation) and
more metal rich than the outer halo (Helmi et al. 2011). In addition,
a recent analysis of the full space motions of ∼17 000 halo stars
from the SDSS-SEGUE calibration sample (Carollo et al. 2007,
2010; Beers et al. 2011) suggests that the Galactic halo consists of
two overlapping components: an inner halo, which is rotating in the
same direction as the disc, and an outer halo, with a small retrograde
motion. In addition, the two components have different density pro-
files, stellar orbits and metallicites (however see Schönrich, Asplund
& Casagrande 2011, for a different view).

Current analysis tools rely on comparing the average distributions
of stars in the halo with those arising from simulations but are not
powerful enough to compare the full six-dimensional phase-space
distribution functions (DF) of 105–106 halo stars and the information
on their metallicities and ages that will become available following
the launch of Gaia (Perryman et al. 2001). It is impossible for
current analyses to rule out the possibility that a significant fraction
of nearby halo stars are not formed in our own potential, and have
been heated up into a very thick spheroidal inner halo. Addressing
questions of this kind are of key importance when trying to constrain
galaxy formation models, and in uncovering the formation history

of the MW, and can only be achieved with new techniques that
can quantitatively compare the self-consistent chemodynamical and
phase-space DF of the stellar halo with those from models.

In this paper we show that frequency analysis tools can be ap-
plied to orbits of halo stars to uncover the phase-space DF of the
entire stellar halo. These methods can be applied to both the real
DF of MW halo orbits and to those from N -body simulations, per-
mitting detailed quantitative comparisons of the orbit families in
the DFs. We also show that the halo orbit DF (represented by a
frequency map) reflects the global shape of the dark matter halo
and its orientation relative to the disc.

One of the robust predictions of the �CDM cosmological
paradigm is that the dark matter haloes of galaxies like the MW
are triaxial (Dubinski & Carlberg 1991; Jing & Suto 2002; Bailin &
Steinmetz 2005; Allgood et al. 2006). Orbits of particles in triaxial
potentials are very different from those in spherical and axisym-
metric potentials. For instance, none of the orbits conserves any
component of angular momentum. The fraction of such ‘triaxial
orbits’ in a potential is a strong indicator of the global shape of the
potential. If haloes are elongated in ways that reflect their accretion
history and their orientation relative to large-scale filaments (Helmi
et al. 2011), determining the shape and the orbital populations could
give us important clues about the formation of the MW.

Recent simulations have shown that when baryons cool and con-
dense at the centres of triaxial dark matter haloes, the haloes become
more axisymmetric especially at small radii (Dubinski & Carlberg
1991; Kazantzidis et al. 2004; Debattista et al. 2008, hereafter D08;
Kazantzidis, Abadi & Navarro 2010; Tissera et al. 2010). Two re-
cent studies (Valluri et al. 2010, hereafter V10; D08) analysed the
orbital properties of halo particles in a series of N -body simulations
in which baryonic components were grown adiabatically in triaxial
and prolate haloes. V10 showed that although the inner one-third of
the halo becomes nearly oblate following the growth of a baryonic
component, only a fraction of the orbits change their true orbital
characteristics. When the baryonic component is a disc galaxy, most
of the halo orbits retain a memory of their orbital actions. Since the
actions are adiabatic invariants, even nearly oblate haloes can have
a significant fraction of box orbits and long-axis tubes.

This ability of orbits to retain a memory of their initial conditions
has been previously noted in several numerical studies: when the
potential is changing fairly violently e.g. during a major merger
(Valluri et al. 2007) or during the tidal disruption of a satellite in
the field of a larger galaxy (Helmi & de Zeeuw 2000), stellar orbits
largely conserve their integrals of motion. In the latter case Helmi &
de Zeeuw (2000) showed that the orbital actions can be used to re-
cover the relics of the tidal disruption of a dwarf satellite by the MW
potential. Recently, a number of studies (McMillan & Binney 2008;
Gómez & Helmi 2010; Gómez et al. 2010) have shown that the or-
bital frequencies �R (radial oscillation or epicyclic frequency) and
�φ (tangential oscillation or rotation frequency) of stars belonging
to a single satellite are tightly correlated and that this correlation
remains strong long after the remnant has become completely well
mixed in configuration (physical) space. Consequently, correlations
between orbital frequencies can be used to identify stars that belong
to individual accretion events, and simultaneously determine the
true galactic potential and the time since each satellite galaxy was
disrupted (McMillan & Binney 2008; Gómez & Helmi 2010).

Following the method outlined by Carpintero & Aguilar (1998),
V10 (also Deibel, Valluri & Merritt 2011) used the oscillation fre-
quencies of orbits of particles in simulated haloes to classify orbits
into major families. V10 also used orbital frequencies to quantify
the shapes of orbits (and to relate the orbital shapes to the shapes
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of the haloes), to identify orbits which are chaotic and to identify
important resonances (regions of phase space occupied by orbits
with commensurable orbital frequencies). In this paper we show
that the relative distribution of orbital types and the identification
of important resonances populated by halo orbits strongly reflect
the orientation of the triaxial halo relative to the galactic disc. We
will show that the discovery of large numbers of halo stellar or-
bits trapped in resonances could put constraints on the form of the
Galactic potential and the DF of the stellar halo.

Why are resonances important? When a time-dependent force
acts on a system like a galaxy, long-lived resonant interactions play
an important role in the evolution of the system and leave imprints
in its phase-space structure. The identification of stars trapped in
resonances can put constraints on the potential and its components
(e.g. the bar and spiral arms). Resonant interactions between in-
dividual orbits and a changing potential influence time-dependent
(secular) evolution: e.g. it can cause stars to ‘levitate’ to form a
thick disc (Sridhar & Touma 1996), it may result in the formation
of polar rings or counter-rotating discs (Tremaine & Yu 2000), and
it can cause resonant shocking (or torquing) of stars in satellites as
they are disrupted in dark matter haloes (Choi, Weinberg & Katz
2009). ‘Capture into resonance’ is studied extensively in the context
of planetary systems, where a migrating planet can capture plan-
ets or planetesimals into mean motion resonances (Malhotra 1993;
Yu & Tremaine 2001). In the planetary dynamics literature it has
been shown that resonant trapping of planetesimals occurs in slowly
varying potentials, but can be prevented when the drift or migration
rate is sufficiently high (i.e. non-adiabatic) (e.g. Quillen 2006). The
identification of a significant fraction of resonantly trapped halo or-
bits could therefore provide clues about the way in which the halo
potential has changed over time.

Laskar’s frequency analysis method is particularly good at
identifying resonances (Robutel & Laskar 2001). We show that
when the method is applied to orbits in a self-consistent DF, the
method permits easy identification of the major orbit families and
an assessment of the relative importance of each family to the
phase-space DF.

This paper is organized as follows. Section 2 describes the sim-
ulations analysed in this paper and briefly describes the frequency
analysis of orbits. Section 3 presents the results of our analysis
of adiabatic simulations of isolated galactic potentials consisting
of both axisymmetric and triaxial dark matter haloes with particle
discs of various orientations (taken mostly from D08). We also dis-
cuss the effects of disc galaxies which form self-consistently from
hot halo gas in a spherical or prolate halo. These simulations in-
clude the hydrodynamical effects of gas cooling, star formation and
supernova feedback (Stinson et al. 2006; Roškar et al. 2008). In
Section 4 we show how the mean orbital diffusion rates of a large

ensemble of orbits selected from a distribution function can be used
to assess how much it deviates from self-consistent equilibrium and
discuss how this measure is affected when the assumed Galactic
potential is incorrect. In Section 5 we summarize our results, and
discuss their implications for future large data sets which will obtain
the six-dimensional orbits of stars in the MW halo.

2 SI M U L AT I O N S A N D N U M E R I C A L M E T H O D S

2.1 Simulations

We analysed two types of controlled simulations: (a) N -body sim-
ulations in which an exponential, thin stellar disc (consisting of
collisionless particles) was grown adiabatically inside an isolated
halo; (b) N -body+smoothed particle hydrodynamic (SPH) simu-
lations of the formation of stellar discs from initially hot gas dis-
tributed inside a spherical or prolate halo and allowed to cool and
form a disc of gas in which stars form. In general, we assume that
the potential of the galaxy model is perfectly known, and we char-
acterize the DF, its orbital properties and its dependence on the
radial variation of the shape of the halo and its orientation rela-
tive to that of the disc. In practice, the potential and the DF of the
halo need to be determined simultaneously, or (in the absence of
adequate kinematical constraints) the potential alone will be de-
termined, within some radius. We therefore ran a few additional
simulations, designed to determine if it is possible to constrain
the potential from the orbital properties of an ensemble of halo
orbits.

In the controlled simulations presented in this paper, initially
spherical isotropic NFW (Navarro, Frenk & White 1996) haloes
were generated via Eddington’s formula (Binney & Tremaine 2008,
section 4.3.1) with each halo composed of two mass species ar-
ranged on shells. The inner shell has less massive particles than the
outer one, which allows for higher mass resolution at small radii.
Most of the dark matter particles in the inner part of the halo have
masses of 106 M�. Prolate and triaxial haloes (consisting of 4×106

particles) were generated via mergers of the spherical NFW haloes
(see D08 for details).

In the simulations, discs of particles were grown (starting from
nearly zero initial mass) adiabatically and linearly on a time-scale tg
inside a dark matter halo (see Tab. 1 for details of parameters of the
simulations). Discs were grown in a spherical halo (model SNFWD)
and in triaxial haloes with the disc plane oriented in various ways
relative to the principle axes of the halo: (a) perpendicular to the
short axis (model SA1), (b) perpendicular to the long axis (model
LA1), (c) perpendicular to the intermediate axis (model IA1) and
(d) tilted at an angle of 30◦ to the xy plane of the triaxial halo, by

Table 1. The collisionless simulations in this paper. Mb is the mass in baryonic disc and fb is the baryonic mass fraction. tg is the time during
which the baryonic disc is grown. In all the models the exponential disc has a radial scalelength of 3 kpc. The last column contains the references
where the simulation was first reported.

Run r200 M200 Mb fb tg Run description Reference
name (kpc) (1012 M�) (1011 M�) (Gyr)

SNFWD 85 0.66 0.66 0.1 5 Spherical halo+stellar disc This paper
SA1 215 4.5 1.75 0.039 5 Triaxial halo+short-axis stellar disc D08
LA1 215 4.5 1.75 0.039 5 Triaxial halo+long-axis stellar disc D08
IA1 215 4.5 1.75 0.039 5 Triaxial halo+intermediate (y) axis stellar disc D08
TA1 215 4.5 1.75 0.039 5 Triaxial halo+tilted stellar disc D08
SA2 215 4.5 0.52 0.012 1.5 Triaxial halo+barred stellar disc D08 (there labelled BA1)
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rotating it about the y-axis (model TA1).1 D08 showed that in all of
these models, the shape of the halo within the inner 1/3 of the virial
radius becomes nearly (but not exactly) oblate following the growth
of the disc, with the short axis of the oblate part of the halo co-
aligned with the spin axis of the disc. In most of the simulations the
disc particles remain stationary, hence the disc is rigid throughout.
In one case (model SA2), a ‘light’ disc of particles was made ‘live’
after the disc had grown to its final mass. This disc subsequently
formed a bar which persisted for ∼10 Gyr before dissolving because
of the triaxial halo (Berentzen & Shlosman 2006). Additional details
may be found in D08. All the collisionless simulations were evolved
with PKDGRAV, an efficient, multi-stepping, parallel tree code (Stadel
2001). Dark matter particles had a softening parameter ε = 0.1 kpc,
and that of stars was in the range ε = 60–100 pc.

Two of our controlled simulations contain a baryonic (gas+star)
disc, which forms self-consistently from hot gas in a spherical
(model SNFWgs) or prolate (model SBgs) halo. The baryonic
component is 10 per cent of the total mass and initially has
the same density distribution as the dark matter particles. The
halo and gas particles are given an initial specific angular mo-
mentum j , determined by overall cosmological spin parameter
λ = (j/G)(|E|/M3)1/2 = 0.039, which is motivated by cosmolog-
ical N -body experiments (Bullock et al. 2001). Both the spherical
halo and the progenitor haloes that were merged to produce a prolate
halo had the same angular momentum parameter λ. Each compo-
nent is modelled with 106 particles, with the dark matter particles of
mass 106 M�, and gas particles having an initial mass of 105 M�.
The gas particles are allowed to cool and form stars of typical mass
around 3 × 104 M� following the prescription in Stinson et al.
(2006). The net angular momentum allows the gas to form a disc
as it cools, resulting in a stellar disc as star formation occurs. The
simulation closely follows that described in Roškar et al. (2008) and
is evolved with the parallel N -body+SPH code GASOLINE (Wadsley,
Stadel & Quinn 2004) for 10 Gyr.

Although controlled simulations are useful for testing the effects
of discs with different orientations on the halo DF, these models are
not fully realistic depictions of how disc galaxies form. In the current
hierarchical structure formation paradigm, disc galaxies probably
experienced several gas-rich mergers, at least in their early history,
and continue to accrete small satellites today which add to the stellar
halo. We defer the study of stellar haloes from cosmological sim-
ulations drawn from the McMaster Unbiased Galaxy Simulations
(MUGS) project (Stinson et al. 2010) to a future paper (Valluri et al.,
in preparation).

2.2 Selecting the halo orbit samples

In each of the simulations we selected 1–2 × 104 dark matter par-
ticles. The particles were either randomly distributed within some
spherical volume of radius rg centred on the model’s galactic centre,
or within a region of radius Rs from the location of the ‘Sun’ (which
was assumed to be at 8 kpc from the Galactic centre). Since most of
the potentials we studied are non-axisymmetric, the azimuthal loca-
tion of the ‘Sun’ in the equatorial plane relative to the major axis of
the triaxial halo is an additional parameter. Rather than choosing a
specific (arbitrary) angle in azimuth for the solar location, we select
particles within a ‘torus’ of width Rs and with radius 8 kpc. When
we selected subsamples of the torus region we found that the results

1 Note that x, y, z are defined to be the long, intermediate and short axes,
respectively, of the triaxial halo.

did not depend much on the precise azimuthal location of the ‘Sun’,
so long as the radial region sampled was 10 kpc in size, or larger.

Following V10 we studied orbits of halo particles after the disc
had grown to its final mass and the halo had relaxed to a new equi-
librium. The orbits were integrated for 50 Gyr in a frozen potential
corresponding to the new equilibrium potential given by the full
mass distribution of the simulation (dark matter and baryons) us-
ing an integration scheme based on the PKDGRAV tree. The 50 Gyr
integrations are used only because they yield highly accurate fre-
quencies for the halo orbits with the longest periods, and should
not be construed to imply that this is a physically meaningful time
period. (In a similar way, it is possible to integrate orbits of MW
halo stars in a fixed potential for equally long times in order to char-
acterize the nature of their current orbit.) None of the controlled
simulations includes a stellar halo, so we assume that the dark mat-
ter halo orbits can be used to represent the orbits of particles in
the stellar halo. While this is clearly not an ideal assumption, many
studies of the stellar halo use prescriptions to ‘tag’ the most tightly
bound dark matter particles in dwarf satellites as ‘star particles’
(e.g. Bullock & Johnston 2005; Cooper et al. 2010). Elsewhere we
analyse a fully cosmological hydrodynamical simulation of a disc
galaxy from the MUGS project (Stinson et al. 2010) and show that
in the inner halo (a region on which we focus) star particles and
dark matter particles have similar orbital properties, justifying this
assumption (Valluri et al., in preparation).

2.3 Laskar frequency mapping

In three-dimensional Hamiltonian potentials, the phase-space struc-
ture of regular orbits can be described by three actions Jα (α =
1, 2, 3) and three angle variables θα , which constitute a canonically
conjugate coordinate system. The actions are integrals of motion
and are conserved along the orbit, while the angles increase lin-
early with time. The angle variables at any time t are given by
θα(t) = θα(0) + �αt , where the �α are called ‘fundamental fre-
quencies’. The actions are adiabatic invariants and consequently
remain constant as the potential of the system changes adiabati-
cally. Regular orbits in three-dimensional potentials can therefore
be thought of as occupying the surfaces of three-dimensional tori,
with the size of each torus characterized by the actions Jα , while
the angle variables θα(t) represent the traversal of the orbit over the
surface of the torus in each dimension.

Since the angle-action coordinates are related to the classical
spatial coordinates and momenta via a coordinate transformation,
it can be shown that traditional space and velocity coordinates can
be represented by a time series of the form: x(t) = ∑

Akeiωkt , and
similarly for other phase-space coordinates e.g. y(t), vx(t) (where
the sum is over all terms in the spectrum). A Fourier transform of
such a time series will yield the spectrum of orbital frequencies ωk

and associated amplitudes Ak , that govern the motion of the orbit
(Binney & Spergel 1982, 1984; Binney & Tremaine 2008). For
most regular orbits only three of the frequencies in the spectrum (of
a given orbit) are linearly independent (i.e. all other frequencies ωk

can be expressed as ωk = lk�1 + mk�2 + nk�3, where lk, mk, nk

are integers). �1, �2, �3 are nothing other than the ‘fundamental
frequencies’ described above and the associated three orbital actions
J1, J2, J3 can be computed from the amplitudes Ak .

If all orbits in the potential are regular and the DF can be written as
a continuous function of global actions J1, J2, J3 e.g. f (J1, J2, J3)
then the corresponding fundamental frequencies and the associated
angle variables θ1, θ2, θ3 vary in a continuous manner across phase
space. However, it is only possible to write the DF as a function of
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global actions for special cases e.g. strictly axisymmetric potentials
or separable triaxial (Stäckel) potentials. If analytic global actions
are known then one can simply use surfaces of section to map the
phase-space structure and to identify resonant orbits and chaotic
orbits (BT08). In the study of three-dimensional orbits in realistic
potentials analytic integrals of motion other than the Hamiltonian
are rarely available. If we compute the orbital frequency spectrum of
an orbit in an arbitrary coordinate system, e.g. in Cartesian or cylin-
drical coordinates, the resulting orbital frequencies �x, �y,�z are
in no way ‘fundamental’ to the nature of the potential. However, as
shown by Laskar (1990) any canonically conjugate pair of variables
can be combined to obtain a frequency spectrum, when there are no
global actions. These frequencies are still referred to as ‘fundamen-
tal frequencies’ since for any regular orbit all the components of
the frequency spectrum are linear integer combinations of the three
fundamental e.g. (�x,�y, �z) or (�R, �φ,�z), depending on the
coordinate system selected.

Laskar (1990, 1993) developed a very accurate numerical tech-
nique ‘Numerical Analysis of Fundamental Frequencies’ (NAFF)
to recover frequencies in completely general potentials. We use an
implementation of this algorithm due to Valluri & Merritt (1998)
which was adapted for application to orbits in N -body potentials by
V10.

The NAFF algorithm recovers orbital frequencies from three
complex time series consisting of pairs of phase-space variables.
For triaxial potentials we use a Cartesian coordinate system centred
on the centre of the galaxy and oriented such that x, y, z correspond
to the major (long), intermediate and minor (short) axes of the poten-
tial, respectively. In the Cartesian coordinates the Fourier analysis
is performed on three time series of the form fα(t) = α(t) + ivα(t)
(where α = x, y, z).

For potentials which are axisymmetric or nearly so, most of the
orbits are tubes which circulate about the symmetry axis. In such po-
tentials it is preferable to work in cylindrical polar coordinates. We
transform from the planar coordinates x, y, vx, vy to plane polar
coordinates R, vR, φ,�, where R = √

x2 + y2, azimuthal angle
φ = arctan(x/y), vR = (xvx + yvy)/R and � = xvy − yvx .
R, vR are the canonically conjugate radial coordinate and mo-
mentum and hence can be used to define a complex time series
fR(t) = R(t) + ivR(t). However, since φ and � are the angular co-
ordinate and momentum (and not linear coordinate and momentum)
this pair cannot be used to construct the complex time series used by
the frequency analysis method. Following Papaphilippou & Laskar
(1996) we use Poincaré’s symplectic polar variables

√
2� cos φ and√

2� sin φ to define the function fφ = √
2�(cos φ + i sin φ). For

motion perpendicular to the equatorial plane we use the complex
series fz(t) = z(t) + ivz(t).

V10 demonstrate that fundamental frequencies of orbits in a self-
consistent DF can be used to construct a ‘frequency map’ which
gives a picture of the phase-space structure based on its orbital
content. A frequency map of phase space is obtained by plotting the
ratios of fundamental frequencies (e.g. in Cartesian coordinates:
�x/�z versus �y/�z) for a very large number of orbits.

As we noted above the coordinate system selected to integrate the
orbits and compute the frequencies is determined more by conve-
nience and convention than any fundamental property of the orbital
frequencies obtained. None the less we will see that for triaxial sys-
tems, the choice of a Cartesian coordinate system aligned such that
the global principal axes of the model coincide with the coordinate
system results in different orbit families appearing in distinct groups
or lines on a frequency map. The use of an appropriate coordinate
system also allows one to identify truly resonant orbit families.

Resonant orbits are regular orbits that have fewer than three
linearly independent fundamental frequencies which are related via
integer linear equation such as: l�1 + m�2 + n�3 = 0, where
(l, m, n) are small integers. A frequency map can be used to easily
identify the most important resonant orbit families, since such orbits
populate straight lines on such a map. The strength (or importance)
of a resonance can be assessed from the number of orbits associated
with a particular resonance.

Merritt & Valluri (1999) showed that perfectly resonant orbits
in three-dimensional potentials have two non-zero fundamental
frequencies and occupy thin two-dimensional surfaces (generally
multiply connected), in configuration (physical) space. They are
surrounded by a resonance region consisting of orbits which share
the oscillation frequencies of the perfectly thin resonant parent, but
have a third non-zero frequency, which is small but increases as
the orbit deviates from its resonant parent. Most of these slightly
non-resonant orbits also appear along the resonance lines in the
frequency map. Unstable resonances appear as blank lines or blank
spaces on the frequency map.

Laskar, Froeschlé & Celletti (1992) also showed that since the fre-
quencies of regular orbits can be recovered with very high accuracy,
chaotic orbits can be easily identified, since their frequencies do not
remain constant but drift when computed over two adjacent time
intervals. They showed that the rate at which the orbits diffuse in fre-
quency space is correlated with their degree of stochasticity. V10
showed that this way of measuring stochasticity was particularly
useful in N -body potentials (and superior to the better known ‘Lya-
punov exponent’) since it is able to distinguish between diffusion
due to micro-chaos that arises due to discreteness noise (Kandrup &
Sideris 2003) and genuinely irregular behaviour. We refer the reader
to V10 for more details. For each orbit we divide the integration
time of 50 Gyr into two consecutive segments (t1 and t2) and use
NAFF to compute the fundamental frequencies �α(t1), �α(t2). The
‘diffusion’ rate for each frequency component is then computed as

log(�fα) = log

∣
∣
∣
∣
�α(t1) − �α(t2)

�α(t1)

∣
∣
∣
∣. (1)

We define the diffusion rate for an orbit, log(�f ) (logarithm to base
10), to be the value associated with the frequency component �α

with the highest amplitude Aα measured over the entire time interval
(t1+t2).2 The larger the value of the diffusion rate log(�f ), the more
chaotic the orbit. We use the diffusion rate to distinguish between
regular and chaotic orbits, and to distinguish weakly chaotic orbits
from strongly chaotic orbits. It is important to note that for most
systems there is a continuous and nearly Gaussian distribution of
diffusion rates (V10).

Laskar’s method recovers orbital frequencies of regular orbits
with very high accuracy in ∼20–30 orbital periods making this
method particularly valuable for studying Galactic halo stars. We
integrated all orbits for 50 Gyr, but only present results for those
with orbital periods shorter than 2.5 Gyr (i.e. those that execute more
than 20 orbital periods). All frequencies in this paper are reported
in units of Gyr−1.

2 Note that this definition of ‘diffusion rate’ differs slightly from V10 who
used the value associated with the largest fundamental frequency. The new
definition was found to more accurately identify chaotic orbits and yields a
lower rate of misclassification of regular orbits as chaotic.
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Figure 1. Histograms of orbital frequencies of 104 halo particles with rg < 200 kpc. The vertical axes have arbitrary scales. Top row (L–R): histograms of
�x,�y,�z in a spherical isotropic NFW halo (dot–dashed curves), and after a thin collisionless stellar disc was grown adiabatically (solid curves); bottom
row (L–R): �R , �φ and �z for the case when a disc is present. The distribution in �φ is bimodal because the original halo had a spherical isotropic DF.

3 R E S U LT S O F C O N T RO L L E D S I M U L AT I O N S

3.1 Nearly oblate axisymmetric haloes

In oblate axisymmetric potentials most orbits are short-axis tubes,
hence orbits are best studied in cylindrical coordinates. We begin
with the study of the simplest halo DF: a spherical NFW halo in
which a stellar disc was grown adiabatically (model SNFWD in Ta-
ble 1). Fig. 1 shows histograms of frequencies for 2×104 halo parti-
cles with initial rg < 200 kpc, in Cartesian coordinates �x, �y, �z

(top panels) and in cylindrical coordinates about the z-axis �R , �φ

�z (bottom panels).3 The initial DF was spherical and isotropic and
hence the frequency distributions in the three Cartesian directions
are identical (dot–dashed curves). The growth of an axisymmetric
disc (rotating about the z-axis) increases the depth of the poten-
tial and makes the halo flatter in the inner regions. This results in
an increase in all the orbital frequencies, but axisymmetry implies
identical distributions for �x and �y . Since the disc potential is sig-
nificantly flatter in the z direction, there is a greater increase in �z

for particles that lie closer to the centre of potential (highest values
of �z), accounting for the slight increase in the weight of the high-
frequency tail of the �z distribution. In cylindrical coordinates the
frequency �φ (bottom row, middle column) describes the motion in
the azimuthal direction and is either positive or negative depending
on whether the orbit rotates counter-clockwise or clockwise, about
the z-axis. Since the halo was set up to be unrotating, �φ values are
symmetrically distributed about zero.

3 Note that the frequency �R is measured relative to the centre of the
cylindrical coordinate system and not relative to a circular orbit as in the
case of the epicyclic frequency for disc stars.

Fig. 2 shows frequency maps for the same 2 × 104 halo particles
in Cartesian coordinates (left) and in cylindrical coordinates (right).
Each particle is represented by a single point whose location is
determined by the ratio of the fundamental frequencies in Carte-
sian coordinates (�x/�z versus �y/�z) or cylindrical coordinates
(�z/�R versus �φ/�R). In frequency maps the colour of a point
represents the binding energy of its orbit with blue representing the
one-third most tightly bound particles in the map, red represent-
ing the one-third least bound particles and green representing the
intermediate energy range.

Since the growth of the disc makes the originally spherical distri-
bution of particles oblate axisymmetric, the DF is entirely populated
by short-axis tube orbits. In a Cartesian frequency map (Fig. 2, left-
hand panel) such orbits primarily lie along a diagonal line that
satisfies the condition �x/�z ∼ �y/�z. Most short-axis tubes are
not ‘resonant’ orbits, but in a Cartesian frequency map they all
appear clustered along a line, because each short-axis tube can be
viewed as arising from a radial perturbation of a parent ‘thin shell’
orbit which is a resonant orbit (de Zeeuw & Hunter 1990).

Truly resonant short-axis tube orbits are those that appear
clustered along lines in a frequency map in cylindrical coordi-
nates (Fig. 2, right-hand panel). This map shows bisymmetry
between the right and left halves, reflecting the bimodal dis-
tribution in �φ (Fig. 1). The frequency map in cylindrical co-
ordinates shows a striking number of resonances which appear
(primarily) as horizontal lines delineated by the enhanced clus-
tering of particles at resonances between the vertical oscilla-
tion frequency �z and radial oscillation frequency �R . Reso-
nances are seen at �z/�R = 0.5, 0.66, 0.75, 0.83, 1, 1.5 (i.e.
�z/�R = 1/2, 2/3, 3/4, 5/6, 1/1, 3/2), as indicated by labels.
Thus the growth of a disc in a spherical potential results in halo
orbits becoming resonantly trapped at numerous resonances, pri-
marily between the radial and vertical oscillation frequencies.
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Figure 2. Frequency maps of 104 halo orbits in the model with a stellar disc grown in a spherical NFW halo. Left: in Cartesian coordinates the map shows
that most orbits lie along the diagonal ‘resonance line’. This is not a true resonance but represents all orbits associated with the short-axis tube family. Right:
frequency map of the same particles in cylindrical coordinates. The bisymmetry about �φ/�R = 0 results because the halo has no net rotation. The map shows
several resonances which appear as horizontal lines: e.g. �z/�R = 0.5, 0.66, 0.75, 0.83, 1, 1.5. In both panels (and hereafter) particles are colour coded by
binding energy in three energy bins, each containing one-third of the particles.

3.2 Triaxial haloes with rigid discs

We now consider controlled simulations of galactic potentials with
triaxial haloes. The simulations are taken from D08. We consider
four different orientations of the disc relative to the same triaxial
halo (Halo A from D08). In all four cases the disc potential consisted
of particles, but the particles were held rigid while the halo was
allowed to relax. In all four cases, the inner region of the halo
became less triaxial (more oblate) with short axis aligned with the
symmetry axis of the disc. We define a, b, c to be the density semi-
axes of the major, intermediate and short axes, respectively, of the
global halo.

The shapes of the triaxial haloes were measured as described
in D08. Briefly, we measure the eigenvalues of the unweighted
moment of inertia tensor I obtained in bins of N particles (Katz
1991, see also equation 2 from D08). The ratios of the eigenvalues
of the diagonalized moment of inertia tensor (I11 > I22 > I33) are
used to calculate the axial ratios b/a and c/a. The shapes were
measured using an iterative procedure in annular shells of fixed
semimajor axis width and are differential rather than integrated
over all particles within a given ellipsoidal radius.

Fig. 3 shows the change in the axes ratios b/a and c/a as a
function of radius. The green curves show that the initial triax-
ial halo A was very strongly prolate-triaxial (a result of low an-
gular momentum mergers). The black curves are for model SA1
(triaxial halo + short-axis disc), the blue curves are for model
LA1 (triaxial halo + long-axis disc), the red curves are for model
IA1 (triaxial halo + intermediate-axis disc) and the grey curves are
for model TA1 (triaxial halo + tilted disc). Regardless of the orien-
tation of the disc, we see that its growth results in a very significant
increase in axial ratios b/a (solid curves) and c/a (dashed curves)
within the inner 30 kpc, for models SA1, LA1, TA1, and a moderate
increase in oblateness within 50 kpc for model IA1.4 (D08 shows
the change in halo shape out to 200 kpc.) Model LA1 (blue curves)

4 Recall that as b/a → 1, a model becomes more oblate.

Figure 3. Halo axial ratios b/a (solid curves) and c/a (dashed curves) as
a function of radius. The green curves show the shape of the initial triaxial
halo. The black curves are for the triaxial halo + short-axis disc (model
SA1), the blue curves are for the triaxial halo + long-axis disc (model
LA1), the red curves are for triaxial halo + intermediate-axis disc (model
IA1) and the grey curves are for the triaxial halo + tilted disc (model TA1).

shows the most significant change in shape over the radial range
∼20–50 kpc. In the inner 15 kpc, the model is more triaxial than it
is at larger radii, due to the formation of an inner elongation along
the y-axis (see Fig. 4).

Although all the models become more oblate at the centre, they
still remain triaxial both at small and at large radii. This is seen in
Fig. 4 which shows contour plots of the dark matter halo projected
density (black curves) in two projections for each of the models
studied. The top row shows density contours of the dark matter
particles when viewed with disc edge-on as represented by the red
contours. The bottom row shows the density contours of the halo in
the plane of the disc, except in model TA1 (where the disc is inclined
to the principal planes). The top panels show that in all cases the
contours become flattened with the symmetry axis co-aligned with
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Figure 4. Density contours of halo mass distribution in triaxial haloes after disc (shown by red contours) is grown with spin axis aligned in different ways.
From left to right: models SA1, LA1, IA1 and TA1. Top row: density contours of haloes with disc seen edge-on. Bottom row: density contours of haloes in the
plane of the disc. Halo triaxiality varies with distance from the centre of the potential.

the disc’s symmetry axis at radii <15 kpc, but retain their original
elongation along the x-axis at larger radii. The lower panels show
that although the halo becomes flattened in the inner region, it is not
axisymmetric, even in the plane of the disc, showing that triaxiality
varies with radius.

In the rest of this section we will show frequency maps of orbits
in each of these models. In all cases we show frequency maps in
Cartesian coordinates for ∼104 halo orbits selected in two ways.
First, orbits were randomly selected to have an initial distance from
the galactic centre rg < 200 kpc. Since these frequency maps repre-
sent a randomly selected subsample of orbits drawn from the entire
dark matter halo we will refer to these maps as showing the ‘full
halo DF’.

Ideally, we would like to be able to distinguish between different
halo orientations relative to the disc from the DF of halo stars
since the orbits of dark matter particles are not directly observable.
However, halo stars are known to be significantly more centrally
concentrated than the dark matter (Battaglia et al. 2005). Therefore
we also present frequency maps of orbits selected in a second way,
where the orbits satisfy two conditions: (i) their initial distance from
the ‘Sun’ Rs < 10 kpc, (ii) each orbit has an apocentre radius rapo <

50 kpc from the galactic centre. Restriction (i) is motivated by the
expectation that Gaia (Perryman et al. 2001) will obtain six phase-
space coordinates (and in particular the most accurate distances and
proper motions) for stars within 10 kpc of the Sun. Restriction (ii) is
imposed because we do not anticipate that any method of halo shape
determination will provide an accurate measurement of the shape
of the halo at distances greater than 50 kpc from the Galactic centre.
By restricting ourselves to only those stars with rapo < 50 kpc, we
are ensuring that the maps only contain orbits which explore the
region of the halo where the shape is well determined. We will refer
to this second set of maps as showing the ‘inner halo DF’. Figs 3 and
4 show that the innermost region of the halo becomes significantly
oblate due to the presence of the disc, regardless of orientation of
the large-scale halo.

In the sections that follow we will compare the DFs of the four
model by showing that the frequency map representations of their
DFs differ significantly from each other regardless of whether the
full halo or inner halo is represented. This is remarkable since
the initial DFs of each halo (prior to the growth of the disc) were
identical and Fig. 4 shows that while the disc alters the inner regions
of the halo it remains triaxial and elongated along its original long
axis at large radii.

It is important to note that in all cases we begin with exactly
the same set of 104 orbits from the original triaxial halo (whose
frequency map is plotted in Fig. 5, left-hand panel), and follow that
same set of orbits in the different models in which discs were grown
adiabatically.

3.2.1 SA1: triaxial halo with short-axis disc

Fig. 5 (left-hand panel) shows the frequency map of a triaxial halo
that was formed from multiple mergers of spherical NFW haloes.
(This model is the original triaxial halo in which all the discs are
grown and is referred to as ‘Halo A’ in D08 and V10.) The particles
are colour coded by energy as described above.

V10 used the relationships between the fundamental frequencies
of orbits in this triaxial potential to characterize them by orbital
type. They showed that 86 per cent of the particles were on box
orbits, 11 per cent were on long-axis tube orbits, 2 per cent were
short-axis tubes and 1 per cent were chaotic. The fact that box
orbits dominate over long-axis tubes and short-axis tubes in this
model strongly reflects its formation history – from a two-stage
binary merger, with little angular momentum. Box orbits do not
have any net angular momentum and hence their three fundamental
frequencies are (in general) uncorrelated with �x � �y � �z.
This means that box orbits are generally found scattered in the
frequency map at �y/�z < 1 and to the left of the diagonal with
�x/�y < 1. The long-axis (x) tubes have �y ∼ �z and hence
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Figure 5. Cartesian frequency maps of ∼104 halo particles with rg < 200 kpc in the original triaxial halo (left); frequency map of the same particles after
the growth of a disc perpendicular to the short-axis (model SA1) (middle). Right: Cartesian frequency map for particles with Rs < 10 kpc from the ‘Sun’ and
rapo < 50 kpc. In all panels, dashed lines mark important resonances, also labelled by resonance integers (l, m, n); approximate locations of inner (I ) and
outer (O) long-axis tubes along a horizontal line �y/�z ∼ 1 are marked. Short-axis tubes are along the diagonal line with �x/�y ∼ 1. Particles are colour
coded by energy (see text).

primarily cluster along a horizontal line at �y/�z = 1.5 The inner
long-axis tubes lie at smaller �x/�z values near the label ‘I ’
[between the two vertical lines corresponding to the resonances (2,
0, −1) and (3, 0, −2)] and the outer long-axis tubes lie at larger
�y/�z values near the label ‘O’. The fact that this DF has only
a tiny fraction of short-axis tubes (2 per cent) as determined by
more rigorous orbital classification in V10 is represented by the
sparse distribution of red points along the diagonal �x/�y = 1.
Thin-dashed lines mark several possible resonance lines, but we see
that only the two ‘banana orbit’ families labelled (2, −1, 0) and (2,
0, −1) are prominent. The qualitative dominance of the box orbits
relative to the long-axis tubes and short-axis tubes can be visually
assessed directly from the frequency map, without specifically going
through the process of orbit classification as done by V10 and others
(Carpintero & Aguilar 1998; Hoffman et al. 2009, 2010). We will
see that this becomes particularly important for identifying orbits
in haloes whose shapes vary with radius.

Fig. 5 (middle) shows the frequency map of the same set of halo
orbits after the growth of a stellar disc perpendicular to the short
axis of the halo (model SA1). V10 found that the fraction of box
orbits has now decreased from 86 per cent in the original triaxial
halo to 48 per cent after the growth of the disc, but the long-axis
tube fraction remained almost the same (12 per cent). They found
a significant increase in the fraction of short-axis tubes (from 2 to
31 per cent) and chaotic orbits (from 1 to 9 per cent). The increased
fraction of short-axis tubes relative to the long-axis tubes and box
orbits is obvious in the frequency map, where the short-axis tubes
appear as the enhanced clustering along the diagonal line. The
map shows that the disc also causes orbits to become separated into
distinct bands in energy (colour), with the most tightly bound (blue)
particles migrating to the bottom-left corner.

The migration of particles in the frequency map occurs because
the introduction of the disc potential perpendicular to the z-axis
increases the vertical frequency (�z) of orbits more significantly
than either of the other two frequencies. Since the disc is centrally

5 Long- and short-axis tubes generally are not considered ‘resonant’ orbits;
however they may be viewed as perturbations of their respective ‘thin shell’
orbits (de Zeeuw & Hunter 1990).

concentrated, the increase in �z is particularly significant for orbits
which are deeper in the potential (coloured blue). Therefore both
�y/�z and �x/�z decrease, and the blue points move downwards
and to the left. The growth of a disc also increases the fraction of halo
orbits trapped in resonances, but some resonances are destroyed. For
instance, the vertical (2, 0, −1) ‘banana resonance’ has significantly
increased in prominence (due to trapping of orbits in the xz plane),
but the (2, −1, 0) banana resonance in the triaxial model (which
lies in the xy plane) is destroyed because this is the disc plane, and
the presence of the disc decreases the degree of triaxiality. New
resonances are also populated e.g. (3, 0, −2) the ‘fish’ resonance,
and (2, 1, −2) resonance.6 Since a frequency map represents the
ratios of the frequencies and not the frequencies themselves, it is
insensitive to the absolute value of the energy of individual particles
and it is therefore possible to identify the global orbital families
and resonances (i.e. those that are important over a large range of
energies).

Fig. 5 (right-hand panel) shows a frequency map of ∼104 inner
halo particles. A comparison of the right-hand and middle panels
of Fig. 5 shows that the main features of the frequency map of the
entire halo (middle) are also seen in the map of inner halo orbits
(right). Thus, although the halo is more oblate within 50 kpc that at
larger radii, the orbits in the inner halo share the major orbit families
and resonances of the entire halo.

The reader may be concerned that since the halo is moderately
triaxial and not axisymmetric, by selecting orbits within a ‘torus’
of radius Rs rather than in a region localized around the ‘Sun’,
the frequency maps of stars in the entire torus would not reflect
variations in the phase-space structure at different locations in the
equatorial plane. We therefore also produced frequency maps of
subsets of the full sample of 104 orbits, which contained only those
orbits with initial positions within an individual quadrant of the
galaxy model, with quadrants symmetrically about either the major
or minor axes. These frequency maps are not shown since they are
virtually indistinguishable from those of the full samples of 104

orbits (shown in the middle and right-hand panels) demonstrating

6 Three-dimensional images of all the major resonances in triaxial potentials
are shown in Merritt & Valluri (1999).
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Figure 6. Left: frequency map of 104 halo orbits in LA1 with rg < 200 kpc (the frequency map of these orbits in the original triaxial halo is shown in Fig. 5).
Axes x, y, z chosen to be the global long, intermediate and short axes of the halo. Right: frequency map of ∼104 halo orbits with Rs < 10 kpc and apocentres
less than 50 kpc.

that within the ‘solar’ circle, the halo is sufficiently oblate that
the orbital populations do not depend significantly on azimuthal
location.

3.2.2 LA1: triaxial halo with long-axis disc

It has been conjectured that instead of the MW halo being oblate
with short-axis co-aligned with the spin axis of the disc (as in
model SA1), the disc may in fact be prolate and perpendicular to
the long axis of the halo. Helmi (2004) concluded, from modelling
the tidal disruption of Sagittarius dwarf satellite, that the kinematics
of stars forming the leading arm of the Sgr stream suggest that
the dark matter halo may be prolate with an average density axial
ratio close to 5/3 with long axis perpendicular to the disc. This
orientation has also been suggested by studies of distribution of
dark matter subhaloes that are satellites of MW-sized dark matter
haloes analysed in cosmological N -body simulations (Zentner et al.
2005).

We investigated this possibility in simulation LA1, where a disc
was grown perpendicular to the long axis of the halo. The projected
density contours of halo particles in simulation LA1, after the halo
relaxed into a new equilibrium with the disc potential, are shown in
Fig. 4 (second column from left). The density contours show that
the halo triaxiality varies with radius. At small radii (x < 20 kpc)
the long axis is in the disc plane, but at larger radii the long axis
remains perpendicular to the disc.

Fig. 6 (left-hand panel) shows a frequency map of 104 halo orbits
randomly selected to lie with rg < 200 kpc (representing the entire
halo DF). Recall that the frequency map of original triaxial halo
for this model is shown in Fig. 5 (left-hand panel). In this map, a
significant fraction of orbits deep inside the potential (blue) populate
the horizontal (1:1) resonance line corresponding to the global long
axis of the halo. Long-axis tube orbits circulate about the x-axis in a
fixed direction. The dramatic increase in the length and strength of
this family of tube orbits as well as their location on the frequency
map (relative to the fraction long-axis tube orbits in the original
triaxial halo in Fig. 5, left-hand side) is a direct consequence of the
growth of the disc potential. In this simulation the disc is symmetric
about the long axis. Therefore orbits (especially those deeper in the
potential) experience a somewhat larger increase �x , than in the

other two frequencies. The greater increase in �x causes the blue
points on the frequency map to migrate towards the right of the
map. Not all the migration to the right is associated with long-axis
tubes; we see a significant increase in the fraction of box orbits
(below the horizontal line) as well as several distinct resonances in
this population.

We also note that many tightly bound (blue) points clustered
along the vertical line corresponding to the intermediate (y) axis
tubes. The ‘intermediate-axis’ tube family is generally expected
to be unstable. However the strong clustering along the vertical
line shows that this family is both stable and well populated in
this potential. The reason for this can be seen in Fig. 4 (bottom
row in second column from left), which shows a slight elongation
of the dark matter (black contours) density along the y-axis for
x < 10 kpc. It appears that in this model the y-axis tubes appear for
the most bound population because this is a local long axis!

In model LA1 there is a large increase in the fraction of tightly
bound (blue) orbits associated with the x-axis tube family, which
happens to coincide with the symmetry axis of the disc. This is in
sharp contrast with Fig. 5 where the disc, oriented along the z-axis,
caused an increase in the fraction of tightly bound orbits associated
with the (z) short-axis tube family. There are also short-axis tube
orbits in LA1 but most are weakly bound (red). Thus although the
initial triaxial haloes were identical in shape and DF, the differences
in the orientation of their disc relative to the halo resulted in very
different orbit populations (i.e. DFs) especially for the more tightly
bound particles.

In Fig. 6 (right-hand panel) we show orbits in the inner halo
(Rs < 10 kpc, rapo < 50 kpc). The frequency map of the inner halo
(right) is very similar to that of the outer halo (left), with the main
difference being a decrease in the fraction of box orbits between the
resonance lines (2,0,−1) and (3,0,−2). The colours corresponding
to the energies of particles change purely because the range of
energies in the right-hand plot is smaller. The box-orbit resonances
(below the long-axis tubes and to the right of the y-axis tubes) are
seen more clearly, because this region is more densely populated
with orbits due to the orbit selection criterion.

In both SA1 and LA1, the inner haloes are significantly flattened
in the plane of the disc (although they remain triaxial) at r < 50 kpc.
It is therefore remarkable that the frequency maps of orbits confined
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to the inner haloes of these two potentials (right-hand panels of
Figs 5 and 6) reflect the differences in large-scale orientation of the
haloes relative to the orientations of their discs. Although there are
clearly differences between the maps of the inner haloes and the full
haloes, these differences are significantly less than the differences
that arise from the different orientations of the disc. Recall that the
initial haloes were identical prior to the growth of the discs. This
implies that when accurate phase-space coordinates for stars are
obtained from future survey such as Gaia, they can be used to infer
the global shape of the halo relative to the disc, even if accurate
coordinates are only obtained within 10 kpc of the Sun.

3.2.3 TA1: triaxial halo with tilted disc

We now consider a model in which the disc was grown inclined to
the xy plane of the triaxial halo (model TA1). Such an orientation
is motivated by studies of dark matter haloes from cosmological
N -body simulations that show that the relative orientation of the
angular momentum axis of triaxial haloes is on average no more
than 25◦–30◦ from the short axis of the triaxial halo (Bailin &
Steinmetz 2005). Furthermore, numerous simulations show that the
disc can be misaligned with the symmetry axis of the halo (van den
Bosch et al. 2002).

Fig. 7 (left-hand panel) shows the frequency map of 104 halo par-
ticles with rg < 200 kpc. This frequency map is very similar to the
model with the short-axis disc (Fig. 5, middle panel), but also shows
a clustering of (blue) points along a vertical line at �x/�z = 1 (cor-
responding to y-axis tubes). This family of orbits arises because the
disc axis in this model is inclined to the xy plane such that the
x-axis is in the plane of the disc but the y-axis is at an angle of 30◦

to the disc. The disc potential therefore induces resonant trapping
of tightly bound halo orbits causing a larger circulation in the plane
of the disc, and consequently more angular momentum about the
y-axis. Although this family is rotating about an axis inclined to
the y-axis, this trapping appears on the Cartesian frequency map
as an enhanced clustering of tightly bound orbits about this axis.
This family of intermediate-axis tubes does not appear in the most
tightly bound orbits of any other model. Unlike in model LA1, the
density contour plots do not show a noticeable elongation along the
y-axis.

The DF of the inner halo of TA1 (Fig. 7, right-hand panel) displays
many of the features of the full DF within 200 kpc (middle), with
some differences: the inner long-axis tube family is less prominent,
the banana family (2, 0, −1) is very sparsely populated in the
inner region and a new resonance family is seen at �x/�z = 0.6.
Apart from these differences, the important major orbit families
(the long-axis tubes, short-axis tubes and intermediate-axis tubes)
are well represented, showing that the DF of the inner halo, while
different from that of the entire halo, shares the most important
characteristics that distinguish it from other models.

Fig. 3 shows that the shape of the inner halo of TA1 (grey curves)
is very similar within 50 kpc to the shape of the inner halo of SA1
(black curves). However, the frequency map of the inner halo of TA1
(Fig. 7, right-hand panel) is quite different from that of SA1 (Fig. 5,
right-hand panel). This implies that their DFs are very different –
again a consequence of the different original orientation of the discs
relative to their globally triaxial haloes. Thus, our analysis of the
orbital phase-space structure using the frequency maps allows us to
gain insights into the differences in the orbital properties and DFs
of two haloes with very similar inner halo shapes.

3.2.4 IA1: triaxial halo with intermediate-axis disc

Recently, Law and collaborators (Law, Majewski & Johnston 2009;
Law & Majewski 2010) remeasured the shape of the MW halo by
fitting both the velocities and positions of stars in the Sagittarius
tidal stream with a triaxial halo model. They find that a slightly
triaxial halo with the Sun located roughly along the minor axis
gives the best fit to the available kinematic and positional data of
stream stars. The best-fitting configuration requires the MW disc to
be perpendicular to the intermediate axis of the triaxial halo – a disc
configuration that is believed to be inherently unstable (Heiligman
& Schwarzschild 1979).

Our final model simulates this configuration with a rigid disc
potential grown perpendicular to the intermediate axis of the triaxial
halo [models investigating the stability of haloes with live discs will
be presented in Debattista et al. (in preparation)]. The frequency map
of 104 randomly selected halo orbits with rg < 200 kpc is shown
in Fig. 8 (left-hand panel). The map shows a prominent clustering
of weakly bound orbits along the vertical line corresponding to
intermediate-axis tubes with �x/�z = 1 at values of �y/�z > 1.

Figure 7. Left: frequency map of 104 halo orbits with rg < 200 kpc after the disc grows tilted at an angle of 30◦ to the xy plane of the triaxial potential (model
TA1) (the frequency map of these orbits in the original triaxial halo is shown in Fig. 5, left-hand panel). Right: about 104 orbits selected from the ‘solar’
neighbourhood and confined to the inner halo of the model.
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Figure 8. Left: frequency map of 104 halo orbits with rg < 200 kpc after the disc grows perpendicular to the intermediate (y) axis in the triaxial po-
tential (model IA1). The frequency map of these orbits in the original triaxial halo is shown in Fig. 5 (left). Right: about 104 orbits from the inner
halo of the same model. The y-axis tube family is populated by weakly bound (red) points and is not important in the solar neighbourhood map on
the right.

Since the disc is symmetric about the y-axis, at small radii the halo
does become more oblate, with y as its symmetry axis. However we
see that even the weakly bound particles (red), which are at large
radii and expected to be less affected by the disc, are also associated
with the intermediate (y) axis tube family. Fig. 3 shows that although
the shape of halo SA1 (black curves) is more oblate than halo IA1
(red curves), the radial profiles (of b/a and c/a) are very similar
for these two haloes (except in the absolute degree of flattening).
Consequently, when we plot only those orbits which are confined to
the inner halo (Fig. 8, right-hand panel), we see that the frequency
maps of IA1 and SA1 (Fig. 5, right-hand panel) are so similar that
they are hard to distinguish from each other. The intermediate-axis
tube family that was seen in Fig. 8 (left-hand panel) has completely
disappeared, showing that all the orbits that made up this family
were part of the outer halo. However, this similarity in the DFs is
not entirely surprising since Fig. 4 shows that SA1 and IA1 have
similar density contour distributions (this similarity was also found
by D08).

3.2.5 Discussion of disc-halo orientation effects

Figs 3 and 4 showed that the growth of a disc galaxy in a triaxial dark
matter halo of arbitrary orientation modifies the shape of the inner
part of halo, but leaves the outer part largely unaffected. However,
most methods for determining the shape of the halo assume that
dark matter is stratified on concentric similar ellipsoids of constant
shape (i.e. not varying with radius). With this assumption the shape
of the halo can be measured with an accuracy of a few per cent,
out to 50–70 kpc (Johnston, Hernquist & Bolte 1996; Gnedin et al.
2005). Since the shape of the halo probably varies significantly
with radius due to disc formation, the assumption of a constant halo
shape is not valid.

Although the radial variation of the shape of the halo will be
impossible to measure, the fact that in all cases the inner halo is
nearly oblate and flattened like the disc will enable us to use halo
orbits to constrain both the shape and the DF of the inner halo.

Furthermore, the analysis of the DFs of four different halo mod-
els showed that a frequency map provides detailed information on
the various orbit families that constitute the halo DF and relative
abundance of the different orbit families at various energies. In ad-

dition, while the disc potential traps tube orbits, which share the
disc symmetry axis, even restricted maps of halo orbits confined to
the inner region (rapo ∼ 50 kpc) show all the orbit families present
in the global halo.

It is worth noting that using the frequency mapping method for
identifying orbit families is superior to methods that rely on orbital
properties (Carpintero & Aguilar 1998; V10; Deibel et al. 2011)
because the latter methods assume a priori that the shape of the
potential is constant with radius. In triaxial potentials with constant
shape, intermediate-axis tubes are unstable and not expected in
the DF (Heiligman & Schwarzschild 1979), yet we see from the
frequency maps that three of four models contained members of
this family, because the triaxiality of the halo varies with radius.
To build a DF for the stellar halo, it is important to have a full
representation of all the orbit types that are important in the halo,
since the orbit populations, in turn, reflect the large-scale shape,
orientation and formation history of the Galactic halo.

We caution that in all the simulations given above, the disc parti-
cles were held fixed and did not dynamically respond to the change
in the halo. Theoretical arguments indicate that at least some of
these orientations, e.g. IA1 (Heiligman & Schwarzschild 1979), are
likely to be dynamically unstable. A more detailed analysis of self-
consistent dynamical models of such systems is needed to ascertain
whether such disc orientations would be found in nature (Debattista
et al., in preparation).

3.3 Non-axisymmetric haloes with live discs

Most stellar discs, including that of the MW, are not axisymmetric
or time-independent since they contain features such as spirals and
bars. These non-axisymmetric features drive angular momentum
exchanges. The angular momentum exchange that occurs between
a rotating bar and the dark matter (and presumably also the stellar
halo) is expected to result in a change in the angular momentum
of halo particles that interact with the bar (Weinberg 1985; De-
battista & Sellwood 2000). In this section we study the effects
of angular momentum and energy transfer resulting from coher-
ent time-dependent perturbations from a bar. We also studied two
models in which a stellar and gaseous disc forms via realistic pro-
cesses in a spherical halo and in a prolate halo. In these simulations,
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Figure 9. Left: frequency map of 104 halo orbits with rg < 200 kpc after a short-axis disc is grown in the triaxial halo (model SA2) before the formation of
a bar. The frequency map of these orbits in the original triaxial halo is shown in Fig. 5 (left-hand panel). The disc of live particles rapidly forms a bar, which
subsequently dissolves. Middle: frequency map of the same halo orbits after the bar has dissolved. Right: frequency map of 104 orbits in the inner halo after
the bar has dissolved.

hot gas in the initial halo which has angular momentum cools to
form a rotating disc followed by star formation and feedback (see
Section 2 for details).

3.3.1 Triaxial halo with barred disc

To study the effects of a bar, we adiabatically grew a stellar disc
that had only 30 per cent of the mass of the disc in the previous
simulations inside a triaxial halo (with symmetry axis parallel to the
short axis of the halo, model SA2). Because of its low mass, the bar
that forms in this system is eventually destroyed by its interaction
with the triaxial halo (Berentzen & Shlosman 2006). Fig. 9 (left-
hand panel) shows the frequency map of 104 halo particles with
rg < 200 kpc after the disc had reached full mass. The frequency
map shows the two long-axis tube families (marked with script
‘I ’ and ‘O’), a strong short-axis tube family and several box-orbit
resonances [e.g. (2, 0, −1), (2, 1, −2), (3, −2, 0), as well as a few
other unlabeled resonances seen mostly in red points].

After the disc reached its full mass the particles were made ‘live’,
i.e. the disc was allowed to evolve self-consistently along with the
halo. The rotating disc rapidly formed a bar and spiral patterns.
The bar survived for ∼10 Gyr and finally dissolved. Note that we
always integrate orbits in a potential without a bar. This is because
we ‘freeze’ the potential before integrating orbits, and the presence
of a bar would result in an unrealistic ‘freezing’ of a time-dependent
rotating bar. Most models that seek to obtain the DF of the MW disc
and halo (e.g. Binney 2010; Binney & McMillan 2011) neglect the
bar since it is difficult to model its time-dependent potential.

Fig. 9 (middle panel) shows a frequency map of the same set of
104 halo particles with rg < 200 kpc, while the right-hand panel
shows 104 halo particles in the inner halo, after the growth and
dissolution of the bar. This frequency map shows that tightly bound
(blue) particles that were associated with the (2, 0, −1) resonance
and the short-axis tube family are scattered to other parts of the
map. This is because these orbits are most strongly affected by the
central bar. The bar exchanges angular momentum with resonant
halo particles (Tremaine & Weinberg 1984; Debattista & Sellwood
2000; Athanassoula 2002). Thus the blue (tightly bound) halo par-
ticles in the bottom right of the left-hand panel are scattered and
the resonances at the bottom left of the map are no longer seen.

Many of the blue points now appear to be associated with the outer
long-axis tube family (at �x/�z ∼ 0.9) and the short-axis tube
family. Resonances associated with less bound (red) particles have
become broader or disappeared. Other resonance lines populated
by the weakly bound (red) particles are only slightly affected (e.g.
2, 0, −1 and 3, −2, 0). These tightly bound particles are seen more
clearly in the right-hand panel which shows orbits from the inner
halo.

It is clear that although the middle and right plots have fewer
strong resonances than the halo prior to the bar (left), the major or-
bit families still appear with the same relative strengths. Although
some resonances appear broader and those associated with particles
deeper in the potential have been scattered to other locations on
the map, the overall structure of the frequency maps is similar to
SA1 which is also a model with a disc rotating about the short axis
of triaxial halo. This shows that although time-dependent pertur-
bations from a bar can affect the shape and DF of the halo, many
resonances survive, especially those that are populated by orbits
that do not interact strongly with the bar, and the overall structure
of the frequency map is characterized by the global nature of the
potential.

3.3.2 Haloes with live discs of gas and stars

We now study frequency maps of halo orbits from models where a
stellar disc forms from hot gas with some initial angular momentum
(defined to be about the z-axis) in a spherical halo (model SNFWgs)
and in a prolate halo (model SBgs) (see Section 2.1 for details).
Following the formation of the disc, the dark matter halo became
fairly oblate in model SNFWgs, while the disc develops only a mild
oval distortion (see Fig. 10). In these simulations no stars form in
the halo and therefore we once again study the orbits of dark matter
particles.

Fig. 11 (left-hand panels) shows the frequency maps in Cartesian
coordinates of 104 halo stars selected with rs < 200 kpc in the initial
spherical halo (top) and in the initial prolate halo (bottom). As we
saw in several previous models (e.g. SA1, TA1), the growth of the
disc results in an increase in the fraction of short-axis tubes deep
in the potential (blue points along the diagonal). Both models show
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Figure 10. Density contours of disc that forms in the spherical halo from
cooling halo gas. The disc develops a mild oval distortion (x- and y-axes
coordinates are in kpc).

prominent short-axis tube families which manifest as the strong
clustering along the diagonal.

V10 showed that prolate haloes are dominated by long-axis tubes
which persist even after the growth of a baryonic component, but
these long-axis tube orbits become ‘rounder’. Long-axis tubes are
seen in the prolate halo as the clustering of points along the hori-
zontal line with �y/�z = 1 (bottom-left panel). Surprisingly the
spherical halo also shows long-axis tubes (predominantly in the
tightly bound orbits coloured blue). This is likely to be because
the disc forms a slight oval distortion (see Fig. 10). Compared to
the originally triaxial models SA1, LA1, IA1 and TA1, these two
models have only a small fraction of box orbits (scattered points in
the middle of the map) because these models are not triaxial.

It is also instructive to analyse the same set of halo orbits in
cylindrical coordinates (with z as the symmetry axis).7 The two right
panels of Fig. 11 show frequency maps in cylindrical coordinates.
Several resonances previously seen in Fig. 2, such as �z/�R =
0.5, 1, are seen in both the spherical halo and the prolate halo. In
addition both show new resonances �φ/�z = ±0.5, 1. The prolate
halo (bottom right) also shows a large fraction of particles associated
with the vertical resonance line at �φ/�R = ±0.5, which are long-
axis tubes.

The disc formation process in this subsection is dynamically
quite different from that in the previous section where rigid discs
made up of particles were adiabatically grown in place. These two
simulations confirm that resonant trapping of halo orbits occurs
even during the more realistic dissipative processes by which real
stellar discs form.

4 U S I N G F R E QU E N C Y A NA LY S I S TO
C O N S T R A I N POT E N T I A L PA R A M E T E R S

In the simulations so far, we have integrated orbits in the total N -
body potential for the galaxy model, which was known perfectly.
Since the orbits were integrated in the self-consistent N -body po-
tential from which they were drawn, the frequency maps obtained
represent the true DFs of these galaxy models. Since a major goal

7 This coordinate system is not the proper one in which to examine long-axis
tubes, which require cylindrical coordinates where x is the axis of symmetry.

of current and future galactic surveys is to obtain both the potential
and DF of the Galaxy (Binney 2010; Binney & McMillan 2011),
our frequency-based method is a promising approach for doing this.
However, in reality the potential of the Galaxy is not known and it
will also be measured from the spatial and kinematic distribution
of stars. Ideally both the self-consistent DF and the potential will
be recovered from six phase-space coordinates for large numbers
of stars (Binney 2010; Binney & McMillan 2011).

The most promising methods for measuring the potential of the
halo use kinematics of stars in tidal streams (Johnston et al. 1999;
McMillan & Binney 2008), or accurate orbits of hyper-velocity
stars (Gnedin et al. 2005). While these methods are expected to
yield excellent estimates of the shape and density profile of the MW
halo if it is stratified on concentric ellipsoids, all current numerical
experiments show that the halo’s shape varies with radius, making
the measurement of the shape of the halo at all radii challenging
due to the absence of coherent tidal streams and/or hypervelocity
stars over a range of radii.

Halo stars are, however, distributed over a wide range of radii
and current studies show that even local halo stars have enough
kinetic energy to travel to large radii (Carollo et al. 2010). We now
test whether it will be possible to gain information about the true
potential and DF from the frequency analysis of a large number of
such halo stars.

Jeans Theorem states that any steady-state equilibrium DF de-
pends on phase-space coordinates only though the integrals of mo-
tion (Binney & Tremaine 2008). This implies that for a DF (or
a random subsample thereof) that is in self-consistent equilibrium
with its background potential, only a small fraction of orbits are
irregular or chaotic. If a large fraction of orbits are chaotic (i.e.
not confined to regular tori in phase space), they are expected to
diffuse in phase space causing the DF to evolve until the system
reaches a new equilibrium (Merritt & Valluri 1996). If the degree of
chaoticity is low (either there are only a small number of strongly
chaotic orbits or there are many weakly chaotic orbits) the evo-
lution of the potential could take some time and fairly long-lived
quasi-equilibria can exist (Poon & Merritt 2004). However, if the
initial conditions of a large number of orbits are strongly out of
equilibrium with the background potential, the overall degree of
chaoticity (or ‘chaotic momentum’) is large and the self-consistent
system will evolve rapidly (Kalapotharakos 2008).

In our experiments each halo particle is treated as a test particle
which is integrated in a frozen background potential, and hence the
orbits do not self-consistently influence the frozen potential. None
the less, the fact that we use a large (1–2×104) ensemble that is
a random sampling of the halo DF gives us additional collective
power. A DF that is not in self-consistent equilibrium with the
background potential will relax. This relaxation manifests as orbital
diffusion or mixing (Valluri et al. 2007). This mixing will occur
whether the potential is time independent or varying, so long as
the DF is not in self-consistent equilibrium with the potential. We
hypothesize that the diffusion rates log(�f ) can be used to measure
the rate of diffusion of mixing of orbits in ensemble that is evolved
in a selected potential. If the DF is out of equilibrium we should
obtain larger diffusion rates. We test this hypothesis by comparing
the distributions of the diffusion rates of ensembles of orbits evolved
in different potentials.

Our objective is to distinguish quantitatively (with an assigned
statistical confidence) between the correct potential and incorrect
potentials using halo stars for which all six phase-space coordi-
nates are available. We computed diffusion rates for all 104 orbits
selected from three models SA1, LA1 and IA1, when the orbits
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Figure 11. Frequency maps of 104 halo particles with rg < 200 kpc in two haloes in which hot halo gas cools into a star-forming disc. Left: frequency maps
of halo orbits in Cartesian coordinates; Right: frequency maps of the same particles in cylindrical coordinates. Top row: maps of halo orbits in the case when
the initial halo was spherical NFW; the bottom row shows frequency maps in the case when the initial halo was prolate axisymmetric. Both Cartesian maps
show short-axis tubes and long-axis tubes, and only a few box orbits. Cylindrical maps show several resonances as indicated by thin-dashed lines and labels.

were integrated in the correct potential. We also integrated the
orbits from the DF of SA1 in two ‘slightly incorrect’ potentials:
SA1 rotated about the z-axis by 10◦ (model SA1-10◦) and by 90◦

(model SA1-90◦). Two other ‘slightly incorrect’ potentials con-
sisted of 104 orbits drawn from the DF of models LA1 and IA1
and integrated in the potential for SA1 (models LA1-in-SA1 and
IA1-in-SA1, respectively).

We also considered one ‘strongly incorrect’ model: the orbits of
the initial triaxial halo A were integrated in a potential consisting
of halo A + a short-axis disc. Since the halo was not allowed to
relax in response to the presence of the disc, the orbits are strongly
out of equilibrium since, in effect, the disc potential is ‘turned on
suddenly’.

Fig. 12 shows the cumulative distribution functions (CDFs) of the
diffusion parameters for ensembles 104 orbits from the three DFs
from SA1, LA1 and IA1 evolved in their own potentials as blue
curves. The CDFs of diffusion rates for 104 orbits in each of the

four ‘slightly incorrect’ potentials, SA1-10◦, SA1-90◦, LA1-in-SA1
and IA1-in-SA1 (orange curves), and the ‘significantly incorrect’
potential (red curve). The clear separation of the curves shows that
the CDFs of log(�f ) for ensembles integrated in the correct poten-
tial (blue curves) are always to the left of the orange curves implying
that in the correct potentials there are significantly more orbits with
low diffusion rates [log(�f ) � −2] than when these ensembles are
evolved in incorrect potentials (orange and red curves).

We carried out pair-wise comparisons of the eight CDFs in Fig. 12
using the non-parametric Kolomogorov–Smirnov (KS) test to eval-
uate the probability p that the distributions are statistically different
from each other. We compute the KS statistic which measures the
‘distance’ d between the two distributions. Small distances d be-
tween pairs of distributions and low (or zero) values of p indicate a
low probability that the two distributions are (statistically) identical.
Results of representative subsets of the tests are reported in Table 2.
The first three tests in the table compare the CDF of orbits from
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Figure 12. CDFs of orbital diffusion rates log(�f ) for ensembles of 104

orbits which were evolved in the correct potential (blue curves), evolved
in slightly incorrect potentials (orange curves) and in a strongly incorrect
potential (red).

Table 2. Results of KS tests comparing CDFs of log(�f ) from Fig. 12
pairwise.

Models compared in KS test Distance d Probability p

SA1 versus SA1-10 0.11 0.0
SA1 versus LA1-in-SA1 0.10 4.2 × 10−44

SA1 versus Halo A + DISC 0.15 0.0
LA1 versus LA1-in-SA1 9.9 × 10−2 8.6 × 10−43

IA1 versus IA1-in-SA1 8.6 × 10−2 2.7 × 10−26

SA1-90 versus SA1-10 1.2 × 10−2 0.45
SA1-10 versus LA1-in-SA1 1.7 × 10−2 0.12
LA1-in-SA1 versus IA1-in-SA1 1.9 × 10−2 0.12

SA1-90 versus Halo A + DISC 8.8 × 10−2 1.7 × 10−34

LA1-in-SA1 versus Halo A + DISC 8.1 × 10−2 1.9 × 10−29

the SA1 DF evolved in the correct potential with the same orbits
evolved in three incorrect potentials. The small values of d and p

indicate a very low probability that the blue curve for SA1 and the
orange (or red curves) are identical. The next two tests compare
the DFs of LA1 and IA1 integrated in the correct potential (blue
curves) with the CDFs when the same ensembles are evolved in
the potential for SA1 (orange curves). These two tests also yielded
small values of p implying a low probability that the CDFs of LA1
and IA1 were identical to those of LA1-in-SA1 and IA1-in-SA1,
respectively. Thus, the first five KS tests show that the probability of
CDFs of log(�f ) arising from the correct and incorrect potentials
being identical is very low (p ∼ 0).

The next three tests compared various ‘slightly incorrect distri-
butions’ (orange curves in Fig. 12) with each other. The results of
the KS tests in Table 2 show that it is difficult to statistically dis-
criminate between the various slightly incorrect potentials because
the probabilities of their being identical are quite large p > 0.1.

The last two tests compared two ‘slightly incorrect’ models (or-
ange curves) with the ‘strongly incorrect’ models (red curve) (la-
belled ‘Halo A + DISC’): the small values of p and d indicate
that the red curve can be statistically distinguished from the orange
curves with high confidence.

The above tests show that although each particle is treated as
a ‘test-particle’ in the fixed background potential we are able to
harness the collective behaviour of an ensemble drawn from a self-
consistent distribution function assumed to be in steady state to
statistically identify cases where the orbit ensemble is not in equi-
librium with the background potential. Although the diffusion rate
of an ensemble (in a fixed background potential) can be quantified
even without self-consistent calculations, it is more correct to think
of this diffusion in terms of the collective relaxation that occurs
when an N-body system is out of equilibrium, rather than chaos,
since these orbits are drawn from a DF.

This is a fundamental result that relies on the Jeans Theorem:
when the initial positions and velocities (phase-space coordinates)
of orbits are not drawn from a self-consistent DF in a steady-
state equilibrium potential, most orbits are not launched on reg-
ular tori and hence they will diffuse in phase space (travel through
the ‘Arnold web’; cf. Lichtenberg & Lieberman 1992). The results
given above show that although there is a spread of diffusion rates
in any given ensemble. Since the CDF of the distribution for the
entire ensemble is shifted to smaller values of the diffusion rate
when the potential is close to equilibrium and becomes statistically
larger when the potential is incorrect.

From Fig. 12 we see that the CDF of diffusion rates of a ‘slightly
incorrect’ model can be clearly distinguished from the correct
model. This suggests a novel way to utilize the six phase-space
coordinates of MW halo stars to distinguish between various pos-
sible models for the halo potential. However, the overlap of orange
curves for various ‘slightly incorrect’ models indicates that it may
not be easy to distinguish between the various ‘slightly incorrect’
models in a way that allows us to progress iteratively towards a
model closest to the true potential.

None the less this method has the value that it will work best in
the region of the MW halo that is more well mixed (i.e. the inner
halo), whereas methods such as modelling the tidal tails of dwarf
satellites relies on their being less well mixed and will primarily be
applicable in the outer halo. Note that it is not necessary to assume
that all the orbits in the correct equilibrium model are regular. In
fact, the CDF of diffusion rates in Fig. 12 shows that even in the
correct/equilibrium models there are a few orbits which have fairly
high diffusion rates.

It is important to note that this method will not work if the net
potential is spherical (which the MW is not because ∼10 per cent
of the total mass is in the highly flattened Galactic disc), or if
the potential is assumed to be of Stäckel form. This is because all
orbits in spherical and Stäckel potentials are integrable by definition
(i.e. all orbits are perfectly regular), hence the diffusion of orbits
would only measure numerical errors of the method. However, since
Stäckel potentials are idealized potentials of primarily theoretical
interest, there is no reason to expect that the Galaxy should have such
a form. In a future paper we will refine these ideas to quantitatively
assess the possibility of measuring the shape of the MW’s inner
halo with ensembles of stellar orbits.

5 D I S C U S S I O N A N D C O N C L U S I O N S

Understanding the structure, dynamics and formation history of the
MW is a major thrust of current astronomical research. The fun-
damental science driver of the burgeoning Galactic all-sky survey
industry, e.g. SDSS-SEGUE (Yanny et al. 2009), Apache Point Ob-
servatory Galactic Evolution Experiment (APOGEE; Allende Pri-
eto et al. 2008), RAVE (Steinmetz 2003), (Large Synoptic Survey
Telescope (LSST; LSST Science Collaborations 2009), Panoramic
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Survey Telescope & Rapid Response System (PanSTARRS; Kaiser
et al. 2002), Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST; Hu & Jiang 2005), Skymapper (Keller et al.
2007), High Efficiency and Resolution Multi-Element Spectrograph
(HERMES; Barden et al. 2008) and eventually Gaia (Perryman
et al. 2001), is the premise that the Galaxy and the Local Group
were formed in a manner that typifies the formation of galaxies in
the �CDM paradigm. Therefore understanding the structure, dy-
namics, chemistry and thereby the formation history of our own
Galaxy will result in stronger constraints on the complex physics of
galaxy formation.

The use of orbital frequencies of halo stars has been recognized
as an important way of identifying the relics of satellites which
were tidally disrupted in the MW halo (McMillan & Binney 2008;
Gómez & Helmi 2010). In a recent paper, Gómez et al. (2010) also
showed that when the time-dependent growth of the Galaxy and
observational errors associated with Gaia are taken into account, it
will be possible to uniquely identify about 30 per cent of the ac-
cretion events that occurred in the last 10 Gyr, while the remainder
of the accretion events will likely be difficult to disentangle from
a more smoothly mixed component. Helmi et al. (2011) have ar-
gued, from a comparison of the degree of spatial variation in the
distribution of stars in the stellar halo observed in the SDSS-II sur-
vey (Bell et al. 2008) and the similar distributions of halo stars in
cosmological N -body simulations (Cooper et al. 2010), that there
may exist a smooth underlying stellar halo component that is much
more well mixed than material solely accreted from satellites. The
method outlined here complements the work that focuses on disen-
tangling the relics of tidal streams, in that it can be applied to both
well-mixed and unmixed orbits and can therefore be applied to a
much larger sample of halo stellar orbits.

The SDSS-SEGUE survey has already obtained phase-space co-
ordinates for over 17 000 stars within 4 kpc of the Sun. We are apply-
ing the techniques described in this paper to the SDSS-Segue Cali-
bration sample (Carollo et al. 2010), and correlate the orbital prop-
erties of halo stars with their metallicities and spatial distribution
(Valluri 2011; O’Shea et al., in preparation) use revised distances to
the stars in the Calibration sample (Beers et al. 2011) that overcome
recently reported distance measurement errors (Schönrich et al.
2011). Upcoming surveys will increase both the volume of space
observed and the accuracy with which distances, proper-motions,
radial velocities and metallicities are measured for MW halo stars,
significantly impacting our understanding of the structure and dy-
namics of the Galaxy. If the stellar halo does consist of distinct
components – a well-mixed inner halo which formed largely in situ
(i.e. in potentials deeper than typical dwarf satellite potentials) and
an outer halo that was formed primarily from the accretion of tidally
stripped dwarf satellites – one might also expect to observe distinct
differences in the orbital populations of these two components.

One of the primary goals of current and future surveys of the MW
is to determine the shape and radial density profile of the dark mat-
ter halo and to construct the self-consistent phase-space DF of the
major stellar components – the thin and thick discs, the bulge and
the stellar halo (Binney & McMillan 2011). A popular and flexible
method for constructing the DF of a potential is the orbit super-
position method (Schwarzschild 1979; van der Marel et al. 1998;
Cretton et al. 1999; Thomas et al. 2004; Valluri, Merritt & Em-
sellem 2004), which relies on orbit libraries that uniformly sample
orbital initial condition space. In the DF of realistic triaxial poten-
tials like the haloes of galaxies, a large fraction of box-like orbits are
resonant (i.e. have commensurable frequencies) (Miralda-Escude &
Schwarzschild 1989; Merritt & Valluri 1999). Determining the frac-

tion of orbits associated with resonances is therefore important for
constructing the DF. However, since these orbits are ‘resonantly
trapped’, they densely populate very small regions of phase space,
and are likely to be underrepresented in the orbit libraries used to
construct DFs (which generally sample some initial condition space
uniformly). Resonant orbits are also not adequately represented in
the DFs constructed via orbital torus construction methods, since
they are, by design, not present in perfectly regular Stäckel poten-
tials, whose orbital tori are adiabatically deformed to construct the
DF of realistic potentials (e.g. Binney 2010; Binney & McMillan
2011). The methods described in this paper address this important
issue in a uniquely powerful way. Rather than attempting to guess
the initial distribution of orbits required to populate the orbit li-
braries, the frequency analysis of the orbits of halo stars in a set of
trial potentials can be used to construct the frequency map, which
we have shown to yield a robust picture of the global DF, even when
orbits are selected within a limited volume in the Galaxy. The mea-
surement of the diffusion rates of the orbits then gives an estimate of
the best trial potential, and can be used as an additional constraint
in the Schwarzschild or torus construction method. The applica-
bility of these methods to the construction of the full phase-space
DF of the stellar halo will be discussed in greater detail in future
work.

In the majority of simulations presented in this paper we do not
consider the possibility that the inner and outer haloes could have
angular momenta of different directions or signs. Warps seen in disc
galaxies are now believed to be evidence that the angular momen-
tum vectors of outer dark matter halo is misaligned from the disc and
the associated inner halo (e.g. Ostriker & Binney 1989; Debattista
& Sellwood 1999; Jiang & Binney 1999; Shen & Sellwood 2006;
Roškar et al. 2010). These authors argue that cosmic infall causes
the angular momentum direction of the outer dark matter halo to
be different from that of the inner dark matter halo. The build up
of dark matter haloes via cosmic infall occurs due to the accretion
of satellites, and such hierarchical infall is also believed to build up
the stellar halo. In a companion paper (Valluri et al., in preparation)
we study the angular momentum distributions of both star particles
and dark matter particles in high-resolution cosmological simula-
tions of disc galaxies from the MUGS collaboration (Stinson et al.
2010). Preliminary results indicate that the angular momentum dis-
tributions of halo stars at different radial distances from the galactic
centre can be used to trace the angular momentum distribution of the
dark matter haloes at these radii. Thus the orbital analysis of halo
stars could potentially be used to measure the angular momentum
of the dark matter halo and test the prediction that differential angu-
lar momentum of the halo can produce warps. Model TA1 [Figs 4
(right-hand panel) and 7] shows the effect of a disc inclined to the
equatorial plane of a triaxial halo. Fig. 4 (right-hand panel) shows
that the density contours of the inner halo become aligned with the
disc, while the outer halo remains unchanged. In this simulation the
disc was held rigid, but it is likely that a live disc would form a
warp due to the misalignment of the inner and outer halo angular
momenta. None the less this simulation is illustrative of the pos-
sibility of using frequency maps of halo stars to detect such tilts
in the principal axes and angular momentum directions of different
parts of the halo since it illustrates that the orbital frequencies only
depend on the assumed potential.

To conclude we summarize the main results of this paper.

(i) Frequency analysis of the orbits of a large representative sam-
ple of halo particles can be used to construct frequency maps which
provide a compact representation of the DF of the stellar or dark
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matter halo. The map also gives an estimate of the fractions of
orbits in different major orbit families and enables easy identifica-
tion of dominant resonances. The identification of global resonances
is important for constructing global DFs for the MW since global
resonances strongly constrain the DF. The ability of frequency maps
to reveal globally important orbit families and resonances, even with
orbits selected from a limited volume around the Sun, suggests that
this method will provide significant input to the construction of DFs
for the MW Galaxy (May & Binney 1986).

(ii) The adiabatic growth of a disc in a halo results in significant
resonant trapping of halo particles with resonant orbits appearing
clustered along narrow resonance lines on a frequency map. In a
Cartesian frequency map of orbits in a moderately triaxial halo we
see several resonant box-orbit families. In axisymmetric haloes,
the use of cylindrical coordinates reveals a large number of reso-
nances primarily between the radial frequency �R and the vertical
frequency �z.

(iii) Resonances are found in all of the controlled simulations
in which discs were grown inside haloes, regardless of the shape
of the halo and regardless of how the disc was oriented relative
to the large-scale orientation of the halo. It has been previously
demonstrated that the growth of a baryonic disc inside a triaxial
halo deforms the inner regions to make them more oblate, but the
haloes remain modestly triaxial at large radii. We find that although
the inner regions of the halo are similar regardless of the large-scale
halo orientation, the frequency maps of inner halo particles reflect
the differences in the global orientation of the halo relative to the
disc.

(iv) We see that halo resonances are formed by both static discs
and live discs (those that form spiral features and bars). However,
the coherent time-dependent perturbations from a bar can result in
scattering of the most tightly bound particles, resulting in broader
(less well defined) resonances.

(v) Controlled hydrodynamic simulations, in which hot gas dis-
tributed throughout a dark matter halo is allowed to cool and form
a gas disc which then forms stars, give rise to halo frequency maps
with resonant structure, much like the adiabatic simulations. This
shows that resonant trapping of halo stars by the disc is not purely
a feature of idealized collisionless simulations in which a rigid disc
is grown in place.

(vi) We find that the cumulative distribution of orbital diffusion
rates is lower by a statistically significant amount, when a large
ensemble of orbits is integrated in a potential in which it is in
self-consistent equilibrium, and that the orbital diffusion rates are
significantly larger when the potential is incorrect. This can poten-
tially provide a novel way to constrain the potential of the MW
directly from the six phase-space coordinates of a large sample of
MW halo stars.
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Gómez F. A., Helmi A., 2010, MNRAS, 401, 2285
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