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Magnon eigenmodes in easy-plane antiferromagnetic insulators are linearly polarized and are not expected
to carry any net spin angular momentum. Motivated by recent nonlocal spin transport experiments in the easy-
plane phase of hematite, we perform a series of micromagnetic simulations in a nonlocal geometry at finite
temperatures. We show that by tuning an external magnetic field, we can control the magnon eigenmodes and
the polarization of the spin transport signal in these systems. We argue that a coherent beating oscillation between
two orthogonal linearly polarized magnon eigenmodes is the mechanism responsible for finite spin transport in
easy-plane antiferromagnetic insulators. The sign of the detected spin signal is also naturally explained by the
proposed coherent beating mechanism. Our finding opens a path for on-demand control of the spin signal in a
large class of easy-plane antiferromagnetic insulators.

DOI: 10.1103/PhysRevB.107.184404

I. INTRODUCTION

On-demand control and long-distance transport of spin
angular momentum in antiferromagnetic insulators (AFMIs)
is among the cornerstones of modern spintronics. Negligible
stray fields, operating at THz frequencies, and the lack of
Joule heating in AFMI make them suitable candidates for the
miniaturization of next-generation ultrafast spintronic-logic
devices [1,2].

In collinear AFMIs with uniaxial easy-axis magnetic
anisotropy, such as hematite below the Morin transition tem-
perature [3], two circularly polarized magnon eigenmodes
have opposite helicity. Each circularly polarized magnon
mode carries one unit of spin angular momentum ±h̄. This
spin angular momentum can be transported across micrometer
distances, as recently demonstrated in nonlocal spin detec-
tion experiments in the easy-axis collinear phase of hematite
α-Fe2O3 [4,5]. The sign of the spin accumulation in nonlocal
spin transport measurements encodes the polarization of the
transmitted spin angular momentum via magnons.

On the contrary, the two orthogonal magnon eigenmodes
in the easy-plane AFMIs are linearly polarized and thus typi-
cally do not carry any net spin angular momentum. However,
recently, Refs. [6–10] reported the transport of spin angu-
lar momentum on the micrometer scale in the easy-plane
phase of hematite. Above the Morin transition temperature,
hematite is a canted AFMI or weak ferromagnet with easy-
plane anisotropy [3]. Some of these experiments also showed
a magnetic field and spatial-dependent sign change of the spin
accumulation, and thus of the magnon polarization [8,10].

*verena.j.brehm@ntnu.no

In Refs. [6,7], the authors attributed the detected finite spin
angular momentum transport to a birefringencelike mecha-
nism. Within this framework, the origin of the sign change
of the spin signal remained unknown. On the other hand,
in Refs. [10,11] the authors attributed both finite spin an-
gular momentum transport and the change in the sign of
the spin signal to a Hanle-like behavior of the magnon
pseudospin. However, within their formalism, the coupling
between a small magnetization, induced by a homogeneous
Dzyaloshinskii-Moriya (DM) interaction, and applied trans-
verse magnetic field plays a crucial role in explaining the sign
change of the spin signal [10,12].

In this paper, we perform finite-temperature micromag-
netic simulations to study the spin angular momentum
transport mechanism as well as the distance- and magnetic-
field-dependent sign change of the spin signal in easy-plane
AFMI systems. We explain our numerical observations with
a coherent beating mechanism between two linearly polarized
AFM magnon eigenmodes. We argue that both the finite spin
transport and the magnetic field- and spatial-dependent sign
of the spin signal are generic features of all easy-plane AFMIs
and not only weak ferromagnets or canted AFMIs with a finite
DM interaction, such as easy-plane hematite.

This paper is organized as follows. After introducing our
model and simulation technique in Sec. II, we will first
demonstrate the modulation of the magnon dispersion relation
through an external magnetic field in Sec. III A. Second, in
Sec. III B we will propose our coherent beating oscillation
mechanism that is based on the pairing of magnons on the
two dispersion branches, and demonstrate signatures of these
pairs numerically in Sec. III C. Using this established model,
we explain the numerically obtained spin transport signal and
its oscillatory nature in Sec. III D. Finally, we conclude our
findings in Sec. IV.
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FIG. 1. Schematic presentation of the setup. Spin current is
injected into an easy-plane AFMI (green region) by the central elec-
trode via spin Hall torque and measured by the electrodes on the left
and right via the inverse spin Hall effect. Purple arrows show the
orientation of easy Heasy and hard Hhard magnetic anisotropy fields.
Hext is a transverse external magnetic field, used to modulate the
spin transport signal. The black and blue arrows show the two AFM
sublattices with elliptical precession.

II. MODEL

A. System setup

We model a thin layer of AFMI in an orthorhombic
phase using two anisotropy axes (see Fig. 1). The hard-axis
anisotropy is set along the z direction, which gives an easy-
plane magnetic anisotropy in the sample plane (x-y plane).
A much weaker easy-axis magnetic anisotropy lies within
the easy plane and gives a defined ground state along the x
direction. In addition, a transverse magnetic field, Hext = Hyŷ,
perpendicular to both the easy and hard magnetic anisotropy
axis, is applied to modulate the AFM magnon dispersion, as
shown later. Besides, we add a homogeneous DM interaction
parallel to the hard axis, and investigate its effect on the
magnon dispersion and transport.

In order to simulate spin transport, magnons are pumped
in the center via a spin Hall spin-transfer torque and prop-
agate along the x direction to the left and right. The spin
signal is recorded with detectors that are placed at vari-
ous distances along the x direction. The polarization- and
distance-dependent spin transport signal is recorded for each
strength of the transverse magnetic field Hy.

Without loss of generality, we use easy-plane hematite
parameters in our micromagnetic simulations. The simula-
tion parameters [13] are listed in Table I. The characteristic
length scales, at zero magnetic field, given by the exchange
stiffness and the anisotropy constants λl = √

AAFM/(2Kl ), are
λhard ≈ 43 nm and λeasy ≈ 1.35 µm for the hard- and easy-axis
anisotropies, respectively. In order to avoid the reflection of
magnons at the edges of the system, we use a Gilbert damping
parameter and system length that ensure the excitation decays
to zero before.

B. Micromagnetic simulations

Finite-temperature simulations are conducted using a
stochastic micromagnetic framework implemented in the
open-source code BORIS [14]. Within the micromagnetic as-
sumption, every discrete simulation cell with a volume V
is assigned a macrospin magnetic moment M with a ho-
mogeneous saturation magnetization Ms by averaging over
all magnetic contributions [15]. Under the influence of tem-
perature T , the dynamics of the magnetic moment direction
m = M/Ms, in a two-sublattice AFMI, is described by

TABLE I. Micromagnetic parameters of hematite, used for
simulations.

Quantity Symbol Value Unit

Length of AFMI layer Lx 2.5 µm
Width of AFMI layer Ly 0.1 µm
Thickness of AFMI layer Lz 5 nm
Grid size a 5 nm
Exchange stiffness AAFM 76 fJ m−1

Homogeneous exchange aAFM −460 kJ m−3

Easy-axis anisotropy Keasy −21 mJ m−3

Hard-axis anisotropy Khard 21 J m−3

Saturation magnetization Ms 2.1 kA m−1

Gilbert damping α 2 × 10−4 1
Homogeneous DM interaction D 4.6 kJ m−3

1@T = 0
Time step �t fs

0.5@T �= 0
Charge current density for SOT Jc 560 MA m−2

coupled stochastic Landau-Lifshitz-Gilbert (sLLG) equations,

dt mi = −γ mi × (
Heff

i + H th
i

)
− αγ mi × [

mi × (
Heff

i + H th
i

)]
, (1)

where i ∈ {A, B} refers to two AFM sublattices. We use
γ = μ0|γe|/(1 + α2) with the vacuum permeability μ0, the
electron gyromagnetic ratio γe = −gμB/h̄ with the elec-
tron g-factor g and the Bohr magneton μB, the reduced
Planck constant h̄, and the dimensionless Gilbert damping
parameter α [16].

Heff denotes the effective magnetic field at the mag-
netic site i, and H th is a stochastic thermal field that
adds temperature to the model. For the latter, a nor-
malized Gaussian distribution is scaled with the prefactor
ξth = √

2αkBT /(γμ0MsV �t ) in every component adding
white noise to the system that is weighted with the thermal
energy kBT , with kB the Boltzmann constant, and scaled with
both the cell size volume V and the time step of the simulation
�t .

In our model, the effective magnetic field is given by

Heff
i = Hex

i + HDM
i + Haniso

i + Hext
i + HSOT

i . (2)

Hex
i is the sum of homogeneous and inhomogeneous exchange

interactions [14],

Hex
i = −4aAFM

μ0Ms
[mi × (mi × m j )] + 2AAFM

μ0Ms
∇2mi, (3)

where i �= j, aAFM is the homogeneous exchange constant,
and AAFM is the AFM exchange stiffness.

HDM
i is the homogeneous DM interaction field [14],

HDM
i = −ηi

D

μ0Ms
dh × m j, (4)

where ηA(B) = +(−)1, D is the homogeneous DM interaction
strength, and dh is the direction of the DM vector.

Haniso
i is the anisotropy field [14],

Haniso
i = Hhard

i + Heasy
i =

∑
l∈{hard,easy}

2Kl

μ0Ms
(mi · êl )êl , (5)

184404-2



MICROMAGNETIC STUDY OF SPIN TRANSPORT IN … PHYSICAL REVIEW B 107, 184404 (2023)

where the hard-axis anisotropy is given by Khard > 0 and
êhard = ẑ, and the easy-axis anisotropy is along êeasy = x̂ with
Keasy < 0.

Hext
i is the external magnetic field that couples to AFM

spins via a Zeeman coupling mechanism. In our simulations,
we apply a dc magnetic field perpendicular to both the easy-
axis and the hard-axis anisotropy fields, i.e., along the y
direction. Therefore we call it a transverse magnetic field Hy.

Finally, HSOT
i is the total spin-orbit torque (SOT), which is

the sum of a fieldlike and a dampinglike torque [14],

HSOT
i = − �

γ Ms

μB

e

|Jc|
Lz

(mi × P + rGP), (6)

generated by a charge current with the density Jc that is
converted to a spin current via the spin Hall effect. P is the
direction of spin-Hall-induced spin polarization at the inter-
face. Furthermore, � is the spin Hall angle, a measure of
the efficiency of the spin-to-charge current conversion, and rG

parametrizes the fieldlike torque amplitude.
In order to model the spin-Hall-induced SOT (see Fig. 1),

we set � > 0 in the injector region, that lies in the center
of the system and has an area of 6 × 10−15 m2 , and � = 0
otherwise. The direction of P lies along the easy axis so that
there is no excitation at zero temperature since mi ‖ P. Finite
temperature, however, induces thermal fluctuations in mag-
netic moments mi and therefore the net spin torque is finite,
and consequently magnons are pumped into the AFMI layer.

C. Measurement of spin accumulation

The magnon spin current is measured at detectors by means
of the inverse spin Hall effect. The inverse spin Hall voltage
is proportional to the spin accumulation at the interface of the
detectors and the AFMI layer, given by [17,18]

μ(d ) := G↑↓
r

〈∑
i

[mi(t, d ) × ṁi(t, d )]

〉
, (7)

where G↑↓
r is the real part of the spin mixing conductance [19],

〈·〉 denotes an average over both time and the ensemble, and
d is the distance between the injector and detector. The time
average for each ensemble member starts after steady state is
reached, and afterwards, the ensemble average is taken over
all spin accumulation signals. In our setup geometry, (Fig. 1),
the inverse spin Hall detector measures only the x component
of the spin accumulation at the interface, μx.

The total spin accumulation along the direction of the
magnon propagation can also be expressed as μx = NSx,
where N is the number of magnons that decay exponentially
over distance due to Gilbert damping. Furthermore, Sx = h̄pε,
with reduced Planck constant h̄, is the effective spin angular
momentum of a magnon mode that is proportional to the
helicity or handedness (p = ±1) and ellipticity (0 � ε � 1).
For linearly polarized magnon eigenmodes the ellipticity is
zero, and thus Sx = 0, while for circularly polarized magnon
eigenmodes Sx = ±1.

III. RESULTS

First, we numerically find the magnon dispersion rela-
tion of the AFMI layer and analyze the impact of a finite

homogeneous DM interaction and transverse magnetic field
on the magnon dispersion. Second, we establish a magnonic
beating theory that describes spin transport based on the found
magnon dispersion relations. Finally, we show numerical evi-
dence to support our proposed theory.

A. Magnon spectra

In this part, we compute the magnon spectra of easy-
plane hematite numerically using a standard approach [20]
at zero temperature and the absence of any spin torque,
H th

i = HSOT
i = 0.

Magnons in the entire magnetic Brillouin zone can be ex-
cited by a magnetic field pulse with a spatial and temporal sinc
function profile h(r, t ) = h0 sinc(r)sinc(t ), where h0 is the
magnetic field vector. Depending on the relative direction of
the magnetic field pulse and magnetic moments, we can excite
either the in-plane linearly polarized magnon modes, when
h0‖ẑ, or out-of-plane linearly polarized magnon modes, when
h0‖ŷ, in our sample geometry (see Fig. 1). The in-plane mode
is associated with the easy-axis anisotropy and has a lower
magnon band gap while the out-of-plane mode is associated
with the hard-axis anisotropy and has a higher magnon band
gap in the easy-plane phase of hematite [see Eqs. (8) and (9)].

In Fig. 2, we plot these two magnon modes related to two
magnon polarization modes. Two magnon modes are almost
degenerate at large wave vectors k, near the edge of mag-
netic Brillouin zone, while showing different frequency values
close to the center of the magnetic Brillouin zone (k ≈ 0).
The difference is pronounced at zero external magnetic field
[see Figs. 2(a) and 2(f)], where the magnon band gap of the
high-frequency branch (at around 0.17 THz) is two orders of
magnitude larger than the gap in the low-frequency branch
(around 5 GHz). However, the transverse magnetic field can
tune the magnon band gap and increase the lower magnon
branch, while the high-frequency branch remains practically
unchanged. Once the transverse magnetic field reaches some
critical value Hc

y , both branches become degenerate in the
entire Brillouin zone. At higher transverse magnetic fields,
Hy > Hc

y , the order of the two branches swaps, so that the
magnons of the low-frequency branch (i.e., in-plane oscil-
lations) have a larger frequency than the magnons of the
high-frequency branch (i.e., out-of-plane oscillations). Within
our set of parameters, the critical field can be read from
the numerical dispersion relations as around μ0Hc

y ≈ 6 T. To
obtain more insight into the nature and exact value of the
critical transverse magnetic field, we compare numerical re-
sults with the magnon spectra calculated from the standard
linear spin-wave theory [21,22]. The magnon band gaps or
AFM resonance (AFMR) frequencies at k = 0 for lower (l)
and higher (h) magnon modes read

f l
0 = γe

2πMs

√
16|aAFM|Keasy + (Msμ0Hy)2 − D

2
Msμ0Hy,

(8)

f h
0 = γe

2πMs

√
16|aAFM|(Khard + Keasy) − D2

4
− D

2
Msμ0Hy.

(9)
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FIG. 2. Magnon dispersion relations for various transverse mag-
netic fields Hy without a DM interaction (left column) and with a DM
interaction (right column) at T = 0. Without any transverse magnetic
field [(a) and (f)], the two linearly polarized branches are separated
by a band gap at the center of the Brillouin zone (see the inset).
As the magnetic field increases, the band gap of the lower branch
increases [(b), (c) and (g), (h)] until at a critical field Hc

y the band
gap between the two branches is closed and they become degenerate
[(d) and (i)]. Within our material parameters for hematite, the critical
field is around 6 T. Above Hc

y , the order of branches is changed and
a band gap reopens between the two branches [(e) and (j)].

In Fig. 3, we plot and compare the band gaps of both magnon
branches with and without the homogeneous DM interaction.
From Eqs. (8) and (9), we find the critical magnetic field,
in which two magnon bands become degenerate, as μ0Hc

y =
M−1

s

√
16|aAFM|Khard + D2/4. Within the chosen material pa-

rameters, the critical magnetic field in the absence and the

FIG. 3. AFMR amplitude as a function of the transverse mag-
netic field in the absence (solid lines) and presence (dashed lines)
of a DM interaction. The intersection of the higher magnon branch
f h in purple dots and the lower magnon branch f l in blue triangles
shows the critical transverse magnetic field where the two magnon
branches become degenerate. We conclude that the effect of a finite
homogeneous DM interaction is negligible.

presence of a DM interaction is given by μ0Hc
y (D = 0) ≈

5.9 T and μ0Hc
y (D = 4.6 kJ m−3) ≈ 6.0 T, respectively. The

critical field can also be read in Fig. 3 as the intersection. We
conclude that the effect of a homogeneous DM interaction
on magnon dispersion is negligible. Therefore, we will only
consider the system without a homogeneous DM interaction
in the rest of this paper.

In summary, in this section, we have shown that the two
magnon branches of an easy-plane AFMI can be modulated
by a transverse magnetic field.

B. Coherent beating oscillation mechanism

The two magnon eigenmodes of the easy-plane hematite,
shown in Fig. 2, are linearly polarized and thus cannot carry
any net spin angular momentum. However, we argue that in
easy-plane AFMIs still a net spin angular momentum can
be carried as shown experimentally. A finite spin angular
momentum can be carried by pairs of linearly polarized and
orthogonal magnon eigenmodes with the same frequency but
different wave numbers k1 and k2, excited on two magnon
branches. Due to this finite wave-number difference, a spatial-
dependent oscillation of the spin transport signal emerges
that, analogously to the optical counterpart phenomenon, we
call magnonic coherent beating oscillation. The difference
between two magnon wave numbers with the same frequency
can be controlled via an applied transverse magnetic field, as
shown in the previous section, and thus the beating length can
be changed.

The superposition of two linearly polarized and orthogonal
magnon eigenmodes with wave numbers k1 and k2 at the same
frequency f , propagating along the x direction, is given by

� = 1√
2

[
χZ exp (i f t − ik1x) + χY exp

(
i f t − ik2x ± i

π

2

)]

= 1√
2
χZY exp(i f t − ik0x), (10)
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where χT
Z = (1 0 0) and χT

Y = (0 1 0) are the trans-
pose of the polarization eigenvectors for two linear polar-
ization along z (out-of-plane) and y (in-plane) directions,
respectively, while χT

ZY = (1 eiφk (x) 0) is the superposi-
tion of them in the ZY plane. We define k0 = k1 + k2,
�k = k1 − k2, and φk (x) = �kx ± π/2. The effective spin
angular momentum of the wave vector is given by

Sx = h̄pε = h̄〈Ĵx〉� = h̄ sin φk (x), (11)

where Ĵx = h̄(
0 −i 0
i 0 0
0 0 0

) is the component of the spin-1 op-

erator along the quantization axis in our geometry, i.e., the
magnon transport direction. Therefore, the net spin angular
momentum of the traveling magnon modes can continuously
vary between Sz = +(−)h̄, for a right- (left-)handed circularly
polarized wave, and Sz = 0, for a linearly polarized wave,
depending on φk (x). The distance x0 at which the spin po-
larization sign is changed from left to right handed we call
the magnonic beating length, x0 = π/�k . This corresponds to
the distance between a maximum and a minimum in the spin
transport signal, with a zero transition at x0/2, as shown in
Fig. 5.

C. Band-resolved magnon population

In the previous section, we have introduced a coherent
beating mechanism that is based on the excitation of pairs of
magnons, where each magnon belongs to one of the branches
in the dispersion relation. In order to show the evidence of
these magnon pairs numerically, we compute the magnon pop-
ulation at low, but finite, temperature and a finite spin torque
HSOT

i > 0 in the injector region. By Fourier transforming the
temporal and spatial-dependent spin configuration, we find
the occupied magnon modes that contribute to the long-
distance spin transport.

For our choice of parameters, i.e., the amplitude of spin
torque and temperature, only low-energy magnons are excited.
Thus, only the center of the Brillouin zone is shown in Fig. 4.

For small transverse magnetic fields [see Figs. 4(a) and
4(b)] and above the critical magnetic field [see Fig. 4(f)],
mostly the modes in the lower magnon branch are occupied.
These are linearly polarized magnon modes that cannot carry
any net spin angular momentum. At these transverse magnetic
field strengths, we observe a low and rapidly decaying spin
transport signal (not shown).

At intermediate transverse magnetic field strengths, how-
ever, pairs of magnons with the same frequency that belong to
two different magnon branches appear [see Figs. 4(c)–4(e)].
The difference in the wave numbers between two branches at
one frequency, �k = k1 − k2, becomes smaller as the trans-
verse magnetic field reaches the critical field due to the band
modulation shown in Sec. III A.

D. Distance-dependent spin accumulation signal

Finally, we show the spin transport data and connect it
to the proposed coherent beating oscillation theory. As we
have already discussed, the detected spin signal can be written
as μx(d ) = h̄N pε = h̄N (d ) sin φk (d ). The amplitude of the

FIG. 4. Magnon modes contributing to the spin transport signal
for various transverse magnetic fields at finite temperature and in
the presence of the spin Hall torque. Two pairs of occupied magnon
modes show up around the magnetic Brillouin zone center at inter-
mediate strengths of the transverse magnetic field [(c)–(e)]. Each pair
consists of two modes, one on each branch, at the same frequency
0.18 THz, but different wave numbers. The color map refers to the
signal strength, which is proportional to the magnon occupation
number, from dark meaning very low over white to red meaning very
high intensity.

spin signal is proportional to the number of magnons N (d )
that decay exponentially with the distance d because of the
Gilbert damping, and is modulated by the magnonic beating
parameter sin φk (d ) with φk (d ) = �kd ± π/2.

Figure 5 displays the numerically found distance-
dependent spin accumulation in the nonlocal geometry for
four different values of the transverse magnetic field Hy. Each
data set is computed with an ensemble average over 20 real-
izations, and the uncertainty environment corresponds to the
standard deviation.

As expected from the geometry, we have
sin φk (d = 0) = 1 and thus the detected spin signal is
the highest close to the center, where the injector pumps spin
angular momentum into the system. However, the amplitude
of the spin accumulation signal does not decay exponentially,
as expected from the diffusive magnon transport theory, at
some transverse magnetic fields. It rather shows a damped
oscillating behavior, and changes the sign periodically. At
these fields, the magnon bands are nondegenerate, and
thus a finite �k leads to a finite beating length x0, which
increases with increasing magnetic field (since �k decreases).
In order to give a quantitative example, at μ0Hy = 2.5 T,
we have �ka = 0.06 from Fig. 4(c), and estimate x0 to be

184404-5
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FIG. 5. Dimensionless spin accumulation signal μ̃x =
μx (Hy, d )/μx (Hy = 0, d = 0) along the easy-axis direction as
a function of the distance between detectors and the injector, placed
at the center. The transverse magnetic field Hy modulates the shape
of the spin transport signal. At low magnetic fields, the sign of the
spin signal polarization changes at intermediate distances. At the
critical transverse magnetic field Hc

y (green curve), where the two
magnon branches are degenerate, the spin signal is always positive
and decays exponentially.

x0(2.5 T) = 260 nm, which is in line with the minimum of the
black curve.

On the other hand, at the critical magnetic field strength of
μ0Hy ≈ 5.7 T, where the two magnon branches are degener-
ate and thus the beating length diverges, sin(�k → 0) = 1,

the spin signal does not change the sign and only decays
exponentially.

IV. SUMMARY AND CONCLUSION

We have found a long-distance and tunable spin transport
signal in orthorhombic easy-plane AFMIs using micromag-
netic simulations, in agreement with recent experimental
measurements. Our model represents a large class of easy-
plane AFM materials, including hematite above the Morin
transition.

We demonstrated how a finite spin signal and its helicity
and amplitude can be modulated by a transverse magnetic
field using a coherent beating oscillation between two lin-
early polarized magnon eigenmodes. Based on our theoretical
framework and numerical experiments, we argue that this
behavior is a generic feature of all easy-plane AFMIs with two
orthogonal linearly polarized eigenmodes and not only weak
ferromagnets or canted AFMIs with a finite homogeneous DM
interaction, such as hematite.
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