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ABSTRACT
The ability of two-dimensional infrared (2D-IR) spectroscopy to measure the amide I band of proteins in H2O rather than D2O-based
solvents by evading the interfering water signals has enabled in vivo studies of proteins under physiological conditions and in biofluids.
Future exploitation of 2D-IR in analytical settings, from diagnostics to protein screening, will, however, require comparisons between multiple
datasets, necessitating control of data collection protocols to minimize measurement-to-measurement inconsistencies. Inspired by analytical
spectroscopy applications in other disciplines, we describe a workflow for pre-processing 2D-IR data that aims to simplify spectral cross-
comparisons. Our approach exploits the thermal water signal that is collected simultaneously with, but is temporally separated from the
amide I response to guide custom baseline correction and spectral normalization strategies before combining them with Principal Compo-
nent noise reduction tools. Case studies show that application of elements of the pre-processing workflow to previously published data enables
improvements in quantification accuracy and detection limits. We subsequently apply the complete workflow in a new pilot study, testing
the ability of a prototype library of 2D-IR spectra to quantify the four major protein constituents of blood serum in a single, label-free mea-
surement. These advances show progress toward the robust data handling strategies that will be necessary for future applications of 2D-IR to
pharmaceutical or biomedical problems.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0127680

INTRODUCTION

Ultrafast two-dimensional infrared (2D-IR) spectroscopy is a
well-established technique that is capable of providing molecular
level dynamic information on an ultrafast time scale.1,2 In particular,
the application of 2D-IR to solution phase systems and biomolecules

has provided deeper understanding of conformational structure
changes and molecular dynamics.2–12

Alongside the development of the 2D-IR spectroscopic method,
advancements in laser technology10,13,14 and pulse shaping15 have
reduced the time needed to acquire a single 2D-IR spectrum to less
than a minute.15,16 This means that 2D-IR data can now be produced
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in high densities over short times, leading to proof-of-concept
demonstrations of high-throughput analytical applications.10,17–19

Very recently, 2D-IR has been shown to have the potential
for use as a tool for the analysis of proteins in H2O-rich fluids.20

Examples include analysis of the protein content of blood serum,
including quantification of the albumin to globulin ratio, measure-
ment of low molecular weight species, and the detection of drug
binding to serum proteins.20–22 2D-IR has also been used to study
the kinetics of fibril formation in H2O,23 complementing a number
of prior studies in deuterated media, including a method employing
protein-depleted serum.7,24–26 Measurements of the protein amide
I band in H2O were based on two advantages of 2D-IR in compari-
son to IR absorption methods. First, in a reversal of the situation in
absorption spectroscopy, the 2D-IR signal from the amide I band
of proteins dominates that of the bending mode of water, which
appears in the same part of the mid IR spectrum. Second, the ultra-
fast time resolution of 2D-IR spectroscopy enables the temporal
separation of signals from proteins and H2O.20

Taken together, these technological and methodological devel-
opments have created the potential for 2D-IR to be employed in
screening applications, as might be used in drug development or to
generate clinically relevant data to aid disease diagnosis.20–22 Mak-
ing the step from advanced spectroscopy to analytical tool brings
new challenges, however. The most pressing of these is that ana-
lytical or screening experiments are based upon the comparisons of
large numbers of different samples. This brings a need to control the
experimental factors that can lead to measurement-to-measurement
fluctuations, ranging from beam alignment and sample path length
to pulse-to-pulse instabilities and even the type of laser used.27,28 The
extent of the challenge is compounded by the fact that the spectral
changes to be detected—for example, a few percent change in pro-
tein concentration in a complex mixture or a change in shape of the
amide I band upon drug binding—may be very small on the scale of
the overall spectrum.

Practical approaches toward eliminating measurement-to-
measurement variations have been developed, including normal-
ization of spectra to an external molecular standard and the
development of sample cells to facilitate different spectroscopic
analyses.28–30 Methods have also been devised to enhance sensi-
tivity via data processing, including compressive data sampling
and spectral reconstructions, which have been shown to improve
signal-to-noise ratios.31 Reductions in additive noise have also been
demonstrated by exploiting the spectral correlation between refer-
ence and signal detectors,32 and an edge-pixel referencing method
to suppress correlated baseline noise has also been documented.27

In this study, we are inspired by methods that have been applied
to analytical spectroscopies in other disciplines.33,34 For example,
spectral data pre-processing is an important step in the analytical
workflow of IR spectral datasets, where standardization is neces-
sary for translation to biomedical analysis35 and to aid comparisons
between different spectrometers and improve data interpretability.
Pre-processing is also routinely used to minimize spectral noise and
remove outliers and artifacts, which ultimately leads to improve-
ments in data elucidation and produces increased quantification and
classification accuracy.33,35–37

These studies suggest the importance of establishing a simi-
lar pre-processing workflow for use in 2D-IR analysis experiments.
Our aim is to begin this process by demonstrating an approach

specifically for use with proteinaceous samples, measured in H2O-
rich fluids. To do this, we exploit a thermal signal from H2O,
which is an integral part of capturing the 2D-IR amide I spectrum
in aqueous media. The H2O bending mode (δH–O–H; 1650 cm−1)
is excited simultaneously with the protein amide I band, but its
spectral contribution is temporally separated from that of the pro-
tein amide I mode by its fast relaxation rate, which gives way to
a long-lived thermal signature.20 In a previous study, we reported
a spectral normalization method that used the size of this ther-
mal signal from H2O as an internal standard to account for path
length variations between samples.38 The new pre-processing work-
flow further exploits this H2O signal, to provide an integrated means
of monitoring the laser bandwidth, to guide baseline subtraction and
incorporates multivariate noise-reduction strategies currently used
in signal processing,34,39 to reduce the impacts of laser fluctuations
and spectral noise on the outcome of any subsequent quantitative
analyses.

We demonstrate our approach by first applying elements of the
new workflow to two previously published datasets, allowing direct
comparison of quantification accuracies and detection limits.20,21

We then move on to apply the full pre-processing method in a proof-
of-concept study, where a prototype library of protein 2D-IR spectra
in H2O is used to determine the concentrations of four major pro-
tein components of blood serum via their overlapping protein amide
I signatures. In addition to providing a challenging test-case for
the use of pre-processed 2D-IR data libraries, the ability to extract
this information from a single 2D-IR measurement (sample vol-
ume ∼10 μl) would be of significant practical benefit in biomedical
applications, because current methodologies used to obtain quan-
titative information on the concentrations of multiple proteins in a
serum sample would require as many wet chemistry assays involving
time-consuming preparations.40

EXPERIMENT
Materials

The data for the two case studies were obtained via methods
discussed elsewhere.20,21 For the protein library study, samples were
produced using pooled serum (equine), serum albumin (bovine),
and γ-globulins (bovine) that were obtained from Sigma-Aldrich
and used without further purification. The immunoglobulin pro-
teins IgG, IgA, and IgM (human) were obtained from the same
source, but were concentrated prior to use. For quantitative compar-
isons with spectroscopy data, the total protein and albumin content
of the equine blood serum samples was established by standard lab-
oratory testing at the Glasgow School of Veterinary Medicine. The
total serum protein content was measured to be 71 g/l using the
Biuret method.41 The total serum albumin concentration was mea-
sured to be 30 g/l (0.45 mM) using the bromocresol green assay
method.42 The total globulin concentration, obtained from the dif-
ference between the albumin and total protein concentrations, was
41 g/l (∼0.3 mM).

2D-IR spectroscopy
2D-IR method

2D-IR spectra used for the protein library study were recorded
using the LIFEtime spectrometer at the STFC Central Laser Facility
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using the Fourier transform 2D-IR technique, which utilizes a
sequence of three mid-IR laser pulses arranged in a pseudo
pump–probe geometry.14,16 The laser pulses used in the experiment
had a central frequency of 1650 cm−1, a temporal duration of ∼200 fs,
and a bandwidth of ∼80 cm−1. The pulse repetition rate of the laser
system was 100 kHz.

2D-IR data acquisition

The 2D-IR spectrometer employed mid-IR pulse shaping to
produce and control the pump–pump delay time (τ).15,16 During
data collection, τ was incremented in 12 fs steps for a total of
4 ps using four-frame phase cycling, to minimize scattering arti-
facts. With cycle averaging, the total acquisition time per waiting
time (Tw) was 60 s. For each sample, spectra were obtained at two
waiting times—250 fs and 5 ps, using parallel pump–probe polar-
ization. At Tw = 250 fs, strong protein signals are observed in the
absence of the water response, while at Tw of 5 ps, the protein sig-
nal has decayed, leaving the thermal water signal (Fig. S1).20 For all
studies, samples were measured in triplicate, using identical sample
conditions.

2D-IR sample preparation

To avoid saturation of the δH–O–H mode of water at 1650 cm−1,
the sample thickness was carefully controlled prior to measuring
2D-IR spectra in water. Samples were housed between two CaF2
windows, with no spacer used. The tightness of the sample holder
was adjusted, to obtain a consistent absorbance of ∼0.1 for the
δH–O–H + υlibr combination mode of water located at 2130 cm−1.
Based upon the measured molar extinction coefficient of water, this
corresponds to a sample thickness of ∼2.75 μm.20

Data analysis

All data processing described below was carried out using
a custom script written using the statistical analysis software
program R.43

RESULTS AND DISCUSSION
Data pre-processing

In this section, we describe the data pre-processing workflow,
which assumes that all data were collected as described in the
“Experimental” section, including two waiting times (250 fs and
5 ps), which capture the protein amide I band and the ther-
mal H2O response, respectively. Subsequent sections describe the
implementation of the workflow in three case studies.

The pre-processing workflow is shown schematically in Fig. 1.
All 2D-IR data were acquired in the time-domain, by scanning τ,
with a Fourier transformation as a function of τ used to generate
the pump frequency axis of the 2D spectrum. The use of apodiza-
tion functions (window) and zero padding to de-noise and enhance
the signal response have been dealt with previously,1 and we do not
discuss them further here. In all cases, a Hamming function was
applied prior to the Fourier transformation alongside zero-padding
by a factor of 2.

FIG. 1. Data pre-processing workflow. Colored boxes highlight when the dataset is
used in its entirety for that waiting time (250 fs – yellow, 5 ps – blue, both together
– green); white boxes highlight when a spectrum is processed independently on
a per measurement basis. Two spectra are acquired for each sample (250 fs
and 5 ps) and standard protocols [apodization, zero-padding (ZP), and Fourier
transformation (FT)] are applied. The 5 ps spectrum is used to calculate the band-
width, which forms the baseline correction for both waiting time spectra. After the
baseline has been corrected, the spectra are smoothed using a Savitzky–Golay
(SG) filter described in the text, and principal component analysis noise reduction
(PCA-NR) is applied. The 5 ps spectrum is then used to normalize the 250 fs
spectrum containing the protein information before data analysis.

Baseline correction

Following apodization and Fourier transformation, the next
step in the pre-processing workflow is to apply baseline correction
to the spectra. In general, 2D-IR spectra are subject to instrumen-
tal fluctuations and scattering effects, which lead to distortion of
what should, in principle, be a zero spectral baseline. To correct
for this, a background or reference spectrum can be measured and
subtracted from the spectral data; however, fluctuations measured
using these approaches may not be perfectly correlated, meaning
that accurate correction of this baseline may prove difficult from
one sample to another. For analytical applications, it is also prefer-
able to use a method for baseline correction that does not add to the
measurement time.
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An approach that is often utilized for IR spectroscopies involves
the approximation of the spectral background prior to it being
removed, which leads to a more interpretable signal, allowing
higher analytical classification accuracies.33,37 This relies on adopt-
ing a model for the baseline— for example, a linear or polynomial
function.33 However, there is no standard methodology that is
applied to 2D-IR spectral datasets, and one of the key challenges is
to identify regions of the spectral data that constitute the baseline
as opposed to the signal, to avoid erroneously subtracting the latter
from the data.

Another complication that arises when acquiring 2D-IR mea-
surements using high pulse repetition rate laser systems relates to
the generally narrow bandwidth of the laser pulse produced, which
can be of the order of 80–100 cm−1.14,16 Considering that the amide
I band of a protein has a spectral full width at half maximum
(FWHM) in excess of 40 cm-1, it is important to know the band-
width of the laser, both to guide baseline identification and avoid
the potential for any bandwidth-induced distortion of the measured
amide I band shapes.

Our approach uses the thermal water response as a direct mea-
surement of the spectrometer’s pump-pulse bandwidth and applies
this information to inform the choice of wavenumber regions used
for polynomial baseline correction.

The time-delayed thermal signal from H2O has been described
previously and is attributed to the delocalization of the bending
mode of water, coupled with the fast vibrational relaxation of the
fundamental vibrational mode, producing broadband responses that
persist to long waiting times.4,44 If the linewidth of the thermal
signal exceeds the pump pulse bandwidth used for 2D-IR data col-
lection, the frequency profile of the Tw = 5 ps spectrum should
be defined by the pulse bandwidth. This condition applies to the
LIFEtime spectrometer, where the bandwidth has been measured to
be ∼80 cm−1.14

We demonstrate our approach in Fig. 2, which shows the 2D-IR
spectrum of a sample of blood serum obtained with a Tw of 5 ps.
The spectrum is dominated by the thermal H2O signal.38 The pump
frequency profile of the signal is determined by taking a vertical
slice through the spectrum at the probe frequency where the max-
imum amplitude occurs [dashed line, Fig. 2(a)]. On comparing the
results of this process for several 2D-IR spectra, this was found to
be well-represented by a Gaussian function [Fig. 2(b)]. The FWHM
value of the fitted Gaussian functions produced an estimate of the
bandwidth of the LIFEtime spectrometer of 78 cm−1 with a cen-
tral frequency of 1648 cm−1 (Fig. S2). This is in excellent agreement
with the experimentally determined value, giving confidence in our
approach.

To apply this measurement to correct the baseline of 2D-IR
spectra at other values of Tw, the fitted Gaussian function [red
dashed line Fig. 2(c)] is used to inform a weighted function [black
line Fig. 2(c)] that effectively allocates a ratio of “signal” to “baseline”
at each frequency [Fig. 2(c) blue and red, respectively]. To exclude
as much signal as possible from the baseline correction, a threshold
of 12.5% of the peak amplitude was deemed appropriate, to assign
regions of signal and noise [Figs. 2(c) and S2]. This weighted func-
tion is then utilized to guide a second order polynomial fit that favors
the end regions of the spectrum, ensuring that the regions of sig-
nal are not influencing the baseline correction algorithm. Lower and
higher order polynomials were also tested; however, upon inspection

FIG. 2. Bandwidth calculation and application to the baseline subtraction process.
(a) Serum 2D-IR spectrum taken at Tw = 5 ps. Black dotted vertical line indicates
probe frequency 1645 cm−1 spanning full width of the peak, as indicated in panel
(b). (b) Data (green trace) and fit (black trace) of the probe frequency identified in
panel (a). Red horizontal dashed line indicates full width at half maximum (FWHM).
(c) Gaussian fit to the data (red dashed trace) plotted alongside weights used for
the baseline correction (solid black trace). Red dashed arrow indicates FWHM.
Dashed vertical and horizontal lines mark the Gaussian peak frequency and 12.5%
of peak amplitude, which are used to define noise and signal as denoted by red
and blue boxes, respectively.

of spectra post baseline correction, it was apparent that these
tended to under- and over-fit, respectively, and thus were deemed
unsuitable.

The bandwidth profile of a laser can change during measure-
ments and from day-to-day, while different instruments will have
unique bandwidth profiles. These factors highlight the benefits of a
methodology that provides an online, customized approach to base-
line correction. As the bandwidth’s limited response is inherent in
the water that is part of the sample being studied, this approach does
not require additional measurements or instrumental adjustments.

Smoothing

The Savitzky–Golay moving filter is readily applied to remove
high frequency noise from signals, while retaining the height and
shape of spectral peaks.45 The algorithm is applied identically to both
the pump and probe frequency of the 2D-IR spectrum, each utilizing
a third order polynomial with a 5-point window, so as not to over-fit
the data.

Principal component analysis—Noise reduction

The next step in the pre-processing workflow applies multi-
variate noise reduction. Similar to all measurement technologies,
2D-IR is subject to noise from multiple sources. Principal compo-
nent analysis (PCA) is a multivariate analysis technique, used for
performing orthogonal linear transformations, that has seen success,
with spectral and imaging modalities as a means of noise-reduction
(NR).34,39,46,47 PCA reduces the dimensionality of the entire dataset,
by geometrically projecting the data onto fewer dimensions, while
maximizing the total variance within the dataset as a whole.48 This
establishes a new coordinate system, whereby successive principal
components (PCs) are defined such that they identify progressively
smaller contributions to spectral variance [Fig. 3(a)]. In practice, this
produces limited number of PCs that contain important spectral
information, while many of the higher-numbered PCs capture lit-
tle to no variance throughout the entire dataset (i.e., random noise).
By rebuilding the dataset following the initial PCA using only the
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FIG. 3. Principal component analysis – noise reduction (PCA-NR) methodology.
(a) Scree plot indicating total variance of each PCA component (only ten are
shown here for clarity). PCA loadings are inset [panels (b)–(g)] with decreasing
variance.

significant PCs that contain spectral information, it is possible to
eliminate the noise that is captured by the minor PCs.48,49

We demonstrate this approach using the data from the final
protein library study, which will be discussed in more detail below.
PCA was applied to the full set of 15 spectra (four proteins and
serum–each measured in triplicate) obtained with Tw values of 250 fs
(Fig. 3). A PCA scree plot presenting the explained variance of each
component (up to 10 for clarity) is shown (Fig. 3, main panel). The
loading plots of the first six PCs are also shown [Figs. 3(b)–3(g)],
where the decreasing variance, and, so, decrease in the spectral infor-
mation with increasing PC number, can be seen from the percentage
variance value quoted in each panel.

The next step is to identify the components which contain
largely noise. A number of different methods can be applied to
determine the PC that represents the cut-off point between useful
signal and noise.49 A widely accepted rule followed for inspec-
tion of the scree plot is to find the “scree elbow;” the point at
which the explained variance of each subsequent component is no
longer rapidly decreasing. Another technique is to apply a threshold
of the explained variance, whereby only the number of compo-
nents needed to account for that percentage of the total variance is
included. For the data presented here (Fig. 3), the scree plot would
instruct that either two or three PCs are necessary to retain spectral
information, whether using a threshold of 90% of the total variance
or the scree elbow method, respectively. It is important, however,
to also consider the nature of the spectral dataset that is being ana-
lyzed. For example, the data in the protein library study (see below)
used to generate Fig. 3 include the spectra of four individual pro-
teins in the solution, as well as spectra of blood serum, which is

a mixture of the four proteins along with other components. This
experimental design dictates that the number of PCs likely to be
needed to capture the data is five. This can be seen clearly in the load-
ing plots [Figs. 3(b)–3(g)], whereby components 1 through 5 contain
reasonable spectral information, but component 6 is more random
in distribution and, so, contains noise. Exploratory inspection of the
loadings alongside the scree plot is advised prior to implementing
PCA for noise reduction.

Normalization

Following PCA-NR, the final stage in the workflow is to nor-
malize the dataset. Normalization to a specific spectral peak is often
utilized for spectroscopic data; however, this can conceal any abso-
lute changes in magnitude associated with the peak of interest. To
avoid such issues, we employ our internal normalization method,
which utilizes the magnitude of the temporally separated thermal
response in water to normalize the protein signals obtained at other
values of Tw.38 This approach relies on the fact that both Tw signals
acquired for each sample originate from near identical laser–sample
interaction processes, giving rise to magnitudes that are influenced
in an equal manner and, so, correlated. This provides a route to
normalize the dataset using a label-free internal standard, reduc-
ing measurement fluctuations and accounting for sample-to-sample
variations in cell path length.38

Workflow implementation

Upon application of the full pre-processing workflow described
above, the 2D-IR spectrum of a blood serum sample becomes signif-
icantly less noisy, as shown in Fig. 4. Inspection of the 2D-IR pump
slices projected onto the probe axis, as shown in Figs. 4(a) and 4(b)
(and Fig. S3), demonstrates how the prescribed workflow resolves
the spectral bands more clearly and places them on a clean and flat
baseline. Additionally, coupling to the protein amide II mode at
1550 cm−1 can be seen clearly after pre-processing, whereas it was
previously hidden in the noise [Figs. 4(a) and 4(b), red arrows]. Fur-
thermore, comparisons of the 2D-IR spectral profiles of the serum
amide I peaks show considerably less noise after the signal pro-
cessing methods have been applied [Figs. 4(c) and 4(d)], with the
signal-to-noise ratio increasing from 73 to 119. A more in-depth
comparison of the serum spectrum following each stage of the pre-
processing workflow is shown in Fig. S4, where it can be seen that
the S/N ratio improves with each successive step. After spectral
normalization is complete, the dataset is ready for analysis.

It is anticipated that this methodology could be applied to other
protein datasets, including protein dynamics studies. Although
beyond the scope of this article, the application of this pre-
processing methodology should, in principle, be applicable to stud-
ies where the waiting time is varied, as the PCA-NR and associated
pre-processing methods do not appreciably alter the spectral line
shapes. However, care would have to be taken in identifying the
PCs associated with, for example, changes in the 2D-IR line shape
due to dynamic processes, so as to not inadvertently remove them as
part of the NR process.

We now demonstrate the benefits of the workflow through its
application to two previously published datasets and finally extend
the full pre-processing method to a new application. The workflow
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FIG. 4. Serum 2D-IR pump slices at Tw = 250 fs (a) before and (b) after application
of pre-processing techniques. Yellow highlight in (b) indicates the region used to
subtract the baseline. Red arrows identify the amide II region discussed in the
text. Slices are displayed using a rainbow color scale (red–violet) from low to high
frequencies, respectively. Enlarged versions of these panels are shown in Fig. S3.
Serum 2D-IR spectra at Tw = 250 fs (c) before and (d) after application of pre-
processing techniques.

is structured in such a way that it can be applied fully or partially to
2D-IR spectral datasets, and, as such, in the first case study the pre-
processing is done step-wise, to highlight the benefits of each stage
of the technique.

Case study 1: AGR in serum

Blood serum samples consist of a mixture of proteins (∼71 g/l),
along with minor components such as fatty acids, minerals, carbohy-
drates, and nucleic acids. The main protein constituents are serum
albumin [30 g/l (0.45 mM)], which has a secondary structure dom-
inated by α-helixes, and γ-globulins (41 g/l), which are a mixture of
a number of β-sheet-rich proteins. The γ-globulins are largely com-
prised of the immunoglobulin proteins IgG, IgA ,and IgM, which
make up to >99% of the total γ-globulin content.50

In a previous study, we demonstrated that the albumin: glob-
ulin concentration ratio (AGR) of a serum sample could be deter-
mined using 2D-IR spectroscopy.20 The spectra of a number of sam-
ples were measured, in which γ-globulins were added to blood serum
at a range of concentrations. The concentration ratio of albumin to
globulins was determined by the magnitude of their respective amide
I peaks at 1639 cm−1 (γ-globulins) and 1656 cm−1 (serum albumin),
which arise from the differences in their secondary structure com-
positions (Fig. S5). Three methodologies were tested to quantify the
AGR, and it was determined that the use of pump frequency slices
isolating the γ-globulin and albumin fractions independently yielded
the best results. The published data applied a second order polyno-
mial baseline correction across the full probe range and the spectra
were normalized to the albumin peak at 1656 cm−1 for clarity.

The linear regression is shown when plotting the AGR against
additional γ-globulin concentration, following the addition of
the SG-smoothing filter and PCA-NR elements of our new pre-
processing pathway, in Fig. 5, alongside the results of the origi-
nal study. When adding the SG-smoothing component, the linear
regression analysis shows that R2 increases from 0.963 to 0.977 and
the root mean square error (RMSE) reduces from 0.017 to 0.013 g/l.
Combining the SG filter with a five component PCA-NR yields a
further improvement in the linear regression R2 to a value of 0.981
(Fig. 5),20 while the RMSE reduces from 0.017 to 0.012 g/l.

The true AGR value for each sample is shown via the solid black
diagonal lines in Fig. 5. Perhaps the most notable result of adding the
new pre-processing steps is that the experimental AGR values align
more closely with the true AGR value.

The order in which SG smoothing and noise reduction tech-
niques were applied was also found to be significant. The best results
were obtained when applying the baseline subtraction prior to the
SG filter and PCA-NR, as determined by the highest quantification
accuracies. When the baseline correction was performed after the
PCA-NR, the regression R2 reduced to 0.95 and the RMSE increased
to 0.021 g/l.

Case study 2: Glycine detection in serum

The second case study uses the results of an experiment
in which glycine was employed as a model protein to evaluate
the ability of 2D-IR to detect and quantify low-molecular weight
(LMW) protein components of serum.21 The 2D-IR spectra of blood
serum samples with varying concentrations of glycine were obtained
(supplementary material Fig. S6). To quantify the glycine concentra-
tion, the spectral diagonals were isolated, and the magnitude of the
2D-IR diagonal peak assigned to the amide II contribution of glycine
(1515 cm−1) was found to be linearly correlated with the glycine
concentration (Fig. 6). Based on these measurements [Fig. 6(a)], we
reported a detection limit of 3 g/l for glycine in serum. This was
evaluated using the quantified noise floor level found in the 2D-IR
spectra (±9.6 × 10−3, as the 2D-IR signal has both positive and neg-
ative components), which is shown as the horizontal dashed lines in
Fig. 6(b) inset.21

FIG. 5. Albumin to globulin ratio (AGR) of serum samples from 2D-IR spec-
troscopy, obtained using the pump slice method. Panels compare the AGR results
when using different pre-processing methods (a) with a second order polyno-
mial baseline subtraction and amide I normalization and (b) when combining this
with an additional 5pt Savitzky–Golay smoothing filter and principal component
analysis-noise reduction (PCA-NR) retaining only five components. Solid black
lines indicate the “actual” AGR of the sample, and the gray dashed lines denote
linear fits to the experimental result.
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FIG. 6. Comparison of different pre-processing steps in glycine detection in serum.
(a) and (c) 2D-IR diagonal slices scaled to the amide I albumin peak at 1656 cm−1.
(b) and (d) The average amplitude at 1515 cm−1 [gray dashed vertical lines
in (a) and (c)] are plotted as a function of glycine concentration; error bars
show 1σ variation from the measurement in triplicate. The linear regression fits
(black dashed lines) and their respective R2 and errors are shown in (b) and (d).
The inset shows the data for the range 0–12.5 g/l ,expanded for clarity, and dashed
horizontal gray lines show noise levels for the dataset. (a) and (b) Only a second
order polynomial baseline correction and amide I normalization was used, and
(c) and (d) used additional Savitzky–Golay smoothing and principal component
noise reduction pre-processing steps highlighted in the text. Colored spectra in
(a) and (c) align with concentrations shown in (b) and (d).

Once again, addition of the SG-smoothing filter and a seven
component PCA-NR leads to a reduction in the noise levels of the
spectrum diagonals when compared with those without the addi-
tional pre-processing steps [Fig. 6(c) vs Fig. 6(a)]. Improved linearity
is achieved, yielding an increase in R2 from 0.994 to 0.996 alongside
a reduction in RMSE from 0.015 to 0.012 g/l [Figs. 6(b) and 6(d)].
The spectral noise floor remained unchanged, which is likely due to
the PCA method being unable to remove noise from the important
PCs containing spectral data; however, the detection limit is reduced
from 3 to 0.8 g/l, meaning that all glycine concentrations studied
are now detectable above the noise floor—[Fig. 6(d)] inset, horizon-
tal dashed lines. As glycine is a single amino acid, this detection
limit of 0.8 g/l is an upper sensitivity limit, which does not con-
sider the effects of transition dipole coupling in secondary structures
that serve to enhance the magnitude of the amide I band in 2D-IR
spectra.51 For proteins and peptides, which are composed of many
amino acids, this coupling should lead to improvements in sensitiv-
ity relative to glycine. Moreover, glycine was chosen as the model
protein, as it has the simplest side chain structure of all naturally
occurring amino acids. In the case of other amino acids, which will
present additional side chain-specific modes, we anticipate that each
amino acid will yield a signature set of 2D-IR peaks, allowing similar
methods to be used.

It is interesting to note that seven PCs were used to encompass
the variance of this dataset, compared with the five components
used for the AGR data in case study 1. This may relate to the
larger wavenumber range in both pump and probe frequencies and

additional number of bands being assessed in the dataset due to
glycine, compared with only the amide I peak assessed with the
AGR dataset. Following this, a definitive number of PCs for use
in the noise-reduction aspect of the pre-processing workflow can-
not be identified, but instead, each dataset should be evaluated on a
case-by-case basis.

Serum protein deconvolution using protein library
The improvements to the analysis of previously published

datasets now motivates an attempt to test whether 2D-IR can be
used to discriminate between contributions to the serum amide
I band from more than just the albumin and γ-globulin compo-
nents using the full workflow. In principle, 2D-IR spectroscopy with
its information-rich line shapes provides the opportunity to resolve
contributions from multiple proteins. To test this, a protein library
in H2O was constructed with the aim of using this to distinguish con-
tributions to the 2D-IR spectrum from the four major serum pro-
teins. As described above, our equine serum sample contains ∼71 g/l
of total proteins [serum albumins (SA) ∼30 g/l; γ-globulins ∼41 g/l].
In turn, the γ globulin fraction features three major immunoglobulin
(Ig) components by concentration: IgG (∼13–41 g/l), IgA (∼1–3 g/l),
and IgM (∼0.5–2.5 g/l).52,53 Together, these account for 99% of the
γ-globulins.

The average (of triplicate) 2D-IR spectra for each of the indi-
vidual proteins are shown in Fig. 7, along with those of the serum
[Fig. 7(a)]. Despite the fact that the Ig proteins are all dominated
by β-sheet structures, each of these proteins has a unique secondary
structure, which enables their differentiation using 2D-IR.20 Two
approaches were tested to quantify the components of the serum
spectrum using the four-protein model library: manual deconvo-
lution and the multivariate analysis technique—multivariate curve
resolution-alternating least squares (MCR-ALS).

In the case of manual deconvolution, the spectrum of each
component protein was scaled to reflect the typical concentrations
found in serum. The albumin concentration was fixed to 30 g/l and
the total globulin concentration was summed to 41 g/l, to align
with the wet chemistry results. Specifically, the concentrations used
were SA – 30 g/l, IgG – 36 g/l, IgA – 3 g/l, and IgM – 2 g/l.
Building a 2D-IR spectrum from a linear combination of the four
constituent components at these concentrations produced a spec-
trum that appears similar to that of the serum [Figs. 8(a) and 8(b)].
Upon subtraction of this from the true serum spectrum, small resid-
ual signals are obtained [Figs. 8(c) and 8(d)]. These signals lie
along the spectrum diagonal, representative of α-helical and β-sheet
structures still present in serum, and the coupling of the β-sheet
modes between 1630 and 1670 cm−1 is also notable [Fig. 8(d)]. This
approach indicates that it is feasible that the amide I band of serum
can be deconstructed into its component parts. The fact that the
residual signal that remains after subtraction of the model serum
spectrum from the real one contains signals that are consistent with
the presence of further proteinaceous material is reasonable. Our
approach is based on accounting for a large fraction of the protein
component, but there will necessarily be residual protein content,
and the results of this analysis appear consistent with that. When
varying each of the component concentrations, while maintaining
clinical ranges, similar residuals are produced, and, so, a more sen-
sitive methodology may be necessary to obtain results comparable
with wet chemistries.
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FIG. 7. Pre-processed 2D-IR spectra of
(a) serum and serum proteins. (b) SA,
(c) γ-globulins, (d) IgG, (e) IgA, and
(f) IgM—all at concentrations of 30 g/l.

Although promising, the manual approach necessarily requires
foreknowledge of the protein content of serum. Given that future
analytical applications of 2D-IR will require rapid and objective
analyses, we evaluated the MCR-ALS approach, as it has shown
promising results and high sensitivities when decomposing chem-
ical mixtures using other measurement techniques.54–56 MCR-ALS
is a linear model of chemically meaningful pure contributions that
is used to quantify these pure contributions in mixed compo-
nent samples.54,57,58 Typically, the initial estimates of the spectra
(e.g., the protein library) are input into the algorithm, along with

FIG. 8. Manual serum protein deconvolution. 2D-IR spectra of (a) serum contain-
ing known albumin (30 g/l) and total globulin (41 g/l) concentrations. (b) Spectrum
formed from a linear combination of SA (30 g/l), IgG (36 g/l), IgA (3 g/l), and
IgM (2 g/l), and (c) the residual signal after subtraction of (b) from (a), and (d) the
residual signal in (c) zoomed in by a factor of 10 to observe remaining signals.
Black diagonal dashed lines in panels (b) and (d) indicate spectrum diagonals.

“constraints,” to help fit the library to the test spectra. Here, the
“non-negativity constraint” was applied–this ensures that the con-
centration predictions do not produce negative values, and the initial
input, the four protein spectra, were deemed “known” and, there-
fore, fixed–meaning that the algorithm could not change the input
library.

The results of the MCR-ALS using four input components
(SA, IgG, IgA, and IgM)—all at a concentration of 30 g/l (Fig. 7)—are
shown in Fig. 9 and Table I. Three individual serum samples were
used to test the MCR model, and the average serum spectrum is

FIG. 9. Results obtained by multivariate curve resolution (MCR) using four pure
component inputs—BSA, IgA, IgM, and IgG (as in Fig. 7). (a) Average 2D-IR spec-
trum of serum, (b) the 2D-IR spectrum obtained using MCR (c) the residual signal
from subtraction of (b) from (a), and (d) the residual signal in (c) multiplied by a
factor of 10 to observe remaining signals. Black diagonal dashed lines in panels
(b) and (d) indicate spectrum diagonals.

J. Chem. Phys. 157, 205102 (2022); doi: 10.1063/5.0127680 157, 205102-8

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. Protein concentrations in serum samples obtained by multivariate curve
resolution (MCR) with a 4-component model. The known ranges of each protein are
shown in the top row for Refs. 52 and 53.

Sample SA (g/l) IgA (g/l) IgG (g/l) IgM (g/l)

⋅ ⋅ ⋅ 30–50 1–3 13–41 0.5–2.5
1 30.1 32.4 0 0
2 28.4 47.4 0 0
3 39.0 40.5 0 0
Average 32.5 40.1 0 0

shown in Fig. 9(a). The average protein concentrations obtained
using MCR (Table I) are used to calculate the original spectrum
[Fig. 9(b)] and the difference between the MCR calculated and the
experimental 2D-IR spectrum of serum is shown in panels (c) and
(d). In this case, the algorithm was found to only identify the pres-
ence of two-components, and the contributions for IgG and IgM
were returned as 0 g/l in all cases. The indication is that the tech-
nique is not able to distinguish between the immunoglobulins in the
complex mixture, which may arise from the comparative similarity
in their secondary structures.

This represents an ambitious challenge for 2D-IR spectral
analysis, and, so, the fact that the different spectra obtained using
both manual deconvolution and MCR-ALS provide similar results
is encouraging. However, the quantitative results produced by MCR
were not as realistic of the true serum mixture and, so, it is evident
that challenges remain in developing truly unguided analysis meth-
ods. One key drawback of MCR-ALS and many least-squares fitting
algorithms is that they are designed to minimize the residual fit. In
this proof-of-concept trial, we attempted to use a limited library of
protein spectra, to account for the spectrum of the complex mixture,
which, in reality, may feature several hundred protein species.40,59

This means that, in practice, the fitting of the spectral profile results
in a minimum with a residual signal that cannot be fully removed or
accounted for at this stage.

It is noteworthy that the three immunoglobulins used here have
structures rich in β-sheets and are structurally very similar to one
another, with subtle spectral differences between them.20 This leads
us to suggest that structurally similar α-helical proteins or intrin-
sically disordered proteins could also be deconvoluted in the serum
matrix and would be an interesting next step in our proposed protein
library method and pre-processing methods.

In summary, application of the workflow to the third dataset
highlights a number of things: First, the combined effects of
bandwidth-guided baseline subtraction, PCA-NR, and normaliza-
tion lead to improvements in the sensitivity of the 2D-IR method in
the applications described. Second, it is clear that further advance-
ments surrounding data acquisition and sample cell design will
be necessary to reduce the variability stemming from the sam-
ple path length and to enable more accurate quantification of
protein concentrations. Finally, while there is promise for pro-
tein library methods, it is clear that development of larger protein
libraries that are able to account for the more general aspects of
the nature of serum samples that are non-specific and common will
be needed alongside the application of more sophisticated analy-
sis tools. Overall, however, these results serve to encourage further

work classifying additional abundant proteins in serum, to create
a larger protein library and, thus, a more inclusive study. Such a
development strategy can also be expected to provide further knowl-
edge to develop 2D-IR disease diagnosis methods through protein
screening.

CONCLUSIONS

The methodology developed here demonstrates a robust and
automated approach to the pre-processing of 2D-IR spectral datasets
of aqueous protein samples and biofluids; for the protein library
dataset, less than two minutes were required to process 46 datasets
(23 samples, each with two Tw spectra), starting from time domain
as-measured data to fully processed spectra, using our workflow.
The pre-processing workflow has been devised and tested on pre-
viously published data and applied to a first attempt to decon-
volute spectra of complex protein mixtures. Using the thermal
response of water inherent in these measurements, a direct mea-
surement of the laser pulse-bandwidth is achieved and provides a
route to a guided baseline correction approach that can be cus-
tomized to the laser pump–pulse and does not impact on the
spectral signatures being investigated. As this information is already
present in the dataset via the intrinsic water signals, the work-
flow does not require additional measurements or experimental
alterations, offering a simple, yet powerful, approach to provide
reductions in the effects of experimental noise and instrumental
fluctuations.

We have verified our method in three studies, showcasing
beneficial outcomes including a more accurate AGR, comparable
to the current gold-standard assays, with reduced associated errors.
Additionally, lower detection limits for low-molecular weight
species in serum have also been demonstrated, with the upper detec-
tion limit reduced from ∼3 to 0.8 g/l. It is noted that developments
in experimental design may also reduce some experimental variabil-
ity and lead to improvement of these works. Finally, we established
the use of a small protein library to predict multiple protein concen-
trations in serum using 2D-IR for the first time. We demonstrated
manual deconvolution of serum into its constituent components,
which provided promising results; however, this approach requires
prior knowledge of concentration ranges. Additionally, we found
issues with the use of MCR-ALS for the purposes of a serum library,
likely due to the vast range of proteins present in serum, suggest-
ing that some of these issues with this method may be overcome
with larger and more robust datasets, allowing the algorithm to
recognize the 2D-IR patterns pertaining to more of the proteins
present in the serum. Comparisons with gold standard assay test-
ing demonstrate the similarity in results being obtained from both
methods; however, the 2D-IR method could, in principle, achieve
these results from a single label-free, non-destructive, rapid mea-
surement of the proteins in situ. To our knowledge, this is the
first full pre-processing workflow devised for the application toward
2D-IR spectral datasets of aqueous fluids. Combination of high-
throughput systems with our devised pre-processing workflow and
tighter restrictions on measurement set-up provides scope that the
water content of biofluids could be the internal standard for aque-
ous 2D-IR datasets, and, so, the next steps to create large protein
libraries become feasible. In combination with methods such as arti-
ficial intelligence and machine learning algorithms, the potential
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exists for a truly unguided assessment of protein content from a
single 2D-IR measurement.

SUPPLEMENTARY MATERIAL

The supplementary material contains additional figures relat-
ing to data pre-processing, methodology, and the results described
in each of the three case studies.
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