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RESEARCH ARTICLE
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University of Central Lancashire, Preston PR1 1XJ, UK. 3School of Astronuatics, Beihang University, 

Beijing 102206, China.

*Address correspondence to: gongsp@buaa.edu.cn

This paper proposed a new attitude determination method for low-orbit spacecraft. The attitude prediction 
accuracy is greatly improved by adding the unmodeled environmental torque to the dynamic equation. 
Specifically, the environmental torque extraction algorithm based on extended Kalman filter and series 
extended state observer is introduced, and the unmodeled part of dynamic is identified through the inverse 
dynamic model. Then, the collected data are analyzed and trained by a backpropagation neural network, 
resulting in an attitude-torque mapping network with compensation ability. The simulation results show 
that the proposed feedback attitude prediction algorithm can outperform standard methods and provide 
a high accurate picture of prediction and reliability with discontinuous measurement.

Introduction

The attitude determination of low-Earth-orbit (LEO) satellite 
is essential for the normal operation such as communication, 
maneuver, telemetry, etc. Under normal circumstances, the 
satellite is equipped with infrared Earth sensors and star sen-
sors, which can achieve precise attitude determination in real 
time. However, at the end of the satellite service life, or serious 
malfunctions that occur in satellite electronic system, the atti-
tude determination system is unable to function properly. Then, 
it is necessary to descend the orbit for the ablation and disor-
ganization in the atmosphere. During this process, accurate 
satellite attitude prediction without the assistance of sensors is 
very critical, which can help to determine the condition of sat-
ellite debris, estimate the landing area, and reduce the damage 
caused by debris in advance.

Since the 1960s, researchers have been constantly exploring 
how to estimate the orientation of nonworking LEO satellite. 
There are 2 main research interests: The first is to refine the 
environmental torque model, including the gravitational gra-
dient torque [1–3], magnetic torque [4], aerodynamic torque 
[5–7], etc. The offline attitude estimation accuracy and credible 
period have been greatly improved with the meticulous envi-
ronment model. The second method is based on filtering and 
optimizing the measurement results observed by ground facil-
ities. Many data processing algorithms including the modified 
Kalman filter [8], spatial-based least-squares estimation [9], 
multiple model adaptive estimation [10], centered error entropy 
unscented Kalman filter [11], the predictive attitude determi-
nation algorithm [12], etc. are used to filter out the observa-
tion noise tangled in the data. These data filtering algorithms 
have been successfully validated on multiple aircraft platforms 
[13–16].

The disadvantages of the above aforementioned techniques 
are also evident. The method based on refined environment 
model can estimate the effect precisely in a period of time, but 
the reliability wound descends greatly due to the uncertainty 
of aerodynamic model and satellite parameters. On the other 
hand, the method based on data filtering and optimization can 
obtain accurate observations in real time, but it is difficult to 
combine the prediction algorithm with the dynamic model to 
form a prediction framework due to the high nonlinearity and 
coupling of the environmental torques.

Recently, the breakthrough in neural network recently pro-
vides possibility for accurate attitude prediction. The neural net
work is a nonlinear mapping function with high generalization 
ability and self-learning ability. It has been proved mathemati-
cally that the network structure with enough neurons can esti-
mate any nonlinear function with extremely high accuracy [17]. 
The combination of neural network and dynamic model has 
been applied to the fields of aerospace, machinery, and intelligent 
control. Lin et al. combine the fuzzy intelligence control with 
neural network to achieve the attitude control of a solar sail [18]. 
Carrara develops a neural-network-based attitude controller of 
a satellite with deployable solar arrays [19]. Zhang et al. utilize 
neural network to adjust the parameters of proportional integral 
derivative control of satellite efficiently [20]. Raja et al. imple-
ment an adaptive neural network with quaternion and Euler 
angles for the optimization of proportional integral derivative 
satellite attitude dynamics and control system [21]. Yun and Fan 
propose an adaptive control method based on Radial Basis 
Function (RBF) neural network to solve the problem of satellite 
attitude tracking [22]. However, the above methods only propose 
theory and simulation experiment, without actual data as veri-
fication, and do not consider the measurement noise, which 
reduces the reliability in practical applications.
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The main contributions of this paper are as follows: First, a 
feedback attitude prediction algorithm is proposed, which can 
achieve the current and persistent attitude prediction with high 
accuracy. The complex dynamic model, few short-term attitude 
observation data, and extremely uncertain atmospheric torque 
cause it difficult to determine the attitude. However, our meth-
ods can extract the high-order unmodeled dynamics from the 
attitude data and then compensate the environment uncertainty 
through a trained neural network. Second, a high-order torque 
identification framework based on extended Kalman filter (EKF) 
and series extended state observer (ESO) is proposed, which 
can reduce observation noise and effectively extract uncertain 
environmental torque. The proposed framework can well solve 
the deficiency of conventional ESO observation in noncascade 
system and combine Kalman filter to reduce the observation 
error. Through the combination of the 2 contributions, a set of 
highly portable spacecraft attitude and orbit prediction frame-
work is provided.

The organization of this paper proceeds as follows: In the 
Attitude Prediction Model of LEO Satellite section, the environ-
mental torques considered in LEO are reviewed, and the atti-
tude kinematic and dynamic model based on quaternion are 
introduced. Then, the unmodeled torque extraction algorithm 
based on EKF and series ESO is proposed in the Filtering and 
Determination Attitude section. A well-trained torque compen-
sation network is introduced in the Unmodeled Compensation 
Based on Neural Network section, which can map the current 
state to the unmodeled environment torque. In the Simulation 
and Results section, simulation results based on an actual satellite 
are presented to illustrate the effectiveness of the proposed algo-
rithm. The results show that the method can reduce the attitude 
prediction error effectively and maintain the reliability of the 
estimation at a high level with persistent on-line measurement.

Attitude Prediction Model of LEO Satellite
For falling spacecrafts in LEO, the main environmental distur-
bances are the gravitational gradient torque generated by grav-
ity and the aerodynamic torque generated by atmospheric drag. 
Under the interference of these environmental torques, the space-
craft velocity and angular velocity also change, further affecting 
the prediction of the meteorite trajectory. This section reviews 
the environmental torque considered in LEO and, furthermore, 
demonstrates the kinematic and dynamic framework of attitude 
prediction based on quaternion. The transformation between 
the Euler angle and quaternion is also presented.

Environmental torque of LEO satellites
LEO satellites are affected by various environmental torques, 
including gravity gradient torque, aerodynamic torque, solar 
radiation torque, magnetic torque, etc. The torques are related 
to satellite and environment conditions, such as the size, mass, 
mass distribution, and orbital height that are essential for the 
attitude prediction of the uncontrolled satellite. For LEO space-
crafts, the aerodynamic torque and gravity gradient torque are 
mainly considered. The gravity gradient torque is often utilized 
to stabilize Earth pointing with several degrees of error. The 
aerodynamic torque plays a dominant role in the LEO and will 
interfere the control system, causing the spacecraft to reverse at 
the end of the mission.

According to the law of gravitation, the gravity of Earth 
decreases with the distance from the center of Earth. So, the 

gravity of each part of the satellite is also different, resulting in 
the gravity gradient torque. The gravity gradient torque can be 
described as [23]:

where r represents the centroid position vector of satellite rel-
ative to Earth, J is the inertia matrix of satellite, and μ is the 
gravitational constant of Earth. For LEO satellites, if the inertia 
matrix is on the order of 1000 kg m2, then the gravity gradient 
torque is around 3 × 10−3 N m [23].

The aerodynamic torque is generally caused by the impact of 
atmospheric molecules on the surface of spacecraft. The complex 
space shape leads to different aerodynamic forces on different 
sides of the asymmetric satellite, resulting in the aerodynamic 
torque. The aerodynamic torque is related to many elements, 
including the current altitude, velocity, windward area, and so 
on. Since it is difficult to calculate the windward area in real time, 
wind tunnel tests are usually carried out to obtain the aerody-
namic coefficients under different attitudes. Then, the aerody-
namic torque is determined according to the angle of attack and 
sideslip angle in the prediction. The aerodynamic torque can be 
described as [23]:

where CD represents the aerodynamic torque coefficients in 
3 directions in body coordinate system, Sref is the reference wind
ward area, ρ represents the atmosphere density, v is the velocity 
of the satellite, and rcp − cm is the offset distance between the 
satellite centroid and the pressure center. The coefficient matrix 
is obtained in real time by calculating the attack angle and 
sideslip angle. Considering a satellite with 300 km orbital alti-
tude, 7.7 km/s velocity, 5 × 10−11 kg/m3 atmospheric density, 
1 m2 windward area and 1 m pneumatic arm, then the aerody-
namic torque is around 3 × 10−3 N m at the same level as the 
gravity gradient torque [23].

As for magnetic torque and solar radiation torque, for ordi-
nary LEO satellites, the magnitude of both is around 1 × 10−5 N m, 
which is too small compared with the gravity gradient torque 
and the aerodynamic torque. Therefore, the magnetic torque and 
the solar radiation torque are not considered in this paper [23].

Attitude kinematic and dynamic equations
The attitude of satellite is usually defined by the rotation between 
the Earth-centered inertial system and the body-fixed frame. The 
Euler angle rotation sequence used in this paper is yaw–pitch–
roll. On the basis of the above definition, the attitude kinematic 
equation in the Euler angle form is given by:

where ψ, θ, and φ represent the yaw, pitch, and roll angle, 
ωb = [ωxb, ωyb, ωzb]

T is the angular velocity expressed in body-
fixed frame. It is worth noting that in some special attitudes 

(1)NGG =
3�
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(the pitch angle is 90°), the attitude kinematic equation expressed 
by the Euler angles (Eq. 3) will cause singularities. Here, we use 
quaternions to express the attitude kinematic equation as:

The main advantage of the quaternion representation is that 
the attitude kinematic equation is free of singularities and the 
kinematic equation matrix is linear. In addition, the conversion 
between the quaternion and the Euler angle can be written as:

As for the attitude dynamics, the angular momentum of the 
spacecraft can be expressed as:

According to the angular momentum theorem, the change rate 
of the spacecraft angular momentum can be expressed as:

The above equation holds in any coordinate system, while the 
inertia matrix changes with the rotation of the spacecraft in the 
Earth-centered inertial system, which is difficult for the attitude 
integral prediction. In general, the attitude dynamic equation 
is usually expressed in the body fixed frame as:

where M represents the sum of environmental moments.

Filtering and Determination of Attitude
In the open-loop prediction, the accurate measurement of sat-
ellite attitude is very important. A tiny initial deviation will 

cause the prediction results to gradually deviate from the actual 
condition. The most straightforward method to estimate the 
satellite attitude for a long time is to combine the dynamic 
model with the observation data and then calculate the opti-
mal estimation according to the principle of minimum var-
iance. After obtaining the attitude estimation, the high-order 
unmodeled information can be extracted from the original data 
through the extended state identification, which will be instru-
mental to refine the dynamic model. In this section, the esti-
mation results of the satellite state are obtained by the EKF, and 
then the unmodeled torque of satellite is estimated by series of 
the ESO.

Extended Kalman filter
The attitude data measured by the ground observation facility 
have uncertain Gaussian noise, which brings trouble to high 
precise attitude determination. The EKF can integrate attitude 
measurement data and prediction system by updating the opti-
mal estimation of the satellite attitude online according to the 
real-time observation. In this section, the satellite attitude is 
expressed as a quaternion vector, and the more accurate attitude 
estimation is obtained by a standard EKF process. Consider the 
nonlinear prediction update shown by:

where f
(
x̂k
)
 represents the sum of nonlinear environment torque 

at state ̂xk and Δt represents the step size of EKF. Assuming that 
the covariance matrix of the current state is Pk and then the 
update of the covariance matrix is given by:

where Q represents the system process noise covariance matrix 
and Φk is the state-transition matrix and can be expressed in 
the following form:

The Kalman gain update equation is defined as:

where R represents the measurement noise covariance matrix 
and Hk is the measurement matrix, and for simplicity of calcu-
lation, we have:

(4)
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Then, the state and the covariance matrix update based on Kalman 
gain can be expressed as:

where yk = Hx̂k represents the measurement results at tk.

Remark. It is worth noting that in the process of EKF, the process 
noise and measurement noise must meet the conditions of the 
linear uncorrelation, the zero mean, and Gaussian distribution; 
otherwise, the filtering result may be inaccurate.

Series ESO
Some status information is difficult to be measured directly by 
the sensors in the field of engineering, such as angular velocity, 
angular acceleration, etc. However, the uncertainty estimation, 
including the internal coupling, the external unknown distur-
bances, and the unmodeled dynamics, can be determined with 
rarely observation information by building an ESO. After obtain-
ing the optimal attitude estimation with the EKF, a series of ESO 
is introduced to extract the high-order unmodeled information 
hiding in the attitude. Consider the following nonlinear dynamic 
system to be observed:

where q = [q0, q1, q2, q3]
T represents the attitude quaternion, 

f(q, s) is the known as high-order input, which stands for the 
known environment torques of satellite based on orbit infor-
mation s, and d is the unknown disturbance to be identified. 
A series ESO system d̂ =�b

(
�a(q)

)
 is constructed to obtain 

the best estimation of d. The internal observer is designed as 
follows:

where y1 ∈ qi + vi(i = 0, 1, 2, 3) represents the attitude measure-
ment results based on the sensors and the ground observation 
facility, vi is the measurement noise, βa = [βa1, βa2] > 0 is the 

feedback coefficient, za = [za1, za2]
T is the observer system state, 

and the nonlinear error correction function is given by:

The estimated value of the quaternion derivative can be expressed 
as: za2 = ̂̇q, and the estimation results of the angular velocity is 
obtained through the reverse process of Eq. 4 as:

The internal ESO has been completed up to now. The angular 
velocity information of the satellite system can be extracted 
from the observed quaternion data through the internal ESO, 
and the angular velocity can be more accurate through a low-
pass filter. The external observer is designed as follows:

where y2 ∈ �̂i(i = 1,2,3) represents the angular velocity esti-
mation results based on the internal ESO, βb = [βb1, βb2] > 0 
is the feedback coefficient, zb = [zb1, zb2]T is the observer 
system state, and zb2 = ̂̇�i is the estimation result of angular 
velocity derivative. Then, the estimation result of environ-
ment torques can be obtained through the inverse process 
of Eq. 17 as:
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Fig. 1. The structure of attitude prediction BP network.
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Similar to the internal ESO, the high-frequency oscillation gen-
erated in the estimation process can be suppressed by designing 
a low-pass filter.

Unmodeled Compensation Based on  
Neural Network
In this section, a double hidden layer backpropagation (BP) 
network is constructed to learn the unmodeled environment 
torque in the satellite. The BP neural network has high gener-
alization and self-learning ability, can reconstruct the mapping 
relationship between the state and the environmental torque, 
and plays a critical role in attitude prediction system.

Considering a 3-layer neural network as shown in Fig. 1, 
the input layer of the network is the measured attitude infor-
mation: xinput = [q0, q1, q2, q3]

T, and the tutor signal of supervised 
learning is the unmodeled torque identified in the Filtering and 
Determination of Attitude section: y = [d1, d2, d3]

T. The activa-
tion function of the first hidden layer is the “Relu” function 
defined as:

Then, the relationship between the first input and output 
layer can be expressed as:

where N(q), q = 1, 2, 3 represents the number of neurons in each 
layer and x0 = 1 represents the bias term, which is not dis-
played in Fig. 2 for the intuition. The activation function of the 
second hidden layer is a “Sigmoid” function defined as:

Then, the relationship between the second input and output 
layer can be expressed as:

The final output of neural network is shown as:

The above process denotes the forward propagation of a single 
group of samples. For the N groups of measured samples, 
xinput = [q1, q2, …, qN], and the tutor signal: ytarget = [d1, d2, …, dN]. 
The loss function based on sample set is selected as:

(23)Relu: f1(s) =

⎧
⎪⎪⎨⎪⎪⎩

s s>0

0 s≤0

(24)x
(2)

i
= f1

(
s
(1)

i

)
= f1

(
N1−1∑
j=0

w
(1)

ij
x
(1)

j

)
i = 1, 2, … ,N1

(25)Sigmoid: f (s) =
1

1 + e−s

(26)x
(3)

i
= f2

(
s
(2)

i

)
= f2

(
N2−1∑
j=0

w
(2)

ij
x
(2)

j

)
i=1, 2, … ,N2

(27)yi=

N3−1∑
j=0

w
(3)

ij
x
(3)

j
i=1, 2, 3

(28)E =
1

2

N∑
p=1

(
d̂p−dp

)2

=
1

2

N∑
p=1

Ep

Network initialization

Training set initialization

Calculate the error 

between the network 
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Yes
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Fig. 2. The whole training process of the neural network.

Table. The initial orbit and attitude parameters of Tiangong-1 
Space Station.

Mass (kg) 7,661.4

Attitude angle (°) 91, −59, −137

Angular velocity (°/s) −0.2679, −0.01085, 1.0207

Position (km, in 
J2000)

4,561.4433, −3,977.5169, 
−2,366.0892

Velocity (km/s, in 
J2000)

5.3239 3.3147 4.6915

Inertia matrix 
(kg m2)

⎡
⎢
⎢
⎢
⎢
⎣

16, 407.00 −132.87 448.55

−132.87 76, 391.94 −27.54

448.55 −27.54 70, 912.02

⎤
⎥
⎥
⎥
⎥
⎦
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During the process of the network learning, the weight is con-
stantly updated according to the error between the output y 
and the tutor signal ytarget. For the qth layer:

By analogy, the result of 
�Ep

�w
(q)
ij

, q = 1, 2, 3 is calculated continu-

ously by backward propagation. Then, the update of each neu-
ron weights can be expressed as:

where α > 0 is the network learning rate. The whole training 
process is shown in Fig. 2.

Remark. The normalization of the network is essential. Since the 
magnitude of the identified environmental torque is too small, 
the training set should be mapped to the range of [0,1] by normal-
ization for a better training efficiency. The corresponding linear 
transformation is also required during verification of the test set 
and the attitude prediction process.

Simulation and Results
In this section, the whole process and simulation results of the 
prediction system are presented. The target spacecraft is selected 
as Tiangong-1 Space Station descending into the atmosphere. 

The detailed parameters are shown in Table. Because of the cou-
pling effect of the spacecraft orbit and attitude, it is difficult to 
consider the independent influence of the environmental torque 
independently. Therefore, 13 state parameters including a 3-axis 
position, a 3-axis velocity (both expressed in J2000 coordinate 
system), a quaternion, and an angular velocity are used in the 
simulation. A disturbance is artificially added to the simulation 
as the unmodeled environmental torque. The time step of the 
EKF is 0.1 s, and the covariance matrix of the observation noise 
is 1 × 10−4, which means that 1.1° noise is contained into the 
observation.

The main structure of the prediction system is shown in Fig. 3. 
Under the interference of the complex environmental torque and 
the attitude orbit coupling, the angular velocity of the spacecraft 
changes irregularly. The attitude data are used as measurement 
samples for the torque identification and the attitude prediction 
algorithm verification. Figure 4 shows the real attitude and angular 
velocity of the spacecraft in LEO for 1 h. Figure 5 shows the Euler 
angle error in distribution diagram.

(29)

�Ep

�w
(q)
ij

=
�Ep

�x
(q)
pi

�x
(q)
pi

�s
(q)
pi

�s
(q)
pi

�w
(q)
ij

= −
(
dpi−x

(q)
pi

)
f �q

(
s
(q)
pi

)
x
(q−1)
pj

(30)w
(q)
ij

(k + 1) = w
(q)
ij

(k) + �
�Ep

�w
(q)
ij

Satellite 

model

d̂

+ yEnvironment

moment

+

Network

training

Network

compensation

Moment extract

filter

Attitude 

prediction

Fig. 3. The structure of attitude prediction system.
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After a period of iteration, the tracking is extracted quickly. 
The identification results have strong shake since the ESO is 
highly based on the observation. However, these shakes are fil-
tered out during the training of the neural network due to the 
independence between the attitude and the estimated results. 
The identification results are provided to the neural network 
according to the algorithm in the Unmodeled Compensation 
Based on Neural Network section. The neural network param-
eters used in this paper are set as: N1 = 6, N2 = 6, learning rate 
α = 0.1, and maximum epoch is 200. The real torques, identifi-
cation results, and network output are shown in Fig. 6. The yellow 
represents the identification results, the blue represents the real 
torque, and red represents the torque estimated by the trained 

neural network. The results show that the neural network can 
eliminate the shakes in the ESO and obtain high-precision esti-
mation of the unmodeled dynamics. Besides, the activation func-
tion of the neural network has a great influence on the learning 
effect. The neural network with the “Relu+Sigmoid” activation 
function has better effect than other activation functions through 
simulations, such as the “Sigmoid+Relu”, “Sigmoid+Sigmoid” 
function, etc.

Figure 7 shows the prediction effect of the whole system 
after compensation. The blue line represents the real attitude 
after 1 hour, the red line represents the attitude prediction results 
without neural network compensation, the yellow line represents 
the attitude prediction compensated by the neural network, 
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while the purple line represents the attitude estimation generated 
by using the direct state estimation results, in which the error 
is large because of the interference of measurement noise. The 
comparison shows that the attitude estimation accuracy after 
compensation is higher and the accurate period is longer.

The final results of the proposed algorithm and the attitude 
determination results are presented in Fig. 8. The results show 
the observation error of the neural network compensated, directly 

compensated, and uncompensated prediction with the periodic 
observation correction (the cycle is 500 s). The comparison 
indicates that under the periodic observation correction, the 
spacecraft attitude prediction drift in the LEO exceeds 100° with 
directly compensation or without compensation, while the error 
is nearly controlled within 10° under the function of the neural 
network compensation, which demonstrates the effectiveness of 
the whole attitude compensation and prediction system.
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Conclusion
Here, a novel prediction system is proposed to solve the attitude 
determination problem of the low-orbit malfunctioning satel-
lite. An unmodeled torque identification method based on the 
quaternion is introduced. Then, an attitude prediction system 
is proposed combined with the BP neural network. The simu-
lation results show that this method has high prediction accu-
racy and high reliability with discontinuous measurement, 
which proves the superiority and feasibility of this new method. 
In addition, this method has high expansibility and can be 
applied to various high-precision prediction fields with unmod-
eled disturbances. Excellent prediction results can be obtained 
easily by optimizing the identification algorithm and designing 
appropriate activation function.
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