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A B S T R A C T   

The human oral microbiome has primarily been studied in clinical settings and for medical purposes. More 
recently, oral microbial research has been incorporated into other areas of study. In forensics, research has aimed 
to exploit the variation in composition of the oral microbiome to answer forensic relevant topics, such as human 
identification and geographical provenience. Several studies have focused on the use of microbiome for conti-
nental, national, or ethnic origin evaluations. However, it is not clear how the microbiome varies between similar 
ethnic populations across different regions in a country. We report here a comparison of the oral microbiomes of 
individuals living in two regions of Italy – Lombardy and Piedmont. Oral samples were obtained by swabbing the 
donors’ oral mucosa, and the V4 region of the 16S rRNA gene was sequenced from the extracted microbial DNA. 
Additionally, we compared the oral and the skin microbiome from a subset of these individuals, to provide an 
understanding of which anatomical region may provide more robust results that can be useful for forensic human 
identification. 

Initial analysis of the oral microbiota revealed the presence of a core oral microbiome, consisting of nine taxa 
shared across all oral samples, as well as unique donor characterising taxa in 31 out of 50 samples. We also 
identified a trend between the abundance of Proteobacteria and Bacteroidota and the smoking habits, and of 
Spirochaetota and Synergistota and the age of the enrolled participants. Whilst no significant differences were 
observed in the oral microbial diversity of individuals from Lombardy or Piedmont, we identified two bacterial 
families – Corynebacteriaceae and Actinomycetaceae – that showed abundance trends between the two regions. 
Comparative analysis of the skin and oral microbiota showed significant differences in the alpha (p = 0.0011) 
and beta (Pr(>F) = 9.999e-05) diversities. Analysis of skin and oral samples from the same donor further 
revealed that the skin microbiome contained more unique donor characterising taxa than the oral one. 

Overall, this study demonstrates that whilst the oral microbiome of individuals from the same country and of 
similar ethnicity are largely similar, there may be donor characterising taxa that might be useful for identifi-
cation purposes. Furthermore, the bacterial signatures associated with certain lifestyles could provide useful 
information for investigative purposes. Finally, additional studies are required, the skin microbiome may be a 
better discriminant for human identification than the oral one.   

1. Introduction 

The human oral microbiome refers to the total genetic material of all 

microorganisms in various areas of the oral cavity, including the hard 
and soft palates, tongue, oral mucosa, and teeth [1]. The oral cavity 
contains one of the largest and most diverse cohorts of microbial 
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communities across the human body [2,3]. Different studies have 
demonstrated the importance of the oral microbiome in determining and 
understanding human health and disease states [4,5]. Reduced micro-
bial diversity and increased dominance of certain taxa in saliva or other 
oral micro-niches has been associated with a host of diseases including 
chronic obstructive pulmonary disease [6], chronic recurrent multifocal 
osteomyelitis [7], rheumatoid arthritis [8], cancers [9–11] and even 
obesity [12]. Similarly, oral dysbiosis – which is the disruption of the 
equilibrium of oral microbiota [13] – has been noted for diseases 
localised within the oral cavity, including periodontitis [14,15] and 
caries [16,17]. Thus, the observation of oral dysbiosis is often studied as 
a microbial marker for declining oral health and disease [18–20] as 
there is a consensus concerning the critical role of the oral microbiome 
in oral health or disease states [21]. Consequently, more efforts continue 
to be directed towards understanding the oral microbiota, its composi-
tion and clinical relevance for health, disease, and medical 
interventions. 

In forensics, studies on the human microbiome are focused on 
providing alternative methods to address questions or issues related to 
post-mortem interval (PMI) estimation [22–24], body fluid identifica-
tion [25–27], sexual assault detection [28], time since deposition of a 
stain [29], geolocation [30–32] and human identification [33–35]. The 
Human Microbiome Project [36], and subsequent studies [3,37,38], 
have identified within the oral microbiome, a core microbiome – which 
can be found across unrelated individuals – and a variable microbiome 
that differs between individuals. This diversity in the oral microbial 
composition is influenced by various factors such as host genetics [39], 
sex [40,41], biogeographical provenience [42,43] and lifestyle activity 
such as diet [41], antibiotic-use [44], alcohol intake [45] and smoking 
habits [46], and documented them as contributors to microbiome 
variability seen across unrelated individuals, and even among mono-
zygotic twins [47,48]. Other studies have utilised this variability 
conferred by environmental or genetic factors to demonstrate the po-
tential of the oral microbiome to predict age [49] and parental re-
lationships [50]. Thus, the observation of differences in the oral 
microbiome among individuals could be a potential tool for forensic 
investigative purposes. 

Studies leveraging on the microbiome variation amongst people 
present the opportunity to address crucial lines of inquiry on human 
identification for forensic applications. This is especially relevant in 
crime investigations involving low quantity or quality human DNA, 
where it may be crucial to have alternatives that rely on other DNA 
sources. However, in understanding microbial variation from person-to- 
person, it is equally important to characterise variation across pop-
ulations as such information may lend insights on ‘group-identity’. 
Several biogeographical provenance studies [42,51–55] utilising 
various tissues have been conducted to assess microbiome variability 
across continents, countries and ethnicities and have shown that the 
geographic origin of the study participants significantly drives the dif-
ferences observed in the microbiome. These findings, therefore, present 
compelling prospects for the integration of the microbiome for biogeo-
graphic inference and for forensic human identification purposes. 
Studies involving participants from countries such as the U.S.A. and 
Australia [54–56] have attempted to characterise the microbiome of 
Americans, giving useful insights on the oral microbial diversity across 
distinct ethnicities and highlighting their variability. 

A few studies have focused on the differences in the oral microbiome 
of individuals from various regions of the same country [57,58], 
although their focus has largely been on characterising microbial di-
versity regarding ethnicity or urbanisation and have also not aimed at 
forensic applications. 

In order to incorporate microbiome analysis for the determination of 
geographical origin in forensics, it is necessary to understand oral mi-
crobial diversity among individuals with similar ethnic origins, albeit 
from different regions within the same country. In this study we report, 
for the first time to our knowledge, the composition and distribution of 

the oral microbiome of individuals from two regions with similar ur-
banisation levels – Lombardy and Piedmont – in Italy. We also attempt to 
evaluate the influence of certain lifestyle factors on the oral microbiota 
and discover if distinct microbial communities exist between these two 
regions in Italy. 

Additionally, in exploring the oral microbiome as a potential tool in 
the forensic analytical ‘toolkit’, it is important to recognize how it may 
differ in comparison to a different microbial habitat on the body. Skin 
microbiomes have famously been investigated for its individualising 
potential [33,59–61] as skin microbiota are easily and constantly shed 
onto surfaces and persist for considerable periods. Such studies have 
reported up to 93 % [59] accuracy in human identification. With such 
results, this study aimed to discover which microbial habitat – skin or 
oral – may be more appropriate in providing discriminating information 
which could be useful for human forensic identification, by comparing 
oral and skin microbiomes sampled from the same individuals. 

2. Materials and methods 

2.1. Demographic data 

This study was approved by the Northumbria University Ethics 
Committee, United Kingdom (submission ref. 29218) and by the 
“Comitato Etico Interaziendale Novara”, Italy (submission ref. CE 57/ 
20). Informed consent was requested and obtained from all the partic-
ipants enrolled. 

Fifty healthy individuals (25 males and 25 females), living in 
different areas of the North of Italy and aged between 20 and 70 years, 
were included in this study. The donors completed a questionnaire that 
assessed their lifestyle factors (smoking, alcohol-use, hygiene, transport- 
mode, occupation, sport activity, travel) and health (BMI, health status, 
medications, in particular antibiotic-use) that could affect the compo-
sition of the microbiome. 

2.2. Sampling 

Oral samples were obtained by rubbing a sterile swab around the oral 
mucosa (left and right cheeks) for 15 s in each area, as per standard 
sampling approaches in forensics (e.g., for human DNA collection). Skin 
swabs were taken from a subset (11) of the same 50 individuals by 
sliding two sterile swabs moistened with physiological water over palms 
and fingers of the dominant hand for 15 s as explained in Procopio et al. 
[61]. These skin samples were incorporated into this study as they had 
already been used in a previous study [61]. Both skin and oral swabs 
were then frozen at − 20 ◦C and kept stored until further processing. 

2.3. Microbiome extraction and analysis 

Microbial DNA was extracted from all samples using the QIAamp 
PowerFecal Pro DNA Kit (QIAGEN, Hilden, Germany), according to the 
protocol detailed in Procopio et al. [61]. Samples were quantified and 
checked for purity with NanoDrop One Microvolume UV-Vis Spectro-
photometer (ThermoFisher Scientific, Waltham, MA, USA), prior to 
metabarcoding analysis. 

Bacterial profiling of the V4 region of the 16S rRNA gene was carried 
out by NU-OMICS (Northumbria University, Newcastle, UK). Briefly, 
PCR was carried out using 1x Accuprime Pfx Supermix, 0.5 µM each 
primer and 1 µL of template DNA under the following conditions 95 ⁰C 2 
min, 30 cycles 95 ◦C 20 s, 55 ◦C 15 s, 72 ◦C 5 min with a final extension 
72 ◦C 10 min. One positive and one negative control sample were 
included in each 96 well plate and carried through to sequencing. 

PCR products were normalised using SequalPrep™ Normalization kit 
(Invitrogen) as described in the manufacturer’s instructions and com-
bined into four pools. Each pool was quantified using fragment size 
determined by BioAnalyzer (Agilent Technologies) and concentration by 
Qubit (Invitrogen). Pools were combined in equimolar amounts to create 
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a single library then denatured using 0.2 N NaOH for 5 min and diluted 
to a final concentration of 5 pM, supplemented with 15 % PhiX and 
loaded onto a MiSeq V2 500 cycle cartridge (Illumina Inc., San Diego, 
CA, USA). Targeting and sequencing of the V4 region of the 16S rRNA 
gene for bacterial identification were done following the gold standards 
suggested by the Human Microbiome Project [36]. 

2.4. Bioinformatic and statistical analysis 

Paired-end reads from NGS were demultiplexed and analyzed using 
QIIME2 (version 2021.11). Denoising, as a quality control measure for 
filtering and to remove chimeric sequences, was achieved using DADA2. 
Reads were truncated at 240 bp forward and 194 bp reverse reads to 
avoid low quality sequences. The taxonomic classifier adopted was the 
QIIME2 release SILVA-138–99 [60,61] database. On plotting a rarefac-
tion curve (Supplementary Fig. S1), one skin sample, SG16B, was 
excluded from further downstream analysis due to low DNA quantity 
and/or low sequencing quality. ASV counts were standardized to the 
median sequencing depth to control for differences in sequencing depth 
across samples. This was achieved in R using PHYLOSEQ package (ver. 
1.40.0) and pre-processing code written by the package’s developer and 
reported here:2  

total = median(sample_sums(physeq))                                                       

standf = function(x, t=total) round(t * (x / sum(x)))                                     

ps = transform_sample_counts(physeq, standf)                                           

To evaluate statistical difference between groups, statistical analyses 
were run in R (https://www.R-project.org/) ver. 4.2.2. Taxon abun-
dances, alpha and beta diversity indices were calculated with PHYLO-
SEQ package (ver. 1.40.0) and all PERMANOVA was run with vegan 
(ver. 2.6–4), to test for differences between groups. Seed was set to 22 
for all PERMANOVA analysis to ensure reproducibility of results. Dif-
ferential abundance testing to identify significantly different genera 
between groups was calculated using the DESeq2 package, (ver. 1.36.0). 
Taxa were filtered to an abundance (3 times) and a prevalence in at least 
50 % of the samples before differential abundance testing. 

3. Results 

3.1. Oral microbiome analysis 

6847,595 reads were obtained from all samples – skin and oral – 
ranging from a minimum sample read of 2968 and a maximum of 
399,411 after sequencing. Sequencing also produced an average sample 
read of 114,005.5. The oral microbiome of the participants was assigned 
into 20 phyla. Of these, Firmicutes (45.8 %), Proteobacteria (35.4 %), 
Bacteroidota (7.8 %), Actinobacteriota (6.6 %) and Fusobacteriota (3 %) 
were predominant, and every other phylum had a relative abundance of 
less than 1 %. A total of 775 Amplicon Sequence Variant (ASVs) 
remained after filtering mitochondria and chloroplasts from the feature 
table. 

Nine ASVs were constantly found in all 50 samples and belonged to 
taxa Firmicutes (genus, Gemella; genus, Streptococcus; genus, Veillonella; 
genus, Granulicatella), Proteobacteria (family, Pasteurellaceae; genus 
Neisseria), Actinobacteriota (genus, Rothia; genus, Actinomyces) and 
Fusobacteriota (genus, Fusobacterium). 

The analysis of the microbiome phyla associated with metadata 
collected in Table 1 showed specific trends connecting the abundance of 
certain bacteria to specific factors, particularly smoking habits and age 
of the participants. Proteobacteria abundance was the highest among 
participants who had never smoked and the lowest in current smokers, 
and vice-versa for the Bacteroidota phylum (Fig. 1A). Regarding the 
chronological age, Spirochaetota and Synergistota abundance increased 
with increasing age of participants and declined after 41–50 years 

Table 1 
Demographic information of 50 study participants including lifestyle or habit information collected, and the number of participants associated with each factor and 
level.  

Demographic Number of Participants 

Factor Age Birth 
Region 

Residence 
Region 

Smoking Alcohol 
use 

Sport Drugs – 
Medical use 

Antibiotic use (3 
months) 

Medical 
Condition 

Transport mode (to 
Work) Level 

Lombardy - 20 22 - - - - - - - 
Piedmont - 22 26 - - - - - - - 
Puglia* - 2 - - - - - - - - 
Umbria* - 2 - - - - - - - - 
Campania* - 1 - - - - - - - - 
Veneto* - 3 2 - - - - - - - 
20–30 (years) 10 - - - - - - - - - 
31–40 (years) 10 - - - - - - - - - 
41–50 (years) 10 - - - - - - - - - 
51–60 (years) 11 - - - - - - - - - 
61–70 (years) 9 - - - - - - - - - 
Yes - - - 10 31 24 19 6 20 - 
No - - - 25 19 26 31 44 30 - 
Past (Former) - - - 15 - - - - - - 
Private Vehicle - - - - - - - - - 34 
Public 

Transport 
- - - - - - - - - 8 

Foot or Bike - - - - - - - - - 8 
TOTAL 50 50 50 50 50 50 50 50 50 50  

* These regions were excluded from alpha and beta diversity analysis due to under sampling of the areas. 

Table 2 
Number of participants in relation to frequency of habits – smoking, drinking 
and exercise.   

Number of Participants 

Frequency Light Normal Heavy 

Smoking (Cigarettes per day)  3  6  1 
Drinking days (per week)  23  3  7 
Sport (per week)  7  14  2 

KEY Smoking (per day) - Light: < 5; Normal: 5–10; Heavy: > 10 cigarettes per day. 
Drinking days (per week) - Light: < 3; Normal: 3–5; Heavy: > 5 days. 
Sport (per week) - Light: Once a week; Normal: 2–3 times; Heavy: > 3 times a 
week. 

2 https://joey711.github.io/phyloseq/preprocess.html#preprocessing 
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(Fig. 1B). 
Alpha diversity metrics obtained by measuring the Shannon di-

versity, showed no statistically significant differences between the mi-
crobial community evenness of participants born and residing in the two 
regions of Lombardy or Piedmont, Italy (Fig. 2A). Individuals from the 
other regions (as per Table 1) were excluded from further quantitative 
analyses due to their limited sample size. However, an abundance 
analysis – standardised ASV counts – of all samples is given in (Sup-
plementary Fig. S2). Permanova analysis on the PCoA of unweighted 
Unifrac distance (Fig. 2B) resulted in a Pr(>F) value of 0.4733, showing 
that no significant differences in samples were observed between the 
two regions under consideration. 

DESeq2 analysis at FDR 0.01 of differentially abundant taxa identi-
fied two taxa (Fig. 3) that were differentially abundant between in-
dividuals from the two regions. These taxa were represented in the 
phylum Actinobacteriota (family – Corynebacteriaceae, species – Cor-
ynebacterium_matruchotii and family – Actinomycetaceae, genus – 
F0322). 

3.2. Microbial habitat comparison: skin and oral 

Here, we compared skin and oral microbiome from 10 of the par-
ticipants – excluding the participant whose skin sample had low read 
count, SG16B – from which both types of samples (buccal and skin swab) 
were collected. Firmicutes and Proteobacteria were the dominant phyla 
across oral and skin samples, and together represented 80.2 % of the 
total bacterial population. Alpha diversity, using Shannon index values, 

showed significant differences (p = 0.0011, Pairwise Wilcoxon Rank 
Sum Test) among the two sites (Fig. 4). 

Skin samples displayed higher species richness and diversity than 
their oral counterparts. PERMANOVA analysis using unweighted Uni-
Frac distances further confirmed the distinction between oral (buccal 
swabs) and skin bacterial microbiomes, with a Pr(>F) value of 9.999e- 
05. The resulting PCoA plot showed a clear clustering of samples 
based on the tissue type (Fig. 4). Further analysis revealed 79 differen-
tially abundant taxa (Supplementary Fig. S3) between the oral and skin 
microbiomes. 

In addition, we investigated the existence of donor characterising 
taxa (DCT), i.e., taxa that are present in a participant’s oral and/or skin 
microbiome and absent in those of other participants. No shared DCTs 
were found in both the oral and skin microbiome of any participant, 
however, we found some DCTs unique to either the participant’s oral or 
skin microbiome (Table 3). 

Results showed that there were more DCTs in the skin microbiome, 
with some participants having no DCTs in their oral microbiome. A full 
taxonomic characterization of the DCTs found are listed in Supple-
mentary Table S1 and S2. 

4. Discussion 

The oral microbiome, albeit primarily saliva and oral wash samples, 
has been explored particularly in relation to oral dysbiosis and oral or 
systemic diseases. It also has been established that the oral microbiome 
has the potential to be used as a tool for human/personal identification 

Fig. 1. Bacterial abundance (standardised ASV counts) of different phyla related to (A) smoking habits and (B) chronological age.  
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[35,47,62]. However, in assessing its use for individual-specific identi-
fication, it is important to characterise oral microbial variation within 
similar populations. Therefore, the aim of this study was to evaluate 
forensically relevant oral microbiome samples, hence buccal swabs, to 
evaluate oral microbiome diversity between regions in Italy with similar 

urbanisation, involving participants of the same ethnicity. 
Similar studies describing oral microbiota of individuals across re-

gions of the same country are largely designed to assess the impact of 
disease states [55,63] and extrinsic factors like cultural differences [64], 
urbanisation [58,65] and even altitude [66]. We investigated bacterial 

Fig. 2. Oral diversity metrics – alpha (Fig. 2A) and beta (Fig. 2B) reflecting the unweighted Unifrac distance – of taxa between samples from the regions of Lombardy 
and Piedmont. 

Fig. 3. Differential abundance testing with DESeq2 for significant taxa between Lombardy and Piedmont, Italy.  
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diversity and taxonomic composition in the buccal mucosa of 50 Italian 
individuals living in Italy. Analyses of the oral microbiome showed the 
presence of a core microbiome shared amongst people despite their 
geographical provenience and health status. These findings are consis-
tent with previous reports [3,37,38] showing similar core bacterial taxa 
with different populations. 

Overall, there was no significant difference in diversity between the 
two regions of Italy assessed. This finding is not unexpected as the 
population assessed were consistently similar regarding origin country, 
ethnicity, and culture. However, our finding of two taxa that were 
differentially abundant in the two regions of Italy, despite the limited 
number of individuals considered in this preliminary work, highlights 
the relevance of understanding microbial variation in similar pop-
ulations for forensic applications. Larger datasets including an extended 
number of individuals from several regions from the same country may 
in fact reveal the presence of specific taxa able to characterise the 
population of specific regions, and this may have significant 

implications for forensic investigations. 
In the assessment of the participants’ lifestyle factors, we obtained 

consistent results with other studies, identifying a significant depletion 
of Proteobacteria in the oral microbiome of never-smokers in comparison 
with current smokers [66–68]. Bacteroidota abundance displayed similar 
trends, being highest however in current smokers, and lowest in 
never-smokers. Certain bacterial taxa – including the aerobe, Haemo-
philus (Proteobacteria) [67], and anaerobic bacteria Prevotella (Bacter-
oidota) [67,68] – have been associated with smoking. These studies and 
others [69,70] have suggested that cigarette-use facilitates an anaerobic 
oral environment which favours the depletion of aerobic bacteria and 
the enrichment of facultative and strict anaerobes. Thus, the observed 
alterations to the abundance levels of these phyla may be due to oxygen 
deprivation. Furthermore, in comparison to never-smokers, pre-
vious-smokers had lower abundance of Bacteroidota, which was higher 
in comparison to current smokers. A reverse of this phenomenon was 
observed with Proteobacteria and suggests the recovery of oral micro-
biota following cessation of smoking. Oxygen deprivation may also 
explain the recovery of the microbiome following smoking cessation, as 
restoration of oxygen could re-establish original levels of depleted or 
enriched microbiota. While the exact mechanism remains undetermined 
and is not the focus of this study, our observations nonetheless show the 
potential of the oral microbiome as a predictor of smoking habits. 

Regarding age, we observed an increasing abundance of phyla Spi-
rochaetota and Synergistota with increasing age, peaking at the group age 
of 41–50, after which there was a general decline. Clinical microbiology 
studies have indicated that oral bacteria belonging to these phyla are 
usually indicators of periodontal diseases [71–74]. While periodontal 
disease is primarily caused by poor hygiene, age has been reported to be 
a risk factor [75]. This may explain the trends observed here, as oral 
health has been shown to decline with age [76–78], despite the decline 

Fig. 4. Diversity analysis comparing oral mucosa (buccal swab) and skin microbiome of 10 participants. A) Boxplot showing alpha diversity metrics (observed and 
Shannon). B) Principal component analysis plot of beta diversity using unweighted Unifrac distance. 

Table 3 
Number of donor-characterising-taxa (DCT) found in oral and skin samples.  

Sample ID Number of DCTs (Oral) Number of DCTs (Skin) 

SG01  1  13 
SG07  2  15 
SG10  0  42 
SG12  1  5 
SG19  0  5 
SG32  7  4 
SG39  0  46 
SG43  0  47 
SG54  13  47 
SG100  0  20  
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in abundance after the 41–50 age group resulting from causes not yet 
completely identified. Whilst the reasons behind this trend will require 
further research, this finding may indicate a future potential use of these 
taxa as indicators for the estimation of age in unknown individuals. 

As an additional aim of the paper, the oral and skin microbiomes of 
10 participants in the study were compared to investigate which 
anatomical location and associated microbiome could potentially pro-
vide more useful information for forensic human profiling. Clustering of 
samples in the PCoA plot (Fig. 4B) was based on the sample type (skin or 
oral swab), rather than on the individuals, as expected, indicating that 
the microbiome variations between these samples were more related to 
the sample type than to the donors. PCoA and alpha diversity measures 
also showed that the skin microbiome is more diverse than the oral 
microbiome, revealing an increased potential for human identification 
using the skin microbiome as opposed to using the oral microbiome. The 
observation of more DCTs in the skin microbiome when compared to the 
oral microbiome may also suggest greater potential for human identi-
fication. However, the skin microbiome has been reported to be more 
susceptible to changes over time [79,80], and consist of transient mi-
croorganisms. Hence, further research on the stability of these DCTs in 
long term or longitudinal studies would be beneficial for conclusively 
determining which habitat – skin or oral – may be a more suitable 
alternative to human DNA for forensic discriminatory purposes. 

5. Conclusion 

While research on microbial composition of similar populations and 
ethnic groups is often overlooked, our study confirms the importance for 
the assessment of such populations. Characterisation of such groups is 
necessary to advance the integration of the oral microbiome in routine 
forensic analysis as both group- and individual identification have 
forensic importance. From a forensic perspective, the skin microbiome 
may have more potential for individual characterisation than its oral 
counterpart, due to the presence of multiple DCTs that could be useful 
for identification purposes. We do acknowledge, however, the forensic 
challenges that accompany temporal changes of skin microbiota, as such 
changes could compromise the possibility of using skin microbiomes 
collected after a long time, for example, from a crime scene to accurately 
identify individuals or provide investigative information about an in-
dividual. On the other hand, the conserved or less diverse nature of the 
oral microbiome indicates that it could be better suited for body fluid 
identification – saliva – and that it could reflect certain habits or lifestyle 
characteristics useful for forensic investigations. 

In summary, our findings have provided insights into oral and skin 
microbiomes of Italians and how they might be utilised in forensic 
profiling. Results from our study have suggested that the abundance of 
certain bacterial taxa can provide information on individuals and their 
lifestyles. There is need however, for further studies involving a larger 
sample size and similar cohorts within other regions of the same coun-
try, as well as comparisons between regions from other countries, for 
clarifying to which extent these analyses may be used in the future to 
assist with human identification and forensic investigations. 
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