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The impact of heat electrification on the seasonal and interannual 
electricity demand of Great Britain 

Malcolm Peacock *, Aikaterini Fragaki , Bogdan J Matuszewski 
University of Central Lancashire, Preston PR12HE, United Kingdom   

H I G H L I G H T S  

• Isolating the impact of heat pumps on national electricity under historic weather. 
• Validations with measured data indicate the best heat demand generation method. 
• 41 % heat pumps would increase Great Britain’s winter electricity demand by 30 TWh. 
• Year-to-year variability of electricity demand increases by 37 %. 
• 25 % inaccuracy of future peak electricity demand estimates.  

A R T I C L E  I N F O   

Keywords: 
Electricity demand 
Electrification of heat 
Heat pumps 
Interannual weather 

A B S T R A C T   

Amongst all future developments it is the electrification of heat that is anticipated to have the largest impact on 
seasonal and interannual electricity demand. There is therefore a need to accurately quantify and assess this 
impact. This paper uses a combination of existing advanced techniques to modify the historic electricity demand 
to incorporate the impact of heat pumps alone for long-term historic weather data using Great Britain as an 
example. The methods for generating time series were compared and extensively validated. This includes 
comparisons with measured data that have not been used previously for this purpose. The research reveals that 
for predicted 2050 heat pump penetration levels the monthly demand for electricity doubles in winter. This leads 
to an increase of approximately 30 TWh for each winter month and a 37 % increase in year-to-year variability of 
electricity demand due to weather. Peak electricity demand is very sensitive to the method of generating heat 
demand and the assumptions on hourly heat pump operating profiles, suggesting inaccuracies of 25 % in esti-
mates of future peak demand. This work, rather than just assessing the impact of projected changes provides a 
reference case for policy makers to guide the decision process and planning for future scenarios.   

1. Introduction 

30 % of primary energy demand in Europe is for the heat sector [1]. 
To reduce carbon emissions from fossil fuels such as natural gas it is 
likely that electricity generated from low carbon sources will be used to 
provide heating [2]. This migration to electric heating termed the 
electrification of heat has been shown to be one of the two most sig-
nificant impacts on future electricity demand in cooler countries [3,4], 
the other being the electrification of transport. Most of the heat demand 
will be provided by electric heat pumps which are the most efficient way 
of providing electric heating [5]. Rather than converting electric energy 
to heat energy directly, heat pumps use electricity to pump heat from a 

colder location to a warmer one in a similar way to a domestic fridge. 
National energy system models [6] to assess the future decarbon-

isation of heat, require electricity demand time series and renewable 
generation modelled from historic weather as inputs. At hourly time 
steps the models choose how to allocate the energy supply to different 
sources of demand according to a strategy such as minimization of CO2, 
fuel use or cost. Using only a single year of weather is not enough to 
capture the variation in renewable power generation [7] to fully test an 
energy model. Therefore some studies are starting to use time series of 
several years of historic weather for example 10 years [8] or 30 years 
[9]. Most studies do not use historic electricity time series to generate 
future electricity demand but generate time series which are almost 
entirely synthetic. A typical example of this approach [10] generates 
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hourly electricity time series for the Danish electricity system. Separate 
time series for each sector are generated by splitting its annual demand 
into days and hours based on standard profiles, including historic 
weather time series or weather projections, seasonal and behavioural 
influences as appropriate. These separate time series are then aggre-
gated. The DESSTINEE model and ELOAD [3] improve on this by 
incorporating residuals from the historic electricity demand time series 
to get a more realistic demand pattern. 

The future impact of heating electrification on UK electricity demand 
has been assessed in several different ways. One study [11] used the 
historic gas series as a proxy for heat demand to predict the impact on 
electricity demand. A regression model with historic gas demand and 
weather was used in [4] to modify the historic electricity demand time 
series. In another study, heat pump simulations of 960 buildings [12] 
were used to predict net peak demand. Heat pump trial data was 
upscaled in [13] to represent the national housing stock. These studies 
focus mainly on the peak hourly demand with little attention given to 
the impact on the seasonal and interannual demand profiles. However, 
renewable energy sources also exhibit high seasonal variation. There-
fore, when considering systems with high penetrations of renewable 
energy up to 100 % renewables and incorporating possibly storage, 
including long duration storage [14], it is also necessary, to account for 
both seasonal and interannual effects. A study that investigates such 
effects on electricity demand [15] incorporating long term weather ef-
fects too, is based on projections of demand into to the future achieved 
with the method of decomposition described earlier here and does not 
isolate the effect of heat electrification from other developments. Pro-
jections include anticipated changes in all sectors based on a scenario of 
possible future growth. Although there is some variation in electric 
vehicle efficiency with temperature [16] transport is not directly linked 
to temperature [17] whilst there is strong dependence of heating de-
mand on weather. Therefore it is reasonable to anticipate that it is the 
electrification of heat that will have the largest impact on the seasonal 
and inter annual variation of electricity demand [15]. This will be 
particularly the case for countries with cold and long winters [17]. 
However, this effect has not yet been isolated from other factors. It is this 
impact of heat electrification alone on day to day, seasonal and inter-
annual electricity demand that is the main focus of this work, and it is 
analysed and quantified for the case of Great Britain. 

Rather than looking into all future scenarios for all sectors and all 
technological changes such as improvements in efficiency, insulation, 
and load shifting, and societal changes such as economic activity pop-
ulation, appliance mix and human behaviour in this work we isolate the 
impact of heat pumps from all other changes under long term realistic 

weather patterns. Based on current technological and socioeconomic 
conditions and accounting only for the anticipated implementation of 
electric heat pumps by 2050 this work introduces a method to isolate 
and study the impact of a specific change, which, in this case, is the 
electrification of heat. As such it provides a benchmark for planning and 
policy making towards sustainable developments and solutions. It im-
proves on earlier studies by using a state of the art method for calcu-
lating heat demand [18] to generate heating electricity demand time 
series from 40 years of historic weather data. In contrast to other studies 
that use a constant heat pump coefficient of performance (COP) [8] or 
one population weighted temperature[3] we calculate a temperature 
dependent COP at each weather grid point and use this to calculate the 
electricity demand from that grid point’s heat demand. The existing 
studies we are aware of generating heat demand time series top down 
use several different methods of splitting an annual heat demand into 
days. Previous work comparing these methods against each other [19] 
validates the heat demand only against gas. Here we perform in-depth 
validations using not only historic national electricity and gas time se-
ries, as typically done in previous works [18], but also measurements of 
heat, gas, and electricity usage from actual buildings, data sets that have 
not been used previously for this type of validation. Our research reveals 
firstly that introduction of heat pumps doubles the monthly demand for 
electricity in winter leading to an increase in about 30TWh for each 
winter month and secondly that the difference between the largest and 
smallest annual electricity demand for weather years 1980–2019 in-
creases from 19 TWh to 26 TWh. It also reveals the sensitivity of 
generated peak electricity demand to the hourly profiles used in 
modelling leading to uncertainties in the estimations of peak electricity 
demand which vary over a range of 25 GW. This is quite significant 
compared to estimates of future peak demand of between 40 and 100 
GW reported in research [17]. Such inaccuracies have not been quan-
tified in previous research. 

Similar to [15] our work does not capture effects due to future 
climate change and does not capture weather conditions that are outside 
of the near-term history. 

Although our study is restricted to Great Britain, the methods can be 
applicable to any other country. The reason for using Great Britain as 
case study is because firstly, it has good availability of reliable historic 
long-term weather data and secondly, the demand for space and water 
heating is substantial [17]. 

The novel contributions of this work are: 

Nomenclature 

ASHP Air Source Heat Pump 
Bh Hourly baseline electricity demand time series (TWh) 
COPh,g,s Heat pump coefficient of performance for hour h, grid 

point g, heating configuration s 
d Day of the year 
ΔT Difference between heat pumps source and sink 

temperature (◦C) 
Eh Hourly heating electricity time series (TWh) 
Fh Hourly historic electricity demand time series (TWh) 
G Weather grid point 
GSHP Ground Source Heat Pump 
h Hour of the year 
Hd,g Heat time series for day d and grid point g (Twh) 
HDannual Annual heat demand 
HDAy Annual heat demand for year y 
HDD Heating degree days (◦C) 

HDDy Heating degree days for year y 
i Hour of the day 
J Hourly heat profile (%) 
Ks Proportion of heating from configuration s 
L Proportion of heating which is electrified 
nRMSE Normalised Root Mean Square Error 
Pg Population at grid point g 
Rd Daily gas time series from linear regression (Twh) 
RH Resistive Heating 
RHPP Renewable Heat Premium Payment – trial of heat pumps 
s Heating configuration, eg ASHP with underfloor, 

resistance heating 
Sh Hourly electricity demand time series with heating 

provided by heat pumps (Twh) 
Tamb

d,g Mean daily ambient external temperature for day d and 
grid point g (◦C) 

TRef
d,g Reference temperature for day d and grid point g (◦C)  
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• the method of modifying a long-term historic electricity demand 
time series to incorporate heating electricity for a given heat pump 
penetration. 

• quantitative analysis, using long-term historic weather data, of sea-
sonal and interannual variations of the impact of heat pumps alone, 
separated from all other factors, on the Great Britain electricity de-
mand. This is in addition to quantification of peak demand that other 
studies do.  

• the comparison of methods adapted from previous studies for 
generating national heat demand time series from long term historic 
weather.  

• validations of methods for generating national heat and electricity 
demand time series against measured data 

The rest of this paper is structured as follows. Section 2 lists the data 
used, section 3 describes the methods, and section 4 describes the vali-
dations. Section 5 discusses the results, there is a sensitivity analysis in 
section 6, and section 7 discusses the conclusions. 

2. Input data 

Weather data for Great Britain was taken from the ERA5 weather 
reanalysis [20] at spatial resolutions of 0.75◦ x 0.75◦ and 0.25◦ x 0.25◦. 
Hourly 2 m ambient air temperature and soil temperature for the years 
1980 to 2019 were used in the calculation of heat pump coefficient of 
performance (COP) and the generation and validation of heat demand 
time series. Monthly mean 10 m wind speeds for 1979 to 2018 were used 
to identify windy and non-windy locations in the generation of heat 
demand. The weather data was weighted by the Great Britain population 
taken from Eurostat [21] for 2011 so that the more populous weather 
grid points have a greater impact on the national demand. 

Annual Fuel energy demand for space heating and hot water from 
table U2 in energy_2019_end_use_by_fuel.xlsx [22] were used to calcu-
late annual space and water heating figures for input into the generation 
of heat demand time series. Since 2016 this data includes a more 
detailed breakdown including how much of space and water heating was 
provided by gas enabling a more detailed validation of the gas time 
series. 

Amongst the various historic gas time series available from national 
grid gas data explorer [23], the Non-Daily Metered (NDM daily gas 
demand time series comes closest to including all heating and so we use 
it in this study to validate heat demand time series. Half hourly elec-
tricity time series for Great Britain for 2016–2019 from [24] were used 
(i) for validating the method of creating base line electricity demand and 
(ii) for assessing the impact of heat electrification on the electricity 
demand. 

The methods of generating heat and electricity demand time series 
were validated using measurements from domestic houses in the 
Renewable Heat Premium Payment (RHPP) Scheme [25] and from 
public buildings in a smart meter trial [26] by The Carbon Trust. 

3. Methods 

Actual historic electricity demand time series include technological 
and economic changes over a long time period [27] that have led to an 
overall reduction in the UK electricity demand in the last decade and 
changes to the hourly pattern. An analysis of the impact of weather on 
the UK electricity demand from 1974 to 1990 [28] also found that the 
demand pattern has changed with correlation between demand and 
temperature weakening over time which might be explained by a move 
towards gas heating, or improved thermal insulation. 

For this reason, rather than using actual long-term historic electricity 
demand time series, we generate a baseline electricity demand. First, we 
remove the existing heating electricity demand from a recent year’s 
electricity demand time series, 2018. We do this to separate the weather 
dependent electricity demand from the weather independent electricity 

demand. The heating load correlates strongly with heating degree days 
[4,28] so heating electricity demand does depend on the weather. We 
call the remaining electricity demand baseline electricity demand, and 
we assume that this baseline electricity demand is independent of the 
weather. This concept of generating time series assuming the heating 
electricity demand to be the weather dependent demand has been used 
previously in research for characterising the response of the power 
system to weather [29] and for identifying events of simultaneous high 
demand and low renewable generation [30]. 

The method to generate the electricity demand time series consists of 
three steps:  

1. Generation of heat demand time series. This will then be used in both 
subsequent steps.  

2. Estimation of baseline electricity demand. We start with the historic 
electricity time series from a recent year which represents today’s 
electricity system and remove the electricity for heating from it.  

3. Estimation of electricity demand for future heating assumed here to 
be 41 % of heating supplied by heat pumps by 2050. This 41 % figure 
is taken from the net zero scenario from UK National Grid Future 
Energy Scenarios 2019 [2]. Future Energy Scenarios is a set of 
pathways towards a future decarbonized UK energy system. We add 
this electricity for heat pumps to the baseline demand based on the 
historic weather. 

The detailed breakdown of fuel used for heating was available only 
for the years 2016–2018 [22]. Therefore, we select only amongst these 
years the one to use for the baseline electricity demand, and we have 
chosen to use the most recent one, 2018. 

The following sections describe the steps used for the generation of 
electricity demand time series. The process is illustrated in Fig. 1 where 
brown backgrounds indicate processes unchanged from the when2heat 
dataset [18] and green backgrounds are added or changed as part of this 
study. 

3.1. Generation of heat demand time series 

Heat demand time series can be generated from historic gas demand 
time series [4]. However, we do not use the historic gas time series for 
generating heat demand here because the proportion of gas used for 
heating, efficiency of boilers and home insulation have changed over 
time, and we want to keep these factors constant. 

Our method of generating heat demand time series is based on the 
method used to generate the when2heat dataset [18] which consists of 
time series of heat demand and heat pump coefficient of performance 
(COP) for each European country for the years 2008 to 2013. Daily 
temperatures on a grid with spatial resolutions of 0.75◦ × 0.75◦ from the 
ERA Interim weather reanalysis [31] were used to generate daily heat 
demand time series for each grid point by splitting the annual heat en-
ergy for each country derived from fuel use into days according to a 
temperature dependent equation. These were converted to hourly time 
series using an hourly profile derived from German gas usage which 
assigns a percentage of the daily value to each hour of the day, weighted 
by population, and summed to give an hourly heat demand time series 
for the whole country. 

Heat pump hourly electricity profiles have lower peaks and a more 
even spread than gas usage profiles [13]. For this reason, we modified 
the when2heat method to use a heat demand profile that we derived 
from the RHPP heat pump trial [25], instead of the BDEW profile based 
on gas usage [18]. The BDEW profile and the RHPP profile for the 
temperatue bands − 5 ◦C to 0 ◦C are shown in Fig. 2 and those for 10 ◦C 
to 15 ◦C are shown in Fig. 3. Both these profiles are a combination of 
space and water heating. It can be seen that the BDEW profile shows a 
higher peak in the first half of the day, and since there are other studies 
on German heat pumps showing a similar pattern [32] it would seem 
reasonable to assume that this is a difference in consumer behaviour 
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Fig. 1. The process of creating an electricity demand time series for a system kept constant at 2018 levels of demand apart from heating provided by heat pumps for 
40 years of different weather. 
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between the UK and Germany, rather than a difference between heat 
pumps and gas boilers. 

We also improved on the when2heat method by using the ERA5 
weather reanalysis [33] which is available on a finer grid. 

A 40-year heat demand time series from 1980 to 2019 is generated 
for each weather grid point. This is done by splitting the population 
weighted annual demand for each year into days. First, the Great Britain 
annual heat demand for a particular year is calculated using the 2018 
annual heat demand and heating degree days. 

HDAy =
HDDy

HDD2018
HDA2018 (1) 

Where HDDy is the number of heating degree days for year y calcu-
lated from the UK population weighted temperature and HDAy is the 
annual heat demand for year y. The annual heat demand for 2018 
HDA2018 is calculated using government figures [22]. These are derived 
from fuel sales, monitoring and consumer surveys as shown in Table 1. 
The gas energy figures are used for validation later. 

The equations for generating heat and electricity demand time series 
are adapted from our previous work [19] using the when2heat dataset 
[18]. 

To generate the heat demand time series, a reference temperature 
(equation (2)) was calculated at each weather grid point (g) and day (d) 
based on the ambient temperatures of the N previous days to account for 
the thermal inertia of buildings (for d < N, N = d). 

TRefd,g =

∑N
n=00.5nTambd− n,g
∑N

n=00.5n
(2) 

Where TRef
d,g is the reference temperature for day d at grid point g and 

Tamb is the mean ambient air temperature for that grid point and day and 
N = 3. The daily heat demand at each grid point was calculated by 
weighting by population mapped onto the weather grid, equation (3). 

Hd,g =
HDannualfd,g,α(s).Pg

Ptotal.ftotal
(3) 

Where Pg is the population at grid point g, Ptotal is the total 

Fig. 2. Hourly heat demand profiles for external temperature bands − 5◦C to 0 ◦C.  

Fig. 3. Hourly heat demand profiles for external temperature bands 10 ◦C − 15 ◦C.  

Table 1 
2018 annual heat demand by fuel use converted to heat energy assuming effi-
ciencies: gas 80%, oil 85%, solid fuel 76%, electricity 100%, heat (eg combined 
heat and power) 100%, bioenergy and waste 87%.   

Annual Heat Energy by Fuel (TWh) 

Sector Gas Other Total 

Domestic Space 191 68 259 
Services Space 56 36 92 
Domestic Water 56 11 67 
Services Water 7 6 13 
Total Heat 310 121 431  
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population, HDannual is the annual heat demand derived from Table 1 
and equation (1), ftotal is the sum of all the demand factors and f(d, g)α(s)
is the daily demand factor for day d and grid point g. The parameter α(s) 
indicates which of the two equations below is used to calculate the de-
mand factor fd,g,α(s) for heating configuration s ∈ {1,2,⋯9} in Table 2. 

fd,g,space =
A

1 +

{
B

TRefd,g − T0

}C +D+max

(
mspace − TRefd,g + bspace
mwater − TRefd,g + bwater

)

(4)  

fd,g,water =

(
D+ mwater.Trefd,g + bwaterTrefd,g > 15◦C
D+ mwater.15 + bwaterTrefd,g ≤ 15◦C

)

(5) 

Where T0 is 40 ◦C and A, B, C, D, mspace, mwater, bspace, bwater are factors 
taken from the code download for [18]. These factors depend on (i) UK 
40 year mean wind speed and (ii) type of building (domestic: multi- 
family house 30 % / single family house 70 % or commercial building). 

3.2. Generation of electricity demand time series 

The daily heat demand time series at each weather grid point from 
equation (3) was converted to an hourly electricity time series and 
summed using equation (6) over the whole country to give the addi-
tional electricity that would need adding to the national grid to supply 
this heat demand with electric heat pumps. 

Eh,s =
Ks
η
∑NG

g=0

Hd,g.Ji
COPh,g,β(s)

(6) 

Where Eh,s is the heating electricity demand for hour of the year h 
and heating configuration s (representing different type of heating as 
described below), η is a correction factor set to 1 for resistive heating or 
0.85 for heat pumps to account for real world inefficiencies as per [18] 
and Ks is the proportion of heating configuration s in the country as 
shown in Table 2. The 9 different heating configurations (s) listed in 
Table 2 arise from the different combinations of space or water heating, 
source, and sink shown in that table. The heating is provided by ordinary 
resistive heating where the COP is assumed to be 1.0 and 2 types of heat 
pumps (ground source and air source). The heat is supplied to radiators, 
underfloor heating, or hot water with 3 different sink temperatures 
shown in Table 3. Hd,g is the heat demand for day d at weather grid point 
g. Hd,g is converted from daily to hourly demand by multiplying by Ji the 
hourly profile which determines the proportion of this daily heat 
applying to hour of the day i. COPh,g,β(s) is the heat pump COP for hour of 
the year h, grid point g and β(s). β(s) indicates which of the equations 
(7–9) is used to calculate COP for heating configuration s in Table 2. 
Summing up the contribution of all the NG weather grid points gives a 
final hourly time series for the whole country for each heating config-
uration (s). 

In Table 2 the 2018 fraction represents 2018 proportions [2] and the 
simplifying assumption is that all existing heat energy not provided by 

heat pumps is provided by resistive heating with efficiency 100 %. The 
future fraction is based on the assumptions that all electric heating is 
provided by heat pumps (90 % ASHP, 10 % GSHP based on current 
proportions [2]) and that 90 % of heating is provided by radiators and 
10 % by underfloor heating. Table 3 shows the 3 different sink 
temperatures. 

The COP is calculated at weather grid points using equations (7) or 
(8) as typical for the UK [5] or for ordinary resistive heating using 
equation (9). 

COPh,g,ASHP = 6.08 − 0.09ΔT + 0.0005ΔT2 (7)  

COPh,g,GSHP = 10.29 − 0.21ΔT + 0.0012ΔT2 (8)  

COPh,g,RH = 1.0 (9) 

Where ΔT = S – Th,g and S is the sink temperature from Table 3 and 
Th,g is the hourly source temperature for that grid point. For ASHP this is 
ambient air temperature, for GSHP it is soil temperature. 

All the heating configurations are then added together as per equa-
tion (10). 

Eh = L
∑

s
Eh,s (10) 

Where L is the proportion of heating electrified (taken from gov-
ernment figures [34] or future assumptions). This process described in 
equations (6–10) was repeated for each weather year y, giving Ey,h as the 
electricity demand for year y and hour h. 

Fig. 4 shows the COP curves of Staffell [5] equations (7) and (8) 
which we chose for out final model because they are representative of 
the UK compared those from other studies; Kelly [35], and Fischer [36] 
based on industry standard data (2011, 2014, 2016); Ruhnau [18] from 
industry standard data and RHPP derived from UK heat pump trial data 
[25]. 

In general, GSHP perform better than ASHP and since ground tem-
perature tends to be higher and more constant than air temperature the 
ΔT tends to be lower. It should be noted that we are using COP to 
represent the whole system and not just the heat pumps. We do not 
consider the circulation pump electricity because it is similar to that 
used by a gas boiler which is already present in our baseline electricity 
demand. 

3.3. Estimation of electricity demand 

The 2018 hourly electricity demand time series Bh with heating 

Table 2 
Heating configurations, current and future.  

Heating Configuration: heat use-heat source-heat sink Equations Proportions of heating configuration s 

s Use Source Sink Indices 2018 Fraction (Ks) Future Fraction (Ks) 

α(s) β(s) 

1 Space Heating Ground Radiator space GSHP  0.0045  0.09 
2 Space Heating Ground Floor space GSHP  0.0005  0.01 
3 Space Heating Air Radiator space ASHP  0.0378  0.81 
4 Space Heating Air Floor space ASHP  0.0042  0.09 
5 Space Heating Resistive Radiator space RH  0.8577  0.0 
6 Space Heating Resistive Floor space RH  0.0953  0.0 
7 Hot Water Ground Water water GSHP  0.005  0.1 
8 Hot Water Air Water water ASHP  0.042  0.9 
9 Hot Water Resistive Water water RH  0.953  0.0  

Table 3 
Source and sink assumptions [18].  

Sink temperature (radiator) 40 ◦C – Th,g (or 15 ◦C if Th,g > 25) 
Sink temperature (floor) 30 ◦C – 0.5 Th,g (or 15 ◦C if Th,g > 3) 
Sink temperature (hot water) 50 ◦C  
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electricity removed is what we call the baseline electricity demand and 
was calculated as follows. 

Bh = Fh − E2018,h (11) 

Where Fh is the hourly historic 2018 electricity time series and E2018, 

h is the heating electricity time series for 2018 generated in section 3.2. 
This represents sources of demand other than heating, allowing us to 
study the impact of heating alone by adding in the electricity demand for 
each year of weather including future heating with heat pumps as 
follows. 

Sy,h = Bh+Ey,h (12) 

Where Sy,h is the electricity demand for hour of the year h and year of 
weather y, and Ey,h is the heating electricity time series for hour h and 
weather year y generated in section 3.2. 

4. Validations 

The steps described in the methods in section 3 are shown in Table 4 
along with the validations that are investigated in this section. 

4.1. Validations of heat demand generation methods 

Four methods of generating daily heat demand time series were 
compared in [19] using daily temperatures from the ERA5 weather 

reanalysis for the years 2016 to 2019. For convenience they were given 
the names BDEW, Watson, HDD 15.5 and HDD 12.8:  

• BDEW (Bundersverbend der Engie und Wasserwirtschaft) The 
German gas company’s equation to estimate consumers gas usage 
from [18] used in this study.  

• Watson: a method based on a regression equation based on UK 
building measurements from Watson et. al. [37].  

• HDD 15.5: Heating Degree Days (HDD) with a base temperature of 
15.5◦. [15,38]  

• HDD 12.8: HDD with a base temperature of 12.8◦. 

They differ in the demand factor equation used to calculate fd,g in 

Fig. 4. Relationship between heat pump COP and difference between source and sink temperatures from different studies.  

Table 4 
Summary of methods and validations.  

Major Task Sub Task Validation 

1) Generate heat demand 
time series using 
equations (1–5) 

Split annual heat demand 
derived from fuel energy into 
days (using temperature ( 
Section 3.1) 

4.1.1 National gas: 
Find the heat in gas 
4.1.2 Comparison of 
4 models to gas heat 
4.1.3 Heat pump 
measurements 
4.1.4 Gas Meters 

2) Remove heating 
electricity from 2018 
electricity demand using 
equations (6,10,11) 

Section 3.2 and 3.3 4.2 Linear 
regression 

3) Add heat pump 
electricity for different 
years of weather using 
equations (6,10,12) 

Estimate heating electricity 
demand time series from heat 
demand (Sections 3.1 and 
3.2) 

4.3.2 Previous 
studies 
4.3.1 Heat Pump 
trial data  

Table 5 
temperature equations to factor annual heat demand.  

Method Demand factor equation Reference 
Temperature 

BDEW 
space  
[18] 

fd,g,space =
A

1 +

{
B

TRef
d,g − T0

⎫
⎬

⎭

C + D +

max
(mspace − TRef

d,g + bspace

mwater − TRef
d,g + bwater

⎞

⎠

Current day and 3 
previous days (N =
3) 

BDEW 
water  
[18] 

fd,g,water =

(D + mwater.Tref
d,g + bwaterTref

d,g > 15◦ C

D + mwater.15 + bwaterTref
d,g ≤ 15◦ C

⎞

⎠

(N = 3) 

Watson 
space  
[37] 

fd,g,space =
⎧
⎨

⎩

− 6.71TRef
d,g + 111, forTRef

d,g < 14.1◦ C

− 1.21TRef
d,g + 33, forTRef

d,g > 14.1◦ C 

1 previous day (N =
1) 

Watson 
water  
[37] 

fd,g,water = − 0.0458TRef
d,g + 1.8248 (N = 1) 

HDD 15.5 
space  
[15] 

fd,g,space =

⎧
⎨

⎩

15.5 − TRef
d,g , forTRef

d,g < 15.5◦ C

0, forTRef
d,g > 15.5◦ C 

Current day only (N 
= 0) 

HDD 15.5 
water 
[15] 

fd,g,water = 1.0  

HDD 12.8 
space[8] fd,g,space =

⎧
⎨

⎩

12.8 − TRef
dgl , forTRef

d,g < 12.8◦ C

0, forTRef
d,g > 12.8◦ C 

Current day only (N 
= 0) 

HDD 12.8 
water[8] 

fd,g,water = 1.0   
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equation (3) and in the number of previous days temperature (N) as 
shown in Table 5. 

The BDEW method was found to be the best when validated against 
historic UK gas demand in the previous study [19]. However, a more 
rigorous investigation would quantify the amount of gas in the historic 
time series used for heating. That is what we do in this work. Addi-
tionally, we validate all heat demand methods using actual measure-
ments from heat pumps and gas smart meters. 

4.1.1. Proportion of the national gas time series used for heating 
In countries such as the UK where natural gas provides a large pro-

portion of heating, historic gas time series are often used in both gen-
eration and validation of heat demand time series. Some studies [4] have 
generated UK heat demand time series from natural gas time series, on 
the simplifying assumption that all gas is used for heating. We do not use 
the historic gas time series for generating heat demand here but instead 
use the method described in 3.1 to ensure that our heat demand time 
series are independent of technological developments such as efficiency 
and home insulation. 

A previous study for validating heat demand time series against the 
2013 UK gas demand [18] identified that there is some uncertainty 
about how much is actually used for heating because the time series also 
contains non heat uses [39], giving a discrepancy shown as unknown use 
in Table 6 for 2018. Using it as a ground truth for validation is poten-
tially inaccurate Therefore, we investigate the gas time series to ascer-
tain how much of it is heat. 

Fig. 5 shows a strong correlation for 2018 between gas energy use 
and heating degree days. We assume that the part of the gas demand that 
is dependent on heating degree days is used for heating and that the 
remainder is not. 

A standard method of estimating the proportion of the electricity 
demand time series used for heating is to use linear regression on 
heating degree days [29,40]. We use the same procedure separately on 
the 2016, 2017 and 2018 daily gas time series, the years for which we 
have detailed gas data, to find the constants a0 and a1 for each one of 
these years in equation (13). 

Rd = a0 + a1hddd (13) 

Where Rd is the daily (d) gas time series found by the regression, and 
hddd is the heating degree days for day d calculated using a population 
weighted base temperature of 15.5 ◦C. The time series of gas used for 
heating is therefore given by a1hddd so the gas not used for heating can 
then be estimated as equation (14). 

Dd = Gd − a1hddd (14) 

Where Dd is the daily gas time series without the gas used for heat 
and Gd is the historic daily gas time series, which are plotted in Fig. 6 
showing that its use as a method of removing the heating energy looks 
plausible. 

The sum of Dd from equation (14) is 162 TWh for 2018 and provides 
an estimation of the non-heat gas. To convert to heat demand we 
multiply by 0.8 (consistent with Table 1) for gas boiler efficiency giving 
129.6 TWh. This is close to the unknown 125 TWh from Table 6 
therefore, we conclude that this unknown use portion is not used for 
heating. A similar result was found for 2016 and 2017 with the 

percentage of heat in the gas time series varying by 2 % between the 
years 2016–2018 and the linear regression having a coefficient of 
determination R between 0.90 and 0.94. 

4.1.2. Comparison of generated heat demand time series with that derived 
from gas. 

Using the result from the previous section that the unknown use 
portion of the gas is not used for heating we generate a time series of 
heat for 2016–2018 from the gas time series using equation (15). 

Hd = 0.8Gd −
125
365

(15) 

Where Hd is heat demand from gas for day d, Gd is the daily gas 
demand, 0.8 is the conversion efficiency of gas energy to heat, 125 is the 
amount of gas not used for heating which we deduced in section 4.1.1, 
and 365 splits this equally amongst days of the year. We then use this 
heat demand series to validate and compare the four methods described 
in section 4.1. 

Fig. 7 shows all four methods of splitting the annual heating energy 
into days for 2018 along with a blue line for the gas time series. It can be 
seen that all of the heat demand methods over predict in summer and 
consequently under predict in winter. 2016 and 2017 show a similar 
pattern. 

4.1.3. Validation of heat demand methods using heat demand 
measurements from a domestic heat pump trial 

The Renewable Heat Premium Payment (RHPP) Scheme [25] 
monitored 418 UK houses in the period 2012 to 2015, including mea-
surement of heat demand. We use the measured heat demand from this 
to validate the methods of splitting the annual heat demand into days 
(see section 4.1). Fig. 8 shows the heat demands of all the houses from 
the heat pump trial over the monitoring period compared to that pre-
dicted by the four methods of splitting the annual heat demand into 
days. 

4.1.4. Validation of heat demand methods using gas smart meter readings 
from commercial and public buildings 

The four methods of heat demand were also validated using gas 
meter readings for commercial and public UK buildings for the period 
2004 to 2006 from a Smart Meter trial [26] by The Carbon Trust. The 
data consists of half hourly gas meter readings in KWh for the period 
2004 to 2006 from 51 gas meters in public and industrial buildings. The 
purpose of the trial was to get customers to try out smart meters and to 
see if it prompted energy saving behaviour. It was noted in the study 
report that the participants in the trial were self-selected and had a 
greater than average gas demand, and so were not entirely representa-
tive of the whole country, and that some of the buildings were not used 
at weekends. 

The gas demand time series from each building were combined and 
converted to heat demand assuming that all their gas boilers have the 
same efficiency (0.8) and that all the gas is used for space heating, which 
is mostly the case[26]. 

Fig. 9 shows the heat demand time series derived from the com-
mercial buildings gas smart meters compared to that predicted by the 
four methods of splitting the annual heat demand into days. The 2nd 
winter shows a higher heat demand as more buildings were monitored 
during this period. 

4.1.5. Heat demand validation results 
The results of the heat demand validations from the previous 3 sec-

tions are summarised in Table 7. The BDEW method is shown to be 
better in all cases apart from the gas smart meter validation where the 
Watson method has the best R2 and shows the least bias in the residuals 
plots (not shown here). Therefore, we concluded that the BDEW method 
should be used, confirming the result of our previous work [19]. This is 
an import result because the BDEW method has already been used to 

Table 6 
unknown portion of the gas time series.  

Description Energy 

Sum of the 2018 gas time series converted to heat using an efficiency of 
0.8 

435 
TWh 

Gas heating energy for space and water heating derived from government 
surveys and sales figures [34], Table 1 

310 
TWh 

Unknown use 125 
TWh  
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provide the UK heat demand input for several studies [41–44]. 
However, it should be noted that neither the group of houses in the 

heat pump trial nor the commercial buildings in the gas smart meter trial 
are fully representative of the national stock which may explain dis-
crepancies between the modelled results and those from trials. 

An experiment using the most accurate ERA5 weather grid of 
0.25,0.25 rather than the 0.75,0.75 used for the results in 4.1.2 above 
found that in general the R2 was unchanged, but that in some cases the 
nRMSE reduced by about 0.01, showing a small benefit in using a finer 
grid. 

Simplifying the model by using no population weighting or by using 
no previous days temperature results in a decrease in accuracy (R2 

reducing from 0.982 to 0.970). 

4.2. Validation of generated electricity demand time series 

As described in section 1 we are generating a baseline electricity 
demand based on 2018′s electricity demand. We want this demand to be 

independent of the weather and for this reason we are removing the 
heating electricity as described in section 3.2. 

We investigate if, using the resulting baseline electricity demand 
time series, and our method of generating heating electricity demand we 
can generate 2017 and 2019 electricity demand series similar to the 
historic ones. We restrict our investigation to just these two years to 
ensure similar technoeconomic conditions with 2018. We create a syn-
thetic 2017 electricity demand time series by removing the 2018 heating 
electricity from the 2018 electricity time series and adding in the 2017 
heating electricity. This approximates the historic 2017 electricity de-
mand time series a per equation (16). 

Ê2017 = E2018 − H2018 +H2017 (16) 

Where Ê2017 is predicted 2017 historic electricity demand time series, 
E2018 is the actual 2018 historic electricity demand time series, H2018 is 
the generated time series of heating electricity for 2018 and H2017 is the 
generated time series of heating electricity for 2017. (E2018 - H2018 is the 

Fig. 5. Relationship between daily Great Britain gas consumption and heating degree days 2018.  

Fig. 6. Daily gas demand and daily gas demand with gas used for heating removed.  
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baseline electricity demand) This synthetic timeseries compares well 
with the actual 2017 electricity demand giving R2 = 0.994 as shown in 
Table 8. For the 2019 time series it was R2 = 0.995 and nRMSE = 0.08. 

Previous studies [29] have used linear regression to find the heating 
electricity in a similar way to what we did with the gas demand in 
section 4.1.1, but including cooling degree days (CDD) as well as HDD. 
To compare the accuracy of this method with ours, linear regression was 
used to estimate the coefficients b, c, h in equation (17) to estimate the 
amount of heating and cooling in the electricity demand time series. 

Ei = b+ cCi + hHi (17) 

Where Ei is the electricity demand time series, Ci is a time series of 
Cooling Degree Hours (CDH) using a base temperature of 20 ◦C [45], Hi 
is a time series of Heating Degree Hours (HDH) using a base temperature 
of 14.8 ◦C. In line with the previous studies, we found that it is not 
necessary to include cooling electricity in the model. The heat demand 
from this standard linear regression was also used to validate the heating 
electricity demand using equation (16) and the result is shown as the 
2nd row of Table 8. This linear regression also provides an important 

additional validation of the heat demand method itself using the elec-
tricity time series. 

4.3. Validation of heat pump electricity demand time series 

4.3.1. Comparison of predicted heat pump electricity with trial data 
The heat demand measurements from the RHPP trial data were used 

to generate an electricity demand time series using the methods from 
section 3.3 to compare it with the actual measured electricity demand. 
Fig. 10 shows that the actual electricity demand measured from the heat 
pump trial data is higher than that predicted. 

The modelled electricity demand time series to the measured one 
with R2 = 0.994 reflecting the fact that both time series follow a similar 
pattern, but the high nRMSE of 0.70 reflects the under prediction in the 
model. There is also a large bias shown in the residuals plot (not shown 
here). 

The reason for the higher heat pump electricity demand from the 
heat pump trial data could be the fact that the sample of housing in the 
trial is mostly social housing [25] not representative of the UK housing 

Fig. 7. comparison of methods of splitting annual heat demand into days with gas derived heat demand for 2018 (5 day rolling average).  

Fig. 8. Comparison of methods of splitting total heat demand over a period into days using measured heat pump data 7 day rolling average.  
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stock and containing heat pumps not representative of the typical heat 
pumps sold. Another reason could be that UK heat pumps perform less 
well than German installations [5] possibly due to lack of experience 
amongst installers. Another possible explanation is inaccuracy of the 
RHPP trial data, although a previous study [13] expressed doubts about 
the accuracy of the heat measurements rather than the electricity 
measurements. Finally, another cause could be that our model assumes 
that all the hot water is provided by heat pumps alone, but this may noy 
be the case. 

It is clear from Fig. 4 that the temperature dependent COP we 
calculated from the RHPP heat pump trial data is very poor compared to 
those used in other studies. For ASHP, we calculated an average COP of 
2.4 from the trial data, compared to the annual population weighted 
COP of 2.9 calculated using equations (7) and (8) based on the weather 
of 2010 to 2019. For comparison, a review of available heat pump data 
[46] notes a large variation in COP from 2 to 4, and that one trial of 
retrofitted homes in Northern Ireland reported a COP as low as 1.4. This 
variability in heat pump performance obtained from heat pump trials 
suggests that heat pump trial data should be used with caution in 
research. More trial data is required from heat pumps to accurately 
reflect the distribution of housing and heat pump types in the UK. 

4.3.2. Comparison of predicted heat pump electricity with other studies 
We compared the heating electricity time series from the DESTinEE 

model [3] which uses 2010 as its reference year and 50 % heat pumps 
with our model (equation (6)) using the same year and heat pump 
penetration. 

The generated time series of heat pump electricity required to supply 
half the Great Britain heat demand using heat pumps from our model 
(blue line) is shown in Fig. 11 compared with that using the DESSTINEE 
model (orange line). Comparing these two time series we find R2 =

0.962, nRMSE = 0.63 and that DESSTINEE finds a higher electricity 
demand. 

Because the DESSTINEE model assumes a COP of 2.5 for 2010, 
whereas our model uses a temperature dependent COP at each weather 
grid point resulting in an average COP of 3.5 we also tried the 
DESSTINEE model with a COP of 3.5 which is shown in green on Fig. 11. 
This provides a closer match but there are still some differences in the 
pattern. These differences reflect variations in methods of calculating 
COP and heat demand. Although it is clear, that the change in the 
magnitude of the average COP from 2.5 to 3.5 has larger impact on the 
heat pump electricity demand profile overall, the variation of the COP 
due to temperature may have comparable impact during some periods. 

5. Results 

Although hourly time series have been generated, only the daily 
series are shown in the following plots for clarity. 

5.1. Baseline electricity demand 

Fig. 12 shows the daily historic electricity time series for 2018 (in 
blue) with the portion of that which was heating (in red) subtracted from 
it to give the baseline electricity demand without heating electricity 
(purple). 

5.2. Generated electricity demand time series 

By way of demonstration the results of our method applied to 10 
arbitrary consecutive years from the total 40 are shown in Fig. 13. The 
purple line of Fig. 13 shows the baseline electricity demand. The orange 
line shows the effect of adding in the electricity demand for heat pumps 
assuming all heating was provided by heat pumps. As expected, this 
would have a very large impact as currently most UK heating is provided 
by gas. 

Note that despite the removal of the weather dependence due to 

Fig. 9. Comparison of methods of splitting heat demand over a period into days using Gas smart meter data 7 day rolling average.  

Table 7 
Heat Demand Validation.   

National Gas Heat 
2016–2018 

RHPP Heat Pumps 
2013–2015 

Gas Smart Meters 
2005–2006  

nRMSE R2 nRMSE R2 nRMSE R2 

BDEW  0.12  0.989  0.25  0.977  0.57  0.880 
Watson  0.13  0.987  0.26  0.974  0.59  0.896 
HDD15.5  0.16  0.982  0.33  0.964  0.63  0.859 
HDD12.8  0.30  0.953  0.59  0.912  0.87  0.789  

Table 8 
Comparison of Electricity Time Series.  

Comparison to the 2017 electricity demand time series R2 nRMSE 

2017 synthetic time series from equation (12) using our heat 
demand method from section 3.1 to calculate H2018 and H2017  

0.994  0.08 

2017 synthetic time series from equation (12) heat using linear 
regression model from equation (17) to calculate H2018 and 
H2017  

0.993  0.08  
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heating, the baseline electricity demand still shows some variation be-
tween months also visible in Fig. 12. December has a mean daily demand 
of 0.7 TWh where there is a noticeable dip in the holiday period at the 
end of month. The mean electricity demand of the other months varies 
between May with 0.67 TWh, July with 0.71 TWh and January with 
0.75 TWh. A weekly cycle is also visible in Fig. 12, where demand varies 
within a week by 0.23 Twh compared to the variation between weeks of 
only 0.09 TWh. The baseline demand is very weakly correlated with 
heating degree days per hour (R = 0.19) and the correlation with tem-
perature is also very weak. Therefore, it seems reasonable to conclude 
that most of the weather dependency has been removed, and that the 
pattern is due to time dependent consumer behaviour. 

Fig. 14 shows the 2018 historic electricity demand (blue line) 
compared to what it would have been if all heating were provided by 
electric heat pumps (red line), where the annual electricity demand 
would increase from 299 TWh to 391 TWh. The green line represents a 
more realistic scenario of 41 % heat pumps from the 2050 prediction 
from [2] where the annual electricity demand would be 323 TWh. As 

expected, there is a noticeable increase in winter demand and the day- 
to-day variability of this demand. 

However, it is also important to note the advantage of using heat 
pumps over traditional electric heating. The purple line in Fig. 14 shows 
the electricity demand for 2018 if the existing electric heating had been 
provided by heat pumps. This would result in a reduction in the annual 
demand of 16 TWh and a reduction in hourly peak demand from 54 GW 
to 48 GW. 

Fig. 15 shows the daily electricity demands assuming 41 % of heating 
provided by heat pumps for 40 consecutive years overlaid on top of each 
other. This is compared with the case when the electricity demand in-
cludes existing heating electricity. This shows a very large variation in 
the electricity demand in the winter months for different years and a 
much smaller variation in the summer for the case of 41 % heating from 
heat pumps. The monthly electricity demand has doubled leading to an 
increase in about 30TWh for each winter month (December, January, 
February). 

Fig. 16 shows that for the 40 consecutive years of data we are 

Fig. 10. Comparison of predicted electricity demand using our method with actual hourly electricity demand from measured heat pumps in the RHPP trial 7 day 
rolling average. 

Fig. 11. comparison of BDEW heat pump electricity time series with DESSTINEE.  
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considering in this study the annual electricity demand with the existing 
heating electricity would vary over a range of 19 TWh, whereas with 41 
% of heating provided by heat pumps this variation increases by 37 % to 
a range of 26 TWh. 

The decline in Great Britain’s annual electricity demand with 41 % of 
heating provided by heat pumps visible in Fig. 16 is caused by a decline 
in annual heat demand of 70TWh over the 40-year period due to 
approximately 1 ◦C increase in the population weighted Great Britain 
temperature over the years 1980 – 2019. 

Fig. 17 shows the variation in the day-to-day and seasonal patterns 
from one year to the next of the daily electricity demand incorporating 
41 % of heating provided by heat pumps generated using our method 
(green) in comparison to the historic time series (blue). The increase in 
winter demand and its day-to-day variability both more noticeable in 
some years and less in others, impacts the required shares of weather 
dependent renewables and storage, and this must be addressed and 

quantified in further work. 
Note that the 41 % heating by heat pumps figure was taken from the 

net zero scenario in the UK National Grid Future Energy Scenarios 2019 
[2]. However, there is a large variation in future 2050 heat pump 
penetration projections. Seven plans for achieving a net zero UK in 2050 
are reviewed in [47]. These plans have been developed by four different 
groups using different modelling methods and assumptions. The plan 
with lowest proportion has only 27 % of heating provided by heat pumps 
whereas the plan with most heating provided by heat pumps has 74 %. 

Supplying the electricity for heat pumps in a sustainable way would 
require an increase in renewable energy, such as solar and wind energy, 
complemented with energy storage. Increases in transmission infra-
structure would also be necessary [48] to cope with increased genera-
tion. Demand side management and use of thermal storage with heat 
pumps to reduce the variation in demand can also play an important role 
[15]. 

Fig. 12. Removing the electricity for heating from the historic electricity demand of 2018 to obtain the baseline electricity demand.  

Fig. 13. Baseline electricity demand (2018 time series without the electricity used for heating) compared with generated electricity demand assuming all heating is 
provided by heat pumps. 
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6. Sensitivity analysis 

Both the method used to generate daily heat demand time series from 
section 4.1 and the selection of the hourly profile of heat pump opera-
tion from Figs. 2 and 3 will impact the final electricity demand time 
series. We study here the effect on peak demand, annual demand, and 
ramp rates. 

Previous work on generating hourly heat pump electricity demand 
time series [3] has used hourly profiles derived from gas boilers. Flat 
profiles [49] have also been suggested assuming that heat pumps would 
be configured this way as the best way of reducing peak demand whilst 
ensuring thermal comfort. Whilst it is clear that using an hourly profile 
derived from actual heat pump data would be an option, different trials 
have shown heat pump profiles with different shapes [50] due to the 
way the heat pumps are configured. 

We therefore investigate the sensitivity of the generated hourly 
electricity demand both to the hourly profile and the method of 

generating the daily heat demand time series. The result of using 
different hourly profiles to generate an hourly time series from the daily 
series generated using the BDEW heat demand method are shown in 
Table 9. Peak demand is important for estimating the required genera-
tion capacity and ramp rates are important for the stability of the elec-
tricity system as it has to react to the sudden addition or loss of load. The 
higher peak demands for the RHPP profile will have been caused by its 
higher afternoon peak shown on Fig. 2 because the time of peak demand 
in the historic series also occurs in the later afternoon. 

The results of varying the daily heat demand method but keeping the 
same hourly profile are shown in Table 10. 

The choice of method (splitting the annual heat demand into days) 
and hourly profile only have a small impact on the annual electricity 
demand. However, the hourly peak demand values vary over a range of 
25 GW (25 %) which is quite significant compared to estimates of what 
the future peak demand might be. For example a study into electricity 
demand and weather variability [17] predicts that electrification of heat 

Fig. 14. The impact on the 2018 electricity demand if all heating were provided by electric heat pumps.  

Fig. 15. 40 years generated daily electricity demand time series incorporating 41% of heating provided by heat pumps compared to existing heating.  
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will double peak demand from about 50 GW to 100 GW and in a study 
including other sectors as well as heat [15] hourly ramp rates of ± 15 
GW are predicted by 2030. This suggests that estimates of peak demand 
are very inaccurate if they can vary so much depending on the method of 
generating the heat demand time series. 

Despite being based on the same annual heat demand, the annual 
electricity demands estimated from the different methods and shown in 
Table 10, differ, because the methods assume both different hourly heat 
pump operation profiles and daily total heat demand. The intraday 
temperature variations mean different COP for each hourly profile of 
heat pump operation and hence the total amount of electricity required 
to generate the same heat varies accordingly. 

7. Conclusions 

The paper describes a method to generate long-term electricity de-
mand time series accounting for the expected electrification of heat 
using heat pumps. In contrast to previous reported research, the gen-
eration of this synthetic time series is based on modifications of the 
actual historic data series which enables the method to capture the 

Fig. 16. annual demand with 41% heat pumps compared with heating electricity at 2018 levels.  

Fig. 17. Impact of 41% heating provided by pumps 5 day rolling average.  

Table 9 
hourly electricity time series comparisons if 2018 had heat electrification.  

Electricity 
Time Series 

Hourly 
Profile 

Hourly 
Peak 
Demand 

Hourly 
Ramp up 

Hourly 
Ramp 
down 

Annual 
Demand 

Historic 
(existing 
heating)  

54 GW 7 GW 6 GW 266 TWh 

BDEW 
method 
(heat 
pumps) 

BGW 94 GW 12 GW 11 GW 397 TWh 

BDEW 
method 
(heat 
pumps) 

Flat 89 GW 7 GW 5 GW 380 TWh 

BDEW 
method 
(heat 
pumps) 

RHPP 100 GW 20 GW 15 GW 379 TWh  
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variation due to 40 years historic weather whilst keeping current tech-
nological and socio-economic conditions.This resulting time series al-
lows us to study the impact of heat pump penetration alone on electricity 
demand. 

Four methods of generating heat demand time series were compared 
to measured data. All these methods compared well. However, the 
methods based on gas demand (BDEW and Watson) do slightly better 
than those based on HDD. One way that these better performing 
methods differ from the other two is that they assume that hot water 
demand is dependent on temperature rather than being constant 
throughout the year, so this could partly explain why they perform 
better. More specifically, from analysis of the gas time series, and trial 
data validations we concluded that the BDEW method used for the 
when2heat dataset performed the best. This is an important result 
because the when2heat dataset has already been used by several studies 
to provide the UK heat demand. Validation revealed that population 
weighting and using previous days temperatures improved accuracy 
sufficiently to be worth including in the method. 

Our model under predicts the heat pump electricity demand in 
comparison with actual electricity measurements from UK heat pump 
trial data. Variation in heat pump COP from UK trials suggests that the 
performance of heat pumps depends so much on their specific imple-
mentation that electricity demand measured from existing heat pump 
trial data is not representative of the whole country. This restricts the 
usefulness of the existing data in nationwide models of energy systems. 
More data is needed to accurately reflect the distribution of housing and 
heat pump types in the UK. 

It was found that the peak electricity demand is very sensitive to both 
the choice of hourly heat profile used to convert daily to hourly series 
and to the method of splitting the heat demand into days. Specifically, 
the hourly peak demand values vary over a range of 25 GW which is 
quite significant compared to some estimates of future peak demand of 
100 GW. This suggests that estimates of peak demand may be very 
inaccurate and that more research is required in this area. 

The advantage of using heat pumps over traditional electric heating 
was quantified in our work. As an example, we have shown that if the 
existing electric heating in 2018 had all been provided by heat pumps it 
would have resulted in a reduction in the annual demand of 16 TWh and 
a reduction in the hourly peak demand from 54 GW to 48 GW. 

Our model shows that annual electricity demand with existing 
heating electricity varies over a range of 19 TWh between different years 
due to differences in the weather. However, with 41 % of heating pro-
vided by heat pumps this variation in electricity demand increases by 37 
% to a range of 26 TWh. Finally, it was found that the electrification of 

heat expected by 2050 with the introduction of heat pumps, modifies the 
seasonal profile of electricity demand doubling the monthly demand for 
electricity leading to an increase in about 30TWh for each winter month. 
Given that the main renewable energy sources wind and solar exhibit 
high seasonal variation further research should investigate how this 
change in the seasonal profile of electricity demand due to heat elec-
trification will impact the role of wind and solar contribution and 
storage requirement in a future highly renewable electricity system. 

8. Code Availability 

The python program used for generating heat and electricity demand 
time series is available at https://github.com/malcolmpeacock/heat. 
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